WO2024071370A1 - 眼科疾患を処置または予防するための環状ペプチド誘導体組成物 - Google Patents

眼科疾患を処置または予防するための環状ペプチド誘導体組成物 Download PDF

Info

Publication number
WO2024071370A1
WO2024071370A1 PCT/JP2023/035591 JP2023035591W WO2024071370A1 WO 2024071370 A1 WO2024071370 A1 WO 2024071370A1 JP 2023035591 W JP2023035591 W JP 2023035591W WO 2024071370 A1 WO2024071370 A1 WO 2024071370A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen atom
mmol
mixture
compound
Prior art date
Application number
PCT/JP2023/035591
Other languages
English (en)
French (fr)
Inventor
恒平 松本
海斗 大西
佳奈 寺上
祐馬 苅田
七大 田部
航佑 安井
武嗣 正司
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Publication of WO2024071370A1 publication Critical patent/WO2024071370A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics

Definitions

  • the present disclosure relates to a cyclic peptide derivative composition for treating or preventing an ophthalmic disease.
  • AMD Age-related macular degeneration
  • AMD AMD
  • Wet AMD accounts for only approximately 10% of cases of age-related macular degeneration, but causes approximately 90% of cases of legal blindness due to macular degeneration in older adults.
  • diabetic retinopathy Another disorder of the eye is diabetic retinopathy. Diabetic retinopathy can affect up to 80% of all patients who have had diabetes for 10 years or more, and is the third leading cause of adult blindness, accounting for approximately 7% of blindness in the United States.
  • Further disorders include hypertensive retinopathy, central serous chorioretinopathy, cystoid macular edema, Coats' disease, and tumors of the eye and ocular adnexa, such as choroidal hemangioma, retinal pigment epithelial carcinoma, retinal vein occlusion, and intraocular lymphoma.
  • the present disclosure provides a cyclic peptide derivative composition for treating or preventing an ophthalmic disease.
  • R 1 , R 2 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom or an optionally substituted hydrocarbon group, or R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl group ;
  • R3 and R4 are each independently A hydrogen atom, an optionally substituted hydrocarbon group, a carboxyl group, an optionally substituted alkoxycarbonyl group or an optionally substituted alkoxycarbonyloxy group;
  • R 11 , R 12 , R 13 , and R 14 each independently represent A hydrogen atom, an optionally substituted hydrocarbon group, a hydroxy group, an optionally substituted alkoxy group or an optionally substituted alkoxycarbonyloxy group;
  • X is CH2 or CO;
  • A is O, NH or S, where NH can be optionally substituted.
  • (Item 2) Item 11. The composition of any one of the preceding items, wherein the ophthalmic disease comprises a retinal disease.
  • (Item 3) The composition of any one of the preceding items, wherein the ophthalmic disease comprises at least one of diabetic retinopathy, glaucoma, or age-related macular degeneration.
  • (Item 4) The composition of any one of the preceding items, wherein R 1 and R 2 are each independently a hydrogen atom, or a C 1-6 alkyl group.
  • (Item 5) The composition of any one of the preceding items, wherein R1 and R2 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • R 7 is a hydrogen atom, a C 1-6 alkyl group, a hydroxy C 1-6 alkyl group, a carbamoyl C 1-6 alkyl group, a C 6-10 aryl C 1-6 alkyl group, a hydroxy C 6-10 aryl C 1-6 alkyl group, a C 5-10 heteroaryl C 1-6 alkyl group, a carboxy C 1-6 alkyl group, an amino C 1-6 alkyl group, a thio C 1-6 alkyl group, a C 1-6 alkylthio C 1-6 alkyl group, or an amidinoamino C 1-6 alkyl group.
  • composition of any one of the preceding items, wherein the ophthalmic disease comprises at least one of diabetic retinopathy, glaucoma, or age-related macular degeneration. It is contemplated that the present disclosure may provide one or more of the above features in combinations other than those explicitly stated. Still further embodiments and advantages of the present disclosure will be recognized by those skilled in the art upon reading and understanding the following detailed description, if necessary.
  • the present disclosure provides novel cyclic peptide derivatives and compositions that are useful for treating or preventing diabetic retinopathy, glaucoma, or age-related macular degeneration.
  • FIG. 1 shows a light micrograph of a cross section of a rat retina.
  • FIG. 2 shows the effect of the compound on the retinal thickness of the inner plexiform layer of the rat retina in an aqueous humor pressure overload model.
  • FIG. 3 shows the effect of the compound on the retinal thickness of the inner nuclear layer of the rat retina in an aqueous humor pressure overload model.
  • FIG. 4 shows the effect of the compound on the retinal thickness of the outer nuclear layer of the rat retina in an aqueous humor pressure overload model.
  • FIG. 5 shows the change in body weight after laser irradiation in a rat laser-induced choroidal neovascularization model.
  • FIG. 6 shows the CNV area 14 days after laser irradiation in a rat laser-induced choroidal neovascularization model.
  • the compounds of the present disclosure may exist in the form of hydrates and/or solvates, and therefore the hydrates and/or solvates of the compounds of the present disclosure or their pharma- ceutically acceptable salts are also included in the compounds of the present disclosure.
  • the compounds of the present disclosure may have one or more asymmetric carbon atoms and may result in geometric isomerism and axial chirality, and therefore may exist as several stereoisomers. In the present disclosure, these stereoisomers, mixtures thereof, and racemates are also included in the compounds of the present disclosure.
  • the compounds described herein may contain one or more asymmetric centers and therefore may exist in various isomeric forms, such as enantiomers and/or diastereomers.
  • the compounds described herein may be in the form of individual enantiomers, diastereomers, or geometric isomers, or may be in the form of mixtures of stereoisomers (including racemic mixtures and mixtures enriched in one or more stereoisomers).
  • the present disclosure additionally includes the compounds described herein as individual isomers substantially free of other isomers and instead as mixtures of various isomers.
  • deuterium converters in which any one or more 1 H of the compounds of the present disclosure are converted to 2 H (D).
  • the compounds of the present disclosure and their pharma- ceutically acceptable salts obtained as crystals may have crystalline polymorphism, and the compounds of the present disclosure include all crystalline forms.
  • group means a monovalent group unless otherwise specified.
  • non-monovalent groups include alkylene groups (divalent) and the like.
  • group may be omitted.
  • the number of substituents defined as “optionally substituted”, “optionally substituted” or “substituted” is not particularly limited and is one or more as long as substitution is possible, unless otherwise specified.
  • the explanation of each substituent also applies to the case where the substituent is a part of or a substituent for another substituent.
  • Examples of the substituent in the present disclosure include a hydrogen atom, a hydroxyl group, a carboxyl group, a sulfinic acid group, a sulfonic acid group, a phosphate group, a guanidine group, a cyano group, a halogen atom (such as a fluorine atom or a chlorine atom), an alkyl group, an alkylthio group, a cycloalkylthio group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, a cycloalkylcarbonyl group, an alkylcarbonyloxy group, an alkylsulfinyl group, a cycloalkylsulfinyl group, an alkoxy group, a cycloalkoxy group, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an alkyl Examples of
  • the "maximum number of possible substitutions" refers to the maximum number of substituents that a group can have, and may vary for each group. For example, the maximum number of possible substitutions is 3 for a methyl group, 5 for an ethyl group, 7 for a benzyl group, and 11 for a naphthalenylethyl group.
  • any part of the group may be substituted.
  • “optionally substituted arylalkyl” and “substituted arylalkyl” may be substituted in the aryl portion, the alkyl portion, or both the aryl portion and the alkyl portion.
  • examples of the substituent in the case of “optionally substituted” or “substituted as necessary” include the substituent group ⁇ and the substituent group ⁇ .
  • the substituent in the case of “optionally substituted” or “substituted as necessary” may be selected from the substituent group ⁇ , and may be substituted with 1 to 5 identical or different substituents.
  • the type of atom in the substituent participating in the bond is not particularly limited depending on the type of the substituent, but when the atom to which the substituent is bonded is an oxygen atom, a nitrogen atom, or a sulfur atom, it is limited to the substituents listed below in which the bonded atom is a carbon atom.
  • the substituent group ⁇ is 1) a halogen atom, 2) a hydroxyl group, 3) a carboxyl group, 4) a cyano group, 5) a C 1-6 alkyl, 6) a C 2-6 alkenyl, 7) a C 2-6 alkynyl, 8) a C 1-6 alkoxy, 9) a C 1-6 alkylthio, 10) a C 1-6 alkylcarbonyl, 11) a C 1-6 alkylsulfonyl ( provided that each of the substituents 5) to 11) may be substituted with 1 to 5 identical or different substituents selected from the substituent group ⁇ ).
  • C 1-6 means that the number of carbon atoms is 1 to 6.
  • C 1-4 means that the number of carbon atoms is 1 to 4
  • C 1-3 means that the number of carbon atoms is 1 to 3.
  • descriptions that limit the number of carbon atoms are merely preferred numerical ranges, and it is intended that groups having substituents with carbon numbers other than the specified number of carbon atoms are also within the scope of this disclosure.
  • hydrocarbon group is also called “hydrocarbyl group” and refers to a group produced by removing at least one hydrogen from a “hydrocarbon” that contains at least one carbon and at least one hydrogen.
  • the term "functional group” refers to any group that imparts some functionality, and includes carboxyl groups, nitrile groups, carbonyl groups, hydroxyl groups, amino groups, imino groups, nitro groups, halogen groups, as well as alkyl groups, and in a broader sense, also includes groups formed by bonds such as acid anhydrides, ester bonds, amide bonds, and ether bonds.
  • heteroatom refers to an atom other than carbon and hydrogen atoms, such as an oxygen atom, nitrogen atom, or sulfur atom.
  • a group containing a heteroatom may be referred to as a hetero... group (for example, a heteroaryl group (meaning that an aryl group contains at least a heteroatom)) or a hetero... group (for example, a heterocyclic group (meaning that a ring group (carbocyclic group) contains at least one heteroatom)).
  • halogen atom refers to an atom belonging to the halogen group, such as a fluorine atom, chlorine atom, bromine atom, or iodine atom.
  • a fluorine atom or chlorine atom is preferred.
  • a fluorine atom is even more preferred.
  • a "halogen atom” may also be referred to as “halogen” or "halo”.
  • a "hydroxyl group” is a monovalent group of -OH. This group is sometimes called a “hydroxy group” or "hydroxy.”
  • a “carboxyl group” is a monovalent group of -COOH. This group is also sometimes called a “carboxy group,” “carboxy,” or “carboxyl.”
  • amino is a monovalent radical of -NH2 . This group may also be referred to as an "amino group.”
  • thio refers to the monovalent group -SH. This group is sometimes called a “thio group.”
  • a "cyano group” is a monovalent group of -CN.
  • alkyl refers to a linear or branched saturated aliphatic hydrocarbon group.
  • C 1-12 alkyl refers to an alkyl group having 1 to 12 carbon atoms, and examples thereof include, but are not limited to, C 1-6 alkyl, heptyl, isoheptyl, octyl, isooctyl, nonyl, isononyl, decyl, isodecyl, undecyl, isoundecyl, dodecyl, isododecyl, and the like.
  • C 1-6 alkyl refers to an alkyl group having 1 to 6 carbon atoms, and preferred examples thereof include “C 1-4 alkyl", more preferably “C 1-3 alkyl”, and even more preferably “C 1-2 alkyl”. Specific examples of “C 1-4 alkyl” include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, and the like.
  • C 1-6 alkyl include, but are not limited to, C 1-4 alkyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, 1,2-dimethylpropyl, n-hexyl, and the like.
  • alkenyl refers to a straight or branched unsaturated aliphatic hydrocarbon group containing at least one carbon-carbon double bond.
  • C 2-12 alkenyl refers to an alkenyl group having 2 to 12 carbon atoms, examples of which include, but are not limited to, heptenyl, isoheptenyl, octenyl, isooctenyl, nonenyl, isononenyl, decenyl, isodecenyl, undecenyl, isoundecenyl, dodecenyl, isododecenyl, and the like.
  • C 2-6 alkenyl refers to an alkenyl group having 2 to 6 carbon atoms, preferred examples of which include “C 2-4 alkenyl”. Specific examples of “C 2-6 alkenyl” include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, and the like.
  • alkynyl refers to a straight or branched unsaturated aliphatic hydrocarbon group containing at least one carbon-carbon triple bond.
  • C 2-12 alkynyl refers to an alkynyl group having 2 to 12 carbon atoms, examples of which include, but are not limited to, heptynyl, isoheptynyl, octynyl, isooctynyl, nonynyl, isononynyl, decynyl, isodecynyl, undecynyl, isoundecynyl, dodecynyl, isododecynyl, and the like.
  • C 2-6 alkynyl refers to an alkynyl group having 2 to 6 carbon atoms, preferred examples of which include “C 2-4 alkynyl”. Specific examples of “C 2-6 alkynyl” include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 1-methyl-2-propynyl, 3-butynyl, 1-pentynyl, 1-hexynyl, and the like.
  • aryl means a monovalent radical of a monocyclic or bicyclic aromatic hydrocarbon ring
  • C 6-10 aryl means an aryl group having from 6 to 10 carbon atoms.
  • aryl include, but are not limited to, C 6 aryl, C 10 aryl, and the like.
  • Specific examples of C 6 aryl include, but are not limited to, phenyl, and the like.
  • Specific examples of C 10 aryl include, but are not limited to, 1-naphthyl, 2-naphthyl, and the like.
  • Aryl groups as substituents or parts thereof may be condensed with alicyclic groups.
  • a phenyl group may be condensed with a cyclohexane ring to form a 1,2,3,4-tetrahydronaphthalenyl group, in which case any of the available carbon atoms on the benzene ring is bonded to the parent skeleton or to a group or atom thereof close to the parent skeleton.
  • Aryl groups include 5,6,7,8-tetrahydronaphthalen-1-yl and 5,6,7,8-tetrahydronaphthalen-2-yl.
  • arylalkyl refers to an alkyl substituted with at least one aryl.
  • C 6-10 aryl C 1-6 alkyl refers to a C 1-6 alkyl substituted with at least one C 6-10 aryl.
  • Specific examples of C 6-10 aryl C 1-6 alkyl include, but are not limited to, benzyl (phenyl-CH 2 --), phenethyl (phenyl-CH 2 CH 2 --), naphthalen-1-ylmethyl, naphthalen-2-ylmethyl, 2-(naphthalen-1-yl)ethyl, 2-(naphthalen-2-yl)ethyl, and the like.
  • (optionally substituted amino)-arylalkyl refers to an arylalkyl substituted with an optionally substituted amino group, where the alkyl group or the aryl group, or both, are substituted with an amino group.
  • the amino group of the arylalkyl group may be unsubstituted or may be substituted with 1, 2, or 3 substituents, for example, an optionally substituted alkyl (e.g., unsubstituted C 1-6 alkyl, C 3-6 cycloalkyl-C 1-6 alkyl, C 3-6 cycloalkylcarbonyl, etc.).
  • Examples of (optionally substituted amino)-C 6-10 arylC 1-6 alkyl include, but are not limited to, (di(alkyl)amino)benzyl, ((cycloalkylalkyl)amino)benzyl, ((cycloalkylcarbonyl)amino)benzyl, ((carbamoylalkyl)carbonylamino)benzyl, ((carboxyalkyl)carbonyl)aminobenzyl, (di(alkyl)amino)naphthalenylmethyl, ((cycloalkylalkyl)amino)naphthalenylmethyl, ((cycloalkylcarbonyl)amino)naphthalenylmethyl, ((carbamoylalkyl)carbonylamino)naphthalenylmethyl, or ((carboxyalkyl)carbonyl)aminonaphthalenylmethyl.
  • hydroxyaryl means an aryl substituted with at least one hydroxy.
  • Hydrophilic C 6-10 aryl means a C 6-10 aryl substituted with at least one hydroxy. Specific examples of hydroxy C 6-10 aryl include, but are not limited to, 2-hydroxyphenyl, 3-hydroxynaphthalene, and the like.
  • hydroxyarylalkyl refers to an alkyl substituted with at least one hydroxyaryl.
  • Hydro C 6-10 aryl C 1-6 alkyl refers to a C 1-6 alkyl substituted with at least one hydroxy C 6-10 aryl.
  • hydroxy C 6-10 aryl C 1-6 alkyl include, but are not limited to, 2-hydroxybenzyl (2-hydroxyphenyl-CH 2 --), 2-hydroxyphenethyl (2-hydroxyphenyl-CH 2 CH 2 --), 3-hydroxynaphthalen-1-ylmethyl, 3-hydroxynaphthalen-2-ylmethyl, 2-(3-hydroxynaphthalen-1-yl)ethyl, 2-(3-hydroxynaphthalen-2-yl)ethyl, and the like.
  • aryl portion of “arylthio” has the same meaning as the above-mentioned aryl.
  • Preferable examples of “C 6-10 arylthio” include “C 6 or C 10 arylthio”.
  • Specific examples of “C 6-10 arylthio” include, but are not limited to, phenylthio, 1-naphthylthio, 2-naphthylthio, and the like.
  • arylsulfonyl refers to sulfonyl substituted by the above-mentioned “aryl”.
  • the "C 6-10 arylsulfonyl” is preferably “C 6 or C 10 arylsulfonyl”.
  • Specific examples of “C 6-10 arylsulfonyl” include, but are not limited to, phenylsulfonyl, 1-naphthylsulfonyl, 2-naphthylsulfonyl, and the like.
  • heteroaryl refers to a monovalent monocyclic or bicyclic aromatic heterocycle containing the same or different heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur atoms.
  • the number of heteroatoms may be any number up to the number of carbon atoms in the aryl, typically 1 to 4, but may also be 1, 2, 3, etc.
  • C 5-10 heteroaryl refers to a monovalent group of a monocyclic or bicyclic aromatic heterocycle consisting of 5 to 10 atoms, typically containing 1 to 4 heteroatoms, which may be the same or different, selected from the group consisting of oxygen atoms, nitrogen atoms, and sulfur atoms.
  • C 5-10 heteroaryl include, but are not limited to, quinolyl, isoquinolyl, naphthyridinyl, quinoxalinyl, cinnolinyl, quinazolinyl, phthalazinyl, imidazopyridyl, imidazothiazolyl, imidazooxazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, indolyl, isoindolyl, indazolyl, pyrrolopyridyl, thienopyridyl, furopyridyl, benzothiadiazolyl, benzoxadiazolyl, pyridopyrimidinyl, benzofuryl, benzothienyl, benzo[1,3]dioxole, thienofuryl, chromenyl, chromanyl, coumarinyl, quinolonyl, and the like.
  • heteroarylalkyl refers to an alkyl substituted with at least one heteroaryl.
  • C 5-10 heteroaryl C 1-6 alkyl refers to a C 1-6 alkyl substituted with at least one C 5-10 heteroaryl.
  • Specific examples of C 5-10 heteroaryl C 1-6 alkyl include, but are not limited to, pyridin-2-ylmethyl, pyridin-4-ylmethyl, 2-(quinolin-8-yl)ethyl, 2-(quinolin-5-yl)ethyl, 2-(quinoxalin-5-yl)ethyl, 2-(1H-indol-3-yl)ethyl, and the like.
  • cycloalkyl refers to a non-aromatic saturated hydrocarbon ring group, including those having a partially bridged structure, those having a partially spiro-substituted structure, and those having one, two or more carbonyl structures.
  • C 3-20 cycloalkyl refers to a monocyclic or bicyclic cycloalkyl having 3 to 20 carbon atoms.
  • C 3-6 cycloalkyl refers to a monocyclic cycloalkyl having 3 to 6 carbon atoms. Specific examples of C 3-6 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • Cycloalkyl groups as substituents or parts thereof may be fused with aryl and/or heteroaryl rings.
  • a cyclohexyl group may be fused with a benzene ring to form a 1,2,3,4-tetrahydronaphthalenyl group, in which case any of the available carbon atoms on the cyclohexane ring is bonded to the parent skeleton or to a group or atom thereof close to the parent skeleton.
  • Cycloalkyl groups include 1,2,3,4-tetrahydronaphthalen-1-yl, 1,2,3,4-tetrahydronaphthalen-2-yl, indan-1-yl, indan-2-yl, 5,6,7,8-tetrahydroquinolin-5-yl, and 5,6,7,8-tetrahydroquinolin-6-yl.
  • cycloalkylalkyl refers to an alkyl substituted with at least one cycloalkyl.
  • C 3-6 cycloalkyl C 1-6 alkyl refers to a C 1-6 alkyl substituted with at least one C 3-6 cycloalkyl.
  • C 3-6 cycloalkyl C 1-6 alkyl include, but are not limited to, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-cyclopropylethyl, 2-cyclobutylethyl, 2-cyclopentylethyl, 2-cyclohexylethyl, 3-cyclopropylpropyl, 3-cyclobutylpropyl, 3-cyclopentylpropyl, 3-cyclohexylpropyl, and the like.
  • heterocycloalkyl refers to a non-aromatic saturated or partially unsaturated heterocycle composed of three or more atoms, including one or two or more identical or different heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur atoms, and includes those having a partially bridged structure and those having a partially spiro-formed structure.
  • Heterocycloalkyl encompasses "non-aryl heterocycles.” Heterocycloalkyls may have a structure in which a non-aromatic heterocycle is condensed with an aryl ring and/or a heteroaryl ring.
  • non-aryl heterocycle refers to a monocyclic or bicyclic non-aromatic heterocycle composed of three or more atoms, including one or two or more identical or different heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur atoms, and includes saturated non-aryl heterocycles, those having a partially unsaturated bond, those having a partially bridged structure and those having a partially spiro-formed structure.
  • the non-aryl heterocycle may form a condensed ring with an aryl or heteroaryl.
  • a heterocycle condensed with a C 6-10 aryl or a C 5-10 heteroaryl is also included.
  • the non-aryl heterocycle may contain one, two or more carbonyls, thiocarbonyls, sulfinyls or sulfonyls, and for example, cyclic groups such as lactams, thiolactams, lactones, thiolactones, cyclic imides, cyclic carbamates and cyclic thiocarbamates are also included in the non-aryl heterocycle.
  • the oxygen atom of the carbonyl, sulfinyl, and sulfonyl, and the sulfur atom of the thiocarbonyl are not included in the number of ring members (ring size) and the number of heteroatoms constituting the ring.
  • C 4-10 non-aryl heterocycle refers to a substituent in which a "C 4-10 non-aryl heterocycle” is a monovalent group, among the above-mentioned "non-aryl heterocycles”.
  • non-aryl heterocyclic moiety of "non-aryl heterocycle oxy” has the same meaning as the above-mentioned “non-aryl heterocycle”.
  • C4-10 non-aryl heterocycle oxy is mentioned, and the “ C4-10 non-aryl heterocycle oxy” is preferably " C4-10 non-aryl heterocycle oxy”.
  • Specific examples of " C4-10 non-aryl heterocycle oxy” include, but are not limited to, tetrahydrofuranyloxy, tetrahydropyranyloxy, azetidinyloxy, pyrrolidinyloxy, piperidinyloxy, etc.
  • non-aryl heterocyclic moiety of "non-aryl heterocyclic thio" has the same meaning as the above-mentioned “non-aryl heterocycle".
  • it includes “ C4-10 non-aryl heterocyclic thio”
  • the " C4-10 non-aryl heterocyclic thio” is preferably " C4-6 non-aryl heterocyclic thio”.
  • Specific examples of " C4-10 non-aryl heterocyclic thio” include, but are not limited to, tetrahydropyranylthio, piperidinylthio, and the like.
  • non-aryl heterocycle carbonyl refers to a carbonyl group substituted by the above-mentioned “non-aryl heterocycle”.
  • C4-10 non-aryl heterocycle carbonyl is mentioned, and the “ C4-10 non-aryl heterocycle carbonyl” is preferably " C4-6 non-aryl heterocycle carbonyl”.
  • Specific examples of “ C4-10 non-aryl heterocycle carbonyl” include, but are not limited to, azetidinylcarbonyl, pyrrolidinylcarbonyl, piperidinylcarbonyl, morpholinylcarbonyl, and the like.
  • non-aryl heterocycle sulfonyl refers to a sulfonyl group substituted with the above-mentioned “non-aryl heterocycle”.
  • C4-10 non-aryl heterocycle sulfonyl is mentioned, and the “ C4-10 non-aryl heterocycle sulfonyl” is preferably " C4-6 non-aryl heterocycle sulfonyl”.
  • C4-10 non-aryl heterocycle sulfonyl include, but are not limited to, azetidinylsulfonyl, pyrrolidinylsulfonyl, piperidinylsulfonyl, morpholinylsulfonyl and the like.
  • C 5-10 heterocycloalkyl means a heterocycloalkyl composed of 5 to 10 ring atoms containing 1 or 2 or more identical or different heteroatoms selected from oxygen atoms, nitrogen atoms, and sulfur atoms.
  • heterocycloalkylalkyl refers to an alkyl substituted with at least one heterocycloalkyl.
  • Preferred examples of alkylcarbonyl include C 1-6 alkylcarbonyl.
  • alkoxy refers to a monovalent group of -O-alkyl.
  • Preferred examples of alkoxy include C 1-6 alkoxy (i.e., C 1-6 alkyl-O-), C 1-4 alkoxy (i.e., C 1-4 alkyl-O-), and the like.
  • C 1-4 alkoxy examples include methoxy (CH 3 O-), ethoxy (CH 3 CH 2 O-), n-propoxy (CH 3 (CH 2 ) 2 O-), isopropoxy ((CH 3 ) 2 CHO-), n-butoxy (CH 3 (CH 2 ) 3 O-), isobutoxy ((CH 3 ) 2 CHCH 2 O-), tert-butoxy ((CH 3 ) 3 CO-), sec-butoxy (CH 3 CH 2 CH(CH 3 )O-), and the like.
  • C 1-6 alkoxy include, but are not limited to, C 1-4 alkoxy, n-pentyloxy (CH 3 (CH 2 ) 4 O—), isopentyloxy ((CH 3 ) 2 CHCH 2 CH 2 O—), neopentyloxy ((CH 3 ) 3 CCH 2 O—), tert-pentyloxy (CH 3 CH 2 C(CH 3 ) 2 O—), 1,2-dimethylpropoxy (CH 3 CH(CH 3 )CH(CH 3 )O—), and the like.
  • alkoxycarbonyl include, but are not limited to, C 1-6 alkoxycarbonyl, preferably C 1-4 alkoxycarbonyl.
  • Specific examples of C 1-4 alkoxycarbonyl include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, isobutoxycarbonyl, and the like.
  • C 1-6 alkoxycarbonyl include, but are not limited to, C 1-4 alkoxycarbonyl, n-pentyloxycarbonyl, isopentyloxycarbonyl, neopentyloxycarbonyl, tert-pentyloxycarbonyl, 1,2-dimethylpropyloxycarbonyl, n-hexyloxycarbonyl, and the like.
  • alkoxycarbonyloxy include, but are not limited to, C 1-6 alkoxycarbonyloxy, preferably C 1-4 alkoxycarbonyloxy.
  • Specific examples of C 1-4 alkoxycarbonyloxy include methoxycarbonyloxy, ethoxycarbonyloxy, n-propoxycarbonyloxy, isopropoxycarbonyloxy, n-butoxycarbonyloxy, sec-butoxycarbonyloxy, tert-butoxycarbonyloxy, isobutoxycarbonyloxy, and the like.
  • C 1-6 alkoxycarbonyloxy include C 1-4 alkoxycarbonyloxy, n-pentyloxycarbonyloxy, isopentyloxycarbonyloxy, neopentyloxycarbonyloxy, tert-pentyloxycarbonyloxy, 1,2-dimethylpropyloxycarbonyloxy, n-hexyloxycarbonyloxy, and the like.
  • alkoxycarbonylamino include, but are not limited to, C 1-6 alkoxycarbonylamino, preferably C 1-4 alkoxycarbonylamino.
  • Specific examples of C 1-4 alkoxycarbonylamino include methoxycarbonylamino, ethoxycarbonylamino, n-propoxycarbonylamino, isopropoxycarbonylamino, n-butoxycarbonylamino, sec-butoxycarbonylamino, tert-butoxycarbonylamino, isobutoxycarbonylamino, and the like.
  • C 1-6 alkoxycarbonylamino examples include C 1-4 alkoxycarbonylamino, n-pentyloxycarbonylamino, isopentyloxycarbonylamino, neopentyloxycarbonylamino, tert-pentyloxycarbonylamino, 1,2-dimethylpropyloxycarbonylamino, n-hexyloxycarbonylamino, and the like.
  • haloalkyl is a monovalent radical of a halogenated alkyl group in which one or more hydrogens on the alkyl group are replaced with a halogen.
  • perhaloalkyl refers to a haloalkyl in which all hydrogens on the alkyl group are replaced with halogens.
  • perfluoroethyl is -CF 2 CF 3
  • perchloro-n-propyl is -CCl 2 CCl 2 CCl 3.
  • haloalkyl include C 1-6 haloalkyl, C 1-4 haloalkyl, C 1-3 haloalkyl, and the like.
  • C 1-3 alkyl include, but are not limited to, fluoromethyl, chloromethyl, bromomethyl, difluoromethyl, dichloromethyl, dibromomethyl, trifluoromethyl, trichloromethyl, tribromomethyl, fluorochloromethyl, difluorochloromethyl, fluorodichloromethyl, fluoroethyl, chloroethyl, bromoethyl, trifluoroethyl, trichloroethyl, tribromoethyl, perfluoroethyl, perchloroethyl, perbromoethyl, perfluoropropyl, perchloropropyl, perbromopropyl, perfluoroisopropyl, perchloroisopropyl, perchloroisopropyl, perbromoisopropyl, etc.
  • C 1-4 alkyl include, but are not limited to, C 1-3 haloalkyl, perfluorobutyl, perchlorobutyl, perbromobutyl, perfluoroisobutyl, perfluoro-t-butyl, etc.
  • C 1-6 alkyl include, but are not limited to, C 1-4 haloalkyl, perfluoro-n-pentyl, perfluoroisopentyl, perfluoroneopentyl, perfluorotert-pentyl, perfluoro-1,2-dimethylpropyl, etc.
  • haloalkoxy and haloalkyloxy are monovalent groups of -O-haloalkyl in which one or more hydrogens on the alkyl group are replaced with halogens.
  • perhaloalkoxy refers to a haloalkoxy in which all hydrogens on the alkyl group are replaced with halogens.
  • perfluoroethoxy is -OCF 2 CF 3
  • perchloro-n-propoxy is -OCCl 2 CCl 2 CCl 3.
  • Preferred examples of haloalkoxy include C 1-6 haloalkoxy, C 1-4 haloalkoxy, C 1-3 haloalkoxy, and the like.
  • C 1-3 alkoxy include, but are not limited to, fluoromethoxy, chloromethoxy, bromomethoxy, difluoromethoxy, dichloromethoxy, dibromomethoxy, trifluoromethoxy, trichloromethoxy, tribromomethoxy, fluorochloromethoxy, difluorochloromethoxy, fluorodichloromethoxy, fluoroethoxy, chloroethoxy, bromoethoxy, trifluoroethoxy, trichloroethoxy, tribromoethoxy, perfluoroethoxy, perchloroethoxy, perbromoethoxy, perfluoropropoxy, perchloropropoxy, perbromopropoxy, perfluoroisopropoxy, perchloroisopropoxy, perbromoisopropoxy, etc.
  • C 1-4 alkoxy examples include, but are not limited to, C 1-3 haloalkoxy, perfluorobutoxy, perchlorobutoxy, perbromobutoxy, perfluoroisobutoxy, perfluoro-t-butoxy, etc.
  • C 1-6 alkoxy include, but are not limited to, C 1-4 haloalkoxy, perfluoro-n-pentyloxy, perfluoroisopentyloxy, perfluoroneopentyloxy, perfluorotert-pentyloxy, perfluoro-1,2-dimethylpropoxy, and the like.
  • alkylsulfonyl refers to a sulfonyl group substituted with the above-mentioned “alkyl”.
  • the "C 1-6 alkylsulfonyl” is preferably a "C 1-4 alkylsulfonyl”. Specific examples of “C 1-6 alkylsulfonyl” include, but are not limited to, methylsulfonyl, propionylsulfonyl, butyrylsulfonyl and the like.
  • alkyl portion of "alkylthio” has the same meaning as the above alkyl.
  • Examples of “C 1-6 alkylthio” include “C 1-4 alkylthio", and preferably “C 1-3 alkylthio”.
  • Specific examples of “C 1-6 alkylthio” include methylthio, ethylthio, propylthio, butylthio, isopropylthio, isobutylthio, tert-butylthio, sec-butylthio, isopentylthio, neopentylthio, tert-pentylthio, 1,2-dimethylpropylthio, and the like, but are not limited thereto.
  • Preferred examples of arylcarbonyl include C6-10 arylcarbonyl.
  • aryl portion of “aryloxy” has the same meaning as the above-mentioned aryl.
  • Preferred examples of the "C 6-10 aryloxy” include “C 6 or C 10 aryloxy”.
  • Specific examples of the "C 6-10 aryloxy group” include, but are not limited to, a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and the like.
  • heteroarylcarbonyl group refers to a carbonyl group substituted by the above “heteroaryl.”
  • C5-10 heteroarylcarbonyl group include, but are not limited to, a pyrazoylcarbonyl group, a triazoylcarbonyl group, a thiazoylcarbonyl group, a thiadiazoylcarbonyl group, a pyridylcarbonyl group, a pyridazoylcarbonyl group, and the like.
  • heteroaryl portion of a “heteroaryloxy group” has the same meaning as the above-mentioned “heteroaryl”.
  • Specific examples of a “ C5-10 heteroaryloxy group” include, but are not limited to, a pyrazoyloxy group, a triazoyloxy group, a thiazoyloxy group, a thiadiazoyloxy group, a pyridyloxy group, a pyridazoyloxy group, and the like.
  • heteroaryl portion of a “heteroarylthio group” has the same meaning as the above-mentioned “heteroaryl”.
  • Specific examples of a “ C5-10 heteroarylthio group” include, but are not limited to, a pyrazoylthio group, a triazoylthio group, a thiazoylthio group, a thiadiazoylthio group, a pyridylthio group, a pyridazoylthio group, and the like.
  • “optionally substituted carbonyl” groups include, but are not limited to, formyl, optionally substituted, carbamoyl, alkylcarbonyl, alkoxycarbonyl, alkenylcarbonyl, alkenyloxycarbonyl, alkynylcarbonyl, alkynyloxycarbonyl, arylcarbonyl, aryloxycarbonyl, cycloalkylcarbonyl, cycloalkyloxycarbonyl, heteroarylcarbonyl, heteroaryloxycarbonyl, heterocycloalkylcarbonyl, heterocycloalkyloxycarbonyl, and the like.
  • a carbonyl group substituted with hydrogen is a formyl group.
  • a carbonyl group substituted with amino is a carbamoyl group.
  • an “optionally substituted oxy” group refers to a monovalent group of -O- (hydrogen or any group selected from the group of substituents described herein).
  • optionally substituted alkyloxy include, but are not limited to, hydroxy, optionally substituted alkyloxy, alkenyloxy, alkynyloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, arylcarbonyloxy, heteroarylcarbonyloxy, heterocycloalkylcarbonyloxy, and the like.
  • An oxy group substituted with hydrogen is a hydroxy group.
  • a group substituted with a certain substituent means that the group is substituted with at least one substituent.
  • hydroxy-substituted C 1-6 alkyl means that the C 1-6 alkyl is substituted with at least one hydroxy.
  • carbamoyl C 1-6 alkyl include, but are not limited to, carbamoyl-substituted C 1-4 alkyl, 6-amino-6-oxohexyl (i.e., H 2 NC( ⁇ O)—(CH 2 ) 5 —, or carbamoylpentyl), 7-amino-7-oxoheptyl (i.e., H 2 NC( ⁇ O)—(CH 2 ) 6 —, or carbamoylhexyl), and the like.
  • thioalkyl refers to an alkyl substituted with at least one thio group.
  • Specific examples of “thio C 1-6 alkyl” include, but are not limited to, thiomethyl, 2-thioethyl, 3-thiopropyl, 4-thiobutyl, etc.
  • alkylthioalkyl means alkyl substituted with at least one alkylthio.
  • C 1-6 alkylthio C 1-6 alkyl means C 1-6 alkyl substituted with at least one C 1-6 alkylthio. Specific examples of C 1-6 alkylthio C 1-6 alkyl include, but are not limited to, methylthiomethyl, methylthioethyl, ethylthiomethyl, etc.
  • aminoalkyl refers to an alkyl substituted with at least one amino group.
  • amino C 1-6 alkyl include, but are not limited to, aminomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, etc.
  • nitrogen protecting group e.g., tert-butoxycarbonyl group.
  • aminoaminoC 1-4 alkyl examples include, but are not limited to, (amidinoamino)methyl, 2-(amidinoamino)ethyl, 3-(amidinoamino)propyl, 4-(amidinoamino)butyl, and the like.
  • aminodinoaminoC 1-6 alkyl examples include, but are not limited to, amidinoamino-substituted C 1-4 alkyl, 5-(amidinoamino)pentyl, 6-(amidinoamino)hexyl, and the like.
  • amidinoamino groups protected with nitrogen protecting groups include: In this specification, “amidinoamino” and “guanidino" have the same meaning.
  • Carboxyalkyl refers to an alkyl substituted with at least one -COOH group.
  • Specific examples of “carboxy C 1-4 alkyl” include, but are not limited to, carboxymethyl, 2-carboxyethyl, 3-carboxypropyl, 4-carboxybutyl, etc.
  • Specific examples of “carboxy C 1-6 alkyl” include, but are not limited to, carboxy-substituted C 1-4 alkyl, 5-carboxypentyl, 6-carboxyhexyl, etc.
  • a "protecting group” refers to a group of atoms that, when attached to a reactive functional group in a molecule, masks, reduces or prevents the reactivity of the functional group.
  • the compounds of the present disclosure may be substituted with a protecting group at any position, such as any of R 1 to R 4 or their substituents or other substituents, as appropriate or necessary, and compounds containing such protecting groups are also within the scope of the present disclosure.
  • the protecting group can be selectively removed during the synthetic process, if desired.
  • protecting groups can be found, for example, in Greene and Wuts, Protective Groups in Organic Chemistry, 5th Edition, 2014, John Wiley & Sons, NY and Harrison et al., Compendium of Synthetic Organic Methods, Volumes 1-8, John Wiley & Sons, NY.
  • nitrogen protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl (“CBZ”), tert-butoxycarbonyl (“Boc”), trimethylsilyl (“TMS”), 2-trimethylsilylethanesulfonyl (“TES”), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (“FMOC”), and nitro-veratryloxycarbonyl (“NVOC”), and the like.
  • hydroxyl protecting groups include, but are not limited to, those in which the hydroxyl group is acylated (esterified) or alkylated, such as, for example, benzyl and trityl ethers, as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers (e.g., TMS, triethylsilyl, t-butyldimethylsilyl (TBDMS), triisopropylsilyl (TIPS)), alkyldiarylsilyl ethers (e.g., t-butyldiphenylsilyl (TBDPS)), triarylsilyl ethers (e.g., triphenylsilyl), glycol ethers (e.g., ethylene glycol ether, propylene glycol ether, etc.), and allyl ethers.
  • TMS triethylsilyl
  • TDMS
  • Amino groups possessed by the compounds of the present disclosure may be protected with a nitrogen protecting group or a group represented by "Protect”. Amino groups in the substituents listed in the substituent group may be further protected with a nitrogen protecting group or a group represented by "Protect", and the protected substituent may be used as a substituent.
  • Hydroxy groups possessed by the compounds of the present disclosure may also be protected with a protecting group for the hydroxy group. Hydroxy groups in the substituents listed in the substituent groups may be further protected with a hydroxyl protecting group as described herein, and the protected substituent may be used as a substituent.
  • eye disease is a term used in the art and refers to diseases related to the eye, including but not limited to glaucoma, age-related macular degeneration (AMD), ischemic retinopathy, optic neuropathy, diabetic retinopathy (DR), diabetic macular edema (DME), uveitis, and senile cataract.
  • AMD age-related macular degeneration
  • ischemic retinopathy optic neuropathy
  • DR diabetic retinopathy
  • DME diabetic macular edema
  • uveitis uveitis
  • senile cataract can be a disease or abnormality associated with oxidative stress and/or hypoxia-induced damage to the eye or more specifically the retinal pigment epithelium (RPE) and photo cells, including but not limited to glaucoma, AMD, ischemic retinopathy, optic neuropathy, DR, and DME.
  • RPE retinal pigment epithelium
  • the eye disease can be a disease or abnormality associated with reduced ocular blood flow, including but not limited to glaucoma, ischemic retinopathy, DR, and AMD.
  • ocular disease a disease or abnormality associated with reduced ocular blood flow
  • ocular condition a disease or abnormality associated with reduced ocular blood flow
  • AMD ischemic retinopathy
  • eye condition refer to diseases/conditions of the eye that can threaten vision, cause ocular discomfort, and signal systemic health problems.
  • the subject matter of the present disclosure may particularly be directed to diseases or disorders associated with damage to the retinal pigment epithelium (RPE) and photo cells, and may be directed to diseases or disorders associated with reduced ocular blood flow.
  • RPE retinal pigment epithelium
  • the term "retinal disease” is a term used in the field and refers to any disease, disorder or symptom related to the retina, including those caused by damage to the retina due to aging, disease, etc., and includes glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, retinal detachment, diabetic macular edema, hypertensive retinopathy, retinal vascular occlusion, retinal arteriosclerosis, retinal breaks, retinal holes, macular holes, fundus hemorrhage, posterior vitreous detachment, pigmented paravenous retinal-choroidal atrophy, gyriform retinal-choroidal atrophy, choroideremia, crystalline retinopathy, and retinal white punctation.
  • These conditions include, but are not limited to, cone dystrophy, central ring-shaped choroidal dystrophy, Doyne honeycomb retinal dystrophy, vitelliform macular dystrophy, cystoid tissue macular edema, occult macular dystrophy, Stargardt disease, retinoschisis, central serous chorioretinopathy, spinocerebellar degeneration type 7, familial exudative vitreoretinopathy, S-cone enhancement syndrome, pigmented streaks, autosomal dominant optic atrophy, autosomal dominant drusen, acute zonular occult outer retinopathy, cancer-associated retinopathy, light damage, or ischemic retinopathy.
  • glaucoma refers to a disease characterized by functional and structural abnormalities of the eye that have characteristic changes in the optic nerve and visual field, and in which optic nerve damage can usually be improved or suppressed by sufficiently lowering intraocular pressure (Glaucoma Treatment Guidelines Drafting Committee of the Japan Glaucoma Society. Glaucoma Treatment Guidelines (4th Edition). Journal of the Japanese Ophthalmological Society. Vol. 122, No. 1, p. 5-53 (2018.01) (hereinafter referred to as "Glaucoma Treatment Guidelines (4th Edition)"). Primary glaucoma, secondary glaucoma, and childhood glaucoma.
  • Primary glaucoma includes primary open-angle glaucoma (broad definition) and primary angle-closure glaucoma, while primary open-angle glaucoma (broad definition) includes primary open-angle glaucoma, normal tension glaucoma, and prefield glaucoma.
  • Secondary glaucoma includes secondary open-angle glaucoma and secondary angle-closure glaucoma, while childhood glaucoma includes primary congenital glaucoma, juvenile open-angle glaucoma, glaucoma associated with congenital ocular malformations, and glaucoma associated with congenital systemic diseases.
  • diabetic retinopathy refers to the degeneration of the retina due to microvascular degeneration seen in diabetes.
  • the blood vessels that supply oxygen to the retina of the eye are damaged by prolonged high levels of blood sugar (hyperglycemia).
  • the disease generally progresses slowly over a period of months.
  • diabetic retinopathy can become more severe and cause vision loss.
  • Diabetic retinopathy usually affects both eyes.
  • Diabetic retinopathy progresses from mild non-proliferative abnormalities characterized by increased vascular permeability, to moderate and severe non-proliferative diabetic retinopathy (NPDR) characterized by vascular occlusion, to proliferative diabetic retinopathy (PDR) characterized by new vascular proliferation on the posterior surface of the retina and vitreous.
  • NPDR non-proliferative diabetic retinopathy
  • PDR proliferative diabetic retinopathy
  • Macular edema characterized by retinal thickening from leaking blood vessels, can develop at all stages of retinopathy. Additionally, conditions such as pregnancy, puberty, glycemic control, hypertension, and cataract surgery can accelerate these degenerations.
  • age-related macular degeneration is a disease in which the macula in the retina of the eye degenerates with age.
  • Age-related macular degeneration is classified into “exudative” and “atrophic” depending on the cause. This disclosure is effective for both.
  • abnormal choroidal neovascularization occurs from the choroid and progresses to the retinal surface.
  • the new blood vessels are fragile, and therefore bleeding and accumulation of exudate are observed, causing functional impairment of the macula, resulting in deviation of vision, decreased vision, etc.
  • irreversible degeneration of the macula occurs, resulting in significant loss of vision.
  • the atrophic the macula degenerates with age, and a rapid decrease in vision is observed depending on the extent of degeneration. Another characteristic of the atrophic type is that no choroidal neovascularization is observed.
  • modulation of activity means suppressing or promoting activity
  • modulator means a suppressor (inhibitor) or promoter of activity.
  • Promoter activity means that the activity (e.g., ocular blood flow, promotion of cell division) is increased by 1% or more, preferably 5% or more, more preferably 10% or more, even more preferably 20% or more, and even more preferably 30% or more, compared to when the activity regulator is not used.
  • “Suppressing activity” means that the activity (e.g., ocular blood flow, promotion of cell division) is reduced by 1% or more, preferably 5% or more, more preferably 10% or more, even more preferably 20% or more, and even more preferably 30% or more, compared to when the activity regulator is not used.
  • “pharmacologically acceptable salts” refers to acid addition salts and base addition salts that are acceptable for pharma- ceutically use.
  • Specific examples of “pharmacologically acceptable salts” include acetate, propionate, butyrate, formate, trifluoroacetate, maleate, fumarate, tartrate, citrate, stearate, succinate, ethylsuccinate, malonate, lactobionate, gluconate, glucoheptonate, benzoate, methanesulfonate, benzenesulfonate, paratoluenesulfonate (tosylate), lauryl sulfate, malate, ascorbate, mandelate, saccharate, xinafoate, pamoate, ketone, and the like.
  • acid addition salts include arsenate, adipate, cysteine salt, N-acetylcysteine salt, hydrochloride, hydrobromide, phosphate, sulfate, hydroiodide, nicotinate, oxalate, picrate, thiocyanate, undecanoate, acrylic acid polymer salt, and carboxyvinyl polymer; inorganic base addition salts such as lithium salt, sodium salt, potassium salt, and calcium salt; organic base addition salts such as morpholine and piperidine; and addition salts with amino acids such as aspartic acid and glutamic acid, but are not limited to these.
  • Suitable salts and pharma- ceutically acceptable salts of the starting compounds and the target compounds are conventional non-toxic salts, which may be selected appropriately by those skilled in the art, including acid addition salts such as organic acid salts (e.g., acetate, trifluoroacetate, maleate, fumarate, citrate, tartrate, methanesulfonate, benzenesulfonate, formate, or para-toluenesulfonate) and inorganic acid salts (e.g., hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, or phosphate), salts with amino acids (e.g., arginine, aspartic acid, or glutamic acid), metal salts such as alkali metal salts (e.g., sodium salt or potassium salt) and alkaline earth metal salts (e.g., calcium salt or magnesium salt), ammonium salts, or organic base salts (e.g., trimethyl
  • the compound of the present disclosure when it is desired to obtain a salt of a compound of the present disclosure, if the compound of the present disclosure is obtained in the form of a salt, it may be purified as is, or if it is obtained in the free form, it may be dissolved or suspended in an appropriate organic solvent, and an acid or base may be added to form a salt by a conventional method.
  • the compounds of the present disclosure and pharma- ceutically acceptable salts thereof may exist in the form of adducts with water or various solvents, and these adducts are also encompassed in the present disclosure.
  • the present disclosure also includes compounds of the present disclosure, or pharma- ceutically acceptable salts thereof. Also included are solvates thereof, such as hydrates or ethanol solvates. Furthermore, the present disclosure also includes all tautomers, all existing stereoisomers, and all manner of crystalline forms of the compounds of the present disclosure.
  • a compound or its enantiomer or a salt thereof or a solvate thereof means a compound, an enantiomer of said compound, a salt of said compound, a salt of said enantiomer, a solvate of said compound, a solvate of said enantiomer, a solvate of a salt of said compound, or a solvate of a salt of said enantiomer.
  • the compounds described herein may contain one or more asymmetric centers and therefore may exist in various isomeric forms, e.g., enantiomers and/or diastereomers.
  • the compounds described herein may be in the form of individual enantiomers, diastereomers, or geometric isomers, or may be in the form of a mixture of stereoisomers, including racemic mixtures and mixtures enriched in one or more stereoisomers.
  • Isomers may be isolated from the mixture by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts.
  • HPLC high pressure liquid chromatography
  • preferred isomers may be prepared by asymmetric synthesis.
  • Some of the compounds disclosed herein may exist as optical isomers based on optically active centers, atropisomers based on axial or planar chirality resulting from restricted intramolecular rotation, other stereoisomers, tautomers, and geometric isomers, and all possible isomers and mixtures thereof are included within the scope of this disclosure.
  • optical isomers and atropisomers can be obtained as racemates, or as optically active isomers when optically active starting materials or intermediates are used.
  • the racemates of the corresponding starting materials, intermediates or final products can be physically or chemically separated into their optical antipodes by known separation methods such as a method using an optically active column or a fractional crystallization method.
  • separation methods such as a method using an optically active column or a fractional crystallization method.
  • two diastereomers are formed from a racemate by a reaction using an optical resolving agent.
  • These different diastereomers generally have different physical properties and can be separated by known methods such as fractional crystallization.
  • phrases "pharmacologically acceptable” as employed herein refers to compounds, materials, compositions, and/or dosage forms that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, other problem or complication, consistent with a reasonable benefit/risk ratio.
  • pharmacologically acceptable carrier means a pharma- ceutically acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent, or encapsulating material. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not harmful to the patient.
  • materials that can function as pharma-ceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose and its derivatives, such as sodium carboxymethylcellulose, ethylcellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository wax; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffers, such as magnesium hydroxide and aluminum hydroxide; (15) algin
  • a prodrug refers to a derivative that is hydrolyzed by acid or enzymatically in vivo to give the disclosed compound.
  • a prodrug refers to a derivative that is hydrolyzed by acid or enzymatically in vivo to give the disclosed compound.
  • these groups can be modified in accordance with standard methods to produce a prodrug.
  • examples include compounds in which the carboxyl group has become an alkoxycarbonyl group, an alkylthiocarbonyl group, or an alkylaminocarbonyl group.
  • examples include compounds in which the amino group is substituted with an alkanoyl group to form an alkanoylamino group, compounds in which the amino group is substituted with an alkoxycarbonyl group to form an alkoxycarbonylamino group, compounds in which the amino group is substituted with an alkanoyloxymethylamino group, and compounds in which the amino group is hydroxylamine.
  • examples include compounds in which the hydroxyl group is replaced by the alkanoyl group to form an alkanoyloxy group, a phosphate ester, or an alkanoyloxymethyloxy group.
  • the alkyl portion of the group used to form these prodrugs includes the alkyl groups described above, and the alkyl groups may be substituted with, for example, an alkoxy group.
  • Preferred examples include the following:
  • examples of compounds in which a carboxyl group has become an alkoxycarbonyl group include C 1-12 alkoxycarbonyl, C 4 alkoxycarbonyl, C 6 alkoxycarbonyl, C 8 alkoxycarbonyl, C 10 alkoxycarbonyl, and C 12 alkoxycarbonyl, specifically, methoxycarbonyl, ethoxycarbonyl, propyloxycarbonyl, isopropyloxycarbonyl, n-butyloxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, sec-butyloxycarbonyl, n-pentyloxycarbonyl, isopentyloxycarbonyl, neopentyloxycarbonyl, tert-pentyloxycarbonyl, 1,2-dimethylpropyloxycarbonyl, and the like.
  • alkoxycarbonyl such as alkoxycarbonyl, n-hexyloxycarbonyl, heptoxycarbonyl, isoheptoxycarbonyl, octoxycarbonyl, isooctoxycarbonyl, nonyloxycarbonyl, isononyloxycarbonyl, decyloxycarbonyl, isodecyloxycarbonyl, undecyloxycarbonyl, isoundesiloxycarbonyl, dodecyloxycarbonyl or isododecyloxycarbonyl, or C
  • the alkoxy group include 1-12 alkoxy C 1-12 alkoxycarbonyl, C 1-12 alkoxyethoxycarbonyl, specifically alkoxy groups such as methoxymethoxycarbonyl, ethoxymethoxycarbonyl, 2-methoxyethoxycarbonyl, 2-methoxyethoxymethoxycarbonyl or pivaloyloxymethoxycarbonyl, or alkoxycarbony
  • the present disclosure provides a pharmaceutical or composition for treating or preventing an ophthalmic disease, comprising a compound disclosed herein or a pharma- ceutically acceptable salt, solvate or prodrug thereof.
  • the compounds utilized in the present disclosure have the formula: or a pharma- ceutically acceptable salt, solvate or prodrug thereof.
  • R 1 , R 2 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom or an optionally substituted hydrocarbon group, or R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form an optionally substituted aryl group, an optionally substituted heteroaryl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group ;
  • R3 and R4 are each independently A hydrogen atom, an optionally substituted hydrocarbon group, a carboxyl group, an optionally substituted alkoxycarbonyl group or an optionally substituted alkoxycarbonyloxy group;
  • R 11 , R 12 , R 13 , and R 14 each independently represent A hydrogen atom, an optionally substituted hydrocarbon group, a hydroxy group, an optionally substituted alkoxy group or an optionally substituted alkoxycarbonyloxy group;
  • X is CH2 or CO;
  • A is O
  • R 1 , R 2 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom or an optionally substituted hydrocarbon group, or R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl group ;
  • R3 and R4 are each independently A hydrogen atom, an optionally substituted hydrocarbon group, a carboxyl group, an optionally substituted alkoxycarbonyl group or an optionally substituted alkoxycarbonyloxy group;
  • R 11 , R 12 , R 13 , and R 14 each independently represent Hydrogen atom, hydroxyl group, an optionally substituted alkoxy group or an optionally substituted alkoxycarbonyloxy group;
  • X is CH2 or CO;
  • A is O, NH or S, where NH can be optionally substituted.
  • R 1 , R 2 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom or an optionally substituted alkyl group; or R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl group ;
  • R3 and R4 are each independently A hydrogen atom, an optionally substituted alkyl group, a carboxyl group, an optionally substituted alkoxycarbonyl group or an optionally substituted alkoxycarbonyloxy group;
  • R 11 , R 12 , R 13 , and R 14 each independently represent Hydrogen atom, hydroxyl group, an optionally substituted alkoxy group or an optionally substituted alkoxycarbonyloxy group;
  • X is CH2 or CO;
  • A is O, NH or S, where NH can be optionally substituted.
  • R 1 , R 2 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom or an alkyl group substituted with one to the maximum possible number of identical or different substituents selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, arylalkylcarbonyl, hydroxy, alkoxy, alkoxycarbonyl, alkoxycarbonylamino, cycloalkyl, carboxy, amino, guanidino, alkoxycarbonyl-substituted guanidino, carbamoyl, and heterocycloalkyl; or R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form a heterocycloalkyl group; R3 and R4 are each independently Hydrogen atoms, an alkyl group substituted with from one to the maximum possible number of identical or different substituents selected from the group consisting of hydrogen, alkyl, alkylcarbonyl,
  • R 1 and R 2 are each independently a hydrogen atom, or a C 1-6 alkyl group
  • R 3 and R 4 are each independently a hydrogen atom, a C 1-6 alkyl group substituted with a carboxyl group, or a carboxyl group
  • R 5 is a hydrogen atom, or a C 1-6 alkyl group
  • R 6 is a hydrogen atom, or a C 1-6 alkyl group
  • R 7 is a hydrogen atom, a C 1-6 alkyl group, a hydroxy C 1-6 alkyl group, a carbamoyl C 1-6 alkyl group, a C 6-10 aryl C 1-6 alkyl group, a hydroxy C 6-10 aryl C 1-6 alkyl group, a C 5-10 heteroaryl C 1-6 alkyl group, a carboxy C 1-6 alkyl group, an amino C 1-6 alkyl group, a thio C 1-6 alkyl group, a C 1-6 alkylthio C 1-6
  • R 7 and R 8 together with the carbon and nitrogen atoms to which they are attached may form an optionally substituted heterocycloalkyl group
  • R 9 and R 10 are hydrogen atoms or C 1-6 alkyl groups
  • R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom, an alkoxy group, or a hydroxy group
  • X is CH 2 or CO
  • A is O, NH substituted with a C 1-6 alkyl group, NH, or S.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group, or an ethyl group
  • R 3 and R 4 are each independently a hydrogen atom, a carboxymethyl group, a carboxyethyl group, a carboxypropyl group, or a carboxyl group
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom, a methyl group, an isopropyl group, an isobutyl group, a secbutyl group, a benzyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a carboxymethyl group, a carboxyethyl group, a 4-hydroxybenzyl group, an aminoethyl group, a 4-aminobutyl group, a thiomethyl group, a 2-methylthioethyl group, a carbamoylmethyl group, a carbamoylethyl group, an amidino
  • R 1 and R 2 are each independently a hydrogen atom, or a C 1-6 alkyl group.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group, or an ethyl group.
  • R 3 and R 4 are each independently a hydrogen atom, a C 1-6 alkyl group substituted with a carboxyl group, or a carboxyl group.
  • R3 and R4 are each independently a hydrogen atom, a carboxymethyl group, a carboxyethyl group, a carboxypropyl group, or a carboxyl group.
  • R 5 is a hydrogen atom or a C 1-6 alkyl group.
  • R 5 is a hydrogen atom.
  • R 6 is a hydrogen atom or a C 1-6 alkyl group.
  • R6 is a hydrogen atom.
  • R 7 is a hydrogen atom, a C 1-6 alkyl group, a hydroxy C 1-6 alkyl group, a carbamoyl C 1-6 alkyl group, a C 6-10 aryl C 1-6 alkyl group, a hydroxy C 6-10 aryl C 1-6 alkyl group, a C 5-10 heteroaryl C 1-6 alkyl group, a carboxy C 1-6 alkyl group, an amino C 1-6 alkyl group, a thio C 1-6 alkyl group, a C 1-6 alkylthio C 1-6 alkyl group, or an amidinoamino C 1-6 alkyl group.
