WO2024075393A1 - 電気機器 - Google Patents

電気機器 Download PDF

Info

Publication number
WO2024075393A1
WO2024075393A1 PCT/JP2023/029046 JP2023029046W WO2024075393A1 WO 2024075393 A1 WO2024075393 A1 WO 2024075393A1 JP 2023029046 W JP2023029046 W JP 2023029046W WO 2024075393 A1 WO2024075393 A1 WO 2024075393A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal space
electrical
electrical device
outer frame
gas
Prior art date
Application number
PCT/JP2023/029046
Other languages
English (en)
French (fr)
Inventor
勇一郎 吉武
順平 楠川
央 上妻
徹也 川島
欣也 中津
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024075393A1 publication Critical patent/WO2024075393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to electrical equipment.
  • Patent Document 1 discloses an air conditioner equipped with an inverter device that drives an electric compressor, in which a casing that houses a power element and a control circuit that controls it is filled with an inert gas as a structure for preventing condensation inside the casing of the inverter device.
  • Patent Document 1 states that the inert gas is filled at room temperature and at a pressure slightly higher than atmospheric pressure.
  • Patent Document 2 discloses a power conversion device for aircraft, which includes a sealed housing including a gas inlet valve and a gas outlet valve, a power semiconductor module disposed in the internal space of the sealed housing, and dry gas filling the internal space of the sealed housing. Patent Document 2 also discloses that dry gas is injected from the ambient pressure (e.g., atmospheric pressure) outside the sealed housing to set the internal space of the sealed housing to a set pressure.
  • ambient pressure e.g., atmospheric pressure
  • Patent documents 1 and 2 disclose a means for increasing the air pressure inside a container in which electrical components are placed above atmospheric pressure. However, some types of electrical components may be damaged if the air pressure becomes too high.
  • the purpose of this disclosure is to prevent condensation from forming on the walls of an enclosed space in an electrical device in which electrical components such as electrolytic capacitors are placed, and to prevent damage to the electrical components due to air pressure.
  • the electrical device disclosed herein comprises an electrical component, an electrical component support, and an outer frame, an internal space is formed between the electrical component support and the outer frame, the electrical component is placed in the internal space, and a gas with a water vapor pressure of 0.60 kPa or less is sealed in the internal space.
  • FIG. 1 is a schematic cross-sectional view showing an electrical device according to a first embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a second embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an electrical device according to a fourth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
  • electrical devices and electronic devices that use electricity as an energy source are collectively referred to as “electrical devices.” Electrical devices also include power conversion devices.
  • FIG. 1 is a schematic cross-sectional view showing an electrical device according to the first embodiment.
  • the electrical device shown in this diagram is a power conversion device with a liquid cooling mechanism.
  • the power conversion device includes a switching element 1, an electrolytic capacitor 60, a substrate 2, a substrate support 21, a heat conductive member 22, and an outer frame 90.
  • the substrate support section 21 is provided with a liquid flow path 8.
  • the substrate support section 21 is provided with a substrate 2 and a thermally conductive member 22.
  • the switching element 1 is arranged so as to be in contact with the thermally conductive member 22.
  • the electrolytic capacitor 60 is arranged on the substrate 2.
  • the outer frame 90 is fixed to the substrate support 21 so as to cover the switching element 1, the electrolytic capacitor 60, the substrate 2, and the thermal conductive member 22. As a result, an internal space 92 is formed between the substrate support 21 and the outer frame 90. The internal space 92 is completely sealed so that there is no air flowing in or out of the external space.
  • the switching element 1, the electrolytic capacitor 60, the substrate 2, and the thermal conductive member 22 are configured so as not to come into contact with the outer frame 90.
  • a gas that does not substantially contain water vapor, such as dry air, is sealed in the internal space 92. This prevents condensation from forming on the inner wall surface of the outer frame 90.
  • the water vapor pressure of the gas sealed in the internal space 92 is preferably 0.60 kPa or less, more preferably 0.080 kPa or less, and particularly preferably 0.0020 kPa or less.
  • the dry air has the same composition as normal air (mainly containing about 78% by volume of nitrogen and about 21% by volume of oxygen).
