WO2024073884A1 - 钙钛矿太阳能电池及其制备方法、用电装置 - Google Patents

钙钛矿太阳能电池及其制备方法、用电装置 Download PDF

Info

Publication number
WO2024073884A1
WO2024073884A1 PCT/CN2022/123787 CN2022123787W WO2024073884A1 WO 2024073884 A1 WO2024073884 A1 WO 2024073884A1 CN 2022123787 W CN2022123787 W CN 2022123787W WO 2024073884 A1 WO2024073884 A1 WO 2024073884A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
perovskite
solvent
dimensional
dimensional perovskite
Prior art date
Application number
PCT/CN2022/123787
Other languages
English (en)
French (fr)
Inventor
涂保
梁伟风
苏硕剑
郭文明
郭永胜
陈国栋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/123787 priority Critical patent/WO2024073884A1/zh
Priority to PCT/CN2023/122855 priority patent/WO2024074124A1/zh
Priority to CN202380019562.8A priority patent/CN118614160A/zh
Publication of WO2024073884A1 publication Critical patent/WO2024073884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3

Definitions

  • the present application relates to the technical field of solar cells, and in particular to a perovskite solar cell and a preparation method and an electrical device thereof.
  • Perovskite solar cells are solar cells that use perovskite-type organic metal halide semiconductors as light-absorbing materials. They belong to the third generation of solar cells and are also called new concept solar cells.
  • Three-dimensional-two-dimensional combined perovskite solar cells refer to perovskite solar cells that contain stacked two-dimensional perovskite and three-dimensional perovskite structures in the light-absorbing layer. They combine the advantages of excellent stability of two-dimensional perovskites and excellent efficiency of three-dimensional perovskites, and have therefore become one of the current research hotspots.
  • the present application is made in view of the above-mentioned problems, and its purpose is to provide a perovskite solar cell and its preparation method and electrical device.
  • a first aspect of the present application provides a perovskite solar cell, comprising a stacked transparent electrode, a first functional layer, a perovskite layer, a second functional layer, and a second electrode layer, wherein the perovskite layer comprises a stacked three-dimensional perovskite layer and a two-dimensional perovskite layer, wherein the surface of the three-dimensional perovskite layer in contact with the first functional layer is a first surface, and the remaining surfaces constitute a second surface, and the two-dimensional perovskite layer covers the entire second surface.
  • the two-dimensional perovskite layer in the above-mentioned perovskite solar cell covers all surfaces (second surface) except the surface in contact with the first functional layer (first surface), and has good uniformity and high film quality, which can effectively reduce the interfacial contact resistance between layers, improve the device fill factor, and thus improve the device performance.
  • second surface the surface in contact with the first functional layer
  • first surface the surface in contact with the first functional layer
  • the two-dimensional perovskite layer is a continuous structure.
  • the general structural formula of the active material in the three-dimensional perovskite layer is ABX 3 or A 2 CDX 6 ;
  • the general structural formula of the active material in the two-dimensional perovskite layer is A ⁇ BX 3 or A ⁇ 2 CDX 6 , wherein the ionic radius of the A ⁇ ion is greater than the ionic radius of the A ion;
  • A' ion and A ion are monovalent cations
  • B ion is a divalent metal cation
  • C ion and D ion are monovalent and trivalent metal cations respectively
  • X ion is a monovalent anion.
  • the A' ions include organic amine ions, which can further ensure the uniformity of the two-dimensional perovskite layer.
  • the A ions include one or more of organic amine ions, Li + , Na + , K + , Rb + and Cs + ; alternatively, the A ions include one or more of organic amine ions and Cs + .
  • the B ions include one or more of Pb 2+ , Sn 2+ , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Ge 2+ , Fe 2+ , Co 2+ and Ni 2+ . Further, the B ions include one or both of Pb 2+ and Sn 2+ .
  • the C ions include one or more of Cs + , Ag + , K + , and Ru + .
  • the D ions include one or more of Bi 3+ , Ni 3+ , Fe 3+ , and Cu 3+ .
  • the X ions include one or more of F - , Cl - , Br - and I - . Further, the X ions include one or more of Cl - , Br - and I - . Further, the X ions include one or both of Br - and I - .
  • the active material of the three-dimensional perovskite layer includes one or more of CH 3 NH 3 PbI 3 (abbreviated as MAPbI 3 ), CH(NH 2 ) 2 PbI 3 (abbreviated as FAPbI 3 ), FA 0.83 Cs 0.17 PbI 3 (abbreviated as CsFA), CsPbI 3 , CsPbI 2 Br and CsPbIBr 2 .
  • CH 3 NH 3 PbI 3 abbreviated as MAPbI 3
  • CH(NH 2 ) 2 PbI 3 abbreviated as FAPbI 3
  • FA 0.83 Cs 0.17 PbI 3 abbreviated as CsFA
  • CsPbI 3 CsPbI 2 Br
  • CsPbIBr 2 the active material of the three-dimensional perovskite layer.
  • the thickness ratio of the two-dimensional perovskite layer to the three-dimensional perovskite layer is (0.2-10): 100.
  • the thickness of the two-dimensional perovskite layer can fully cover the second surface of the three-dimensional perovskite layer, thereby improving the stability of the device and making the proportion of the two-position perovskite in a suitable range to ensure the efficiency of the device.
  • the thickness ratio of the two-dimensional perovskite layer to the three-dimensional perovskite layer includes but is not limited to: 0.2:100, 0.3:100, 0.4:100, 0.5:100, 0.6:100, 0.7:100, 0.8:100, 0.9:100, 1:100, 1.5:100, 1.6:100, 1.7:100, 2:100, 2.2:100, 2.4:100, 2.5:100, 2.7:100, 4:100, 5:100, 5.6:100, 6:100, 7:100, 8:100, 9:100, 10:100 or a range consisting of any two of the above values.
  • the thickness of the two-dimensional perovskite layer is 1-50nm. It is determined by the surface roughness of the three-dimensional perovskite. The thickness of the two-dimensional perovskite layer is within the above range. On the one hand, it can achieve complete coating of the second surface of the three-dimensional perovskite layer, and on the other hand, it can ensure the efficiency of the device.
  • the thickness of the two-dimensional perovskite layer includes but is not limited to: 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 14nm, 16nm, 20nm, 23nm, 25nm, 28nm, 32nm, 35nm, 38nm, 40nm, 45nm, 50nm or a range consisting of any two of the above values.
  • the thickness of the three-dimensional perovskite layer is 300-2000nm.
  • the thickness of the three-dimensional perovskite layer is within the above range, which can make the device current within a suitable range, ensure the carrier transport capacity, and improve the device efficiency.
  • the thickness of the three-dimensional perovskite layer includes but is not limited to: 300nm, 350nm, 370nm, 380nm, 390nm, 400nm, 450nm, 480nm, 500nm, 520nm, 550nm, 580nm, 600nm, 620nm, 640nm, 650nm, 670nm, 680nm, 700nm, 750nm, 800nm, 850nm, 870nm, 890nm, 900nm, 950nm, 1000nm, 1200nm, 1400nm, 1500nm, 1600nm, 1700nm, 1900nm, 2000nm or a range consisting of any two of the above values.
  • a second aspect of the present application provides a method for preparing a perovskite solar cell, comprising the following steps:
  • a perovskite layer is prepared on the surface of the first functional layer;
  • the perovskite layer comprises a three-dimensional perovskite layer and a two-dimensional perovskite layer which are stacked, the surface of the three-dimensional perovskite layer in contact with the first functional layer is the first surface, and the remaining surfaces constitute the second surface, and the two-dimensional perovskite layer covers the entire second surface;
  • a second electrode layer is prepared on the surface of the second functional layer.
  • the two-dimensional perovskite layer is a continuous structure.
  • the method for preparing the perovskite layer comprises the following steps:
  • a three-dimensional perovskite mother layer is prepared on the surface of the first functional layer, wherein the active material of the three-dimensional perovskite mother layer has a general structural formula of ABX 3 or A 2 CDX 6 ;
  • the three-dimensional perovskite mother layer after solvent treatment is reacted with a compound providing A' ions to generate the two-dimensional perovskite layer, wherein the general structural formula of the active material in the two-dimensional perovskite layer is A'BX 3 or A' 2 CDX 6 ; the three-dimensional perovskite layer is the portion of the three-dimensional perovskite mother layer except the two-dimensional perovskite layer;
  • the ionic radius of A ⁇ ion is larger than the ionic radius of A ion;
  • A' ion and A ion are monovalent cations
  • B ion is a divalent metal cation
  • C ion and D ion are monovalent and trivalent metal cations respectively
  • X ion is a monovalent anion.
  • the method for preparing the above-mentioned perovskite layer first dissolves and removes the A ions on the surface of the three-dimensional perovskite parent layer with the help of a mixed solvent, and then reacts the exposed BX3 or CDX6 with a compound that provides A' ions, and the ionic radius of the A' ions is larger than the ionic radius of the A ions.
  • A' ions By introducing A' ions, the generation of two-dimensional perovskite can be effectively ensured, and the second surface of the entire three-dimensional perovskite can be completely and continuously covered.
  • the prepared two-dimensional perovskite layer still has problems such as poor uniformity, poor reproducibility between batches, and uncontrollable thickness.
  • the above-mentioned method for preparing the perovskite layer can effectively improve the uniformity of the two-dimensional perovskite layer on the basis of ensuring the generation of the two-dimensional perovskite layer, and by controlling the type, proportion, processing time, etc.
  • the amount of three-dimensional perovskite dissolved can be relatively controlled, thereby making the thickness of the two-dimensional perovskite layer controllable, such as ensuring that the two-dimensional perovskite is only in the shallow surface layer, and the main body is still the three-dimensional perovskite, and the reproducibility between production batches is high, and the degree of completion is high.
  • the preparation method of the perovskite layer will not have a negative impact on the device performance during the preparation process, and can maintain the stability of the device performance.
  • Figure 1 provides a preform (including a stacked transparent electrode and a hole transport layer) prepared with a three-dimensional perovskite mother layer;
  • Figure 1 (b) uses a mixed solvent to treat the surface of the three-dimensional perovskite mother layer except for the surface layer in contact with the hole transport layer, and dissolves and removes the A ions in the corresponding active material to obtain the remaining material;
  • Figure 1 (c) reacts the remaining material with a compound that provides A' ions to generate a two-dimensional perovskite layer.
  • the remaining three-dimensional perovskite mother layer is the three-dimensional perovskite layer.
  • the mixed solvent includes a combination of a first solvent, a second solvent, and a third solvent.
  • the first solvent includes one or more of the solvents used to prepare the precursor solution of the three-dimensional perovskite parent layer; optionally, the first solvent includes one or more of amine, sulfone, sulfoxide, ester and ketone solvents; further optionally, the first solvent includes one or more of DMF, DMSO, NMP and GLB.
  • the second solvent includes a solvent that can dissolve A ions but cannot dissolve BX 2 , or the second solvent includes a solvent that can dissolve A ions but cannot dissolve CDX 4 ; optionally, the second solvent includes one or more of alcohol, nitrile and ketone solvents; further optionally, the second solvent includes one or more of IPA, ethanol, methanol, acetone and acetonitrile.
  • the third solvent includes one or more of the anti-solvents used to prepare the three-dimensional perovskite mother layer; optionally, the third solvent includes one or more of aromatic hydrocarbons, ethers and esters; further optionally, the third solvent includes one or more of CB, anisole, ethyl ether and ethyl acetate.
  • the first solvent accounts for 0.01% to 1% by volume of the third solvent.
  • the amount of the first solvent is within the above range, which is easy to form a continuous two-dimensional perovskite film, improve the stability of the device, and will not cause excessive dissolution of the three-dimensional perovskite, thereby ensuring the efficiency of the device.
  • the volume percentage of the first solvent includes but is not limited to: 0.01%, 0.05%, 0.08%, 0.1%, 0.12%, 0.15%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% or a range consisting of any two of the above values.
  • the second solvent is 0.01% to 10% by volume of the third solvent. If the second solvent is too much, the A-site cations will be lost too much, forming a thicker two-dimensional perovskite layer, which seriously reduces the efficiency of the device; if the second solvent is too little, the A-site cations will be lost less, and the exposed BX 2 or CDX 4 terminals will be less, which is not enough to form a continuous two-dimensional perovskite film.
  • the volume percentage of the second solvent includes but is not limited to: 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 5%, 8%, 9%, 10% or a range consisting of any two of the above values.
  • the volume ratio of the first solvent to the second solvent is (0.1-1):1.
  • a lower solvent ratio may easily result in insufficient dissolution of the three-dimensional perovskite mother layer, and a continuous two-dimensional perovskite film cannot be formed, and the device stability is not significantly improved; a higher solvent ratio may result in some unreacted BX2 or CDX4 inside, which reduces the overall thickness of the device and significantly reduces efficiency.
  • the volume ratio of the first solvent to the second solvent includes, but is not limited to, 0.1:1, 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1 or a range consisting of any two of the above values.
  • the solvent treatment time is 1 min to 60 min.
  • the solvent treatment time includes but is not limited to: 1 min, 5 min, 10 min, 15 min, 20 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min, 60 min or a range consisting of any two of the above values.
  • the temperature of the mixed solvent used in the solvent treatment is room temperature.
  • the amount of the first solvent is X ⁇ L
  • the thickness of the two-dimensional perovskite layer is Y nm