  • R7 is a hydrogen atom, a methyl group, an isopropyl group, an isobutyl group, a secbutyl group, a benzyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a carboxymethyl group, a carboxyethyl group, a 4-hydroxybenzyl group, an aminoethyl group, a 4-aminobutyl group, a thiomethyl group, a 2-methylthioethyl group, a carbamoylmethyl group, a carbamoylethyl group, an amidinoaminopropyl group, an indolylmethyl group, or a 4-imidazolemethyl group.
  • R 8 is a hydrogen atom, or a C 1-6 alkyl group.
  • R 8 is a hydrogen atom.
  • R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl group.
  • R 7 and R 8 together with the carbon atom and nitrogen atom to which they are attached form a C 5-10 heterocycloalkyl group.
  • R 9 and R 10 are a hydrogen atom or a C 1-6 alkyl group.
  • R 9 and R 10 are each independently a hydrogen atom or a methyl group.
  • R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom, an alkoxy group, or a hydroxy group.
  • R 12 is a hydrogen atom, a methoxy group, or a hydroxy group.
  • R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom, a methoxy group, or a hydroxy group.
  • X is CH2 or CO.
  • A is NH, NH or S substituted with O, a C 1-6 alkyl group.
  • A is O, NH or S.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is an isopropyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen atoms or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a hydrogen atom
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen atoms or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R 1 and R 2 are hydrogen atoms
  • R 3 and R 4 are carboxyl groups or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R1 and R2 are hydrogen atoms or methyl groups
  • R3 and R4 are carboxyl groups or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a hydrogen atom
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen atoms or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R 1 and R 2 are hydrogen atoms
  • R 3 and R 4 are carboxyl groups or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are hydrogen atoms
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are hydrogen atoms
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are hydrogen atoms
  • R 3 and R 4 are carboxyl groups or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are hydrogen atoms or methyl groups
  • R 3 and R 4 are carboxyl groups or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a hydrogen atom
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a hydrogen atom
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen atoms
  • R11 , R12 , R13 , and R14 are hydrogen atoms
  • X is CH2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 12 , R 13 , and R 14 are hydrogen atoms
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl groups
  • R 3 and R 4 are carboxyl groups or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl groups
  • R 3 and R 4 are carboxyl groups or carboxymethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are hydrogen or carboxypropyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a benzyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen atoms or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a carboxyethyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a carboxymethyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a hydroxymethyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a 1-hydroxyethyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a 4-hydroxybenzyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a 4-aminobutyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is an amidinoaminopropyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a carbamoylethyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R7 is a carbamoylmethyl group
  • R8 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is a 4-imidazolemethyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an indolylmethyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms or methyl groups
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • R1 and R2 are methyl or ethyl groups
  • R3 and R4 are carboxyl or carboxyethyl groups
  • R5 is a hydrogen atom
  • R6 is a hydrogen atom
  • R9 and R10 are hydrogen or methyl groups
  • R11 , R13 , and R14 are hydrogen atoms
  • R12 is a hydroxy group
  • X is CH2
  • A is O.
  • R 1 and R 2 are methyl or ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a methoxy group
  • X is CH 2
  • A is O.
  • R 1 and R 2 are ethyl groups
  • R 3 and R 4 are carboxyl or carboxyethyl groups
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • R 7 is an isopropyl group
  • R 8 is a hydrogen atom
  • R 9 and R 10 are hydrogen atoms
  • R 11 , R 13 , and R 14 are hydrogen atoms
  • R 12 is a hydroxy group
  • X is CH 2
  • A is O.
  • X in the above embodiment is CO.
  • a in the above embodiment is NH.
  • a in the above embodiment is S.
  • the compounds utilized in the present disclosure have the formula: or a pharma- ceutically acceptable salt, solvate or prodrug thereof for treating or preventing an ophthalmic disease.
  • m is 0 to 3, n is ⁇ 1
  • R A1 to R A4 , R A7 to R A11 , R A312 and R A112 are each independently a hydrogen atom or a hydrocarbon group
  • R A14 and R A212 are each independently a hydrogen atom, a carboxyl group or a salt thereof, or an alkoxycarbonyl group
  • R A5 is a hydrocarbon group, a hydroxyl group, an alkoxy group or an alkylcarbonyloxy group
  • R A55 and R A66 are each independently a hydrogen atom, a hydrocarbon group, or an alkylcarbonyloxy group.
  • the present disclosure may be a compound having a substituent represented by any of the following:
  • indolylmethyl 19 independently represents 2-indolylmethyl or 3-indolylmethyl in each case.
  • each number X, A, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 is the corresponding substituent shown in the definition table above.
  • the present disclosure may be a compound having any combination of the substituents shown in the definition table above.
  • the compounds disclosed herein are represented in the table below. Further, examples of the compounds of the present disclosure include the following.
  • the present disclosure preferably uses a cyclic peptide derivative or a salt thereof as an active ingredient.
  • the present disclosure also preferably treats or prevents an ophthalmic disease.
  • the ophthalmic disease is a retinal disease, more preferably diabetic retinopathy, glaucoma or age-related macular degeneration.
  • the general condition and retinal thickness are observed, and effects are observed in a model of retinal damage induced by ischemia under pressure overload, so it is understood that the compounds are effective in any ophthalmic disease directly or indirectly related to these. It is also understood that these include many retinal diseases.
  • the compounds, medicaments or compositions of the present disclosure are effective for diseases or abnormalities related to damage to the retinal pigment epithelium (RPE) and photoreceptor cells, or for diseases or abnormalities related to reduced ocular blood flow.
  • RPE retinal pigment epithelium
  • Photoreceptor cells or for diseases or abnormalities related to reduced ocular blood flow.
  • the compounds of the present disclosure can be administered orally or parenterally, either directly or in a suitable dosage form, as a formulation, medicine, or pharmaceutical composition.
  • suitable dosage forms include, but are not limited to, tablets, capsules, powders, granules, liquids, suspensions, injections, patches, and poultices.
  • These formulations can be manufactured by known methods using additives commonly used as pharmaceutical additives.
  • additives may include, depending on the purpose, excipients, disintegrants, binders, flow agents, lubricants, coating agents, solubilizers, solubilizers, thickeners, dispersants, stabilizers, sweeteners, flavors, etc.
  • additives include, but are not limited to, lactose, mannitol, crystalline cellulose, low-substituted hydroxypropyl cellulose, corn starch, partially pregelatinized starch, carmellose calcium, croscarmellose sodium, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinyl alcohol, magnesium stearate, sodium stearyl fumarate, polyethylene glycol, propylene glycol, titanium oxide, talc, etc.
  • the compounds disclosed herein are compounds capable of treating or preventing an ophthalmic disease.
  • the compounds disclosed herein are capable of treating or preventing retinal diseases.
  • the disclosed compound is a compound capable of treating or preventing diabetic retinopathy, glaucoma, or age-related macular degeneration.
  • the retinal disease targeted by the present disclosure may be any disease that causes degeneration, damage, or cell death of cells that constitute the retina, or any disease that is caused by degeneration, damage, or cell death of cells that constitute the retina, and may be, for example, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, retinal detachment, diabetic macular edema, hypertensive retinopathy, retinal vascular occlusion (retinal artery occlusion; retinal vein occlusion such as central retinal vein occlusion and branch retinal vein occlusion), retinal arteriosclerosis, retinal tears, retinal holes, macular holes, fundus hemorrhage, posterior vitreous detachment, pigmented paravenous retinal choroidal atrophy, gyriform retinal choroidal atrophy, coagulopathy, retinal vascular occlusion (retinal vascular occlusion (retinal vascular
  • the present disclosure also targets diseases in which any cell constituting the retina is damaged or diseases caused by damage to any cell constituting the retina.
  • cells constituting the retina include retinal ganglion cells, amacrine cells, horizontal cells, Muller glial cells, bipolar cells, retinal photoreceptor cells (cones, rods), and retinal pigment epithelial cells.
  • diseases in which damage to retinal ganglion cells or retinal pigment epithelial cells is observed or which are caused by damage to these cells are preferred.
  • the present disclosure also targets diseases in which any of the layers constituting the retina, i.e., the internal limiting membrane, nerve fiber layer, ganglion cell layer, inner plexiform membrane, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor layer, and retinal pigment epithelium layer, is impaired, or diseases caused by impairment of any of these layers.
  • diseases that impair the ganglion cell layer, inner nuclear layer, or outer nuclear layer are suitable targets.
  • Age-related macular degeneration and diabetic retinopathy are diseases caused by intraocular neovascularization, and visual acuity is reduced due to damage to the macular area. It is speculated that diabetic retinopathy is caused by inflammation of vascular endothelial cells in retinal tissue caused by hyperglycemia, which induces neovascularization.
  • the compounds of the present disclosure inhibit the thinning of the retina (outer nuclear layer), and therefore prevent, ameliorate, or treat retinal diseases.
  • the timing of administration of the compounds disclosed herein and the therapeutic agents is not limited, and they may be administered to the subject at the same time or at different times.
  • the compounds disclosed herein and the therapeutic agents may also be combined.
  • the dosage of the therapeutic agents may be appropriately selected based on the doses used in clinical practice.
  • the mixing ratio of the compounds disclosed herein and the therapeutic agents may be appropriately selected depending on the subject to be administered, the administration route, the target disease, disorder, symptoms, combination, etc.
  • the compounds of the present disclosure when using a pharmaceutical composition, can be administered in combination, either simultaneously or at different times.
  • Such pharmaceutical compositions are also within the scope of the present disclosure.
  • Such medicaments, formulations, and pharmaceutical compositions can be prepared by mixing the compounds of the present disclosure and/or additional agents (e.g., antibacterial agents, antiviral agents (e.g., ribavirin, amantadine, etc.), sedatives (e.g., ketamine, midazolam, etc.), etc.) with any appropriate ingredients, together or separately, as a combination or as separate agents, using any technique known in the art, and can be formulated into an appropriate preparation, for example, a tablet, capsule, powder, granule, liquid, suspension, injection, patch, or poultice, using any technique known in the art.
  • additional agents e.g., antibacterial agents, antiviral agents (e.g., ribavirin, amantadine, etc.), sedatives (e.g., ketamine, midazolam, etc.), etc.
  • additional agents e.g., antibacterial agents, antiviral agents (e.g., ribavirin,
  • the compound of the present disclosure and/or the additional agent e.g., an antibacterial agent, an antiviral agent (e.g., ribavirin, amantadine, etc.), a sedative (e.g., ketamine, midazolam, etc.), etc.
  • the additional agent e.g., an antibacterial agent, an antiviral agent (e.g., ribavirin, amantadine, etc.), a sedative (e.g., ketamine, midazolam, etc.), etc.
  • the additional agent e.g., an antibacterial agent, an antiviral agent (e.g., ribavirin, amantadine, etc.), a sedative (e.g., ketamine, midazolam, etc.), etc.
  • it is the compound of the present disclosure be administered in combination at the same time or at different times.
  • co-administration of a compound of the present disclosure with one or more additional therapeutic agent(s) provides improved efficacy compared to each of the individual administrations of a compound of the present disclosure (e.g., a compound of formula (1), (A2) or (2)) or the one or more additional therapeutic agent(s).
  • the co-administration provides an additive effect, where additive effect refers to the sum of the effects of each of the individual administrations of a compound of the present disclosure and one or more additional therapeutic agent(s).
  • the active compound may be provided per se or may be provided as a pharmaceutical composition containing, for example, 0.1-99.5% (more preferably, 0.5-90%) of the active ingredient in combination with a pharma- ceutically acceptable carrier.
  • the dosage of the compound of the present disclosure is appropriately selected depending on the animal to be administered, the route of administration, the disease, and the age, weight, and symptoms of the patient.
  • the lower limit is 0.01 mg and the upper limit is 10,000 mg per day for an adult, and this amount can be administered once a day or in divided doses.
  • the timing of administration of the compounds of the present disclosure and the therapeutic agents is not limited, and they may be administered to the subject at the same time or at different times.
  • the compounds of the present disclosure and the therapeutic agents may also be combined.
  • the dosage of the therapeutic agents may be appropriately selected based on the doses used in clinical practice.
  • the mixing ratio of the compounds of the present disclosure and the therapeutic agents may be appropriately selected depending on the subject to which they are administered, the administration route, the target disease, disorder or symptom, the age or weight of the subject, or a combination of these.
  • the compounds of the present disclosure when using a pharmaceutical composition, can be administered in combination, either simultaneously or at different times.
  • Such pharmaceutical compositions are also within the scope of the present disclosure.
  • the present disclosure also provides a method for preventing or treating an ophthalmic disease, comprising administering to a subject in need of the prevention or treatment a compound of the present disclosure, or a pharma- ceutically acceptable salt thereof, or a pharmaceutical composition comprising the same.
  • the method for preventing or treating an ophthalmic disease comprises administering to a subject in need of the prevention or treatment a therapeutically effective amount of a compound of the present disclosure, or a pharma- ceutically acceptable salt thereof, or a solvate thereof, or a pharmaceutical composition comprising the same.
  • the present disclosure also provides a compound of the present disclosure, or a pharma- ceutically acceptable salt thereof, for use in the prevention or treatment of an ophthalmic disease.
  • the present disclosure can be obtained by a binding reaction with four compounds (Fragments A, B, C, and D), but is not limited thereto.
  • the compounds used may be commercially available or synthesized.
  • reaction generally refers to any method that can be used in organic synthetic chemistry, such as cyclization reaction, addition reaction, ring-opening addition reaction, and dehydration condensation reaction.
  • protection reactions, deprotection reactions, oxidation reactions, reduction reactions, and hydrogen addition reactions can also be used.
  • Reaction conditions such as reaction temperature and reaction time can be set appropriately.
  • the functional groups contained in the compounds used may be protected by protective groups, etc.
  • the order of the reactions is not particularly limited; the cyclization reaction may be carried out after four compounds are bonded together, or the cyclization reaction may be carried out after three compounds are bonded together, and then a fourth compound may be bonded to the resulting cyclized compound.
  • the compounds used in each reaction may be purified, or the products of the previous reaction may be used as is.
  • R A1 represents a hydrogen atom or a hydrocarbon group
  • R A2 represents a hydrogen atom or a hydrocarbon group
  • R A3 represents a hydrogen atom or a hydrocarbon group
  • R represents a hydrogen atom or a hydrocarbon group
  • R A5 represents -O-R A51 (R A51 represents a hydrogen atom or a protecting group)
  • R A61 represents -O-R A6 (R A6 represents a hydrogen atom, a hydrocarbon group or a protecting group)
  • R A7 represents a hydrogen atom, a hydrocarbon group or a protecting group
  • R A8 represents a hydrogen atom, a hydrocarbon group or a protecting group
  • R A9 represents a hydrogen atom, a hydrocarbon group or a protecting group
  • R A10 represents a hydrogen atom, a hydrocarbon group or a protecting group
  • R A11 represents a hydrogen atom, a hydrocarbon group or a protecting group
  • R A12 represents a hydrogen atom or a protecting group
  • the manufacturing method disclosed herein includes a step of subjecting a product obtained by an oxidation reaction of a compound represented by the following general formula (2') to a condensation reaction with a compound having both a carboxy group and an amino group, or a salt or ester of the compound (hereinafter, this step is abbreviated as "Step A" in this specification).
  • R A1 , R A2 , R A3 , R A4 , R A5 , R A61 , R A7 , R A8 , R A9 , R A10 and m are respectively defined as R A1 , R A2 , R A3 , R A4 , R A5 , R A61 , R A7 , R A8 , R A9 , R A10 and m in formula (2).
  • R A1 , R A2 , R A3 , R A4 , R A5 , R A61 , R A7 , R A8 , R A9 , R A10 and m in formula (2') are respectively the same as R A1 , R A2 , R A3 , R A4 , R A5 , R A61 , R A7 , R A8 , R A9 , R A10 and m in formula (2).
  • the hydrocarbon group may be any of an alkyl group, an alkenyl group, and an alkynyl group.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and may be, for example, 1 to 10, preferably 1 to 5, more preferably 1 to 4, and particularly preferably 1 to 3.
  • Specific examples of the hydrocarbon group include a methyl group, an ethyl group, a vinyl group, an acetynyl group, a propyl group, an isopropyl group, and a propenyl group.
  • the hydrocarbon group may be linear or branched.
  • the protecting group is other than the above-mentioned hydrocarbon group, and examples of the protecting group include aromatic groups; heterocyclic groups; oxygen-containing functional groups having alkoxyalkyl groups, carbonyl groups, esters, etc.; and groups having silicon atoms, such as silyl groups.
  • the protecting group is an aromatic group
  • examples of the protecting group include a phenyl group, a benzyl group, an oxybenzyl group (-O-CH 2 -Ph), a 2-nitrobenzenesulfonyl group (nosyl group), etc.
  • the protecting group is an oxygen-containing functional group
  • an example of the protecting group is a tert-butoxycarbonyl group (Boc group).
  • the protecting group is a group having a silicon atom
  • examples of the protecting group include a tert-butyldimethylsilyl group (-Si(t-Bu)(CH 3 ) 2 ), a tert-butyldiphenylsilyl group (-Si(t-Bu)Ph 2 ), etc.
  • R A1 when R A1 is a hydrocarbon group, it is preferably an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a methyl group.
  • R A1 when R A1 is a hydrocarbon group, it is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, or an alkynyl group having 2 to 3 carbon atoms, and particularly preferably an acetynyl group (-C ⁇ C).
  • R A2 when R A2 is an acetynyl group, the steric hindrance is smaller than that of an ethyl group, etc., and therefore the condensation reaction described below is more likely to proceed.
  • R when R is a hydrocarbon group, it is preferably an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a methyl group.
  • R when R is a hydrocarbon group, it is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a methyl group.
  • R is -O- R ( R represents a hydrogen atom or a protecting group), and R is preferably a protecting group, more preferably an aromatic group, and particularly preferably an oxybenzyl group (-O- CH -Ph).
  • R A61 is -O-R A6 (R A6 represents a hydrogen atom, a hydrocarbon group or a protecting group), R A6 is preferably a hydrocarbon group or a protecting group, and when R A6 is a hydrocarbon group, it is preferably an allyl group, and when it is a protecting group, examples include a tert-butyldimethylsilyl group (-Si(t-Bu)(CH 3 ) 2 ), a tert-butyldiphenylsilyl group (-Si(t-Bu)Ph 2 ), a benzyl group, a methoxymethyl group (MOM) and the like.
  • R A6 is preferably a tert-butyldimethylsilyl group.
  • R A7 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom.
  • R A8 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom.
  • R A9 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a methyl group.
  • R A10 is preferably the above-mentioned protecting group, and particularly preferably a 2-nitrobenzenesulfonyl group (nosyl group).
  • R A11 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom.
  • R A12 is preferably a protecting group, more preferably an aromatic group, and particularly preferably a benzyl group.
  • R A14 is preferably -(CH 2 ) n -H or -(CH 2 ) n -COOR A13 (n is 1 to 4), and more preferably -(CH 2 ) 2 -COOR A13 .
  • R A13 is preferably a protecting group, more preferably an aromatic group, and particularly preferably a benzyl group.
  • the bonding position of R A5 is not particularly limited, and can be, for example, a bonding position represented by the following formula (2'').
  • R A1 to R A5 , R A7 to R A12 and R A14 have the same meanings as R A1 to R A5 , R A7 to R A12 and R A14 in the formula (2), and R A61 has the same meaning as R A61 in the formula (2).
  • Step A includes an oxidation reaction of the compound represented by formula (2'). Specifically, this oxidation reaction is a reaction for oxidizing an alcohol to a carboxylic acid. As a result, the hydroxyl group indicated by the arrow in the compound represented by formula (2') is converted to a carboxyl group.
  • the type of oxidation reaction is not particularly limited, and for example, a wide variety of known oxidation reactions of alcohol compounds can be used.
  • the oxidation reaction may be, for example, a two-step reaction in which an alcohol is oxidized to an aldehyde and then the aldehyde is oxidized to a carboxylic acid. When the oxidation reaction is carried out in two steps in this manner, it is easy to prevent unintended oxidation reactions of functional groups.
  • the oxidation reaction preferably includes Dess-Martin oxidation and Pinnick oxidation. This makes it easier to suppress racemization and makes it easier for oxidation to occur under mild reaction conditions.
  • the hydroxyl group is oxidized to an aldehyde by Dess-Martin oxidation, and then the aldehyde is oxidized to a carboxylic acid by Pinnick oxidation.
  • step A When carrying out the oxidation reaction in step A, it is preferable to use 1 to 5 moles of an oxidizing agent per mole of the compound represented by formula (2').
  • an oxidizing agent there are no particular limitations on the type of oxidizing agent, and a wide range of known oxidizing agents used in oxidation reactions can be used.
  • Dess-Martin oxidation it is preferable to use 1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (DMP) as the oxidizing agent.
  • DMP 1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one
  • the Pinnick oxidation it is preferable to use sodium hypochlorite (NaClO 2 ) as an oxidizing agent.
  • NaClO 2 sodium hypochlorite
  • oxidizing agents can also be used in the oxidation reaction, such as an oxidizing agent that combines a nitroxyl radical species such as 2,2,6,6-tetramethylpiperidine 1-oxyl with iodosobenzene diacetate.
  • a solvent can be used in the oxidation reaction as necessary.
  • the solvent that can be used in the oxidation reaction include chlorine-containing compounds such as dichloromethane and dichloroethane, acetonitrile, and tert-butanol.
  • the reaction temperature of the oxidation reaction is not particularly limited, and can be, for example, from -20 to 60°C, and is preferably from 0 to 30°C.
  • step A after the oxidation reaction, the product obtained in the oxidation reaction (carboxylic acid compound) is subjected to a condensation reaction with a compound having both a carboxy group and an amino group, or a salt or ester of the compound.
  • a compound having both a carboxy group and an amino group, or a salt or ester of the compound will be abbreviated as "compound C.”
  • the compounds C there are no particular limitations on the compounds having both a carboxy group and an amino group, and examples thereof include amino acids, with glutamic acid or aspartic acid being preferred.
  • step A it is preferable to carry out a condensation reaction between the product (carboxylic acid compound) obtained in the oxidation reaction and a glutamic acid ester or an aspartic acid ester.
  • the obtained cyclic peptide derivative i.e., the cyclic peptide derivative represented by general formula (2), has R A14 in formula (2) that is -(CH 2 ) 2 -COOR A13 .
  • the obtained cyclic peptide derivative i.e., the cyclic peptide derivative represented by general formula (2)
  • R A14 is preferably a protecting group, more preferably an aromatic group, and particularly preferably a benzyl group.
  • the amount of compound C used is preferably 1 to 5 moles, more preferably 2 to 5 moles, and even more preferably 3 to 4 moles per mole of the carboxylic acid compound obtained in the oxidation reaction.
  • step A when the product (carboxylic acid compound) obtained in the oxidation reaction is subjected to a condensation reaction with a glutamic acid ester, the resulting cyclic peptide derivative represented by formula (2) is represented by the following general formula (2A).
  • R A1 to R A5 , R A61 , R A7 to R A13 and m have the same meanings as R A1 to R A5 , R A61 , R A7 to R A13 and m in the formula (2).
  • step A the method of the condensation reaction is not particularly limited, and for example, known condensation reaction conditions can be widely adopted.
  • a condensing agent can also be used in the condensation reaction from the viewpoint of easily suppressing racemization and promoting oxidation under mild reaction conditions.
  • condensation agent is not particularly limited, and for example, a wide variety of known condensation agents can be used.
  • a phosphorus-based condensation agent as the condensation agent.
  • condensing agents include 3-(Diethoxyphosphoryloxy)-3H-benzo[d][1,2,3]triazin-4-one (DEPBT), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, 1-[Bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide hexafluorophosphate, and N-[1-(Cyan
  • the amount used is not particularly limited.
  • the amount of the condensing agent used is preferably 1 to 3 moles, and more preferably 1.2 to 2.5 moles, per mole of the carboxylic acid compound obtained by the oxidation reaction.
  • a solvent can be used as necessary.
  • the solvent is not particularly limited, and examples include aliphatic hydrocarbons such as hexane and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; chlorinated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; alcohols such as methanol, ethanol, isopropyl alcohol and t-butanol; amide solvents such as N,N-dimethylacrylamide; etc.
  • the condensation reaction may be carried out in the presence of a base catalyst such as diisopropylethylamine or dimethylaminopyridine.
  • the reaction temperature of the condensation reaction is not particularly limited, and can be, for example, from -20 to 60°C, and is preferably from 0 to 30°C.
  • step A the oxidation reaction and subsequent condensation reaction can produce a cyclic peptide derivative represented by formula (2) in high yield.
  • a cyclic peptide derivative represented by formula (2) in which a macrolactam structure containing a structure derived from a non-natural amino acid such as a ⁇ -hydroxydopa unit and an amino acid derivative such as a glutamic acid derivative are condensed and linked.
  • the present disclosure employs step A using a compound represented by formula (2'), thereby making it possible to produce a cyclic peptide derivative represented by formula (2). Therefore, the cyclic peptide derivative represented by formula (2) has a structure containing a ⁇ -hydroxydopa unit and a ⁇ -hydroxyisoleucine unit.
  • cyclic peptide derivatives are produced by binding all peptides and then cyclizing them.
  • compound C e.g., glutamic acid ester
  • compound C is bound to a compound having a cyclized structure.
  • compound C is bound last, which has the advantage that cyclic peptide derivatives to which various amino acids, etc. are bound can be obtained depending on the type of compound C.
  • the route disclosed herein in which a ring structure is constructed in advance and then a side chain (compound C) is introduced has the advantage of simplifying the process of removing the protecting group and providing the target product in high yield.
  • the method for producing a cyclic peptide compound of the present disclosure includes a step of subjecting the cyclic peptide derivative obtained by the method for producing a cyclic peptide derivative to a hydrogenation reduction reaction to obtain a cyclic peptide compound. That is, the method for producing a cyclic peptide compound of the present disclosure includes a step of subjecting the cyclic peptide derivative obtained by the method for producing a cyclic peptide derivative to a hydrogenation reduction reaction after the condensation reaction in step A in the method for producing a cyclic peptide derivative.
  • the method of hydrogenation reduction reaction is not particularly limited, and for example, known hydrogenation reduction reaction conditions can be widely adopted.
  • the hydrogenation reduction reaction can be carried out by using hydrogen in the presence of a catalyst.
  • a catalyst for example, a known catalyst used in hydrogenation reduction reactions can be used, specifically, palladium on carbon can be mentioned.
  • a solvent can also be used as necessary. Examples of the solvent include lower alcohols such as methanol and ethanol.
  • the protecting group can be deprotected beforehand, and then the hydrogenation reduction reaction can be carried out.
  • the deprotection method is not particularly limited, and for example, any known deprotection method can be widely adopted.
  • the deprotection of the TBS group and the deprotection of the nosyl group can be carried out in this order.
  • the alkynyl group can be converted to an alkyl group by the hydrogenation reduction reaction.
  • the acetylenic group can be converted to an ethyl group by the hydrogenation reduction reaction.
  • the cyclic peptide derivative represented by formula (2) obtained by the condensation reaction in step A is deprotected and then subjected to a hydrogenation reduction reaction.
  • a hydrogenation reduction reaction This produces, for example, a compound represented by the following formula (10), and as a specific example, a compound represented by the following formula (A) can be produced.
  • R A1 , R A2 , R A3 , R A4 , R A61 , R A7 , R A8 , R A9 , R A10 and R A11 are respectively the same as R A1 , R A2 , R A3 , R A4 , R A61 , R A7 , R A8 , R A9 , R A10 and R A11 in formula (2).
  • R A61 is preferably a hydroxyl group.
  • R A1 , R A3 and R A4 have the same meaning as R A1 , R A3 and R A4 in formula (2).
  • R A5 in formula (2) is a hydroxyl group (where m is 1)
  • R A12 is a hydrogen atom
  • R A14 is -(CH 2 ) 2 -COOH.
  • R A2 is an ethyl group
  • R A61 is OH
  • R A7 , R A8 , R A9 and R A11 are hydrogen atoms
  • R A10 is a methyl group, but is not limited thereto.
  • the cyclic peptide compound obtained by the hydrogenation reduction reaction is not particularly limited as long as it is a compound that can be produced by hydrogenation reduction of the compound represented by formula (2), and is preferably a compound in which R A5 in formula (2) is a hydroxyl group, R A12 is a hydrogen atom, and R A13 in COOR A13 of R A14 is a hydrogen atom. In this case, it is also preferable that R A2 is an ethyl group. It is more preferable that the cyclic peptide compound is a compound in which R A14 is -(CH 2 ) 2 -COOH or -CH 2 -COOH. Most preferably, the cyclic peptide compound obtained by the hydrogenation reduction reaction is a compound represented by the general formula (A) in which R A1 , R A3 and R A4 are all methyl groups.
  • a cyclic peptide compound in the method for producing a cyclic peptide compound disclosed herein, can be obtained by subjecting the cyclic peptide derivative obtained in the above-mentioned method for producing a cyclic peptide derivative to a hydrogenation reduction reaction, so that the cyclic peptide compound can be obtained in high yield. Furthermore, depending on the type of compound C used in the method for producing a cyclic peptide derivative, a cyclic peptide compound having various amino acids bound thereto can be obtained.
  • the method for producing a compound represented by formula (2') may include, for example, a step of obtaining a compound represented by formula (22a) by intramolecular cyclization reaction of a cyclization precursor represented by formula (21a) below (hereinafter referred to as a cyclization step).
  • R A1 to R A5 and m have the same meanings as R A1 to R A5 and m in formula (1).
  • MOM represents a methoxymethyl group (hereinafter the same).
  • TBS represents a tert-butyldimethylsilyl group.
  • R A1 to R A5 and m have the same meanings as R A1 to R A5 and m in formula (1).
  • an amide bond is formed between the ⁇ -hydroxyisoleucine unit and the ⁇ -hydroxydopa unit by an intramolecular cyclization reaction of the cyclization precursor represented by formula (21a), forming a compound represented by formula (22a).
  • a dilute substrate solution is dropped into a solvent containing a binder to dilute the concentration of the substrate (i.e., the compound represented by formula (21a)), suppressing the progress of intermolecular reactions while promoting the progress of intramolecular cyclization reactions, thereby enabling intramolecular cyclization reactions to be performed with a higher yield than in the past. It is presumed that such intramolecular cyclization reactions suppress intermolecular reactions, thereby increasing the yield of the desired cyclized compound (i.e., the compound represented by formula (22a)).
  • binder used in the cyclization step is not particularly limited, and any binder used in intramolecular cyclization reactions can be used.
  • binders include 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, and 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT).
  • the solvent used to dissolve the binder and substrate in the cyclization step is not particularly limited, and is preferably a polar solvent such as chlorinated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, etc.; alcohols such as methanol, ethanol, isopropyl alcohol, t-butanol, etc.; and amide solvents such as N,N-dimethylacrylamide.
  • a polar solvent such as chlorinated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, etc.
  • alcohols such as methanol, ethanol, isopropyl alcohol, t-butanol, etc.
  • amide solvents such as N,N-dimethylacrylamide.
  • the solvents may be used alone or in combination of two or more.
  • the binder concentration can be, for example, in the range of 1 mM to 15 mM based on the solvent used.
  • the substrate concentration can be in the range of 0.1 mM to 1.5 mM based on the solvent used.
  • the temperature in the intramolecular cyclization reaction is not particularly limited, and can be, for example, -20 to 60°C, preferably 0 to 30°C.
  • the reaction time can be set appropriately depending on the reaction temperature, etc., and for example, the substrate can be added dropwise over 6 to 24 hours, and the reaction can be continued for 6 to 24 hours, but is not limited to this.
  • the intramolecular cyclization reaction is promoted, and the yield of the cyclized compound (compound represented by formula (22a)) can be improved by about 1.5 to 2.5 times compared to conventional cyclization reactions.
  • the compound represented by formula (2) can be obtained by deprotecting MOM.
  • the method for deprotecting MOM is not particularly limited, and for example, the same conditions as those of the known method for deprotecting MOM can be used.
  • the protecting group in the compound represented by formula (22a) can be replaced with another protecting group (for example, the Boc group substituted on the N atom can be replaced with a nosyl group).
  • the N atom to which a protecting group such as a nosyl group is bonded can be methylated.
  • a wide variety of known methods can be used for methylation, and methylation of methyl p-nitrobenzenesulfonate is an example.
  • the manufacturing method for obtaining the compound represented by formula (21a) used in the cyclization step is not particularly limited, and for example, the compound represented by formula (21a) can be obtained by a known reaction.
  • the compound represented by formula (21a) can be obtained through a step of reacting a compound represented by the following formula (7a) with a compound represented by the following formula (8a).
  • R A5 and m have the same meanings as R A5 and m in formula (1) above.
  • the compound represented by formula (7a) is a ⁇ -hydroxydopa unit.
  • R A1 and R A2 have the same meanings as R A1 and R A2 in formula (2) above.
  • the compound represented by formula (8a) is an aziridine compound.
  • reaction between the compound represented by formula (7a) and the compound represented by formula (8a) can be carried out under conditions similar to those of known ring-opening reactions.
  • this ring-opening reaction can be carried out in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD).
  • reaction for introducing a protecting group is carried out to synthesize the compound represented by the following formula (13a).
  • the reaction conditions for introducing the protecting group are not particularly limited and can be the same as those of known methods.
  • R A1 , R A2 , R A5 and m have the same meanings as R A1 , R A2 , R A5 and m in formula (2) above.
  • the compound represented by formula (13a) is subjected to a deprotection reaction and an esterification reaction to obtain a compound represented by the following formula (18a).
  • the conditions for the deprotection reaction and the esterification reaction are not particularly limited and can be the same as those of known methods.
  • R A1 , R A2 , R A5 and m have the same meanings as R A1 , R A2 , R A5 and m in formula (2) above.
  • a condensation reaction is carried out with, for example, a valine compound having a 9-fluorenylmethyloxycarbonyl group, and then deprotection is carried out to produce a compound represented by formula (21a) (cyclization precursor).
  • an appropriate condensation agent can be used.
  • R A2 is an acetylenic group
  • reduction can be carried out as necessary. This reduction can be carried out in the step of hydrogenation reduction reaction after the condensation reaction in step A as described above, or can be carried out at any time after the nucleophilic addition reaction with the aziridine.
  • R A2 is an acetylenic group
  • the acetylenic group is relatively not bulky compared to an alkyl group and therefore does not inhibit the reaction, so that the acetylenic group can be maintained without reduction until the hydrogenation reduction reaction.
  • the method for producing the compound represented by formula (7a) is not particularly limited.
  • the compound can be produced by a reaction using a compound represented by the following formula (1a) and a compound represented by the following formula (2a) as starting materials.
  • R A5 and m have the same meanings as R A5 in formula (2').
  • the compound represented by formula (8a) can be obtained, for example, by a known manufacturing method, or can be obtained from a commercial product.
  • compositions and methods of the present disclosure can be utilized to treat an individual in need thereof.
  • the individual is a mammal, such as a human, or a non-human mammal.
  • the composition or compound When administered to an animal, such as a human, the composition or compound is preferably administered as a pharmaceutical composition, for example, comprising the compound of the present disclosure and a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers are well known in the art, and include, for example, aqueous solutions, such as water or buffered saline, or other solvents or vehicles, such as glycols, glycerol, oils, such as olive oil, or organic esters for injection.
  • the aqueous solution is pyrogen-free or substantially pyrogen-free.
  • the excipient can be selected, for example, to effect delayed release of the agent or to selectively target one or more cells, tissues, or organs.
  • the pharmaceutical composition may be in unit dosage form, such as tablets, capsules (including sprinkle capsules and gelatin capsules), granules, lyophilized for reconstitution, powders, liquids, syrups, suppositories, or injections.
  • the composition may also be present in a transdermal delivery system, such as a skin patch.
  • the composition may also be present in a liquid suitable for topical administration, such as eye drops.
  • a pharma- ceutically acceptable carrier can contain a physiologically acceptable agent that acts, for example, to stabilize, increase the solubility, or increase the absorption of a compound, such as a compound of the present disclosure.
  • physiologically acceptable agents include, for example, carbohydrates, such as glucose, sucrose, or dextran, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, or other stabilizers or excipients.
  • the choice of pharma- ceutical acceptable carrier, including physiologically acceptable agents depends, for example, on the route of administration of the composition.
  • the preparation or pharmaceutical composition can be a self-emulsifying drug delivery system or a self-microemulsifying drug delivery system.
  • the pharmaceutical composition can also be a liposome or other polymer matrix into which, for example, a compound of the present disclosure can be incorporated.
  • Liposomes such as liposomes containing phospholipids or other lipids, are non-toxic, physiologically acceptable, metabolizable carriers that are relatively easy to make and administer.
  • compositions can be administered to a subject by any of several routes of administration, including, for example, orally (e.g., as drenches, tablets, capsules (including sprinkle capsules and gelatin capsules), boluses, powders, granules, pastes for application to the tongue, etc., in aqueous or non-aqueous solutions or suspensions); absorbed through the oral mucosa (e.g., sublingually); anally, rectally, or vaginally (e.g., as pessaries, creams, or foams, etc.); parenterally (e.g., as a sterile solution or suspension, including intramuscularly, intravenously, subcutaneously, or intrathecally); nasally; intraperitoneally; subcutaneously; transdermally (e.g., as a patch applied to the skin); and topically (e.g., as a cream, ointment, or spray applied to the skin, or as eye drops).
  • routes of administration including, for example
  • the compounds may also be formulated for inhalation.
  • the compounds may simply be dissolved or suspended in sterile water. Details of suitable routes of administration and compositions suitable therefor can be found, for example, in U.S. Patent Nos. 6,110,973, 5,731,000, 5,541,231, 5,427,798, 5,358,970 and 4,172,896, and the patents cited therein.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, this amount will range from about 1 percent to about 99 percent of the active ingredient, preferably from about 5 percent to about 70 percent of the active ingredient, and most preferably from about 10 percent to about 30 percent of the active ingredient, out of one hundred percent.
  • Methods of preparing these formulations or compositions include the step of bringing into association an active compound, such as a compound of the present disclosure, with the carrier and, optionally, one or more accessory ingredients.
  • an active compound such as a compound of the present disclosure
  • the formulations are prepared by uniformly and intimately bringing into association a compound of the present disclosure with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations of the present disclosure suitable for oral administration may be in the form of capsules (including sprinkle capsules and gelatin capsules), cachets, pills, tablets, lozenges (using a flavored base, typically sucrose and acacia or tragacanth), lyophilized, powders, granules, or as a solution or suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as a pastille (using an inert base, such as gelatin and glycerin, or sucrose and acacia), and/or as a mouthwash, each of which contains a predetermined amount of a compound of the present disclosure as an active ingredient.
  • the composition or compound may also be administered as a bolus, electuary, or paste.
  • the active ingredient is mixed with one or more pharma- ceutically acceptable carriers, such as sodium citrate or dibasic calcium phosphate, and/or any of the following: (1) fillers or extenders, such as starch, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and/or acacia; (3) humectants, such as glycerol; (4) Disintegrants, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarders, such as paraffin; (6) absorption enhancers, such as quaternary ammonium compounds; (7) wetting agents
  • pharma- ceutically acceptable carriers such as sodium citrate or dibasic calcium phosphate, and/or any of the following: (1) fillers or extenders, such as
  • the pharmaceutical composition may also contain buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules, using excipients such as lactose or milk sugar, and high molecular weight polyethylene glycols, and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared using binders (e.g., gelatin or hydroxypropylmethylcellulose), lubricants, inert diluents, preservatives, disintegrants (e.g., sodium starch glycolate or cross-linked sodium carboxymethylcellulose), surface active agents or dispersing agents.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • Tablets and other solid dosage forms of pharmaceutical compositions may be optionally scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical formulation art. They may also be formulated to provide sustained or controlled release of the active ingredient therein, for example, using hydroxypropylmethylcellulose, other polymer matrices, liposomes and/or microspheres in different proportions to provide the desired release profile.
  • compositions may be sterilized, for example, by filtration through a bacteria-retaining filter or by incorporating a sterilizing agent in the form of a sterile solid composition that can be dissolved in sterile water or some other sterile injectable medium immediately before use.
  • These compositions may also optionally contain emulsifying agents, and may be of a composition that releases the active ingredient(s) only, or preferentially, in a certain part of the digestive tract, optionally in a delayed manner.
  • embedding compositions that can be used include polymeric substances and waxes.
  • the active ingredient can also be in microencapsulated form, if appropriate, with one or more of the excipients described above.
  • Liquid dosage forms useful for oral administration include pharma- ceutically acceptable emulsions, lyophilized for reconstitution, microemulsions, solutions, suspensions, syrups, and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, cyclodextrin and its derivatives, solubilizing and emulsifying agents, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (especially cottonseed oil, peanut oil, corn oil, germ oil, olive oil, castor oil, and sesame oil), glycerol, tetrahydrofuryl alcohol, polyethylene glycol, and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the
  • the oral compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening agents, flavoring agents, coloring agents, perfuming agents, and preservatives.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening agents, flavoring agents, coloring agents, perfuming agents, and preservatives.
  • Suspensions may contain, in addition to the active compound, suspending agents such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations of pharmaceutical compositions for rectal, vaginal, or urethral administration may be provided as suppositories, which can be prepared by mixing one or more active compounds with one or more suitable non-irritating excipients or carriers, including, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which are solid at room temperature but liquid at body temperature and thus will melt in the rectal or vaginal cavity and release the active compound.
  • suitable non-irritating excipients or carriers including, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which are solid at room temperature but liquid at body temperature and thus will melt in the rectal or vaginal cavity and release the active compound.
  • Formulations of the pharmaceutical composition for administration to the mouth may be given as a mouthwash, or an oral spray, or an oral ointment.
  • compositions can be formulated for delivery via a catheter, stent, wire, or other intraluminal device. Delivery via such devices can be particularly useful for delivery to the bladder, urethra, ureter, rectum, or intestine.
  • Formulations suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active compound may be mixed under sterile conditions with a pharma- ceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • the ointments, pastes, creams and gels may contain, in addition to the active compound, excipients such as animal and vegetable fats and oils, waxes, paraffin, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonite, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats and oils, waxes, paraffin, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonite, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to the active compound, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • Transdermal patches offer the added advantage of providing controlled delivery of the compounds of the present disclosure to the body.
  • dosage forms can be made by dissolving or dispersing the active compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.
  • Ophthalmic formulations such as eye ointments, powders, and solutions, are also contemplated within the scope of the present disclosure. Exemplary ophthalmic formulations are described in U.S. Patent Application Publication Nos. 2005/0080056, 2005/0059744, 2005/0031697, and 2005/004074, and U.S. Patent No. 6,583,124, the contents of which are incorporated herein by reference. If desired, the liquid ophthalmic formulation has properties similar to those of tears, aqueous humor, or vitreous humor, or is compatible with such fluids. A preferred route of administration is local administration (e.g., topically, e.g., as eye drops, or via an implant).
  • local administration e.g., topically, e.g., as eye drops, or via an implant.
  • Example 1 Synthesis of Fragment A-2
  • L-tyrosine 1.0 eq., 6.51 g, 35.9 mmol
  • nitrobenzene 130 mL
  • aluminum chloride 4.0 eq., 19.1 g, 143 mmol
  • acetyl chloride 1.2 eq., 3.42 g, 43.6 mmol
  • reaction solution was ice-cooled, water (200 mL) was added, and the mixture was washed once with ethyl acetate (300 mL), and the organic layer was extracted once with water (100 mL). The aqueous layers were combined to obtain A2-1 as an aqueous solution (300 mL).
  • Potassium carbonate (7.5 eq., 36.9 g, 267 mmol) was added to A2-1 (1.0 eq., calculated as 300 mL aqueous solution, 35.9 mmol) under ice cooling to adjust the pH to 9, THF (150 mL) and CbzCl (1.2 eq., 7.3 g, 42.8 mmol) were added, and the mixture was stirred at room temperature for 3 hours.
  • a 2N aqueous hydrochloric acid solution (200 mL) was added to the reaction solution to adjust the pH to 3, and THF was distilled off under reduced pressure.
  • the concentrate was extracted three times with ethyl acetate (200 mL), the organic layers were combined, washed once with a saturated aqueous sodium chloride solution (200 mL), and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain A2-2 (11.4 g) as a brown oil.
  • potassium carbonate (3.0 eq., 14.9 g, 108 mmol), TBAI (0.10 eq., 1.33 g, 3.59 mmol) and BnBr (2.2 eq., 13.5 g, 79.1 mmol) were added to a DMF (50 mL) solution of A2-2 (calculated as 1.0 eq., 11.4 g, 35.9 mmol) under ice cooling, and the mixture was stirred at room temperature for 3.5 hours. Water (100 mL) was added to the reaction solution, and the mixture was extracted twice with a mixture of hexane (40 mL)/ethyl acetate (80 mL).
  • the reaction solution was extracted three times with ethyl acetate (100 mL), and the organic layers were combined and washed once with a saturated aqueous solution of sodium chloride (100 mL), and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain an ester (10.6 g).
  • A2-5 (calculated as 1.0 eq., 9.3 g, 17.6 mmol) was added to a solution of acetonitrile (80 mL) at room temperature, and DBU (1.1 eq., 2.96 g, 19.4 mmol) and PMBCl (1.1 eq., 3.00 g, 19.2 mmol) were added, and the mixture was stirred at an external temperature of 60 ° C. for 19 hours. The reaction mixture was quenched by adding acetic acid (3.0 eq., 3.15 g, 52.5 mmol), and then concentrated under reduced pressure to obtain a crude product (16.7 g).
  • Example 2A Synthesis of Fragment A-2′
  • DBU 1.5 eq., 1.6 mL, 10.7 mmol
  • BnBr 1.2 eq., 1.0 mL, 8.54 mmol
  • A2-5 1.0 eq., 3.4 g, calculated as 7.12 mmol
  • acetonitrile 70 mL
  • the mixture was stirred at room temperature for 16 hours.
  • the organic layer was dried over magnesium sulfate, and the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (4.83 g).
  • Example 2AA Synthesis of Fragment A-2′′
  • the synthesis of L-tyrosine ⁇ A2-1 is as described in Example 1.
  • the synthesis of A3'-3 from A2-1 via A3'-2 is as described in Example 2.
  • methyl iodide (3.0 eq., 6.8 mL, 109.23 mmol) and sodium hydride (60%, dispersion in paraffin liquid, 1.2 eq., 1.7 g, 43.45 mmol) were added to a solution of A3'-3 (1.0 eq., 18.3 g, 36.34 mmol) in DMF (150 mL) at an external temperature of -20 ° C., and the mixture was stirred at the same temperature for 3 hours. After adding 1N aqueous hydrochloric acid solution (50 mL) at an external temperature of -20 ° C., water (100 mL) was added.
  • m-CPBA containing 30% water, 2.0 eq., 18.0 g, 73.01 mmol
  • A2"-1 1.0 eq., 18.9 g, 36.34 mmol
  • chloroform 150 mL
  • m-CPBA 0.5 eq., 4.8 g, 19.47 mmol
  • 20% aqueous sodium sulfite solution (75 mL) and saturated aqueous sodium hydrogen carbonate solution (75 mL) were added under ice cooling.
  • the organic layer of the reaction solution was recovered, and the 20% Aqueous sodium sulfite solution (75 mL), saturated aqueous sodium bicarbonate solution (75 mL), saturated aqueous sodium chloride solution (250 mL) and ethyl acetate (400 mL) were added and washed once.
  • the aqueous layers were combined and extracted once with ethyl acetate (100 mL).
  • the organic layers were combined and dried over magnesium sulfate, after which the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (20.6 g) as a brown viscous material.
  • Lithium hydroxide (2.5 eq., 1.9 g, 80.25 mmol) was added to a mixture of ester (1.0 eq., 17.2 g, 32.17 mmol) in THF (75 mL)/water (75 mL) at room temperature and stirred at room temperature for 3 hours.
  • Lithium hydroxide (1.0 eq., 790 mg, 32.97 mmol) was added and stirred for 1 hour, after which lithium hydroxide (0.5 eq., 392 mg, 16.37 mmol) was added and stirred for 30 minutes.
  • the reaction solution was washed twice with hexane (75 mL), and the organic layers were combined and extracted once with water (20 mL).
  • DIPEA 1.2 eq, 6.6 mL, 38.81 mmol
  • BnBr 1.2 eq, 3.8 mL, 38.66 mmol
  • A2"-2 1.0 eq., 14.2 g, 32.17 mmol
  • DIPEA 0.2 eq, 1.1 mL, 6.47 mmol
  • BnBr 0.2 eq., 650 ⁇ L, 6.61 mmol
  • the aqueous layer was extracted twice with ethyl acetate (200 mL), and the organic layers were combined and washed once with saturated aqueous sodium chloride solution (200 mL), and dried over magnesium sulfate.
  • the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain A3-4 (11.2 g) as a dark brown oil.
  • m-CPBA containing 35% water, 2.0 eq., 19.0 g, 77.07 mmol
  • A3'-3 1.0 eq., 19.32 g, 38.36 mmol
  • chloroform 200 mL
  • the reaction solution was concentrated under reduced pressure until the liquid volume was reduced to about half, and then a saturated aqueous sodium hydrogen carbonate solution (200 mL) was added.
  • Lithium hydroxide (2.5 eq., 2.31 g, 96.43 mmol) was added to a mixture of ester (1.0 eq., 24.9 g, 38.36 mmol) in THF (100 mL)/water (100 mL) under ice cooling, and the mixture was stirred at room temperature for 3 hours. Lithium hydroxide (1.0 eq., 929 mg, 38.80 mmol) was then added and the mixture was stirred for another 2 hours. Lithium hydroxide (1.5 eq., 1.39 g, 57.87 mmol) was then added and the mixture was stirred for 1 hour. The reaction solution was washed twice with hexane (100 mL).
  • Example 2A Synthesis of Fragment A-13
  • the two steps from L-Tyrosine to A2-2 were carried out as described in Example 2.
  • A13-1 from A2-2 is as follows. Under a nitrogen atmosphere, potassium carbonate (3.0 eq., 22.9 g, 166 mmol), TBAI (0.10 eq., 2.04 g, 5.52 mmol) and BnBr (2.0 eq., 13.1 g, 110 mmol) were added to a DMF (110 mL) solution of A2-2 (calculated as 1.0 eq., 20.3 g, 55.2 mmol) under ice cooling, and the mixture was stirred at room temperature for 2.5 hours.
  • A13-2 from A13-1 is as follows. Under a nitrogen atmosphere, sodium hydride (1.2 eq., 2.17 g, 54.3 mmol) and methyl iodide (3.0 eq., 8.4 mL, 135 mmol) were added to a DMF (90 mL) solution of a mixture of A13-1 and A2-3 (calculated as 1.0 eq., 24.3 g, 45.2 mmol) under ice cooling, and the mixture was stirred for 4 hours under ice cooling. The reaction solution was quenched by adding a 2N aqueous hydrochloric acid solution (20 mL), and water (200 mL) was added.
  • the mixture was extracted once with a mixture of hexane (50 mL)/ethyl acetate (150 mL) and once with a mixture of hexane (40 mL)/ethyl acetate (120 mL).
  • the organic layers were combined and washed once with water (100 mL) and once with a saturated aqueous sodium chloride solution (50 mL).
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain a mixture of A13-2 and A2-4 (24.6 g).
  • A13-3 from A13-2 is as follows. Under a nitrogen atmosphere, m-CPBA (containing 35% water, 2.0 eq., 23.7 g, 89.3 mmol) was added to a chloroform (180 mL) solution of a mixture of A13-2 and A2-4 (calculated as 1.0 eq., 24.6 g, 44.6 mmol) at room temperature, and the mixture was stirred at an external temperature of 45° C. for 17 hours. The reaction solution was ice-cooled, and quenched by adding a mixture of 20% aqueous sodium sulfite solution (80 mL)/saturated aqueous sodium hydrogen carbonate solution (80 mL).
  • the aqueous layer was extracted three times with ethyl acetate (150 mL), and the organic layers were combined and washed once with saturated aqueous sodium chloride (100 mL).
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a mixture of A13-3 and A2-5 (17.9 g) as a brown viscous substance.
  • Fragment A-13 from A13-3 is as follows. A mixture of A13-3 and A2-5 (calculated as 1.0 eq., 17.4 g, 39.1 mmol) was added to a DMF (80 mL) solution at room temperature with potassium carbonate (3.1 eq., 16.6 g, 120 mmol) and methyl iodide (1.1 eq., 2.7 mL, 43.4 mmol), and the mixture was stirred at the same temperature for 1.5 hours.
  • Example 3 Synthesis of Fragment B-1
  • water 150 mL
  • sodium carbonate 1.0 eq., 25.2 g, 0.238 mol
  • D-serine 1.0 eq., 25.0 g, 0.238 mol
  • saturated aqueous sodium bicarbonate 150 mL
  • Boc 2 O 1.2 eq., 62.4 g, 0.286 mol
  • 1,4-dioxane 125 mL
  • N,O-dimethylhydroxylamine hydrochloride (1.03 eq., 22.27 g, 0.228 mol), NMM (1.03 eq., 23.10 g, 0.228 mol) and EDCI (1.1 eq., 46.74 g, 0.244 mol) were added to a dichloromethane (300 mL) solution of D-N-Boc-serine (1.0 eq., 50.8 g, Net 44.9 g, 0.219 mol) at an internal temperature of -10°C. This solution was stirred overnight from -10°C to room temperature.
  • the aqueous layer was extracted three times with ethyl acetate (200mL), and the organic layers were combined and dried over sodium sulfate. After filtering off the sodium sulfate, the mixture was concentrated under reduced pressure to obtain a crude product (51.56g) as a pale yellow oil.
  • ethynylmagnesium bromide (0.5M in THF, 2.5eq., 715mL, 0.358mol) was added to a solution of B1-2 (1.0eq., 34.8g, 0.143mol) in THF (696mL) over 1.5 hours at room temperature, and the mixture was stirred at the same temperature for 2 hours.
  • a saturated aqueous ammonium chloride solution (160mL) was added to the reaction solution at -55°C, and the mixture was heated to -5°C and then concentrated under reduced pressure. Water (300mL) was added to the concentrated residue, and the mixture was extracted once with ethyl acetate (300mL) and once with ethyl acetate (150mL).
  • imidazole 1.5 eq., 11.71 g, 0.172 mol
  • TBSCl 1.2 eq., 20.74 g, 0.138 mol
  • B1-4 diastereomeric mixture, 1.0 eq., 36.0 g, containing 4.0 wt% ethyl acetate, 0.110 mol
  • triphenylphosphine 1.5 eq., 17.10 g, 0.085 mol
  • DIAD 1.5 eq., 17.09 g, 0.084 mol
  • the reaction solution was washed once with water (60 mL).
  • the aqueous layer was extracted twice with dichloromethane (60 mL).
  • the organic layers were combined and washed with a saturated aqueous sodium chloride solution (150 mL), and then the organic layer was dried over magnesium sulfate.
  • the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to give a crude product (13.4 g).
  • methylmagnesium bromide (12.4%, 3.0 eq., 176.06 g, 183 mmol) was added to a THF (300 mL) solution of B8-2 (calculated as 1.0 eq., 16.02 g, 61.0 mmol) under ice cooling over 14 minutes, and stirred at the same temperature for 1 hour.
  • a 10% aqueous ammonium chloride solution 200 mL
  • a saturated aqueous solution of sodium chloride (150 mL), ethyl acetate (50 mL) and water (180 mL) were added to the reaction solution and extracted once, and the aqueous layer was extracted three times with ethyl acetate (30 mL).
  • the organic layers were combined and dried over sodium sulfate, and the sodium sulfate was filtered off and concentrated under reduced pressure.
  • the reaction solution treated in the same manner using B9-2 (100 mg) was combined with the previous reaction solution, and ethyl acetate (130 mL) and water (200 mL) were added for one extraction.
  • the aqueous layer was extracted twice with ethyl acetate (30 mL), and the organic layers were combined and washed once with 5% aqueous sodium chloride solution (150 mL) and saturated aqueous sodium chloride solution (30 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure.
  • DIAD 90%, 1.5 eq., 17.12 g, 76.2 mmol
  • B9-3 1.0 eq., 21.95 g, containing 3.1 wt% ethyl acetate, 50.8 mmol
  • triphenylphosphine 1.5 eq., 19.99 g, 76.2 mmol
  • Fragment D-8 was synthesized as follows.
  • D8-2 The synthesis of D8-2 from D8-1 was carried out as follows. To a solution of D8-1 (calculated as 1.0 eq., 753 mg, 2.24 mmol) in DMF (6 mL), HOBt.H 2 O (1.2 eq., 413 mg, 2.69 mmol), EDCI (1.2 eq., 516 mg, 2.69 mmol), ethanol (2.0 eq., 0.26 mL, 4.45 mmol) and DMAP (1.0 eq., 274 mg, 2.24 mmol) were added and stirred at the same temperature for 18 hours.
  • HOBt.H 2 O 1.2 eq., 413 mg, 2.69 mmol
  • EDCI 1.2 eq., 516 mg, 2.69 mmol
  • ethanol 2.0 eq., 0.26 mL, 4.45 mmol
  • DMAP 1.0 eq., 274 mg, 2.24 mmol
  • Boc-L-Asp(OBzl)-OH 1.0 eq., 893 mg, 2.76 mmol
  • DMF 8 mL
  • HOBt.H 2 O 1.2 eq., 510 mg, 3.33 mmol
  • EDCI 1.2 eq., 639 mg, 3.34 mmol
  • ethanol 1.2 eq., 150 mg, 3.26 mmol
  • DMAP 1.0 eq., 339 mg, 2.77 mmol
  • Fragment D-10 was synthesized as follows.
  • Fragment D-11 was synthesized as follows.
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (6.56 g) as a pale yellow liquid.
  • Fragment D-12 was synthesized as follows.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (14.78 g).
  • This crude product was dissolved in ethyl acetate (100 mL), washed once with 5% aqueous sodium chloride solution (50 mL), and then dried over sodium sulfate. After filtering off the sodium sulfate, the mixture was concentrated under reduced pressure to obtain D12-1 (14.55 g, containing 0.6 wt% ethyl acetate, quant.) as a yellow solid.
  • Toluene (300 mL) was added to the reaction solution, which was then washed once with water (300 mL), once with a 5% aqueous potassium carbonate solution (300 mL), and once with a 5% aqueous sodium chloride solution (300 mL), and then dried over sodium sulfate.
  • Fragment D-13 was synthesized as follows. Under nitrogen atmosphere, HOBt.H 2 O (1.2 eq., 2.85 g, 18.6 mmol), EDCI (1.2 eq., 3.57 g, 18.6 mmol), 1-octanol (1.2 eq., 3.0 mL, 19.1 mmol) and DMAP (1.0 eq., 1.89 g, 15.5 mmol) were added to a solution of Boc-L-Asp(OBzl)-OH (1.0 eq., 5.00 g, 15.5 mmol) in DMF (45 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour.