  • the switching element 1 includes a MOSFET (metal oxide semiconductor field effect transistor) or a power module.
  • the substrate support 21 is made of metal.
  • components that function when electricity is passed through them, such as the switching element 1, are collectively referred to as "electrical components.” Electrical components include capacitors, printed circuit boards (PCBs), etc.
  • the outer frame 90 is made of metal such as aluminum alloy or stainless steel, and provides strength as a cover for the switching element 1.
  • the thickness of the outer frame 90 depends on the material, but it is desirable for it to be around 2 to 3 mm.
  • the contact area between the substrate support 21 and the heat conductive member 22, and the contact area between the switching element 1 and the heat conductive member 22, are sufficiently large so that the heat generated in the switching element 1 can be sufficiently removed.
  • the liquid flow path 8 of the substrate support 21 is arranged so that the liquid flowing through the liquid flow path 8 can sufficiently remove heat from the heat conductive member 22.
  • liquid flowing through the liquid flow path 8 include water, mineral oil, fluorocarbon-based coolant, vegetable oil, etc. Note that in this specification, cooling of a power conversion device, etc.
  • the cooling mechanism of the electrical device is not limited to this, and may be a gas such as air, a refrigerant that undergoes a phase change, etc. Specifically, it may be a forced air cooling or a heat pipe.
  • the electrolytic capacitor 60 is used for smoothing and filtering purposes in power conversion devices.
  • Other examples of such capacitors include ceramic capacitors, film capacitors, and hybrid capacitors. Capacitors other than those exemplified here may also be used, and the type is not limited.
  • a valve may be provided to prevent damage due to high air pressure.
  • the pressure of the gas in the internal space 92 of the sealed power conversion device rises due to a rise in temperature caused by operation, the operation of the valve of the electrolytic capacitor 60 may be hindered.
  • the power conversion device is not energized, in other words, when the power conversion device is not generating heat and its temperature is not high, it is desirable to finely adjust the air pressure in the internal space 92 to less than atmospheric pressure. In other words, when the power conversion device is not operating, it is desirable to make the initial pressure in the internal space 92 slightly negative.
  • the pressure increase during operation can be offset by creating a negative pressure in the internal space 92, preventing damage to each electrical component.
  • the substrate support section 21 having the liquid flow path 8 is preferably at ground potential.
  • the substrate support section 21 is preferably made of an aluminum alloy, stainless steel, copper alloy, or other metal.
  • the partial discharge inception voltage is significantly lower than under atmospheric pressure. Therefore, it is necessary to use a solid or liquid with a partial discharge inception voltage about 10 times higher than that of air on the surface to which the voltage is applied and the surface that is grounded.
  • a solid insulating material such as silicone. This makes it difficult for partial discharges to occur under low pressure.
  • suitable solid insulating materials include polyphenylene sulfide resin (PPS), epoxy resin, and unsaturated polyester.
  • the gas to be sealed in the internal space 92 may be dry air, nitrogen, argon, carbon dioxide, nitrogen dioxide, etc. It is desirable for the gas to have properties such that it does not liquefy even at -70°C. A mixture of these gases may also be sealed in.
  • the gas to be filled in the internal space 92 may be dry air to which oxygen has been added to increase the oxygen concentration to be higher than that of the atmosphere (oxygen concentration 21% by volume). By increasing the oxygen concentration, the electron attachment of the gas to be filled is increased, making it easier to suppress discharge and improving insulation.
  • oxygen carbon dioxide, sulfur hexafluoride, carbon monoxide, etc. may be used as the gas to increase the electron attachment.
  • sulfur hexafluoride halogen-containing gases may also be mixed. Fluoride gases such as BF 3 and CF 4 , chloride gases, fluorocarbon gases, etc. are known as halogen-containing gases containing fluorine, chlorine, iodine, etc.
  • the internal space 92 may be depressurized to create a vacuum state.
  • the higher the degree of vacuum the more desirable it is; specifically, 1 Pa or less is desirable, and 0.1 Pa or less is even more desirable.
  • the water vapor pressure is also reduced, making it possible to prevent condensation and the like. It is also possible to prevent corrosion caused by condensation, malfunctions caused by lightning surges, and the like.