  • X and Y satisfy 0.05 ⁇ X / Y ⁇ 5. If the X / Y ratio is too low, it takes too long to reach the desired thickness of the two-dimensional perovskite layer, which is easy to have an adverse effect on the interface layer and reduce the filling factor; if the X / Y ratio is too large, it takes too short to reach the desired thickness of the two-dimensional perovskite layer, which is easy to cause uneven generation of the two-dimensional perovskite and incomplete wrapping.
  • the X / Y ratio includes but is not limited to: 0.05, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 3, 4, 5 or a range consisting of any two of the above values.
  • the conditions for reacting the solvent-treated three-dimensional perovskite mother layer with the compound providing A' ions include: annealing at a temperature of 50°C to 150°C; optionally, the annealing time is 20min to 40min.
  • the compound providing the A' ion includes one or more of the following compounds and salts thereof: CH3CH2CH2CH2CH2CH2CH2CH2CH2NH2 , CH3CH2CH2CH2CONH2 , CH3CH2CH2CH2COONH2 , phenethylamine , benzylamine, amphetamine , F - PEAI, octylammonium bromide , N , N - bis - 2 - chloroethyl - p - toluenesulfonic acid ammonium and cyclopentanecarboxamide .
  • perovskite solar cells include formal and trans forms.
  • the perovskite solar cell includes a transparent electrode and an electron transport layer, a perovskite layer, a hole transport layer and a second electrode layer sequentially stacked on the transparent electrode.
  • the perovskite solar cell includes a transparent electrode and a hole transport layer, a perovskite layer, an electron transport layer and a second electrode layer sequentially stacked on the transparent electrode.
  • the band gap of the perovskite layer is 1.20 eV to 2.30 eV.
  • the band gap can be measured by ultraviolet absorption spectrum testing to obtain an ultraviolet absorption curve, and then the band gap is calculated by Tauc equation.
  • the thickness of the perovskite layer is 400 nm to 1000 nm.
  • an electrical device comprising at least one of the perovskite solar cell described in the first aspect and the perovskite solar cell prepared by the preparation method described in the second aspect.
  • FIG1 is a schematic diagram of a preparation process of a perovskite layer in a perovskite solar cell according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an electrical device using a solar cell as a power source according to an embodiment of the present application.
  • range disclosed in the present application is defined in the form of a lower limit and an upper limit, and a given range is defined by selecting a lower limit and an upper limit, and the selected lower limit and upper limit define the boundaries of a particular range.
  • the range defined in this way can be inclusive or exclusive of end values, and can be arbitrarily combined, that is, any lower limit can be combined with any upper limit to form a range. For example, if a range of 60-120 and 80-110 is listed for a specific parameter, it is understood that the range of 60-110 and 80-120 is also expected.
  • the numerical range "a-b" represents the abbreviation of any real number combination between a and b, wherein a and b are real numbers.
  • the numerical range "0-5" represents that all real numbers between "0-5" have been fully listed herein, and "0-5" is just the abbreviation of these numerical combinations.
  • a parameter is expressed as an integer ⁇ 2, it is equivalent to disclosing that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • the method may further include step (c), which means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c), or may include steps (a), (c) and (b), or may include steps (c), (a) and (b), etc.
  • the “include” and “comprising” mentioned in this application are open-ended or closed-ended.
  • the “include” and “comprising” may mean that other components not listed may also be included or only the listed components may be included or only the listed components may be included.
  • the term "or” is inclusive.
  • the phrase “A or B” means “A, B, or both A and B”. More specifically, any of the following conditions satisfies the condition "A or B”: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists); or both A and B are true (or exist).
  • aryl refers to an aromatic hydrocarbon group derived from an aromatic ring compound by removing a hydrogen atom, which may be a monocyclic aromatic group, a condensed aromatic group, or a polycyclic aromatic group.
  • a hydrogen atom which may be a monocyclic aromatic group, a condensed aromatic group, or a polycyclic aromatic group.
  • polycyclic rings at least one is an aromatic ring system.
  • C6-C10 aryl refers to an aromatic group containing 6 to 10 carbon atoms, and each occurrence may be independently C6 aryl, C7 aryl, C8 aryl, C9 aryl or C10 aryl.
  • alkyl refers to a monovalent residue formed by the loss of a hydrogen atom from a saturated hydrocarbon containing a primary (normal) carbon atom, a secondary carbon atom, a tertiary carbon atom, a quaternary carbon atom, or a combination thereof.
  • C1-C20 alkyl refers to an alkyl containing 1 to 10 carbon atoms, and each occurrence may be independently C1 alkyl, C2 alkyl, C3 alkyl, C4 alkyl, C5 alkyl, C6 alkyl, C7 alkyl, C8 alkyl, C9 alkyl, C10 alkyl, C12 alkyl, C15 alkyl, C20 alkyl.
  • Suitable examples include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), 1-propyl (n-Pr, n-propyl, -CH 2 CH 2 CH 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ), 1-pentyl (n-pentyl, -CH 2 CH 2 CH 2 CH 3 ) , 2-pentyl (-CH(CH 3
  • cycloalkyl refers to a non-aromatic hydrocarbon containing ring carbon atoms, which can be a monocyclic alkyl, a spirocyclic alkyl, or a bridged cycloalkyl.
  • C3-C10 cycloalkyl refers to a cycloalkyl containing 3 to 10 carbon atoms, each occurrence of which can be independently C3 cycloalkyl, C4 cycloalkyl, C5 cycloalkyl, C6 cycloalkyl, C7 cycloalkyl, C8 cycloalkyl, C9 cycloalkyl, C10 cycloalkyl.
  • Suitable examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
  • cycloalkyl may also contain one or more double bonds, and representative examples of cycloalkyl containing double bonds include cyclopentenyl, cyclohexenyl, cyclohexadienyl, and cyclobutadienyl.
  • three-dimensional perovskite refers to a perovskite having a three-dimensional crystal structure with a BX6 octahedral framework and A-site cations occupying vertex positions.
  • two-dimensional perovskite refers to a perovskite in which the BX6 octahedral framework is isolated by bulky A-site cations, such as A' ions, forming a special layered structure of alternating organic and inorganic layers.
  • three-dimensional perovskite and “two-dimensional perovskite” can be distinguished by the position of XRD peaks.
  • room temperature generally refers to 4°C to 30°C, preferably 25 ⁇ 5°C.
  • three-dimensional-two-dimensional combined perovskite solar cells are mainly prepared by reducing the dimension of three-dimensional perovskites.
  • one method uses hot injection synthesis to regulate the colloidal synthesis kinetics process through the metal ion surface to prepare efficient quasi-two-dimensional perovskites; another method introduces organic ligands into the absorption layer of the perovskite battery to reduce the dimension of the three-dimensional perovskite framework structure to a two-dimensional structure, forming a perovskite absorption layer structure with one inorganic perovskite layer and two organic ligand layers; another method uses gradient annealing to obtain a perovskite film with a two-dimensional structure on the lower layer and a three-dimensional structure on the upper layer.
  • the focus of these methods is on the preparation process of the perovskite layer, which has the problem of uncontrollable process and is difficult to ensure the generation of two-dimensional perovskites in industrial applications.
  • this method overcomes the problem of uncontrollable process to a certain extent, it cannot ensure the generation of two-dimensional perovskite, and even if two-dimensional perovskite is generated, it is difficult to form a continuous layered structure of two-dimensional perovskite, especially the probability of generating two-dimensional perovskite around three-dimensional perovskite is low, and it is impossible to achieve complete coating of three-dimensional perovskite.
  • the present application provides a perovskite solar cell, comprising a stacked transparent electrode, a first functional layer, a perovskite layer, a second functional layer, and a second electrode layer, wherein the perovskite layer comprises a stacked three-dimensional perovskite layer and a two-dimensional perovskite layer, wherein the surface of the three-dimensional perovskite layer in contact with the first functional layer is the first surface, and the remaining surfaces constitute the second surface, and the two-dimensional perovskite layer covers the entire second surface.
  • the two-dimensional perovskite layer in the above-mentioned perovskite solar cell covers all surfaces (second surface) except the surface in contact with the first functional layer (first surface), and has good uniformity and high film quality, which can effectively reduce the interfacial contact resistance between layers, improve the device fill factor, and thus improve the device performance.
  • second surface the surface in contact with the first functional layer
  • first surface the surface in contact with the first functional layer
  • the two-dimensional perovskite layer is a continuous structure, thereby forming a continuous, uninterrupted layer structure that completely covers the second surface.
  • the general structural formula of the active material in the three-dimensional perovskite layer is ABX 3 or A 2 CDX 6 ;
  • the general structural formula of the active material in the two-dimensional perovskite layer is A ⁇ BX 3 or A ⁇ 2 CDX 6 , wherein the ionic radius of the A ⁇ ion is greater than the ionic radius of the A ion;
  • A' ion and A ion are monovalent cations
  • B ion is a divalent metal cation
  • C ion and D ion are monovalent and trivalent metal cations respectively
  • X ion is a monovalent anion.
  • the ionic radius can be calculated by first principles, based on density functional theory (DET).
  • DET density functional theory
  • the A' ions include organic amine ions. This can further ensure the uniformity of the two-dimensional perovskite layer.
  • the A' ions have the following structural features: (R) 4 N + , R is independently H, at least one R 0 substituted or unsubstituted C1-C20 alkyl, C3-C10 cycloalkyl, R 0 C(O)-, R 0 C(O)O-, R 0 S(O) 2 -, thiol, sulfonic acid, phosphoric acid or C6-C10 aryl.
  • R 0 is independently selected from: H, C1-C10 alkyl, C6-C10 aryl, halogen-substituted C6-C10 aryl, C1-C5 alkyl-substituted C6-C10 aryl, halogen and C3-C10 cycloalkyl.
  • the A ions include one or more of organic amine ions, Li + , Na + , K + , Rb + and Cs + ; alternatively, the A ions include one or more of organic amine ions and Cs + .
  • the B ions include one or more of Pb 2+ , Sn 2+ , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Ge 2+ , Fe 2+ , Co 2+ and Ni 2+ . Further, the B ions include one or both of Pb 2+ and Sn 2+ .
  • the C ions include one or more of Cs + , Ag + , K + , and Ru + .
  • the D ions include one or more of Bi 3+ , Ni 3+ , Fe 3+ , and Cu 3+ .
  • the X ions include one or more of F - , Cl - , Br - and I - . Further, the X ions include one or more of Cl - , Br - and I - . Further, the X ions include one or both of Br - and I - .
  • the active material of the three-dimensional perovskite layer includes one or more of CH 3 NH 3 PbI 3 (abbreviated as MAPbI 3 ), CH(NH 2 ) 2 PbI 3 (abbreviated as FAPbI 3 ), FA 0.83 Cs 0.17 PbI 3 (abbreviated as CsFA), CsPbI 3 , CsPbI 2 Br and CsPbIBr 2 .
  • CH 3 NH 3 PbI 3 abbreviated as MAPbI 3
  • CH(NH 2 ) 2 PbI 3 abbreviated as FAPbI 3
  • FA 0.83 Cs 0.17 PbI 3 abbreviated as CsFA
  • CsPbI 3 CsPbI 2 Br
  • CsPbIBr 2 the active material of the three-dimensional perovskite layer.
  • the thickness ratio of the two-dimensional perovskite layer to the three-dimensional perovskite layer is (0.2-10): 100.
  • the thickness of the two-dimensional perovskite layer can fully cover the second surface of the three-dimensional perovskite layer, thereby improving the stability of the device and making the proportion of the two-position perovskite in a suitable range to ensure the efficiency of the device.
  • the thickness ratio of the two-dimensional perovskite layer to the three-dimensional perovskite layer includes but is not limited to: 0.2:100, 0.3:100, 0.4:100, 0.5:100, 0.6:100, 0.7:100, 0.8:100, 0.9:100, 1:100, 1.5:100, 1.6:100, 1.7:100, 2:100, 2.2:100, 2.4:100, 2.5:100, 2.7:100, 4:100, 5:100, 5.6:100, 6:100, 7:100, 8:100, 9:100, 10:100 or a range consisting of any two of the above values.
  • the thickness of the two-dimensional perovskite layer is 1-50nm. It is determined by the surface roughness of the three-dimensional perovskite. The thickness of the two-dimensional perovskite layer is within the above range, which can achieve complete coating of the second surface of the three-dimensional perovskite layer on the one hand, and ensure device efficiency on the other hand.
  • the thickness of the two-dimensional perovskite layer includes but is not limited to: 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 14nm, 16nm, 20nm, 23nm, 25nm, 28nm, 32nm, 35nm, 38nm, 40nm, 45nm, 50nm or a range consisting of any two of the above values.
  • the thickness of the three-dimensional perovskite layer is 300-2000nm.
  • the thickness of the three-dimensional perovskite layer is within the above range, which can make the device current within a suitable range, ensure the carrier transport capacity, and improve the device efficiency.
  • the thickness of the three-dimensional perovskite layer includes but is not limited to: 300nm, 350nm, 370nm, 380nm, 390nm, 400nm, 450nm, 480nm, 500nm, 520nm, 550nm, 580nm, 600nm, 620nm, 640nm, 650nm, 670nm, 680nm, 700nm, 750nm, 800nm, 850nm, 870nm, 890nm, 900nm, 950nm, 1000nm, 1200nm, 1400nm, 1500nm, 1600nm, 1700nm, 1900nm, 2000nm or a range consisting of any two of the above values.
  • the present application provides a method for preparing a perovskite solar cell, comprising the following steps:
  • a perovskite layer is prepared on the surface of the first functional layer;
  • the perovskite layer comprises a three-dimensional perovskite layer and a two-dimensional perovskite layer which are stacked, the surface of the three-dimensional perovskite layer in contact with the first functional layer is the first surface, and the remaining surfaces constitute the second surface, and the two-dimensional perovskite layer covers the entire second surface;
  • a second electrode layer is prepared on the surface of the second functional layer.
  • the two-dimensional perovskite layer is a continuous structure.
  • the method for preparing the perovskite layer comprises the following steps:
  • a three-dimensional perovskite mother layer is prepared on the surface of the first functional layer, wherein the active material of the three-dimensional perovskite mother layer has a general structural formula of ABX 3 or A 2 CDX 6 ;
  • the three-dimensional perovskite mother layer after solvent treatment is reacted with a compound providing A' ions to generate the two-dimensional perovskite layer, wherein the general structural formula of the active material in the two-dimensional perovskite layer is A'BX 3 or A' 2 CDX 6 ; the three-dimensional perovskite layer is the portion of the three-dimensional perovskite mother layer except the two-dimensional perovskite layer;
  • the ionic radius of A ⁇ ion is larger than the ionic radius of A ion;
  • A' ion and A ion are monovalent cations
  • B ion is a divalent metal cation
  • C ion and D ion are monovalent and trivalent metal cations respectively
  • X ion is a monovalent anion.
  • the method for preparing the above-mentioned perovskite layer first dissolves and removes the A ions on the surface of the three-dimensional perovskite parent layer with the help of a mixed solvent, and then reacts the exposed BX3 or CDX6 with a compound that provides A' ions, and the ionic radius of the A' ions is larger than the ionic radius of the A ions.
  • A' ions By introducing A' ions, the generation of two-dimensional perovskite can be effectively ensured, and the second surface of the entire three-dimensional perovskite can be completely and continuously covered.
  • the prepared two-dimensional perovskite layer still has problems such as poor uniformity, poor reproducibility between batches, and uncontrollable thickness.
  • the above-mentioned method for preparing the perovskite layer can effectively improve the uniformity of the two-dimensional perovskite layer on the basis of ensuring the generation of the two-dimensional perovskite layer, and by controlling the type, proportion, processing time, etc.
  • the amount of three-dimensional perovskite dissolved can be relatively controlled, thereby making the thickness of the two-dimensional perovskite layer controllable, such as ensuring that the two-dimensional perovskite is only in the shallow surface layer, and the main body is still the three-dimensional perovskite, and the reproducibility between production batches is high, and the degree of completion is high.
  • the preparation method of the perovskite layer will not have a negative impact on the device performance during the preparation process, and can maintain the stability of the device performance.
  • Figure 1 provides a preform (including a stacked transparent electrode and a hole transport layer) prepared with a three-dimensional perovskite mother layer;
  • Figure 1 (b) uses a mixed solvent to treat the surface of the three-dimensional perovskite mother layer except for the surface layer in contact with the hole transport layer, and dissolves and removes the A ions in the corresponding active material to obtain the remaining material;
  • Figure 1 (c) reacts the remaining material with a compound that provides A' ions to generate a two-dimensional perovskite layer.
  • the remaining three-dimensional perovskite mother layer is the three-dimensional perovskite layer.
  • the mixed solvent includes a combination of a first solvent, a second solvent, and a third solvent.
  • the first solvent includes one or more of the solvents used to prepare the precursor solution of the three-dimensional perovskite parent layer; optionally, the first solvent includes one or more of amine, sulfone, sulfoxide, ester and ketone solvents; further optionally, the first solvent includes one or more of DMF, DMSO, NMP and GLB.
  • the second solvent includes a solvent that can dissolve A ions but cannot dissolve BX 2 , or the second solvent includes a solvent that can dissolve A ions but cannot dissolve CDX 4 ; optionally, the second solvent includes one or more of alcohol, nitrile and ketone solvents; further optionally, the second solvent includes one or more of IPA, ethanol, methanol, acetone and acetonitrile.
  • the third solvent includes one or more of the anti-solvents used to prepare the three-dimensional perovskite mother layer; optionally, the third solvent includes one or more of aromatic hydrocarbons, ethers and esters; further optionally, the third solvent includes one or more of CB, anisole, ethyl ether and ethyl acetate.
  • the first solvent accounts for 0.01% to 1% by volume of the third solvent.
  • the amount of the first solvent is within the above range, which is easy to form a continuous two-dimensional perovskite film, improve the stability of the device, and will not cause excessive dissolution of the three-dimensional perovskite, thereby ensuring the efficiency of the device.
  • the volume percentage of the first solvent includes but is not limited to: 0.01%, 0.05%, 0.08%, 0.1%, 0.12%, 0.15%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% or a range consisting of any two of the above values.
  • the second solvent is 0.01% to 10% by volume of the third solvent. If the second solvent is too much, the A-site cations will be lost too much, forming a thicker two-dimensional perovskite layer, which seriously reduces the efficiency of the device; if the second solvent is too little, the A-site cations will be lost less, and the exposed BX 2 or CDX 4 terminals will be less, which is not enough to form a continuous two-dimensional perovskite film.
  • the volume percentage of the second solvent includes but is not limited to: 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 5%, 8%, 9%, 10% or a range consisting of any two of the above values.
  • the volume ratio of the first solvent to the second solvent is (0.1-1):1.
  • a lower solvent ratio may easily result in insufficient dissolution of the three-dimensional perovskite mother layer, and a continuous two-dimensional perovskite film cannot be formed, and the device stability is not significantly improved; a higher solvent ratio may result in some unreacted BX2 or CDX4 inside, which reduces the overall thickness of the device and significantly reduces efficiency.
  • the volume ratio of the first solvent to the second solvent includes, but is not limited to, 0.1:1, 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1 or a range consisting of any two of the above values.
  • the solvent treatment time is 1 min to 60 min.
  • the solvent treatment time includes but is not limited to: 1 min, 5 min, 10 min, 15 min, 20 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min, 60 min or a range consisting of any two of the above values.
  • the temperature of the mixed solvent used in the solvent treatment is room temperature.
  • the amount of the first solvent is X ⁇ L
  • the thickness of the two-dimensional perovskite layer is Ynm
  • X and Y satisfy 0.05 ⁇ X/Y ⁇ 5. If the X/Y ratio is too low, it takes too long to reach the desired thickness of the two-dimensional perovskite layer, which is easy to have an adverse effect on the interface layer and reduce the filling factor; if the X/Y ratio is too large, it takes too short to reach the desired thickness of the two-dimensional perovskite layer, which is easy to cause uneven generation of the two-dimensional perovskite and incomplete wrapping.
  • the X/Y ratio includes but is not limited to: 0.05, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 3, 4, 5 or a range consisting of any two of the above values.
  • the conditions for reacting the solvent-treated three-dimensional perovskite mother layer with the compound providing A' ions include: annealing at a temperature of 50°C to 150°C; optionally, the annealing time is 20min to 40min.
  • the compound providing the A' ion includes one or more of the following compounds and salts thereof: CH3CH2CH2CH2CH2CH2CH2CH2CH2NH2 , CH3CH2CH2CH2CONH2 , CH3CH2CH2CH2COONH2 , phenethylamine , benzylamine, amphetamine , F - PEAI, octylammonium bromide , N , N - bis - 2 - chloroethyl - p - toluenesulfonic acid ammonium and cyclopentanecarboxamide .
  • perovskite solar cells include formal and trans forms.
  • the perovskite solar cell includes a transparent electrode and an electron transport layer, a perovskite layer, a hole transport layer and a second electrode layer sequentially stacked on the transparent electrode.
  • the perovskite solar cell includes a transparent electrode and a hole transport layer, a perovskite layer, an electron transport layer and a second electrode layer sequentially stacked on the transparent electrode.
  • the band gap of the perovskite layer is 1.20 eV to 2.30 eV.
  • the band gap can be measured by ultraviolet absorption spectrum testing to obtain an ultraviolet absorption curve, and then the band gap is calculated by Tauc equation.
  • the thickness of the perovskite layer is 400 nm to 1000 nm.
  • the transparent electrode is a transparent conductive glass substrate, and materials thereof include FTO, ITO, AZO, BZO, IZO, and the like.
  • the electron transport layer material may be at least one of the following materials and their derivatives and materials obtained by doping or passivation: [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM), [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM), fullerene C60 (C60), fullerene C70 (C70), tin dioxide (SnO 2 ), zinc oxide (ZnO), etc.
  • the hole transport layer can be at least one of the following materials and their derivatives and materials obtained by doping or passivation: poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), poly-3 hexylthiophene (P3HT), triphenylamine (H101) with triptycene as the core, 3,4-ethylenedioxythiophene-methoxytriphenylamine (EDOT-OMeTPA), N-(4-aniline) carbazole-spirobifluorene (CzPAF-SBF), poly (3,4-ethylenedioxythiophene): poly (styrene sulfone) (PEDOT:PSS), polythiophene, nickel oxide (NiOx), molybdenum oxide (MoO3), cuprous iodide (CuI), cuprous oxide (CuO), etc.
  • the material of the second electrode layer may be an organic, inorganic or organic-inorganic hybrid conductive material, for example, Ag, Cu, C, Au, Al, ITO, AZO, BZO, IZO, etc.
  • the perovskite solar cell is formal, and its preparation method comprises the following steps:
  • Step 1 Etching and cleaning the transparent electrode and drying
  • Step 2 preparing an electron transport layer on the transparent electrode
  • Step 3 preparing the perovskite layer on the electron transport layer
  • Step 4 preparing a hole transport layer on the perovskite layer
  • Step 5 Prepare a second electrode layer on the hole transport layer.
  • the perovskite solar cell is inverted, and its preparation method comprises the following steps:
  • Step 1 Etching and cleaning the transparent electrode and drying
  • Step 2 preparing a hole transport layer on the transparent electrode
  • Step 3 preparing the perovskite layer on the electron transport layer
  • Step 4 preparing an electron transport layer on the perovskite layer
  • Step 5 Prepare a second electrode layer on the hole transport layer.
  • the present application provides an electrical device, comprising at least one of the above-mentioned perovskite solar cell and the perovskite solar cell prepared by the above-mentioned solar cell preparation method.
  • the solar cell can be used as a power source for an electrical device or as an energy storage unit for an electrical device.
  • the above-mentioned electrical devices may include mobile devices, such as mobile phones, laptop computers, etc., electric vehicles, electric trains, ships and satellites, energy storage systems, etc., but are not limited thereto.
  • Fig. 2 is an example of an electric device 20.
  • the electric device 20 is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • the electric device may be a mobile phone, a tablet computer, a laptop computer, etc.
  • This embodiment provides a perovskite solar cell, and the preparation steps are as follows:
  • the perovskite precursor solution uses N,N-dimethylformamide and dimethyl sulfoxide in a volume ratio of 4:1 as solvent, contains 1.2 mol/L lead iodide, 1.0 mol/L formamidine hydroiodide and 0.2 mol/L cesium iodide, and the active material of the prepared perovskite film is FA 0.83 Cs 0.17 PbI 3 (CsFA) system.
  • the exposed surface of the perovskite film (except the surface in contact with the hole transport layer) was completely immersed in a mixed solvent (DMF/IPA/CB, volume ratio of 1:5:1000, amounts of 2uL:10uL:2000uL respectively), treated at room temperature for 10 min, taken out, blown dry with nitrogen, and then spin-coated on the exposed surface at 4000 rpm with a compound providing A' ions (tetrafluorophenylethylamine ammonium iodide, CAS No.: 1413269-55-2, F-PEAI) for 30 s, and then annealed at 100°C for 30 min to generate a two-dimensional perovskite.
  • the active material of the two-dimensional perovskite is (tetrafluorophenylethylamine) 2 PbI 3 , and a two-dimensional-three-dimensional perovskite layer is prepared.
  • PCBM metal-oxide-semiconductor
  • BCP passivation layer bathocuproin
  • the perovskite solar cells provided in Examples 2 to 21 are the same as those in Example 1, with the main differences being shown in Table 1.
  • the perovskite solar cell provided in the comparative example is the same as that in Example 1, except that the preparation method of the two-dimensional-three-dimensional perovskite layer is as follows:
  • the perovskite precursor solution uses N,N-dimethylformamide and dimethyl sulfoxide in a volume ratio of 4:1 as solvent, contains 1.2 mol/L lead iodide, 1.0 mol/L formamidine hydroiodide and 0.2 mol/L cesium iodide, and the active material of the prepared perovskite film is FA 0.83 Cs 0.17 PbI 3 (CsFA) system.
  • a compound providing A' ions (phenylethylamine ammonium iodide, PEAI) was dynamically spin-coated on the surface of the three-dimensional perovskite at an acceleration of 5000 rp/s for 30 seconds, and then annealed at 100°C for 10 minutes.
  • PCBM An electron transport layer [6,6]-phenyl C61 butyric acid methyl ester
  • the thickness of the two-dimensional perovskite and the three-dimensional perovskite was tested by using an ellipsometer and a step profiler, and the results are recorded in Table 1.
  • the battery performance is tested to obtain the IV curve.
  • the short-circuit current Jsc (unit mA/cm 2 ), open-circuit voltage Voc (unit V), maximum light output current Jmpp (unit mA) and maximum light output voltage Vmpp (unit V)
  • the prepared battery device was placed in a dry room in the dark for storage, where the humidity was about 5%.
  • the device efficiency was retested after 100 days, and the ratio of the efficiency to the initial efficiency was calculated.
  • the specific experimental results are shown in Table 2.
  • Examples 1 to 21 of the present application can achieve better device stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种钙钛矿太阳能电池及其制备方法、用电装置。钙钛矿太阳能电池,包括层叠设置的透明电极、第一功能层、钙钛矿层、第二功能层和第二电极层,所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面。上述钙钛矿太阳能电池中的二维钙钛矿层的均一性好,膜层质量高,能够有效保证器件的稳定性。