  • HOBt.H 2 O 1.2 eq., 2.85 g, 18.6 mmol
  • EDCI 1.2 eq., 3.57 g, 18.6 mmol
  • 1-octanol 1.2 eq., 3.0 mL, 19.1 mmol
  • DMAP
  • Fragment D-14 was synthesized as follows. Under nitrogen atmosphere, HOBt.H 2 O (1.2 eq., 2.85 g, 18.6 mmol), EDCI (1.2 eq., 3.57 g, 18.6 mmol), 1-decanol (1.2 eq., 3.5 mL, 18.4 mmol) and DMAP (1.0 eq., 1.90 g, 15.5 mmol) were added to a solution of Boc-L-Asp(OBzl)-OH (1.0 eq., 5.00 g, 15.5 mmol) in DMF (45 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour.
  • HOBt.H 2 O 1.2 eq., 2.85 g, 18.6 mmol
  • EDCI 1.2 eq., 3.57 g, 18.6 mmol
  • 1-decanol 1.2 eq., 3.5 mL, 18.4 mmol
  • DMAP 1.0 e
  • Example 7 Synthesis of Compound 1 Under a nitrogen atmosphere, Fragment A-2 (1.05 eq., 5.81 g, containing 2.2 wt% ethyl acetate, 10.23 mmol) and Fragment B-1 (1.0 eq., 4.00 g, 9.74 mmol) were added to a toluene (111 mL) solution under ice cooling with TBD (1.05 eq., 1.42 g, 10.20 mmol) and stirred for 22 hours while warming to room temperature.
  • Fragment A-2 (1.05 eq., 5.81 g, containing 2.2 wt% ethyl acetate, 10.23 mmol)
  • Fragment B-1 1.0 eq., 4.00 g, 9.74 mmol
  • the reaction solution was washed once with a 5% aqueous solution of citric acid (50 mL), and the organic layer was washed once with a mixture of a 5% aqueous solution of sodium bicarbonate (50 mL)/a 5% aqueous solution of sodium chloride (50 mL) and once with a 5% aqueous solution of sodium chloride (50 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (10.90 g) as a light brown viscous material.
  • N-Fmoc-L-valine (Fragment C-1, 2.0 eq., 1.39 g, 4.10 mmol), EDCI (2.0 eq., 0.79 g, 4.12 mmol) and HOBt.H 2 O (2.0 eq., 0.63 g, 4.11 mmol) were added to a solution of compound 1-2 (1.0 eq., 2.32 g, containing 2.1 wt% ethyl acetate, 2.06 mmol) in DMF (24 mL), and the mixture was stirred at room temperature for 3.5 hours.
  • Lithium hydroxide monohydrate (4.0 eq., 0.34 g, 8.10 mmol) was added to a mixture of compound 1-3 (1.0 eq., 2.22 g, 2.01 mmol) in THF (20 mL)/water (10 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 3 hours.
  • the reaction solution was cooled on ice, and 5% aqueous citric acid (30 mL) was added to adjust the pH to 3, and the mixture was extracted once with ethyl acetate (30 mL). The organic layer was washed once with 5% aqueous sodium chloride (30 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (2.45 g) as a pale yellow viscous material.
  • DIPEA (10.0 eq., 1.11 g, 8.59 mmol) was added to a solution of HATU (5.0 eq., 1.63 g, 4.29 mmol) in DMF (842 mL) at room temperature. Then, a solution of compound 1-4 (1.0 eq., 0.68 g, containing 4.4 wt% ethyl acetate, 0.855 mmol) in DMF (8 mL) was added at the same temperature over 17 hours, and after completion of the dropwise addition, the mixture was stirred at room temperature for another 1.5 hours.
  • the reaction solution was concentrated under reduced pressure, and ethyl acetate (15 mL) and a 5% aqueous citric acid solution (15 mL) were added to the concentrated residue and washed once by separation.
  • the organic layer was washed once with a 5% aqueous sodium bicarbonate solution (15 mL) and once with a 5% aqueous sodium chloride solution (30 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a mixture of compound 1-5 and compound 1-6 (1.05 g) as a light brown amorphous substance.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 0.33 g, 2.12 mmol) and 80% sodium chlorite (4.5 eq., 0.30 g, 2.65 mmol) were added to a mixture of aldehyde (1.0 eq., 0.39 g, isomer included, calculated as 0.60 mmol) in t-butyl alcohol (16 mL)/amylene (4 mL)/water (4 mL) at room temperature, and the mixture was stirred at the same temperature for 1.5 hours.
  • reaction solution treated with compound 1-7 (100 mg) in the same manner was combined with the previous reaction solution, and toluene (20 mL), 5% aqueous citric acid solution (20 mL), and 5% aqueous sodium chloride solution (10 mL) were added and washed once.
  • the organic layer was washed once with 5% aqueous citric acid solution (20 mL), once with 5% aqueous sodium bicarbonate solution (20 mL), and once with 5% aqueous sodium chloride solution (20 mL), dried over sodium sulfate, and then filtered to remove sodium sulfate.
  • Example 8 Synthesis of compound 9
  • DIPEA 1.5 eq., 91 ⁇ L, 0.54 mmol
  • HATU 1.5 eq., 204 mg, 0.54 mmol
  • dichloromethane 6.6 mL
  • compound 1-7 1.0 eq., 264 mg, isomer mixture, containing 12.5 wt% TBAF, 0.36 mmol
  • L-aspartic acid dibenzyl ester hydrochloride Frament D-2, 1.5 eq., 188 mg, 0.54 mmol
  • reaction solution was washed once with a 5% aqueous citric acid solution (10 mL), and the organic layer was washed once with a mixture of a 5% aqueous sodium hydrogen carbonate solution (10 mL)/a 5% aqueous sodium chloride solution (10 mL), and then dried over sodium sulfate.
  • the reaction solution obtained by treating compound 9-1 (10 mg) in the same manner was combined with the previous reaction solution, the catalyst was removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain a crude product (58 mg) as an orange viscous material.
  • Example 9 Synthesis of Compound 2 Under a nitrogen atmosphere, N-Fmoc-L-glycine (Fragment C-3, 2.0 eq., 1.77 g, 5.95 mmol), EDCI (2.0 eq., 1.14 g, 5.95 mmol) and HOBt.H 2 O (2.0 eq., 0.91 g, 5.94 mmol) were added to a DMF (35 mL) solution of compound 1-2 (1.0 eq., 2.32 g, calculated as PMBOH, containing ethyl acetate, 2.97 mmol) and stirred at room temperature for 2 hours.
  • N-Fmoc-L-glycine Frament C-3, 2.0 eq., 1.77 g, 5.95 mmol
  • EDCI 2.0 eq., 1.14 g, 5.95 mmol
  • HOBt.H 2 O 2.0 eq., 0.91 g, 5.94 mmol
  • Lithium hydroxide monohydrate (4.0 eq., 0.50 g, 11.92 mmol) was added to a mixture of compound 2-9 (1.0 eq., 3.50 g, 2.97 mmol) in THF (28 mL)/water (14 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 3 hours.
  • the reaction solution was ice-cooled, and a 5% aqueous citric acid solution (45 mL) was added to adjust the pH to 3, and the mixture was extracted once with ethyl acetate (45 mL).
  • the organic layer was washed once with a 5% aqueous sodium chloride solution (45 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (3.55 g) as a pale yellow viscous material.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 123 mg, 0.788 mmol) and 80% sodium chlorite (4.5 eq., 114 mg, 1.008 mmol) were added to a mixture of aldehyde (1.0 eq., 131 mg, containing isomers, calculated as 0.224 mmol) in t-butyl alcohol (5.6 mL)/amylene (1.4 mL)/water (1.4 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour. Ethyl acetate (15 mL) and water (15 mL) were added to the reaction solution, and the mixture was extracted once.
  • Chemcat NX type 50% water content, 3.2 mg
  • the catalyst was removed by filtration through Celite, and the filtrate was concentrated under reduced pressure and then reacted again.
  • a mixture of THF (3.2 mL)/3.2 mL) was added to the concentrated residue, and the system was replaced with nitrogen, and then 10% palladium-carbon (N.E. Chemcat NX type, 50% water content, 5.8 mg) and TFA (2.0 eq., 10.7 ⁇ L, 0.140 mmol) were added at room temperature.
  • the system was replaced with hydrogen, and the mixture was stirred at the same temperature for 23 hours.
  • the catalyst was removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain a crude product (59 mg) as a light brown viscous material.
  • Example 9A Synthesis of Compound 9A The steps up to compound 1-7 are similar to the synthesis method of compound 1.
  • Example 9B Synthesis of Compound 9B The steps up to compound 1-7 were carried out as described in Example 7.
  • the synthesis of compound 9B-1 from compound 1-7 was carried out as follows. Under a nitrogen atmosphere, DEPBT (1.5 eq., 55.0 mg, 0.184 mmol) and 2,4,6-collidine (3.0 eq., 44.2 mg, 0.364 mmol) were added to a solution of Compound 1-7 (1.0 eq., 78.0 mg, 0.122 mmol) and Fragment D-8 (1.5 eq., 47.2 mg, 0.188 mmol) in THF (1.2 mL) under ice cooling, and the mixture was stirred at the same temperature for 6 hours, and then stirred at room temperature for 16 hours.
  • Example 9C Synthesis of Compound 9C The synthesis of compound 9C-1 from compound 1-7 was carried out as follows.
  • Example 9D Synthesis of Compound 9D
  • Compound 1-7 was synthesized as described in Example 7.
  • Compound 9D-1 was synthesized from compound 1-7 as follows. Under a nitrogen atmosphere, DEPBT (1.5 eq., 48.8 mg, 163 ⁇ mol) and 2,4,6-collidine (3.0 eq., 38.6 mg, 319 ⁇ mol) were added to a solution of Compound 1-7 (1.0 eq., 69.0 mg, 108 ⁇ mol) and Fragment D-10 (1.5 eq., 50.1 mg, 163 ⁇ mol) in THF (1 mL) under ice cooling, and the mixture was stirred at the same temperature for 6 hours, and then stirred at room temperature for 16 hours.
  • Example 9E Synthesis of Compound 9E
  • Compound 9E was synthesized. Under a nitrogen atmosphere, 2,4,6-collidine (3.0 eq., 55 ⁇ L, 418 ⁇ mol) and DEPBT (1.5 eq., 62.9 mg, 210 ⁇ mol) were added to a solution of Compound 1-7 (1.0 eq., 90.3 mg, 141 ⁇ mol) and Fragment D-11 (1.4 eq., 78.5 mg, 200 ⁇ mol) in THF (1.4 mL) under ice cooling, and the mixture was stirred for 7 hours under ice cooling, and then stirred at room temperature for 16.5 hours.
  • Fragment D-11 (0.5 eq., 27.1 mg, 69 ⁇ mol) was added at room temperature, and DEPBT (0.5 eq., 22.5 mg, 75 ⁇ mol) was added under ice cooling, and the mixture was stirred for 2 hours under ice cooling, and then stirred at room temperature for 1.5 hours. After adding a saturated aqueous solution of ammonium chloride (1.5 mL) to the reaction solution, the mixture was extracted once with ethyl acetate (8 mL) and once with ethyl acetate (4 mL).
  • Example 9F Synthesis of Compound 9F Under a nitrogen atmosphere, 2,4,6-collidine (3.0 eq., 57 ⁇ L, 433 ⁇ mol) and DEPBT (1.5 eq., 65.8 mg, 220 ⁇ mol) were added to a solution of Compound 1-7 (1.0 eq., 93.3 mg, 141 ⁇ mol) and Fragment D-13 (1.6 eq., 75.6 mg, 225 ⁇ mol) in THF (1.45 mL) under ice cooling, and the mixture was stirred for 6 hours under ice cooling, and then stirred at room temperature for 16 hours.
  • Compound 9G-2 was synthesized from compound 9G-1 as follows. Lithium hydroxide (6.0 eq., 207 mg, 8.62 mmol) was added to a mixture of compound 9G-1 (1.0 eq., 1.71 g, calculated as 1.44 mmol) in THF (10 mL)/water (5 mL) at room temperature, and the mixture was stirred at room temperature for 4 hours. 1N aqueous hydrochloric acid (5.0 mL) was added to the reaction solution to adjust the pH to 7. Water (10 mL) was added to the reaction solution, and the mixture was extracted three times with ethyl acetate (20 mL), and the organic layers were combined and washed once with saturated aqueous sodium chloride solution (10 mL).
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (1.84 g) as a brown viscous substance.
  • Compound 9G-3 was synthesized from compound 9G-2 as follows. A mixture of compound 9G-2 (calculated as 1.0 eq., 1.05 mg, 1.44 mmol) in acetonitrile (14.5 mL)/THF (14.5 mL) was added dropwise at room temperature to a solution of HATU (2.0 eq., 1.10 g, 2.88 mmol), HOAt (2.0 eq., 391 mg, 2.87 mmol) and DIPEA (2.0 eq., 0.49 mL, 2.89 mmol) in acetonitrile (718 mL) at about 100 ⁇ L/min over 5 hours, and then stirred at room temperature for 15.5 hours.
  • HATU 2.0 eq., 1.10 g, 2.88 mmol
  • HOAt 2.0 eq., 391 mg, 2.87 mmol
  • DIPEA 2.0 eq., 0.49 mL, 2.89 mmol
  • the reaction solution was concentrated under reduced pressure to about 250 mL, and then ethyl acetate (200 mL) was added, and the mixture was washed twice with a mixture of water (50 mL)/saturated ammonium chloride solution (100 mL), twice with a saturated sodium bicarbonate solution (100 mL), and once with a saturated sodium chloride solution (50 mL).
  • the organic layer was dried over magnesium sulfate, filtered off, and concentrated under reduced pressure to obtain a crude product (1.92 g) as a reddish-brown viscous material.
  • Compound 9G-4 was synthesized from compound 9G-3 as follows. To a solution of compound 9G-3 (1.0 eq., 230 mg, 0.324 mmol) in THF (3.2 mL), TBAF (1 M in THF, 2.5 eq., 0.81 mL, 0.810 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 2 hours. Ethyl acetate (30 mL) was added to the reaction solution, which was washed three times with a saturated aqueous ammonium chloride solution (20 mL) and once with a saturated aqueous sodium chloride solution (10 mL), and then dried over magnesium sulfate.
  • the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (214 mg) as a pale yellow amorphous substance.
  • Compound 9G-5 was synthesized from compound 9G-4 as follows. Under a nitrogen atmosphere, Dess-Martin periodinane (1.5 eq., 203 mg, 0.477 mmol) was added to a dichloromethane (3 mL) solution of compound 9G-4 (1.0 eq., 189 mg, 0.318 mmol) at room temperature, and the mixture was stirred at the same temperature for 1 hour. The reaction mixture was quenched by adding a mixture of 10% aqueous sodium sulfite solution (10 mL)/saturated aqueous sodium hydrogen carbonate solution (10 mL), and the mixture was extracted once with dichloromethane (20 mL) and twice with dichloromethane (10 mL).
  • Compound 9G-6 was synthesized from compound 9G-5 as follows. Fragment D-14 (1.5 eq., 164 mg, 0.435 mmol) was added to a mixture of compound 9G-5 (1.0 eq., 177 mg, 0.291 mmol) in ethyl acetate (1.8 mL)/water (540 ⁇ L) at room temperature. DIPEA (2.4 eq., 0.12 mL, 0.706 mmol) was added under ice cooling and stirred for 10 minutes, after which DMT-MM (1.7 eq., 138 mg, 0.497 mmol) was added and stirred at the same temperature for 2.5 hours.
  • Fragment D-14 1.5 eq., 164 mg, 0.435 mmol
  • DIPEA 2.4 eq., 0.12 mL, 0.706 mmol
  • Compound 9G-7 was synthesized from compound 9G-6 as follows. To a solution of compound 9G-6 (1.0 eq., 235 mg, 0.243 mmol) in dichloromethane (2.4 mL), TFA (9.7 eq., 0.18 mL, 2.35 mmol) was added at room temperature and stirred at the same temperature for 1 hour. Then, TFA (9.7 eq., 0.18 mL, 2.35 mmol) was added and stirred at the same temperature for 7 hours. The reaction solution was ice-cooled, and a saturated aqueous sodium bicarbonate solution (15 mL) was added to adjust the pH to 8.
  • reaction solution was extracted once with ethyl acetate (20 mL) and twice with ethyl acetate (10 mL), and then the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (20 mL). The organic layer was dried over magnesium sulfate, filtered off the magnesium sulfate, and concentrated under reduced pressure to obtain compound 9G-7 (210 mg, yield 99%) as a pale yellow amorphous substance.
  • Example 10 Synthesis of Compound 10 Under a nitrogen atmosphere, DIPEA (1.5 eq., 40 ⁇ L, 0.235 mmol) and HATU (1.5 eq., 90 mg, 0.237 mmol) were added to a dichloromethane (2.4 mL) solution of compound 2-13 (1.0 eq., 95 mg, containing isomers, 0.158 mmol) and L-aspartic acid dibenzyl ester hydrochloride (Fragment D-2, 1.5 eq., 83 mg, 0.237 mmol) under ice cooling, and the mixture was stirred for 3 hours while warming to room temperature.
  • DIPEA 1.5 eq., 40 ⁇ L, 0.235 mmol
  • HATU 1.5 eq., 90 mg, 0.237 mmol
  • Triphenylphosphine (0.75 eq., 0.99 g, 3.77 mmol) and DIAD (1.5 eq., 0.81 mL, 3.77 mmol) were added and stirred for another 0.5 hours, and the reaction solution was allowed to cool and then concentrated under reduced pressure.
  • a 1M aqueous hydrochloric acid solution (1.1 eq., 5.00 mL, 5.00 mmol) was added to an acetonitrile (45 mL) solution of compound 5-1 (1.0 eq., 5.35 g, containing impurities, calculated as 4.55 mmol) under ice cooling, and the mixture was stirred for 2 hours while warming to room temperature.
  • a few drops of a saturated aqueous sodium hydrogen carbonate solution were added to the reaction solution to adjust the pH to 5 to 7, and then the mixture was concentrated under reduced pressure.
  • a saturated aqueous sodium hydrogen carbonate solution (20 mL) was added to the concentrated residue, and the mixture was extracted three times with ethyl acetate (25 mL).
  • N-Boc-L-valine (Fragment C-1', 2.0 eq., 528 mg, 2.43 mmol), EDCI (2.0 eq., 466 mg, 2.43 mmol) and HOBt.H 2 O (2.0 eq., 372 mg, 2.43 mmol) were added to a DMF (12 mL) solution of compound 5-2 (1.0 eq., 0.80 g, containing impurities, calculated as 1.22 mmol) and stirred at room temperature for 20 hours. Water (50 mL) was added to the reaction solution, and the mixture was extracted three times with ethyl acetate (25 mL).
  • the reaction solution was concentrated under reduced pressure, and ethyl acetate (20 mL) and water (20 mL) were added to the concentrated residue for one liquid-liquid extraction, and the organic layer was washed once with a saturated aqueous sodium chloride solution (10 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (0.71 g) as an ocher solid.
  • trimethyltin hydroxide (4.0 eq., 159 mg, 0.88 mmol) was added to a solution of compound 5-5 (1.0 eq., 138 mg, calculated as containing impurities, 0.22 mmol) in 1,2-dichloroethane (3.45 mL), and the mixture was stirred at an external temperature of 80° C. for 4 hours.
  • the reaction solution was allowed to cool, and ethyl acetate (20 mL) and a 1M aqueous hydrochloric acid solution (20 mL) were added for one liquid-liquid separation extraction.
  • the organic layer was washed once with water (30 mL) and once with a 10% aqueous sodium chloride solution (30 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (1.175 g) as a yellow viscous material.
  • reaction solution was concentrated under reduced pressure, and a 0.05 M hydrogen chloride/1,4-dioxane solution (15 mL) was added to the concentrated residue, which was then concentrated under reduced pressure again to obtain compound 3-2 (1.196 g, containing 1,4-dioxane) as a colorless viscous substance.
  • the reaction solution was concentrated under reduced pressure, and ethyl acetate (15 mL) and a 5% aqueous citric acid solution (15 mL) were added to the concentrated residue and extracted once, and the organic layer was washed once with a 5% aqueous sodium hydrogen carbonate solution (15 mL) and once with a 5% aqueous sodium chloride solution (15 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (0.81 g) as a light brown amorphous substance.
  • trimethyltin hydroxide (4.0 eq., 124 mg, 0.69 mmol) was added to a solution of compound 3-3 (1.0 eq., 118 mg, containing 16.5 wt % of 1,2-dichloroethane, 0.17 mmol) in 1,2-dichloroethane (2.7 mL), and the mixture was stirred at an external temperature of 80° C. for 3.5 hours. After the reaction solution was allowed to cool, ethyl acetate (20 mL) and 1M aqueous hydrochloric acid solution (20 mL) were added and extracted once.
  • Example 13 Synthesis of compound 11
  • a solution of L-aspartic acid dibenzyl ester hydrochloride (Fragment D-2, 2.0 eq., 286 mg, 0.816 mmol) and DIPEA (1.9 eq., 135 ⁇ L, 0.775 mmol) in dichloromethane (2.5 mL) was added to a solution of compound 3-4 (calculated as 1.0 eq., 366.6 mg, 0.408 mmol) in dichloromethane (3.7 mL) under ice-cooling.
  • HOBt.H 2 O 2.0 eq., 125 mg, 0.816 mmol
  • EDCI 2.0 eq., 156 mg, 0.816 mmol
  • Example 14 Synthesis of compound 6
  • TBD (1.08 eq., 857 mg, 6.16 mmol) was added to a toluene (57 mL) solution of Fragment A-3 (1.0 eq., 3.10 g, 5.72 mmol) and Fragment B-1 (1.2 eq. 3.17 g, containing DIAD 20 mol%, 6.87 mmol) under ice cooling, and the mixture was stirred at room temperature for 3 hours.
  • Toluene was distilled off by vacuum concentration to obtain a crude product as a brownish-brown amorphous substance.
  • Lithium hydroxide (4.0 eq., 181 mg, 7.58 mmol) was added to a mixture of compound 6-3 (1.0 eq., 2.07 g, 1.90 mmol) in THF (12 mL)/water (6 mL) at room temperature, and the mixture was stirred at room temperature for 3.5 hours.
  • the reaction mixture was adjusted to pH 7 by adding 1N aqueous hydrochloric acid (5 mL) under ice cooling, and then extracted three times with ethyl acetate (10 mL). The organic layers were combined and washed twice with saturated aqueous sodium chloride solution (30 mL).
  • the organic layer was dried over magnesium sulfate, and the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (2.21 g).
  • a solution of compound 6-4 (1.0 eq., 2.80 g, 3.75 mmol) in THF (375 mL) was added dropwise at room temperature to a solution of PyBOP (5.0 eq., 9.76 g, 18.76 mmol), HOBt.H 2 O (5.0 eq., 2.87 g, 18.76 mmol) and DIPEA (5.0 eq., 3.2 mL, 18.82 mmol) in THF (1.5 L) at about 80 ⁇ L/min over 4 days.
  • the reaction solution was concentrated under reduced pressure until the liquid volume was reduced to about one tenth, and then washed twice with a saturated aqueous sodium bicarbonate solution (100 mL).
  • Dess-Martin periodinane (1.5 eq., 508 mg, 1.20 mmol) was added to a dichloromethane (8 mL) solution of compound 6-6 (1.0 eq., 495 mg, 807 ⁇ mol) under a nitrogen atmosphere under ice cooling, and the mixture was stirred at room temperature for 1 hour.
  • a 10% aqueous sodium sulfite solution (10 mL) and a saturated aqueous sodium bicarbonate solution (10 mL) were added to the reaction solution, and the mixture was washed once with a separated solution.
  • the aqueous layer was extracted twice with dichloromethane (10 mL), and the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (30 mL). The organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain aldehyde (515 mg, crude yield 104%).
  • the reaction solution obtained by treating compound 6-8 (1.0 eq., 5 mg, 5.34 ⁇ mol) in the same manner was combined with the previous reaction solution, and the catalyst was removed by celite filtration. The filtrate was then concentrated under reduced pressure to obtain a crude product (25 mg).
  • Example 15 Synthesis of compound 15
  • the reaction was carried out in the same manner as for Compound 6, and Compound 15 (23.1 mg, yield 74%, purity 98.6%) was obtained from Compound 6-9 as a TFA salt.
  • Example 16 Synthesis of compound 19
  • TBD (1.10 eq., 145 mg, 1.04 mmol) was added to a toluene (10 mL) solution of Fragment A-3 (1.0 eq., 514 mg, 0.949 mmol) and Fragment B-9 (1.12 eq., 425 mg, 1.06 mmol) under ice cooling, and the mixture was stirred at room temperature for 1.5 hours.
  • the mixture was heated to 40° C. and stirred for 1.5 hours, then heated to 60° C. and stirred for 16 hours.
  • the reaction solution was concentrated under reduced pressure to obtain a crude product (1.21 g).
  • N-Fmoc-L-valine (Fragment C-1, 1.2 eq., 211 mg, 620 ⁇ mol), EDCI (1.2 eq., 122 mg, 638 ⁇ mol) and HOBt.H 2 O (1.2 eq., 97.5 mg, 637 ⁇ mol) were added to a solution of compound 19-2 (1.0 eq., 392 mg, 518 ⁇ mol) in DMF (5 mL), and the mixture was stirred at room temperature for 2 hours. Separation and extraction were performed three times with hexane (2.5 mL)/ethyl acetate (7.5 mL).
  • lithium hydroxide (4.1 eq., 50.8 mg, 2.12 mmol) was added to a mixture of compound 19-3 (1.0 eq., 608 mg, 518 ⁇ mol) in THF (4 mL)/water (2 mL) at room temperature, and the mixture was stirred at the same temperature for 4.5 hours.
  • 1N aqueous hydrochloric acid (about 1 mL) was added under ice cooling to adjust the pH to 7. After dilution with water, the mixture was extracted three times with ethyl acetate (10 mL), and the organic layer was dried over magnesium sulfate. After filtering off the magnesium sulfate, the mixture was concentrated under reduced pressure to obtain a crude product (528 mg).
  • the reaction solution was diluted with ethyl acetate (50 mL), washed once with a saturated aqueous ammonium chloride solution (30 mL) and three times with water (30 mL), and then the organic layer was dried over magnesium sulfate. After filtering off the magnesium sulfate, the mixture was concentrated under reduced pressure to obtain a crude product (647 mg).
  • Fragment A-2 (1.0 eq., 1.10 g, containing 2.2 wt % ethyl acetate, 1.94 mmol) and Fragment Triphenylphosphine (3.0 eq., 1.53 g, 5.83 mmol) was added to a toluene (5 mL) solution of B-3′′ (2.5 eq., 3.34 g, containing 2.4 wt % ethyl acetate, 4.86 mmol) at room temperature, and then DMEAD (3.0 eq., 1.37 g, 5.83 mmol) was added under ice cooling, and the mixture was stirred at the same temperature for 30 minutes and then at room temperature for 45 minutes.
  • B-3′′ 2.5 eq., 3.34 g, containing 2.4 wt % ethyl acetate, 4.86 mmol
  • Triphenylphosphine (1.5 eq., 0.77 g, 2.91 mmol) and DMEAD (1.5 eq., 0.69 g, 2.91 mmol) were added at room temperature, and the mixture was stirred at the same temperature for 45 minutes.
  • the reaction solution was concentrated under reduced pressure to obtain a crude product (9.49 g) as an orange oil. Fragment
  • the reaction solution was concentrated under reduced pressure, and 1M aqueous hydrochloric acid solution (15 mL) and water (10 mL) were added to the concentrated residue, and the mixture was extracted once with ethyl acetate (30 mL) and three times with ethyl acetate (10 mL). The organic layers were combined and washed once with 5% aqueous sodium bicarbonate (10 mL) and once with 5% aqueous sodium chloride (10 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (0.94 g) as a pale yellow oil.
  • triethylsilane (25.6 eq., 2.91 mL, 18.3 mmol) and TFA (3.2 mL) were added to a dichloromethane (6.3 mL) solution of compound 4-3' (1.0 eq., 0.82 g, containing 2.4 wt % ethyl acetate, 0.712 mmol) under ice cooling, and the mixture was stirred at the same temperature for 20 minutes, then stirred at room temperature for 4 hours, and the reaction solution was concentrated under reduced pressure.
  • reaction solution was concentrated under reduced pressure at a bath temperature of 50° C., water (50 mL) was added to the concentrated residue, and the mixture was extracted once with ethyl acetate (50 mL) and three times with ethyl acetate (10 mL). The organic layers were combined and washed with a 5% aqueous sodium chloride solution (20 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to give a crude product (0.77 g) as a pale orange oil.
  • Example 18 Synthesis of compound 12
  • triphenylphosphine (3.0 eq., 1.53 g, 5.83 mmol) and DMEAD (3.0 eq., 1.37 g, 5.83 mmol) were added to a toluene (10 mL) solution of Fragment A-2 (1.0 eq., 1.10 g, containing 2.2 wt% ethyl acetate, 1.94 mmol) and Fragment B-3 (1.5 eq., 1.15 g, containing 4.9 wt% ethyl acetate, 2.92 mmol) at room temperature, and the mixture was stirred at the same temperature for 15 minutes and then at an external temperature of 50 ° C.
  • Fragment A-2 1.0 eq., 1.10 g, containing 2.2 wt% ethyl acetate, 1.94 mmol
  • Fragment B-3 1.5 eq., 1.15 g, containing 4.9 wt%
  • Fragment B-3 (1.5 eq., 1.15 g, containing 4.9 wt % ethyl acetate, 2.92 mmol), triphenylphosphine (0.75 eq., 383 mg, 1.46 mmol) and DMEAD (0.75 eq., 343 mg, 1.46 mmol) were added, and the mixture was stirred at the same temperature for 15.5 hours, and triphenylphosphine (0.75 eq., 383 mg, 1.46 mmol) and DMEAD (0.75 eq., 343 mg, 1.46 mmol) were added again.
  • Fragment B-3 (0.5 eq., 383 mg, containing 4.9 wt% ethyl acetate, 0.97 mmol), triphenylphosphine (0.75 eq., 383 mg, 1.46 mmol) and DMEAD (0.75 eq., 343 mg, 1.46 mmol) were repeatedly added four times every 1.5 hours while stirring at the same temperature. Then, the reaction solution was stirred at the same temperature for 50 minutes and then at room temperature for 15.5 hours, and concentrated under reduced pressure to obtain a crude product (14.2 g) as an orange oil.
  • the reaction solution was concentrated under reduced pressure, and 1M aqueous hydrochloric acid solution (15 mL) and water (10 mL) were added to the concentrated residue, and the mixture was extracted once with ethyl acetate (35 mL) and twice with ethyl acetate (15 mL). The organic layers were combined, washed once with 5% aqueous sodium bicarbonate (20 mL) and once with 5% aqueous sodium chloride (20 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (1.18 g) as a pale yellow oil.
  • the reaction solution was concentrated under reduced pressure at a bath temperature of 43° C., water (40 mL) was added to the concentrated residue, and the aqueous layer was extracted once with ethyl acetate (100 mL) and three times with ethyl acetate (10 mL). The organic layers were combined and washed once with a 5% aqueous sodium chloride solution (50 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to give a crude product (0.89 g) as a pale orange oil.
  • Example 19 Synthesis of compound 7 Under nitrogen atmosphere, DIPEA (2.75mL, 15.8mmol, 2.2eq.), HOBt.H 2 O (1.32g, 8.61mmol, 1.2eq.) and EDCI (1.65g, 8.61mmol, 1.2eq.) were added to a dichloromethane (30mL) solution of Fragment D-1 (2.61g, 7.17mmol, 1.0eq.) and Boc- L- Ser-OH (1.62g, 7.89mmol, 1.1eq.) under ice cooling.
  • triphenylphosphine 1.5 eq., 1.47 g, 5.55 mmol
  • DMEAD 1.5 eq., 1.31 g, 5.55 mmol
  • Fragment A-3 1.0 eq., 1.99 g, 3.70 mmol
  • Fragment B-2′ 1.65 eq., 3.99 g, 6.11 mmol
  • Triphenylphosphine (1.0 eq., 0.98 g, 3.74 mmol) and DMEAD (1.0 eq., 0.89 g, 3.80 mmol) were added and stirred at the same temperature for 1 hour and 20 minutes, then triphenylphosphine (0.5 eq., 0.48 g, 1.83 mmol) and DMEAD (0.5 eq., 0.44 g, 1.88 mmol) were added again and stirred at the same temperature for 40 minutes.
  • Fragment B-2' (0.20 eq., 0.49 g, 0.75 mmol) was added and stirred at the same temperature for 25 minutes, then Fragment B-2' (0.20 eq., 0.49 g, 0.75 mmol) was added again and stirred at the same temperature for 19 hours.
  • DMEAD (0.1 eq., 93 mg, 0.40 mmol) was added and the mixture was stirred at the same temperature for 1 hour and 25 minutes, and then triphenylphosphine (0.2 eq., 198 mg, 0.75 mmol) and DMEAD (0.2 eq., 177 mg, 0.76 mmol) were added and the mixture was stirred at the same temperature for 45 minutes.
  • a 1M aqueous hydrochloric acid solution (1.1 eq., 1.62 mL, 1.62 mmol) was added to a solution of compound 7-1' (1.0 eq., 1.74 g, 1.47 mmol) in acetonitrile (18 mL) at room temperature, and the mixture was stirred at the same temperature for 2 hours.
  • DIPEA (10.0 eq., 1.08 mL, 6.20 mmol) was added to a solution of HATU (5.0 eq., 1.18 g, 3.10 mmol) in DMF (590 mL) at room temperature. Then, a solution of compound 7-4' (1.0 eq., 0.700 g, calculated as 0.62 mmol) in DMF (14 mL) was added at the same temperature over 17.5 hours, and after completion of the dropwise addition, the mixture was stirred at room temperature for another 2 hours and 50 minutes.
  • the reaction solution was concentrated under reduced pressure at a bath temperature of 50° C., water (25 mL) was added to the concentrated residue, and the mixture was extracted once with ethyl acetate (35 mL) and once with ethyl acetate (25 mL). The organic layers were combined and washed once with a 5% aqueous sodium bicarbonate solution (20 mL) and once with a 5% aqueous sodium chloride solution (20 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (866.4 mg) as a brown solid.
  • Solid 2 was dried under reduced pressure to obtain compound 7-7 (109.0 mg, containing TFA) as a white solid.
  • the reaction solution was concentrated under reduced pressure, and 1M aqueous hydrochloric acid solution (10 mL) and water (6 mL) were added to the concentrated residue, followed by separation and extraction once with ethyl acetate (20 mL) and three times with ethyl acetate (5 mL). The organic layers were combined, washed once with 5% aqueous sodium bicarbonate (10 mL) and once with 5% aqueous sodium chloride (10 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (817 mg) as a white solid.
  • DIPEA (10.0 eq., 958 ⁇ L, 5.50 mmol) was added to a solution of HATU (5.0 eq., 1.05 g, 2.75 mmol) in DMF (544 mL) at room temperature. Then, a solution of compound 8-2 (1.0 eq., 1.41 g, calculated as 0.550 mmol) in DMF (6 mL) was added at the same temperature over 17.5 hours, and after completion of the dropwise addition, the mixture was stirred at room temperature for another 2 hours.
  • the reaction solution was concentrated under reduced pressure at a bath temperature of 50° C., and ethyl acetate (35 mL) and water (15 mL) were added to the concentrated residue, followed by stirring at room temperature for 16 hours.
  • the solid was collected by filtration, washed once with a 5% aqueous sodium hydrogen carbonate solution (20 mL), once with water (20 mL), and once with ethyl acetate (20 mL), and the obtained solid was dried under reduced pressure to obtain a crude product (403.6 mg) as a pale yellow solid.
  • Example 21 Synthesis of compound 13
  • 1M aqueous sodium hydroxide solution 56mL, 56mmol, 1.0eq.
  • L-m-tyrosine 10.17g, 56.1mmol, 1.0eq.
  • CbzCl 11.01g, 64.6mmol, 1.15eq.
  • 1M aqueous sodium hydroxide solution 65mL, 65mmol, 1.15eq.
  • 5M aqueous sodium hydroxide solution (11.2mL, 56.1mmol, 1.0eq.) was added at room temperature and stirred for 35 minutes, and then 5M aqueous sodium hydroxide solution (56.1mL, 281mmol, 5.0eq.) was added and stirred for 1 hour.
  • 6M aqueous hydrochloric acid solution (84mL) was added to the aqueous layer to adjust the pH to 1.
  • the aqueous layer was extracted twice with ethyl acetate (20mL). The organic layers were combined and washed once with 5% aqueous sodium chloride solution (60mL), and then dried over sodium sulfate.
  • A5-1 (21.84 g, net: 17.91 g, containing ethyl acetate: 8.2 wt %, BnOH: 9.1 wt %, THF: 0.7 wt %, quant.) as a white solid.
  • Fragment A-6 (5.61 g, net: 5.25 g, ethyl acetate: 6.3 wt %, converted yield 71%, two-step yield from L-m-tyrosine
  • reaction solution using a mixture of compound 13-2 and compound 13-2' 100 mg was combined with the previous reaction solution, and 5% aqueous sodium bicarbonate solution (50 mL) was added, followed by extraction once with ethyl acetate (50 mL) and once with ethyl acetate (20 mL).
  • the organic layers were combined, washed once with 5% aqueous citric acid solution (50 mL) and once with 5% aqueous sodium chloride solution (50 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (1.46 g) as a brown viscous substance.
  • the reaction solution was concentrated under reduced pressure at a bath temperature of 50°C, and a 5% aqueous citric acid solution (30 mL) was added to the concentrated residue, and the mixture was extracted once with ethyl acetate (50 mL) and four times with ethyl acetate (10 mL). The organic layers were combined and washed once with a saturated aqueous sodium chloride solution (30 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to give a mixture of Compound 13-5 and Compound 13-6 (2.32 g) as a brown solid.
  • a 5% aqueous citric acid solution (10 mL) was added to a mixture of compound 13-5 and compound 13-6 (2.32 g) in THF (10 mL) at room temperature, and the mixture was stirred at the same temperature for 2 hours.
  • Ethyl acetate (30 mL) and saturated aqueous sodium chloride solution (40 mL) were added to the reaction solution and extracted once. The organic layer was dried over sodium sulfate, the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (2.70 g) as a brown solid. Ethyl acetate was added to the crude product and the insoluble matter was filtered off.
  • Dess-Martin periodinane (1.5 eq., 0.30 g, 0.710 mmol) was added to a dichloromethane (10 mL) solution of compound 13-6 (1.0 eq., 0.22 g, isomer mixture, 0.473 mmol) under ice cooling, and the mixture was stirred at room temperature for 6 hours.
  • the reaction solution was ice-cooled, and a 5% aqueous sodium hydrogen carbonate solution (10 mL) and a 5% aqueous sodium thiosulfate solution (10 mL) were added.
  • the mixture was extracted once with ethyl acetate (30 mL) and twice with ethyl acetate (10 mL), and the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (30 mL). After drying over sodium sulfate, the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain an aldehyde (0.23 g, containing isomers) as an orange oil.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 258 mg, 1.66 mmol) and 80% sodium chlorite (4.5 eq., 241 mg, 2.13 mmol) were added to a mixture of aldehyde (1.0 eq., 0.23 g, calculated as isomer mixture, 0.473 mmol) in t-butyl alcohol (13 mL)/amylene (3.2 mL)/water (3.2 mL) at room temperature, and the mixture was stirred at the same temperature for 2.5 hours.
  • Example 22 Synthesis of compound 14
  • 1M aqueous sodium hydroxide solution (16.3mL, 16.3mmol, 2.1eq.) was added to a THF (6mL) solution of A5-1 (3.00g, calculated as 7.71mmol, 1.0eq.).
  • CbzCl (1.20mL, 8.51mmol, 1.1eq.) was added under ice cooling, and the mixture was stirred at room temperature for 20 minutes. Water (10mL) and hexane (30mL) were added to the reaction solution, and the mixture was washed once by separation.
  • triethylsilane (3.63 mL) was added to a solution of A5-6 (3.50 g, Net: 3.35 g, 7.26 mmol, 1.0 eq.) in chloroform (36 mL) at room temperature.
  • TFA 36 mL was added under ice cooling, and the mixture was stirred at the same temperature for 5 minutes and at room temperature for 47.5 hours.
  • the concentrated residue (9.89 g) was diluted with THF (20 mL), and 5M aqueous sodium hydroxide solution (20 mL) was added under ice cooling, and the mixture was stirred at the same temperature for 30 minutes and then stirred at room temperature for 6 hours.
  • TBD (1.05 eq., 440 mg, 3.16 mmol) was added to a solution of Fragment A-5 (1.05 eq., 1.49 g, containing 4.6 wt% ethyl acetate, 3.16 mmol) and Fragment B-1 (1.0 eq., 1.24 g, 3.01 mmol) in toluene (33 mL) at room temperature, and the mixture was stirred for 17 hours at an external temperature of 50° C. TBD (0.5 eq., 229 mg, 1.64 mmol) was added, and the mixture was stirred at the same temperature for an additional 6 hours and 20 minutes, and then allowed to cool.
  • N-Fmoc-L-valine Frament C-1, 2.0 eq., 1.08 g, 3.18 mmol
  • EDCI 2.0 eq., 610 mg, 3.18 mmol
  • HOBt.H 2 O 2.0 eq., 487 mg, 3.18 mmol
  • a 5% aqueous solution of sodium hydrogen carbonate (50 mL) was added to the reaction solution, and the mixture was extracted once with ethyl acetate (100 mL) and once with ethyl acetate (10 mL).
  • the organic layers were combined and washed once with 5% aqueous citric acid (50 mL) and once with 5% aqueous sodium chloride (50 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (2.08 g) as an orange oil.
  • lithium hydroxide monohydrate (6.0 eq., 400 mg, 9.54 mmol) was added to a mixture of Compound 14-3 and Compound 14-3' (calculated as 1.0 eq., 1.71 g, 1.59 mmol) in THF (15 mL)/water (7 mL) at room temperature, and the mixture was stirred at the same temperature for 21 hours.
  • the reaction solution was ice-cooled, and 5% aqueous citric acid solution (30 mL) and sodium chloride (10 g) were added, and the mixture was extracted once with ethyl acetate (30 mL), twice with ethyl acetate (10 mL), and twice with THF (10 mL), and the organic layers were combined and dried over sodium sulfate.
  • the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (1.72 g) as a yellow oil containing solids.
  • THF 100 mL was added to the mixture, and the insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure to obtain a crude product (1.61 g) as a yellow oil.
  • a 5% aqueous citric acid solution (10 mL) was added to a THF (15 mL) solution of a mixture of compound 14-5 and compound 14-6 (3.80 g) at room temperature, and the mixture was stirred at the same temperature for 45.5 hours.
  • a saturated aqueous sodium chloride solution (40 mL) was added to the reaction solution, and the mixture was extracted once with ethyl acetate (50 mL) and twice with ethyl acetate (10 mL). The organic layers were combined and dried over sodium sulfate, the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (3.44 g) as a brown solid.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 335 mg, 2.15 mmol) and 80% sodium chlorite (4.5 eq., 312 mg, 2.76 mmol) were added to a mixture of aldehyde (1.0 eq., 0.32 g, isomer mixture, calculated as 0.613 mmol) in t-butyl alcohol (17 mL)/amylene (4.1 mL)/water (4.1 mL) at room temperature, and the mixture was stirred at the same temperature for 50 minutes.
  • a 5% aqueous citric acid solution (15 mL) was added to the reaction solution, and the mixture was extracted once with ethyl acetate (30 mL) and twice with ethyl acetate (10 mL).
  • the organic layers were combined and washed once with 5% aqueous sodium hydrogen carbonate solution (30 mL), once with 5% aqueous citric acid solution (30 mL), and once with 5% aqueous sodium chloride solution (30 mL), and the mixture was dried over sodium sulfate, after which the sodium sulfate was filtered off.
  • the crude reddish-brown oily product (0.60 g) obtained by vacuum concentration was purified using a flash silica gel column as follows to obtain compound 14-8 (78 mg, containing 1.2 wt % ethyl acetate, converted yield 15%) as a colorless viscous product.
  • Example 23 Synthesis of compound 16
  • TBD (1.05 eq., 245 mg, 1.76 mmol
  • Fragment A-2 (1.05 eq., 1.00 g, containing 1.9 wt% ethyl acetate and 0.3 wt% acetic acid, 1.76 mmol
  • Fragment B-9 1.0 eq., 671 mg, 1.68 mmol
  • TBD (0.3 eq., 70 mg, 0.503 mmol) was added, and the mixture was stirred at the same temperature for 15.5 hours, and then TBD (0.2 eq., 47 mg, 0.335 mmol) was added again, and the mixture was stirred at the same temperature for another 4 hours and allowed to cool.
  • a 5% aqueous citric acid solution (20 mL) was added to the reaction solution, and the mixture was extracted once with ethyl acetate (20 mL) and twice with ethyl acetate (5 mL). The organic layers were combined, washed once with 5% aqueous sodium chloride solution (20 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (1.928 g) as a yellow oil.
  • 1-dodecanethiol (6.0 eq., 2.38 mL, 10.0 mmol) was added to a DMF (7.65 mL) solution of a mixture of compound 16-1 and compound 16-1 PMB-free form (calculated as 1.0 eq., 1.53 g, 1.67 mmol) at room temperature, and then the mixture was cooled on ice, DBU (6.0 eq., 1.50 mL, 10.0 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. Ethyl acetate (40 mL), 5% aqueous citric acid solution (13.4 mL), and water (100 mL) were added to the reaction solution, and the mixture was extracted once.
  • DIPEA 0.2 eq., 61 ⁇ L, 0.35 mmol
  • DIPEA 0.5 eq., 152 ⁇ L, 0.87 mmol
  • a 5% aqueous sodium hydrogen carbonate solution 50 mL was added to the reaction solution, and the mixture was extracted once with toluene (90 mL) and twice with ethyl acetate (15 mL).
  • Lithium hydroxide monohydrate (10 eq., 650 mg, 15.5 mmol) was added to a THF (24 mL)/water (12 mL) mixture of compound 16-3 (calculated as 1.0 eq., 2.75 g, 1.55 mmol) at room temperature under a nitrogen atmosphere. After stirring at the same temperature for 16.5 hours, the reaction solution was ice-cooled, and a 5% aqueous citric acid solution (43 mL) was added to adjust the pH to 3. Sodium chloride (14 g) was dissolved, and then ethyl acetate (25 mL) and THF (10 mL) were added for one liquid-liquid extraction.
  • the aqueous layer was extracted three times with THF (15 mL), and the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (50 mL), and dried over sodium sulfate. The sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (2.49 g) as a pale orange oil.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 191 mg, 1.22 mmol) and 80% sodium chlorite (4.5 eq., 178 mg, 1.57 mmol) were added to a mixture of aldehyde (1.0 eq., 191 mg, calculated as 0.349 mmol) in t-butyl alcohol (10 mL)/amylene (2.4 mL)/water (2.4 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour.
  • DIPEA 1.0 eq., 26.3 ⁇ L, 0.151 mmol
  • DIPEA 1.0 eq., 26.3 ⁇ L, 0.151 mmol
  • 5% citric acid aqueous solution 15 mL was added, and the mixture was extracted once with ethyl acetate (10 mL) and twice with ethyl acetate (7 mL).
  • Example 24 Synthesis of compound 17
  • DIPEA 1.5 eq., 40.3 ⁇ L, 0.232 mmol
  • HATU 1.5 eq., 88.0 mg, 0.232 mmol
  • a dichloromethane 3 mL
  • compound 16-7 1.0 eq., 100 mg, containing 2.5 wt % ethyl acetate, 0.154 mmol
  • L-aspartic acid dibenzyl ester hydrochloride Frament D-2, 1.5 eq., 81.0 mg, 0.232 mmol
  • DIPEA (2.0 eq., 53.7 ⁇ L, 0.308 mmol) was added at room temperature, and the mixture was stirred at the same temperature for 17 hours. After that, 5% aqueous citric acid (15 mL) was added, and the mixture was extracted once with ethyl acetate (15 mL) and twice with ethyl acetate (7 mL). The organic layers were combined, washed once with 5% aqueous sodium bicarbonate (15 mL) and once with 5% aqueous sodium chloride (15 mL), dried over sodium sulfate, and filtered to remove sodium sulfate.
  • Example 25 Synthesis of compound 18
  • DEPBT 1.5 eq., 46 mg, 0.154 mmol
  • DIPEA 1.5 eq., 53 ⁇ L, 0.312 mmol
  • Fragment D-4 1.5 eq., 57 mg, 0.156 mmol
  • THF 2.64 mL
  • reaction solution obtained by reacting compound 1-7 (5 mg) in the same manner as above was combined with the reaction solution described above, and ethyl acetate (10 mL) and 5% aqueous citric acid (10 mL) were added for one extraction, and the organic layer was washed once with 5% aqueous sodium hydrogen carbonate (10 mL) and once with 5% aqueous sodium chloride (10 mL). The organic layer was dried over sodium sulfate, filtered to remove sodium sulfate, and concentrated under reduced pressure to obtain a crude product (89 mg) as a light brown viscous material.
  • Example 28 Synthesis of compound 23
  • TBD 1.3 eq., 853 mg, 6.13 mmol
  • Fragment A-3' 1.0 eq., 3.46 g, containing about 30% PMB ester of A3'-4, calculated as 4.78 mmol
  • Fragment B-1 1.3 eq. 2.52 g, 6.14 mmol
  • Toluene was removed by vacuum concentration to obtain a crude product as a brownish-brown amorphous substance.
  • Lithium hydroxide (4.0 eq., 353 mg, 14.72 mmol) was added to a mixture of compound 23-3 (1.0 eq., 4.34 g, 3.68 mmol) in THF (24 mL)/water (12 mL) at room temperature, and the mixture was stirred at room temperature for 4 hours.
  • a 2N aqueous hydrochloric acid solution was added to the reaction solution under ice cooling to adjust the pH to 7, and the mixture was extracted three times with ethyl acetate (20 mL). The organic layers were combined and washed once with a saturated aqueous sodium chloride solution (50 mL).
  • the organic layer was dried over magnesium sulfate, and the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (3.81 g).
  • the reaction solution was concentrated under reduced pressure to remove dichloromethane, and then ethyl acetate (30 mL) was added, followed by separation and washing with saturated aqueous ammonium chloride solution (30 mL) twice, water (30 mL) once, saturated aqueous sodium bicarbonate solution (30 mL) twice, and saturated aqueous sodium chloride solution (30 mL) once.
  • the aqueous layer of the saturated aqueous ammonium chloride solution and the aqueous layer of the saturated aqueous sodium hydrogen carbonate solution were each extracted once with ethyl acetate (20 mL), and the organic layers were combined and washed once with saturated aqueous sodium chloride solution (50 mL).
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (1.04 g) as a brown amorphous substance.
  • the organic layer was dried over magnesium sulfate, and the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (747 mg) as a white amorphous substance.
  • the resulting white solid was further recrystallized using a mixed solution of hexane/ethyl acetate (1/1) to remove impurities, thereby obtaining compound 23-6 (259 mg, yield 52%).
  • TFA (10.5 eq., 25 ⁇ L, 327 ⁇ mol) was added to a dichloromethane (500 ⁇ L) solution of compound 23-8 (1.0 eq., 28 mg, 31 ⁇ mol) under ice cooling, and the mixture was stirred at room temperature for 1 hour.
  • TFA (31.5 eq., 75 ⁇ L, 980 ⁇ mol) was added under ice cooling, and the mixture was stirred at room temperature for 2 hours.
  • a saturated aqueous solution of sodium bicarbonate (5 mL) was added to the reaction solution, and the mixture was extracted three times with ethyl acetate (5 mL).
  • Example 29 Synthesis of compound 22
  • a 10% aqueous sodium carbonate solution 1.1 eq., 26.34 g, 24.85 mmol
  • a solution of CbzOSu 1.1 eq., 6.19 g, 24.84 mmol
  • DME 20 mL
  • 3-nitro-L-tyrosine 1.0 eq., 5.11 g, 22.59 mmol
  • potassium carbonate 2.2 eq., 6.87 g, 49.70 mmol
  • BnBr 2.2 eq., 8.50 g, 49.70 mmol
  • TBAI 0.1 eq., 834 mg, 2.26 mmol
  • reaction solution treated with A8-4 (322 mg) was combined with the previous reaction solution, water (90 mL) was added, and the mixture was extracted once with ethyl acetate (80 mL) and twice with ethyl acetate (25 mL). The organic layers were then combined and washed once with 5% aqueous sodium chloride solution (50 mL), and dried over sodium sulfate.
  • reaction solution obtained by treating A8-5 (9.01 g) in the same manner was combined with the previous reaction solution, and insoluble matter was filtered off by celite filtration.
  • the residue was washed with ethyl acetate (250 mL), and the filtrate was washed once with a 5% aqueous sodium thiosulfate solution (200 mL) and once with a 5% aqueous sodium chloride solution (200 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off and concentrated under reduced pressure to obtain an orange viscous substance.
  • This orange viscous substance was dissolved in toluene (100 mL), washed once with water (100 mL) and once with a 5% aqueous sodium chloride solution (200 mL), and then dried over sodium sulfate. After filtering off the sodium sulfate, the mixture was concentrated under reduced pressure to obtain a mixture of A8-6 and A8'-1 (4:1, 10.91 g, containing 1.3 wt% toluene, converted yield 97%) as an orange viscous substance.
  • iron powder 5.0 eq., 5.42 g, 97.08 mmol
  • ammonium chloride 2.5 eq., 2.60 g, 48.61 mmol
  • THF 77 mL
  • ethanol 77 mL
  • water 16 mL
  • 1-dodecanethiol (9.0 eq., 8.93 g, 44.12 mmol) and DBU (9.0 eq., 6.71 g, 44.08 mmol) were added to a DMF (37 mL) solution of a mixture of compound 22-1 and compound 22-1' (calculated as 1.0 eq., 7.45 g, 4.90 mmol) at room temperature, and the mixture was stirred at the same temperature for 3.5 hours.
  • Toluene (80 mL) was added to the reaction solution, which was then washed twice with a 5% aqueous citric acid solution (80 mL), and ethyl acetate (80 mL) was added to the organic layer, which was washed once with a 5% aqueous sodium hydrogen carbonate solution (80 mL)/saturated aqueous sodium chloride solution (80 mL) mixture and once with a saturated aqueous sodium chloride solution (80 mL), and then dried over sodium sulfate.
  • N-Fmoc-L-valine (Fragment C-1, 1.1 eq., 1.65 g, 4.86 mmol), EDCI (1.1 eq., 0.93 g, 4.85 mmol), HOBt.H 2 O (1.1 eq., 0.74 g, 4.83 mmol) and triethylamine (1.5 eq., 0.67 g, 6.62 mmol) were added to a solution of a mixture of Compound 22-2 and Compound 22-2 ′ (1.0 eq., 4.68 g, calculated as containing Fragment A-8 and ethyl acetate, 4.41 mmol) in DMF (44 mL), and the mixture was stirred at room temperature for 2 hours.
  • Toluene (90 mL) was added to the reaction solution, and the mixture was washed once with 5% aqueous citric acid (90 mL), once with 5% aqueous sodium hydrogen carbonate (50 mL), and once with 5% aqueous sodium chloride (50 mL), and then dried over sodium sulfate. The sodium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (6.76 g) as a yellow viscous material.
  • lithium hydroxide monohydrate (2.0 eq., 0.18 g, 4.29 mmol) was added to a mixture of intermediate (1.0 eq., 1.93 g, containing 4.0 wt% ethyl acetate, 2.18 mmol) in THF (19 mL)/water (9.5 mL) and stirred at room temperature for 3 hours.
  • the reaction solution was cooled on ice, and 5% aqueous citric acid (30 mL) was added, followed by one separation and extraction with ethyl acetate (30 mL).
  • the organic layer was washed twice with 5% aqueous sodium chloride (30 mL), dried over sodium sulfate, filtered to remove sodium sulfate, and concentrated under reduced pressure to obtain a pale yellow amorphous crude product (2.03 g).
  • This pale yellow amorphous substance was dissolved in ethyl acetate (20 mL), washed twice with 5% aqueous sodium chloride solution (20 mL), and then dried over sodium sulfate.
  • DIPEA (10.0 eq., 2.80 g, 21.67 mmol) was added to a solution of HATU (5.0 eq., 4.12 g, 10.84 mmol) in acetonitrile (2150 mL) at room temperature. Then, a solution of compound 22-4 (1.0 eq., 1.72 g, containing 4.2 wt% ethyl acetate and 0.2 wt% acetic acid, 2.17 mmol) in acetonitrile (11.5 mL)/THF (11.5 mL) was added at the same temperature over 44 hours, and after completion of the dropwise addition, the mixture was stirred at room temperature for another hour.
  • the reaction solution was concentrated under reduced pressure, and ethyl acetate (20 mL) was added to the concentrated residue to filter out insoluble matter.
  • the filtrate was washed once with a 5% aqueous citric acid solution (20 mL), once with a 5% aqueous sodium hydrogen carbonate solution (20 mL), and once with a 5% aqueous sodium chloride solution (20 mL), and then dried over sodium sulfate.
  • the sodium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain a crude product (2.50 g) as a brown amorphous substance.
  • citric acid (10.0 eq., 939 mg, 4.89 mmol) was added to a mixture of compound 22-5 (1.0 eq., 364 mg, 0.488 mmol) in THF (1.08 mL)/water (1.08 mL), and the mixture was stirred at room temperature for 18.5 hours.
  • sodium dihydrogen phosphate dihydrate (3.5 eq., 197 mg, 1.26 mmol) and 80% sodium chlorite (4.5 eq., 183 mg, 1.62 mmol) were added to a mixture of aldehyde (calculated as 1.0 eq., 258 mg, 0.36 mmol) in t-butyl alcohol (10 mL)/amylene (2.5 mL)/water (2.5 mL) at room temperature, and the mixture was stirred at the same temperature for 0.5 hours.
  • reaction solution obtained by treating in the same manner with aldehyde (9.4 mg) was combined with the previous reaction solution, ethyl acetate (30 mL) was added, and the mixture was washed twice with 5% aqueous sodium chloride solution (30 mL), and then dried over sodium sulfate. After filtering off the sodium sulfate, the mixture was concentrated under reduced pressure to obtain a light brown amorphous crude product (303 mg).
  • Compound 24-1 was synthesized from compound 1-2 as follows. To a solution of compound 1-2 (1.0 eq., 300 mg, 0.384 mmol) in DMF (5 mL), HOBt.H 2 O (1.2 eq., 72.8 mg, 0.475 mmol), EDCI (1.2 eq., 88.5 mg, 0.462 mmol) and N-Fmoc-L-phenylalanine (Fragment C-6, 1.2 eq., 182 mg, 0.470 mmol) were added under ice cooling, and the mixture was stirred at room temperature for 18 hours.