  • FIG. 2 is a schematic cross-sectional view showing an electrical device according to the second embodiment.
  • a low pressure chamber 100 is provided between the substrate support 21 and the outer frame 90.
  • the internal space 92 and the low pressure chamber 100 are separated by a partition plate 101.
  • a vent filter 99 is provided on the partition plate 101.
  • the electrical components are installed in the internal space 92.
  • the low pressure chamber 100 has a lower air pressure than the internal space 92.
  • the vent filter 99 opens, allowing the gas in the internal space 92 to flow out into the low pressure chamber 100. In this case, in the initial state, it is also possible to make the air pressure in the internal space 92 higher than atmospheric pressure (1 atm).
  • FIG. 3 is a schematic cross-sectional view showing an electrical device according to the third embodiment.
  • the switching element 1 is electrically connected to the outside via a cable 111.
  • the cable 111 is a covered conductor.
  • the outlet of the cable 111 provided on the outer frame 90 is sealed with a silicone FIPG 112 or the like to ensure airtightness of the internal space 92.
  • FIPG is an abbreviation for Formed In Place Gasket.
  • FIG. 4 is a schematic cross-sectional view showing an electrical device according to the fourth embodiment.
  • the switching element 1 is electrically connected to the outside via a bus bar 115.
  • a cable may be used instead of the bus bar 115.
  • a cable is a covered conductor.
  • connection part of the bus bar 115 provided on the outer frame 90 is a BNC connector 116 (Bayonet Neill-Concelman connector). This ensures airtightness of the internal space 92. It also makes the connection work easier.
  • FIG. 5 is a schematic cross-sectional view showing an electrical device according to a fifth embodiment.
  • a frame is used in which the outer wall surface of a flame-retardant resin frame 130 is covered with a metal coating 131.
  • This frame is also called the "outer frame.”
  • Aluminum, iron, nickel, etc. are suitable for the metal coating 131.
  • the metal coating 131 may also be provided on the inner wall surface of the flame-retardant resin frame 130. This configuration makes it possible to prevent ignition during lightning strikes, the inflow of noise, etc. Also, the weight of the electrical equipment can be reduced.
  • the material of the flame-retardant resin frame 130 is preferably, for example, a foamed resin such as polyurethane, polystyrene, polyethylene, polypropylene, or silicone. Vacuum insulation materials with a core material such as glass wool or silica powder are also desirable. However, the material of the flame-retardant resin frame 130 is not limited to these.
  • a metal frame may be used instead of the flame-retardant resin frame 130.
  • the electrical device has the board 2, the board support part 21, and the thermally conductive member 22, but the electrical device according to the present disclosure does not necessarily have these components, and may have a member that supports the electrical components instead of the board support part 21. An internal space may be formed between the member and the outer frame 90.
  • the board support part 21 and the member are collectively referred to as the "electrical component support part.”
  • the electrical equipment disclosed herein can also be applied to mobility in general, including aircraft, transportation equipment, and construction machinery.
  • Electrical components include electrolytic capacitors.
  • the air pressure inside the space is set to less than atmospheric pressure.
  • the gas in the internal space is dry air, nitrogen, argon, carbon dioxide, nitrogen dioxide, or a mixture of two or more of these.
  • the interior space is a vacuum.
  • the outer frame is made of one or more of polyurethane, polystyrene, polyethylene, polypropylene, and silicone, covered with a metal coating.
  • the outer frame includes a vacuum insulation material that contains at least one of glass wool and silica powder as a core material.
  • the oxygen concentration of the gas in the interior space is greater than 21% by volume.
  • the gas in the internal space contains one or more of the following: carbon dioxide, sulfur hexafluoride, carbon monoxide, and halogen-containing gases.
  • a low-pressure chamber adjacent to the internal space is provided between the electrical component support and the outer frame, and the low-pressure chamber is set to a lower air pressure than the internal space, and a vent filter is provided between the internal space and the low-pressure chamber.
  • the electrical components are electrically connected to the outside world via cables, and the cable outlets on the outer frame are sealed with silicone FIPG.
  • the electrical components are electrically connected to the outside world via cables or bus bars, and a BNC connector is provided at the cable outlet or bus bar connection on the outer frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