Description

钙钛矿太阳能电池及其制备方法、用电装置 技术领域
本申请涉及太阳能电池技术领域,特别是涉及一种钙钛矿太阳能电池及其制备方法、用电装置。
背景技术
钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。
三维-二维组合钙钛矿太阳能电池是指在吸光层中包含层叠的二维钙钛矿和三维钙钛矿结构的钙钛矿太阳能电池,其结合了二维钙钛矿稳定性优异和三维钙钛矿效率优异的优点,因此成为目前研究的热点方向之一。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种钙钛矿太阳能电池及其制备方法、用电装置。
本申请的第一方面提供一种钙钛矿太阳能电池,包括层叠设置的透明电极、第一功能层、钙钛矿层、第二功能层和第二电极层,所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面。
上述钙钛矿太阳能电池中的二维钙钛矿层包覆除了与所述第一功能层接触的表面(第一表面)之外的所有表面(第二表面),且均一性好,膜层质量高,可有效减少层间的界面接触电阻,提升器件填充因子,进而提升器件性能,同时由于界面接触的改善,降低了缺陷的形成,减少了氧、水等降解的作用位点,如此提升器件稳定性。
在一些实施例中,所述二维钙钛矿层为连续结构。
在一些实施例中,所述三维钙钛矿层中的活性材料的结构通式为ABX 3或A 2CDX 6;所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6,其中,A`离子的离子半径大于A离子的离子半径;
A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
在一些实施例中,所述A`离子包括有机胺离子。如此能够进一步保证二维钙钛矿层的均一性。
在一些实施例中,A离子包括有机胺离子、Li +、Na +、K +、Rb +和Cs +中的一种或多种;可选地,A离子包括有机胺离子和Cs +中的一种或多种。
在一些实施例中,B离子包括Pb 2+、Sn 2+、Be 2+、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Zn 2+、Ge 2+、Fe 2+、Co 2+和Ni 2+中的一种或多种。进一步地,B离子包括Pb 2+和Sn 2+中的一种或两种。
在一些实施例中,C离子包括Cs +、Ag +、K +和Ru +中一种或多种。
在一些实施例中,D离子包括Bi 3+、Ni 3+、Fe 3+和Cu 3+中的一种或多种。
在一些实施例中,X离子包括F -、Cl -、Br -和I -中的一种或多种。进一步地,X离子包括Cl -、Br -和I -中的一种或多种。更进一步,X离子包括Br -和I -中的一种或两种。
在一些实施例中,所述三维钙钛矿层的活性材料包括CH 3NH 3PbI 3(简写为MAPbI 3)、CH(NH 2) 2PbI 3(简写为FAPbI 3)、FA 0.83Cs 0.17PbI 3(简写为CsFA)、CsPbI 3、CsPbI 2Br和CsPbIBr 2中一种或多种。
在一些实施例中,所述二维钙钛矿层与三维钙钛矿层的厚度比为(0.2~10):100。所述二维钙钛矿层与三维钙钛矿层的厚度比在上述范围内,二维钙钛矿厚度可以充分包覆三维钙钛矿层的第二表面,提升器件稳定性,同时使得二位钙钛矿占比在合适范围,保证器件效率。具体地,所述二维钙钛矿层与三维钙钛矿层的厚度比包括但不限于:0.2:100、0.3:100、0.4:100、0.5:100、0.6:100、0.7:100、0.8:100、0.9:100、1:100、1.5:100、1.6:100、1.7:100、2:100、2.2:100、2.4:100、2.5:100、2.7:100、4:100、5:100、5.6:100、6:100、7:100、8:100、9:100、10:100或者是上述任意两个数值组成的范围。
在一些实施例中,所述二维钙钛矿层的厚度为1-50nm。其是由三维钙钛矿表面粗糙度判定的。二维钙钛矿层的厚度在上述范围内,一方面可以实现对三维钙钛矿层第二表面的完全包覆,另一方面可以保证器件效率。具体地,所述二维钙钛矿层的厚度包括但不限于:1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、14nm、16nm、20nm、23nm、25nm、28nm、32nm、35nm、38nm、40nm、45nm、50nm或者是上述任意两个数值组成的范围。
在一些实施例中,所述三维钙钛矿层的厚度为300-2000nm。三维钙钛矿层的厚度在上述范围内,可以使得器件电流在合适范围,保证载流子传输能力,提高器件效率。具体地,所述三维钙钛矿层的厚度包括但不限于:300nm、350nm、370nm、380nm、390nm、400nm、450nm、480nm、500nm、520nm、550nm、580nm、600nm、620nm、640nm、650nm、670nm、680nm、700nm、750nm、800nm、850nm、870nm、890nm、900nm、950nm、1000nm、1200nm、1400nm、1500nm、1600nm、1700nm、1900nm、2000nm或者是上述任意两个数值组成的范围。
本申请的第二方面提供一种钙钛矿太阳能电池的制备方法,包括如下步骤:
于透明电极的表面制备第一功能层;
于所述第一功能层的表面制备钙钛矿层;所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面;
于所述钙钛矿层的表面制备第二功能层;
于所述第二功能层的表面制备第二电极层。
在一些实施例中,所述二维钙钛矿层为连续结构。
在一些实施例中,制备所述钙钛矿层的方法包括如下步骤:
于所述第一功能层的表面制备三维钙钛矿母层,所述三维钙钛矿母层的活性材料的结构通式为ABX 3或A 2CDX 6
借助混合溶剂对所述三维钙钛矿母层中与所述第二表面相对应的表面进行溶剂处理;
将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应,生成所述二维钙钛矿层,所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6;所述三维钙钛矿母层中除去所述二维钙钛矿层的部分为所述三维钙钛矿层;
其中,A`离子的离子半径大于A离子的离子半径;
A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
上述钙钛矿层的制备方法,先借助混合溶剂对三维钙钛矿母层的表层进行A离子的溶解 去除,然后将裸露出的BX 3或CDX 6与提供A`离子的化合物进行反应,且A`离子的离子半径大于A离子的离子半径,通过A`离子的引入,能够有效确保二维钙钛矿的生成,同时完整、连续地包覆整个三维钙钛矿的第二表面。
同时,传统方法中即使能够生成二维钙钛矿层,制备得到的二维钙钛矿层也依然存在均一性不佳、批次间重复性较差、厚度不可控的问题。上述钙钛矿层的制备方法在确保二维钙钛矿层生成的基础上,还能够有效提高二维钙钛矿层的均一性,且通过控制混合溶剂的种类、比例、处理时间等,可以相对控制三维钙钛矿溶解的量,进而使得二维钙钛矿层的厚度可控,如可以确保二维钙钛矿仅处于浅表层,主体还是三维钙钛矿,且生产批次间的重复性高,完成度高。
此外,上述钙钛矿层的制备方法的制备过程中不会对器件性能产生负面影响,能够保持器件性能的稳定性。
具体地,上述钙钛矿层的制备方法的一个示例可以参见图1:图1(a)提供制备有三维钙钛矿母层的预制件(包括层叠的透明电极和空穴传输层);图1(b)借助混合溶剂对三维钙钛矿母层中除与空穴传输层接触的表层之外的表面进行处理,并溶解去除相应活性材料中的A离子,得到剩余材料;图1(c)将剩余材料与提供A`离子的化合物进行反应,生成二维钙钛矿层,同时,剩余的三维钙钛矿母层即为三维钙钛矿层。
在一些实施例中,所述混合溶剂包括第一溶剂、第二溶剂和第三溶剂的组合。
具体地,所述第一溶剂包括用于制备所述三维钙钛矿母层的前驱体溶液所用的溶剂中的一种或多种;可选地,所述第一溶剂包括胺类、砜类、亚砜类、酯类和酮类溶剂中的一种或多种;进一步可选地,所述第一溶剂包括DMF、DMSO、NMP和GLB中的一种或多种。
具体地,所述第二溶剂包括可溶解A离子,且不可溶解BX 2的溶剂,或所述第二溶剂包括可溶解A离子,且不可溶解CDX 4的溶剂;可选地,所述第二溶剂包括醇类、腈类和酮类溶剂中的一种或多种;进一步可选地,所述第二溶剂包括IPA、乙醇、甲醇、丙酮和乙腈中的一种或多种。
具体地,所述第三溶剂包括用于制备所述三维钙钛矿母层的反溶剂中的一种或多种;可选地,所述第三溶剂包括芳香烃类、醚类和酯类溶剂中的一种或多种;进一步可选地,所述第三溶剂包括CB、苯甲醚、乙醚和乙酸乙酯中的一种或多种。
在一些实施例中,以占所述第三溶剂的体积百分比计,所述第一溶剂为0.01%~1%。
第一溶剂量在上述范围内,易形成连续的二维钙钛矿膜,提升器件稳定性,且不会使三维钙钛矿溶解量过大,保证器件的效率。具体地,以占所述第三溶剂的体积百分比计,所述第一溶剂的体积百分比包括但不限于:0.01%、0.05%、0.08%、0.1%、0.12%、0.15%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%或者是上述任意两个数值组成的范围。
在一些实施例中,以占所述第三溶剂的体积百分比计,所述第二溶剂为0.01%~10%。第二溶剂量过多,会使得A位阳离子流失过多,形成二维钙钛矿层较厚,严重降低器件效率;第二溶剂量过少,会使得A位阳离子流失较少,裸露的BX 2或CDX 4终端较少,不足以形成连续的二维钙钛矿薄膜。具体地,以占所述第三溶剂的体积百分比计,所述第二溶剂的体积百分比包括但不限于:0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、5%、8%、9%、10%或者是上述任意两个数值组成的范围。
在一些实施例中,所述第一溶剂与所述第二溶剂的体积比为(0.1~1):1。较低的溶剂比例,易造成三位钙钛矿母层的溶解量不够,无法形成连续的二维钙钛矿薄膜,器件稳定性提升不 明显;较高的溶剂比例,使得内部会存在一些无法反应的BX 2或CDX 4,降低器件整体厚度,效率下降明显。具体地,所述第一溶剂与所述第二溶剂的体积比包括但不限于:0.1:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1或者是上述任意两个数值组成的范围。
在一些实施例中,溶剂处理的时间为1min~60min。溶剂处理时间与添加第一溶剂和第二溶剂的用量存在对应关系,当第一溶剂和第二溶剂用量多时,所需时间短一些,以防过多的A位阳离子的流失,致使形成较厚的二维钙钛矿层;当第一溶剂和第二溶剂用量少时,所需时间长一些,以防无法形成连续的二维钙钛矿薄膜层。具体地,溶剂处理的时间包括但不限于:1min、5min、10min、15min、20min、30min、35min、40min、45min、50min、55min、60min或者是上述任意两个数值组成的范围。
在一些实施例中,溶剂处理采用的混合溶剂的温度为室温。
在一些实施例中,所述第一溶剂的用量为XμL,所述二维钙钛矿层的厚度为Ynm,X和Y满足0.05<X/Y<5。X/Y比值过低,达到所需厚度的二维钙钛矿层时间过长,易对界面层产生不利影响,降低填充因子;X/Y比值过大,达到所需厚度的二维钙钛矿层时间过短,易使得二维钙钛矿生成不均匀,出现包裹不完全的现象。具体地,X/Y比值包括但不限于:0.05、0.08、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.7、0.8、1、1.5、2、3、4、5或者是上述任意两个数值组成的范围。
在一些实施例中,将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应的条件包括:于温度为50℃~150℃条件下进行退火处理;可选地,退火处理的时间为20min~40min。
在一些实施例中,提供所述A`离子的化合物包括如下化合物及其盐中的一种或多种:CH 3CH 2CH 2CH 2CH 2CH 2CH 2CH 2NH 2、CH 3CH 2CH 2CH 2CONH 2、CH 3CH 2CH 2CH 2COONH 2、苯乙胺、苯甲胺、苯丙胺、F-PEAI、辛基溴化铵、N,N-双-2氯乙基对甲苯磺酸胺和环戊烷甲酰胺。
另外,上述制备方法中的三维钙钛矿层和二维钙钛矿层的技术方案同前述钙钛矿太阳能电池,在此不再赘述。
可以理解地,钙钛矿太阳能电池包括正式和反式。对于正式,所述钙钛矿太阳能电池包括透明电极以及依次层叠于透明电极之上的电子传输层、钙钛矿层、空穴传输层和第二电极层。对于反式,所述钙钛矿太阳能电池包括透明电极以及依次层叠于透明电极之上的空穴传输层、钙钛矿层、电子传输层和第二电极层。
在一些实施例中,所述钙钛矿层的带隙为1.20eV~2.30eV。带隙的测量方法可以为通过紫外吸收光谱测试,获得紫外吸收曲线,然后通过Tauc方程进行计算得到带隙。
在一些实施例中,所述钙钛矿层的厚度为400nm~1000nm。
本申请的第三方面,提供一种用电装置,包括第一方面所述的钙钛矿太阳能电池和第二方面所述的制备方法制备得到的钙钛矿太阳能电池中的至少一种。
附图说明
图1为本申请一实施方式的钙钛矿太阳能电池中钙钛矿层的制备过程示意图;
图2为本申请一实施方式的太阳能电池用作电源的用电装置的示意图。
具体实施方式