  • HOBt.H 2 O 1.2 eq., 72.8 mg, 0.475 mmol
  • EDCI 1.2 eq., 88.5 mg, 0.462 mmol
  • N-Fmoc-L-phenylalanine Frragment C-6, 1.2 eq., 182 mg, 0.470 mmol
  • Compound 24-2 was synthesized from compound 24-1 as follows.
  • Compound 24-3 was synthesized from compound 24-2 as follows. A solution of compound 24-2 (1.0 eq., 257 mg, 0.318 mmol) in acetonitrile (32 mL) was added dropwise at room temperature to a solution of HATU (5.0 eq., 604 mg, 1.59 mmol), HOAt (5.0 eq., 216 mg, 1.59 mmol) and DIPEA (10 eq., 410 mg, 24.9 mmol) in acetonitrile (160 mL) at about 33 ⁇ L/min over 16 hours, and then stirred at room temperature for 8 hours.
  • HATU 5.0 eq., 604 mg, 1.59 mmol
  • HOAt 5.0 eq., 216 mg, 1.59 mmol
  • DIPEA 10 eq., 410 mg, 24.9 mmol
  • the reaction solution was washed once with a mixture of water (50 mL)/saturated aqueous sodium bicarbonate (50 mL) and once with a saturated aqueous ammonium chloride solution (50 mL).
  • the aqueous layers were combined and extracted once with ethyl acetate (100 mL), and then the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (100 mL).
  • the organic layer was dried over magnesium sulfate, filtered off, and concentrated under reduced pressure to give a crude product (963 mg) as a brown liquid.
  • the organic layer was dried over magnesium sulfate, and the magnesium sulfate was filtered off and concentrated under reduced pressure to obtain a crude product (122 mg) as a pale yellow amorphous substance.
  • the reaction solution was quenched by adding a saturated aqueous sodium bicarbonate solution (10 mL), and the mixture was extracted twice with ethyl acetate (10 mL), and the organic layers were combined and washed once with a saturated aqueous sodium chloride solution (10 mL).
  • the organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the mixture was concentrated under reduced pressure to obtain aldehyde (77.3 mg, quant.) as a pale yellow solid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本開示は、眼科疾患を処置または予防するための環状ペプチド誘導体組成物を提供すること。 本開示は、眼科疾患を処置または予防するための化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む組成物に関する。より特定すると、本開示の組成物は糖尿病性網膜症、緑内障または加齢黄斑変性を処置または予防することができる。本開示で提供される技術は、神経系細胞の活性を調節するための環状ペプチド誘導体およびその製造方法において利用することができる。

Description

眼科疾患を処置または予防するための環状ペプチド誘導体組成物
 本開示は、眼科疾患を処置または予防するための環状ペプチド誘導体組成物に関するものである。
 眼の種々の障害は、脈絡膜新生血管、網膜新生血管または虹彩新生血管または網膜浮腫を特徴とし、要因とし、または結果もたらす。これらの障害の1つが黄斑変性である。加齢黄斑変性症(AMD)は、65歳超のアメリカ人のおおよそ10人に1人が罹患する疾患である。AMDの一種に「湿潤型AMD」があり、加齢黄斑変性症の症例のおおよそ10%を占めるにすぎないが、老齢者における黄斑変性症に起因する法的失明のおおよそ90%の症例をもたらす。眼の別の障害は、糖尿病網膜症である。糖尿病網膜症は、糖尿病を10年間またはそれ以上有する全患者の最大80%まで罹患し得、成人失明の第三の主因であり、米国における失明のほぼ7%を占める。別の障害には、高血圧網膜症、中心性漿液性脈絡網膜症、嚢胞様黄斑浮腫、コーツ病および、脈絡膜血管腫、網膜色素上皮癌腫、網膜静脈閉塞症および眼内リンパ腫などの眼球および眼球付属器の腫瘍を含む。
 本開示は、眼科疾患を処置または予防するための環状ペプチド誘導体組成物を提供する。
 本開示者らは鋭意研究を行った結果、下記式ならびにその関連構造式で表される化合物、またはその薬学的に許容される塩(以下、「本開示の化合物」または「本開示化合物」(the compound(s) of the disclosure)と称することもある)が、顕著な増殖活性を有することを見出し、本開示の技術事項を完成させた。即ち、本開示は以下のとおりである。
(項目1)
 下記式(1)
により表される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む、眼科疾患を処置または予防するための組成物。
[式中、
、R、R、R、R、R、RおよびR10は各々独立して、
水素原子、または
必要に応じて置換された炭化水素基であり、あるいは、
およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、必要に応じて置換されたヘテロシクロアルキル基を形成し、
およびRは各々独立して、
水素原子、必要に応じて置換された炭化水素基、カルボキシル基、
必要に応じて置換されたアルコキシカルボニル基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
11、R12、R13、およびR14は各々独立して、
水素原子、必要に応じて置換された炭化水素基、ヒドロキシ基、
必要に応じて置換されたアルコキシ基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
Xは、CHまたはCOであり、
Aは、O、NHまたはSであり、ここでNHは必要に応じて置換され得る。]
(項目2)
 前記眼科疾患は、網膜疾患を含む、先行する項目のいずれか一項に記載の組成物。
(項目3)
 前記眼科疾患は、糖尿病性網膜症、緑内障または加齢黄斑変性のうちの少なくとも一つを含む、先行する項目のいずれか一項に記載の組成物。
(項目4)
 RおよびRは各々独立して、水素原子、またはC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目5)
 RおよびRは各々独立して、水素原子、メチル基またはエチル基である、先行する項目のいずれか一項に記載の組成物。
(項目6)
 RおよびRは各々独立して、水素原子、カルボキシル基で置換されたC1-6アルキル基またはカルボキシル基である、先行する項目のいずれか一項に記載の組成物。
(項目7)
 RおよびRは各々独立して、水素原子、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基またはカルボキシル基である、先行する項目のいずれか一項に記載の組成物。
(項目8)
 Rは水素原子、またはC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目9)
 Rは水素原子である、先行する項目のいずれか一項に記載の組成物。
(項目10)
 Rは水素原子、またはC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目11)
 Rは水素原子である、先行する項目のいずれか一項に記載の組成物。
(項目12)
 Rは水素原子、C1-6アルキル基、ヒドロキシC1-6アルキル基、カルバモイルC1-6アルキル基、C6-10アリールC1-6アルキル基、ヒドロキシC6-10アリールC1-6アルキル基、C5-10ヘテロアリールC1-6アルキル基、カルボキシC1-6アルキル基、アミノC1-6アルキル基、チオC1-6アルキル基、C1-6アルキルチオC1-6アルキル基、またはアミジノアミノC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目13)
 Rは水素原子、メチル基、イソプロピル基、イソブチル基、secブチル基、ベンジル基、ヒドロキシメチル基、1-ヒドロキシエチル基、カルボキシメチル基、カルボキシエチル基、4-ヒドロキシベンジル基、4-アミノブチル基、チオメチル基、2-メチルチオエチル基、カルバモイルメチル基、カルバモイルエチル基、アミジノアミノプロピル基、インドリルメチル基または4-イミダゾールメチル基である、先行する項目のいずれか一項に記載の組成物。
(項目14)
 Rは水素原子、またはC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目15)
 Rは水素原子である、先行する項目のいずれか一項に記載の組成物。
(項目16)
 RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になって必要に応じて置換されたヘテロシクロアルキル基を形成する、先行する項目のいずれか一項に記載の組成物。
(項目17)
 RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になってC5-10ヘテロシクロアルキル基を形成する、先行する項目のいずれか一項に記載の組成物。
(項目18)
 RおよびR10は水素原子、またはC1-6アルキル基である、先行する項目のいずれか一項に記載の組成物。
(項目19)
 RおよびR10は各々独立して、水素原子またはメチル基である、先行する項目のいずれか一項に記載の組成物。
(項目20)
 R11、R12、R13、およびR14は各々独立して、水素原子、アルコキシ基またはヒドロキシ基である、先行する項目のいずれか一項に記載の組成物。
(項目21)
 R12は、水素原子、またはヒドロキシ基である、先行する項目のいずれか一項に記載の組成物。
(項目22)
 R11、R12、R13、およびR14は各々独立して、水素原子、またはヒドロキシ基である、先行する項目のいずれか一項に記載の組成物。
(項目23)
 Xは、CHまたはCOである、先行する項目のいずれか一項に記載の組成物。
(項目24)
 Aは、O、C1-6アルキル基で置換されたNH、NHまたはSである、先行する項目のいずれか一項に記載の組成物。
(項目25)
 Aは、O、NHまたはSである、先行する項目のいずれか一項に記載の組成物。
(項目A1)
 下記式(A2)
により表される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む、眼科疾患を処置または予防するための組成物。
(式中、mは0~3、n≧1であり、RA1~RA4、RA7~RA11、RA312、およびRA112は各々独立して、水素原子、もしくは炭化水素基、RA14、およびRA212は各々独立して、水素、カルボキシル基またはその塩、もしくはアルコキシカルボニル基、RA5は、炭化水素基、ヒドロキシル基、アルコキシ基、もしくはアルキルカルボニルオキシ基、RA55、およびRA66は各々独立して、水素原子、炭化水素基、もしくはアルキルカルボニルオキシ基である。)
(項目A2)
 前記眼科疾患は網膜疾患を含む、先行する項目のいずれか一項に記載の組成物。
(項目A3)
 前記眼科疾患は糖尿病性網膜症、緑内障または加齢黄斑変性のうちの少なくとも一つを含む、先行する項目のいずれか一項に記載の組成物。
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本開示によれば、糖尿病性網膜症、緑内障または加齢黄斑変性を処置または予防するために有用な新規環状ペプチド誘導体および組成物等が提供される。
図1は、ラット網膜の横断面の光学顕微鏡写真を示す。 図2は、眼房水圧負荷モデルのラット網膜の内網状層の網膜厚に対する化合物の影響を示す。 図3は、眼房水圧負荷モデルのラット網膜の内顆粒層の網膜厚に対する化合物の影響を示す。 図4は、眼房水圧負荷モデルのラット網膜の外顆粒層の網膜厚に対する化合物の影響を示す。 図5は、ラットレーザー誘発脈絡膜血管新生モデルにおけるレーザー照射後の体重推移を示す。 図6は、ラットレーザー誘発脈絡膜血管新生モデルにおけるレーザー照射14日後のCNV面積を示す。
 以下に、本開示をさらに詳細に説明する。
 本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 (定義)
 最初に本開示において使用される用語および一般的な技術を説明する。
 本開示の化合物は、水和物および/または溶媒和物の形で存在することもあるので、本開示の化合物またはその薬学的に許容される塩の水和物および/または溶媒和物もまた本開示の化合物に包含される。
 本開示の化合物は、1個または場合によりそれ以上の不斉炭素原子を有する場合があり、また幾何異性や軸性キラリティーを生じることがあるので、数種の立体異性体として存在することがある。本開示においては、これらの立体異性体、それらの混合物およびラセミ体も本開示化合物に包含される。したがって、本明細書に記載の化合物は1つまたは2つ以上の不斉中心を含み得るため、種々の異性体形態、例えばエナンチオマーおよび/またはジアステレオマーとして存在し得る。例えば、本明細書に記載の化合物は、個別のエナンチオマー、ジアステレオマー、もしくは幾何異性体の形態であり得、または立体異性体の混合物の形態であり得る(ラセミ混合物および1つまたは2つ以上の立体異性体が濃縮された混合物を含む)。本開示は、加えて、他の異性体を実質的に含まない個別の異性体およびその代わりに種々の異性体の混合物としての、本明細書に記載の化合物を包含する。
 また、本開示の化合物のいずれか1つまたは2つ以上のHをH(D)に変換した重水素変換体も本開示の化合物に包含される。
 結晶として得られる本開示の化合物およびその薬学的に許容される塩には、結晶多型が存在する場合があり、本開示の化合物には、あらゆる結晶形のものが含まれる。
 つぎに、本明細書における用語について以下に説明する。
 本明細書において「基」なる用語は、別途指定されない限り、一価基を意味する。一価基でない例としては、アルキレン基(2価)等が挙げられる。また、下記の置換基等の説明において、「基」なる用語を省略する場合もある。
 本明細書において、「必要に応じて置換された」、「置換されていてもよい」もしくは「置換されている」で定義される場合における置換基の数は、特に限定がない場合、置換可能であれば特に制限はなく、1または複数である。また、特に指示した場合を除き、各々の置換基の説明はその置換基が他の置換基の一部分または置換基である場合にも該当する。
 本開示における置換基としては、水素原子、水酸基、カルボキシル基、スルフィン酸基、スルホン酸基、リン酸基、グアニジン基、シアノ基、ハロゲン原子(フッ素原子、塩素原子等)、アルキル基、アルキルチオ基、シクロアルキルチオ基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキルカルボニル基、アルキルカルボニルオキシ基、アルキルスルフィニル基、シクロアルキルスルフィニル基、アルコキシ基、シクロアルコキシ基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アルキルカルボニル基、アリール基、アリールカルボニル基、アリールチオ基、アリールオキシカルボニル基、ヘテロアリール基、複素環基、アミノ基、環状アミノ基、アミノカルボニル基、アミノスルフィニル基、アミノスルホニル基、複素環オキシカルボニル基、複素環スルフィニル基、複素環スルホニル基、複素環カルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、アリールスルホニル基、アリールスルフィニル基、ヘテロアリールスルホニル基、ヘテロアリールスルフィニル基、トリフェニルホスホニウムカチオン基が挙げられる。上記置換基は、上述の置換基でさらに置換されていてもよい。
 本明細書において、「最大置換可能数」とは、ある基が有することができる置換基の最大数であり、各基において異なり得る。例えば、メチル基では3であり、エチル基では5であり、ベンジル基では7であり、ナフタレニルエチル基では11である。
 本明細書において「必要に応じて置換された」「置換されていてもよい」もしくは「置換されている」で修飾されている基において、該基のいずれの部分が置換されていてもよい。例えば、「必要に応じて置換されたアリールアルキル」および「置換されているアリールアルキル」は、アリール部分が置換されていても、アルキル部分が置換されていてもよく、アリール部分およびアルキル部分の両方が置換されていてもよい。
 本明細書において「置換されていてもよい」または「必要に応じて置換された」場合における置換基としては、置換基群αおよび置換基群βが例示される。「置換されていてもよい」または「必要に応じて置換された」場合における置換基としては、置換基群αから選択されていてもよく、また、同一または異なる1~5個の置換基で置換されていてもよい。結合に関与する置換基内の原子の種類は、置換基の種類によって特に制限されないが、置換基が結合する原子が酸素原子、窒素原子、硫黄原子の場合は、下記の置換基の中から結合する原子が炭素原子のものに限定される。
 置換基群αは、
1)ハロゲン原子
2)水酸基
3)カルボキシル基
4)シアノ基
5)C1-6アルキル
6)C2-6アルケニル
7)C2-6アルキニル
8)C1-6アルコキシ
9)C1-6アルキルチオ
10)C1-6アルキルカルボニル
11)C1-6アルキルスルホニル
(但し、5)から11)の各置換基は、置換基群βから選択される、同一または異なる1~5個の置換基で置換されていてもよい)
12)C3-10シクロアルキル基
13)C3-10シクロアルキルオキシ
14)C6-10アリールオキシ
15)C5-10ヘテロアリールオキシ
16)C4-10非アリールヘテロ環オキシ
17)C3-10シクロアルキルチオ
18)C6-10アリールチオ
19)C5-10ヘテロアリールチオ
20)C4-10非アリールヘテロ環チオ
21)C6-10アリール
22)C5-10ヘテロアリール
23)C4-10非アリールヘテロ環
24)C3-10シクロアルキルカルボニル
25)C6-10アリールカルボニル
26)C5-10ヘテロアリールカルボニル
27)C4-10非アリールヘテロ環カルボニル
28)C3-10シクロアルキルスルホニル
29)C6-10アリールスルホニル
30)C5-10ヘテロアリールスルホニル
31)C4-10非アリールヘテロ環スルホニル
(但し12)から31)の各置換基は、1~5個の置換基群βまたは前記5)C1-6アルキルによって置換されていてもよい)
32)-NR10a11a
33)-SO-NR10b11b
34)-NR10c-C(=O)R11c
35)-NR10d-C(=O)OR11d
36)-NR12a-C(=O)NR10e11e
37)-NR10i-SO-R11i
38)-NR12c-SO-NR10j11j
39)-C(=O)OR10k
40)-C(=O)NR10l11k
41)-C(=O)NR10mOR11l
42)-C(=O)NR12d-NR10n11m
43)-C(=NR13a)R10s
44)-C(=NR13c)NR10t11q
45)-C(=NR13d)NR12f-NR10u11r
46)-NR17c-C(=NR13k)R17d
47)-NR12g-C(=NR13e)-NR10v11s
48)-NR14-C(=NR13f)-NR12h-NR10w11t
49)-OC(=O)R10x
50)-OC(=O)OR10y
51)-OC(=O)NR10z111u
52)-NR12i-NR10z211v
53)-NR10z3OR11w
54)保護基
が挙げられ、
 置換基群βは、
1)ハロゲン原子、
2)水酸基、
3)カルボキシル基、
4)シアノ基、
5)C3-10シクロアルキル基、
6)C1-6アルコキシ、
7)C3-10シクロアルキルオキシ、
8)C1-6アルキルチオ、
9)C5-10ヘテロアリールチオ、
10)C6-10アリール、
11)C5-10ヘテロアリール、
12)C4-10非アリールヘテロ環、
13)C1-6アルキルカルボニル、
14)C3-10シクロアルキルカルボニル、
15)C6-10アリールカルボニル、
16)C5-10ヘテロアリールカルボニル、
17)C4-10非アリールヘテロ環カルボニル、
18)-NR15a16a
19)-SO-NR15b16b
20)-NR15c-C(=O)R16c
21)-NR17a-C(=O)NR15d16d
22)-C(=O)NR15e16e
23)-C(=NR13g)R15f
24)-C(=NR13h)NR15g16f
25)-NR16g-C(=NR13i)R15h
26)-NR17b-C(=NR13j)-NR15i16h
27)保護基
(但し、置換基群βのうち、5)から17)の各置換基は、ハロゲン原子、水酸基、シアノ基、カルボキシル基、-NR18a18bからなる群より選択される1~5個の置換基によって置換されていてもよい)からなる群であり、
 R13a、R13a2、R13c、R13c2、R13d、R13d2、R13e、R13f、R13g、R13g2、R13h、R13h2、R13i、R13j、R13kは、各々独立して、同一または異なって、水素原子、水酸基、C1-6アルキル、C1-6アルコキシ、またはC1-6アルコキシカルボニルであり、
 R10a、R10b、R10c、R10d、R10e、R10i、R10j、R10k、R10l、R10m、R10n、R10s、R10s2、R10t、R10t2、R10u、R10u2、R10v、R10w、R10x、R10y、R10z1、R10z2、R10z3、R11a、R11b、R11c、R11d、R11e、R11i、R11j、R11k、R11l、R11m、R11q、R11q2、R11r、R11r2、R11s、R11t、R11u、R11v、R11w、R12a、R12c、R12d、R12f、R12f2、R12g、R12h、R12i、R14、R15a、R15b、R15c、R15d、R15e、R15f、R15f2、R15g、R15g2、R15h、R15i、R16a、R16b、R16c、R16d、R16e、R16f、R16f2、R16g、R16h、R17a、R17b、R17c、R17dは、各々独立して、同一または異なって、水素原子、C1-6アルキル(該C1-6アルキルは、水酸基、シアノ基、C1-6アルコキシ、-NR18a18bより選ばれる同一または異なる、1~3個の置換基によって置換されていてもよい)、またはC1-6アルコキシカルボニルであり、
 R18aおよびR18bは、各々独立して、同一または異なって、水素原子またはC1-6アルキルである。
 例示的な実施形態において、置換基群αおよびβにおける任意の水酸基およびアミノ基の水素は、保護基で置換されていてもよい。
 本明細書において「C1-6」とは、炭素原子数が1~6であることを意味する。他の数字の場合も同様であり、例えば、「C1-4」とは炭素原子数が1~4であること、「C1-3」とは炭素原子数が1~3であることを意味する。本明細書において炭素数の限定がある記載はあくまで好ましい数値範囲であり、本開示は規定される炭素数以外の炭素数の置換基を有する基も本開示の範囲内であることが意図される。
 本明細書において「炭化水素基」とは、「ヒドロカルビル基」ともいい、少なくとも1個の炭素と少なくとも1個の水素とを含む「炭化水素」から少なくとも1個の水素を除去することにより生成される基(group)をいう。
 本明細書において「官能基」とは、何らかの官能性(functionality)を付与する任意の基をいい、カルボキシル基、ニトリル基、カルボニル基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基、ハロゲン基の他、アルキル基も包含され、広義には、酸無水物、エステル結合、アミド結合、エーテル結合等の結合によって形成される基も包含される。
 本明細書において「ヘテロ原子」は、炭素原子および水素原子以外の原子をいい、例えば、酸素原子、窒素原子、硫黄原子等を意味する。ヘテロ原子を含む基は、ヘテロ・・・基(例えば、ヘテロアリール基(アリール基に少なくともヘテロ原子を含むことを意味する。))または複素・・・基(例えば、複素環基(環基(炭素環基)に少なくとも1つのヘテロ原子を含むことを意味する。))などと称することがある。
 本明細書において「ハロゲン原子」は、ハロゲン族に属する原子であって、フッ素原子、塩素原子、臭素原子またはヨウ素原子等を意味する。好ましくはフッ素原子、または塩素原子である。さらに好ましくは、フッ素原子である。「ハロゲン原子」を「ハロゲン」、「ハロ」と称する場合もある。
 本明細書において「水酸基」は、-OHの一価基である。この基は、「ヒドロキシ基」、「ヒドロキシ」と呼ばれる場合もある。
 本明細書において「カルボキシル基」は、-COOHの一価基である。この基は、「カルボキシ基」、「カルボキシ」、「カルボキシル」と呼ばれる場合もある。
 本明細書において「アミノ」は、-NHの一価基である。この基は、「アミノ基」と呼ばれる場合もある。
 本明細書において「チオ」は、-SHの一価基である。この基は、「チオ基」と呼ばれる場合もある。
 本明細書において「シアノ基」は、-CNの一価基である。
 本明細書において「アルキル」は、直鎖または分枝鎖状の飽和脂肪族炭化水素基を意味する。「C1-12アルキル」は、炭素原子数1~12のアルキル基であり、例としては、C1-6アルキル、ヘプチル、イソヘプチル、オクチル、イソオクチル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、イソウンデシル、ドデシル、イソドデシル等が挙げられるが、これらに限定されない。「C1-6アルキル」は、炭素原子数1~6のアルキル基であり、好ましい例としては、「C1-4アルキル」が挙げられ、より好ましくは「C1-3アルキル」であり、さらに好ましくは「C1-2アルキル」である。「C1-4アルキル」の具体例としては、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、sec-ブチル等が挙げられる。「C1-6アルキル」の具体例としては、C1-4アルキル、n-ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、1,2-ジメチルプロピル、n-ヘキシル等が挙げられるが、これらに限定されない。
 本明細書において「アルケニル」は、少なくとも1個の炭素-炭素二重結合を含有する直鎖または分枝鎖状の不飽和脂肪族炭化水素基を意味する。「C2-12アルケニル」は、炭素原子数2~12のアルケニル基であり、例としては、ヘプテニル、イソヘプテニル、オクテニル、イソオクテニル、ノネニル、イソノネニル、デセニル、イソデセニル、ウンデセニル、イソウンデセニル、ドデセニル、イソドデセニル等が挙げられるが、これらに限定されない。「C2-6アルケニル」は、炭素原子数2~6のアルケニル基であり、好ましい例としては「C2-4アルケニル」が挙げられる。「C2-6アルケニル」の具体例としては、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル等が挙げられるが、これらに限定されない。
 本明細書において「アルキニル」は、少なくとも1個の炭素-炭素三重結合を含有する直鎖または分枝鎖状の不飽和脂肪族炭化水素基を意味する。「C2-12アルキニル」は、炭素原子数2~12のアルキニル基であり、例としては、ヘプチニル、イソヘプチニル、オクチニル、イソオクチニル、ノニニル、イソノニニル、デシニル、イソデシニル、ウンデシニル、イソウンデシニル、ドデシニル、イソドデシニル等が挙げられるが、これらに限定されない。「C2-6アルキニル」は、炭素原子数2~6のアルキニル基であり、好ましい例としては「C2-4アルキニル」が挙げられる。「C2-6アルキニル」の具体例としては、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、1-メチル-2-プロピニル、3-ブチニル、1-ペンチニル、1-へキシニル等が挙げられるが、これらに限定されない。
 本明細書において「アリール」は、単環式または二環式の芳香族炭化水素環の一価基を意味し、「C6-10アリール」は、炭素原子数6から10のアリール基を意味する。「アリール」の例としては、Cアリール、C10アリール等が挙げられるが、これらに限定されない。Cアリールの具体例としては、フェニル等が挙げられるが、これらに限定されない。C10アリールの具体例としては、1-ナフチル、2-ナフチル等が挙げられるが、これらに限定されない。
 置換基またはその一部としてのアリール基は、脂環式基と縮合していてもよい。例えば、フェニル基が、シクロヘキサン環と縮合して1,2,3,4-テトラヒドロナフタレニル基を形成してもよく、この場合、ベンゼン環上の可能な炭素原子のいずれかが、母骨格または母骨格に近い基もしくはその原子に結合する。アリール基は、5,6,7,8-テトラヒドロナフタレン-1-イル、5,6,7,8-テトラヒドロナフタレン-2-イルを包含する。
 本明細書において「アリールアルキル」は、少なくとも一つのアリールで置換されたアルキルを意味する。「C6-10アリールC1-6アルキル」は、少なくとも一つのC6-10アリールで置換されたC1-6アルキルを意味する。C6-10アリールC1-6アルキルの具体例としては、ベンジル(フェニル-CH-)、フェネチル(フェニル-CHCH-)、ナフタレン-1-イルメチル、ナフタレン-2-イルメチル、2-(ナフタレン-1-イル)エチル、2-(ナフタレン-2-イル)エチル等が挙げられるが、これらに限定されない。
 本明細書において「(置換されていてもよいアミノ)-アリールアルキル」は、置換されていてもよいアミノ基で置換されているアリールアルキルを意味し、ここで、該アルキル基もしくは該アリール基またはそれら両方が、アミノ基で置換されている。当該アリールアルキル基のアミノ基は、非置換であってもよく、また、1、2、または3個の置換基、例えば、置換されていてもよいアルキル(例えば、非置換C1-6アルキル、C3-6シクロアルキル-C1-6アルキル、C3-6シクロアルキルカルボニルなど)で置換されていてもよい。(置換されていてもよいアミノ)-C6-10アリールC1-6アルキルの例としては、(ジ(アルキル)アミノ)ベンジル、((シクロアルキルアルキル)アミノ)ベンジル、((シクロアルキルカルボニル)アミノ)ベンジル、((カルバモイルアルキル)カルボニルアミノ)ベンジル、((カルボキシアルキル)カルボニル)アミノベンジル、(ジ(アルキル)アミノ)ナフタレニルメチル、((シクロアルキルアルキル)アミノ)ナフタレニルメチル、((シクロアルキルカルボニル)アミノ)ナフタレニルメチル、((カルバモイルアルキル)カルボニルアミノ)ナフタレニルメチル、または((カルボキシアルキル)カルボニル)アミノナフタレニルメチル等が挙げられるが、これらに限定されない。
 本明細書において「ヒドロキシアリール」は、少なくとも一つのヒドロキシで置換されたアリールを意味する。「ヒドロキシC6-10アリール」は、少なくとも一つのヒドロキシで置換されたC6-10アリールを意味する。ヒドロキシC6-10アリールの具体例としては、2-ヒドロキシフェニル、3-ヒドロキシナフタレン等が挙げられるが、これらに限定されない。
 本明細書において「ヒドロキシアリールアルキル」は、少なくとも一つのヒドロキシアリールで置換されたアルキルを意味する。「ヒドロキシC6-10アリールC1-6アルキル」は、少なくとも一つのヒドロキシC6-10アリールで置換されたC1-6アルキルを意味する。ヒドロキシC6-10アリールC1-6アルキルの具体例としては、2-ヒドロキシベンジル(2-ヒドロキシフェニル-CH-)、2-ヒドロキシフェネチル(2-ヒドロキシフェニル-CHCH-)、3-ヒドロキシナフタレン-1-イルメチル、3-ヒドロキシナフタレン-2-イルメチル、2-(3-ヒドロキシナフタレン-1-イル)エチル、2-(3-ヒドロキシナフタレン-2-イル)エチル等が挙げられるが、これらに限定されない。
 本明細書において「アリールチオ」のアリール部分は、上記アリールと同義である。「C6-10アリールチオ」として、好ましくは「CもしくはC10アリールチオ」が挙げられる。「C6-10アリールチオ」の具体例としては、フェニルチオ、1-ナフチルチオ、2-ナフチルチオ等が挙げられるが、これらに限定されない。
 本明細書において「アリールスルホニル」とは、上記「アリール」で置換されたスルホニルを意味する。「C6-10アリールスルホニル」として、好ましくは「CまたはC10のアリールスルホニル」である。「C6-10アリールスルホニル」の具体例としては、フェニルスルホニル、1-ナフチルスルホニル、2-ナフチルスルホニル等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロアリール」は、酸素原子、窒素原子および硫黄原子からなる群より選択される同一または異なるヘテロ原子を含む、単環式または二環式の芳香族ヘテロ環の一価基を意味する。ヘテロ原子の数は、アリールにある炭素の数までの任意であってよいが、例えば、1~4個が代表的にあげられ、1個、2個、3個などであってもよい。
 本明細書において「C5-10ヘテロアリール」は、酸素原子、窒素原子および硫黄原子からなる群より選択される同一または異なる、代表的に1~4個のヘテロ原子を含む、5から10個の原子からなる単環式または二環式の芳香族ヘテロ環の一価基を意味する。「C5-10ヘテロアリール」の具体例としては、キノリル、イソキノリル、ナフチリジニル、キノキサリニル、シンノリニル、キナゾリニル、フタラジニル、イミダゾピリジル、イミダゾチアゾリル、イミダゾオキサゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、ベンゾイミダゾリル、インドリル、イソインドリル、インダゾリル、ピロロピリジル、チエノピリジル、フロピリジル、ベンゾチアジアゾリル、ベンゾオキサジアゾリル、ピリドピリミジニル、ベンゾフリル、ベンゾチエニル、ベンゾ[1,3]ジオキソール、チエノフリル、クロメニル、クロマニル、クマリニル、キノロニル等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロアリールアルキル」は、少なくとも一つのヘテロアリールで置換されたアルキルを意味する。「C5-10ヘテロアリールC1-6アルキル」は、少なくとも一つのC5-10ヘテロアリールで置換されたC1-6アルキルを意味する。C5-10ヘテロアリールC1-6アルキルの具体例としては、ピリジン-2-イルメチル、ピリジン-4-イルメチル、2-(キノリン-8-イル)エチル、2-(キノリン-5-イル)エチル、2-(キノキサリン-5-イル)エチル、2-(1H-インドール-3-イル)エチル等が挙げられるが、これらに限定されない。
 本明細書において「シクロアルキル」は、非芳香族の飽和炭化水素環基を意味し、一部架橋構造を有するもの、一部スピロ化されたものおよび1もしくは2個またはそれより多くのカルボニル構造を有するものも含む。「C3-20シクロアルキル」は、炭素原子数3から20の単環式または二環式シクロアルキルを意味する。「C3-6シクロアルキル」は、炭素原子数3から6の単環式シクロアルキルを意味する。C3-6シクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルが挙げられるが、これらに限定されない。
 置換基またはその一部としてのシクロアルキル基は、アリールおよび/またはヘテロアリール環と縮合していてもよい。例えば、シクロヘキシル基が、ベンゼン環と縮合して1,2,3,4-テトラヒドロナフタレニル基を形成してもよく、この場合、シクロヘキサン環上の可能な炭素原子のいずれかが、母骨格または母骨格に近い基もしくはその原子に結合する。シクロアルキル基は、1,2,3,4-テトラヒドロナフタレン-1-イル、1,2,3,4-テトラヒドロナフタレン-2-イル、インダン-1-イル、インダン-2-イル、5,6,7,8-テトラヒドロキノリン-5-イル、5,6,7,8-テトラヒドロキノリン-6-イルを包含する。
 本明細書において「シクロアルキルアルキル」は、少なくとも一つのシクロアルキルで置換されたアルキルを意味する。「C3-6シクロアルキルC1-6アルキル」は、少なくとも一つのC3-6シクロアルキルで置換されたC1-6アルキルを意味する。C3-6シクロアルキルC1-6アルキルの具体例としては、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、2-シクロプロピルエチル、2-シクロブチルエチル、2-シクロペンチルエチル、2-シクロヘキシルエチル、3-シクロプロピルプロピル、3-シクロブチルプロピル、3-シクロペンチルプロピル、3-シクロヘキシルプロピル等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロシクロアルキル」は、酸素原子、窒素原子および硫黄原子からなる群より選択される同一または異なる1もしくは2個またはそれより多くのヘテロ原子を含む、3個以上の原子で構成される非芳香族の飽和もしくは一部不飽和ヘテロ環を意味し、一部架橋された構造を有するものおよび一部スピロ化されたものを含む。「ヘテロシクロアルキル」は、「非アリールヘテロ環」を包含する。ヘテロシクロアルキルは、非芳香族複素環が、アリール環および/またはヘテロアリール環と縮合した構造を有し得る。
 本明細書において「非アリールヘテロ環」は、酸素原子、窒素原子および硫黄原子からなる群より選択される同一または異なる1もしくは2個またはそれより多くのヘテロ原子を含む、3個以上の原子で構成される単環式または二環式の非芳香族のヘテロ環を意味し、飽和の非アリールヘテロ環、一部不飽和結合を有するもの、一部架橋された構造を有するものおよび一部スピロ化されたものを含む。非アリールヘテロ環は、アリールまたはヘテロアリールと縮合環を形成してもよい。例えば、C6-10アリールまたはC5-10ヘテロアリールと縮合した場合もヘテロ環に含まれる。また、当該非アリールヘテロ環を構成するのに、1もしく2個またはそれより多くのカルボニル、チオカルボニル、スルフィニルまたはスルホニルを含んでいてもよく、例えば、ラクタム、チオラクタム、ラクトン、チオラクトン、環状のイミド、環状のカルバメート、環状のチオカルバメート等の環状基も当該非アリールヘテロ環に含まれる。ここにおいて、カルボニル、スルフィニルおよびスルホニルの酸素原子およびチオカルボニルの硫黄原子は、環員の数(環の大きさ)および環を構成しているヘテロ原子の数には含まれない。
 本明細書において「C4-10非アリールヘテロ環」は、上記「非アリールヘテロ環」のうち、「C4-10非アリールヘテロ環」が一価基となっている置換基を意味する。
 本明細書において「非アリールヘテロ環オキシ」の非アリールヘテロ環部分は、上記「非アリールヘテロ環」と同義である。例えば、「C4-10非アリールヘテロ環オキシ」が挙げられ、「C4-10非アリールヘテロ環オキシ」として、好ましくは、「C4-10非アリールヘテロ環オキシ」である。「C4-10非アリールヘテロ環オキシ」の具体例としては、テトラヒドロフラニルオキシ、テトラヒドロピラニルオキシ、アゼチジニルオキシ、ピロリジニルオキシ、ピペリジニルオキシ等が挙げられるが、これらに限定されない。
 本明細書において「非アリールヘテロ環チオ」の非アリールヘテロ環部分は、上記「非アリールヘテロ環」と同義である。例えば、「C4-10非アリールヘテロ環チオ」が挙げられ、「C4-10非アリールヘテロ環チオ」として、好ましくは、「C4-6非アリールヘテロ環チオ」である。「C4-10非アリールヘテロ環チオ」の具体例としては、テトラヒドロピラニルチオ、ピペリジニルチオ等が挙げられるが、これらに限定されない。
 本明細書において「非アリールヘテロ環カルボニル」とは、上記「非アリールヘテロ環」で置換されたカルボニル基を意味する。例えば、「C4-10非アリールヘテロ環カルボニル」が挙げられ、「C4-10非アリールヘテロ環カルボニル」として、好ましくは、「C4-6非アリールヘテロ環カルボニル」である。「C4-10非アリールヘテロ環カルボニル」の具体例としては、アゼチジニルカルボニル、ピロリジニルカルボニル、ピペリジニルカルボニル、モルホリニルカルボニル等が挙げられるが、これらに限定されない。
 本明細書において「非アリールヘテロ環スルホニル」とは、上記「非アリールヘテロ環」で置換されたスルホニル基を意味する。例えば、「C4-10非アリールヘテロ環スルホニル」が挙げられ、「C4-10非アリールヘテロ環スルホニル」として、好ましくは、「C4-6非アリールヘテロ環スルホニル」である。「C4-10非アリールヘテロ環スルホニル」の具体例としては、アゼチジニルスルホニル、ピロリジニルスルホニル、ピペリジニルスルホニル、モルホリニルスルホニル等が挙げられるが、これらに限定されない。
 本明細書において「C5-10ヘテロシクロアルキル」は、酸素原子、窒素原子および硫黄原子からなるより選択される同一または異なる1または2個またはそれより多くのヘテロ原子を含む、5~10個の環原子から構成されるヘテロシクロアルキルを意味する。
 本明細書において「ヘテロシクロアルキルアルキル」は、少なくとも一つのヘテロシクロアルキルで置換されたアルキルを意味する。
 本明細書において「アルキルカルボニル」は、-C(=O)-アルキルの一価基である。アルキルカルボニルの好ましい例としては、C1-6アルキルカルボニルが挙げられる。C1-6アルキルカルボニルの具体例としては、アセチル(CHC(=O)-)、n-プロパノイル(CHCHC(=O)-)、n-ブタノイル(CHCHCHC(=O)-)、n-ペンタノイル(CH(CHC(=O)-)、n-ヘキサノイル(CH(CHC(=O)-)、n-ヘプタノイル(CH(CHC(=O)-)等が挙げられるが、これらに限定されない。
 本明細書において「アルコキシ」は、-O-アルキルの一価基である。アルコキシの好ましい例としては、C1-6アルコキシ(即ち、C1-6アルキル-O-)、C1-4アルコキシ(即ち、C1-4アルキル-O-)等が挙げられる。C1-4アルコキシの具体例としては、メトキシ(CHO-)、エトキシ(CHCHO-)、n-プロポキシ(CH(CHO-)、イソプロポキシ((CHCHO-)、n-ブトキシ(CH(CHO-)、イソブトキシ((CHCHCHO-)、tert-ブトキシ((CHCO-)、sec-ブトキシ(CHCHCH(CH)O-)等が挙げられる。C1-6アルコキシの具体例としては、C1-4アルコキシ、n-ペンチルオキシ(CH(CHO-)、イソペンチルオキシ((CHCHCHCHO-)、ネオペンチルオキシ((CHCCHO-)、tert-ペンチルオキシ(CHCHC(CHO-)、1,2-ジメチルプロポキシ(CHCH(CH)CH(CH)O-)等が挙げられるが、これらに限定されない。
 本明細書において「アルコキシカルボニル」は、-C(=O)-O-アルキルの一価基である。アルコキシカルボニルの例としては、C1-6アルコキシカルボニル、好ましくはC1-4アルコキシカルボニルが挙げられるが、これらに限定されない。C1-4アルコキシカルボニルの具体例としては、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、イソプロポキシカルボニル、n-ブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、イソブトキシカルボニル等が挙げられる。C1-6アルコキシカルボニルの具体例としては、C1-4アルコキシカルボニル、n-ペンチルオキシカルボニル、イソペンチルオキシカルボニル、ネオペンチルオキシカルボニル、tert-ペンチルオキシカルボニル、1,2-ジメチルプロピルオキシカルボニル、n-ヘキシルオキシカルボニル等が挙げられるが、これらに限定されない。
 本明細書において「アルコキシカルボニルオキシ」は、-O-C(=O)-O-アルキルの一価基である。アルコキシカルボニルオキシの例としては、C1-6アルコキシカルボニルオキシ、好ましくはC1-4アルコキシカルボニルオキシが挙げられるが、これらに限定されない。C1-4アルコキシカルボニルオキシの具体例としては、メトキシカルボニルオキシ、エトキシカルボニルオキシ、n-プロポキシカルボニルオキシ、イソプロポキシカルボニルオキシ、n-ブトキシカルボニルオキシ、sec-ブトキシカルボニルオキシ、tert-ブトキシカルボニルオキシ、イソブトキシカルボニルオキシ等が挙げられる。C1-6アルコキシカルボニルオキシの具体例としては、C1-4アルコキシカルボニルオキシ、n-ペンチルオキシカルボニルオキシ、イソペンチルオキシカルボニルオキシ、ネオペンチルオキシカルボニルオキシ、tert-ペンチルオキシカルボニルオキシ、1,2-ジメチルプロピルオキシカルボニルオキシ、n-ヘキシルオキシカルボニルオキシ等が挙げられるが、これらに限定されない。
 本明細書において「アルコキシカルボニルアミノ」は、-NH-C(=O)-O-アルキルの一価基である。アルコキシカルボニルアミノの例としては、C1-6アルコキシカルボニルアミノ、好ましくはC1-4アルコキシカルボニルアミノが挙げられるが、これらに限定されない。C1-4アルコキシカルボニルアミノの具体例としては、メトキシカルボニルアミノ、エトキシカルボニルアミノ、n-プロポキシカルボニルアミノ、イソプロポキシカルボニルアミノ、n-ブトキシカルボニルアミノ、sec-ブトキシカルボニルアミノ、tert-ブトキシカルボニルアミノ、イソブトキシカルボニルアミノ等が挙げられる。C1-6アルコキシカルボニルアミノの具体例としては、C1-4アルコキシカルボニルアミノ、n-ペンチルオキシカルボニルアミノ、イソペンチルオキシカルボニルアミノ、ネオペンチルオキシカルボニルアミノ、tert-ペンチルオキシカルボニルアミノ、1,2-ジメチルプロピルオキシカルボニルアミノ、n-ヘキシルオキシカルボニルアミノ等が挙げられるが、これらに限定されない。
 本明細書において「ハロアルキル」は、ハロゲン化アルキルの一価基であり、アルキル基上の1個または複数の水素がハロゲンで置換されている。また、用語「ペルハロアルキル」は、アルキル基上の全ての水素がハロゲンで置換されたハロアルキルを意味する。例えば、ペルフルオロエチルは、-CFCFであり、ペルクロロ-n-プロピルは、-CClCClCClである。ハロアルキルの例としては、C1-6ハロアルキル、C1-4ハロアルキル、C1-3ハロアルキル等が挙げられる。C1-3アルキルの具体例としては、フルオロメチル、クロロメチル、ブロモメチル、ジフルオロメチル、ジクロロメチル、ジブロモメチル、トリフルオロメチル、トリクロロメチル、トリブロモメチル、フルオロクロロメチル、ジフルオロクロロメチル、フルオロジクロロメチル、フルオロエチル、クロロエチル、ブロモエチル、トリフルオロエチル、トリクロロエチル、トリブロモエチル、ペルフルオロエチル、ペルクロロエチル、ペルブロモエチル、ペルフルオロプロピル、ペルクロロプロピル、ペルブロモプロピル、ペルフルオロイソプロピル、ペルクロロイソプロピル、ペルブロモイソプロピル等が挙げられるが、これらに限定されない。C1-4アルキルの具体例としては、C1-3ハロアルキル、ペルフルオロブチル、ペルクロロブチル、ペルブロモブチル、ペルフルオロイソブチル、ペルフルオロ-t-ブチル等が挙げられるが、これらに限定されない。C1-6アルキルの具体例としては、C1-4ハロアルキル、ペルフルオロ-n-ペンチル、ペルフルオロイソペンチル、ペルフルオロネオペンチル、ペルフルオロtert-ペンチル、ペルフルオロ-1,2-ジメチルプロピル等が挙げられるが、これらに限定されない。
 本明細書において「ハロアルコキシ」および「ハロアルキルオキシ」は、アルキル基上の1個または複数の水素がハロゲンで置換された、-O-ハロアルキルの一価基である。また、用語「ペルハロアルコキシ」は、アルキル基上の全ての水素がハロゲンで置換されたハロアルコキシを意味する。例えば、ペルフルオロエトキシは、-OCFCFであり、ペルクロロ-n-プロポキシは、-OCClCClCClである。ハロアルコキシの好ましい例としては、C1-6ハロアルコキシ、C1-4ハロアルコキシ、C1-3ハロアルコキシ等が挙げられる。C1-3アルコキシの具体例としては、フルオロメトキシ、クロロメトキシ、ブロモメトキシ、ジフルオロメトキシ、ジクロロメトキシ、ジブロモメトキシ、トリフルオロメトキシ、トリクロロメトキシ、トリブロモメトキシ、フルオロクロロメトキシ、ジフルオロクロロメトキシ、フルオロジクロロメトキシ、フルオロエトキシ、クロロエトキシ、ブロモエトキシ、トリフルオロエトキシ、トリクロロエトキシ、トリブロモエトキシ、ペルフルオロエトキシ、ペルクロロエトキシ、ペルブロモエトキシ、ペルフルオロプロポキシ、ペルクロロプロポキシ、ペルブロモプロポキシ、ペルフルオロイソプロポキシ、ペルクロロイソプロポキシ、ペルブロモイソプロポキシ等が挙げられるが、これらに限定されない。C1-4アルコキシの具体例としては、C1-3ハロアルコキシ、ペルフルオロブトキシ、ペルクロロブトキシ、ペルブロモブトキシ、ペルフルオロイソブトキシ、ペルフルオロ-t-ブトキシ等が挙げられるが、これらに限定されない。C1-6アルコキシの具体例としては、C1-4ハロアルコキシ、ペルフルオロ-n-ペンチルオキシ、ペルフルオロイソペンチルオキシ、ペルフルオロネオペンチルオキシ、ペルフルオロtert-ペンチルオキシ、ペルフルオロ-1,2-ジメチルプロポキシ等が挙げられるが、これらに限定されない。
 本明細書において「アルキルスルホニル」とは、上記「アルキル」で置換されたスルホニル基を意味する。「C1-6アルキルスルホニル」として、好ましくは「C1-4アルキルスルホニル」である。「C1-6アルキルスルホニル」の具体例としては、メチルスルホニル、プロピオニルスルホニル、ブチリルスルホニル等が挙げられるが、これらに限定されない。
 本明細書において「アルキルチオ」のアルキル部分は、上記アルキルと同義である。「C1-6アルキルチオ」の例としては、「C1-4アルキルチオ」、好ましくは「C1-3アルキルチオ」が挙げられる。「C1-6アルキルチオ」の具体例としては、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、イソプロピルチオ、イソブチルチオ、tert-ブチルチオ、sec-ブチルチオ、イソペンチルチオ、ネオペンチルチオ、tert-ペンチルチオ、1,2-ジメチルプロピルチオ等が挙げられるが、これらに限定されない。
 本明細書において「アリールカルボニル」は、-C(=O)-アリールの一価基である。アリールカルボニルの好ましい例としては、C6-10アリールカルボニルが挙げられる。C6-10アリールカルボニルの具体例としては、ベンゾイル(即ち、フェニル-C(=O)-)、1-ナフチルカルボニル、2-ナフチルカルボニル等が挙げられるが、これらに限定されない。
 本明細書において「アリールオキシ」のアリール部分は、上記アリールと同義である。「C6-10アリールオキシ」として、好ましくは「CもしくはC10のアリールオキシ」が挙げられる。「C6-10アリールオキシ基」の具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロアリールカルボニル」は、-C(=O)-ヘテロアリールの一価基である。
 本明細書において「ヘテロアリールカルボニル基」とは、上記「ヘテロアリール」で置換されたカルボニル基を意味する。「C5-10ヘテロアリールカルボニル基」の具体例としては、ピラゾイルカルボニル基、トリアゾイルカルボニル基、チアゾイルカルボニル基、チアジアゾイルカルボニル基、ピリジルカルボニル基、ピリダゾイルカルボニル基等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロアリールオキシ基」のヘテロアリール部分は、上記「ヘテロアリール」と同義である。「C5-10ヘテロアリールオキシ基」の具体例としては、ピラゾイルオキシ基、トリアゾイルオキシ基、チアゾイルオキシ基、チアジアゾイルオキシ基、ピリジルオキシ基、ピリダゾイルオキシ基等が挙げられるが、これらに限定されない。
 本明細書において「ヘテロアリールチオ基」のヘテロアリール部分は、上記「ヘテロアリール」と同義である。「C5-10ヘテロアリールチオ基」の具体例としては、ピラゾイルチオ基、トリアゾイルチオ基、チアゾイルチオ基、チアジアゾイルチオ基、ピリジルチオ基、ピリダゾイルチオ基等が挙げられるが、これらに限定されない。
 本明細書において、「必要に応じて置換されたカルボニル」基は、-C(=O)-(水素または本明細書中に記載の置換基群から選択される任意の基)の一価基を意味する。「必要に応じて置換されたカルボニル」基の例としては、ホルミル、必要に応じて置換された、カルバモイル、アルキルカルボニル、アルコキシカルボニル、アルケニルカルボニル、アルケニルオキシカルボニル、アルキニルカルボニル、アルキニルオキシカルボニル、アリールカルボニル、アリールオキシカルボニル、シクロアルキルカルボニル、シクロアルキルオキシカルボニル、ヘテロアリールカルボニル、ヘテロアリールオキシカルボニル、ヘテロシクロアルキルカルボニル、ヘテロシクロアルキルオキシカルボニル等が挙げられるが、これらに限定されない。水素で置換されたカルボニル基は、ホルミル基である。アミノで置換されたカルボニル基は、カルバモイル基である。
 本明細書において、「必要に応じて置換されたオキシ」基は、-O-(水素または本明細書中に記載の置換基群から選択される任意の基)の一価基を意味する。「必要に応じて置換されたオキシ」基の例としては、ヒドロキシ、必要に応じて置換された、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、ヘテロアリールオキシ、ヘテロシクロアルキルオキシ、アルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アリールカルボニルオキシ、ヘテロアリールカルボニルオキシ、ヘテロシクロアルキルカルボニルオキシ等が挙げられるが、これらに限定されない。水素で置換されたオキシ基は、ヒドロキシ基である。
 本明細書において「カルバモイル」は、-C(=O)-NHの一価基である。
 本明細書において「アミジノアミノ」は、-NH-C(=NH)-NHの一価基である。
 本明細書において、「ある置換基で置換された基」という記載は、該基が少なくとも一つの置換基で置換されていることを意味する。例えば、「ヒドロキシ置換されたC1-6アルキル」は、C1-6アルキルが少なくとも一つのヒドロキシで置換されていることを意味する。
 本明細書において「カルバモイルC1-6アルキル」は、少なくとも一つの-C(=O)-NH基で置換されたC1-6アルキルである。「カルバモイルC1-4アルキル」の具体例としては、2-アミノ-2-オキソエチル(即ち、HNC(=O)-CH-、またはカルバモイルメチル)、3-アミノ-3-オキソプロピル(即ち、HNC(=O)-CHCH-、またはカルバモイルエチル)、4-アミノ-4-オキソブチル(即ち、HNC(=O)-(CH-、またはカルバモイルプロピル)、5-アミノ-5-オキソペンチル(即ち、HNC(=O)-(CH-、またはカルバモイルブチル)等が挙げられるが、これらに限定されない。「カルバモイルC1-6アルキル」の具体例としては、カルバモイル置換されたC1-4アルキル、6-アミノ-6-オキソヘキシル(即ち、HNC(=O)-(CH-、またはカルバモイルペンチル)、7-アミノ-7-オキソヘプチル(即ち、HNC(=O)-(CH-、またはカルバモイルヘキシル)等が挙げられるが、これらに限定されない。
 本明細書において「チオアルキル」は、少なくとも一つのチオ基で置換されたアルキルである。「チオC1-6アルキル」の具体例としては、チオメチル、2-チオエチル、3-チオプロピル、4-チオブチル等が挙げられるが、これらに限定されない。
 本明細書において「アルキルチオアルキル」は、少なくとも一つのアルキルチオで置換されたアルキルを意味する。「C1-6アルキルチオC1-6アルキル」は、少なくとも一つのC1-6アルキルチオで置換されたC1-6アルキルを意味する。C1-6アルキルチオC1-6アルキルの具体例としては、メチルチオメチル、メチルチオエチル、エチルチオメチル等が挙げられるが、これらに限定されない。
 本明細書において「アミノアルキル」は、少なくとも一つのアミノ基で置換されたアルキルである。「アミノC1-6アルキル」の具体例としては、アミメチル、2-アミノエチル、3-アミノプロピル、4-アミノブチル等が挙げられるが、これらに限定されない。
 本明細書において「アミジノアミノアルキル」または「グアニジノアルキル」は、少なくとも一つの-NH-C(=NH)-NH基で置換されたアルキルであり、ここで、アミジノアミノ基の窒素原子は、窒素保護基(例えば、tert-ブトキシカルボニル基)で保護されていてもよい。「アミジノアミノC1-6アルキル」の例としては、「アミジノアミノC1-4アルキル」等が挙げられるが、これに限定されない。「アミジノアミノC1-4アルキル」の具体例としては、(アミジノアミノ)メチル、2-(アミジノアミノ)エチル、3-(アミジノアミノ)プロピル、4-(アミジノアミノ)ブチル等が挙げられるが、これらに限定されない。「アミジノアミノC1-6アルキル」の具体例としては、アミジノアミノ置換されたC1-4アルキル、5-(アミジノアミノ)ペンチル、6-(アミジノアミノ)ヘキシル等が挙げられるが、これらに限定されない。窒素保護基で保護されたアミジノアミノ基の例としては、
が挙げられる。本明細書において「アミジノアミノ」と「グアニジノ」は同義である。
 本明細書において「カルボキシアルキル」は、少なくとも一つの-COOH基で置換されたアルキルである。「カルボキシC1-4アルキル」の具体例としては、カルボキシメチル、2-カルボキシエチル、3-カルボキシプロピル、4-カルボキシブチル等が挙げられるが、これらに限定されない。「カルボキシC1-6アルキル」の具体例としては、カルボキシ置換されたC1-4アルキル、5-カルボキシペンチル、6-カルボキシヘキシル等が挙げられるが、これらに限定されない。
 本明細書において「保護基」は、分子内の反応性官能基に結合した場合、官能基の反応性を遮蔽するか、減少させるか、または防止する原子群を指す。本開示の化合物は、任意のR~Rまたはそれらの置換基あるいはそれら以外の置換基等の任意の位置において適切または必要な場合保護基で置換されていてもよく、それらの保護基を含む化合物も本開示の範囲内である。典型的には、保護基は、所望する場合、合成過程の最中に選択的に除去され得る。保護基の例は、GreeneおよびWuts、Protective Groups in Organic Chemistry、第5版、2014年、John Wiley & Sons、NYおよびHarrisonら、Compendium of Synthetic Organic Methods、1~8巻、John Wiley & Sons、NY等に見出すことができる。代表的な窒素保護基としては、ホルミル、アセチル、トリフルオロアセチル、ベンジル、ベンジルオキシカルボニル(「CBZ」)、tert-ブトキシカルボニル(「Boc」)、トリメチルシリル(「TMS」)、2-トリメチルシリルエタンスルホニル(「TES」)、トリチルおよび置換トリチル基、アリルオキシカルボニル、9-フルオレニルメチルオキシカルボニル(「FMOC」)、およびニトロ-ベラトリルオキシカルボニル(「NVOC」)、などが挙げられるが、これらに限定されない。代表的なヒドロキシル保護基として、ヒドロキシル基が、アシル化(エステル化)またはアルキル化されるもの、例えば、ベンジルおよびトリチルエーテルなど、ならびにアルキルエーテル、テトラヒドロピラニルエーテル、トリアルキルシリルエーテル(例えば、TMS、トリエチルシリル、t-ブチルジメチルシリル(TBDMS)、トリイソプロピルシリル(TIPS))、アルキルジアリールシリルエーテル(例えば、t-ブチルジフェニルシリル(TBDPS))、トリアリールシリルエーテル(例えば、トリフェニルシリル)、グリコールエーテル(例えば、エチレングリコールエーテル、プロピレングリコールエーテルなど)、およびアリルエーテルが挙げられるが、これらに限定されない。
 本開示の化合物が有するアミノ基(例えば、母骨格が有するアミノ基、置換基としてのアミノ基、該化合物が有する置換基中のアミノ基など)は、窒素保護基または「Protect」により表される基で保護されていてもよい。置換基群中に列挙される置換基中のアミノ基が、窒素保護基または「Protect」により表される基でさらに保護されていてもよく、保護された置換基が、置換基として利用されてもよい。
 本開示の化合物が有するヒドロキシ基(例えば、置換基としてのヒドロキシ基、該化合物が有する置換基中のヒドロキシ基、上記置換基群中のヒドロキシ基など)も、ヒドロキシ基の保護基で保護されていてもよい。置換基群中に列挙される置換基中のヒドロキシ基が、本明細書中に記載のヒドロキシル保護基でさらに保護されていてもよく、保護された置換基が、置換基として利用されてもよい。
 本明細書において「眼科疾患」または「眼疾患」とは、当該分野で使用される用語であり、緑内障、加齢黄斑変性(AMD)、虚血性網膜症、視神経症、糖尿病性網膜症(DR)、糖尿病性黄斑浮腫(DME)、ブドウ膜炎、老年性白内障を含むがこれらに限らない、目に関連する疾患を指す。眼疾患は、緑内障、AMD、虚血性網膜症、視神経症、DR、DMEを含むがこれらに限らない、酸化的ストレスおよび(または)低酸素症に誘発される、目またはより具体的には網膜色素上皮(RPE)および視細胞(photo cell)の損傷に関連する疾患または異常とすることができる。眼疾患は、緑内障、虚血性網膜症、DR、AMDを含むがこれらに限らない、眼血流の減少に関連する疾患または異常とすることができる。
 本明細書で使用される場合、用語「眼疾患(ocular disease)」、「眼状態(ocular condition)」、「目の疾患(ey disease)」および「目の状態(eye condition)」は、視力を脅かすことがあり、眼の不快をもたらし得、および全身の健康問題をシグナル伝達し得る、眼の疾患/状態を指す。
 本明細書において、本開示の対象は、網膜色素上皮(RPE)および視細胞(photo  cell)の損傷に関連する疾患または異常を特に対象としてもよく、眼血流の減少に関連する疾患または異常を対象としてもよい。
 本明細書において「網膜疾患」とは、当該分野で使用される用語であり、網膜に関連する任意の疾患、障害または症状をいい、老化、疾病などの理由で網膜に発生した損傷によるものが含まれ、緑内障、網膜色素変性、加齢黄斑変性、糖尿病性網膜症、網膜剥離、糖尿病性黄斑症、高血圧性網膜症、網膜血管閉塞、網膜動脈硬化症、網膜裂孔、網膜円孔、黄斑円孔、眼底出血、後部硝子体剥離、色素性傍静脈網脈絡膜萎縮、脳回状網脈絡膜萎縮、コロイデレミア、クリスタリン網膜症、白点状網膜症、錐体ジストロフィー、中心性輪紋状脈絡膜ジストロフィー、ドインハチの巣状網膜ジストロフィー、卵黄状黄斑ジストロフィー、嚢腫状組織黄斑浮腫、オカルト黄斑ジストロフィー、スターガルト病、網膜分離症、中心性しょう液性網脈絡膜症、脊椎小脳変性症7型、家族性滲出性硝子体網膜症、S錐体増強症候群、網膜色素線条、常染色体優性視神経萎縮、常染色体優性ドルーゼン、急性帯状潜在性網膜外層症、癌関連網膜症、光損傷、または虚血性網膜症を含むが、これらに限定されない。
 本明細書において「緑内障」とは、視神経と視野に特徴的変化を有し、通常、眼圧を十分に下降させることにより視神経障害を改善もしくは抑制しうる眼の機能的構造的異常を特徴とする疾患を意味し(日本緑内障学会緑内障診療ガイドライン作成委員会.緑内障診療ガイドライン(第4版).日本眼科学会雑誌.122巻1号.p.5-53(2018.01)(以下「緑内障診療ガイドライン(第4版)」と称する)、原発緑内障、続発緑内障、および小児緑内障に分類できる。原発緑内障には、原発開放隅角緑内障(広義)および原発閉塞隅角緑内障が含まれ、原発開放隅角緑内障(広義)には原発開放隅角緑内障、正常眼圧緑内障、および前視野緑内障が含まれる。続発緑内障には、続発開放隅角緑内障および続発閉塞隅角緑内障が含まれ、小児緑内障には、原発先天緑内障、若年開放隅角緑内障、および先天眼形成異常に関連した緑内障、先天全身疾患に関連した緑内障などが挙げられる。
 本明細書では、「糖尿病性網膜症」とは糖尿病で見られる微小血管変性による網膜の変性を意味する。眼の網膜に酸素を供給する血管は、長期にわたって血糖が高レベルであること(高血糖症)により損傷を受ける。この疾患は、一般に数カ月間ゆっくり進行する。しかし、時間とともに、糖尿病性網膜症は一層深刻になり、視力低下を引き起こす場合がある。糖尿病性網膜症は、通常、両眼に影響を及ぼす。糖尿病性網膜症は、血管透過性の増大を特徴とする軽症の非増殖性異常から、血管閉塞を特徴とする中等症および重症の非増殖性糖尿病性網膜症(NPDR)へ、網膜および硝子体の後面上の新たな血管増殖を特徴とする増殖性糖尿病性網膜症(PDR)へと進行する。漏出血管からの網膜肥厚を特徴とする黄斑浮腫は、網膜症のすべての段階で発症し得る。さらに、妊娠、思春期、血糖コントロール、高血圧および白内障手術などの状態は、これらの変性を加速し得る。
 本明細書において、「加齢黄斑変性」は加齢に伴い眼の網膜にある黄斑部が変性を起こす疾患である。加齢黄斑変性はその原因によって「滲出型」と「萎縮型」に分類される。本開示ではいずれに対しても有効である。「滲出型」では、脈絡膜から異常な脈絡膜新生血管を生じ、網膜面に進展する。新生血管は脆弱でありそのため出血、滲出物の貯留を認め、黄斑部の機能障害をきたし、偏視、視力低下などをきたす。最終的には黄斑部に不可逆的な変性を起こし著しい視力低下となる。「萎縮型」では、加齢に伴い黄斑部が変性を起こし、変性の範囲により急激な視力低下を認める。萎縮型では脈絡膜新生血管が認められないのも特徴である。
 本明細書において、活性の「調節」とは、活性を抑制または促進することを意味し、「調節剤」という用語は活性の抑制剤(阻害剤)または促進剤を意味する。「活性を促進する」とは、活性調節剤を使用しない場合と比較して、その活性(例えば、眼血流、細胞分裂の促進)が、1%以上、好ましくは5%以上、より好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上増加することを意味する。「活性を抑制する」とは、活性調節剤を使用しない場合と比較して、その活性(例えば、眼血流、細胞分裂の促進)が、1%以上、好ましくは5%以上、より好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上低減することを意味する。
 本明細書において、「薬学的に許容される塩」とは、薬学的に使用することが許容されている酸付加塩および塩基付加塩を意味する。「薬学的に許容される塩」の具体例としては、酢酸塩、プロピオン酸塩、酪酸塩、ギ酸塩、トリフルオロ酢酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩、ステアリン酸塩、コハク酸塩、エチルコハク酸塩、マロン酸塩、ラクトビオン酸塩、グルコン酸塩、グルコヘプトン酸塩、安息香酸塩、メタンスルホン酸塩、ベンゼンスルホン酸、パラトルエンスルホン酸塩(トシル酸塩)、ラウリル硫酸塩、リンゴ酸塩、アスコルビン酸塩、マンデル酸塩、サッカリン酸塩、キシナホ酸塩、パモ酸塩、ケイヒ酸塩、アジピン酸塩、システイン塩、N-アセチルシステイン塩、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、ヨウ化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩、アクリル酸ポリマー塩、カルボキシビニルポリマー等の酸付加塩;リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩等の無機塩基付加塩;モルホリン、ピペリジン等の有機塩基付加塩;アスパラギン酸、グルタミン酸等のアミノ酸との付加塩等が挙げられるが、これらに限定されない。
 出発化合物および目的化合物の好適な塩および薬学的に許容される塩は、慣用の無毒性塩であり、それらとしては、有機酸塩(例えば酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、ギ酸塩またはパラ-トルエンスルホン酸塩など)および無機酸塩(例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩またはリン酸塩など)のような酸付加塩、アミノ酸(例えばアルギニン、アスパラギン酸またはグルタミン酸など)との塩、アルカリ金属塩(例えばナトリウム塩またはカリウム塩など)およびアルカリ土類金属塩(例えばカルシウム塩またはマグネシウム塩など)などの金属塩、アンモニウム塩、または有機塩基塩(例えばトリメチルアミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩またはN,N’-ジベンジルエチレンジアミン塩など)などの他、当業者が適宜選択することができる。
 本開示の化合物の塩を取得したいとき、本開示の化合物が塩の形で得られる場合には、そのまま精製すればよく、また、遊離の形で得られる場合には、適当な有機溶媒に溶解もしくは懸濁させ、酸または塩基を加えて通常の方法により塩を形成させればよい。
 また、本開示の化合物およびその薬学的に許容される塩は、水或いは各種溶媒との付加物の形で存在することもあるが、これらの付加物も本開示に包含される。
 また、本開示には、本開示の化合物、またはその製薬学的に許容される塩が含まれる。また、これらの水和物またはエタノール溶媒和物等の溶媒和物も含まれる。さらに、本開示には、本開示の化合物のあらゆる互変異性体、存在するあらゆる立体異性体、およびあらゆる様態の結晶形のものも含まれる。
 句「化合物もしくはそのエナンチオマーまたはそれらの塩またはそれらの溶媒和物」は、ある化合物、前記化合物のエナンチオマー、前記化合物の塩、前記エナンチオマーの塩、前記化合物の溶媒和物、前記エナンチオマーの溶媒和物、前記化合物の塩の溶媒和物、または前記エナンチオマーの塩の溶媒和物を意味する。
 本明細書に記載の化合物は1つまたは2つ以上の不斉中心を含み得、それゆえに種々の異性体形態、例えばエナンチオマーおよび/またはジアステレオマーとして存在し得る。例えば、本明細書に記載の化合物は、個別のエナンチオマー、ジアステレオマー、もしくは幾何異性体の形態であり得、または立体異性体の混合物の形態であり得る(ラセミ混合物および1つまたは2つ以上の立体異性体が濃縮された混合物を含む)。異性体は当業者に公知の方法(キラル高圧液体クロマトグラフィー(HPLC)ならびにキラル塩の形成および結晶化を含む)によって混合物から単離され得る。または、好ましい異性体が不斉合成によって調製され得る。例えば、Jacques et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981)、Wilen et al., Tetrahedron 33:2725 (1977); Eliel, E.L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962)、およびWilen, S.H. Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972)参照。本開示は、加えて、他の異性体を実質的に含まない個別の異性体およびその代わりに種々の異性体の混合物としての、本明細書に記載の化合物を包含する。
 本開示の化合物の中には、光学活性中心に基づく光学異性体、分子内回転の束縛により生じた軸性または面性キラリティーに基づくアトロプ異性体、その他の立体異性体、互変異性体、および幾何異性体などが存在し得るものがあるが、これらを含め、全ての可能な異性体およびそれらの混合物は本開示の範囲に包含される。