電気部品(1,60)と、電気部品支持部(21)と、外側フレーム(90)と、を備える電気機器であって、電気部品支持部と外側フレームとの間には、内部空間(92)が形成され、電気部品は、内部空間に設置され、内部空間には、水蒸気圧が0.60kPa以下の気体が封入されている。これにより、密閉空間に電解コンデンサ(60)等の電気部品を配置した電気機器において、密閉空間の壁面等に結露が生じることを防止するとともに、気圧による電気部品の破損を防止することができる。

Description

電気機器
 本開示は、電気機器に関する。
 ゼロカーボン社会の実現に向け、各国においてCO排出規制が強く求められており、化石燃料を使用するエンジンの代替として、動力系統の電動化が盛んに進められている。
あらゆるエンジン駆動のモビリティ製品において、パワーエレクトロニクス機器の適用が検討され、その出力密度の向上が求められている。これに伴い、パワーエレクトロニクス機器には、世界中のあらゆる気候に適用できることが求められている。航空機においては、急激な高度の変化に対応できる耐環境性が必須となる。同時に、冷却性能向上、高電圧化、軽量化などが求められ、そのための技術開発が進められている。
 特許文献1には、電動圧縮機を駆動するインバータ装置を備えた空気調和機に関して、インバータ装置のケース内の結露防止構造として、パワー素子及びこれを制御する制御回路を収容するケース内に不活性ガスを充填したものが開示されている。特許文献1においては、不活性ガスは、常温で、且つ大気圧よりやや高めの圧力で充填されている、と記載されている。
 特許文献2には、ガス入口弁とガス出口弁とを含む密閉筐体と、密閉筐体の内部空間に配置されているパワー半導体モジュールと、密閉筐体の内部空間を満たす乾燥ガスとを備える、航空機用の電力変換装置が開示されている。また、特許文献2には、密閉筐体の外部の周囲気圧(例えば、大気圧)から乾燥ガスを注入して、密閉筐体の内部空間を設定圧力にすることが開示されている。
特開2004-219031号公報 特許第6878712号公報
 特許文献1及び2においては、電気部品を配置した容器内の気圧を大気圧より高くする手段が開示されている。しかしながら、電気部品の種類によっては、気圧が高くなると破損するものもある。
 本開示は、密閉空間に電解コンデンサ等の電気部品を配置した電気機器において、密閉空間の壁面等に結露が生じることを防止するとともに、気圧による電気部品の破損を防止することを目的とする。
 本開示の電気機器は、電気部品と、電気部品支持部と、外側フレームと、を備え、電気部品支持部と外側フレームとの間には、内部空間が形成され、電気部品は、内部空間に設置され、内部空間には、水蒸気圧が0.60kPa以下の気体が封入されている。
 本開示によれば、密閉空間に電解コンデンサ等の電気部品を配置した電気機器において、密閉空間の壁面等に結露が生じることを防止するとともに、気圧による電気部品の破損を防止することができる。
実施例1の電気機器を示す模式断面図である。 実施例2の電気機器を示す模式断面図である。 実施例3の電気機器を示す模式断面図である。 実施例4の電気機器を示す模式断面図である。 実施例5の電気機器を示す模式断面図である。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。
 なお、本明細書においては、電気をエネルギー源として機能する電気機器及び電子機器を「電気機器」と総称する。電気機器には、電力変換装置も含まれる。
 図1は、実施例1の電気機器を示す模式断面図である。
 本図に示す電気機器は、液冷機構を有する電力変換装置である。電力変換装置は、スイッチング素子1と、電解コンデンサ60と、基板2と、基板支持部21と、熱伝導部材22と、外側フレーム90と、を備えている。
 基板支持部21には、液体流路8が設けられている。基板支持部21には、基板2及び熱伝導部材22が設置されている。スイッチング素子1は、熱伝導部材22に接するように配置されている。電解コンデンサ60は、基板2に配置されている。
 外側フレーム90は、スイッチング素子1、電解コンデンサ60、基板2及び熱伝導部材22を覆うように基板支持部21に固定されている。これにより、基板支持部21と外側フレーム90との間に内部空間92が形成されている。内部空間92は、外部と空気の出入りがないように完全に密封されている。スイッチング素子1、電解コンデンサ60、基板2及び熱伝導部材22は、外側フレーム90に接しないように構成されている。内部空間92には、乾燥空気等の水蒸気を実質的に含まない気体が封入されている。これにより、外側フレーム90の内壁面に結露が生じることがないようになっている。なお、内部空間92に封入する気体の水蒸気圧は、0.60kPa以下が望ましく、0.080kPa以下が更に望ましく、0.0020kPa以下が特に望ましい。ここで、乾燥空気は、通常の大気と同じ組成(主成分として窒素約78体積%、酸素約21体積%を含む。)である。