以下结合具体实施例对本申请的钙钛矿太阳能电池及其制备方法、用电装置作进一步详 细的说明。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明公开内容理解更加透彻全面。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在本申请中,术语“芳基”是指在芳香环化合物的基础上除去一个氢原子衍生的芳族烃基,可以为单环芳基、或稠环芳基、或多环芳基,对于多环的环种,至少一个是芳族环系。例如,“C6~C10芳基”是指包含6~10个碳原子的芳基,每次出现时,可以互相独立地为C6芳基、C7芳基、C8芳基、C9芳基或C10芳基。
在本申请中,术语“烷基”是指包含伯(正)碳原子、或仲碳原子、或叔碳原子、或季碳原子、或其组合的饱和烃失去一个氢原子生成的一价残基。包含该术语的短语,例如,“C1~C20烷基”是指包含1~10个碳原子的烷基,每次出现时,可以互相独立地为C1烷基、 C2烷基、C3烷基、C4烷基、C5烷基、C6烷基、C7烷基、C8烷基、C9烷基、C10烷基、C12烷基、C15烷基、C20烷基。合适的实例包括但不限于:甲基(Me、-CH 3)、乙基(Et、-CH 2CH 3)、1-丙基(n-Pr、n-丙基、-CH 2CH 2CH 3)、2-丙基(i-Pr、i-丙基、-CH(CH 3) 2)、1-丁基(n-Bu、n-丁基、-CH 2CH 2CH 2CH 3)、2-甲基-1-丙基(i-Bu、i-丁基、-CH 2CH(CH 3) 2)、2-丁基(s-Bu、s-丁基、-CH(CH 3)CH 2CH 3)、2-甲基-2-丙基(t-Bu、t-丁基、-C(CH 3) 3)、1-戊基(n-戊基、-CH 2CH 2CH 2CH 2CH 3)、2-戊基(-CH(CH 3)CH 2CH 2CH 3)、3-戊基(-CH(CH 2CH 3) 2)、2-甲基-2-丁基(-C(CH 3) 2CH 2CH 3)、3-甲基-2-丁基(-CH(CH 3)CH(CH 3) 2)、3-甲基-1-丁基(-CH 2CH 2CH(CH 3) 2)、2-甲基-1-丁基(-CH 2CH(CH 3)CH 2CH 3)、1-己基(-CH 2CH 2CH 2CH 2CH 2CH 3)、2-己基(-CH(CH 3)CH 2CH 2CH 2CH 3)、3-己基(-CH(CH 2CH 3)(CH 2CH 2CH 3))、2-甲基-2-戊基(-C(CH 3) 2CH 2CH 2CH 3)、3-甲基-2-戊基(-CH(CH 3)CH(CH 3)CH 2CH 3)、4-甲基-2-戊基(-CH(CH 3)CH 2CH(CH 3) 2)、3-甲基-3-戊基(-C(CH 3)(CH 2CH 3) 2)、2-甲基-3-戊基(-CH(CH 2CH 3)CH(CH 3) 2)、2,3-二甲基-2-丁基(-C(CH 3) 2CH(CH 3) 2)、3,3-二甲基-2-丁基(-CH(CH 3)C(CH 3) 3和辛基(-(CH 2) 7CH 3)。
在本申请中,术语“环烷基”是指包含环碳原子的非芳香族烃,可以为单环烷基、或螺环烷基、或桥环烷基。包含该术语的短语,例如,“C3~C10环烷基”是指包含3~10个碳原子的环烷基,每次出现时,可以互相独立地为C3环烷基、C4环烷基、C5环烷基、C6环烷基、C7环烷基、C8环烷基、C9环烷基、C10环烷基。合适的实例包括但不限于:环丙基、环丁基、环戊基、环己基和环庚基。另外,“环烷基”还可含有一个或多个双键,含有双键的环烷基的代表性实例包括环戊烯基、环己烯基、环己二烯基和环丁二烯基。
在本申请中,术语“三维钙钛矿”是指具备BX6八面体框架,同时A位阳离子占据顶点位置的三维晶体结构的钙钛矿。
在本申请中,术语“二维钙钛矿”是指BX6八面体框架被大体积的A位阳离子,如A`离子隔绝开,形成有机无机相互交替的特殊层状结构的钙钛矿。
具体地,“三维钙钛矿”与“二维钙钛矿”可以通过XRD出峰位置进行区分,一般而言,三维钙钛矿的XRD峰主要呈相在(001)、(010)、(111)等多个晶向,主峰位出现在13-15之间,而二维钙钛矿的XRD峰主要呈相在(0x0)x=2/4/6/8等一个晶向,无明显主峰,可能在10以下也会出峰。
在本申请中,术语“室温”一般指4℃~30℃,较佳地指25±5℃。
传统方法中,三维-二维组合钙钛矿太阳能电池主要通过将三维钙钛矿进行降维处理制备得到。如有方法利用热注入合成法,通过金属离子表面调控胶体合成动力学过程,制备高效的准二维钙钛矿;还有方法在钙钛矿电池的吸收层引入有机配体,使得三维钙钛矿框架结构降维为二维结构,形成了一层无机钙钛矿层,两层有机配体层的钙钛矿吸收层结构;还有方法采用梯度退火的方式,得到下层为二维结构、上层为三维结构的具有二维/三维平面异质结结构的钙钛矿薄膜。但是,这些方法改进的重点在于在钙钛矿层的制备过程,存在工艺不可控的问题,难以在工业应用中保证二维钙钛矿的生成。
另外,有方法通过正丁胺饱和蒸气对三维钙钛矿薄膜表面进行处理,快速形成表面二维钙钛矿薄层,方法简单且过程可控性良好,成本低廉,适合大面积工业化应用。该方法虽然一定程度克服了工艺不可控的问题,但是其无法确保二维钙钛矿的生成,且即使生成了二维钙钛矿,也难以形成连续的二维钙钛矿的层状结构,特别是在三维钙钛矿的四周生成二维钙钛矿的概率较小,无法实现对三维钙钛矿的完整包覆。
本申请提供一种钙钛矿太阳能电池,包括层叠设置的透明电极、第一功能层、钙钛矿层、 第二功能层和第二电极层,所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面。
上述钙钛矿太阳能电池中的二维钙钛矿层包覆除了与所述第一功能层接触的表面(第一表面)之外的所有表面(第二表面),且均一性好,膜层质量高,可有效减少层间的界面接触电阻,提升器件填充因子,进而提升器件性能,同时由于界面接触的改善,降低了缺陷的形成,减少了氧、水等降解的作用位点,如此提升器件稳定性。
在一些实施例中,所述二维钙钛矿层为连续结构,如此形成连续、不间断的层结构,完整包覆所述第二表面。
在一些实施例中,所述三维钙钛矿层中的活性材料的结构通式为ABX 3或A 2CDX 6;所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6,其中,A`离子的离子半径大于A离子的离子半径;
A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
作为示例,离子半径可通过第一性原理计算,基于密度泛函理论(DET)。
在一些实施例中,所述A`离子包括有机胺离子。如此能够进一步保证二维钙钛矿层的均一性。具体地,所述A`离子具有如下所示结构特征:(R) 4N +,R各自独立地为H、至少一个R 0取代或未取代的C1~C20烷基、C3~C10环烷基、R 0C(O)-、R 0C(O)O-、R 0S(O) 2-、巯基、磺酸基、磷酸基或C6~C10芳基。其中,R 0各自独立地选自:H、C1~C10烷基、C6~C10芳基、卤素取代的C6~C10芳基、C1~C5烷基取代的C6~C10芳基、卤素和C3~C10环烷基。
在一些实施例中,A离子包括有机胺离子、Li +、Na +、K +、Rb +和Cs +中的一种或多种;可选地,A离子包括有机胺离子和Cs +中的一种或多种。
在一些实施例中,B离子包括Pb 2+、Sn 2+、Be 2+、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Zn 2+、Ge 2+、Fe 2+、Co 2+和Ni 2+中的一种或多种。进一步地,B离子包括Pb 2+和Sn 2+中的一种或两种。
在一些实施例中,C离子包括Cs +、Ag +、K +和Ru +中一种或多种。
在一些实施例中,D离子包括Bi 3+、Ni 3+、Fe 3+和Cu 3+中的一种或多种。
在一些实施例中,X离子包括F -、Cl -、Br -和I -中的一种或多种。进一步地,X离子包括Cl -、Br -和I -中的一种或多种。更进一步,X离子包括Br -和I -中的一种或两种。
在一些实施例中,所述三维钙钛矿层的活性材料包括CH 3NH 3PbI 3(简写为MAPbI 3)、CH(NH 2) 2PbI 3(简写为FAPbI 3)、FA 0.83Cs 0.17PbI 3(简写为CsFA)、CsPbI 3、CsPbI 2Br和CsPbIBr 2中一种或多种。
在一些实施例中,所述二维钙钛矿层与三维钙钛矿层的厚度比为(0.2~10):100。所述二维钙钛矿层与三维钙钛矿层的厚度比在上述范围内,二维钙钛矿厚度可以充分包覆三维钙钛矿层的第二表面,提升器件稳定性,同时使得二位钙钛矿占比在合适范围,保证器件效率。具体地,所述二维钙钛矿层与三维钙钛矿层的厚度比包括但不限于:0.2:100、0.3:100、0.4:100、0.5:100、0.6:100、0.7:100、0.8:100、0.9:100、1:100、1.5:100、1.6:100、1.7:100、2:100、2.2:100、2.4:100、2.5:100、2.7:100、4:100、5:100、5.6:100、6:100、7:100、8:100、9:100、10:100或者是上述任意两个数值组成的范围。
在一些实施例中,所述二维钙钛矿层的厚度为1-50nm。其是由三维钙钛矿表面粗糙度判定的。二维钙钛矿层的厚度在上述范围内,一方面可以实现对三维钙钛矿层第二表面的完全包覆,另一方面可以保证器件效率。具体地,所述二维钙钛矿层的厚度包括但不限于:1nm、 2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、14nm、16nm、20nm、23nm、25nm、28nm、32nm、35nm、38nm、40nm、45nm、50nm或者是上述任意两个数值组成的范围。
在一些实施例中,所述三维钙钛矿层的厚度为300-2000nm。三维钙钛矿层的厚度在上述范围内,可以使得器件电流在合适范围,保证载流子传输能力,提高器件效率。具体地,所述三维钙钛矿层的厚度包括但不限于:300nm、350nm、370nm、380nm、390nm、400nm、450nm、480nm、500nm、520nm、550nm、580nm、600nm、620nm、640nm、650nm、670nm、680nm、700nm、750nm、800nm、850nm、870nm、890nm、900nm、950nm、1000nm、1200nm、1400nm、1500nm、1600nm、1700nm、1900nm、2000nm或者是上述任意两个数值组成的范围。
本申请提供一种钙钛矿太阳能电池的制备方法,包括如下步骤:
于透明电极的表面制备第一功能层;
于所述第一功能层的表面制备钙钛矿层;所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面;
于所述钙钛矿层的表面制备第二功能层;
于所述第二功能层的表面制备第二电极层。
在一些实施例中,所述二维钙钛矿层为连续结构。
在一些实施例中,制备所述钙钛矿层的方法包括如下步骤:
于所述第一功能层的表面制备三维钙钛矿母层,所述三维钙钛矿母层的活性材料的结构通式为ABX 3或A 2CDX 6
借助混合溶剂对所述三维钙钛矿母层中与所述第二表面相对应的表面进行溶剂处理;
将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应,生成所述二维钙钛矿层,所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6;所述三维钙钛矿母层中除去所述二维钙钛矿层的部分为所述三维钙钛矿层;
其中,A`离子的离子半径大于A离子的离子半径;
A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
上述钙钛矿层的制备方法,先借助混合溶剂对三维钙钛矿母层的表层进行A离子的溶解去除,然后将裸露出的BX 3或CDX 6与提供A`离子的化合物进行反应,且A`离子的离子半径大于A离子的离子半径,通过A`离子的引入,能够有效确保二维钙钛矿的生成,同时完整、连续地包覆整个三维钙钛矿的第二表面。
同时,传统方法中即使能够生成二维钙钛矿层,制备得到的二维钙钛矿层也依然存在均一性不佳、批次间重复性较差、厚度不可控的问题。上述钙钛矿层的制备方法在确保二维钙钛矿层生成的基础上,还能够有效提高二维钙钛矿层的均一性,且通过控制混合溶剂的种类、比例、处理时间等,可以相对控制三维钙钛矿溶解的量,进而使得二维钙钛矿层的厚度可控,如可以确保二维钙钛矿仅处于浅表层,主体还是三维钙钛矿,且生产批次间的重复性高,完成度高。
此外,上述钙钛矿层的制备方法的制备过程中不会对器件性能产生负面影响,能够保持器件性能的稳定性。
具体地,上述钙钛矿层的制备方法的一个示例可以参见图1:图1(a)提供制备有三维钙钛矿母层的预制件(包括层叠的透明电极和空穴传输层);图1(b)借助混合溶剂对三维 钙钛矿母层中除与空穴传输层接触的表层之外的表面进行处理,并溶解去除相应活性材料中的A离子,得到剩余材料;图1(c)将剩余材料与提供A`离子的化合物进行反应,生成二维钙钛矿层,同时,剩余的三维钙钛矿母层即为三维钙钛矿层。
在一些实施例中,所述混合溶剂包括第一溶剂、第二溶剂和第三溶剂的组合。
具体地,所述第一溶剂包括用于制备所述三维钙钛矿母层的前驱体溶液所用的溶剂中的一种或多种;可选地,所述第一溶剂包括胺类、砜类、亚砜类、酯类和酮类溶剂中的一种或多种;进一步可选地,所述第一溶剂包括DMF、DMSO、NMP和GLB中的一种或多种。
具体地,所述第二溶剂包括可溶解A离子,且不可溶解BX 2的溶剂,或所述第二溶剂包括可溶解A离子,且不可溶解CDX 4的溶剂;可选地,所述第二溶剂包括醇类、腈类和酮类溶剂中的一种或多种;进一步可选地,所述第二溶剂包括IPA、乙醇、甲醇、丙酮和乙腈中的一种或多种。