 特に光学異性体やアトロプ異性体は、ラセミ体として、または光学活性の出発原料や中間体が用いられた場合には光学活性体として、それぞれ得ることができる。必要であれば、下記製造法の適切な段階で、対応する原料、中間体または最終品のラセミ体を、光学活性カラムを用いた方法、分別結晶化法などの公知の分離方法によって、物理的にまたは化学的にそれらの光学対掌体に分割することができる。具体的には、例えばジアステレオマー法では、光学分割剤を用いる反応によってラセミ体から2種のジアステレオマーを形成する。この異なるジアステレオマーは一般に物理的性質が異なるため、分別結晶化などの公知の方法によって分割することができる。
 「薬学的に許容される」という句は、本明細書中で採用されることによって、健全な医学的判断の範囲内で、過剰な毒性も、刺激も、アレルギー応答も、他の問題も、合併症もなしに、妥当な損益比に見合って、ヒトおよび動物の組織と接触させて使用するのに適切である化合物、材料、組成物、および/または剤形を指す。
 「薬学的に許容される担体」という句は、本明細書で使用する場合、薬学的に許容される材料、組成物またはビヒクル、例えば、液体もしくは固体充填剤、希釈剤、賦形剤、溶媒またはカプセル化材料などを意味する。各担体は、製剤の他の成分と相容性であり、患者に対し有害ではないという意味で「許容可能」でなければならない。薬学的に許容される担体として機能することができる材料の一部の例として、以下が挙げられる:(1)糖、例えば、ラクトース、グルコースおよびスクロースなど;(2)デンプン、例えば、トウモロコシデンプンおよびジャガイモデンプンなど;(3)セルロース、およびその誘導体、例えば、カルボキシメチルセルロースナトリウム、エチルセルロースおよび酢酸セルロースなど;(4)粉末状トラガカント;(5)麦芽;(6)ゼラチン;(7)タルク;(8)賦形剤、例えば、ココアバターおよび坐剤ワックスなど;(9)油、例えば、ピーナッツ油、綿実油、ベニバナ油、ゴマ油、オリーブ油、コーン油およびダイズ油など;(10)グリコール、例えば、プロピレングリコールなど;(11)ポリオール、例えば、グリセリン、ソルビトール、マンニトールおよびポリエチレングリコールなど;(12)エステル、例えば、オレイン酸エチルおよびラウリン酸エチルなど;(13)寒天;(14)緩衝剤、例えば、水酸化マグネシウムおよび水酸化アルミニウムなど;(15)アルギン酸;(16)パイロジェンを含まない水;(17)等張生理食塩水;(18)リンゲル液;(19)エチルアルコール;(20)リン酸緩衝液;ならびに(21)薬学的製剤に採用される他の無毒性の相容性物質。
 さらに本開示の範囲には本開示化合物のプロドラッグも含まれる。本開示においてプロドラッグとは、生体内で酸加水分解により、あるいは酵素的に分解されて前記本開示の化合物を与える誘導体をいう。例えば、前記本開示の化合物が水酸基やアミノ基、またはカルボキシル基を有する場合は、これらの基を常法に従って修飾してプロドラッグを製造することができる。
 例えばカルボキシ基を有する化合物であればそのカルボキシル基がアルコキシカルボニル基となった化合物、アルキルチオカルボニル基となった化合物、またはアルキルアミノカルボニル基となった化合物が挙げられる。
 また、例えばアミノ基を有する化合物であれば、そのアミノ基がアルカノイル基で置換されアルカノイルアミノ基となった化合物、アルコキシカルボニル基により置換されアルコキシカルボニルアミノ基となった化合物、アルカノイルオキシメチルアミノ基となった化合物、またはヒドロキシルアミンとなった化合物が挙げられる。
 また例えば水酸基を有する化合物であれば、その水酸基が前記アルカノイル基により置換されてアルカノイルオキシ基となった化合物、リン酸エステルとなった化合物、またはアルカノイルオキシメチルオキシ基となった化合物が挙げられる。
 これらのプロドラッグ化に用いる基のアルキル部分としては前記アルキル基が挙げられ、そのアルキル基は例えばアルコキシ基等により置換されていてもよい。好ましい例としては、次のものが挙げられる。
 例えばカルボキシル基がアルコキシカルボニル基となった化合物についての例としては、C1-12アルコキシカルボニル、Cアルコキシカルボニル、Cアルコキシカルボニル、Cアルコキシカルボニル、C10アルコキシカルボニル、C12アルコキシカルボニル、具体的にはメトキシカルボニル、エトキシカルボニル、プロピロキシカルボニル、イソプロピロキシカルボニル、n-ブチロキシカルボニル、イソブチロキシカルボニル、tert-ブチロキシカルボニル、sec-ブチロキシカルボニル、n-ペンチロキシカルボニル、イソペンチロキシカルボニル、ネオペンチロキシカルボニル、tert-ペンチロキシカルボニル、1,2-ジメチルプロピロキシカルボニル、n-ヘキシロキシカルボニル、ヘプトキシカルボニル、イソヘプトキシカルボニル、オクトキシカルボニル、イソオクトキシカルボニル、ノニロキシカルボニル、イソノニロキシカルボニル、デシロキシカルボニル、イソデシロキシカルボニル、ウンデシロキシカルボニル、イソウンデシロキシカルボニル、ドデシロキシカルボニルまたはイソドデシロキシカルボニルなどのアルコキシカルボニル、またはC1-12アルコキシC1-12アルコキシカルボニル、C1-12アルコキシエトキシカルボニル、具体的にはメトキシメトキシカルボニル、エトキシメトキシカルボニル、2-メトキシエトキシカルボニル、2-メトキシエトキシメトキシカルボニルまたはピバロイルオキシメトキシカルボニルなどのアルコキシ基、またはC1-12アルキルPEG、CアルキルPEG、CアルキルPEG、CアルキルPEG、C10アルキルPEG、C12アルキルPEGにより置換されたアルコキシカルボニルが挙げられる。ここでPEGはポリエチレングリコールを指し、アルキルは、直鎖でも分岐していてもよい。
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
 本明細書において引用された、科学文献、特許、特許出願等の参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
 (眼科疾患の医薬)
 本開示は、本明細書で開示される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む眼科疾患の治療または予防のための医薬または組成物などを提供する。
 一つの局面において、本開示で利用される化合物は、下記式
により表される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグとして例示することができる。
式中、
、R、R、R、R、R、RおよびR10は各々独立して、
水素原子、または
必要に応じて置換された炭化水素基であり、あるいは、
およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、必要に応じて置換されたアリール基、必要に応じて置換されたヘテロアリール基、必要に応じて置換されたシクロアルキル基または必要に応じて置換されたヘテロシクロアルキル基を形成し、
およびRは各々独立して、
水素原子、必要に応じて置換された炭化水素基、カルボキシル基、
必要に応じて置換されたアルコキシカルボニル基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
11、R12、R13、およびR14は各々独立して、
水素原子、必要に応じて置換された炭化水素基、ヒドロキシ基、
必要に応じて置換されたアルコキシ基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
Xは、CHまたはCOであり、
Aは、O、NHまたはSであり、ここでNHは必要に応じて置換され得る。
 一実施形態において、R、R、R、R、R、R、RおよびR10は各々独立して、
水素原子、または
必要に応じて置換された炭化水素基であり、あるいは、
およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、必要に応じて置換されたヘテロシクロアルキル基を形成し、
およびRは各々独立して、
水素原子、必要に応じて置換された炭化水素基、カルボキシル基、
必要に応じて置換されたアルコキシカルボニル基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
11、R12、R13、およびR14は各々独立して、
水素原子、ヒドロキシ基、
必要に応じて置換されたアルコキシ基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
Xは、CHまたはCOであり、
Aは、O、NHまたはSであり、ここでNHは必要に応じて置換され得る。
 一実施形態において、R、R、R、R、R、R、RおよびR10は各々独立して、
水素原子、または
必要に応じて置換されたアルキル基であり、あるいは、
およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、必要に応じて置換されたヘテロシクロアルキル基を形成し、
およびRは各々独立して、
水素原子、必要に応じて置換されたアルキル基、カルボキシル基、
必要に応じて置換されたアルコキシカルボニル基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
11、R12、R13、およびR14は各々独立して、
水素原子、ヒドロキシ基、
必要に応じて置換されたアルコキシ基、または
必要に応じて置換されたアルコキシカルボニルオキシ基であり、
Xは、CHまたはCOであり、
Aは、O、NHまたはSであり、ここでNHは必要に応じて置換され得る。
 一実施形態において、R、R、R、R、R、R、RおよびR10は各々独立して、
水素原子、または
水素、アルキル、アルキルカルボニル、アリールアルキルカルボニル、ヒドロキシ、アルコキシ、アルコキシカルボニル、アルコキシカルボニルアミノ、シクロアルキル、カルボキシ、アミノ、グアニジノ、アルコキシカルボニル置換されたグアニジノ、カルバモイル、およびヘテロシクロアルキルからなる群より選択される1個から最大置換可能数までの同一または異なる置換基で置換されているアルキル基であり、あるいは、
およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、ヘテロシクロアルキル基を形成し、
およびRは各々独立して、
水素原子、
水素、アルキル、アルキルカルボニル、アリールアルキルカルボニル、ヒドロキシ、アルコキシ、アルコキシカルボニル、アルコキシカルボニルアミノ、シクロアルキル、カルボキシ、アミノ、グアニジノ、アルコキシカルボニル置換されたグアニジノ、カルバモイル、およびヘテロシクロアルキルからなる群より選択される1個から最大置換可能数までの同一または異なる置換基で置換されているアルキル基、カルボキシル基、または
アルキル、アルキルカルボニル、アリールアルキルカルボニル、ヒドロキシ、アルコキシ、アルコキシカルボニル、アルコキシカルボニルアミノ、シクロアルキル、カルボキシ、アミノ、グアニジノ、アルコキシカルボニル置換されたグアニジノ、カルバモイル、およびヘテロシクロアルキルからなる群より選択される1個から最大置換可能数までの同一または異なる置換基で置換されているアルコキシカルボニル基であり、
11、R12、R13、およびR14は各々独立して、
水素原子、ヒドロキシ基、または
アルキル、アルキルカルボニル、アリールアルキルカルボニル、ヒドロキシ、アルコキシ、およびヘテロシクロアルキルからなる群より選択される1個から最大置換可能数までの同一または異なる置換基で置換されているアルコキシ基であり、
Xは、CHまたはCOであり、
Aは、O、NHまたはSであり、ここでNHはアルキル、アルキルカルボニル、アリールアルキルカルボニル、ヒドロキシ、アルコキシ、アルコキシカルボニル、シクロアルキル、カルボキシおよびヘテロシクロアルキルからなる群より選択される1個から最大置換可能数までの同一または異なる置換基で置換され得る。
 一実施形態において、RおよびRは各々独立して、水素原子、またはC1-6アルキル基であり、RおよびRは各々独立して、水素原子、カルボキシル基で置換されたC1-6アルキル基またはカルボキシル基であり、Rは水素原子、またはC1-6アルキル基であり、Rは水素原子、またはC1-6アルキル基であり、Rは水素原子、C1-6アルキル基、ヒドロキシC1-6アルキル基、カルバモイルC1-6アルキル基、C6-10アリールC1-6アルキル基、ヒドロキシC6-10アリールC1-6アルキル基、C5-10ヘテロアリールC1-6アルキル基、カルボキシC1-6アルキル基、アミノC1-6アルキル基、チオC1-6アルキル基、C1-6アルキルチオC1-6アルキル基、またはアミジノアミノC1-6アルキル基であり、Rは水素原子、またはC1-6アルキル基であり、ここでRおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になって必要に応じて置換されたヘテロシクロアルキル基を形成してもよく、RおよびR10は水素原子、またはC1-6アルキル基であり、R11、R12、R13、およびR14は各々独立して、水素原子、アルコキシ基またはヒドロキシ基であり、Xは、CHまたはCOであり、Aは、O、C1-6アルキル基で置換されたNH、NHまたはSである。
 一実施形態において、RおよびRは各々独立して、水素原子、メチル基またはエチル基であり、RおよびRは各々独立して、水素原子、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基またはカルボキシル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子、メチル基、イソプロピル基、イソブチル基、secブチル基、ベンジル基、ヒドロキシメチル基、1-ヒドロキシエチル基、カルボキシメチル基、カルボキシエチル基、4-ヒドロキシベンジル基、アミノエチル基、4-アミノブチル基、チオメチル基、2-メチルチオエチル基、カルバモイルメチル基、カルバモイルエチル基、アミジノアミノプロピル基、インドリルメチル基または4-イミダゾールメチル基であり、Rは水素原子であり、ここでRおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になってC5-10ヘテロシクロアルキル基を形成してもよく、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は各々独立して、水素原子であり、R12は水素原子、メトキシ基またはヒドロキシ基であり、Xは、CHまたはCOであり、Aは、O、NHまたはSである。
 一実施形態において、RおよびRは各々独立して、水素原子、またはC1-6アルキル基である。
 一実施形態において、RおよびRは各々独立して、水素原子、メチル基またはエチル基である。
 一実施形態において、RおよびRは各々独立して、水素原子、カルボキシル基で置換されたC1-6アルキル基またはカルボキシル基である。
 一実施形態において、RおよびRは各々独立して、水素原子、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基またはカルボキシル基である。
 一実施形態において、Rは水素原子、またはC1-6アルキル基である。
 一実施形態において、Rは水素原子である。
 一実施形態において、Rは水素原子、またはC1-6アルキル基である。
 一実施形態において、Rは水素原子である。
 一実施形態において、Rは水素原子、C1-6アルキル基、ヒドロキシC1-6アルキル基、カルバモイルC1-6アルキル基、C6-10アリールC1-6アルキル基、ヒドロキシC6-10アリールC1-6アルキル基、C5-10ヘテロアリールC1-6アルキル基、カルボキシC1-6アルキル基、アミノC1-6アルキル基、チオC1-6アルキル基、C1-6アルキルチオC1-6アルキル基、またはアミジノアミノC1-6アルキル基である。
 一実施形態において、Rは水素原子、メチル基、イソプロピル基、イソブチル基、secブチル基、ベンジル基、ヒドロキシメチル基、1-ヒドロキシエチル基、カルボキシメチル基、カルボキシエチル基、4-ヒドロキシベンジル基、アミノエチル基、4-アミノブチル基、チオメチル基、2-メチルチオエチル基、カルバモイルメチル基、カルバモイルエチル基、アミジノアミノプロピル基、インドリルメチル基または4-イミダゾールメチル基である。
 一実施形態において、Rは水素原子、またはC1-6アルキル基である。
 一実施形態において、Rは水素原子である。
 一実施形態において、RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になって必要に応じて置換されたヘテロシクロアルキル基を形成する。
 一実施形態において、RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になってC5-10ヘテロシクロアルキル基を形成する。
 一実施形態において、RおよびR10は、水素原子、またはC1-6アルキル基である。
 一実施形態において、RおよびR10は各々独立して、水素原子またはメチル基である。
 一実施形態において、R11、R12、R13、およびR14は各々独立して、水素原子、アルコキシ基またはヒドロキシ基である。
 一実施形態において、R12は、水素原子、メトキシ基またはヒドロキシ基である。
 一実施形態において、R11、R12、R13、およびR14は各々独立して、水素原子、メトキシ基、またはヒドロキシ基である。
 一実施形態において、Xは、CHまたはCOである。
 一実施形態において、Aは、O、C1-6アルキル基で置換されたNH、NHまたはSである。
 一実施形態において、Aは、O、NHまたはSである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは水素原子であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子またはメチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子あり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、水素原子またはメチル基であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R12、R13、およびR14は水素原子であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R12、R13、およびR14は水素原子であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基であり、RおよびRは、カルボキシル基またはカルボキシメチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、水素原子またはカルボキシプロピル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはイソプロピル基であり、Rは水素原子であり、RおよびR10はメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはベンジル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはカルボキシエチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはカルボキシメチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはヒドロキシメチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは1-ヒドロキシエチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは4-ヒドロキシベンジル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは4-アミノブチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはアミジノアミノプロピル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはカルバモイルエチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rはカルバモイルメチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは4-イミダゾールメチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは、インドリルメチル基であり、Rは水素原子であり、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、RおよびRが結合する炭素原子および窒素原子と一緒になってピロリジン環を形成し、RおよびR10は水素原子またはメチル基であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、メチル基またはエチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは、イソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はメトキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、RおよびRは、エチル基であり、RおよびRは、カルボキシル基またはカルボキシエチル基であり、Rは水素原子であり、Rは水素原子であり、Rは、イソプロピル基であり、Rは水素原子であり、RおよびR10は水素原子であり、R11、R13、およびR14は水素原子であり、R12はヒドロキシ基であり、Xは、CHであり、AはOである。
 一実施形態において、上記実施形態のXは、COである。
 一実施形態において、上記実施形態のAはNHである。
 一実施形態において、上記実施形態のAはSである。
 別の局面において、本開示で利用される化合物は、下記式
により表される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む、眼科疾患を処置または予防するための組成物。
(式中、mは0~3、n≧1であり、RA1~RA4、RA7~RA11、RA312、およびRA112は各々独立して、水素原子、もしくは炭化水素基、RA14、およびRA212は各々独立して、水素、カルボキシル基またはその塩、もしくはアルコキシカルボニル基、RA5は、炭化水素基、ヒドロキシル基、アルコキシ基、もしくはアルキルカルボニルオキシ基、RA55、およびRA66は各々独立して、水素原子、炭化水素基、もしくはアルキルカルボニルオキシ基である。)
 上記の環状ペプチド誘導体としては、前記一般式(1)において、R、R、R、およびRが各々独立して、アルキル基であって、n=2~4、R、およびRが水素原子、R、およびRがカルボキシル基であること等が好ましい。
 本開示は、以下のいずれかで表される置換基を有する化合物であってもよい。
 なお、上記表中19のインドリルメチルは2-インドリルメチルまたは3-インドリルメチルを各場合において独立して示す。

 ここで各X,A,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14の番号は上記定義表で示される対応する置換基である。
 本開示は、上記定義表で示される置換基の任意の組合せの化合物であってもよい。
 一実施形態において、本明細書に開示される化合物は以下の表に表される。
 また、本開示の化合物としては以下も例示され得る。
 本開示は、環状ペプチド誘導体またはその塩を有効成分とすることが好ましい。
 また、本開示は、眼科疾患を処置または予防することが好ましい。好ましくは眼科疾患は網膜疾患であり、より好ましくは糖尿病性網膜症、緑内障または加齢黄斑変性である。
 理論の束縛されることを望まないが、本開示において前眼房水圧負荷モデルのラットに対照物質、被験物質および陽性対照を投与した際の一般状態および網膜厚(内網状層,内顆粒層,外顆粒層)、圧負荷の虚血により誘発された網膜障害のモデルにおいて効果がみられていることから、これらに直接または間接に関連する任意の眼科疾患において有効であることが理解される。また、これらには多く網膜疾患が含まれると理解される。また本開示の内容から、本開示の化合物、医薬またはた組成物は、網膜色素上皮(RPE)および視細胞(photo cell)の損傷に関連する疾患または異常に有効であり、あるいは眼血流の減少に関連する疾患または異常に有効であると考えられる。
 (医薬・治療法等)
 一般説明
 一つの実施形態において、本開示の化合物は、経口投与または非経口投与により、直接または適当な剤形を用いて製剤、医薬または医薬組成物にし、投与することができる。これらの剤形の具体例としては、錠剤、カプセル剤、散剤、顆粒剤、液剤、懸濁剤、注射剤、貼付剤、パップ剤等が挙げられるが、これらに限定されない。また、これらの製剤は、通常の医薬品添加物として使用されている添加剤を用いて、公知の方法で製造することができる。
 これらの添加剤としては、目的に応じて、賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、コーティング剤、溶解剤、溶解補助剤、増粘剤、分散剤、安定化剤、甘味剤、香料等を用いることができる。これらの添加剤の具体例としては、乳糖、マンニトール、結晶セルロース、低置換度ヒドロキシプロピルセルロース、トウモロコシデンプン、部分α化デンプン、カルメロースカルシウム、クロスカルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ステアリン酸マグネシウム、フマル酸ステアリルナトリウム、ポリエチレングリコール、プロピレングリコール、酸化チタン、タルク等が挙げられるが、これらに限定されない。
 一つの実施形態において、本開示の化合物は、眼科疾患を処置または予防することができる化合物である。
 一つの実施形態において、本開示の化合物は、網膜疾患を処置または予防することができる化合物である。
 一つの実施形態において、本開示の化合物は、糖尿病性網膜症、緑内障または加齢黄斑変性を処置または予防することができる化合物である。
 一つの実施形態において、本開示が対象とする網膜疾患は、網膜を構成する細胞の変性、障害、もしくは細胞死が生じる疾患、または網膜を構成する細胞の変性、障害、もしくは細胞死に起因する疾患であればよく、例えば、緑内障、網膜色素変性、加齢黄斑変性、糖尿病性網膜症、網膜剥離、糖尿病性黄斑症、高血圧性網膜症、網膜血管閉塞(網膜動脈閉塞;網膜中心静脈閉塞、網膜中心静脈分枝閉塞のような網膜静脈閉塞等)、網膜動脈硬化症、網膜裂孔、網膜円孔、黄斑円孔、眼底出血、後部硝子体剥離、色素性傍静脈網脈絡膜萎縮、脳回状網脈絡膜萎縮、コロイデレミア、クリスタリン網膜症、白点状網膜症、錐体ジストロフィー、中心性輪紋状脈絡膜ジストロフィー、ドインハチの巣状網膜ジストロフィー、卵黄状黄斑ジストロフィー、嚢腫状組織黄斑浮腫、オカルト黄斑ジストロフィー、スターガルト病、網膜分離症、中心性しょう液性網脈絡膜症(中心性網膜症)、脊髄小脳変性症7型、家族性滲出性硝子体網膜症、S錐体増強症候群、網膜色素線条、常染色体優性視神経萎縮、常染色体優性ドルーゼン、家族性ドルーゼン、急性帯状潜在性網膜外層症、癌関連網膜症、光損傷、および虚血性網膜症などが挙げられる。中でも、緑内障、加齢黄斑変性、糖尿病性網膜症が好適な対象疾患である。
 また、本開示は、網膜を構成する何れの細胞が障害を受けている疾患、または網膜を構成する何れの細胞の障害が原因となる疾患でも対象となる。網膜構成細胞としては、網膜神経節細胞、アマクリン細胞、水平細胞、ミュラーグリア細胞、双極細胞、網膜視細胞(錐体、桿体)、および網膜色素上皮細胞などが挙げられる。特に網膜神経節細胞、もしくは網膜色素上皮細胞の障害が認められる、またはこれらの細胞の障害に起因する疾患が好適である。
 また、本開示は、網膜を構成する層、すなわち、内境界膜、神経線維層、神経節細胞層、内網状膜、内顆粒層、外網状層、外顆粒層、外境界膜、視細胞層、および網膜色素上皮層の何れが障害を受けている疾患、またはこれらの何れの層の障害が原因となる疾患でも対象となる。特に、神経節細胞層、内顆粒層、または外顆粒層の障害疾患が好適な対象となる。
 網膜疾患は、1種、または2種以上であり得る。
 本開示の対象となる好適な患者は、上記網膜疾患の患者である。
 加齢黄斑変性および糖尿病性網膜症は、眼内血管新生により生じる疾患であり、黄斑部分が障害を受けることにより視力が低下する疾患である。糖尿病性網膜症は、高血糖が原因で起こる網膜組織内の血管内皮細胞の炎症が血管新生を惹起すると推測される。
 本開示の化合物は、網膜(外顆粒層)の厚みの菲薄化を抑制する。したがって、本開示の化合物は、網膜疾患を予防、改善、または治療する。
 本開示の化合物およびそれらの治療剤の投与時期は限定されず、これらを投与される被験体に対し、同時に投与してもよいし、時間差をおいて投与してもよい。また、本開示の化合物とそれらの治療剤の合剤としてもよい。それらの治療剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本開示の化合物とそれらの治療剤との配合比は、投与される被験体、投与経路、対象疾患、障害、症状、組合せ等により適宜選択することができる。
 本開示の一つの実施形態において、医薬組成物を使用する際に、本開示の化合物を、同時または異時に組み合わせて投与することができる。このような医薬組成物もまた本開示の範囲内にある。
 このような医薬、製剤、医薬組成物は、当該分野で公知の任意の技術を用いて、本開示の化合物および/または追加の薬剤(例えば、抗菌薬、抗ウイルス剤(例えば、リバビリン、アマンタジン等)、鎮静剤(例えば、ケタミン、ミダゾラム等)等)を、一緒にまたは別々に、合剤としてまたは別々の薬剤として、適宜の任意の成分と混合することによって製造することができ、当該分野で公知の任意の技術を用いて、適宜の製剤、例えば、錠剤、カプセル剤、散剤、顆粒剤、液剤、懸濁剤、注射剤、貼付剤、パップ剤とすることで製剤化することができる。本開示の化合物および/または追加の薬剤(例えば、抗菌薬、抗ウイルス剤(例えば、リバビリン、アマンタジン等)、鎮静剤(例えば、ケタミン、ミダゾラム等)等)が別々の薬剤として調製される場合は、2つの薬剤のキットとして提供されてもよく、一方の成分の単剤として提供され、他方の成分(本開示の化合物の場合は、追加の薬剤であり、追加の薬剤(例えば、抗菌薬、抗ウイルス剤(例えば、リバビリン、アマンタジン等)、鎮静剤(例えば、ケタミン、ミダゾラム等)等)の場合は、本開示の化合物である)を同時または異時に組み合わせて投与されることを指示する指示書(添付文書等)とともに提供されてもよい。
 特定の実施形態では、本開示の化合物と、1種または複数種の追加の治療剤(複数可)(例えば、1種または複数種の追加の化学療法剤(複数可))との共同投与は、本開示の化合物(例えば、式(1)、(A2)または(2)の化合物)または1種もしくは複数種の追加の治療剤(複数可)の個々の投与のそれぞれと比較して、改善された効力を提供する。特定のこのような実施形態では、共同投与は、相加効果を提供し、ここで、相加効果とは、本開示の化合物および1種または複数種の追加の治療剤(複数可)の個々の投与の効果のそれぞれの和を指す。
 本開示の方法における使用に対して、活性化合物それ自体が与えられてもよく、または、例えば、0.1~99.5%(より好ましくは、0.5~90%)の活性成分を、薬学的に許容される担体と組み合わせて含有する医薬組成物として与えられてもよい。
 本開示の化合物の投与量は、投与対象動物、投与経路、疾患、患者の年齢、体重および症状によって適宜選択される。例えば、経口投与の場合には、成人に対して、1日当たり、下限として0.01mg、上限として10000mgであり、この量を1日1回または数回に分けて投与することができる。
 本開示の化合物およびそれらの治療剤の投与時期は限定されず、これらを投与される被験体に対し、同時に投与してもよいし、時間差をおいて投与してもよい。また、本開示の化合物とそれらの治療剤の合剤としてもよい。それらの治療剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本開示の化合物とそれらの治療剤との配合比は、投与される被験体、投与経路、対象疾患、障害もしくは症状、被験体の年齢もしくは体重、またはこれらの組合せ等により適宜選択することができる。
 本開示の一つの実施形態において、医薬組成物を使用する際に、本開示の化合物を、同時または異時に組み合わせて投与することができる。このような医薬組成物もまた本開示の範囲内にある。
 本開示の化合物を医薬の活性成分として使用する場合、それはヒトだけに使用することを意図するのではなく、ヒト以外のその他の動物(ネコ、イヌ、ウシ、ウマ、コウモリ、キツネ、マングース、アライグマ等)にも使用することが可能である。
 (予防または治療方法)
 本開示はまた、眼科疾患を予防または治療する方法であって、その予防または治療を必要とする被験体に、本開示の化合物またはその薬学的に許容される塩、あるいはそれを含む医薬組成物を投与する工程を含む、方法を提供する。一実施形態において、眼科疾患を予防または治療する方法は、治療有効量の、その予防または治療を必要とする被験体に、本開示の化合物またはその薬学的に許容される塩またはそれらの溶媒和物、あるいはそれを含む医薬組成物を投与する工程を含む。
 (予防または治療のための使用)
 本開示の一つの実施形態において、眼科疾患を予防または治療するための医薬の製造のための、本開示の化合物またはその薬学的に許容される塩の使用を提供する。
 本開示はまた、眼科疾患の予防または治療において使用するための、本開示の化合物またはその薬学的に許容される塩を提供する。
 (合成例)
 例えば、本開示は、4つの化合物Fragment A,B,CおよびD)との結合反応により得ることができるが、これに限定されるものではない。使用する化合物は、市販のものを使用してもよく、合成したものを用いてもよい。
 結合反応は、一般的に有機合成化学で用いることができる手法全般を指し、例えば、環化反応、付加反応、開環付加反応、脱水縮合反応などがあげられる。また、結合反応に加えて、保護反応、脱保護反応、酸化反応、還元反応、水素付加反応などを用いることができる。反応温度、反応時間などの反応条件は、適宜設定することができる。
 各反応において、使用する化合物に含まれる官能基は、保護基などにより保護されていてもよい。
 反応の順序は特に限定されず、4つの化合物を結合させた後に環化反応を行ってもよく、3つの化合物を結合させた段階で環化反応を行い、得られた環化化合物に4つ目の化合物を結合させてもよい。
 各反応に使用する化合物は、精製したものを用いてもよく、前段の反応生成物をそのまま用いてもよい。
1.環状ペプチド誘導体の製造方法
 本開示の環状ペプチド誘導体の製造方法では、下記一般式(2)で表される環状ペプチド誘導体が製造される。
 ここで、式(2)中、
A1は水素原子または炭化水素基を示し、
A2は水素原子または炭化水素基を示し、
A3は水素原子または炭化水素基を示し、
A4は水素原子または炭化水素基を示し、
A5は-O-RA51(RA51は水素原子または保護基を示す)を示し、
A61は-O-RA6(RA6は水素原子、炭化水素基または保護基を示す)を示し、
A7は水素原子、炭化水素基または保護基を示し、
A8は水素原子、炭化水素基または保護基を示し、
A9は水素原子、炭化水素基または保護基を示し、
A10は水素原子、炭化水素基または保護基を示し、
A11は水素原子、炭化水素基または保護基を示し、
A12は水素原子または保護基を示し、
A14は-(CH-Hまたは-(CH-COORA13(RA13は水素原子または保護基を示し、nは1以上の数である)を示し、
ただし、RA51、RA6、RA12、およびRA13のうちの少なくとも一つは水素原子以外あり、
mは1である。
 特に本開示の製造方法は、下記一般式(2’)で表される化合物の酸化反応により得られる生成物を、カルボキシ基およびアミノ基の両方を有する化合物、もしくは、その化合物の塩またはエステルと縮合反応させる工程(以下、この工程を本明細書において「工程A」と略記する)を含む。
 ここで、式(2’)中、RA1、RA2、RA3、RA4、RA5、RA61、RA7、RA8、RA9、RA10およびmはそれぞれ、前記式(2)のRA1、RA2、RA3、RA4、RA5、RA61、RA7、RA8、RA9、RA10およびmと同義である。特には、式(2’)におけるRA1、RA2、RA3、RA4、RA5、RA61、RA7、RA8、RA9、RA10およびmはそれぞれ、前記式(2)のRA1、RA2、RA3、RA4、RA5、RA61、RA7、RA8、RA9、RA10およびmと同一である。
 本開示において、炭化水素基とは、アルキル基、アルケニル基およびアルキニル基のいずれであってもよい。炭化水素基の炭素数は特に限定されず、例えば、1~10であり、1~5であることが好ましく、1~4であることがより好ましく、1~3であることが特に好ましい。具体的には、炭化水素基として、メチル基、エチル基、ビニル基、アセチニル基、プロピル基、イソプロピル基、プロペニル基等を挙げることができる。炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよい。
 本開示において、保護基とは、前記炭化水素基以外であって、芳香族基;複素環基;アルコキシアルキル基、カルボニル基、エステル等を有する含酸素官能基;シリル基等のケイ素原子を有する基等を挙げることができる。
 保護基が芳香族基である場合、例えば、フェニル基、ベンジル基、オキシベンジル基(-O-CH-Ph)、2-ニトロベンゼンスルホニル基(ノシル基)等を挙げることができる。保護基が含酸素官能基である場合、tert-ブトキシカルボニル基(Boc基)を挙げることができる。保護基がケイ素原子を有する基である場合、tert-ブチルジメチルシリル基(-Si(t-Bu)(CH)、tert-ブチルジフェニルシリル基(-Si(t-Bu)Ph)等を挙げることができる。
 式(2)および(2’)において、RA1が炭化水素基である場合、炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、メチル基であることが特に好ましい。
 式(2)および(2’)において、RA1が炭化水素基である場合、炭素数1~5のアルキル基、炭素数2~5のアルケニル基または炭素数2~5のアルキニル基であることが好ましく、水素原子、炭素数1~3のアルキル基、炭素数2~3のアルケニル基または炭素数2~3のアルキニル基であることがさらに好ましく、アセチニル基(-C≡C)であることが特に好ましい。特に式(2)において、RA2がアセチニル基である場合、エチル基等に比べて立体障害が小さいので、後記する縮合反応が進行しやすくなる。
 式(2)および(2’)において、RA3が炭化水素基である場合、炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、メチル基であることが特に好ましい。
 式(2)および(2’)において、RA4が炭化水素基である場合、水素原子または炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、メチル基であることが特に好ましい。
 式(2)および(2’)において、RA5は、-O-RA51(RA51は水素原子または保護基を示す)であり、RA51は保護基であることが好ましく、中でも、芳香族基であることがより好ましく、オキシベンジル基(-O-CH-Ph)であることが特に好ましい。
 式(2)および(2’)において、RA61は-O-RA6(RA6は水素原子、炭化水素基または保護基を示す)であり、RA6は炭化水素基または保護基であることが好ましく、RA6が炭化水素基である場合はアリル基であることが好ましく、保護基である場合は、tert-ブチルジメチルシリル基(-Si(t-Bu)(CH)、tert-ブチルジフェニルシリル基(-Si(t-Bu)Ph)、ベンジル基、メトキシメチル基(MOM)等を挙げることができる。RA6はtert-ブチルジメチルシリル基であることが好ましい。
 式(2)および(2’)において、RA7は、水素原子、炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることが好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、水素原子であることが特に好ましい。
 式(2)および(2’)において、RA8は、水素原子または炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、水素原子であることが特に好ましい。
 式(2)および(2’)において、RA9は、水素原子または炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、メチル基であることが特に好ましい。
 式(2)および(2’)において、RA10は、前記保護基であることが好ましく、2-ニトロベンゼンスルホニル基(ノシル基)であることが特に好ましい。
 式(2)において、RA11は、水素原子または炭素数1~5のアルキル基であることが好ましく、水素原子または炭素数1~3のアルキル基であることがより好ましく、水素原子、メチル基またはエチル基であることがさらに好ましく、水素原子であることが特に好ましい。
 式(2)において、RA12は保護基であることが好ましく、芳香族基であることがさらに好ましく、ベンジル基であることが特に好ましい。
 式(2)において、RA14は-(CH-Hまたは-(CH-COORA13(nは1~4)であることが好ましく、-(CH-COORA13であることがより好ましい。RA13は保護基であることが好ましく、芳香族基であることがさらに好ましく、ベンジル基であることが特に好ましい。
 式(2)および式(2’)において、RA5の結合位置は特に限定されず、例えば、下記式(2’’)で表される結合位置とすることができる。
 ここで、式(2’’)中、RA1~RA5、RA7~RA12およびRA14は前記式(2)のRA1~RA5、RA7~RA12およびRA14と同義であり、RA61は前記式(2)のRA61と同義である。
 工程Aでは、式(2’)で表される化合物の酸化反応を含む。具体的に当該酸化反応は、アルコールをカルボン酸に酸化させるための反応である。これにより、式(2’)で表される化合物中の矢印で示される水酸基がカルボキシ基に変化する。
 工程Aにおいて、酸化反応の種類は特に限定されず、例えば、公知のアルコール化合物の酸化反応を広く採用することができる。酸化反応は、例えば、アルコールをアルデヒドに酸化し、次いで、このアルデヒドをカルボン酸に酸化する、二段階の反応であってもよい。このように酸化反応を二段階で行う場合は、意図しない官能基の酸化反応が起こることを防止しやすい。
 工程Aにおいて、前記酸化反応は、Dess-Martin酸化およびPinnick酸化を含むことが好ましい。これにより、ラセミ化を抑制しやすく、また、温和な反応条件で酸化が起こりやすい。例えば、Dess-Martin酸化により、前記水酸基はアルデヒドに酸化され、次いで、Pinnick酸化によりアルデヒドがカルボン酸へと酸化される。
 工程Aにおいて、前記酸化反応を行う場合、酸化剤を式(2’)で表される化合物1モルあたり、1~5モル使用することが好ましい。酸化剤の種類は特に限定されず、酸化反応で使用される公知の酸化剤を広く使用することができる。
 Dess-Martin酸化では、酸化剤として1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one(DMP)を用いることが好ましい。Dess-Martin酸化の場合、式(2’)で表される化合物1モルあたり、酸化剤を1~5モル使用することが好ましく、1~3モル使用することがより好ましい。
 Pinnick酸化では、酸化剤として次亜塩素酸ナトリウム(NaClO)を用いることが好ましい。Pinnick酸化の場合、式(2’)で表される化合物1モルあたり、酸化剤を1~5モル使用することが好ましく、2~5モル使用することがより好ましい。
 前記酸化反応は、その他の酸化剤を使用することもでき、例えば、2,2,6,6-tetramethylpiperidine 1-oxyl等のニトロキシルラジカル種とiodosobenzene diacetateとを組み合わせた酸化剤を例示することができる。
 工程Aにおいて、前記酸化反応では必要に応じて溶媒を使用することもできる。酸化反応における溶媒としては、例えば、ジクロロメタン、ジクロロエタン等の含塩素化合物、アセトリトリル、tert-ブタノールを使用できる。
 工程Aにおいて、前記酸化反応の反応温度は特に限定されず、例えば、-20~60℃で行うことができ、0~30℃で行うことが好ましい。
 工程Aでは、前記酸化反応後、当該酸化反応で得られた生成物(カルボン酸化合物)と、カルボキシ基およびアミノ基の両方を有する化合物、もしくは、その化合物の塩またはエステルと縮合反応させる。以下、カルボキシ基およびアミノ基の両方を有する化合物、もしくは、その化合物の塩またはエステルを「化合物C」と略記する。
 化合物Cのうち、カルボキシ基およびアミノ基の両方を有する化合物は特に限定されず、例えば、アミノ酸を挙げることができ、中でもグルタミン酸またはアスパラギン酸であることが好ましい。
 特に、工程Aでは、前記酸化反応で得られた生成物(カルボン酸化合物)と、グルタミン酸エステルまたはアスパラギン酸エステルと縮合反応させることが好ましい。縮合反応でグルタミン酸エステルを使用することで、得られる環状ペプチド誘導体、すなわち、一般式(2)で表される環状ペプチド誘導体は、式(2)のRA14が-(CH-COORA13となる。縮合反応でアスパラギン酸エステルを使用する場合、得られる環状ペプチド誘導体、すなわち、一般式(2)で表される環状ペプチド誘導体は、式(2)のRA14が-(CH)-COORA13である。いずれの場合も、RA13としては、保護基であることが好ましく、芳香族基であることがより好ましく、ベンジル基であることが特に好ましい。
 工程Aの縮合反応では、酸化反応で得られたカルボン酸化合物1モルあたり、化合物Cの使用量は1~5モルであることが好ましく、2~5モルであることがより好ましく、3~4モルであることがさらに好ましい。
 例えば、工程Aにおいて、前記酸化反応で得られた生成物(カルボン酸化合物)と、グルタミン酸エステルとを縮合反応させた場合、得られる式(2)で表される環状ペプチド誘導体は、下記一般式(2A)で表される。
 ここで、式(2A)中、RA1~RA5、RA61、RA7~RA13およびmは前記式(2)のRA1~RA5、RA61、RA7~RA13およびmと同義である。
 工程Aにおいて、縮合反応の方法は特に限定されず、例えば、公知の縮合反応の条件を広く採用することができる。ラセミ化を抑制しやすく、また、温和な反応条件で酸化を促進させる観点から、縮合反応では縮合剤を使用するもできる。
 縮合剤の種類は特に限定されず、例えば、公知の縮合剤を広く使用することができる。特に、工程Aの縮合反応では、縮合剤としてリン系縮合剤が使用されることが好ましい。このような縮合剤としては、例えば、3-(Diethoxyphosphoryloxy)-3H-benzo[d][1,2,3]triazin-4-one(DEPBT)、1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride, 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride、1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, 1-[Bis(dimethylamino)methylene]-1H-benzotriazolium 3-Oxide Hexafluorophosphate、 N-[1-(Cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylamino(morpholino)]uronium hexafluorophosphate等が例示される。リン系縮合剤は、リン酸アジド化合物が好ましく、DEPBTであることが特に好ましい。
 縮合剤を使用する場合、その使用量は特に限定されず、例えば、酸化反応で得られたカルボン酸化合物1モルあたり、縮合剤の使用量は1~3モルであることが好ましく、1.2~2.5モルであることがより好ましい。
 工程Aの縮合反応では必要に応じて溶媒を使用することができる。この溶媒としては特に限定されず、例えば、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩素系炭化水素;メタノール、エタノール、イソプロピルアルコールおよびt-ブタノール等のアルコール;N,N-ジメチルアクリルアミド等のアミド系溶媒;等が挙げられる。
 縮合反応は、ジイソプロピルエチルアミン、ジメチルアミノピリジン等の塩基触媒の存在下で行ってもよい。
 工程Aにおいて、前記縮合反応の反応温度は特に限定されず、例えば、-20~60℃で行うことができ、0~30℃で行うことが好ましい。
 工程Aにて、酸化反応およびこれに次ぐ縮合反応をすることで、式(2)で表される環状ペプチド誘導体が高収率で生成し得る。従来は、β-ヒドロキシドーパユニットと、β-ヒドロキシイソロイシンユニットのような非天然型アミノ酸由来の構造を含むマクロラクタム構造と、グルタミン酸誘導体等のアミノ酸誘導体とが縮合して連結された環状ペプチド誘導体を立体選択的に反応させる方法は知られていなかった。これに対し、本開示では、式(2’)で表される化合物を使用する工程Aを採用したことにより、式(2)で表される環状ペプチド誘導体を可能としている。従って、式(2)で表される環状ペプチド誘導体は、β-ヒドロキシドーパユニットおよびβ-ヒドロキシイソロイシンユニットを含む構造を有する。
 一般的に、生合成ではペプチドを全て結合してから環化することで、環状ペプチド誘導体が製造されることが知られている。これに対し、本開示の環状ペプチド誘導体の製造方法では、環化構造を有する化合物に対して化合物C(例えば、グルタミン酸エステル)を結合させるものである。つまり、本開示の環状ペプチド誘導体の製造方法では、最後に化合物Cを結合させるものであるので、化合物Cの種類に応じて、種々のアミノ酸等が結合した環状ペプチド誘導体を得ることができるという利点を有する。また、本開示のように、あらかじめ環構造を構築し、その後に側鎖(化合物C)を導入する経路は、保護基の脱着にかかる工程の簡略化をもたらすことを可能とし、目的物を高い収率で与えることができるという利点も有する。
2.環状ペプチド化合物の製造方法
 本開示の環状ペプチド化合物の製造方法では、前記環状ペプチド誘導体の製造方法で得られた環状ペプチド誘導体を、水素化還元反応をすることで環状ペプチド化合物を得る工程を含む。つまり、本開示の環状ペプチド化合物の製造方法は、環状ペプチド誘導体の製造方法における工程Aの縮合反応の後、水素化還元反応をする工程を含む。
 環状ペプチド化合物の製造方法において、水素化還元反応の方法は特に限定されず、例えば、公知の水素化還元反応条件を広く採用することができる。例えば、触媒の存在下、水素を使用することで、水素化還元反応を行うことができる。触媒としては、例えば、水素化還元反応で使用される公知の触媒を使用することができ、具体的にはパラジウム炭素を挙げることができる。水素化還元反応では必要に応じて溶媒を使用することもできる。この溶媒としては、メタノール、エタノール等の低級アルコールを挙げることができる。
 工程Aの縮合反応で得られた式(2)で表される環状ペプチド誘導体が、例えば、tert-ブトキシカルボニル基(Boc基)、tert-ブチルジメチルシリル基(TBS基)、2-ニトロベンゼンスルホニル基(ノシル基)等の保護基を有する場合は、あらかじめ当該保護基を脱保護してから、水素化還元反応を行うこともできる。脱保護の方法は特に限定されず、例えば、公知の脱保護の方法を広く採用することができる。例えば、TBS基の脱保護およびノシル基の脱保護をこの順に行うことができる。
 式(2)で表される環状ペプチド誘導体がアルキニル基を有する場合(例えば、式(2)のRA2)、前記水素化還元反応によりアルキニル基はアルキル基へと変化し得る。例えば、式(2)で表される環状ペプチド誘導体中にアセチニル基が存在する場合、前記水素化還元反応によりエチル基へと変化し得る。
 本開示の環状ペプチド化合物の製造方法の一態様では、例えば、工程Aの縮合反応で得られた式(2)で表される環状ペプチド誘導体を脱保護し、その後、水素化還元反応をする。これにより、例えば、下記式(10)で表される化合物が生成し、具体例としては下記式(A)で表される化合物が生成し得る。
 式(10)中、RA1、RA2、RA3、RA4、RA61、RA7、RA8、RA9、RA10およびRA11はそれぞれ、前記式(2)のRA1、RA2、RA3、RA4、RA61、RA7、RA8、RA9、RA10およびRA11と同義である。この場合、RA61は水酸基であることが好ましい。
 また、式(A)中、RA1、RA3およびRA4は、前記式(2)のRA1、RA3およびRA4と同義である。具体的に式(A)で表される化合物は、式(2)におけるRA5が水酸基(ただし、mは1としている)であり、RA12が水素原子であり、RA14は-(CH-COOHである。なお、式(A)において、RA2はエチル基、RA61はOH、RA7、RA8、RA9およびRA11は水素原子、RA10はメチル基としているが、これに限定されるものではない。
 水素化還元反応において、式(2)で表される環状ペプチド誘導体がアルキニル基を有する場合はアルキル基へと変化する他、例えば、化合物Cに由来するエステル部位はカルボン酸に変化する。また、RA5が保護基を有する場合(例えば、オキシベンジル基等のエーテル構造を含有する基である場合)は、水素化還元反応によってRA5は水酸基に変化し得る(前記式(A)を参照)。
 水素化還元反応で得られる環状ペプチド化合物は、式(2)で表される化合物が水素化還元されて生成され得る化合物である限りは特に制限されず、好ましくは、式(2)中のRA5が水酸基であり、RA12が水素原子であり、RA14のCOORA13中のRA13が水素原子である化合物である。この場合において、RA2がエチル基であることも好ましい。環状ペプチド化合物は、RA14が-(CH-COOHまたは-CH-COOHであることがさらに好ましい。最も好ましくは、水素化還元反応で得られる環状ペプチド化合物は、前記一般式(A)で表される化合物において、RA1、RA3およびRA4がいずれもメチル基である化合物である。
 本開示の環状ペプチド化合物の製造方法では、前述の環状ペプチド誘導体の製造方法で得られた環状ペプチド誘導体を、水素化還元反応をすることで環状ペプチド化合物を得ることができることから、高収率で環状ペプチド化合物得ることができる。その上、環状ペプチド誘導体の製造方法で使用する化合物Cの種類に応じて、種々のアミノ酸等が結合した環状ペプチド化合物を得ることができる。
3.本開示で使用する原料の調製方法
 以下、本開示の環状ペプチド誘導体の製造方法において、工程Aで使用する式(2’)で表される化合物の製造方法の一例について説明する。式(2’)で表される化合物の製造方法は特に制限されず、例えば、公知の製造方法を広く採用することができる。
 式(2’)で表される化合物の製造方法は、RA6が保護基である場合、例えば、下記式(21a)で表される環化前駆体の分子内環化反応によって下記式(22a)で表される化合物を得る工程(以下、環化工程という)を備えることができる。
 式(21a)中、RA1~RA5およびmは前記式(1)のRA1~RA5およびmと同義である。式(21a)中、MOMはメトキシメチル基(以下、同じ)を表す。TBSは、tert-ブチルジメチルシリル基を表す。
 式(22a)中、RA1~RA5およびmは前記式(1)のRA1~RA5およびmと同義である。
 環化工程では、式(21a)で表される環化前駆体の分子内環化反応により、β-ヒドロキシイソロイシンユニットと、β-ヒドロキシドーパユニットの間にアミド結合が形成し、式(22a)で表される化合物が形成される。
 前記分子内環化反応について、従来公知の方法(例えば、P.Li,C.D.Evans,M.M.Joullie,Org.Lett.,2005,7,5325)に記載の方法)では、その収率は10~20%に留まり、環化前駆体の2量体が多く副生することが知られていた。また、他の方法(例えば、P.Li,C.D.Evans,Y.Wu,B.Cao,E.Hamel,M.M.Joullie,J.Am.Chem.Soc.,2008,130,2351)では、収率が30~40%に向上するものの、依然として収率40%を超えることはなかった。
 この点、本開示では、環化工程において、結合剤を含む溶媒中に、希薄な基質溶液を滴下することにより、基質(つまり、式(21a)で表される化合物)の濃度を薄め、分子間での反応の進行を抑えるとともに、分子内での環化反応の進行を促進することで、従来よりも高い収率で分子内環化反応を行うことができる。このような分子内環化反応を行うことで、分子間の反応を抑制できることから、目的の環化化合物(つまり、式(22a)で表される化合物)の収率が高くなるものと推察される。
 環化工程において結合剤の種類は特に限定されず、分子内環化反応で使用される結合剤を広く使用することができる。結合剤としては、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩、(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスファート、3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン(DEPBT)を挙げることができる。
 環化工程において結合剤および基質の溶解に用いる溶媒としては特に限定されず、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩素系炭化水素;メタノール、エタノール、イソプロピルアルコールおよびt-ブタノール等のアルコール;N,N-ジメチルアクリルアミド等のアミド系溶媒;等の極性溶媒であることが好ましい。溶媒は、1種単独もしくは2種以上を併用してもよい。
 結合剤の濃度としては、例えば、使用する溶媒を基準として、1mM~15mMの範囲とすることができる。また、基質の濃度は、使用する溶媒を基準として、0.1mM~1.5mMの範囲とすることができる。
 分子内環化反応における温度は特に限定されず、例えば、-20~60℃で行うことができ、0~30℃で行うことが好ましい。反応時間は、反応温度等に応じて適宜設定することができ、例えば、基質を6~24時間かけて滴下した後、6~24時間反応を続けることができるが、これに限定されるわけではない。特に、低温下で時間をかけて反応させることにより、分子内での環化反応が促進され、環化化合物(式(22a)で表される化合物)の収率を、従来の環化反応に比べて1.5~2.5倍程度向上させることができる。
 分子内環化反応により式(22a)で表される化合物を得た後、MOMの脱保護をすることで、式(2)で表される化合物を得ることができる。MOMの脱保護の方法は特に限定されず、例えば、公知のMOMの脱保護の方法と同様の条件とすることができる。MOMの脱保護をする前に、例えば、式(22a)で表される化合物における保護基を他の保護基で置換(例えば、N原子に置換されているBoc基をノシル基に置換)することもできる。さらに、MOMの脱保護をする前に、ノシル基等の保護基が結合しているN原子をメチル化することもできる。メチル化は例えば公知の方法を広く採用でき、p-ニトロベンゼンスルホン酸メチルにメチル化が例示される。
 環化工程で使用する式(21a)で表される化合物を得るための製造方法は特に限定されず、例えば、公知の反応によって式(21a)で表される化合物を得ることができる。一例として、下記式(7a)で表される化合物と、下記式(8a)で表される化合物とを反応させる工程を経て、式(21a)で表される化合物を得ることができる。
 式(7a)中、RA5およびmは前記式(1)のRA5およびmと同義である。式(7a)で表される化合物は、β-ヒドロキシドーパユニットである。
 式(8a)中、RA1およびRA2は、前記式(2)のRA1およびRA2と同義である。式(8a)で表される化合物は、アジリジン化合物である。
 式(7a)で表される化合物と、式(8a)で表される化合物との反応は、例えば、公知の開環反応と同様の条件を採用することができる。この開環反応では、例えば、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)の存在下で行うことができる。
 式(8a)において、RA2がアセチニル基である場合、求核反応速度が極めて速く、これにより、β-ヒドロキシドーパユニットとアジリジンとの求核付加反応が速やかに進行し、その反応生成物の収率も高くなる。従って、本開示の製造方法では、アミノ酸と反応していないアジリジンを用いることができる点にも利点を有する。
 式(7a)で表される化合物と、式(8a)で表される化合物との反応の後、保護基(MOM)を導入する反応を経て、下記式(13a)で表される化合物が合成される。保護基を導入する反応条件は特に限定されず、公知の方法と同様とすることができる。
 式(13a)中、RA1、RA2、RA5およびmは、前記式(2)のRA1、RA2、RA5およびmと同義である。
 その後、式(13a)で表される化合物の脱保護反応およびエステル化反応を経ることで、下記式(18a)で表される化合物を得ることができる。脱保護反応およびエステル化反応条件は特に限定されず、公知の方法と同様とすることができる。
 式(18a)中、RA1、RA2、RA5およびmは、前記式(2)のRA1、RA2、RA5およびmと同義である。
 得られた式(18a)で表される化合物のTroc基(2,2,2-トリクロロエトキシカルボニル基)の脱保護をした後、例えば、9-フルオレニルメチルオキシカルボニル基を有するバリン化合物と縮合反応を行い、さらに脱保護を行うことで、式(21a)で表される化合物(環化前駆体)が製造される。この縮合反応では、適宜の縮合剤を使用することができる。
 なお、RA2がアセチニル基である場合は、必要に応じて還元をすることができる。この還元は、前述のように工程Aの縮合反応の後、水素化還元反応をする工程で行うことができ、あるいは、前記アジリジンとの求核付加反応の後である限りは任意の時点で行うことができる。この点、RA2がアセチニル基である場合、アセチニル基は、アルキル基と比較して比較的嵩高くないため、反応を阻害しにくいことから、水素化還元反応までアセチニル基を還元せずに維持しておくことができる。
 なお、式(7a)で表される化合物の製造方法は特に限定されない。例えば、下記式(1a)で表される化合物および下記式(2a)で表される化合物を出発原料とする反応により製造することができる。
 式(2a)中、RA5およびmは、前記式(2’)のRA5と同義である。
 一方、式(8a)で表される化合物は、例えば、公知の製造方法で得ることができ、あるいは、市販品から入手することも可能である。
 (医薬組成物)
 本開示の組成物および方法は、それを必要とする個体を処置するために利用することができる。特定の実施形態では、個体は、哺乳動物、例えばヒトなど、または非ヒト哺乳動物である。動物、例えばヒトなどに投与された場合、組成物または化合物は、好ましくは、例えば、本開示の化合物と、薬学的に許容される担体とを含む医薬組成物として投与される。薬学的に許容される担体は、当技術分野で周知であり、例えば、水溶液、例えば、水もしくは緩衝生理食塩水など、または他の溶媒もしくはビヒクル、例えば、グリコール、グリセロール、油、例えば、オリーブ油など、または注射用の有機エステルが挙げられる。好ましい実施形態では、このような医薬組成物がヒトへの投与、特に侵襲経路の投与のためである場合(すなわち、例えば、上皮バリアを介した輸送または拡散を回避する注射またはインプランテーションなどの経路)、水溶液はパイロジェンを含まない、またはパイロジェンを実質的に含まない。賦形剤は、例えば、剤の遅延放出を実行するように、または1つもしくは複数の細胞、組織または器官を選択的にターゲットとするよう選択することができる。医薬組成物は、単位剤形、例えば、錠剤、カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、顆粒剤、再構成用に凍結乾燥されたもの、散剤、液剤、シロップ剤、坐剤、または注射などであり得る。組成物はまた、経皮的送達システム、例えば、皮膚パッチ中に存在することもできる。組成物はまた、局所的投与に対して適切な液剤、例えば点眼剤などの中に存在することもできる。
 薬学的に許容される担体は、化合物、例えば、本開示の化合物などを、例えば、安定化させるか、溶解度を増加させるか、または吸収を増加させるように作用する、生理学的に許容される剤を含有することができる。このような生理学的に許容される剤として、例えば、炭水化物、例えば、グルコース、スクロースまたはデキストランなど、抗酸化剤、例えば、アスコルビン酸またはグルタチオンなど、キレート剤、低分子量タンパク質または他の安定剤もしくは賦形剤などが挙げられる。生理学的に許容される剤を含めた、薬学的に許容される担体の選択は、例えば、組成物の投与経路に依存する。調製物または医薬組成物は、自己乳化型薬物送達システムまたは自己マイクロ乳化型薬物送達システムであってよい。医薬組成物(調製物)はまた、リポソームであっても他のポリマーマトリクスであってよく、これらの中に、例えば、本開示の化合物を組み込むことができる。リポソーム、例えば、リン脂質または他の脂質を含むリポソームなどは、作製および投与が比較的簡単な、非毒性の、生理学的に許容される、代謝可能な担体である。
 医薬組成物(調製物)は、例えば、経口的に(例えば、水性または非水性の液剤または懸濁剤などの中の飲薬、錠剤、カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、ボーラス、散剤、顆粒剤、舌への適用のためのペースト剤);口腔粘膜を通しての吸収(例えば、舌下);肛門で、直腸でまたは経膣的に(例えば、ペッサリー、クリーム剤または発泡体などとして);非経口的に(筋肉内、静脈内、皮下または髄腔内を含む、例えば、滅菌の液剤または懸濁剤として);経鼻;腹腔内;皮下;経皮的に(例えば、皮膚に適用されるパッチとして);および局所的に(例えば、皮膚に適用されるクリーム剤、軟膏剤もしくはスプレー剤、または点眼剤として)などを含めた、いくつかの投与経路のうちのいずれかにより被験体に投与することができる。化合物はまた、吸入用に製剤化され得る。特定の実施形態では、化合物は単に滅菌水中に溶解または懸濁させるだけでよい。適切な投与経路およびそれに適する組成物の詳細は、例えば、米国特許第6,110,973号、同第5,731,000号、同第5,541,231号、同第5,427,798号、同第5,358,970号および同第4,172,896号、ならびにこれらの中に引用された特許の中に見出すことができる。
 製剤は、便利よく、単位剤形で与えられてよく、薬学の技術分野で周知の任意の方法により調製されてよい。担体物質と組み合わせて単一剤形を生成することができる活性成分の量は、処置を受けている宿主、特定の投与モードに応じて異なる。担体物質と組み合わせて単一剤形を生成することができる活性成分の量は、一般的に治療効果を生じる化合物の量である。一般的に、この量は、100パーセントのうち、約1パーセント~約99パーセントの活性成分、好ましくは約5パーセント~約70パーセントの活性成分、最も好ましくは約10パーセント~約30パーセントの活性成分の範囲におよぶ。
 これらの製剤または組成物を調製する方法は、活性化合物、例えば、本開示の化合物などを、担体および、必要に応じて、1つまたは複数の副成分と会合させるステップを含む。一般的に、製剤は、本開示の化合物を、液体担体もしくは微細に分割された固体担体、またはこれらの両方と均一かつ密に会合させ、次いで、必要に応じて、生成物を成形することにより調製される。
 経口投与に対して適切な本開示の製剤は、カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、カシェ剤、丸剤、錠剤、ロゼンジ剤(香味づけたベース、通常、スクロースおよびアカシアまたはトラガカントを使用)、凍結乾燥されたもの、散剤、顆粒剤、または水性もしくは非水性液体中の液剤もしくは懸濁剤として、または水中油型もしくは油中水型の液体乳剤として、またはエリキシル剤もしくはシロップ剤として、またはパステル剤として(不活性ベース、例えば、ゼラチンおよびグリセリンなど、またはスクロースおよびアカシアを使用)および/または洗口剤としての形態などであってよく、これらのそれぞれが活性成分として本開示の化合物の既定量を含有する。組成物または化合物はまた、ボーラス、舐剤またはペースト剤として投与されてもよい。
 経口投与のための固体剤形(カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、錠剤、丸剤、糖衣錠、散剤、および顆粒剤など)を調製するために、活性成分は、1種もしくは複数の薬学的に許容される担体、例えば、クエン酸ナトリウムもしくは第二リン酸カルシウム、および/または以下のうちのいずれかと混合する:(1)充填剤または増量剤、例えば、デンプン、ラクトース、スクロース、グルコース、マンニトール、および/またはケイ酸など;(2)結合剤、例えば、カルボキシメチルセルロース、アルギナート、ゼラチン、ポリビニルピロリドン、スクロースおよび/またはアカシアなど;(3)保湿剤、例えば、グリセロールなど;(4)崩壊剤、例えば、寒天、炭酸カルシウム、ジャガイモデンプンまたはタピオカデンプン、アルギン酸、特定のシリケート、および炭酸ナトリウムなど;(5)溶解遅延剤、例えば、パラフィンなど;(6)吸収促進剤、例えば、第四級アンモニウム化合物など;(7)湿潤剤、例えば、セチルアルコールおよびモノステアリン酸グリセロールなど;(8)吸収剤、例えば、カオリンおよびベントナイト粘土など;(9)滑沢剤、例えば、タルク、ステアリン酸カルシウム、ステアリン酸マグネシウム、固体ポリエチレングリコール、ラウリル硫酸ナトリウム、およびこれらの混合物など;(10)錯化剤、例えば、修飾および未修飾のシクロデキストリンなど;ならびに(11)着色剤。カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、錠剤および丸剤の場合、医薬組成物はまた緩衝剤を含んでもよい。同様のタイプの固体組成物もまた、ラクトースまたは乳糖などの賦形剤、ならびに高分子量ポリエチレングリコールなどを使用して、軟質および硬質充填ゼラチンカプセル剤中の充填剤として採用することができる。
 錠剤は、必要に応じて1つまたは複数の副成分と一緒に、圧縮または成型により作製することができる。圧縮錠は、結合剤(例えば、ゼラチンまたはヒドロキシプロピルメチルセルロース)、滑沢剤、不活性希釈剤、保存剤、崩壊剤(例えば、デンプングリコール酸ナトリウムまたは架橋カルボキシメチルセルロースナトリウム)、表面活性剤または分散剤を使用して調製することができる。成型錠剤は、不活性な液体希釈剤で湿らせた粉末状化合物の混合物を適切な機器の中で成型することによって作製することができる。
 医薬組成物の錠剤および他の固体剤形、例えば、糖衣錠、カプセル剤(スプリンクルカプセル剤およびゼラチンカプセル剤を含む)、丸剤および顆粒剤などは、必要に応じて刻みを入れるか、またはコーティングおよびシェル、例えば、腸溶コーティングおよび医薬品製剤化技術において周知の他のコーティングなどを用いて調製してもよい。これらはまた、例えば、所望の放出プロファイルを提供するために異なる割合でヒドロキシプロピルメチルセルロース、他のポリマーマトリクス、リポソームおよび/またはミクロスフェアを使用して、その中の活性成分の持続性放出または制御性放出を提供するために製剤化されていてもよい。これらは、例えば、細菌保留フィルターを通す濾過により、または使用直前に滅菌水、もしくはある他の滅菌注射用媒体に溶解させることができる滅菌された固体組成物の形態で滅菌剤を組み込むことによって、滅菌されていてもよい。これらの組成物はまた、乳化剤を必要に応じて含有してもよく、活性成分(単数または複数)を、消化管の特定の部分のみにおいて、またはこの部分において優先的に、必要に応じて、遅延型方式で放出する組成物であってよい。使用することができる包埋組成物の例として、ポリマー物質およびワックスが挙げられる。活性成分はまた、適切な場合、上に記載された賦形剤の1種または複数種を用いて、マイクロカプセル化した形態にすることができる。
 経口投与に対して有用な液体剤形として、薬学的に許容される乳剤、再構成用に凍結乾燥されたもの、マイクロエマルジョン、液剤、懸濁剤、シロップ剤およびエリキシル剤が挙げられる。活性成分に加えて、液体剤形は、当技術分野で一般的に使用される不活性希釈剤、例えば、水または他の溶媒、シクロデキストリンおよびその誘導体、可溶化剤および乳化剤、例えば、エチルアルコール、イソプロピルアルコール、炭酸エチル、酢酸エチル、ベンジルアルコール、安息香酸ベンジル、プロピレングリコール、1,3-ブチレングリコール、油(特に、綿実油、ラッカセイ油、コーン油、胚芽油、オリーブ油、ヒマシ油およびゴマ油)、グリセロール、テトラヒドロフリルアルコール、ポリエチレングリコールおよびソルビタンの脂肪酸エステルなど、ならびにこれらの混合物などを含有してもよい。
 不活性希釈剤の他に、経口組成物はまた、アジュバント、例えば、湿潤剤、乳化剤および懸濁化剤、甘味剤、香味剤、着色剤、香料ならびに保存剤などを含むことができる。