 スイッチング素子1は、MOSFET(金属酸化膜半導体電界効果トランジスタ)又はパワーモジュールを含む。基板支持部21は、金属製である。なお、本明細書においては、スイッチング素子1のように通電することにより機能する部品を「電気部品」と総称する。電気部品は、コンデンサ、プリント基板(Printed Circuit Board:PCB)等を含む。
 外側フレーム90は、アルミニウム合金、ステンレス鋼等の金属製であり、スイッチング素子1のカバーとしての強度を担っている。外側フレーム90の厚さは、材質にもよるが、2~3mm程度が望ましい。
 また、外側フレーム90を金属製としたことにより、落雷が生じても、電力変換装置の内部にノイズ電流が生じにくくなり、誤動作を生じにくくすることができる。
 基板支持部21と熱伝導部材22との接触面積、及びスイッチング素子1と熱伝導部材22との接触面積は、スイッチング素子1に発生する熱が十分に除去されるように、十分広くすることが望ましい。また、基板支持部21の液体流路8は、液体流路8を流れる液体が熱伝導部材22から十分に熱を除去できるように配置することが望ましい。液体流路8に流れる液体の例としては、水、鉱油、フルオロカーボン系冷却材、植物油などが挙げられる。なお、本明細書においては、液体流路8に流れる液体による電力変換装置等の冷却について説明しているが、本開示に係る電気機器の冷却機構は、これに限定されるものではなく、空気等の気体によるもの、相変化を伴う冷媒によるもの等であってもよい。具体的には、強制空冷によるものやヒートパイプを用いるものであってもよい。
 電解コンデンサ60は、電力変換装置において平滑用やフィルタ用途で用いられるものである。このようなコンデンサとしては、このほか、セラミックコンデンサ、フィルムコンデンサ、ハイブリットコンデンサなどが適用される。ここで例示したもの以外のコンデンサを適用してもよく、その種類を限定するものではない。
 電解コンデンサ60の場合、気圧が高くなることによる破損を防ぐために電解コンデンサ60に弁を設ける場合がある。この場合、運転による温度上昇などにより、密閉された電力変換装置の内部空間92の気体の圧力が上昇したときに、電解コンデンサ60の弁の動作が妨げられるおそれがある。このため、電力変換装置に通電していない状態、言い換えると、電力変換装置の発熱がなく温度が高くなっていない状態においては、内部空間92の気圧を大気圧未満に微調整しておくことが望ましい。つまり、電力変換装置を運転してないときには、内部空間92の初期の圧力を少しだけ負圧にしておくことが望ましい。
 電解コンデンサ60以外の電気部品についても、内部空間92を負圧にすることにより、運転時の圧力上昇を相殺することができ、各電気部品の破損を防止することができる。
 液体流路8を有する基板支持部21は、接地電位とすることが望ましい。基板支持部21は、アルミニウム合金、ステンレス鋼、銅合金その他の金属で形成されることが望ましい。
 低気圧環境下においては、部分放電開始電圧は、大気圧下に比べて大きく低下する。よって、電圧が印加される面と接地される面においては、空気よりも部分放電開始電圧が10倍程度高い固体もしくは液体を適用する必要がある。
 電圧が高い、電界ストレスが高いなどにより部分放電開始が懸念される場合、例えばスイッチング素子1の周辺のような電気的ストレスの高い部分には、シリコーン等の固体絶縁材で被覆することが望ましい。これにより、低気圧下における部分放電を発生しにくくすることができる。固体絶縁材としては、このほか、ポリフェニレンサルファイド樹脂(PPS)、エポキシ樹脂、不飽和ポリエステルなどが好適である。
 内部空間92に封入する気体としては、乾燥空気のほか、窒素、アルゴン、二酸化炭素、二酸化窒素などでもよい。気体の特性としては、-70℃においても液化しないことが望ましい。また、これらの気体を混合して封入してもよい。
 さらに、内部空間92に封入する気体としては、乾燥空気に酸素を追加して酸素濃度を大気(酸素濃度21体積%)よりも高くしたものを用いてもよい。酸素濃度を高めることにより、封入する気体の電子付着性が高くなり放電を抑制しやすくなり、絶縁性が向上する。このように電子付着性が高くなる気体としては、酸素以外に、二酸化炭素、六フッ化硫黄、一酸化炭素などを適用してもよい。また、上述の六フッ化硫黄以外にも、ハロゲン系含有ガスなども混合してよい。フッ素、塩素、ヨウ素等を含むハロゲン系含有ガスとして、BF、CF等のフッ化ガスや塩化ガス、フロンガス等が知られている。
 さらに、内部空間92を減圧し、真空状態としてもよい。この場合、真空度が高いほど望ましいが、具体的には、1Pa以下が望ましく、0.1Pa以下が更に望ましい。内部空間92を真空状態とすることにより、水蒸気圧も低下するため、結露等を防止することができる。また、結露に起因する腐食、耐雷サージによる誤作動等を防止することができる。
 本実施例においては、実施例1と異なる構成についてのみ説明する。
 図2は、実施例2の電気機器を示す模式断面図である。
 本図においては、基板支持部21と外側フレーム90との間には、内部空間92の他に低圧室100が設けられている。内部空間92と低圧室100とは、仕切り板101により隔離されている。仕切り板101には、ベントフィルタ99が設けられている。