具体地,所述第三溶剂包括用于制备所述三维钙钛矿母层的反溶剂中的一种或多种;可选地,所述第三溶剂包括芳香烃类、醚类和酯类溶剂中的一种或多种;进一步可选地,所述第三溶剂包括CB、苯甲醚、乙醚和乙酸乙酯中的一种或多种。
在一些实施例中,以占所述第三溶剂的体积百分比计,所述第一溶剂为0.01%~1%。
第一溶剂量在上述范围内,易形成连续的二维钙钛矿膜,提升器件稳定性,且不会使三维钙钛矿溶解量过大,保证器件的效率。具体地,以占所述第三溶剂的体积百分比计,所述第一溶剂的体积百分比包括但不限于:0.01%、0.05%、0.08%、0.1%、0.12%、0.15%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%或者是上述任意两个数值组成的范围。
在一些实施例中,以占所述第三溶剂的体积百分比计,所述第二溶剂为0.01%~10%。第二溶剂量过多,会使得A位阳离子流失过多,形成二维钙钛矿层较厚,严重降低器件效率;第二溶剂量过少,会使得A位阳离子流失较少,裸露的BX 2或CDX 4终端较少,不足以形成连续的二维钙钛矿薄膜。具体地,以占所述第三溶剂的体积百分比计,所述第二溶剂的体积百分比包括但不限于:0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、5%、8%、9%、10%或者是上述任意两个数值组成的范围。
在一些实施例中,所述第一溶剂与所述第二溶剂的体积比为(0.1~1):1。较低的溶剂比例,易造成三位钙钛矿母层的溶解量不够,无法形成连续的二维钙钛矿薄膜,器件稳定性提升不明显;较高的溶剂比例,使得内部会存在一些无法反应的BX 2或CDX 4,降低器件整体厚度,效率下降明显。具体地,所述第一溶剂与所述第二溶剂的体积比包括但不限于:0.1:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1或者是上述任意两个数值组成的范围。
在一些实施例中,溶剂处理的时间为1min~60min。溶剂处理时间与添加第一溶剂和第二溶剂的用量存在对应关系,当第一溶剂和第二溶剂用量多时,所需时间短一些,以防过多的A位阳离子的流失,致使形成较厚的二维钙钛矿层;当第一溶剂和第二溶剂用量少时,所需时间长一些,以防无法形成连续的二维钙钛矿薄膜层。具体地,溶剂处理的时间包括但不限于:1min、5min、10min、15min、20min、30min、35min、40min、45min、50min、55min、60min或者是上述任意两个数值组成的范围。
在一些实施例中,溶剂处理采用的混合溶剂的温度为室温。
在一些实施例中,所述第一溶剂的用量为XμL,所述二维钙钛矿层的厚度为Ynm,X和Y满足0.05<X/Y<5。X/Y比值过低,达到所需厚度的二维钙钛矿层时间过长,易对界面层产生不利影响,降低填充因子;X/Y比值过大,达到所需厚度的二维钙钛矿层时间过短,易使 得二维钙钛矿生成不均匀,出现包裹不完全的现象。具体地,X/Y比值包括但不限于:0.05、0.08、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.7、0.8、1、1.5、2、3、4、5或者是上述任意两个数值组成的范围。
在一些实施例中,将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应的条件包括:于温度为50℃~150℃条件下进行退火处理;可选地,退火处理的时间为20min~40min。
在一些实施例中,提供所述A`离子的化合物包括如下化合物及其盐中的一种或多种:CH 3CH 2CH 2CH 2CH 2CH 2CH 2CH 2NH 2、CH 3CH 2CH 2CH 2CONH 2、CH 3CH 2CH 2CH 2COONH 2、苯乙胺、苯甲胺、苯丙胺、F-PEAI、辛基溴化铵、N,N-双-2氯乙基对甲苯磺酸胺和环戊烷甲酰胺。
另外,上述制备方法中的三维钙钛矿层和二维钙钛矿层的技术方案同前述钙钛矿太阳能电池,在此不再赘述。
可以理解地,钙钛矿太阳能电池包括正式和反式。对于正式,所述钙钛矿太阳能电池包括透明电极以及依次层叠于透明电极之上的电子传输层、钙钛矿层、空穴传输层和第二电极层。对于反式,所述钙钛矿太阳能电池包括透明电极以及依次层叠于透明电极之上的空穴传输层、钙钛矿层、电子传输层和第二电极层。
在一些实施例中,所述钙钛矿层的带隙为1.20eV~2.30eV。带隙的测量方法可以为通过紫外吸收光谱测试,获得紫外吸收曲线,然后通过Tauc方程进行计算得到带隙。
在一些实施例中,所述钙钛矿层的厚度为400nm~1000nm。
不作限制地,所述透明电极为透明导电玻璃基底,材料可举例如:FTO、ITO、AZO、BZO、IZO等。
不作限制地,电子传输层材料可以为以下材料及其衍生物及其经掺杂或钝化所得的材料中的至少一种:[6,6]-苯基C 61丁酸甲酯(PC 61BM)、[6,6]-苯基C 71丁酸甲酯(PC 71BM)、富勒烯C60(C60)、富勒烯C70(C70)、二氧化锡(SnO 2)、氧化锌(ZnO)等。
不作限制地,空穴传输层可以为以下材料及其衍生物及其经掺杂或钝化所得的材料中的至少一种:聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、聚-3已基噻吩(P3HT)、三蝶烯为核的三苯胺(H101)、3,4-乙烯二氧噻吩-甲氧基三苯胺(EDOT-OMeTPA)、N-(4-苯胺)咔唑-螺双芴(CzPAF-SBF)、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺)(PEDOT:PSS)、聚噻吩,氧化镍(NiOx)、氧化钼(MoO3)、碘化亚铜(CuI)、氧化亚铜(CuO)等。
不作限制地,第二电极层的材料可以为有机、无机或有机无机混合的导电材料,可举例如:Ag、Cu、C、Au、Al、ITO、AZO、BZO、IZO等。
具体地,所述钙钛矿太阳能电池为正式,其制备方法包括如下步骤:
步骤1:刻蚀并清洗透明电极,干燥;
步骤2:在透明电极上制备电子传输层;
步骤3:在电子传输层上制备所述钙钛矿层;
步骤4:在所述钙钛矿层上制备空穴传输层;
步骤5:在空穴传输层上制备第二电极层。
具体地,所述钙钛矿太阳能电池为反式,其制备方法包括如下步骤:
步骤1:刻蚀并清洗透明电极,干燥;
步骤2:在透明电极上制备空穴传输层;
步骤3:在电子传输层上制备所述钙钛矿层;
步骤4:在所述钙钛矿层上制备电子传输层;
步骤5:在空穴传输层上制备第二电极层。
本申请提供一种用电装置,包括上述的钙钛矿太阳能电池和上述太阳能电池的制备方法制备得到的钙钛矿太阳能电池中的至少一种。
在其中一些实施例中,上述太阳能电池可以用作用电装置的电源,也可以用作用电设备的能量存储单元。
进一步地,上述用电装置可以包括移动设备,例如手机、笔记本电脑等,电动车辆、电气列车、船舶及卫星、储能系统等,但不限于此。
图2是作为一个示例的用电装置。该用电装置20为纯电动车、混合动力电动车、或插电式混合动力电动车等。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
本实施例提供一种钙钛矿太阳能电池,制备步骤如下:
(1)取20片规格为2.0cm*2.0cm的ITO导电玻璃,两端通过激光刻蚀各去掉0.35cm的ITO,裸露出玻璃基底;用水、丙酮、异丙醇依次超声清洗刻蚀后的ITO导电玻璃数次;ITO导电玻璃在氮气枪下吹干溶剂,放入紫外臭氧机中进一步清洗。
(2)在紫外臭氧处理后的ITO基片上以5000rpm/s的速率旋涂2mg/mL的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)有机空穴传输层后,在100℃热台上退火处理10分钟。
(3)在空穴传输层上以3000rpm/s旋涂钙钛矿前驱液,100℃下退火30min,冷却至室温,在空穴传输层的表面制备得到三维钙钛矿薄膜。其中所述钙钛矿前驱液以体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜作为溶剂,包含1.2mol/L的碘化铅、1.0mol/L的甲脒氢碘酸盐和0.2mol/L的碘化铯,制备得到的钙钛矿薄膜的活性物质为FA 0.83Cs 0.17PbI 3(CsFA)体系。
(4)使钙钛矿薄膜中裸露的表面(除了与空穴传输层接触的表面之外的表面)完全浸泡于混合溶剂(DMF/IPA/CB,体积比为1:5:1000,用量分别为2uL:10uL:2000uL)中,在室温下处理10min,取出,氮气吹干,再在裸露的表面以4000rpm旋涂提供A`离子的化合物(四氟苯乙胺碘化铵,CAS号:1413269-55-2,F-PEAI)30s,然后在100℃退火30min,生成二维钙钛矿,二维钙钛矿的活性物质为(四氟苯乙胺) 2PbI 3,制备得到二维-三维钙钛矿层。
(5)在二维-三维钙钛矿层上以1200rpm/s旋涂电子传输层[6,6]-苯基C 61丁酸甲酯(PCBM),100℃下退火10min,紧接着以5000rpm/s旋涂其钝化层浴铜灵(BCP)。
(6)将获得到片子放入蒸镀机,蒸镀金属电极Ag,清边测试。
实施例2~21提供的钙钛矿太阳能电池同实施例1,主要区别见表1。
对比例提供的钙钛矿太阳能电池同实施例1,主要区别在于二维-三维钙钛矿层的制备方法如下:
(1)取20片规格为2.0cm*2.0cm的ITO导电玻璃,两端通过激光刻蚀各去掉0.35cm的 ITO,裸露出玻璃基底;用水、丙酮、异丙醇依次超声清洗刻蚀后的ITO导电玻璃数次;ITO导电玻璃在氮气枪下吹干溶剂,放入紫外臭氧机中进一步清洗。
(2)在紫外臭氧处理后的ITO基片上以5000rpm/s的速率旋涂2mg/mL的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)有机空穴传输层后,在100℃热台上退火处理10分钟。
(3)在空穴传输层上以3000rpm/s旋涂钙钛矿前驱液,100℃下退火30min,冷却至室温,在空穴传输层的表面制备得到三维钙钛矿薄膜。其中所述钙钛矿前驱液以体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜作为溶剂,包含1.2mol/L的碘化铅、1.0mol/L的甲脒氢碘酸盐和0.2mol/L的碘化铯,制备得到的钙钛矿薄膜的活性物质为FA 0.83Cs 0.17PbI 3(CsFA)体系。
(4)在三维钙钛矿表面以5000加速度5000rp/s转速动态旋涂提供A`离子的化合物(苯乙胺碘化铵,PEAI)30s,然后在100℃退火10min。
(5)在制备的钙钛矿薄膜上以1200rpm/s旋涂电子传输层[6,6]-苯基C61丁酸甲酯(PCBM),100℃下退火10min,紧接着以5000rpm/s旋涂其钝化层浴铜灵(BCP)。
(6)将获得到片子放入蒸镀机,蒸镀金属电极Ag,清边测试。
测试例:
(1)钙钛矿厚度测试
借助椭偏仪和台阶仪共同测试二维钙钛矿和三维钙钛矿的厚度,结果记录于表1。
(2)钙钛矿太阳能电池的光电转化效率
在标准模拟太阳光(AM 1.5G,100mW/cm 2)照射下,对电池性能进行测试,获取I-V曲线。根据I-V曲线以及测试设备反馈的数据可以得到短路电流Jsc(单位mA/cm 2)、开路电压Voc(单位V)、最大光输出电流Jmpp(单位mA)和最大光输出电压Vmpp(单位V)。通过公式FF=Jsc×Voc/(Jmpp×Vmpp)计算出电池的填充因子FF,单位%。通过公式PCE=Jsc×Voc×FF/Pw计算出电池的光电转换效率PCE,单位%;Pw表示输入功率,单位mW。
结果记录于表2。
(3)钙钛矿太阳能电池稳定性测试
将所制备的电池器件放置于干房中暗态保存,其中湿度在5%左右,100天后重新测试器件效率,并计算效率与初始效率的比值,具体实验结果见表2。
表1
Figure PCTCN2022123787-appb-000001
Figure PCTCN2022123787-appb-000002
Figure PCTCN2022123787-appb-000003
表2
Figure PCTCN2022123787-appb-000004
可见,与对比例相比较,本申请的实施例1~21均能够实现更好的器件稳定性。
进一步地,由实施例1~3之间的比较可知,以不同的钙钛矿薄膜的活性物质作为母层,器件的稳定性存在差异,其中以CsFA与FAPbI 3的稳定性较佳。
由实施例1、4~6之间的比较可知,以不同的提供A`离子的化合物对母层进行离子置换, 器件的稳定性存在差异,其中以F-PEAI和辛基溴化铵作为提供A`离子的化合物制备得到的器件稳定性较佳。
由实施例1、7~9之间的比较可知,以不同比例的溶剂对母层进行处理,能够得到不同厚度的二维钙钛矿,其中以比例为2:10:2000的溶剂对母层进行处理,制备得到的器件稳定性较佳。
由实施例1、10~12之间的比较可知,以不同种类的溶剂对母层进行处理,能够得到不同厚度的二维钙钛矿。其中以DMF/IPA/CB的组合作为溶剂对母层进行处理,制备得到的器件稳定性较佳。
由实施例1、13~16之间的比较可知,对母层进行溶剂处理的时间不同,能够得到不同厚度的二维钙钛矿,且随着时间的延长,二维钙钛矿的厚度相应增加,制备得到的器件稳定性也有一定程度的提升。
由实施例1、19~21之间的比较可知,随着二维钙钛矿和三维钙钛矿的厚度比的增加,制备得到的二维钙钛矿的厚度和器件稳定性出现一定程度的下降。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (20)