 懸濁剤は、活性化合物に加えて、懸濁化剤、例えば、エトキシ化イソステアリルアルコール、ポリオキシエチレンソルビトールおよびソルビタンエステル、微結晶性セルロース、メタ水酸化アルミニウム、ベントナイト、寒天およびトラガカント、ならびにこれらの混合物などを含有してもよい。
 直腸、膣、または尿道への投与のための医薬組成物の製剤は坐剤として与えられてもよく、この坐剤は、1種または複数種の活性化合物を、例えば、ココアバター、ポリエチレングリコール、坐剤ワックスまたはサリチレートなどを含む、1種または複数種の適切な非刺激性賦形剤または担体と混合することによって調製することができ、これは、室温では固体であるが、体温では液体であり、したがって、直腸または膣腔において融解して、活性化合物を放出する。
 口への投与のための医薬組成物の製剤は、洗口剤、または経口スプレー剤、または経口軟膏剤として与えられてもよい。
 代わりにまたは追加的に、組成物は、カテーテル、ステント、ワイヤ、または他の腔内デバイスを介した送達用に製剤化することができる。このようなデバイスを介した送達は、特に膀胱、尿道、尿管、直腸、または腸への送達に対して有用であり得る。
 経膣投与に対して適切な製剤はまた、当技術分野で適当であることが公知であるような担体を含有する、ペッサリー、タンポン、クリーム剤、ゲル剤、ペースト剤、発泡体またはスプレー製剤を含む。
 局所的または経皮的投与のための剤形は、散剤、スプレー剤、軟膏剤、ペースト剤、クリーム剤、ローション剤、ゲル剤、液剤、パッチおよび吸入剤を含む。活性化合物は、滅菌条件下で、薬学的に許容される担体、および必要であり得る任意の保存剤、緩衝剤、または噴霧剤と混合することができる。
 軟膏剤、ペースト剤、クリーム剤およびゲル剤は、活性化合物に加えて、賦形剤、例えば、動物性および植物性の油脂、ワックス、パラフィン、デンプン、トラガカント、セルロース誘導体、ポリエチレングリコール、シリコーン、ベントナイト、ケイ酸、タルクおよび酸化亜鉛、またはこれらの混合物などを含有してもよい。
 散剤およびスプレー剤は、活性化合物に加えて、賦形剤、例えば、ラクトース、タルク、ケイ酸、水酸化アルミニウム、ケイ酸カルシウムおよびポリアミド粉末、またはこれらの物質の混合物などを含有することができる。スプレー剤は、慣習的噴霧剤、例えば、クロロフルオロ炭化水素などおよび揮発性の非置換炭化水素、例えば、ブタンおよびプロパンなどをさらに含有することができる。
 経皮的パッチにより、本開示の化合物の制御送達を身体に提供するという利点が加わった。このような剤形は、活性化合物を適正な媒体中に溶解または分散させることによって作製することができる。吸収増強剤を使用することによって、皮膚を横断する化合物のフラックスを増加させることもできる。このようなフラックスの速度は、速度制御膜を提供すること、または化合物をポリマーマトリクスまたはゲル内で分散させることのいずれかによって制御することができる。
 眼用製剤、眼軟膏剤、散剤、および液剤などもまた本開示の範囲内にあると想定されている。例示的眼用製剤は、米国特許出願公開第2005/0080056号、同第2005/0059744号、同第2005/0031697号および同第2005/004074号ならびに米国特許第6,583,124号(これらの内容は、本明細書に参考として援用される)に記載されている。所望する場合、液体眼用製剤は、涙液、房水または硝子体液と同様の特性を有するか、またはこのような流体と相容性である。好ましい投与経路は、局部への投与(例えば、局所的投与、例えば点眼剤など、またはインプラントを介した投与)である。
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。
 実施例において、記載の簡略化のために、上記で示した略語および下記に示す略語を使用することがある。
Ac :アセチル
AcOH :酢酸
aq. :水溶液
Arg :アルギニン
Asp :アスパラギン酸
BHT :ジブチルヒドロキシトルエン
Bn :ベンジル
Boc :tert-ブトキシカルボニル
Boc2O :二炭酸ジ-tert-ブチル
Bzl :ベンジル
Cbz :ベンジルオキシカルボニル
CPME :シクロペンチルメチルエーテル
DBU :ジアザビシクロウンデセン
DEPBT :3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン
DIAD :アゾジカルボン酸ジイソプロピル
DIPEA :N,N-ジイソプロピルエチルアミン
DMAP :4-ジメチルアミノピリジン
DMEAD :アゾジカルボン酸ビス(2-メトキシエチル)
DME :1,2-ジメトキシエタン
DMF :N,N-ジメチルホルムアミド
DMP :2,2-ジメトキシプロパン
DMT-MM :4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド
DMT-MMT :4-(4,6-ジメトキシトリアジン-2-イル)-4-メチルモルホリンテトラフルオロホウ酸塩
EDCI :1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩
Et :エチル
eq. :当量
Fmoc :9-フルオレニルメチルオキシカルボニル
Gln :グルタミン
Glu :グルタミン酸
HATU :1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート
HBTU :1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドヘキサフルオロホスファート
HOAt :1-ヒドロキシ-7-アザベンゾトリアゾール
HOBt :1-ヒドロキシベンゾトリアゾール
m-CPBA :メタクロロ過安息香酸
Me :メチル
MS :モレキュラーシーブ
MTBE :メチルtert-ブチルエーテル
NMM :N-メチルモルホリン
Ns :2-ニトロベンゼンスルホニル
PMB :パラメトキシベンジル
Ser :セリン
Su :スクシンイミド
TBAF :テトラブチルアンモニウムフルオリド
TBAI :テトラブチルアンモニウムヨージド
TBD :1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン
TBS :tert-ブチルジメチルシリル
t-Bu :tert-ブチル
TFA :トリフルオロ酢酸
THF :テトラヒドロフラン
Thr :トレオニン
TEMPO :2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル
Tr :トリチル
Trt :トリチル
Ts :トシル
TsOH :パラトルエンスルホン酸
Tyr :チロシン
Pbf :2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル
Ph :フェニル
PyBOP :(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスフェート
PyBrop :ブロモ-トリス-ピロリジノ-ホスホニウム ヘキサフルオロホスフェート
Val :バリン
 なお、Fragment C群およびFragment D群については以下から入手した。
(実施例1:Fragment A-2.の合成)
 L-チロシン(1.0eq.,6.51g,35.9mmol)のニトロベンゼン(130mL)溶液に、氷冷下で塩化アルミニウム(4.0eq.,19.1g,143mmol)および塩化アセチル(1.2eq.,3.42g,43.6mmol)を加え、室温に昇温しながら10分間撹拌した。反応液を100℃まで昇温させ8時間撹拌し、室温に降温しながら16時間撹拌した。反応液を氷冷し水(200mL)を加え、酢酸エチル(300mL)で1回分液洗浄し、有機層を水(100mL)で1回分液抽出した。水層を合一させ、水溶液(300mL)としてA2-1を得た。
 A2-1(1.0eq.,水溶液300mL,35.9mmolとして計算)に氷冷下で炭酸カリウム(7.5eq.,36.9g,267mmol)を加えてpHを9とし、THF(150mL)およびCbzCl(1.2eq.,7.3g,42.8mmol)を加え、室温で3時間撹拌した。反応液に2N塩酸水溶液(200mL)を加えてpHを3とし、THFを減圧留去した。濃縮物を酢酸エチル(200mL)で3回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物としてA2-2(11.4g)を得た。
 窒素雰囲気下、A2-2(1.0eq.,11.4g,35.9mmolとして計算)のDMF(50mL)溶液に、氷冷下で炭酸カリウム(3.0eq.,14.9g,108mmol)、TBAI(0.10eq.,1.33g,3.59mmol)およびBnBr(2.2eq.,13.5g,79.1mmol)を加え、室温で3.5時間撹拌した。反応液に水(100mL)を加え、ヘキサン(40mL)/酢酸エチル(80mL)混合液で2回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(23.2g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル200g,ヘキサン/酢酸エチル=80/20~50/50)し、黄色粘体としてA2-3(9.56g,L-チロシンから3段階の収率50%)を得た。なお、本明細書において、混合液は全て、溶媒A(XmL)/溶媒B(YmL)混合液という表記をする。
 窒素雰囲気下、A2-3(1.0eq.,8.88g,16.5mmol)のDMF(80mL)溶液に、氷冷下で水素化ナトリウム(1.2eq.,60%,dispersion in Paraffin Liquid,796mg,19.9mmol)およびヨウ化メチル(3.0eq.,7.07g,49.8mmol)を加え、氷冷下で1.5時間撹拌した。反応液にメタノール(12mL)を加えてクエンチし、水(100mL)を加え、ヘキサン(50mL)/酢酸エチル(100mL)混合液で2回分液抽出した。有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(13.1g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=90/10~0/100)し、橙色液状物としてA2-4(9.54g)を得た。
 A2-4(1.0eq.,10.1g,17.6mmolとして計算)のクロロホルム(90mL)溶液に、室温でm-CPBA(3.0eq.,35%水分含有,14.0g,52.7mmol)を加え、還流条件下で5時間撹拌した。反応液に室温で、水(50mL)および飽和炭酸水素ナトリウム水溶液(100mL)を加えた後、クロロホルムを減圧留去した。反応液を酢酸エチル(100mL)で3回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮してEster(10.6g)を得た。
 Ester(1.0eq.,10.6g,17.6mmolとして計算)のTHF(40mL)/水(40mL)混合液に、室温で水酸化リチウム(4.0eq.,1.68g,70.3mmol)を加え、同温で16時間撹拌した。反応液をヘキサン(100mL)で2回分液洗浄した後、水層に6N塩酸水溶液(11mL)を加えてpHを2とした。水層を酢酸エチル(100mL)で3回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して橙色固体としてA2-5(9.3g)を得た。
 A2-5(1.0eq.,9.3g,17.6mmolとして計算)のアセトニトリル(80mL)溶液に、室温でDBU(1.1eq.,2.96g,19.4mmol)およびPMBCl(1.1eq.,3.00g,19.2mmol)を加え、外温60℃で19時間撹拌した。反応液に酢酸(3.0eq.,3.15g,52.5mmol)を加えてクエンチした後、減圧濃縮することで粗体(16.7g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル120g,ヘキサン/酢酸エチル=75/25~50/50、2回目:順相シリカゲル30g,ヘキサン/酢酸エチル=75/25~67/23)し、得られたFragment A-2を酢酸エチル(50mL)に溶解し、飽和炭酸水素ナトリウム水溶液(50mL)で1回分液洗浄した。水層を酢酸エチル(50mL)で2回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物としてFragment A-2(3.54g,A2-3から3段階の収率36%)を得た。
 (実施例2A:Fragment A-2’の合成)
 A2-5(1.0 eq.,3.4g,7.12mmolとして計算)のアセトニトリル(70mL)溶液に、室温でDBU(1.5eq.,1.6mL,10.7mmol)およびBnBr(1.2eq.,1.0mL,8.54mmol)を加え、室温で16時間撹拌した。飽和塩化アンモニウム水溶液(30 mL)を加えクエンチした後、水(30mL)で3回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(4.83g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル53g,ヘキサン/酢酸エチル=3/1~2/1)し、黄色粘体としてFragment A-2’(1.87g,3段階収率50%)を得た。
 (実施例2AA:Fragment A-2”の合成)
 L-Tyrosine → A2-1の合成は実施例1に記載のとおりである。A2-1からA3’-2を経てA3’-3への合成は、実施例2に記載のとおりである。
 A3’-3からA2”-1への合成は以下のとおりである。
 窒素雰囲気下、A3’-3(1.0eq.,18.3g,36.34mmol)のDMF(150mL)溶液に外温-20℃でヨウ化メチル(3.0eq.,6.8mL,109.23mmol)および水素化ナトリウム(60%,dispersion in Paraffin Liquid,1.2eq.,1.7g,43.45mmol)を加え、同温で3時間撹拌した。外温-20℃で1N塩酸水溶液(50mL)を加えた後、水(100mL)を加えた。ヘキサン(50mL)/酢酸エチル(100mL)混合液で2回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(150mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(20.2g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル40g,ヘキサン/酢酸エチル=9/1~3/1)した後、得られた淡黄色粘体をヘキサンで洗浄することでA2”-1(18.9g,収率101%)を得た。
 A2”-1からA2”-2への合成は以下のとおりである。
 窒素雰囲気下、A2”-1(1.0eq.,18.9g,36.34mmol)のクロロホルム(150mL)溶液に室温下でm-CPBA(30%水分含有,2.0eq.,18.0g,73.01mmol)を加え、外温60℃で4.5時間撹拌した。m-CPBA(0.5eq.,4.8g,19.47mmol)を室温下で追加し、外温60℃で1時間撹拌した後、外温40℃で15時間撹拌した。氷冷下で20%亜硫酸ナトリウム水溶液(75mL)および飽和炭酸水素ナトリウム水溶液(75mL)を加えた。反応液の有機層を回収し、有機層に20%亜硫酸ナトリウム水溶液(75mL)、飽和炭酸水素ナトリウム水溶液(75mL)、飽和塩化ナトリウム水溶液(250mL)および酢酸エチル(400mL)を加え、1回分液洗浄した。水層を合一し酢酸エチル(100mL)で1回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色粘体として粗体(20.6g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル40g,ヘキサン/酢酸エチル=9/1~3/1)し、黄色粘体としてEster(17.2g,収率89%)を得た。
 Ester(1.0eq.,17.2g,32.17mmol)のTHF(75mL)/水(75mL)混合液に室温下で水酸化リチウム(2.5eq.,1.9g,80.25mmol)を加え、室温で3時間撹拌した。水酸化リチウム(1.0eq.,790mg,32.97mmol)を追加し、1時間撹拌した後、さらに水酸化リチウム(0.5eq.,392mg,16.37mmol)を追加して30分間撹拌した。反応液をヘキサン(75mL)で2回分液洗浄した後、有機層を合一し、水(20mL)で1回分液抽出した。水層を合一し、氷冷下で2N塩酸水溶液(65mL)を加えてpHを1にした後、酢酸エチル(100mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶褐色粘体として粗体のA2”-2(14.3g,粗収率110%)を得た。
 A2”-2からFragment A-2”への合成は以下のとおりである。
 窒素雰囲気下、A2”-2(1.0eq.,14.2g,32.17mmol)のアセトニトリル(150mL)溶液に室温下でDIPEA(1.2eq,6.6mL,38.81mmol)およびBnBr(1.2eq.,3.8mL,38.66mmol)を加え、室温で2時間撹拌した。DIPEA(0.2eq,1.1mL,6.47mmol)およびBnBr(0.2eq.,650μL,6.61mmol)を追加して1時間撹拌した後、飽和塩化アンモニウム水溶液(75mL)および水(75mL)を加えた。反応液の有機層を回収した後、水層を酢酸エチル(100mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で2回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色油状物として粗体(18.0g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=5/1~0/1)し、淡黄色粘体としてFragment A-2”(7.1g,2段階収率45%)を得た。
 (実施例2:Fragment A-3の合成)
 A2-3(1.0eq.,13.1g,24.4mmol)のクロロホルム(120mL)溶液に、氷冷下でm-CPBA(2.0eq.,35%水分含有,13.0g,48.9mmol)を加え、還流条件下で18時間撹拌した。反応液に室温で、飽和炭酸水素ナトリウム水溶液(100mL)を加えてクエンチした後、クロロホルムを減圧留去した。反応液を酢酸エチル(200mL)で3回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮してEsterを得た。
 Ester(1.0eq.,24.4mmolとして計算)のTHF(60mL)/水(60mL)混合液に、室温で水酸化リチウム(4.0eq.,2.34g,97.7mmol)を加え、同温で19時間撹拌した。反応液に室温で水酸化リチウム(2.0eq.,1.17g,48.9mmol)を追加し、同温で4.5時間撹拌した。反応液に水(100mL)を加え、ヘキサン(100mL)で2回分液洗浄した後、水層に6N塩酸水溶液を加えてpHを3とした。水層を酢酸エチル(200mL)で2回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して暗褐色油状物としてA3-4(11.2g)を得た。
 A3-4(1.0eq.,11.2g,24.4mmolとして計算)のアセトニトリル(120mL)溶液に、室温でDBU(1.1eq.,4.09g,26.8mmol)およびPMBCl(1.1eq.,4.20g,26.8mmol)を加え、外温60℃で16時間撹拌した。反応液に酢酸(3.0eq.,4.41g,73.4mmol)を加えてクエンチした後、減圧濃縮することで粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル180g,ヘキサン/酢酸エチル=75/25~50/50)し、橙色油状物としてFragment A-3(7.83g,A2-3から2段階の収率59%)を得た。
 窒素雰囲気下、L-チロシン(1.0eq.,3.04g,16.78mmol)のニトロベンゼン(70mL)溶液に氷冷下で塩化アルミニウム(4.1eq.,9.08g,68.11mmol)および塩化アセチル(1.3eq.,1.5mL,21.12mmol)を加えた。氷冷下で20分間撹拌した後、外温100℃で、7時間撹拌した。反応液を放冷した後、氷冷した1N塩酸水溶液(100mL)に加え、クエンチした。酢酸エチル(100mL)で3回分液洗浄し、水溶液(100mL)としてA2-1を得た。
 A2-1(1.0eq.,水溶液100mL,16.78mmolとして計算)に水(100mL)および1,4-ジオキサン(100mL)を加えた後、氷冷下で炭酸水素ナトリウム(25.0eq.,35.2g, 419.05mmol)を加えて塩基性にした。続いて氷冷下でBocO(1.2eq.,4.6mL,20.02mmol)を加え、室温で4.5時間撹拌した。炭酸水素ナトリウム(2.1eq.,3.03g,36.07mmol)およびBocO(1.0eq.,4mL, 17.41mmol)を追加し、さらに17時間撹拌した。反応液を減圧濃縮して1,4-ジオキサンを留去した後、2N塩酸水溶液(約300mL)を加えてpHを1~2にした。酢酸エチル(300mL)で1回分液抽出した後、有機層を1N塩酸水溶液(100mL)で1回分液洗浄した。水層を合一し、酢酸エチル(200mL)で1回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色粘体としてA3’-2(5.63g,粗収率104%)を得た。
 窒素雰囲気下、A3’-2(1.0eq.,5.63g,16.78mmolとして計算)のDMF(80mL)溶液に氷冷下で炭酸カリウム(3.0eq.,7.03g,50.85mmol)、TBAI(0.1eq.,640mg,1.73mmol)およびBnBr(2.2eq.,3.6mL,36.62mmol)を加え、室温で2時間撹拌した。反応液に水(80mL)を加え、ヘキサン(25mL)/酢酸エチル(75mL)混合液で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(200mL)で分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶褐色油状物として粗体(9.84g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=5/1~1/1)し、淡橙色粘体としてA3’-3(6.18g,3段階収率73%)を得た。
 窒素雰囲気下、A3’-3(1.0eq.,19.32g,38.36mmol)のクロロホルム(200mL)溶液に氷冷下でm-CPBA(35%水分含有,2.0eq.,19.0g,77.07mmol)を加え、外温60℃で6時間撹拌した。反応液を液量が半分程度になるまで減圧濃縮した後、飽和炭酸水素ナトリウム水溶液(200mL)を加えた。酢酸エチル(200mL)で1回、酢酸エチル(100mL)で2回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(200mL)で分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色固体としてEster(24.9g,粗収率125%)を得た。
 Ester(1.0eq.,24.9g,38.36mmolとして計算)のTHF(100mL)/水(100mL)混合液に氷冷下で水酸化リチウム(2.5eq.,2.31g,96.43mmol)を加え、室温で3時間撹拌した。続いて、水酸化リチウム(1.0eq.,929mg,38.80mmol)を追加し、さらに2時間撹拌した。さらに水酸化リチウム(1.5eq.,1.39g,57.87mmol)を追加し、1時間撹拌した。反応液をヘキサン(100mL)で2回分液洗浄した。水層に氷冷下で6N塩酸水溶液(30mL)を加え、pHを2~3にした後、酢酸エチル(100mL)で1回分液抽出した。水層に6N塩酸水溶液(5mL)を加え、pHを1~2にした後、酢酸エチル(100mL)で2回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色粘体として粗体(21.6g)を得た。粗体をヘキサン/酢酸エチル混合液(4/1~1/1)を用いて再結晶することで、白色固体としてA3’-4(12.4g,見かけ収率83%,m-CPBAを約30%含む)を得た。
 窒素雰囲気下、A3”-4(1.0eq.,3.03g,m-CPBAを約30%含む,7.83mmolとして計算)のアセトニトリル(40mL)溶液に氷冷下でDBU(1.1eq,1.3mL,8.71mmol)およびBnBr(1.1eq.,850μL,8.65mmol)を加え、室温で16時間撹拌した。反応液を飽和塩化アンモニウム水溶液(40mL)で1回分液洗浄した。水層を酢酸エチル(40mL)で2回分液抽出した。有機層を合一し、水(100mL)で1回分液洗浄した後、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色油状物として粗体(3.7g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=5/1~3/1)し、淡黄色粘体としてFragment A-3”(1.8g,収率48%)を得た。
 窒素雰囲気下、A3’-4(1.0eq.,4.42g,A3’-3の加水分解体を約30%含む,11.43mmolとして計算)のアセトニトリル(60mL)溶液に氷冷下でDBU(1.1eq,1.9mL,12.73mmol)およびPMBCl(1.1eq.,1.7mL,12.48mmol)を加え、室温で16時間撹拌した。反応液を飽和塩化アンモニウム水溶液(60mL)で1回分液洗浄した。水層を酢酸エチル(60mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物として粗体(6.17g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=5/1~2/1)し、淡黄色粘体としてFragment A-3’(3.47g,A3’-3のPMBエステル体を約30%含む、見かけ収率60%)を得た。
 (実施例2A:Fragment A-13の合成)
 L-TyrosineからA2-2の2工程は実施例2に記載の通りに行った。
 A2-2からA13-1への合成は以下のとおりである。
 窒素雰囲気下、A2-2(1.0eq.,20.3g,55.2mmolとして計算)のDMF(110mL)溶液に、氷冷下で炭酸カリウム(3.0eq.,22.9g,166mmol)、TBAI(0.10eq.,2.04g,5.52mmol)およびBnBr(2.0eq.,13.1 g,110mmol)を加え、室温で2.5時間撹拌した。反応液に水(200mL)を加え、ヘキサン(50mL)/酢酸エチル(150mL)混合液で2回分液抽出した。有機層を合一し、水(100mL)で1回、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色液体として粗体(34.3g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル200g,ヘキサン/酢酸エチル=80/20~50/50)し、黄色液体としてA13-1とA2-3の混合物(24.3g)を得た。
 A13-1からA13-2への合成は以下のとおりである。
 窒素雰囲気下、A13-1とA2-3の混合物(1.0eq.,24.3g,45.2mmolとして計算)のDMF(90mL)溶液に、氷冷下で水素化ナトリウム(1.2eq.,2.17g,54.3mmol)およびヨウ化メチル(3.0eq.,8.4 mL,135mmol)を加え、氷冷下で4時間撹拌した。反応液に2N塩酸水溶液(20mL)を加えてクエンチし、水(200mL)を加えた。ヘキサン(50mL)/酢酸エチル(150mL)混合液で1回、ヘキサン(40mL)/酢酸エチル(120mL)混合液で1回分液抽出した。有機層を合一し、水(100mL)で1回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮してA13-2とA2-4の混合物(24.6g)を得た。
 A13-2からA13-3への合成は以下のとおりである。
 窒素雰囲気下、A13-2とA2-4の混合物(1.0eq.,24.6g,44.6mmolとして計算)のクロロホルム(180mL)溶液に、室温でm-CPBA(35%水分含有,2.0eq.,23.7g,89.3mmol)を加え、外温45℃で17時間撹拌した。反応液を氷冷し、20%亜硫酸ナトリウム水溶液(80mL)/飽和炭酸水素ナトリウム水溶液(80mL)混合液を加えてクエンチした。反応液に酢酸エチル(500mL)を加えて1回分液抽出し、有機層を20%亜硫酸ナトリウム水溶液(80mL)/飽和炭酸水素ナトリウム水溶液(80mL)混合液で1回、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物として粗体(26.2g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル220g,ヘキサン/酢酸エチル=83/17~50/50)し、黄色液体としてEster-A13とEsterの混合物(22.2g)を得た。
 Ester-A13とEsterの混合物(1.0eq.,22.2g,39.1mmolとして計算)のTHF(80mL)/水(80mL)混合液に、室温で水酸化リチウム(4.0eq.,3.74g,156mmol)を加え、同温で3.5時間撹拌した。反応液をヘキサン(100mL)で3回分液洗浄した後、水層に2N塩酸水溶液(72mL)を加えてpHを1にした。水層を酢酸エチル(150mL)で3回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色粘体としてA13-3とA2-5の混合物(17.9g)を得た。
 A13-3からFragment A-13への合成は以下のとおりである。
 A13-3とA2-5の混合物(1.0eq.,17.4g,39.1mmolとして計算)のDMF(80mL)溶液に、室温で炭酸カリウム(3.1eq.,16.6g,120mmol)およびヨウ化メチル(1.1eq.,2.7mL,43.4mmol)を加え、同温で1.5時間撹拌した。反応液に水(200mL)を加え、ヘキサン(60mL)/酢酸エチル(180mL)混合液で1回、ヘキサン(30mL)/酢酸エチル(90mL)混合液で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色粘体として粗体(17.9g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル200g,ヘキサン/酢酸エチル=80/20~50/50、2回目:順相シリカゲル25g,ヘキサン/酢酸エチル=75/25~50/50)し、褐色粘体としてFragment A-13(2.42g)と淡黄色粘体としてFragment A-10(11.8g)を得た。
 (実施例3:Fragment B-1の合成)
 窒素雰囲気下、D-セリン(1.0eq.,25.0g,0.238mol)の飽和炭酸水素ナトリウム水溶液(150mL)の溶液に室温で水(150mL)および炭酸ナトリウム(1.0eq.,25.2g,0.238mol)を加えた。氷冷下でBocO(1.2eq.,62.4g,0.286mol)の1,4-ジオキサン(125mL)溶液を加え、同温で0.5時間、室温で終夜撹拌した。減圧濃縮して1,4-ジオキサンを留去後、濃縮残渣にMTBE(200mL)を加えて不溶解物をろ別した。ろ液の水層を回収し、水層をMTBE(200mL)で1回分液洗浄した後、氷冷下で濃塩酸(約25mL)を加えてpHを2~3とした。塩化ナトリウム(60g)を加えた後、酢酸エチル(200mL)で4回分液抽出した。水層に濃塩酸(5mL)および塩化ナトリウム(20g)を加えて酢酸エチル(200mL)で4回分液抽出した。さらに水層に塩化ナトリウムおよび濃塩酸を加えた後、酢酸エチル(100mL)で6回、酢酸エチル(50mL)/THF(50mL)で6回分液抽出した。有機層を合一して硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮して無色油状物としてD-N-Boc-セリン(50.81g,収率92%)を得た。
 窒素雰囲気下、D-N-Boc-セリン(1.0eq.,50.8g,Net44.9g,0.219mol)のジクロロメタン(300mL)溶液に、内温-10℃でN,O-ジメチルヒドロキシルアミン塩酸塩(1.03eq.,22.27g,0.228mol)、NMM(1.03eq.,23.10g,0.228mol)およびEDCI(1.1eq.,46.74g,0.244mol)を加えた。この溶液を-10℃から室温で終夜撹拌した。反応液に、氷冷下で1M塩酸水溶液を加えて1回分液洗浄した後、水層をジクロロメタン(100mL)で1回分液抽出し、有機層を合一して飽和炭酸水素ナトリウム水溶液(100mL)で1回分液洗浄した。水層を再度ジクロロメタン(50mL)で1回分液抽出して有機層を合一した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して白色固体としてB1-1(50.4g,収率93%)を得た。
 窒素雰囲気下、B1-1(1.0eq.,50.4g,0.203mol)のアセトン(327mL)溶液に室温で2,2-ジメトキシプロパン(164mL)および三フッ化ホウ素・ジエチルエーテル錯体(0.06eq.,1.64mL, 0.013mol)を加え、同温で1時間撹拌した。反応液にトリエチルアミン(0.146eq.,3.00g,29.65mmol)を加えて減圧濃縮した。濃縮残渣にTHF(100mL)を加えて再度濃縮することを3回繰り返すことで、淡黄色油状物としてB1-2(1)(60.4g,quant.)を得た。
 窒素雰囲気下、B1-2(1)(1.0eq.,60.4g,0.203molとして計算)のTHF(570mL)溶液に、内温-57~-40℃でメチルリチウム(1.5M in EtO,2.0eq.,279mL,0.419mmol)を40分かけて加え、同温で2時間撹拌した。同温で反応液に飽和塩化アンモニウム水溶液(130mL)を加え、室温まで昇温した後、分液洗浄した。水層を酢酸エチル(200mL)で3回分液抽出し、有機層を合一して硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して淡黄色油状物として粗体(51.56g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル750g,ヘキサン/酢酸エチル=10/1~4/1)し、無色油状物としてB1-2(34.8g,収率70%)を得た。
 窒素雰囲気下、B1-2(1.0eq.,34.8g,0.143mol)のTHF(696mL)溶液に、室温でエチニルマグネシウムブロミド(0.5M in THF,2.5eq.,715mL,0.358mol)を1.5時間かけて加え、同温で2時間撹拌した。反応液に-55℃で、飽和塩化アンモニウム水溶液(160mL)を加え、-5℃まで昇温した後、減圧濃縮した。濃縮残渣に水(300mL)を加え、酢酸エチル(300mL)で1回,酢酸エチル(150mL)で1回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(150mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して黄色固体として粗体(40.36g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル370g,クロロホルム/酢酸エチル=100/0~20/1)し、白色固体としてB1-3(ジアステレオマー混合物,33.9g,収率88%)を得た。
 窒素雰囲気下、B1-3(ジアステレオマー混合物,1.0eq.,33.9g,0.126mol)のTHF(450mL)溶液に、室温で濃塩酸(12eq.,130mL,1.56mol)を加え、同温で4時間撹拌した。反応液を減圧濃縮し、B1-4(1)の粗体溶液を得た。
 窒素雰囲気下、B1-4(1)の粗体溶液にTHF(260mL)および水(65mL)を加えた。この溶液に炭酸ナトリウム(5.0eq.,66.70g,0.629mol)およびNsCl(1.0eq.,27.90g,0.125mol)を加え、室温で17時間撹拌した。反応液に飽和塩化ナトリウム水溶液(65mL)を加えて分液洗浄した後、水層を酢酸エチル(260mL)で3回分液抽出し、有機層を合一して硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して褐色粘体として粗体(40.01g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル200g,ヘキサン/酢酸エチル=1/1~3/7)し、淡褐色粘体としてB1-4(ジアステレオマー混合物,38.05g,酢酸エチル4.0wt%含有,換算収率92%)を得た。
 窒素雰囲気下、B1-4(ジアステレオマー混合物,1.0eq.,36.0g,酢酸エチル4.0wt%含有,0.110mol)のDMF(360mL)溶液に、室温でイミダゾール(1.5eq.,11.71g,0.172mol)およびTBSCl(1.2eq.,20.74g,0.138mol)を加え、同温で1時間撹拌した。反応液に酢酸エチル(350mL)および水(300mL)を加えて1回分液抽出した後、水層を酢酸エチル(100mL)で2回分液抽出し、有機層を合一して硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して褐色粘体として粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル540g,ヘキサン/酢酸エチル=1/0~1/1)し、黄色粘体としてB1-5(ジアステレオマー混合物,48.3g,収率98%)を得た。
 窒素雰囲気下、B1-5(ジアステレオマー混合物,1.0eq.,24.1g,0.056mol)のTHF(560mL)溶液に、氷冷下でトリフェニルホスフィン(1.5eq.,17.10g,0.085mol)およびDIAD(1.5eq.,17.09g,0.084mol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(650mL)、水(300mL)および5%炭酸水素ナトリウム水溶液(300mL)を加えて1回分液抽出した後、有機層を5%炭酸水素ナトリウム水溶液(300mL)で1回、飽和塩化ナトリウム水溶液(300mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して黄色油状物として粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル720g,ヘキサン/酢酸エチル=10/1)し、白色固体としてFragment B-1(12.6g,収率54%)を得た。また、ジアステレオマーを16%含有する混合物として4.09g得た。
 ジアステレオマー混合物(3.41g)にヘキサン(8.5mL)/ジイソプロピルエーテル(8.5mL)混合液を加え、外温45℃に加温して溶解させた。この溶液を内温11℃まで放冷した後、析出した固体をろ取し、固体をヘキサン(1.5mL)/ジイソプロピルエーテル(1.5mL)で1回、ヘキサン(3mL)で1回洗浄し、白色固体としてFragment B-1(2.41g,ジアステレオマー0.7%含有,収率10%)を得た。
 (実施例4:Fragment B-2の合成)
 窒素雰囲気下、氷冷下でメタノール(47mL)に塩化チオニル(1.5eq.,5mL,69.35mmol)を滴下した。同温でL-セリン(1.0eq.,5.00g,47.66mmol)を加えた後、還流条件下で2.5時間撹拌した。反応液を減圧濃縮し、メタノールを留去することで淡黄色固体としてB2-1(7.61g,粗収率104%)を得た。
 窒素雰囲気下、B2-1(1.0eq.,4.56g,29.69mmolとして計算)のジクロロメタン(30mL)溶液に氷冷下でトリエチルアミン(2.1eq.,8.3mL,62.01mmol)およびTrCl(1.05eq.,8.71g,31.23mmol)を加え、室温で3時間撹拌した。反応液にジクロロメタン(30mL)を加え、水(60mL)で1回分液洗浄した。水層をジクロロメタン(60mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(150mL)で1回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(10.99g)を得た。粗体に氷冷下で酢酸エチル(20mL)およびヘキサン(40mL)を加えた。不溶の白色固体をろ取することで、Fragment B-2(7.67g,2段階収率71%)を得た。
 (実施例5:Fragment B-3の合成)
 窒素雰囲気下、氷冷下でメタノール(42mL)に塩化チオニル(1.5eq.,4.5mL,62.03mmol)を滴下した。同温でL-トレオニン(1.0eq.,5.01g,42.10mmol)を加えた後、還流条件下で5時間撹拌した。反応液を減圧濃縮し、メタノールを留去することで淡黄色固体としてB3-1(8.29g,粗収率116%)を得た。
 窒素雰囲気下、B3-1(1.0eq.,4.01g,23.66mmolとして計算)のジクロロメタン(48mL)溶液に氷冷下でトリエチルアミン(2.1eq.,6.9mL,49.50mmol)およびTrCl(1.06eq.,6.99g,25.08mmol)を加え、室温で5時間撹拌した。氷冷下でトリエチルアミン(1.1eq.,3.6mL,25.83mmol)およびTrCl(0.53eq.,3.50g,12.55mmol)を追加し、室温でさらに18時間撹拌した。反応液を水(60mL)で1回分液洗浄した。水層をジクロロメタン(60mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(150mL)で分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(13.4g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=2/1~1/1)し、白色固体としてFragment B-3(7.27g,2段階収率82%)を得た。
 (実施例6:Fragment B-9の合成)
 窒素雰囲気下、メタノール(240mL)に氷冷下で塩化チオニル(1.45eq.,25mL,345mmol)を加えた。同温でD-セリン(1.0eq.,25g,238mmol)を加え、70℃で16.5時間撹拌した。反応液を減圧濃縮し粗体のmethyl ester(37g)を得た。
 窒素雰囲気下、methyl ester(1.0eq.,37.0g, 238mmolとして計算)の水(100mL)/メタノール(100mL)混合液に氷冷下で炭酸水素ナトリウム(2.5eq.,49.9g,595mmol)およびBocO(1.05eq.,65mL,250mmol)を加えて、室温で5.5時間撹拌した。反応液に水(200mL)を加えた後、酢酸エチル(200mL)で2回分液抽出をした。有機層を水(100mL)で2回、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した後、硫酸マグネシウムで乾燥した。減圧濃縮し粗体としてB8-1(58.7g)を得た。
 窒素雰囲気下、B8-1(1.0eq.,58.7g,238mmolとして計算)のアセトン(350mL)溶液に室温で2,2-ジメトキシプロパン(268mL)および三フッ化ホウ素・ジエチルエーテル錯体(0.05eq.,1.5mL, 11.9mmol)を加え、同温で1時間撹拌した。反応液にトリエチルアミン(0.075eq.,2.5mL,17.9mmol)を加えて減圧濃縮し、淡黄色油状物の粗体としてB8-2(68.0g)を得た。
 窒素雰囲気下、B8-2(1.0eq.,16.02g,61.0mmolとして計算)のTHF(300mL)溶液に、氷冷下で臭化メチルマグネシウム(12.4%,3.0eq.,176.06g,183mmol)を14分間かけて加え、同温で1時間撹拌した。反応液に10%塩化アンモニウム水溶液(200mL)、酢酸エチル(100mL)および水(30mL)を加えて1回分液抽出し、水層を酢酸エチル(50mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別し、減圧濃縮した。
 同様の操作でB8-2(2.00g)から得た粗体と先の濃縮残渣を合一してフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢エチル=80/20~20/80)し、淡黄色油状物としてB9-1(17.22g,酢酸エチル1.7wt%含有,換算収率95%)を得た。
 窒素雰囲気下、B9-1(1.0eq.,16.22g,酢酸エチル1.7wt%含有,61.5mmol)のTHF(248mL)溶液に、室温で濃塩酸(12eq.,62mL,744mmol)を加え、同温で2時間、続いて外温50℃で3時間撹拌した後、反応液を濃縮して紫色油状物として粗体(14.04g)を得た。
 同様の操作でB9-1(1.00g)から得た粗体と先の粗体を合一してTHF(130mL)に溶解し、室温下で水(33mL)および炭酸ナトリウム(5.0eq.,34.59g,326mmol)を加えてpHを9とした。NsCl(1.0eq.,14.46g,65.3mmol)を加えて同温で16時間撹拌した後、NsCl(0.3eq.,4.34g,19.6mmol)を追加し、同温で30分間撹拌した。反応液に飽和塩化ナトリウム水溶液(150mL)、酢酸エチル(50mL)および水(180mL)を加えて1回分液抽出し、水層を酢酸エチル(30mL)で3回分液抽出した。有機層を合一して硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮した。濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=50/50~0/100)し、褐色油状物としてB9-2(19.70g,不純物含有,見かけ収率99%)を得た。
 窒素雰囲気下、B9-2(1.0eq.,19.59g,64.4mmol)のDMF(65mL)溶液に、室温下でTBSCl(1.2eq.,11.64g,77.3mmol)およびイミダゾール(1.5eq.,6.57g,96.6mmol)を加えて同温で30分間撹拌した。
 B9-2(100mg)を用いて同様に処理した反応液と先の反応液を合一し、酢酸エチル(130mL)および水(200mL)を加えて1回分液抽出した。水層を酢酸エチル(30mL)で2回分液抽出し、有機層を合一して5%塩化ナトリウム水溶液(150mL)および飽和塩化ナトリウム水溶液(30mL)を加えて1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮後、濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=90/10~64/36)し、白色粘体としてB9-3(22.09g,酢酸エチル3.1wt%含有,B9-1からの3段階の換算収率79%)を得た。
 窒素雰囲気下、B9-3(1.0eq.,21.95g,酢酸エチル3.1wt%含有,50.8mmol)およびトリフェニルホスフィン(1.5eq.,19.99g,76.2mmol)のTHF(508mL)溶液に、室温下でDIAD(90%,1.5eq.,17.12g,76.2mmol)を加え、同温で3時間撹拌した。B9-3(130mg)を用いて同様に処理した反応液と先の反応液を合一して減圧濃縮し、濃縮残渣を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル480g,ヘキサン/酢酸エチル=10/0~5/1、2回目:順相シリカゲル100g,ヘキサン/酢酸エチル=91/9~85/15)した。得られた淡赤色固体にヘキサンを加えて超音波照射し、氷冷してからろ取することで白色固体としてFragment B-9(15.07g,収率74%)を得た。 
 (実施例6A:Fragment D-8の合成)
 Fragment D-8は以下のように合成を行った。
 H-L-Asp-OBzlからD8-1への合成は以下のとおりに行った。
 H-L-Asp-OBzl(1.0eq.,501mg,2.24mmol)のTHF(3mL)/水(6mL)混合液に、室温で炭酸ナトリウム(2.0eq.,477mg,4.50mmol)およびBocO(1.9eq.,1.0mL,4.35mmol)を加え、同温で5時間撹拌した。反応液に酢酸エチル(50mL)を加え、水(25mL)で2回分液抽出した。水層を合一して1N塩酸水溶液(0.5mL)を加えてpHを7にした後、減圧濃縮した。濃縮により析出した固体をろ過した後、残渣をDMFで洗浄した。ろ液と洗液を合一し、減圧濃縮することで白濁油状物としてD8-1(753.3mg,quant.)を得た。
 D8-1からD8-2への合成は以下のとおりに行った。
 D8-1(1.0eq.,753mg,2.24mmolとして計算)のDMF(6mL)溶液に、HOBt・HO(1.2eq.,413mg,2.69mmol)、EDCI(1.2eq.,516mg,2.69mmol)、エタノール(2.0eq.,0.26mL,4.45mmol)およびDMAP(1.0eq.,274mg,2.24mmol)を加え、同温で18時間撹拌した。反応液に酢酸エチル(30mL)およびヘキサン(10mL)を加えた後、水(20mL)で2回、水(10mL)/飽和炭酸水素ナトリウム水溶液(10mL)混合液で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡褐色液体としてD8-2(511mg,2段階収率65%)を得た。
 D8-2からFragment D-8への合成は以下のとおりに行った。
 D8-2(1.0eq.,472mg,1.34mmol)のジクロロメタン(2mL)溶液に、室温でTFA(9.7eq.,1.0mL,13.1mmol)を加えて、同温で2時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、水(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で3回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して無色透明液体としてFragment D-8(229mg,収率68%)を得た。
 (実施例6B:Fragment D-9の合成)
Fragment D-9は以下のように合成を行った。
 Boc-L-Asp(OBzl)-OHからD9-1への合成は以下のとおりに行った。
 Boc-L-Asp(OBzl)-OH(1.0eq.,893mg,2.76mmol)のDMF(8mL)溶液に、室温でHOBt・HO(1.2eq.,510mg,3.33mmol)、EDCI(1.2eq.,639mg,3.34mmol)、エタノール(1.2eq.,150mg,3.26mmol)およびDMAP(1.0eq.,339mg,2.77mmol)を加え、同温で18時間撹拌した。反応液に酢酸エチル(30mL)およびヘキサン(10mL)を加え、水(20mL)で2回、水(10mL)/飽和炭酸水素ナトリウム水溶液(10mL)混合液で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体としてD9-1(881mg,収率91%)を得た。
 D9-1からFragment D-9への合成は以下のとおりに行った。
 D9-1(1.0eq.,864mg,2.46mmol)のジクロロメタン(3mL)溶液に、室温でTFA(10eq.,2.83g,24.8mmol)を加え、同温で1.5時間撹拌した。反応液に1M水酸化ナトリウム水溶液(22mL)を加えてpHを9にした。酢酸エチル(30mL)で1回分液抽出した後、有機層を飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体としてFragment D-9(524mg,収率85%)を得た。
 (実施例6C:Fragment D-10の合成)
Fragment D-10は以下のように合成を行った。
  Boc-L-Asp(OBzl)-OHからD10-1への合成は以下のとおりに行った。
 Boc-L-Asp(OBzl)-OH(1.0eq.,5.01g,15.5mmol)のDMF(45mL)溶液に、室温でHOBt・HO(1.2eq.,2.85g,18.6mmol)、EDCI(1.2eq.,3.57g,18.6mmol)、ヘキサノール(1.2eq.,1.89g,18.5mmol)およびDMAP(1.0eq.,1.90g,15.6mmol)を加え、同温で1時間撹拌した。反応液に酢酸エチル(90mL)およびヘキサン(30mL)を加えた後、水(100mL)で2回、水(50mL)/飽和炭酸水素ナトリウム水溶液(50mL)混合液で2回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体としてD10-1(6.08mg,収率96%)を得た。
 D10-1からFragment D-10への合成は以下のとおりに行った。
 D10-1(1.0eq.,6.07g,14.9mmol)のジクロロメタン(30mL)溶液に、室温でTFA(10eq.,17.0g,149mmol)を加え、同温で1時間撹拌した。反応液に1M水酸化ナトリウム水溶液(140mL)を加えてpHを9にした。酢酸エチル(100mL)で1回分液抽出した後、有機層を水(50mL)で1回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体としてFragment D-10(4.48g,収率98%)を得た。
 (実施例6D:Fragment D-11の合成)
Fragment D-11は以下のように合成を行った。
 Boc-L-Asp(OBzl)-OHからD11-1への合成は以下のとおりに行った。
 Boc-L-Asp(OBzl)-OH(1.0eq.,5.04g,15.6mmol)のDMF(45mL)溶液に、室温でHOBt・HO(1.2eq.,2.87g,18.7mmol)、EDCI(1.2eq.,3.59g,18.7mmol)、ドデカノール(1.2eq.,3.49g,18.7mmol)およびDMAP(1.0eq.,1.91g,15.6mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(90mL)およびヘキサン(30mL)を加えた後、水(100mL)で2回、水(50mL)/飽和炭酸水素ナトリウム水溶液(50mL)混合液で2回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体としてD11-1(7.87mg,粗収率103%)を得た。
 D11-1からFragment D-11への合成は以下のとおりに行った。
 D11-1(1.0eq.,7.87g,15.6mmolとして計算)のジクロロメタン(30mL)溶液に、室温でTFA(8.0eq.,14.2g,124mmol)を加え、同温で1時間撹拌した。反応液に1M水酸化ナトリウム水溶液(113mL)を加えてpHを9にした。酢酸エチル(100mL)で1回分液抽出した後、有機層を水(50mL)で2回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色液体として粗体(6.56g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=75/25~25/75)し、淡黄色液体としてFragment D-11(4.73g,Boc-L-Asp(OBzl)-OHからの2段階収率77%)を得た。
 (実施例6E:FragmentD-12の合成)
 FragmentD-12は以下のように合成を行った。
 窒素気流下、Fragment D-2(1.0eq.,10.00g,28.58mmol)のジクロロメタン(100mL)溶液に、氷冷下でトリエチルアミン(2.5eq.,7.23g,71.44mmol)および、NsCl(1.2eq.,7.60g,34.29mmol)を加え、同温で0.5時間、室温に昇温しながら17時間撹拌した。反応液を水(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(14.78g)を得た。この粗体を酢酸エチル(100mL)に溶解させ、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後に減圧濃縮し、黄色固体としてD12-1(14.55g,酢酸エチル0.6wt%含有,quant.)を得た。
 窒素雰囲気下、D12-1(1.0eq.,14.55g,28.58mmolとして計算)のDMF(100mL)溶液に、氷冷下で炭酸カリウム(2.0eq.,7.90g,57.16mmol)および、ヨウ化メチル(2.0eq.,8.11g,57.14mmol)を加え、同温で1時間撹拌した。反応液にトルエン(200mL)を加え、水(200mL)で1回、5%食塩水(200mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡褐色粘体としてD12-2(14.78g,DMF0.4wt%,Fragment D-2から2段階の換算収率99%)を得た。
 窒素雰囲気下、D12-2(1.0eq.,14.78g,28.29mmol)のDMF(140mL)溶液に室温で炭酸セシウム(1.5eq.,13.84g,42.48mmol)および4-tert-ブチルベンゼンチオール(1.5eq.,7.06g,42.46mmol)を加え、同温で2時間撹拌した。反応液にトルエン(300mL)を加え、水(300mL)で1回、5%炭酸カリウム水溶液(300mL)で1回、5%塩化ナトリウム水溶液(300mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(19.66g)をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=90/10~0/100)し、橙色油状物としてFragmentD-12(7.52g,収率81%)を得た。
 (実施例6F:Fragment D-13の合成)
 Fragment D-13は以下のように合成を行った。
 窒素雰囲気下、Boc-L-Asp(OBzl)-OH(1.0eq.,5.00g,15.5mmol)のDMF(45mL)溶液に室温でHOBt・HO(1.2eq.,2.85g,18.6mmol)、EDCI(1.2eq.,3.57g,18.6mmol)、1-オクタノール(1.2eq.,3.0mL,19.1mmol)およびDMAP(1.0eq.,1.89g,15.5mmol)を加え、同温で1時間撹拌した。反応液にヘキサン(25mL)および酢酸エチル(75mL)を加え、水(50mL)で2回、飽和炭酸水素ナトリウム水溶液(25mL)/水(25mL)混合液で2回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄を行った。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで淡黄色液体としてD13-1(7.09g)を得た。
 窒素雰囲気下、D13-1(1.0eq.,7.09g,15.5mmolとして計算)のジクロロメタン(30mL)溶液に、室温でTFA(10eq.,12.3mL,161mmol)を加え、室温で1時間撹拌した。反応液に1M水酸化ナトリウム水溶液(145mL)を加え、酢酸エチル(100mL)で1回分液抽出した。有機層を水(50mL)で2回、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄を行った。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで淡黄色液体の粗体(5.62g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル41g,ヘキサン/酢酸エチル=3/1~1/1)し、淡黄色液体としてFragment D-13(4.20g,2段階収率81%)を得た。
 (実施例6F:Fragment D-14の合成)
 Fragment D-14は以下のように合成を行った。
 窒素雰囲気下、Boc-L-Asp(OBzl)-OH(1.0eq.,5.00g,15.5mmol)のDMF(45mL)溶液に室温でHOBt・HO(1.2eq.,2.85g,18.6mmol)、EDCI(1.2eq.,3.57g,18.6mmol)、1-デカノール(1.2eq.,3.5mL,18.4mmol)およびDMAP(1.0eq.,1.90g,15.5mmol)を加え、同温で1時間撹拌した。反応液にヘキサン(25mL)および酢酸エチル(75mL)を加え、水(50mL)で2回、飽和炭酸水素ナトリウム水溶液(25mL)/水(25mL)混合液で2回、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄を行った。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで淡黄色液体としてD14-1(7.80g)を得た。
 窒素雰囲気下、D14-1(1.0eq.,7.80g,15.5mmolとして計算)のジクロロメタン(30mL)溶液に、室温でTFA(10eq.,12.0mL,157mmol)を加え、室温で2時間撹拌した。反応液に1M水酸化ナトリウム水溶液(130mL)を加え、酢酸エチル(100mL)で1回分液抽出した。有機層を水(50mL)で2回、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄を行った。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで淡黄色液体の粗体(6.61g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル33g,ヘキサン/酢酸エチル=3/1~1/1)し、淡黄色液体としてFragment D-14(4.00g,2段階収率71%)を得た。
 (実施例7:化合物1の合成)
 窒素雰囲気下、Fragment A-2(1.05eq.,5.81g,酢酸エチル2.2wt%含有,10.23mmol)およびFragment B-1(1.0eq.,4.00g,9.74mmol)のトルエン(111mL)溶液に氷冷下でTBD(1.05eq.,1.42g,10.20mmol)を加え、室温まで昇温しながら22時間撹拌した。反応液に5%クエン酸水溶液(50mL)を加えて1回分液洗浄し、有機層を5%炭酸水素ナトリウム水溶液(50mL)/5%塩化ナトリウム水溶液(50mL)混合液で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡褐色粘体として粗体(10.90g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=80/20~0/100)し、黄色粘体として化合物1-1(8.49g,Fragment A-2,PMBOH,酢酸エチル含有,見かけ収率90%)を得た。
 窒素雰囲気下、化合物1-1(1.0eq.,2.97g,Fragment A-2,PMBOH,酢酸エチル含有,3.07mmolとして計算)のDMF(15mL)溶液に氷冷下で1-ドデカンチオール(6.0eq.,3.73g,18.43mmol)およびDBU(6.0eq.,2.81g,18.46mmol)を加え、室温で5時間撹拌した。反応液にトルエン(30mL)および5%クエン酸水溶液(40mL)を加えて1回分液抽出し、水層をトルエン(30mL)で再度分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(30mL)/5%塩化ナトリウム水溶液(30mL)混合液で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して黄色油状物として粗体(6.54g)を得た。
 同様の操作で化合物1-1(1.03g)から得た粗体(2.47g)と先の粗体を合一し、フラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=90/10~50/50)し、淡黄色油状物として化合物1-2(2.32g,PMBOHおよび酢酸エチル含有,見かけ収率71%)を得た。
 窒素雰囲気下、化合物1-2(1.0eq.,2.32g,酢酸エチル2.1wt%含有,2.06mmol)のDMF(24mL)溶液にN-Fmoc-L-バリン(Fragment C-1,2.0eq.,1.39g,4.10mmol)、EDCI(2.0eq.,0.79g,4.12mmol)およびHOBt・HO(2.0eq.,0.63g,4.11mmol)を加え、室温で3.5時間撹拌した。反応液にトルエン(50mL)および5%炭酸水素ナトリウム水溶液(50mL)を加えて1回分液抽出し、有機層を5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色粘体として粗体(3.49g)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル28g,ヘキサン/酢酸エチル=90/10~50/50)し、白色アモルファスとして化合物1-3(2.22g,収率98%)を得た。
 窒素雰囲気下、化合物1-3(1.0eq.,2.22g,2.01mmol)のTHF(20mL)/水(10mL)混合液に水酸化リチウム一水和物(4.0eq.,0.34g,8.10mmol)を加え、室温で3時間撹拌した。反応液を氷冷し、5%クエン酸水溶液(30mL)を加えてpHを3とし、酢酸エチル(30mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(30mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色粘体として粗体(2.45g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,酢酸エチル/メタノール=100/0~90/10)し、白色アモルファスとして化合物1-4(1.36g,酢酸エチル4.4wt%含有,換算収率85%)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.63g,4.29mmol)のDMF(842mL)溶液に室温でDIPEA(10.0eq.,1.11g,8.59mmol)を加えた。次いで、同温で化合物1-4(1.0eq.,0.68g,酢酸エチル4.4wt%含有,0.855mmol)のDMF(8mL)溶液を17時間かけて加え、滴下完了後、室温でさらに1.5時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(15mL)および5%クエン酸水溶液(15mL)を加えて1回分液洗浄した。有機層を5%炭酸水素ナトリウム水溶液(15mL)で1回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡褐色アモルファスとして化合物1-5および化合物1-6の混合物(1.05g)を得た。
 窒素雰囲気下、化合物1-5および化合物1-6の混合物(1.0eq.,0.95g,0.774mmolとして計算)のTHF(19mL)溶液に氷冷下でTBAF(1.1M in THF,8.0eq.,5.63mL,6.193mmol)を加え、室温まで昇温しながら4時間撹拌した。反応液を氷冷し、10%塩化アンモニウム水溶液(40mL)を加え、酢酸エチル(40mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(40mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して淡褐色粘体として粗体(1.19g)を得た。
 同様の操作で化合物1-5および化合物1-6の混合物(0.10g,0.081mmolとして計算)から得た粗体(106mg)と先の粗体を合一し、フラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=50/50)し、淡橙色固体として化合物1-6(0.60g,異性体混合物。酢酸エチル0.7wt%,TBAF36.4wt%含有,化合物1-4から2段階の換算収率70%)を得た。
 窒素雰囲気下、化合物1-6(1.0eq.,0.66g,異性体混合物,酢酸エチル3.9wt%,TBAF38.9wt%含有,0.60mmol)のジクロロメタン(13mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,0.38g,0.90mmol)を加え、室温まで昇温しながら16時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(10mL)、5%チオ硫酸ナトリウム水溶液(10mL)を加えた後、1回分液洗浄した。有機層を5%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して淡橙色アモルファスとしてAldehyde(0.392g,異性体含有)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,0.39g,異性体含有,0.60mmolとして計算)のt-ブチルアルコール(16mL)/アミレン(4mL)/水(4mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,0.33g,2.12mmol)および80%亜塩素酸ナトリウム(4.5eq.,0.30g,2.65mmol)を加え、同温で1.5時間撹拌した。反応液に酢酸エチル(20mL)および水(20mL)を加えて1回分液抽出し、有機層を水(20mL)で2回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、淡橙色固体として化合物1-7(0.351g,異性体混合物,TBAF12.5wt%含有,化合物1-6から2段階の換算収率80%)を得た。
 窒素雰囲気下、化合物1-7(1.0eq.,130mg,異性体混合物,TBAF24.8wt%含有,0.15mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,83mg,0.23mmol)のジクロロメタン(1.3mL)溶液に、氷冷下でDIPEA(3.0eq.,78μL,0.46mmol)およびHBTU(1.5eq.,87mg,0.23mmol)を加え、室温まで昇温しながら3.5時間撹拌した。
 同様の操作で化合物1-7(100mg)を処理した反応液を先の反応液と合一し、トルエン(20mL)、5%クエン酸水溶液(20mL)および5%塩化ナトリウム水溶液(10mL)を加えて1回分液洗浄した。有機層を5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別した。減圧濃縮し、淡褐色粘体として得た粗体(290mg)をフラッシュシリカゲルカラム精製(NHシリカゲル6.5g,ヘキサン/酢酸エチル=50/50)し、黄色粘体として化合物1-8(37mg,収率14%)を得た。
 窒素雰囲気下、化合物1-8(1.0eq.,37mg,0.039mmol)のTHF(1.85mL)/水(1.85mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,11.1mg)を加え、系内を水素置換後、同温で16時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮した後、 濃縮残渣にTHF(1.85mL)/水(1.85mL)混合液を加え、系内を窒素置換後、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,11.1mg)を加えた。系内を水素置換後、同温で3時間撹拌した。反応の進行とともに目的物が固体として析出したため、TFA(2.0eq.,6.0μL,0.078mmol)を加えて目的物を溶解させた後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡橙色アモルファスとして粗体(27mg)を得た。
 同様の操作で化合物1-8(21mg)から得た粗体(15.5mg)と先の粗体を合一し、2回フラッシュシリカゲルカラム精製(逆相シリカゲル60g,1回目:0.05%TFA水溶液/アセトニトリル=99/1~90/10,2回目:0.05%TFA水溶液/アセトニトリル=95/5)した後、凍結乾燥を行い白色固体として化合物1のTFA塩(18mg,収率45%,純度97.1%)を得た。
 H-NMR(400MHz,DO)δ6.94-6.87(m,3H),4.86(s,1H),4.37(dd,J=9.2,4.8Hz,1H),4.12(d,J=10.0Hz,1H),4.05(dd,J=8.8,4.8Hz,1H),3.23(dd,J=13.2,4.8Hz,1H),2.92(dd,J=13.2,8.8Hz,1H),2.72(s,3H),2.48-2.35(m,2H),2.22-2.14(m,1H),2.03-1.90(m,3H),1.77-1.63(m,1H),1.57(s,3H),1.04(t,J=7.2Hz,3H),0.85(d,J=6.4Hz,3H),0.78(d,J=6.4Hz,3H).