 電気部品は、内部空間92に設置されている。低圧室100は、内部空間92に比べて気圧を低くしてある。このような構成により、電気部品の発熱により内部空間92の気圧が高まった場合に、ベントフィルタ99が開いて、内部空間92の気体を低圧室100に流出させることができる。この場合、初期状態においては、内部空間92の気圧を大気圧(1atm)より高くすることも可能である。
 本実施例においては、実施例1と異なる構成についてのみ説明する。
 図3は、実施例3の電気機器を示す模式断面図である。
 本図においては、スイッチング素子1は、ケーブル111により外部と電気的に接続されている。ケーブル111は、導線を被覆したものである。外側フレーム90に設けられたケーブル111の取り出し口は、シリコーンFIPG112などで封止して内部空間92の気密性を確保している。ここで、FIPGは、Formed In Place Gasketの略称である。
 本実施例においては、実施例3と異なる構成についてのみ説明する。
 図4は、実施例4の電気機器を示す模式断面図である。
 本図においては、スイッチング素子1に接続されたバスバ115により外部と電気的に接続されている。バスバ115の代わりに、ケーブルを用いてもよい。ケーブルは、導線を被覆したものである。
 外側フレーム90に設けられたバスバ115の接続部は、BNCコネクタ116(Bayonet Neill-Concelman connector)である。これにより、内部空間92の気密性を確保している。また、接続の作業を容易にすることができる。
 本実施例においては、実施例1と異なる構成についてのみ説明する。
 図5は、実施例5の電気機器を示す模式断面図である。
 本図においては、図1の外側フレーム90(金属製)の代わりに、難燃性樹脂フレーム130の外壁面を金属被膜131で覆ったフレームを用いている。このフレームも「外側フレーム」と呼ぶ。金属被膜131は、アルミニウム、鉄、ニッケル等が好適である。金属被膜131は、難燃性樹脂フレーム130の内壁面にも設けてもよい。このような構成により、落雷時の着火、ノイズの流入等を防止することができる。また、電気機器を軽量化することができる。
 難燃性樹脂フレーム130の材料は、例えば、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、シリコーン等の発泡樹脂等が好適である。また、グラスウール、シリカ粉等を芯材とする真空断熱材等も望ましい。なお、難燃性樹脂フレーム130の材料は、これらに限定されるものではない。
 なお、難燃性樹脂フレーム130の代わりに、金属製のフレームを用いてもよい。
 なお、上記の実施例においては、電気機器は、基板2、基板支持部21及び熱伝導部材22を有しているが、本開示に係る電気機器は、これらの部品を必ずしも有していなくてもよく、基板支持部21に代えて、電気部品を支持する部材を有するものであってもよい。そして、当該部材と外側フレーム90との間に内部空間が形成された構成であってもよい。本明細書においては、基板支持部21及び当該部材を「電気部品支持部」と総称する。
 なお、本開示に係る電気機器は、航空機、輸送機器、建設機械等のモビリティ全般にも適用可能である。
 以下、本開示に係る電気機器の望ましい実施形態について、まとめて説明する。
 電気部品は、電解コンデンサを含む。
 内部空間の気圧は、大気圧未満に設定されている。
 内部空間の気体は、乾燥空気、窒素、アルゴン、二酸化炭素若しくは二酸化窒素又はこれらのいずれか2種類以上を混合したものである。
 内部空間は、真空状態である。
 外側フレームは、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン及びシリコーンのうちいずれか一つ以上を含み、これを金属被膜で覆ったもので構成されている。
 外側フレームは、グラスウール及びシリカ粉のうちいずれか一つ以上を芯材として含む真空断熱材を含む。
 内部空間の気体の酸素濃度は、21体積%より高い。
 内部空間の気体は、二酸化炭素、六フッ化硫黄、一酸化炭素及びハロゲン系含有ガスのうちいずれか一つ以上を含む。
 電気部品支持部と外側フレームとの間には、内部空間に隣接する低圧室が設けられ、低圧室は、内部空間より低い気圧に設定され、内部空間と低圧室との間には、ベントフィルタが設けられている。
 電気部品は、ケーブルにより外部と電気的に接続され、外側フレームに設けられたケーブルの取り出し口は、シリコーンFIPGで封止されている。
 電気部品は、ケーブル又はバスバにより外部と電気的に接続され、外側フレームに設けられたケーブルの取り出し口又はバスバの接続部には、BNCコネクタが設けられている。
 1:スイッチング素子、2:基板、8:液体流路、21:基板支持部、22:熱伝導部材、60:電解コンデンサ、90:外側フレーム、92:内部空間、99:ベントフィルタ、100:低圧室、101:仕切り板、111:ケーブル、112:シリコーンFIPG、115:バスバ、116:BNCコネクタ、130:難燃性樹脂フレーム、131:金属被膜。