  1. 一种钙钛矿太阳能电池,包括层叠设置的透明电极、第一功能层、钙钛矿层、第二功能层和第二电极层,所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面。
  2. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述二维钙钛矿层为连续结构。
  3. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述三维钙钛矿层中的活性材料的结构通式为ABX 3或A 2CDX 6;所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6,其中,A`离子的离子半径大于A离子的离子半径;
    A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
  4. 根据权利要求1~3任一项所述的钙钛矿太阳能电池,其特征在于,所述二维钙钛矿层与三维钙钛矿层的厚度比为(0.2~10):100。
  5. 根据权利要求1~4任一项所述的钙钛矿太阳能电池,其特征在于,所述二维钙钛矿层的厚度为1-50nm。
  6. 根据权利要求1~5任一项所述的钙钛矿太阳能电池,其特征在于,所述三维钙钛矿层的厚度为300-2000nm。
  7. 根据权利要求3~6任一项所述的钙钛矿太阳能电池,其特征在于,所述A`离子包括有机胺离子;可选地,所述A`离子具有如下所示结构特征:(R) 4N +,R各自独立地为H、至少一个R 0取代或未取代的C1~C20烷基、C3~C10环烷基、R 0C(O)-、R 0C(O)O-、R 0S(O) 2-、巯基、磺酸基、磷酸基或C6~C10芳基,其中,R 0各自独立地选自:H、C1~C10烷基、C6~C10芳基、卤素取代的C6~C10芳基、C1~C5烷基取代的C6~C10芳基、卤素和C3~C10环烷基。
  8. 根据权利要求3~7任一项所述的钙钛矿太阳能电池,其特征在于,具有如下特征中的至少一个:
    (1)所述A离子包括有机胺离子、Li +、Na +、K +、Rb +和Cs +中的一种或多种;可选地,所述A离子包括有机胺离子和Cs +中的一种或多种;
    (2)所述B离子包括Pb 2+、Sn 2+、Be 2+、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Zn 2+、Ge 2+、Fe 2+、Co 2+和Ni 2+中的一种或多种;可选地,B离子包括Pb 2+和Sn 2+中的一种或两种;
    (3)所述C离子包括Cs +、Ag +、K +和Ru +中一种或多种;
    (4)所述D离子包括Bi 3+、Ni 3+、Fe 3+和Cu 3+中的一种或多种;
    (5)所述X离子包括F -、Cl -、Br -和I -中的一种或多种;可选地,X离子包括Cl -、Br -和I -中的一种或多种。
  9. 根据权利要求1~8任一项所述的钙钛矿太阳能电池,其特征在于,所述三维钙钛矿层的活性材料包括CH 3NH 3PbI 3、CH(NH 2) 2PbI 3、FA 0.83Cs 0.17PbI 3、CsPbI 3、CsPbI 2Br和CsPbIBr 2中一种或多种。
  10. 一种钙钛矿太阳能电池的制备方法,包括如下步骤:
    于透明电极的表面制备第一功能层;
    于所述第一功能层的表面制备钙钛矿层;所述钙钛矿层包括层叠设置的三维钙钛矿层和二维钙钛矿层,所述三维钙钛矿层中与所述第一功能层接触的表面为第一表面,其余各表面构成第二表面,所述二维钙钛矿层包覆整个所述第二表面;
    于所述钙钛矿层的表面制备第二功能层;
    于所述第二功能层的表面制备第二电极层。
  11. 根据权利要求10所述的钙钛矿太阳能电池的制备方法,其特征在于,制备所述钙钛矿层的方法包括如下步骤:
    于所述第一功能层的表面制备三维钙钛矿母层,所述三维钙钛矿母层的活性材料的结构通式为ABX 3或A 2CDX 6
    借助混合溶剂对所述三维钙钛矿母层中与所述第二表面相对应的表面进行溶剂处理;
    将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应,生成所述二维钙钛矿层,所述二维钙钛矿层中的活性材料的结构通式为A`BX 3或A` 2CDX 6;所述三维钙钛矿母层中除去所述二维钙钛矿层的部分为所述三维钙钛矿层;
    其中,A`离子的离子半径大于A离子的离子半径;
    A`离子、A离子为一价阳离子,B离子为二价金属阳离子,C离子和D离子分别为一价和三价金属阳离子,X离子为一价阴离子。
  12. 根据权利要求11所述的钙钛矿太阳能电池的制备方法,其特征在于,所述混合溶剂包括第一溶剂、第二溶剂和第三溶剂的组合;
    所述第一溶剂包括用于制备所述三维钙钛矿母层的前驱体溶液所用的溶剂中的一种或多种;可选地,所述第一溶剂包括胺类、砜类、亚砜类、酯类和酮类溶剂中的一种或多种;进一步可选地,所述第一溶剂包括DMF、DMSO、NMP和GLB中的一种或多种;
    所述第二溶剂包括可溶解A离子,且不可溶解BX 2的溶剂,或所述第二溶剂包括可溶解A离子,且不可溶解CDX 4的溶剂;可选地,所述第二溶剂包括醇类、腈类和酮类溶剂中的一种或多种;进一步可选地,所述第二溶剂包括IPA、乙醇、甲醇、丙酮和乙腈中的一种或多种;
    所述第三溶剂包括用于制备所述三维钙钛矿母层的反溶剂中的一种或多种;可选地,所述第三溶剂包括芳香烃类、醚类和酯类溶剂中的一种或多种;进一步可选地,所述第三溶剂包括CB、苯甲醚、乙醚和乙酸乙酯中的一种或多种。
  13. 根据权利要求11或12所述的钙钛矿太阳能电池的制备方法,其特征在于,所述混合溶剂具有如下特征中的至少一个:
    (1)以占所述第三溶剂的体积百分比计,所述第一溶剂为0.01%~1%;
    (2)以占所述第三溶剂的体积百分比计,所述第二溶剂为0.01%~10%;
    (3)所述第一溶剂与所述第二溶剂的体积比为(0.1~1):1。
  14. 根据权利要求11~13任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,溶剂处理的条件包括如下特征中的至少一个:
    (1)溶剂处理的时间为1min~60min;
    (2)溶剂处理采用的混合溶剂的温度为室温;
    (3)所述第一溶剂的用量为XμL,所述二维钙钛矿层的厚度为Ynm,X和Y满足0.05<X/Y<5。
  15. 根据权利要求11~14任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,将溶剂处理后的三维钙钛矿母层与提供A`离子的化合物进行反应的条件包括:于温度为50℃~150℃条件下进行退火处理;可选地,退火处理的时间为20min~40min。
  16. 根据权利要求11~15任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,所述A`离子包括有机胺离子;可选地,所述A`离子具有如下所示结构特征:(R) 4N +,R各自独立地为H、至少一个R 0取代或未取代的C1~C20烷基、C3~C10环烷基、R 0C(O)-、R 0C(O)O-、 R 0S(O) 2-、巯基、磺酸基、磷酸基或C6~C10芳基,其中,R 0各自独立地选自:H、C1~C10烷基、C6~C10芳基、卤素取代的C6~C10芳基、C1~C5烷基取代的C6~C10芳基、卤素和C3~C10环烷基。
  17. 根据权利要求11~16任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,提供所述A`离子的化合物包括如下化合物及其盐中的一种或多种:CH 3CH 2CH 2CH 2CH 2CH 2CH 2CH 2NH 2、CH 3CH 2CH 2CH 2CONH 2、CH 3CH 2CH 2CH 2COONH 2、苯乙胺、苯甲胺、苯丙胺、F-PEAI、辛基溴化铵、N,N-双-2氯乙基对甲苯磺酸胺和环戊烷甲酰胺。
  18. 根据权利要求11~17任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,所述三维钙钛矿母层的活性材料具有如下特征中的至少一个:
    (1)A离子包括有机胺离子、Li +、Na +、K +、Rb +和Cs +中的一种或多种;可选地,A离子包括有机胺离子和Cs +中的一种或多种;
    (2)B离子包括Pb 2+、Sn 2+、Be 2+、Mg 2+、Ca 2+、Sr 2+、Ba 2+、Zn 2+、Ge 2+、Fe 2+、Co 2+和Ni 2+中的一种或多种;可选地,B离子包括Pb 2+和Sn 2+中的一种或两种;
    (3)C离子包括Cs +、Ag +、K +和Ru +中一种或多种;
    (4)D离子包括Bi 3+、Ni 3+、Fe 3+和Cu 3+中的一种或多种;
    (5)X离子包括F -、Cl -、Br -和I -中的一种或多种;可选地,X离子包括Cl -、Br -和I -中的一种或多种。
  19. 根据权利要求11~18任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,所述三维钙钛矿层母层的活性材料包括CH 3NH 3PbI 3、CH(NH 2) 2PbI 3、FA 0.83Cs 0.17PbI 3、CsPbI 3、CsPbI 2Br和CsPbIBr 2中一种或多种。
  20. 一种用电装置,其特征在于,包括权利要求1~9任一项所述的钙钛矿太阳能电池和权利要求10~19任一项所述的制备方法制备得到的钙钛矿太阳能电池中的至少一种。
PCT/CN2022/123787 2022-10-08 2022-10-08 钙钛矿太阳能电池及其制备方法、用电装置 WO2024073884A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/123787 WO2024073884A1 (zh) 2022-10-08 2022-10-08 钙钛矿太阳能电池及其制备方法、用电装置
PCT/CN2023/122855 WO2024074124A1 (zh) 2022-10-08 2023-09-28 钙钛矿太阳能电池及其制备方法、用电装置
CN202380019562.8A CN118614160A (zh) 2022-10-08 2023-09-28 钙钛矿太阳能电池及其制备方法、用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123787 WO2024073884A1 (zh) 2022-10-08 2022-10-08 钙钛矿太阳能电池及其制备方法、用电装置