 (実施例8:化合物9の合成)
 窒素雰囲気下、化合物1-7(1.0eq.,264mg,異性体混合物,TBAF12.5wt%含有,0.36mmol)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,188mg,0.54mmol)のジクロロメタン(6.6mL)溶液に、氷冷下でDIPEA(1.5eq.,91μL,0.54mmol)およびHATU(1.5eq.,204mg,0.54mmol)を加え、同温で6時間撹拌した。反応液に5%クエン酸水溶液(10mL)を加えて1回分液洗浄し、有機層を5%炭酸水素ナトリウム水溶液(10mL)/5%塩化ナトリウム水溶液(10mL)混合液で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して得た淡褐色粘体の粗体(496mg)を2回フラッシュシリカゲルカラム精製(順相シリカゲル10g,1回目:クロロホルム/酢酸エチル=90/10~50/50,2回目:クロロホルム/酢酸エチル=90/10~85/15)し、低純度の化合物9-1(129mg)を得た。
 低純度の化合物9-1をトルエン(10mL)に溶解し、5%塩化ナトリウム水溶液(10mL)で5回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、黄色アモルファスとして化合物9-1(93mg,収率28%)を得た。
 窒素雰囲気下、化合物9-1(1.0eq.,50mg,0.053mmol)のTHF(2.5mL)/水(2.5mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.5mg)およびTFA(2.0eq.,8.2μL,0.107mmol)を加え、系内を水素置換後、同温で23時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.5mg)を追加して27時間撹拌した。再度10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.5mg)を追加してさらに24時間撹拌した。
 同様の操作で化合物9-1(10mg)を処理した反応液と先の反応液を合一し、セライトろ過により触媒をろ別後、ろ液を減圧濃縮して橙色粘体として粗体(58mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い白色固体として化合物9のTFA塩(30.5mg,収率73%,純度97.8%)を得た。
 H-NMR(400MHz,DO)δ6.94-6.87(m,3H),4.66(dd,J=7.2,5.2Hz,1H),4.11(d,J=10.0Hz,1H),4.05(dd,J=8.8,4.8Hz,1H),3.24(dd,J=13.6,4.8Hz,1H),2.96-2.84(m,3H),2.72(s,3H),2.05-1.91(m,2H),1.78-1.69(m,1H),1.58(s,3H),1.05(t,J=7.2Hz,3H),0.86(d,J=7.2Hz,3H),0.78(d,J=6.8Hz,3H).
 (実施例9:化合物2の合成)
 窒素雰囲気下、化合物1-2(1.0eq.,2.32g,PMBOH,酢酸エチル含有,2.97mmolとして計算)のDMF(35mL)溶液にN-Fmoc-L-グリシン(Fragment C-3,2.0eq.,1.77g,5.95mmol)、EDCI(2.0eq.,1.14g,5.95mmol)およびHOBt・HO(2.0eq.,0.91g,5.94mmol)を加え、室温で2時間撹拌した。反応液にトルエン(70mL)および5%炭酸水素ナトリウム水溶液(70mL)を加えて1回分液抽出し、有機層を5%塩化ナトリウム水溶液(70mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して白色固体として粗体(4.56g)を得た。粗体に酢酸エチル(45mL)を加えて超音波照射後に不溶解物をろ別し、ろ液を減圧濃縮した。濃縮残渣をTHFに溶解し、減圧濃縮して白色アモルファスとして化合物2-9(3.50g,不純物,THFおよびDMFを含有)を得た。
 窒素雰囲気下、化合物2-9(1.0eq.,3.50g,2.97mmol)のTHF(28mL)/水(14mL)混合液に水酸化リチウム一水和物(4.0eq.,0.50g,11.92mmol)を加え、室温で3時間撹拌した。反応液を氷冷し、5%クエン酸水溶液(45mL)を加えてpHを3とし、酢酸エチル(45mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(45mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色粘体として粗体(3.55g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,酢酸エチル/メタノール=100/0~70/30)し、淡橙色アモルファスとして化合物2-10(1.63g,酢酸エチル7.3wt%含有,Fragment B-1から4段階の換算収率42%)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.63g,4.29mmol)のDMF(842mL)溶液に室温でDIPEA(10.0eq.,1.11g,8.59mmol)を加えた。次いで、同温で化合物2-10(1.0eq.,0.66g,酢酸エチル7.3wt%含有,0.852mmol)のDMF(8mL)溶液を17時間かけて加え、滴下完了後、室温でさらに1時間撹拌した。反応液が数mLになるまで減圧濃縮した。
 窒素雰囲気下、濃縮残渣を外温50℃で17時間、次いで外温70℃で2時間撹拌した。反応液に酢酸エチル(20mL)および5%クエン酸水溶液(20mL)を加えて1回分液抽出し、有機層を5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡褐色粘体として粗体(0.98g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,クロロホルム/酢酸エチル=90/10~5/95)し、橙色固体として化合物2-12(0.168g,異性体および不純物含有,化合物2-10から2段階の見かけ収率34%)を得た。
 窒素雰囲気下、化合物2-12(1.0eq.,165mg,異性体および不純物含有,0.282mmolとして計算)のジクロロメタン(3.3mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,179mg,0.422mmol)を加え、室温まで昇温しながら2時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(3mL)および5%チオ硫酸ナトリウム水溶液(3mL)を加えた後、1回分液抽出した。有機層を5%塩化ナトリウム水溶液(3mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別し、減圧濃縮して淡橙色アモルファスとしてAldehyde(133mg,異性体含有,見かけ収率81%)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,131mg,異性体含有,0.224mmolとして計算)のt-ブチルアルコール(5.6mL)/アミレン(1.4mL)/水(1.4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,123mg,0.788mmol)および80%亜塩素酸ナトリウム(4.5eq.,114mg,1.008mmol)を加え、同温で1時間撹拌した。反応液に酢酸エチル(15mL)、水(15mL)を加えて1回分液抽出した。有機層を5%塩化ナトリウム水溶液(15mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して黄色固体として化合物2-13(97mg,異性体含有,化合物2-12から2段階の換算収率58%)を得た。
 窒素雰囲気下、化合物2-13(1.0eq.,79mg,異性体含有,0.132mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,72mg,0.198mmol)のジクロロメタン(2mL)溶液に、氷冷下でDIPEA(1.5eq.,34μL,0.197mmol)およびHATU(1.5eq.,75mg,0.200mmol)を加え、室温まで昇温しながら6時間撹拌した。反応液に酢酸エチル(10mL)、5%クエン酸水溶液(10mL)を加えて1回分液抽出した。有機層を5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、淡褐色粘体として得た粗体(160mg)を2回フラッシュシリカゲルカラム精製(1回目および2回目:順相シリカゲル10g,クロロホルム/酢酸エチル=90/10~60/40)し、黄色アモルファスとして化合物2-6(67mg,Fragment D-1,酢酸エチル含有,見かけ収率56%)を得た。
 窒素雰囲気下、化合物2-6(1.0eq.,64mg,Fragment D-1,酢酸エチル含有,0.070mmolとして計算)のTHF(3.2mL)/水(3.2mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.2mg)およびTFA(2.0eq.,10.7μL,0.140mmol)を加え、系内を水素置換後、同温で66時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.2mg)を追加して21.5時間撹拌した後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮した後に再反応を行った。濃縮残渣にTHF(3.2mL)/3.2mL)混合液を加え、系内を窒素置換後、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,5.8mg)およびTFA(2.0eq.,10.7μL,0.140mmol)を加えた。系内を水素置換後、同温で23時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡褐色粘体として粗体(59mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5)した後、凍結乾燥を行い白色固体として化合物2のTFA塩(5.2mg,収率12%,純度97.1%)を得た。
 H-NMR(400MHz,DO)δ7.45(s,1H),7.05-7.03(m,1H),6.96(d,J=8.4Hz,1H),4.63(s,1H),4.45(dd,J=8.8,5.2Hz,1H),4.26(d,J=16.8Hz,1H),3.98(dd,J=10.4,3.6Hz,1H),3.54(d,J=16.4Hz,1H),3.25(dd,J=13.2,4.0Hz,1H),3.07-3.01(m,1H),2.72(s,3H),2.47(t,J=7.2Hz,2H),2.25-2.20(m,1H),2.01-1.97(m,2H),1.76-1.70(m,1H),1.61(s,3H),0.87(t,J=7.2Hz,3H).
 (実施例9A:化合物9Aの合成)
 化合物1-7までの工程は化合物1の合成方法と同様である。
 化合物1-7から化合物9A-1
 窒素雰囲気下、化合物1-7(1.0eq.,82.2mg,0.128mmol)およびL-アスパラギン酸ジエチルエステル塩酸塩(Fragment D-7,1.5eq.,43.2mg,0.191mmol)のTHF(1.2mL)溶液に、氷冷下でDEPBT(1.5eq.,57.5mg,0.192mmol)および2,4,6-コリジン(3.0eq.,46.7mg,0.383mmol)を加え、同温で7時間撹拌後、室温で15時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して緑色油状物として粗体(162mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~50/50)し、白色アモルファスとして化合物9A-1(48.5mg,収率47%)を得た。
 化合物9A-1から化合物9Aへの合成は以下のとおりに行った。
 窒素雰囲気下、化合物9A-1(1.0eq.,20mg,0.025mmol)のTHF(800μL)/水 (40μL) 混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャット NXタイプ,50%含水品,2.0mg)およびTFA(2.0eq.,3.7μL,0.048mmol)を加えた。系内を水素置換し、同温で23時間撹拌後にセライトろ過により触媒をろ別してろ液を得た。
 化合物9A-1(1.0eq.,15mg,0.018mmol)から同様にして得られたろ液を上記ろ液を合一して減圧濃縮して粗体を得た。得られた粗体(36.6mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~75/25)した。凍結乾燥を行い、白色固体として化合物9AのTFA塩(16.3mg,収率54%,純度94.4%)を得た。
 H-NMR(400MHz,DO)δ6.98-6.82(m,3H),4.24-4.09(m,5H),4.04(dd,J=8.8,4.4Hz,1H),3.22(dd,J=13.2,4.4Hz,1H),3.00-2.80(m,3H),2.71(s,3H),2.07-1.87(m,2H),1.79-1.62(m,1H),1.57(s,3H),1.24(m,6H),1.05(t,J=7.2Hz,3H),0.85(d,J=6.4Hz,3H),0.79(d,J=6.8Hz,3H).
 (実施例9B:化合物9Bの合成)
化合物1-7までの工程は実施例7に記載の通りに行った。
化合物1-7から化合物9B-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物1-7(1.0eq.,78.0mg,0.122mmol)およびFragment D-8(1.5eq.,47.2mg,0.188mmol)のTHF(1.2mL)溶液に、氷冷下でDEPBT(1.5eq.,55.0mg,0.184mmol)および2,4,6-コリジン(3.0eq.,44.2mg,0.364mmol)を加え、同温で6時間撹拌後、室温で16時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して緑色油状物として粗体(166mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~0/100)し、白色アモルファスとして化合物9B-1(54.5mg,収率51%)を得た。
 化合物9B-1から化合物9Bへの合成は以下のとおりに行った。
 窒素雰囲気下、化合物9B-1(1.0eq.,39mg,0.045mmol)のTHF(1560μL)/水(78μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.9mg)およびTFA(5.0eq.,17μL,0.223mmol)を加え、系内を水素置換後、同温で4時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(35mg)を得た。同様の操作で化合物9B-1(15mg,0.017mmol)から得られた粗体(17mg)と上記粗体を合一してフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~80/20)した。凍結乾燥を行い、白色固体として化合物9BのTFA塩(24.3mg,収率58%,純度95.2%)を得た。
 H-NMR(400MHz,DO)δ6.97-6.86(m,3H),4.69(dd,J=7.2,5.2Hz,1H),4.18-4.10(m,3H),4.06(dd,J=9.2,4.8Hz,1H),3.24(dd,J=13.6,4.8Hz,1H),3.00-2.85(m,3H),2.73(s,3H),2.08-1.88(m,2H),1.79-1.65(m,1H),1.58(s,3H),1.24(t,J=7.2Hz,3H),1.05(t,J=7.2Hz,3H),0.86(d,J=6.8Hz,3H),0.79(d,J=6.8Hz,3H).
 (実施例9C:化合物9Cの合成)
 化合物1-7から化合物9C-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物1-7(1.0eq.,59.7mg,93.0μmol)およびFragment D-9(1.5eq.,34.6mg,138μmol)のTHF(1mL)溶液に、氷冷下でDEPBT(1.5eq.,42.7mg,143μmol)および2,4,6-コリジン(3.0eq.,34.0mg,281μmol)を加え、同温で5時間撹拌後、室温で15.5時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して緑色油状物として粗体(171mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~0/100)し、白色アモルファスとして化合物9C-1(42.3mg,収率56%)を得た。
 化合物9-1から化合物9Cへの合成は以下のとおりに行った。
 窒素雰囲気下、化合物9C-1(1.0eq.,41mg,0.047mmol)のTHF(1640μL)/水(82μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4.1mg)およびTFA(2.0eq.,7.2μL,0.094mmol)を加え、系内を水素置換後、同温で6時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(35mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~80/20)した。凍結乾燥を行い、白色固体として化合物9CのTFA塩(29.0mg,収率91%,純度96.0%)を得た。
 H-NMR(400MHz,DO)δ6.98-6.85(m,3H),4.24-4.17(m,2H),4.10(d,J=9.6Hz,1H),4.05(dd,J=9.2,4.8Hz,1H),3.23(dd,J=13.6,4.8Hz,1H),2.99-2.87(m,3H),2.71(s,3H),2.08-1.88(m,2H),1.81-1.68(m,1H),1.57(s,3H),1.24(t,J=7.2Hz,3H),1.05(t,J=7.2Hz,3H),0.85(d,J=6.8Hz,3H),0.78(d,J=6.4Hz,3H).
 (実施例9D: 化合物9Dの合成)
 化合物1-7は実施例7に記載の通り合成した。化合物1-7から化合物9D-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物1-7(1.0eq.,69.0mg,108μmol)およびFragment D-10(1.5eq.,50.1mg,163μmol)のTHF(1mL)溶液に、氷冷下でDEPBT(1.5eq.,48.8mg,163μmol)および2,4,6-コリジン(3.0eq.,38.6mg,319μmol)を加え、同温で6時間撹拌後、室温で16時間撹拌した。反応液に酢酸エチル(10mL)を加え、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して緑色油状物として粗体(152mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~0/100)し、白色アモルファスとして化合物9D-1(54.0mg,収率54%)を得た。
 化合物9D-1から化合物9Dへの合成は以下のとおりに行った。
 化合物9D-1(1.0eq.,38.0mg,0.041mmol)のTHF(1600μL)/水(80μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.8mg)およびTFA(2.0eq.,6.3μL,0.082mmol)を加えた。系内を水素置換し、同温で19時間撹拌後にセライトろ過により触媒をろ別してろ液を得た。得られた粗体(32mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~70/30)した。凍結乾燥を行い、白色固体として化合物9DのTFA塩(14.9mg,収率50%,純度95.6%)を得た。
 H-NMR(400MHz,DO)δ6.96-6.86(m,3H),4.22-4.09(m,3H),4.04(dd,J=9.2,4.8Hz,1H),3.23(dd,J=13.6,4.8Hz,1H),2.95-2.88(m,3H),2.71(s,3H),2.08-1.88(m,2H),1.80-1.68(m,1H),1.67-1.53(m,5H),1.38-1.19(m,6H),1.04(t,J=7.2Hz,3H),0.90-0.80(m,6H),0.78(d,J=6.4Hz,3H).
 (実施例9E:化合物9Eの合成)
化合物9Eの合成を行った。
 窒素雰囲気下、化合物1-7(1.0eq.,90.3mg,141μmol)およびFragment D-11(1.4eq,78.5mg,200μmol)のTHF(1.4mL)溶液に氷冷下で2,4,6-コリジン(3.0eq.,55μL,418μmol)およびDEPBT(1.5eq.,62.9mg,210μmol)を加えて氷冷下で7時間撹拌した後、室温で16.5時間撹拌した。室温でFragment D-11(0.5eq.,27.1mg,69μmol)加えた後、氷冷下でDEPBT(0.5eq.,22.5mg,75μmol)を加え、氷冷下で2時間撹拌した後、室温で1.5時間撹拌した。反応液に飽和塩化アンモニウム水溶液(1.5mL)を加えた後、酢酸エチル(8mL)で1回,酢酸エチル(4mL)で1回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(2mL)で2回、水(2mL)で1回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで深緑粘体として粗体(244mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル4.9g,ヘキサン/酢酸エチル=3/1~1/1)し、淡黄色透明粘体として化合物9E-1(71.3mg,収率50%)を得た。
 化合物9E-1(1.0eq.,53mg,0.052mmol)のTHF(2200μL)/水(110μL)混合液に、室温で10%パラジウム-炭素(エヌ.イー.ケムキャットNXタイプ,50%含水品,5.3mg)およびTFA(2.0eq.,8.0μL,0.104mmol)を加えた。系内を水素置換し、同温で23時間撹拌後にセライトろ過により触媒をろ別してろ液を得た。ろ液を減圧濃縮して得られた粗体(44mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~50/50)した。凍結乾燥を行い、白色固体として化合物9EのTFA塩(36.6mg,収率86%,純度94.3%)を得た。
 H-NMR(400MHz,DMSO-d6)δ9.12(s,1H),8.77(d,J=8.4Hz,1H),8.63(d,J=7.6Hz,1H),7.86(d,J=8.8Hz,1H),6.80-6.72(m,3H),4.86(d,J=9.6Hz,1H),4.57(dd,J=13.2,7.2Hz,1H),4.23(dd,J=9.2,9.2Hz,1H),4.05-3.95(m,2H),3.89(brs,1H),3.05-2.95(m,1H),2.88(dd,J=14.4,6.0Hz,1H),2.73(dd,J=16.8,6.0Hz,1H),2.60-2.52(m,1H),2.09-1.93(m,1H),1.87-1.74(m,1H),1.73-1.61(m,1H),1.58-1.46(m,2H),1.44-1.14(m,21H),1.00(t,J=7.2Hz,3H),0.92-0.73(m,9H)
  (実施例9F:化合物9Fの合成)
 窒素雰囲気下、化合物1-7(1.0eq.,93.3mg,141μmol)およびFragment D-13(1.6eq,75.6mg,225μmol)のTHF(1.45mL)溶液に氷冷下で2,4,6-コリジン(3.0eq.,57μL,433μmol)およびDEPBT(1.5eq.,65.8mg,220μmol)を加えて氷冷下で6時間撹拌した後、室温で16時間撹拌した。反応液に飽和塩化アンモニウム水溶液(2.0mL)を加えた後、酢酸エチル(6mL)で2回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(3mL)で2回、水(3mL)で2回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄を行った。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別し減圧濃縮を行うことで深緑粘体として粗体(238mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル5.2g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物9F-1(73.3mg,収率53%)を得た。
 窒素雰囲気下、化合物9F-1(1.0eq.,72mg,0.075mmol)のTHF(2880μL)/水(144μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,7mg)およびTFA(2.0eq.,25.5μL,0.15mmol)を加えた。系内を水素置換し、同温で7時間撹拌した後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(59mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~55/45)した。凍結乾燥を行い、白色固体として化合物9FのTFA塩(31.4mg,収率55%,純度95.4%)を得た。
 H-NMR(400MHz,DMSO-d6)δ9.11(s,1H),8.77(d,J=8.4Hz,1H),8.62(d,J=7.6Hz,1H),7.86(d,J=9.6Hz,1H),6.80-6.75(m,3H),4.86(d,J=10.4Hz,1H),4.57(dd,J=13.6,7.2Hz,1H),4.23(dd,J=9.2,9.2Hz,1H),4.07-3.85(m,3H),3.05-2.95(m,1H),2.89(dd,J=14.4,5.6Hz,1H),2.73(dd,J=16.8,6.0Hz,1H),2.59-2.52(m,1H),2.10-1.93(m,1H),1.86-1.75(m,1H),1.74-1.61(m,1H),1.59-1.46(m,2H),1.37-1.16(m,13H),1.00(t,J=7.2Hz,3H),0.92-0.75(m,9H).
 (実施例9G:化合物9Gの合成)
 Fragment A-2”から化合物25-2の2工程は下記実施例29Bに記載のとおりであった。
 化合物25-2から化合物9G-1への合成は以下のとおりに行った。
 化合物25-2(1.0eq.,1.03g,1.44mmol)のDMF(15mL)溶液に、室温でHOBt・HO(1.2eq.,265mg,1.73mmol)、EDCI(1.2eq.,333mg,1.74mmol)およびN-Fmoc-L-バリン(Fragment C-1,1.2eq.,587mg,1.73mmol)を加え、室温で5時間撹拌した。反応液にヘキサン(15mL)/酢酸エチル(45mL)混合液を加え、水(40mL)で2回、飽和炭酸水素ナトリウム水溶液(40mL)で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別後、減圧濃縮して淡褐色アモルファスとして化合物9G-1(1.71g,粗収率115%)を得た。
 化合物9G-1から化合物9G-2への合成は以下のとおりに行った。
 化合物9G-1(1.0eq.,1.71g,1.44mmolとして計算)のTHF(10mL)/水(5mL)混合液に、室温で水酸化リチウム(6.0eq.,207mg,8.62mmol)を加え、室温で4時間撹拌した。反応液に1N塩酸水溶液(5.0mL)を加えてpHを7にした。反応液に水(10mL)を加え、酢酸エチル(20mL)で3回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別して減圧濃縮し、褐色粘状として粗体(1.84g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,酢酸エチル/メタノール=100/0~40/60)し、淡褐色アモルファスとして化合物9G-2(1.06g,2段階収率102%)を得た。
 化合物9G-2から化合物9G-3への合成は以下のとおりに行った。
 化合物9G-2(1.0eq.,1.05mg,1.44mmolとして計算)のアセトニトリル(14.5mL)/THF(14.5mL)混合液を室温で、HATU(2.0eq.,1.10g,2.88mmol)、HOAt(2.0eq.,391mg,2.87mmol)およびDIPEA(2.0eq.,0.49mL,2.89mmol)のアセトニトリル(718mL)溶液に約100μL/minで5時間かけて滴下した後、室温で15.5時間撹拌した。反応液を約250mLになるまで減圧濃縮した後、酢酸エチル(200mL)を加え、水(50mL)/飽和塩化アンモニウム水溶液(100mL)混合液で2回、飽和炭酸水素ナトリウム水溶液(100mL)で2回、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別して減圧濃縮し、赤褐色粘体として粗体(1.92g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=80/20~50/50)し、白色アモルファスとして化合物9G-3(231mg,3段階収率23%)を得た。
 化合物9G-3から化合物9G-4への合成は以下のとおりに行った。
 化合物9G-3(1.0eq.,230mg,0.324mmol)のTHF(3.2mL)溶液に、室温でTBAF(1M in THF,2.5eq.,0.81mL,0.810mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(30mL)を加え、飽和塩化アンモニウム水溶液(20mL)で3回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別して減圧濃縮し、淡黄色アモルファスとして粗体(214mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~0/100)し、白色アモルファスとして化合物9G-4(191mg,収率99%)を得た。
 化合物9G-4から化合物9G-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物9G-4(1.0eq.,189mg,0.318mmol)のジクロロメタン(3mL)溶液に、室温でデス-マーチンペルヨージナン(1.5eq.,203mg,0.477mmol)を加え、同温で1時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(10mL)/飽和炭酸水素ナトリウム水溶液(10mL)混合液を加えてクエンチし、ジクロロメタン(20mL)で1回、ジクロロメタン(10mL)で2回分液抽出し、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別して減圧濃縮し、白色アモルファスとしてAldehyde(187mg,quant.)を得た。
 Aldehyde(1.0eq.,186mg,0.314mmol)のアミレン(1mL)/t-ブチルアルコール(4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,167mg,1.07mmol)および80%亜塩素酸ナトリウム(4.5eq.,160mg,1.42mmol)の水(1mL)溶液を加え、同温で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加えて、酢酸エチル(20mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別して減圧濃縮し、白色アモルファスとして粗体(215mg,収率99%)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=33/67)し、白色アモルファスとして化合物9G-5(178mg,収率93%)を得た。
 化合物9G-5から化合物9G-6への合成は以下のとおりに行った。
 化合物9G-5(1.0eq.,177mg,0.291mmol)の酢酸エチル(1.8mL)/水(540μL)混合液に、室温でFragment D-14(1.5eq.,164mg,0.435mmol)を加えた。氷冷下でDIPEA(2.4eq.,0.12mL,0.706mmol)を加えて10分間撹拌した後、DMT-MM(1.7eq.,138mg,0.497mmol)を加え、同温で2.5時間撹拌した。反応液に酢酸エチル(30mL)を加え、水(15mL)で1回、水(10mL)/飽和塩化アンモニウム水溶液(10mL)混合液で1回、水(10mL)/飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別して減圧濃縮し、黄色油状物として粗体(360mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~67/33、2回目:順相シリカゲル4g,ヘキサン/酢酸エチル=50/50)し、白色アモルファスとして化合物9G-6(235mg,収率83%)を得た。
 化合物9G-6から化合物9G-7への合成は以下のとおりに行った。
 化合物9G-6(1.0eq.,235mg,0.243mmol)のジクロロメタン(2.4mL)溶液に、室温でTFA(9.7eq.,0.18mL,2.35mmol)を加え、同温で1時間撹拌した。その後、TFA(9.7eq.,0.18mL,2.35mmol)を追加し、同温で7時間撹拌した。反応液を氷冷し、飽和炭酸水素ナトリウム水溶液(15mL)を加えてpHを8にした。反応液を酢酸エチル(20mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥後、硫酸マグネシウムをろ別して減圧濃縮し、淡黄色アモルファスとして化合物9G-7(210mg,収率99%)を得た。
 化合物9G-7から化合物9Gへの合成は以下のとおりに行った。
 窒素雰囲気下、化合物9G-7(1.0eq.,186mg,0.218mmol)のTHF(7.4mL)/水(370μL)混合液に、室温でTFA(5.0eq.,83μL,1.085mmol)を加え、同温で1時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,18.6mg)を加え、系内を水素置換後、同温で6.5時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して粗体(171mg)を得た。同様の操作で化合物9G-7(40mg)から得られた粗体(40mg)と上記粗体を合一してフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~55/45)した。凍結乾燥を行い、白色固体として化合物9GのTFA塩(107mg,収率51%,純度96.4%)を得た。
 H-NMR(400MHz,DMSO-d6)δ9.11(s,1H),8.79(d,J=8.8Hz,1H),8.62(d,J=7.6Hz,1H),7.87(d,J=10.0Hz,1H),6.80-6.75(m,3H),4.87(d,J=10.0Hz,1H),4.57(dd,J=13.6,7.2Hz,1H),4.23(dd,J=9.2,9.2Hz,1H),4.05-3.85(m,3H),3.05-2.95(m,1H),2.89(dd,J=14.4,5.6Hz,1H),2.73(dd,J=16.8,6.0Hz,1H),2.60-2.50(m,1H),2.10-1.94(m,1H),1.87-1.61(m,2H),1.59-1.45(m,2H),1.36-1.15(m,17H),1.01(t,J=7.2Hz,3H),0.92-0.74(m,9H).
 (実施例10:化合物10の合成)
 窒素雰囲気下、化合物2-13(1.0eq.,95mg,異性体含有,0.158mmol)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,83mg,0.237mmol)のジクロロメタン(2.4mL)溶液に、氷冷下でDIPEA(1.5eq.,40μL,0.235mmol)およびHATU(1.5eq.,90mg,0.237mmol)を加え、室温まで昇温しながら3時間撹拌した。反応液に5%クエン酸水溶液(3mL)を加えて1回分液洗浄した後、有機層を5%炭酸水素ナトリウム水溶液(3mL)で1回、5%塩化ナトリウム水溶液(3mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、淡褐色粘体として得た粗体(197mg)を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル10g,ヘキサン/酢酸エチル=40/60,2回目:NHシリカゲル6.5g,ヘキサン/酢酸エチル=40/60~0/100)し、白色固体として化合物10-1(54mg,ヘキサン5.0wt%含有,換算収率36%)を得た。
 窒素雰囲気下、化合物10-1(1.0eq.,52mg,ヘキサン5.0wt%含有,0.055mmol)のTHF(2.5mL)/水(2.5mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.6mg)およびTFA(2.0eq.,8.4μL,0.110mmol)を加え、系内を水素置換後、同温で25時間撹拌した。THF(2.5mL)を追加し、さらに64時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.6mg)を追加して24時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して淡橙色粘体として粗体(41mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5)した後、凍結乾燥を行い白色固体として化合物10のTFA塩(18.3mg,収率54%,純度99.3%)を得た。
 H-NMR(400MHz,DO)δ7.44(s,1H),7.05(dd,J=8.0,2.0Hz,1H),6.98(d,J=8.0Hz,1H),4.65(s,1H),4.25(d,J=16.4Hz,1H),3.99(dd,J=10.4,4.0Hz,1H),3.55(d,J=16.4Hz,1H),3.26(dd,J=13.2,4.0Hz,1H),3.08-2.99(m,1H),2.73(s,3H),2.03-1.97(m,1H),1.78-1.70(m,1H),1.63(s,3H),0.86(t,J=7.2Hz,3H).
 (実施例11:化合物5の合成)
 窒素雰囲気下、Fragment A-2(1.0eq.,2.81g,5.06mmol)およびFragment B-2(1.5eq.,2.74g,7.58mmol)のトルエン(28mL)溶液に室温でトリフェニルホスフィン(1.5eq.,1.99g,7.59mmol)およびDIAD(1.5eq.,1.63mL,7.58mmol)を加え、同温で15分、外温75℃で2時間撹拌した。トリフェニルホスフィン(0.75eq.,0.99g,3.77mmol)およびDIAD(1.5eq.,0.81mL,3.77mmol)を加えてさらに0.5時間撹拌し、反応液を放冷した後、減圧濃縮した。濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=90/10~67/33)し、淡黄褐色油状物として化合物5-1(5.95g,不純物含有,見かけ収率130%)を得た。
 窒素雰囲気下、化合物5-1(1.0eq.,5.35g,不純物含有,4.55mmolとして計算)のアセトニトリル(45mL)溶液に氷冷下で1M塩酸水溶液(1.1eq.,5.00mL,5.00mmol)を加え、室温まで昇温しながら2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を数滴加えてpHを5~7とした後、減圧濃縮した。濃縮残渣に飽和炭酸水素ナトリウム水溶液(20mL)を加え、酢酸エチル(25mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して淡黄褐色油状物として粗体(5.42g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,クロロホルム/アセトニトリル=90/10~80/20)し、淡黄色油状物として化合物5-2(1.59g,不純物含有,見かけ収率75%)を得た。
 窒素雰囲気下、化合物5-2(1.0eq.,0.80g,不純物含有,1.22mmolとして計算)のDMF(12mL)溶液にN-Boc-L-バリン(Fragment C-1’,2.0eq.,528mg,2.43mmol)、EDCI(2.0eq.,466mg,2.43mmol)およびHOBt・HO(2.0eq.,372mg,2.43mmol)を加え、室温で20時間撹拌した。反応液に水(50mL)を加え、酢酸エチル(25mL)で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(25mL)で1回、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色油状物として粗体(1.50g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル50g,ヘキサン/酢酸エチル=90/10~50/50,2回目:逆相シリカゲル120g,0.05%TFA水溶液/アセトニトリル=90/10~0/100)し、白色アモルファスとして化合物5-3(0.74g,Fragment A-2から3段階の収率38%)を得た。
 窒素雰囲気下、化合物5-3(1.0eq.,0.74g,0.87mmol)のジクロロメタン(7.5mL)溶液に、氷冷下でトリエチルシラン(25eq.,3.35mL,21.03mmol)およびTFA(3.75mL)を加え、室温で4時間撹拌した。反応液を減圧濃縮し、濃縮残渣に0.05M塩化水素/1,4-ジオキサン溶液(20mL)を加えて減圧濃縮する操作を2回行った。濃縮残渣に1,4-ジオキサンを加えて減圧濃縮する操作を3回行い、無色油状物として化合物5-4(1.39g)を得た。
 窒素雰囲気下、EDCI(5.0eq.,830mg,4.33mmol)、HOBt・HO(5.0eq.,663mg,7.33mmol)および炭酸水素ナトリウム(10.0eq.,726mg,8.64mmol)のDMF(800mL)溶液に、室温で化合物5-4(1.0eq.,1.39g,0.865mmolとして計算)のDMF(65mL)溶液を2時間かけて加え、滴下完了後、室温で終夜撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(20mL)および水(20mL)を加えて1回分液抽出し、有機層を飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄土色固体として粗体(0.71g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,クロロホルム/酢酸エチル=90/10~80/20)し、白色固体として化合物5-5(226mg,不純物含有,化合物5-3から2段階の見かけ収率42%)を得た。
 窒素雰囲気下、化合物5-5(1.0eq.,138mg,不純物含有,0.22mmolとして計算)の1,2-ジクロロエタン(3.45mL)溶液に水酸化トリメチルスズ(4.0eq.,159mg,0.88mmol)を加え、外温80℃で4時間撹拌した。反応液を放冷し、酢酸エチル(20mL)および1M塩酸水溶液(20mL)を加えて1回分液抽出した。有機層を10%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。硫酸ナトリウムをろ別し、減圧濃縮して白色固体として粗体(169mg)を得た。
 同様の操作で化合物5-5(20mg)から粗体(20mg)を得た。先の粗体と合一してフラッシュシリカゲルカラム精製(順相シリカゲル10g,酢酸エチル/メタノール=100/0~90/10)し、化合物5-6(147mg,不純物含有,見かけ収率93%)を得た。
 窒素雰囲気下、化合物5-6(1.0eq.,73mg,不純物含有,0.12mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,65mg,0.18mmol)のDMF(0.73mL)溶液に、室温でEDCI(1.5eq.,34mg,0.18mmol)、HOBt・HO(1.5eq.,27mg,0.18mmol)および炭酸水素ナトリウム(3.0eq.,30mg,0.36mmol)を加え、同温で1.5時間撹拌した。
 反応液にトルエン(3mL)を加え、5%炭酸水素ナトリウム水溶液(3mL)で2回、5%塩化ナトリウム水溶液(3mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮し、淡黄色固体として粗体(115mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6.5g,ヘキサン/酢酸エチル=90/10~50/50)し、白色固体(52mg)を得た。この固体にヘキサン(4mL)、トルエン(2mL)を加えて超音波照射後、室温で15分間撹拌した。この懸濁液をろ過し、白色固体として化合物5-7(37mg,収率34%)を得た。
 窒素雰囲気下、化合物5-7(1.0eq.,35mg,0.038mmol)のTHF(1.2mL)/水(1.2mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,8.8mg)を加え、系内を水素置換後、同温で22時間撹拌した。セライトろ過により触媒をろ別し、0.05%TFA水溶液で固体を洗浄後、ろ液を減圧濃縮して白色固体として粗体(20mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル60g,1回目:,0.05%TFA水溶液/アセトニトリル=99/1~90/10,2回目:0.05%TFA水溶液/アセトニトリル=99/1~0/100)し、凍結乾燥を行い白色固体として化合物5のTFA塩(14mg,収率59%,純度99.7%)を得た。
 H-NMR(400MHz,DO)δ6.89(d,J=8.0Hz,1H),6.81(dd,J=8.0,2.0Hz,1H),6.70(d,J=2.0Hz,1H),4.65(dd,J=13.2,2.4Hz,1H),4.56(dd,J=13.2,6.0Hz,1H),4.37(dd,J=8.8,4.8Hz,1H),4.11(d,J=10.8Hz,1H),3.95(dd,J=8.8,4.8Hz,1H),3.21(dd,J=13.2,4.8Hz,1H),2.95(dd,J=13.2,8.8Hz,1H),2.70(s,3H),2.45(t,J=7.2Hz,2H),2.24-2.15(m,1H),2.03-1.85(m,2H),0.84(t,J=6.8Hz,6H).
 (実施例12:化合物3の合成)
 窒素雰囲気下、化合物5-2(1.0eq.,0.79g,不純物含有,1.20mmolとして計算)のDMF(12mL)溶液にN-Boc-L-グリシン(Fragment C-3’,2.0eq.,0.42g,2.40mmol)、EDCI(2.0eq.,0.46mg,2.40mmol)およびHOBt・HO(2.0eq.,0.37mg,2.40mmol)を加え、室温で2時間撹拌した。反応液に水(30mL)およびトルエン(30mL)を加えて1回分液抽出した。有機層を水(30mL)で1回、10%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色粘体として粗体(1.175g)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル14g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色粘体として化合物3-1(0.87g,酢酸エチル3.2wt%含有,換算収率86%)を得た。
 窒素雰囲気下、化合物3-1(1.0eq.,0.87g,酢酸エチル3.2wt%含有,1.03mmol)のジクロロメタン(8.7mL)溶液に、氷冷下でトリエチルシラン(25eq.,3.01g,25.89mmol)およびTFA(4.35mL)を加え、同温で2時間撹拌した。反応液を減圧濃縮し、濃縮残渣に0.05M塩化水素/1,4-ジオキサン溶液(15mL)を加えて再度減圧濃縮し、無色粘体として化合物3-2(1.196g,1,4-ジオキサン含有)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.36g,3.58mmol)およびDIPEA(10.0eq.,0.92g,7.12mmol)のDMF(704mL)溶液に、室温で化合物3-2(1.0eq.,0.83g,1,4-ジオキサン含有,0.72mmolとして計算)のDMF(8mL)溶液を18.5時間かけて加え、滴下完了後、室温で3時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(15mL)および5%クエン酸水溶液(15mL)を加えて1回分液抽出し、有機層を5%炭酸水素ナトリウム水溶液(15mL)で1回、5%塩化ナトリウム水溶液(15mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡褐色アモルファスとして粗体(0.81g)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル10g,ヘキサン/酢酸エチル=50/50)し、白色固体として化合物3-3(190mg,収率46%)を得た。これと同様の操作で取得して得た化合物3-3(89mg)を合一し、フラッシュシリカゲルカラム精製(NHシリカゲル14g,ヘキサン/酢酸エチル=50/50)し、目的物を含む画分を合一して減圧濃縮した。濃縮残渣を1,2-ジクロロエタン(3mL)に溶解して減圧濃縮する操作を2回行い、無色粘体として化合物3-3(118mg,1,2-ジクロロエタン16.5wt%含有,収率35%)を得た。
 窒素雰囲気下、化合物3-3(1.0eq.,118mg,1,2-ジクロロエタン16.5wt%含有,0.17mmol)の1,2-ジクロロエタン(2.7mL)溶液に水酸化トリメチルスズ(4.0eq.,124mg,0.69mmol)を加え、外温80℃で3.5時間撹拌した。反応液を放冷後、酢酸エチル(20mL)および1M塩酸水溶液(20mL)を加えて1回分液抽出した。有機層を5%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。硫酸ナトリウムをろ別後、減圧濃縮し白色固体として化合物3-4(104mg,不純物含有,quant.)を得た。
 窒素雰囲気下、化合物3-4(1.0eq.,50mg,不純物含有,0.082mmolとして計算)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,45mg,0.124mmol)のDMF(0.5mL)溶液に、室温でEDCI(1.5eq.,24mg,0.125mmol)、HOBt・HO(1.5eq.,19mg,0.124mmol)および炭酸水素ナトリウム(1.5eq.,10mg,0.119mmol)を加え、同温で1.5時間撹拌した。反応液にトルエン(10mL)および5%クエン酸水溶液(10mL)を加えて1回分液抽出し、有機層を5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮し、淡黄色粘体として粗体(82mg)を得た。
 同様の操作で化合物3-4(1.0eq.,50mg)から粗体(60mg)を得た。先の粗体と合一後、フラッシュシリカゲルカラム精製(NHシリカゲル6.5g,ヘキサン/酢酸エチル=40/60)し、白色アモルファスとして化合物3-5(69mg,収率48%)を得た。
 窒素雰囲気下、化合物3-5(1.0eq.,67mg,0.077mmol)のTHF(3.35mL)/水(3.35mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,17mg)を加え、系内を水素置換後、同温で19.5時間撹拌した。反応液にTFA(2.0eq.,12μL,0.157mmol)を加えた後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(45mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル60g,0.05%TFA水溶液/アセトニトリル=99/1~0/100)した後、凍結乾燥を行い、白色固体として化合物3のTFA塩(34mg,収率76%,純度99.9%)を得た。
 H-NMR(400MHz,DO)δ7.00-6.85(m,3H),4.67(dd,J=13.6,5.6Hz,1H),4.53(dd,J=13.2,1.6Hz,1H),4.42(dd,J=8.8,5.2Hz,1H),4.36(d,J=15.2Hz,1H),3.96(dd,J=10.0,4.8Hz,1H),3.36-3.29(m,2H),2.98(dd,J=13.2,10.0Hz,1H),2.73(s,3H),2.50(t,J=7.2Hz,2H),2.28-2.19(m,1H),2.08-1.90(m,1H).
 (実施例13:化合物11の合成)
 窒素雰囲気下、化合物3-4(1.0eq.,366.6mg,0.408mmolとして計算)のジクロロメタン(3.7mL)溶液に、L-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,2.0eq.,286mg,0.816mmol)およびDIPEA(1.9eq.,135μL,0.775mmol)のジクロロメタン(2.5mL)溶液を氷冷下で加えた。続いてHOBt・HO(2.0eq.,125mg,0.816mmol)およびEDCI(2.0eq.,156mg,0.816mmol)を加え、同温で3時間撹拌した。
 同様の条件で化合物3-4(30mg)を用いて行った反応液と先の反応液を合一し、酢酸エチル(40mL)および1M塩酸水溶液(20mL)を加えて1回分液抽出し、水層を酢酸エチル(5mL)で3回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別、減圧濃縮し、黄色油状物として粗体(633.8mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル80g,ヘキサン/酢酸エチル=43/57~0/100)し、得られた白色固体(294.0mg)にトルエンを加え超音波照射により粉砕後、固体をろ取することで、白色固体として化合物11-1(234.3mg,酢酸エチル1.9wt%含有,化合物3-3からの2段階の換算収率61%)を得た。
 窒素雰囲気下、化合物11-1(1.0eq.,234mg,酢酸エチル1.9wt%含有,0.268mmol)のTHF(10mL)/水(10mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,57mg)を加え、系内を水素置換後、同温で2時間撹拌した。TFA(2.0eq.,41μL,0.536mmol)を加え、同温で1時間撹拌した後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡橙色固体として粗体(189.5mg)を得た。得られた粗体に酢酸エチルを加え超音波照射にて粉砕し、不溶物をろ取、減圧乾燥した。得られた固体を水に溶解し不溶物をろ別後、ろ液を濃縮することで淡橙色固体として化合物11のTFA塩(150.9mg,収率99.6%,純度99.4%)を得た。
 H-NMR(400MHz,DO)δ6.89-6.76(m,3H),4.58(dd,J=13.2,5.2Hz,1H),4.40(d,J=13.2,1H),4.21(d,J=15.2Hz,1H),3.86(dd,J=9.6,4.4Hz,1H),3.26(d,J=15.2Hz,1H),3.21(dd,J=13.2,4.4Hz,1H),2.95-2.82(m,3H),2.63(s,3H).