Claims (13)

  1.  電気部品と、
     電気部品支持部と、
     外側フレームと、を備え、
     前記電気部品支持部と前記外側フレームとの間には、内部空間が形成され、
     前記電気部品は、前記内部空間に設置され、
     前記内部空間には、水蒸気圧が0.60kPa以下の気体が封入されている、電気機器。
  2.  前記電気部品は、電解コンデンサを含む、請求項1記載の電気機器。
  3.  前記内部空間の気圧は、大気圧未満に設定されている、請求項1記載の電気機器。
  4.  前記気体は、乾燥空気、窒素、アルゴン、二酸化炭素若しくは二酸化窒素又はこれらのいずれか2種類以上を混合したものである、請求項1記載の電気機器。
  5.  前記内部空間は、真空状態である、請求項1記載の電気機器。
  6.  前記外側フレームは、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン及びシリコーンのうちいずれか一つ以上を含み、これを金属被膜で覆ったもので構成されている、請求項1記載の電気機器。
  7.  前記外側フレームは、グラスウール及びシリカ粉のうちいずれか一つ以上を芯材として含む真空断熱材を含む、請求項1記載の電気機器。
  8.  前記気体の酸素濃度は、21体積%より高い、請求項1記載の電気機器。
  9.  前記気体は、二酸化炭素、六フッ化硫黄、一酸化炭素及びハロゲン系含有ガスのうちいずれか一つ以上を含む、請求項1記載の電気機器。
  10.  前記電気部品支持部と前記外側フレームとの間には、前記内部空間に隣接する低圧室が設けられ、
     前記低圧室は、前記内部空間より低い気圧に設定され、
     前記内部空間と前記低圧室との間には、ベントフィルタが設けられている、請求項1記載の電気機器。
  11.  前記電気部品は、ケーブルにより外部と電気的に接続され、
     前記外側フレームに設けられた前記ケーブルの取り出し口は、シリコーンFIPGで封止されている、請求項1記載の電気機器。
  12.  前記電気部品は、ケーブル又はバスバにより外部と電気的に接続され、
     前記外側フレームに設けられた前記ケーブルの取り出し口又はバスバの接続部には、BNCコネクタが設けられている、請求項1記載の電気機器。
  13.  電力変換装置である、請求項1記載の電気機器。
PCT/JP2023/029046 2022-10-06 2023-08-09 電気機器 WO2024075393A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161663A JP2024055060A (ja) 2022-10-06 2022-10-06 電気機器
JP2022-161663 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075393A1 true WO2024075393A1 (ja) 2024-04-11