Publications (1)

Publication Number Publication Date
WO2024073884A1 true WO2024073884A1 (zh) 2024-04-11

Family

ID=90607492

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/123787 WO2024073884A1 (zh) 2022-10-08 2022-10-08 钙钛矿太阳能电池及其制备方法、用电装置
PCT/CN2023/122855 WO2024074124A1 (zh) 2022-10-08 2023-09-28 钙钛矿太阳能电池及其制备方法、用电装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122855 WO2024074124A1 (zh) 2022-10-08 2023-09-28 钙钛矿太阳能电池及其制备方法、用电装置

Country Status (2)

Country Link
CN (1) CN118614160A (zh)
WO (2) WO2024073884A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190197A (zh) * 2019-05-16 2019-08-30 北京化工大学 一种ZnAl-MMO及其在制备2D/3D杂化钙钛矿太阳能电池中的应用
US20200105481A1 (en) * 2018-10-01 2020-04-02 Massachusetts Institute Of Technology Heterojunction perovskite solar cell with high stabilized efficiency and low voltage loss
CN114883493A (zh) * 2022-04-22 2022-08-09 河北工业大学 一种基于三维/二维钙钛矿太阳能电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628080A (zh) * 2019-02-28 2020-09-04 北京宏泰创新科技有限公司 一种钙钛矿太阳能电池及钙钛矿吸收层的制备方法
CN109920917B (zh) * 2019-03-20 2023-05-23 陕西师范大学 一种引入有机配体的钙钛矿太阳电池及其制备方法
US20220246865A1 (en) * 2021-02-04 2022-08-04 Purdue Research Foundation Perovskite solar cells
CN113471366B (zh) * 2021-06-24 2023-05-09 华侨大学 基于环己甲胺碘盐的2d/3d钙钛矿太阳能电池的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200105481A1 (en) * 2018-10-01 2020-04-02 Massachusetts Institute Of Technology Heterojunction perovskite solar cell with high stabilized efficiency and low voltage loss
CN110190197A (zh) * 2019-05-16 2019-08-30 北京化工大学 一种ZnAl-MMO及其在制备2D/3D杂化钙钛矿太阳能电池中的应用
CN114883493A (zh) * 2022-04-22 2022-08-09 河北工业大学 一种基于三维/二维钙钛矿太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUN LIN, YANG BAI, YANJUN FANG, ZHAOLAI CHEN, SHUANG YANG, XIAOPENG ZHENG, SHI TANG, YE LIU, JINGJING ZHAO, JINSONG HUANG: "Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures", JOURNAL OF PHYSICAL CHEMISTRY LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 3, 1 February 2018 (2018-02-01), US , pages 654 - 658, XP055728200, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.7b02679 *

Also Published As

Publication number Publication date
CN118614160A (zh) 2024-09-06
WO2024074124A1 (zh) 2024-04-11

Similar Documents

Publication Publication Date Title
Liu et al. Hydrothermally treated SnO2 as the electron transport layer in high‐efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%
Liu et al. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole‐transport materials for efficient perovskite solar cells
Tan et al. Solution-processed nickel acetate as hole collection layer for polymer solar cells
Bao et al. Facile preparation of TiO X film as an interface material for efficient inverted polymer solar cells
Zhang et al. Highly efficient planar perovskite solar cells via acid-assisted surface passivation
US20130019937A1 (en) Photovoltaic cell enhancement through uvo treatment
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN109802041B (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
CN108012568A (zh) 使用石墨烯作为导电透明电极的钙钛矿基太阳能电池
Chen et al. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
Lin et al. Two-step annealing of NiOx enhances the NiOx–perovskite interface for high-performance ambient-stable p–i–n perovskite solar cells
Zhang et al. A Self‐Assembled Vertical‐Gradient and Well‐Dispersed MXene Structure for Flexible Large‐Area Perovskite Modules
Singh et al. Effect of NiO precursor solution ageing on the Perovskite film formation and their integration as hole transport material for perovskite solar cells
Wu et al. Polypropylene Glycol‐Modified Anode Interface for High‐Performance Perovskite Solar Cells
Hu et al. 4-tert-butylpyridine induced Ni3+/Ni2+ ratio modulation in NiOx hole transport layer towards efficient and stable inverted perovskite solar cells
Zhou et al. Highly reproducible and photocurrent hysteresis-less planar perovskite solar cells with a modified solvent annealing method
KR102160474B1 (ko) 무기물 정공수송층 제조방법 및 이를 포함하는 페로브스카이트 태양전지
Aidarkhanov et al. Synergic effects of incorporating black phosphorus for interfacial engineering in perovskite solar cells
CN108365105B (zh) 一种钙钛矿太阳能电池及其制备方法
WO2024073884A1 (zh) 钙钛矿太阳能电池及其制备方法、用电装置
Huang et al. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells
CN108470836B (zh) 一种钙钛矿薄膜的制备方法及太阳能电池
KR101584222B1 (ko) 그래핀 박막 이송 방법 및 이를 이용한 소자
CN113233508B (zh) 一种α-MoO3溶液的制备方法及其应用
WO2023097646A1 (zh) 钙钛矿太阳能电池、光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961241

Country of ref document: EP

Kind code of ref document: A1