Family

ID=90607959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029046 WO2024075393A1 (ja) 2022-10-06 2023-08-09 電気機器

Country Status (2)

Country Link
JP (1) JP2024055060A (ja)
WO (1) WO2024075393A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150608A (ja) * 1984-12-25 1986-07-09 三菱電機株式会社 ガス絶縁装置
JPH04209511A (ja) * 1990-12-07 1992-07-30 Murata Mfg Co Ltd 標準コンデンサ
JP2003152122A (ja) * 2001-11-15 2003-05-23 Yaskawa Electric Corp パワーモジュール
JP2021035156A (ja) * 2019-08-23 2021-03-01 三菱電機株式会社 インバータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150608A (ja) * 1984-12-25 1986-07-09 三菱電機株式会社 ガス絶縁装置
JPH04209511A (ja) * 1990-12-07 1992-07-30 Murata Mfg Co Ltd 標準コンデンサ
JP2003152122A (ja) * 2001-11-15 2003-05-23 Yaskawa Electric Corp パワーモジュール
JP2021035156A (ja) * 2019-08-23 2021-03-01 三菱電機株式会社 インバータ装置

Also Published As

Publication number Publication date
JP2024055060A (ja) 2024-04-18

Similar Documents

Publication Publication Date Title
KR101996233B1 (ko) 유전성 절연 매질
JP4237591B2 (ja) ガス絶縁開閉装置
US8704095B2 (en) Dielectric insulation medium
US7253379B2 (en) High voltage circuit breaker with cooling
US9551519B2 (en) Hazardous location heat transfer unit
US9648762B2 (en) Pressure resistant housing for an electric component
JP2009171833A (ja) スイッチギヤ
JP2008101862A (ja) 電装品箱
WO2000062366A1 (en) Enclosure for electrical components installed in locations where a flammable gas or vapor is expected to be present
WO2000028555A1 (fr) Appareil de distribution/transmission
WO2024075393A1 (ja) 電気機器
JP4373393B2 (ja) ガス絶縁開閉装置
JP2007005198A (ja) スタックケース
US2957938A (en) Electrical apparatus and dielectric material therefor
JP2024055057A (ja) 電気機器
CN220673109U (zh) 一种仪表箱及高压开关
US11602061B2 (en) Electronics enclosure arrangement for an electric device and an electric device
JP2006115698A (ja) ガス絶縁開閉装置
Kudo et al. Development of 275 kV gas cooled type gas-insulated power transformer
JPH0249326A (ja) 真空開閉器
CN118077320A (zh) 在浸没冷却系统中使用低gwp流体的浸没冷却的方法
JP2022515679A (ja) 内部過渡回復電圧コンデンサアセンブリを有する回路遮断器
JP2023084900A (ja) 高圧発生タンク部、電源装置、電気集塵装置及び電源装置の製造方法
JP2001286017A (ja) 開閉装置
Bruno et al. 5.1. New KEMET Miniaturized EMI-Suppression and DC-Link Power Box Unique Designs for Harsh Environment in Energy, Industrial and Automotive Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874526

Country of ref document: EP

Kind code of ref document: A1