 (実施例14:化合物6の合成)
 窒素雰囲気下、Fragment A-3(1.0eq.,3.10g,5.72mmol)およびFragment B-1 (1.2eq.3.17g,DIAD20mol%含有,6.87mmol)のトルエン(57mL)溶液に氷冷下でTBD(1.08eq.,857mg,6.16mmol)を加え、室温で3時間撹拌した。減圧濃縮によりトルエンを留去して、茶褐色アモルファスとして粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=5/1~2/1)し、淡黄色アモルファスとして化合物6-1(3.84g,収率70%)を得た。
 窒素雰囲気下、化合物6-1(1.0eq.,1.41g,1.48mmol)のDMF(20mL)溶液に室温下で炭酸セシウム(1.5eq.,781mg,2.21mmol)およびチオフェノール(1.5eq.,230μL,2.25mmol)を加え、室温で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(10mL)、飽和塩化ナトリウム水溶液(10mL)および水(20mL)を加えた後、ヘキサン(10mL)/酢酸エチル(30mL)混合液で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(60mL)で1回分液洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(2.01g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,ヘキサン/酢酸エチル=5/1~1/1)し、淡黄色粘体として化合物6-2(1.02g,収率90%)を得た。
 窒素雰囲気下、化合物6-2(1.0eq.,4.44g,5.79mmol)のDMF(58mL)溶液に氷冷下でEDCI(2.0eq.2.23g,11.65mmol)、HOBt・HO(2.0eq.,1.77g,11.59mmol)およびN-Fmoc-L-Val(2.0eq.,3.97g,11.69mmol)を加え、室温で2時間撹拌した。反応液に水(60mL)を加え、ヘキサン(15mL)/酢酸エチル(45mL)混合液で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(100mL)で2回分液洗浄した後、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(9.01g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=5/1~2/1)し、白色アモルファスとして化合物6-3(5.69g,収率90%)を得た。
 化合物6-3(1.0eq.,2.07g,1.90mmol)のTHF(12mL)/水(6mL)混合液に室温下で水酸化リチウム(4.0eq.,181mg,7.58mmol)を加え、室温で3.5時間撹拌した。反応液に氷冷下で1N塩酸水溶液(5mL)を加えてpHを7とした後、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で2回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(2.21g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,酢酸エチル/メタノール=20/1~5/1)し、白色アモルファスとして化合物6-4(1.03g,収率73%)を得た。
 化合物6-4(1.0eq.,2.80g,3.75mmol)のTHF(375mL)溶液を室温下で、PyBOP(5.0eq.,9.76g,18.76mmol)、HOBt・HO(5.0eq.,2.87g,18.76mmol)およびDIPEA(5.0.eq,3.2mL,18.82mmol)のTHF(1.5L)溶液に約80μL/minで4日間かけて滴下した。反応液の液量が10分の1程度になるまで減圧濃縮した後、飽和炭酸水素ナトリウム水溶液(100mL)で2回分液洗浄した。水層を合一し、酢酸エチル(100mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(16.80g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物6-5(1.18g,収率43%)を得た。
 窒素雰囲気下、化合物6-5(1.0eq.,619mg,850μmol)のTHF(9mL)溶液に氷冷下でTBAF(1M in THF,1.88eq.,1.6mL,1.60mmol)を加え、室温で1時間撹拌した。反応液に水(10mL)を加え、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(677mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル7g,ヘキサン/酢酸エチル=1/1~0/1)し、白色固体として化合物6-6(495mg,収率95%)を得た。
 窒素雰囲気下、化合物6-6(1.0eq.,495mg,807μmol)のジクロロメタン(8mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,508mg,1.20mmol)を加え、室温で1時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(10mL)および飽和炭酸水素ナトリウム水溶液(10mL)を加え、1回分液洗浄した。水層をジクロロメタン(10mL)で2回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮してAldehyde(515mg、粗収率104%)を得た。
 Aldehyde(1.0eq.,515mg,807μmolとして計算)のt-ブチルアルコール(6mL)/アミレン(2mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,429mg,2.74mmol)および80%亜塩素酸ナトリウム(4.5eq.,412mg,3.65mmol)の水(2mL)溶液を加え、室温で30分間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加え、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別した後、減圧濃縮して粗体(526mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,クロロホルム/メタノール=100/1~30/1)し、白色アモルファスとして化合物6-7(410mg,2段階収率83%)を得た。
 窒素雰囲気下、化合物6-7(1.0eq.,254mg,404μmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.2eq.,176mg,483μmol)のジクロロメタン(4mL)溶液に、氷冷下でDIPEA(1.5eq.,100μL,588μmol)およびHATU(1.2eq.,186mg,490μmol)を加え、氷冷下で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(4mL)を加え、1回分液洗浄した。その後、水層をジクロロメタン(4mL)で2回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(20mL)で1回分液洗浄した後、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(463mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル7g,ヘキサン/酢酸エチル=5/1~1/1、2回目:順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~30/70)し、白色アモルファスとして化合物6-8(40mg,収率10%)を得た。
 窒素雰囲気下、化合物6-7(1.0eq.,369mg,589μmol)およびL-アスパラギン酸ジベンジルエステルパラトルエンスルホン酸塩(Fragment D-2’,1.3eq.,372mg,766μmol)のジクロロメタン(10mL)溶液に、氷冷下でDIPEA(2.3eq.,230μL,1.35mmol)およびHATU(1.1eq.,237mg,623μmol)を加え、氷冷下で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加え、1回分液洗浄した。その後、水層をジクロロメタン(10mL)で2回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(20mL)で1回分液洗浄した後、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(761mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル13g,ヘキサン/酢酸エチル=70/30~30/70、2回目:順相シリカゲル7g,ヘキサン/酢酸エチル=70/30~20/80)し、白色アモルファスとして化合物6-9(45mg,収率8%)を得た。
 窒素雰囲気下、化合物6-8(1.0eq.,29mg,0.031mmol)のTHF(5.8mL)/水(0.29mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.9mg)およびTFA(2.0eq.,11.6μL,0.152mmol)を加え、系内を水素置換後、同温で16.5時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,0.6mg)を追加してさらに3時間撹拌した。
 化合物6-8(1.0eq.,5mg,5.34μmol)を同様に処理した反応液と、先の反応液を合一し、セライトろ過により触媒をろ別後、ろ液を減圧濃縮して粗体(25mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)後、凍結乾燥を行い、白色固体として化合物6のTFA塩(20.3mg,収率86%,純度99.6%)を得た。
 H-NMR(400MHz,DO)δ6.99-6.83(m,3H),4.90(s,1H),4.39(dd,J=9.6,4.8Hz,1H),4.20(dd,J=8.4,4.8Hz,1H),4.10(d,J=9.6Hz,1H),3.21(dd,J=13.6,4.8Hz,1H),2.92(dd,J=13.6,8.4Hz,1H),2.51-2.35(m,2H),2.25-2.14(m,1H),2.16-1.91(m,3H),1.84-1.72(m,1H),1.53(s,3H),1.06(t,J=7.2Hz,3H),0.87(d,J=6.8Hz,3H),0.80(d,J=6.8Hz,3H).
 (実施例15:化合物15の合成)
 化合物6と同様に反応を行い、化合物6-9から化合物15のTFA塩(23.1mg,収率74%,純度98.6%)を得た。
 H-NMR(400MHz,DO)δ6.92-6.71(m,3H),4.84(s,1H),4.63(dd,J=7.2,5.2Hz,1H),4.13(dd,J=8.0,4.8Hz,1H),4.00(d,J=10.0Hz,1H),3.13(dd,J=13.6,4.8Hz,1H),2.93-2.79(m,3H),1.95-1.82(m,2H),1.78-1.64(m,1H),1.45(s,3H),0.99(t,J=7.2Hz,3H),0.79(d,J=6.8Hz,3H),0.71(d,J=6.8Hz,3H).
 (実施例16:化合物19の合成)
 窒素雰囲気下、Fragment A-3(1.0eq.,514mg,0.949mmol)およびFragment B-9(1.12eq.,425mg,1.06mmol)のトルエン(10mL)溶液に氷冷下でTBD(1.10eq.,145mg,1.04mmol)を加え、室温で1.5時間撹拌した。40℃に昇温し1.5時間撹拌後、60℃に昇温して16時間撹拌した。反応液を減圧濃縮し粗体(1.21g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,ヘキサン/酢酸エチル=5/1~1/1)し、橙色アモルファスとして化合物19-1(601mg,quant.)を得た。
 窒素雰囲気下、化合物19-1(1.0eq.,601mg,638μmol)のDMF(6mL)溶液に、室温で炭酸セシウム(1.51eq.,339mg,960μmol)およびチオフェノール(1.54eq.,100μl,980μmol)を加えて、同温で2時間撹拌した。飽和炭酸水素ナトリウム水溶液(6mL)を加えた。ヘキサン(3.75mL)/酢酸エチル(11.25mL)で3回分液抽出を行った。有機層を飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、減圧濃縮し黄色油状物の粗体(814mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=5/1~1/2)し、淡黄色液体として化合物19-2(392mg,2段階収率55%)を得た。
 窒素雰囲気下、化合物19-2(1.0eq.,392mg,518μmol)のDMF(5mL)溶液にN-Fmoc-L-バリン(Fragment C-1,1.2eq.,211mg,620μmol)、EDCI(1.2eq.,122mg,638μmol)およびHOBt・HO(1.2eq.,97.5mg,637μmol)を加え、室温で2時間撹拌した。ヘキサン(2.5mL)/酢酸エチル(7.5mL)で3回分液抽出を行った。有機層を合一し、飽和炭酸水素ナトリウム水溶液(20mL)で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、減圧濃縮し白色アモルファスの化合物19-3(608mg,quant.)を得た。
 窒素雰囲気下、化合物19-3(1.0eq.,608mg,518μmol)のTHF(4mL)/水(2mL)混合液に水酸化リチウム(4.1eq.,50.8mg,2.12mmol)を室温で加え、同温で4.5時間撹拌した。氷冷下で1N塩酸水溶液(約1mL)を加え、pHを7にした。水を加えて希釈後、酢酸エチル(10mL)で3回分液抽出を行った後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、減圧濃縮し粗体(528mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,酢酸エチル/メタノール=1/0~4/1)し、白色アモルファスとして化合物19-4(155mg,2段階収率41%)を得た。
 窒素雰囲気下、PyBOP(5eq.,5.36g,10.3mmol)およびHOBt・HO(5eq.,1.58g,10.3mmol)のTHF(1030mL)溶液に室温でDIPEA(5eq.,1.8mL,10.3mmol)を加えた。次いで同温で化合物19-4(1.0eq.,1.52g,2.06mmol)のTHF(206mL)溶液を50時間かけて加え、滴下終了後、室温でさらに62.5時間撹拌した。反応液を浴温40℃で減圧濃縮し、反応液を200mL程度にした。反応液を酢酸エチル(400mL)で希釈後、飽和塩化アンモニウム水溶液(100mL)で3回、水(100mL)で3回、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(7.84g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル234g,ヘキサン/酢酸エチル=2/1~1/3)し、白色アモルファスとして化合物19-5(673mg,収率46%)を得た。
 窒素雰囲気下、化合物19-5(1.0eq.,673mg,0.94mmol)のTHF(9mL)溶液に氷冷下でTBAF(1M in THF,1.2eq.,1.2mL,1.2mmol)を加えた。次いで室温で2時間撹拌した。反応液を酢酸エチル(50mL)で希釈後、水(30mL)で3回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(600mg)を得た。粗体にヘキサン(7.3mL)/酢酸エチル(0.73mL)混合液を加え、超音波照射した。次いで、析出した白色固体をろ別して回収し、白色固体として化合物19-6(505mg,収率89%)を得た。
 窒素雰囲気下、化合物19-6(1.0eq.,505mg,0.84mmol)のジクロロメタン(8mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,540mg,1.26mmol)を加え、室温で2時間撹拌した。反応液を酢酸エチル(70mL)で希釈し、10%亜硫酸ナトリウム水溶液(12.5mL)/飽和炭酸水素ナトリウム水溶液(12.5mL)の混合液で2回、水(20mL)で2回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して白色固体としてAldehyde(482mg,quant.)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,482mg,0.84mmolとして計算)のt-ブチルアルコール(7.5mL)/アミレン(2.5mL)混合液にリン酸二水素ナトリウム二水和物(3.4eq.,446mg,2.86mmol)および80%亜硫酸ナトリウム(4.5eq.,342mg,3.78mmol)の水(2.5mL)溶液を室温で滴下し、同温で2時間撹拌した。反応液を酢酸エチル(50mL)で希釈し、飽和塩化アンモニウム水溶液(30mL)で1回、水(30mL)で3回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、減圧濃縮し粗体(647mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル8.0g,クロロホルム/メタノール=30/1)し、白色アモルファスとして化合物19-7(514mg,収率99%)を得た。
 窒素雰囲気下、化合物19-7(1.0eq.,251mg,0.40mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1, 1.05eq,154mg,0.42mmol)のジクロロメタン(4mL)溶液に氷冷下でDIPEA(1.05eq.,70μL,0.42mmol)およびHATU(1.05eq.,161mg,0.42mmol)を加えて氷冷下で1時間撹拌後、室温で19時間撹拌した。氷冷下でさらにDIPEA(0.2eq.,14μL,0.08mmol)およびHATU(0.2eq.,31.2mg,0.08mmol)を加えて2.5時間撹拌した。次いで、反応液に飽和塩化アンモニウム水溶液(5mL)を加えた。酢酸エチル(30mL)で希釈し、飽和塩化アンモニウム水溶液(10mL)で1回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、水(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、減圧濃縮し粗体(396mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル6.4g,ヘキサン/酢酸エチル=80/20~30/70、2回目:順相シリカゲル3.9g,ヘキサン/酢酸エチル=60/40~40/60)し、白色アモルファスとして化合物19-8を含む粗体を得た。粗体を酢酸エチル(1mL)に溶解しヘキサン(3mL)を滴下して析出した白色固体をろ取して化合物19-8(20.5mg,収率5.5%)を得た。
 化合物6と同様に反応を行い、化合物19-8から化合物19のTFA塩(10.1mg,収率73%,純度98.5%)を得た。
 H-NMR(400MHz,DO)δ6.85(s,2H),6.74(s,1H),4.84(s,1H),4.31(dd,J=9.6,4.8Hz,1H),4.16(dd,J=7.2,4.8Hz,1H),4.02(d,J=10.0Hz,1H),3.14(dd,J=14.0,4.8Hz,1H),2.84(dd,J=14.0,7.6Hz,1H),2.44-2.28(m,2H),2.19-2.07(m,1H),1.97-1.83(m,2H),1.48(s,3H),1.43(s,3H),0.80(d,J=6.8Hz,3H),0.72(d,J=6.4Hz,3H).
 (実施例17:化合物4の合成)
 窒素雰囲気下、Fragment D-1(2.61g,7.17mmol,1.0eq.)およびBoc-L-Thr-OH(1.73g,7.89mmol,1.1eq.)のジクロロメタン(30mL)溶液に、氷冷下でDIPEA(2.75mL,15.8mmol,2.2eq.)、HOBt・HO(1.32g,8.61mmol,1.2eq.)およびEDCI(1.65g,8.61mmol,1.2eq.)を加えた。同温で10分間撹拌後、室温で2時間撹拌してからEDCI(413mg,2.15mmol,0.3eq.)を追加し、更に室温で40分間撹拌した。反応液に水(20mL)を加え、酢酸エチル(90mL)で1回、酢酸エチル(10mL)で3回分液抽出した。有機層を合一して1M塩酸水溶液(30mL)で1回、5%炭酸水素ナトリウム水溶液(30mL)で1回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、ろ液を濃縮することで、B3”-1(4.17g,quant.)を淡橙色油状物として得た。
 窒素雰囲気下、B3”-1(4.17g,7.17mmolとして計算,1.0eq.)のジクロロメタン(15mL)溶液に、室温でTFA(7.0mL)を加え、同温で3時間撹拌後、反応液を減圧濃縮した。得られた濃縮残渣について、トルエン(20mL)による共沸留去を3回行うことで、B3”-2(4.61g,quant.)を淡橙色油状物として得た。
 窒素雰囲気下、B3”-2(4.61g,7.17mmolとして計算,1.0eq.)のジクロロメタン(15mL)溶液に、氷冷下でトリエチルアミン(4.0mL,28.7mmol,4.0eq.)およびTrCl(2.20g,7.89mol,1.1eq.)を加えた。同温で1.5時間撹拌後、反応液に5%炭酸水素ナトリウム水溶液(20mL)を加えて、酢酸エチル(50mL)で1回、酢酸エチル(10mL)で3回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、ろ液を減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル80g,ヘキサン/酢酸エチル=3/1~2/1)し、白色粘体としてFragment B-3”(4.20g,Net:4.10g,酢酸エチル:2.4wt%含有,換算収率85%,Fragment D-1からの3段階)を得た。
 窒素雰囲気下、Fragment A-2(1.0eq.,1.10g,酢酸エチル2.2wt%含有,1.94mmol)およびFragment B-3”(2.5eq.,3.34g,酢酸エチル2.4wt%含有,4.86mmol)のトルエン(5mL)溶液に室温でトリフェニルホスフィン(3.0eq.,1.53g,5.83mmol)を加えた後に、氷冷下でDMEAD(3.0eq.,1.37g,5.83mmol)を加え、同温で30分間撹拌してから室温で45分間撹拌した。トリフェニルホスフィン(1.5eq.,0.77g,2.91mmol)およびDMEAD(1.5eq.,0.69g,2.91mmol)を室温で追加してから同温で45分間撹拌して、反応液を減圧濃縮し、橙色油状物として粗体(9.49g)を得た。この粗体と、同様の操作でFragment A-2(204mg)から得た粗体(2.226g)を合一しフラッシュシリカゲルカラム精製(順相シリカゲル117g,ヘキサン/酢酸エチル=3/1~3/2)を行い、黄色油状物として化合物4-1”(1.81g,不純物含有,見かけ収率65%)を得た。
 窒素雰囲気下、化合物4-1”(1.0eq.,1.70g,1.41mmolとして計算)のアセトニトリル(17mL)溶液に室温で1M塩酸水溶液(1.1eq.,1.55mL,1.55mmol)を加え、同温で45分間撹拌してから反応液を浴温30℃で減圧濃縮し、黄色油状物として粗体(2.23g)を得た。この粗体と同様の操作で化合物4-1”(100mg)から得た粗体(89.2mg)を混合し、フラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=2/1~1/1→クロロホルム/メタノール=30/1~20/1)を行い、黄色油状物として化合物4-2’(0.85g,酢酸エチル6.3wt%含有,換算収率53%)を得た。
 窒素雰囲気下、化合物4-2’(1.0eq.,0.85g,酢酸エチル6.3wt%含有,0.80mmol)およびN-Boc-L-グリシン(Fragment C-3,1.5eq.,0.21g,1.20mmol)のジクロロメタン(8mL)溶液に、氷冷下でDIPEA(3.0eq.,0.417mL,2.39mmol)、HOBt・HO(1.5eq.,0.18g,1.20mmol)およびEDCI(1.5eq.,0.23g,1.20mmol)を加え、室温で19時間撹拌した。反応液を減圧濃縮し、濃縮残渣に1M塩酸水溶液(15mL)および水(10mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で3回分液抽出した。有機層を合一して5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色油状物として粗体(0.94g)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル20g,ヘキサン/酢酸エチル=2/1~2/3)を行い、無色油状物として化合物4-3’(0.8242g,酢酸エチル2.4wt%含有,換算収率90%)を得た。
 窒素雰囲気下、化合物4-3’(1.0eq.,0.82g,酢酸エチル2.4wt%含有,0.712mmol)のジクロロメタン(6.3mL)溶液に、氷冷下でトリエチルシラン(25.6eq.,2.91mL,18.3mmol)およびTFA(3.2mL)を加え、同温で20分間撹拌後、室温で4時間撹拌し、反応液を減圧濃縮した。得られた濃縮残渣に、0.05M塩化水素/1,4-ジオキサン溶液(20mL)の添加および減圧濃縮を2回繰り返した後、1,4-ジオキサン(20mL)の添加および減圧濃縮を3回繰り返すことで、淡黄色油状物として化合物4-4’(1.35g,1,4-ジオキサン含有,quant.)を得た。
 窒素雰囲気下、HOBt・HO(5.0eq.,545mg,3.56mmol)および炭酸水素ナトリウム(10.0eq.,598mg,7.12mmol)のDMF(712mL)溶液に、EDCI(5.0eq.,682mg,3.56mmol)を加え、続いて化合物4-4’(1.0eq.,1.35g,0.712mmolとして計算)のDMF(62mL)溶液を室温で2時間かけて滴下した。同温で18.5時間撹拌後、反応液を浴温50℃で減圧濃縮し、濃縮残渣に水(50mL)を加え、酢酸エチル(50mL)で1回、酢酸エチル(10mL)で3回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(20mL)で分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡橙色油状物として粗体(0.77g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=50/50~34/66)し、黄色油状物として化合物4-7(150.7mg,酢酸エチル4.6wt%含有,換算収率23%)を得た。
 窒素雰囲気下、化合物4-7(1.0eq.,51.9mg,酢酸エチル4.6wt%含有,0.056mmol)のTHF(2.0mL)/水(2.0mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,13.0mg)を加え、系内を水素置換後、同温で4時間15分撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して無色アモルファスとして粗体(36.5mg)を得た。得られた粗体に酢酸エチル(約2mL)を加え超音波照射にて粉砕し、固体をろ取し、酢酸エチルで洗浄した。この固体を水(10mL)で溶解した後、減圧濃縮して無色アモルファス(29.1mg)を得た。これに酢酸エチルを加え超音波照射にて粉砕し、固体をろ取、減圧乾燥することで白色固体として化合物4(23.9mg,収率89%,純度95.1%)を得た。
 H-NMR(400MHz,DO)δ6.94-6.82(m,3H),4.41(s,1H),4.30-4.20(m,2H),3.91(dd,J=9.2,4.4Hz,1H),3.34(d,J=16.0Hz,1H),3.18(dd,J=13.6,4.4Hz,1H),2.94(dd,J=13.6,9.2Hz,1H),2.63(s,3H),2.30(t,J=8.0Hz,2H),2.13-2.02(m,1H),1.93-1.83(m,1H),1.49(d,J=6.8Hz,3H).
 (実施例18:化合物12の合成)
 窒素雰囲気下、Fragment A-2(1.0eq.,1.10g,酢酸エチル2.2wt%含有,1.94mmol)およびFragment B-3(1.5eq.,1.15g,酢酸エチル4.9wt%含有,2.92mmol)のトルエン(10mL)溶液に室温でトリフェニルホスフィン(3.0eq.,1.53g,5.83mmol)および、DMEAD(3.0eq.,1.37g,5.83mmol)を加え、同温で15分間撹拌してから外温50℃で2時間撹拌した。Fragment B-3(1.5eq.,1.15g,酢酸エチル4.9wt%含有,2.92mmol)、トリフェニルホスフィン(0.75eq.,383mg,1.46mmol)およびDMEAD(0.75eq.,343mg,1.46mmol)を追加してから同温で15.5時間撹拌し、再度トリフェニルホスフィン(0.75eq.,383mg,1.46mmol)およびDMEAD(0.75eq.,343mg,1.46mmol)を追加した。この後、同温で撹拌しながら1.5時間おきにFragment B-3(0.5eq.,383mg,酢酸エチル4.9wt%含有,0.97mmol)、トリフェニルホスフィン(0.75eq.,383mg,1.46mmol)およびDMEAD(0.75eq.,343mg,1.46mmol)を4回繰り返し追加した。その後、同温で50分間撹拌してから室温で15.5時間撹拌して反応液を減圧濃縮し、橙色油状物として粗体(14.2g)を得た。得られた粗体をフラッシュシリカゲルカラム精製(順相シリカゲル120g,ヘキサン/酢酸エチル=5/1~3/1)を行い、黄色油状物として化合物12-1(1.61g,不純物含有,見かけ収率91%)を得た。
 窒素雰囲気下、化合物12-1(1.0eq.,1.61g,1.77mmolとして計算)のアセトニトリル(16mL)溶液に氷冷下で1M塩酸水溶液(1.5eq.,2.65mL,2.65mmol)を加え、同温で1.5時間撹拌してから、1M塩酸水溶液(0.5eq.,0.88mL,0.88mmol)を追加した。室温で15分間撹拌後、5%炭酸水素ナトリウム水溶液(50mL)を加えて、酢酸エチル(40mL)で1回、酢酸エチル(15mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して白色固体を含む黄色油状物として粗体(1.49g,quant.)を得た。
 同様の操作で化合物12-1(257mg)から得た粗体(254mg)と先の粗体を合一し、フラッシュシリカゲルカラム精製(順相シリカゲル20g,ヘキサン/酢酸エチル=2/1~1/1→クロロホルム/メタノール=30/1)を行い、淡黄色油状物として化合物12-2(958.1mg,酢酸エチル3.5wt%含有,換算収率67%,Fragment A-2からの2段階)を得た。
 窒素雰囲気下、化合物12-2(1.0eq.,958mg,酢酸エチル3.5wt%含有,1.38mmol)およびN-Boc-L-グリシン(Fragment C-3,1.5eq.,362mg,2.07mmol)のジクロロメタン(14mL)溶液に、氷冷下でDIPEA(2.0eq.,0.48mL,2.76mmol)、HOBt・HO(1.5eq.,317mg,2.07mmol)およびEDCI(1.5eq.,396mg,2.07mmol)を加え、室温で17時間撹拌した。反応液を減圧濃縮し、濃縮残渣に1M塩酸水溶液(15mL)および水(10mL)を加え、酢酸エチル(35mL)で1回、酢酸エチル(15mL)で2回分液抽出した。有機層を合一して5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色油状物として粗体(1.18g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル25g,ヘキサン/酢酸エチル=67/33~0/100→酢酸エチル/メタノール=50/50,2回目:NHシリカゲル25g,ヘキサン/酢酸エチル=2/1~1/1)し、無色油状物として化合物12-3(1.13g,酢酸エチル3.4wt%含有,換算収率96%)を得た。
 窒素雰囲気下、化合物12-3(1.0eq.,1.13g,酢酸エチル3.4wt%含有,1.31mmol)のジクロロメタン(11.8mL)溶液に、氷冷下でトリエチルシラン(25eq.,5.23mL,32.8mmol)およびTFA(5.9mL)を加え、同温で10分間撹拌後、室温で2.5時間撹拌し、反応液を減圧濃縮した。得られた濃縮残渣に、0.05M塩化水素/1,4-ジオキサン溶液(37mL)の添加および減圧濃縮を2回繰り返した後、1,4-ジオキサン(20mL)の添加および減圧濃縮を3回繰り返すことで、淡黄色油状物として化合物12-4(3.02g,1,4-ジオキサン含有,quant.)を得た。
 窒素雰囲気下、HOBt・HO(5.0eq.,1.01g,6.57mmol)および炭酸水素ナトリウム(10.0eq.,1.10g,13.1mmol)のDMF(1200mL)溶液に、EDCI(5.0eq.,1.26g,6.57mmol)を加え、続いて化合物12-4(1.0eq.,3.02g,1.31mmolとして計算)のDMF(113mL)溶液を室温で2時間かけて滴下した。同温で21時間撹拌後、反応液を浴温43℃で減圧濃縮し、濃縮残渣に水(40mL)を加え、酢酸エチル(100mL)で1回、水層を酢酸エチル(10mL)で3回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡橙色油状物として粗体(0.89g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=80/20~0/100)し、無色油状物として化合物12-5(107.3mg,酢酸エチル1.6wt%含有,換算収率14%)を得た。
 窒素雰囲気下、化合物12-5(1.0eq.,107mg,0.18mmol)のジクロロエタン(3.4mL)溶液に、室温で水酸化トリメチルすず(6.0eq.,196mg,1.09mmol)を加え、外温80℃で23時間撹拌した。放冷後、1M塩酸水溶液(20mL)を加え、酢酸エチル(25mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(20mL)で分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別、減圧濃縮し、無色油状物として化合物12-6(172.2mg,不純物含有,quant.)を得た。
 窒素雰囲気下、化合物12-6(1.0eq.,154.7mg,0.17mmolとして計算)、L-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,2.0eq.,119mg,0.34mmol)およびHOBt・HO(2.0eq.,52mg,0.34mmol)のジクロロメタン(3.4mL)溶液に、氷冷下でDIPEA(2.0eq.,59μL,0.34mmol)およびEDCI(2.0eq.,65mg,0.34mmol)を加え、同温で2時間撹拌後、室温で14.5時間撹拌した。反応液に1M塩酸水溶液(10mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別、減圧濃縮し、黄色油状物として粗体(239mg)を得た。
 同様の操作で化合物12-6(10mg)から得た粗体(12mg)と先の粗体を混合し、2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル5g,ヘキサン/酢酸エチル=2/3~1/3,2回目:NHシリカゲル20g,ヘキサン/酢酸エチル=1/1~0/1)を行い、無色油状物として化合物12-7(70.2mg,化合物12-5からの2段階収率45%)を得た。
 窒素雰囲気下、化合物12-7(1.0eq.,68mg,0.078mmol)のTHF(2.8mL)/水(2.8mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,17mg)を加え、系内を水素置換後、同温で2時間50分撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡橙色アモルファスとして粗体(36.3mg)を得た。得られた粗体に酢酸エチル(約2mL)を加え超音波照射にて粉砕し、固体をろ取、減圧乾燥することで淡橙色固体として化合物12(34.2mg,収率94%,純度95.6%)を得た。
 H-NMR(400MHz,DO)δ6.92-6.82(m,3H),4.50(dd,J=7.6,5.2Hz,1H),4.44( s,1H),4.25(d,J=15.6Hz,1H),3.95(dd,J=8.8,4.8Hz,1H),3.34(d,J=15.6Hz,1H),3.20(dd,J=13.6,4.8Hz,1H),2.97(dd,J=13.6,8.8Hz,1H),2.79(dd,J=16.4,5.2Hz,1H),2.71(dd,J=16.4,8.0Hz,1H),2.64(s,3H),1.51(d,J=6.8Hz,3H).
 (実施例19:化合物7の合成)
 窒素雰囲気下、Fragment D-1(2.61g,7.17mmol,1.0eq.)およびBoc-L-Ser-OH(1.62g,7.89mmol,1.1eq.)のジクロロメタン(30mL)溶液に、氷冷下でDIPEA(2.75mL,15.8mmol,2.2eq.)、HOBt・HO(1.32g,8.61mmol,1.2eq.)およびEDCI(1.65g,8.61mmol,1.2eq.)を加えた。同温で15分間撹拌後、室温で1時間45分撹拌してからEDCI(413mg,2.15mmol,0.3eq.)を追加し、更に室温で45分間撹拌した。反応液に水(20mL)を加え、酢酸エチル(90mL)で1回、酢酸エチル(10mL)で3回分液抽出し、有機層を合一して1M塩酸水溶液(30mL)で1回、5%炭酸水素ナトリウム水溶液(30mL)で1回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮することで白色固体としてB2’-1(4.00g,quant.)を得た。
 窒素雰囲気下、B2’-1(4.00g,7.17mmolとして計算,1.0eq.)のジクロロメタン(15mL)溶液に、室温でTFA(7.0mL)を加え、同温で1時間20分撹拌後、反応液を減圧濃縮した。得られた濃縮残渣について、トルエン(20mL)による共沸留去を3回行うことで、B2’-2(4.65g,quant.)を淡橙色油状物として得た。
 窒素雰囲気下、B2’-2(4.65g,7.17mmolとして計算,1.0eq.)のジクロロメタン(15mL)溶液に、氷冷下でトリエチルアミン(4.0mL,28.7mmol,4.0eq.)およびTrCl(2.20g,7.89mmol,1.1eq.)を加えた。同温で40分間撹拌後、反応液に5%炭酸水素ナトリウム水溶液(20mL)を加え、酢酸エチル(50mL)で1回、酢酸エチル(10mL)で3回分液抽出し、有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮することで粗体(5.23g)を淡黄色粘体として得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル,78g,ヘキサン/酢酸エチル=3/1~3/2)を行い、Fragment B-2’(3.05g,Net:2.99g,酢酸エチル:2.0wt%含有,換算収率63%,Fragment D-1からの3段階収率)を白色粘体として得た。
 窒素雰囲気下、Fragment A-3(1.0eq.,1.99g,3.70mmol)およびFragment B-2’(1.65eq.,3.99g,6.11mmol)のトルエン(60mL)溶液に室温でトリフェニルホスフィン(1.5eq.,1.47g,5.55mmol)およびDMEAD(1.5eq.,1.31g,5.55mmol)を加え、同温で40分間撹拌した。トリフェニルホスフィン(1.0eq.,0.98g,3.74mmol)およびDMEAD(1.0eq.,0.89g,3.80mmol)を追加して同温で1時間20分撹拌後、再度トリフェニルホスフィン(0.5eq.,0.48g,1.83mmol)およびDMEAD(0.5eq.,0.44g,1.88mmol)を追加して同温で40分間撹拌した。Fragment B-2’(0.20eq.,0.49g,0.75mmol)を追加して同温で25分間撹拌後、再度Fragment B-2’(0.20eq.,0.49g,0.75mmol)を追加し、同温で19時間撹拌した。DMEAD(0.1eq.,93mg,0.40mmol)を追加して同温で1時間25分撹拌後、トリフェニルホスフィン(0.2eq.,198mg,0.75mmol)およびDMEAD(0.2eq.,177mg,0.76mmol)を追加し、同温で45分間撹拌した。
 反応液を減圧濃縮し、濃縮残渣を2回フラッシュシリカゲルカラム精製(順相シリカゲル50g,1回目:ヘキサン/酢酸エチル=90/10~50/50,2回目:ヘキサン/酢酸エチル=75/25~50/50)することで、白色固体として化合物7-1’(1.74g,収率40%)を得た。
 窒素雰囲気下、化合物7-1’(1.0eq.,1.74g,1.47mmol)のアセトニトリル(18mL)溶液に室温で1M塩酸水溶液(1.1eq.,1.62mL,1.62mmol)を加え、同温で2時間撹拌した。反応液を減圧濃縮し、濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル50g,クロロホルム/メタノール=100/0~90/10)することで、淡黄色アモルファスとして化合物7-2’(1.23g,メタノール1.4wt%含有、換算収率33%,Fragment A-3からの2段階収率)を得た。
 窒素雰囲気下、化合物7-2’(1.0eq.,0.61g,0.625mmol)のジクロロメタン(6mL)溶液に、氷冷下でDIPEA(3.0eq.,0.327mL,1.88mmol)、N-Boc-L-グリシン(Fragment C-3’,1.5eq.,0.16g,0.938mmol)、HOBt・HO(1.5eq.,0.14g,0.938mmol)およびEDCI(1.5eq.,0.18g,0.938mmol)を加え、室温で2時間撹拌した。EDCI(0.3eq.,34mg,0.19mmol)を追加して同温で1時間撹拌後、反応液を減圧濃縮した。
 化合物7-2’(71mg)を用いて同様に処理した反応液と先の濃縮残渣を合一した。この混合液に1M塩酸水溶液(15mL)を加え、酢酸エチル(約40mL)で1回、酢酸エチル(15mL)で3回分液抽出し、有機層を合一して5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた濃縮残渣をフラッシュシリカゲルカラム精製(NHシリカゲル15g,ヘキサン/酢酸エチル=90/10~0/100)し、白色固体として化合物7-3’(706mg,収率86%)を得た。
 窒素雰囲気下、化合物7-3’(1.0eq.,0.683g,0.624mmol)のジクロロメタン(6.8mL)溶液に、氷冷下でトリエチルシラン(25eq.,2.49mL,15.6mmol)およびTFA(3.4mL)を加え、室温で50分間撹拌し、反応液を減圧濃縮した。得られた濃縮残渣に、0.05M塩化水素/1,4-ジオキサン溶液(20mL)の添加および減圧濃縮を2回繰り返した後、1,4-ジオキサン(20mL)の添加および減圧濃縮を2回繰り返すことで、白色固体として化合物7-4’(700mg,1,4-ジオキサン含有,quant.)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.18g,3.10mmol)のDMF(590mL)溶液に、室温でDIPEA(10.0eq.,1.08mL,6.20mmol)を加えた。次いで、同温で化合物7-4’(1.0eq.,0.700g,0.62mmolとして計算)のDMF(14mL)溶液を17.5時間かけて加え、滴下完了後、室温でさらに2時間50分撹拌した。反応液を浴温50℃で減圧濃縮し、濃縮残渣に水(25mL)を加えて酢酸エチル(35mL)で1回、酢酸エチル(25mL)で1回分液抽出した。有機層を合一して5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色固体として粗体(866.4mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル22g,クロロホルム/メタノール=100/0~97/3)し、黄色固体を得た。この固体にメタノールを加え超音波照射にて粉砕し、固体をろ取することで白色固体1(209mg)およびろ液1を得た。
 ろ液1を減圧濃縮して得られた固体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.1%TFA水溶液/0.05%TFA アセトニトリル溶液=60/40~20/80)し、凍結乾燥することで化合物7-7(106.9mg,TFA含有)を得た。
 また、白色固体1をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.1%TFA 水溶液/0.05%TFA アセトニトリル溶液=60/40~20/80)し、得られた固体をろ取、酢酸エチル(約20mL)で洗浄することで固体2、ろ液2を得た。固体2を減圧乾燥することで白色固体として化合物7-7(109.0mg,TFA含有)を得た。
 ろ液2から析出した固体をろ取、減圧乾燥することで白色固体として化合物7-7(41.7mg,TFA含有)を得た。得量合計257.6mg(見かけ収率47%、化合物7-3’からの2段階収率)
 窒素雰囲気下、化合物7-7(1.0eq.,77.5mg,0.080mmolとして計算)のTHF(3.2mL)/水(3.2mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,19.4mg)を加え、系内を水素置換後、同温で4時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡黄色固体として粗体(43.9mg)を得た。得られた粗体に酢酸エチル(約2mL)を加え超音波照射にて粉砕後、固体をろ取し、減圧乾燥することで淡黄色固体として化合物7(40.6mg,収率90%,純度99.1%)を得た。
 H-NMR(400MHz,DO)δ6.88-6.73(m,3H),4.58(dd,J=13.2,5.6Hz,1H),4.45(d,J=13.2Hz,1H),4.24(d,J=15.2Hz,1H),4.16(dd,J=8.4,4.8Hz,1H),3.99(dd,J=9.6,4.8Hz,1H),3.26(d,J=15.2Hz,1H),3.17(dd,J=13.2,4.8Hz,1H),2.87(dd,J=13.2,9.2Hz,1H),2.36-2.22(m,2H),2.11-2.00(m,1H),1.93-1.81(m,1H).
 (実施例20:化合物8の合成)
 窒素雰囲気下、化合物7-2’(1.0eq.,620mg,0.636mmol)およびN-Boc-L-バリン(Fragment C-1’,1.5eq.,207mg,0.954mmol)のジクロロメタン(6.4mL)溶液に、氷冷下でDIPEA(3.0eq.,332μL,1.91mmol)、HOBt・HO(1.5eq.,146mg,0.954mmol)および、EDCI(1.5eq.,183mg,0.954mmol)を加え、室温で2.5時間撹拌した。反応液を減圧濃縮し、濃縮残渣に、1M塩酸水溶液(10mL)および水(6mL)を加えた後、酢酸エチル(20mL)で1回、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して白色固体として粗体(817mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル20g,ヘキサン/酢酸エチル=2/1~1/1)を行い、白色固体として化合物8-1(636.8mg,酢酸エチル1.7wt%含有,換算収率87%)を得た。
 窒素雰囲気下、化合物8-1(1.0eq.,636mg,酢酸エチル1.7wt%含有,0.550mmol)のジクロロメタン(5.0mL)溶液に、氷冷下でトリエチルシラン(25eq.,2.19mL,13.8mmol)およびTFA(2.5mL)を加え、同温で10分間撹拌後、室温で1時間45分撹拌し、反応液を減圧濃縮した。得られた濃縮残渣に、0.05M塩化水素/1,4-ジオキサン溶液(20mL)の添加および減圧濃縮を2回繰り返した後、1,4-ジオキサン(20mL)の添加および減圧濃縮を3回繰り返すことで、無色油状物として化合物8-2(1.4217g,1,4-ジオキサン含有,quant.)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.05g,2.75mmol)のDMF(544mL)溶液に、室温でDIPEA(10.0eq.,958μL,5.50mmol)を加えた。次いで、同温で化合物8-2(1.0eq.,1.41g,0.550mmolとして計算)のDMF(6mL)溶液を17.5時間かけて加え、滴下完了後、室温でさらに2時間撹拌した。反応液を浴温50℃で減圧濃縮し、濃縮残渣に酢酸エチル(35mL)および水(15mL)を加えて室温で16時間撹拌した。固体をろ取し、5%炭酸水素ナトリウム水溶液(20mL)で1回、水(20mL)で1回、酢酸エチル(20mL)で1回洗浄し、得られた固体を減圧乾燥することで淡黄色固体として粗体(403.6mg)を得た。粗体にTHF(60mL)を加え、浴温60℃で加熱しながら溶解し、熱時ろ過後、ろ液を濃縮することで白色固体として化合物8-3(0.43g,BHT5.0wt%含有,換算収率83%)を得た。
 窒素雰囲気下、化合物8-3(1.0eq.,211mg,BHT5.0wt%含有,0.222mmol)のTHF(9.0mL)/水(9.0mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,50mg)を加え、系内を水素置換後、同温で1時間40分撹拌した。THF(9.0mL)を追加して同温で2時間撹拌後、TFA(2.0eq.,34μL,0.444mmol)を加えて、更に同温で2時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡赤色アモルファスとして粗体(151.7mg)を得た。得られた粗体に酢酸エチル(約2mL)を加え超音波照射にて粉砕後、固体をろ取し、減圧乾燥することで淡黄色固体として化合物8のTFA塩(129.6mg,酢酸エチル1.8wt%含有,換算収率94%,純度98.6%)を得た。
 H-NMR(400MHz,DMSO-d6)δ9.09(brs,1H),8.51(d,J=9.6Hz,1H),8.13(d,J=7.6Hz,1H),8.10(d,J=7.6Hz,1H),6.75-6.65(m,2H),6.54(d,J=2.0Hz,1H),4.64-4.58(m,1H),4.48(dd,J=12.8,2.8Hz,1H),4.33-4.23(m,2H),4.16(t,J=9.6Hz,1H),3.88(dd,J=7.6,4.8Hz,1H),2.95(dd,J=13.6,4.4Hz,1H),2.78(dd,J=13.6,7.6Hz,1H),2.35-2.23(m,2H),2.06-1.77(m,3H),0.85(d,J=6.8Hz,3H),0.82(d,J=6.8Hz,3H).
 (実施例21:化合物13の合成)
 窒素雰囲気下、L-m-チロシン(10.17g,56.1mmol,1.0eq.)に1M水酸化ナトリウム水溶液(56mL,56mmol,1.0eq.)を加えた。続いて氷冷下でCbzCl(11.01g,64.6mmol,1.15eq.)および1M水酸化ナトリウム水溶液(65mL,65mmol,1.15eq.)を交互に6分間で加えた。同温で20分間撹拌後、室温で1時間30分撹拌し、THF(50mL)を加え20分間撹拌した。1M水酸化ナトリウム水溶液(28mL,28mmol,0.5eq.)およびCbzCl(1.92g,11.2mmol,0.2eq.)を室温で追加して50分間撹拌後、再度CbzCl(0.96g,5.61mmol,0.1eq.)を追加して同温で1時間15分撹拌した。反応液を氷冷し5M水酸化ナトリウム水溶液(3.93mL,19.6mmol,0.35eq.)およびCbzCl(5.27g,30.9mmol,0.55eq.)を2分間で加え室温で30分間撹拌した。その後5M水酸化ナトリウム水溶液(11.2mL,56.1mmol,1.0eq.)を室温下で加え35分間撹拌後、更に5M水酸化ナトリウム水溶液(56.1mL,281mmol,5.0eq.)を追加して1時間撹拌した。反応液にヘキサン(200mL)を加えて1回分液洗浄した後、水層に6M塩酸水溶液(84mL)を加えpHを1とした。水層を酢酸エチル(20mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(60mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別した後、ろ液を濃縮し、A5-1(21.84g,Net:17.91g,酢酸エチル:8.2wt%,BnOH:9.1wt%,THF:0.7wt%含有,quant.)を白色固体として得た。
 窒素雰囲気下、A5-1(6.58g,16.9mmolとして計算,1.0eq.)のアセトニトリル(200mL)溶液にDBU(2.78mL,18.6mmol,1.1eq.)およびPMBCl(2.53mL,18.6mmol,1.1eq.)を室温で加え、外温60℃で20時間撹拌した。PMBCl(461μL,3.38mmol,0.2eq.)およびDBU(505μL,3.38mmol,0.2eq.)を追加して同温で1.5時間撹拌後、反応液を放冷し、酢酸(290μL,5.07mmol,0.3eq.)を加えて減圧濃縮して粗体を得た。粗体を2回フラッシュシリカゲルカラム精製(順相シリカゲル100g,1回目:ヘキサン/酢酸エチル=75/25~0/100、2回目:ヘキサン/酢酸エチル=75/25~0/100)し、Fragment A-6(5.61g,Net:5.25g,酢酸エチル:6.3wt%,換算収率71%,L-m-チロシンからの2段階収率)を無色油状物として得た。
 窒素雰囲気下、Fragment A-6(1.20eq.,1.83g,酢酸エチル6.3wt%含有,3.95mmol)およびFragment B-1(1.0eq.,1.35g,3.29mmol)のトルエン(36mL)溶液に氷冷下でTBD(1.20eq.,549mg,3.95mmol)を加え、外温50℃で3時間分撹拌した。続いて外温60℃に昇温して2.5時間撹拌後、TBD(0.5eq.,229mg,1.64mmol)を追加し、同温で更に1.5時間撹拌してから放冷した。反応液に5%クエン酸水溶液(27mL)を加え、酢酸エチル(20mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して橙色油状物として粗体(3.90g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=60/40)した。Fragment B-1(150mg)から得た化合物13-1’(201mg)と合一し、橙色油状物として化合物13-1および化合物13-1’の混合物(2.62g,酢酸エチルおよび不純物少量含有,化合物13-1:化合物13-1’=およそ2:1,見かけ収率化合物13-1:59%,化合物13-1’:30%)を得た。
 窒素雰囲気下、化合物13-1および化合物13-1’の混合物(2.33g,化合物13-1:化合物13-1’=2:1として計算,合計:2.89mmol)のアセトニトリル(12mL)溶液に室温でチオフェノール(3.0eq.,883μL,8.66mmol)およびDIPEA(3.0eq.,1.51mL,8.66mmol)を加え、同温で30分間撹拌した。チオフェノール(3.0eq.,883μL,8.66mmol)およびDIPEA(3.0eq.,1.51mL,8.66mmol)を追加して同温で更に2時間撹拌してから反応液を減圧濃縮し、褐色油状物として粗体(4.71g)を得た。化合物13-1および化合物13-1’(300mg)を用いて同様にして得られた粗体(261mg)と先の粗体を合一し、フラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=90/10~60/40)し、褐色油状物として化合物13-2および化合物13-2’の混合物(1.78g,不純物含有,化合物13-2:化合物13-2’=およそ1:1,見かけ収率化合物13-2:45%,化合物13-2’:45%)を得た。
 窒素雰囲気下、N-Fmoc-L-グリシン(Fragment C-3,2.0eq.,780mg,2.62mmol)のDMF(15mL)溶液にEDCI(2.0eq.,503mg,2.62mmol)およびHOBt・HO(2.0eq.,402mg,2.62mmol)を加え、室温で1時間撹拌後、化合物13-2および化合物13-2’の混合物(1.0eq.,790mg,化合物13-2:化合物13-2’=1:1として計算,合計:1.31mmol)を加え、同温で2時間撹拌した。
 同様の条件で化合物13-2および化合物13-2’の混合物(100mg)を用いた反応液と先の反応液を合一し、5%炭酸水素ナトリウム水溶液(50mL)を加え、酢酸エチル(50mL)で1回、酢酸エチル(20mL)で1回分液抽出した。有機層を合一し、5%クエン酸水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色粘体として粗体(1.46g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=80/20)し、淡褐色粘体として化合物13-3および化合物13-3’の混合物(1.28g,不純物含有,化合物13-3:化合物13-3’=およそ1:1,見かけ収率化合物13-3:49%,化合物13-3’:49%)を得た。
 窒素雰囲気下、化合物13-3および化合物13-3’の混合物(1.0eq.,1.28g,化合物13-3:化合物13-3’=1:1として計算,合計:1.45mmol)のTHF(14mL)/水(7mL)混合液に室温で水酸化リチウム一水和物(4.0eq.,244mg,5.82mmol)を加えた。同温で2時間撹拌後、水酸化リチウム一水和物(2.0eq.,122mg,2.91mmol)を追加し、同温で1時間撹拌してから反応液を氷冷後、5%クエン酸水溶液(30mL)を加えてpHを3とした。酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した。水層を合一した後、飽和するまで塩化ナトリウムを加え、THF(10mL)で5回分液抽出した。有機層を合一後、減圧濃縮して固体を含む黄色油状物(2.03g)を得た。これにTHF(100mL)を加え、不溶物をろ別した後、ろ液を減圧濃縮して橙色油状物として粗体(1.70g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,酢酸エチル/メタノール=100/0~5/95)し、淡橙色粘体として化合物13-4および化合物13-4’の混合物(0.62g,不純物含有,化合物13-4:化合物13-4’=およそ1:2,見かけ収率化合物13-4:27%,化合物13-4’:55%)を得た。
 窒素雰囲気下、HATU(5.0eq.,2.26g,5.94mmol)のDMF(1190mL)溶液に室温でDIPEA(10.0eq.,2.07mL,11.88mmol)を加えた。次いで、同温で化合物13-4および化合物13-4’の混合物(1.0eq.,0.62g,化合物13-4:化合物13-4’=1:2として計算,合計:1.19mmol)のDMF(15mL)溶液を18時間かけて加え、滴下完了後、室温でさらに1時間撹拌した。反応液を浴温50℃で減圧濃縮し、濃縮残渣に5%クエン酸水溶液(30mL)を加え、酢酸エチル(50mL)で1回、酢酸エチル(10mL)で4回分液抽出した。有機層を合一して飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色固体として化合物13-5および化合物13-6の混合物(2.32g)を得た。
 窒素雰囲気下、化合物13-5および化合物13-6の混合物(2.32g)のTHF(10mL)溶液に室温で5%クエン酸水溶液(10mL)を加え、同温で2時間撹拌した。反応液に酢酸エチル(30mL)および飽和塩化ナトリウム水溶液(40mL)を加えて1回分液抽出し、有機層を硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した後、減圧濃縮して褐色固体として粗体(2.70g)を得た。粗体に酢酸エチルを加え不溶物をろ別した後、ろ液を減圧濃縮して、濃縮残渣を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル50g,ヘキサン/酢酸エチル=20/80~0/100→酢酸エチル/メタノール=85/15,2回目:逆相シリカゲル60g,水/アセトニトリル=90/10~0/100)し、橙色粘体として化合物13-6(0.22g,少量の不純物および異性体含有、見かけ収率40%)を得た。
 窒素雰囲気下、化合物13-6(1.0eq.,0.22g,異性体混合物,0.473mmol)のジクロロメタン(10mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,0.30g,0.710mmol)を加え、室温で6時間撹拌した。反応液を氷冷し5%炭酸水素ナトリウム水溶液(10mL)および5%チオ硫酸ナトリウム水溶液(10mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して有機層を飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して橙色油状物としてAldehyde(0.23g,異性体含有)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,0.23g,異性体混合物,0.473mmolとして計算)のt-ブチルアルコール(13mL)/アミレン(3.2mL)/水(3.2mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,258mg,1.66mmol)および80%亜塩素酸ナトリウム(4.5eq.,241mg,2.13mmol)を加え、同温で2.5時間撹拌した。反応液に水(30mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、水層に塩化ナトリウム(10g)を溶解してから更にTHF(10mL)で3回分液抽出した。有機層を合一し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、橙色油状物として化合物13-7(0.30g,異性体混合物,不純物含有,quant.)を得た。
 窒素雰囲気下、化合物13-7(1.0eq.,0.30g,異性体混合物,0.473mmolとして計算)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,258mg,0.710mmol)のジクロロメタン(9mL)溶液に、氷冷下でDIPEA(1.5eq.,124μL,0.710mmol)およびHATU(1.5eq.,270mg,0.710mmol)を加え、同温で3.5時間撹拌した後、室温で19.5時間撹拌した。反応液に5%クエン酸水溶液(10mL)を加え、酢酸エチル(25mL)で1回、酢酸エチル(5mL)で2回分液抽出した。有機層を合一し5%炭酸水素ナトリウム水溶液(20mL)で1回、5%クエン酸水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した。硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。減圧濃縮し、褐色粘体として得た粗体(0.46g)を以下の通りフラッシュカラムシリカゲル精製し、橙色油状物(80mg)を得た。
1回目:順相シリカゲル10g,ヘキサン/酢酸エチル=60/40~0/100
2回目:順相シリカゲル25g,ヘキサン/酢酸エチル=60/40~0/100
3回目:順相シリカゲル25g,ヘキサン/酢酸エチル=60/40~45/55
4回目:順相シリカゲル25g,ヘキサン/酢酸エチル=50/50~47/53
5回目:逆相シリカゲル60g,0.05%TFA 水溶液/0.05%TFAアセトニトリル溶液=40/60~1/99
 得られた橙色油状物に酢酸エチル(20mL)および水(20mL)を加えて1回分液抽出し、有機層を硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮することで橙色油状物として化合物13-8(67mg,収率18%)を得た。
 窒素雰囲気下、化合物13-8(1.0eq.,63mg,0.08mmol)のTHF(3.2mL)/水(0.32mL)混合液に、室温でTFA(2.0eq.,12.2μL,0.16mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.2mg)を加え、系内を水素置換後、同温で24時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.2mg)を追加して同温で更に23時間撹拌してからセライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡黄色粘体として粗体(73mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル60g,0.05%TFA水溶液/0.05%TFAアセトニトリル溶液=95/5~79/21)した後、凍結乾燥を行い白色固体として化合物13のTFA塩(20.8mg,収率54%,純度97.1%)を得た。
 H-NMR(400MHz,DO)δ8.67-8.60(m,0.3H),7.66(d,J=7.6Hz,0.4H),7.29(t,J=8.0Hz,1H),7.15(s,1H),7.10-7.00(m,2H),6.82-6.68(m,0.4H),4.56(t,J=4.4Hz,1H),4.39(dd,J=8.0,4.0Hz,1H),4.21(d,J=15.6Hz,1H),4.01(dd,J=10.4,4.4Hz,1H),3.32(d,J=15.6Hz,1H),3.23(dd,J=13.2,4.4Hz,1H),2.95(dd,J=13.2,10.4Hz,1H),2.47-2.34(m,2H),2.21-2.10(m,1H),2.01-1.87(m,2H),1.73-1.62(m,1H),1.39(s,3H),0.90(t,J=7.6Hz,3H).
 (実施例22:化合物14の合成)
 窒素雰囲気下、A5-1(3.00g,7.71mmolとして計算,1.0eq.)のTHF(6mL)溶液に1M水酸化ナトリウム水溶液(16.3mL,16.3mmol,2.1eq.)を加えた。続いて氷冷下でCbzCl(1.20mL,8.51mmol,1.1eq.)を加え、室温で20分間撹拌を行った。反応液に水(10mL)およびヘキサン(30mL)を加え、1回分液洗浄を行った。水層に2M塩酸水溶液(5mL)を加え、pHを1としてから、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した。硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した後、ろ液を濃縮し、A5-4(3.99g,quant.)を白色固体として得た。
 窒素雰囲気下、A5-4(3.49g,6.77mmolとして計算,1.0eq.)のトルエン(100mL)溶液にパラホルムアルデヒド(1.75g)およびTsOH・HO(129mg,0.68mmol,0.1eq.)を加え外温125℃で1時間撹拌を行った。反応液を放冷後、5%炭酸水素ナトリウム水溶液(20mL)を加えた。
 A5-4(0.5g)を用いて同様に処理した反応液と合一し、酢酸エチル(60mL)で1回、酢酸エチル(5mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別した後、ろ液を濃縮し、濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=85/15~0/100)にて精製し、A5-6(3.57g,Net:3.42g,酢酸エチル:4.3wt%含有,換算収率96%,L-m-チロシンからの3段階収率)を無色油状物として得た。
 窒素雰囲気下、A5-6(3.50g,Net:3.35g,7.26mmol,1.0eq.)のクロロホルム(36mL)溶液にトリエチルシラン(3.63mL)を室温で加えた。氷冷下でTFA(36mL)を加えて同温で5分間、室温で47.5時間撹拌した。反応液を濃縮後、濃縮残渣(9.89g)をTHF(20mL)で希釈し、氷冷下5M水酸化ナトリウム水溶液(20mL)を加え、同温で30分間撹拌後、室温で6時間撹拌した。
 A5-6(46mg)を用いて同様に処理した反応液と先の反応液を合一し、クエン酸(4.7g)を加えてpHを4とし、水(20mL)を加え、酢酸エチル(25mL)で1回、酢酸エチル(15mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(30mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別した後、ろ液を濃縮し、得られた白色固体にトルエンを加えて超音波照射にて砕いた後、固体をろ取、減圧乾燥することで、A5-3(2.00g,不純物含有,見かけ収率83%,2段階収率)を白色固体として得た。
 窒素雰囲気下、A5-3(1.75g,5.31mmolとして計算,1.0eq.)のアセトニトリル(64mL)溶液にDBU(872μL,5.85mmol,1.1eq.)およびPMBCl(796μL,5.85mmol,1.1eq.)を室温で加え、外温60℃で16時間20分撹拌した。PMBCl(145μL,1.06mmol,0.2eq.)を追加し、同温で3時間30分撹拌後、放冷してから酢酸(30μL,0.53mmol,0.1eq.)を加えた。
 A5-3(0.25g)を用いて同様に処理した反応液と、先の反応液を合一して減圧濃縮した。濃縮残渣をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=80/20~30/70)し、Fragment A-5(1.67g,Net:1.59g,酢酸エチル:4.6wt%,換算収率48%,A5-6からの3段階収率)を無色油状物として得た。
 窒素雰囲気下、Fragment A-5(1.05eq.,1.49g,酢酸エチル4.6wt%含有,3.16mmol)およびFragment B-1(1.0eq.,1.24g,3.01mmol)のトルエン(33mL)溶液に室温でTBD(1.05eq.,440mg,3.16mmol)を加え、外温50℃で17時間撹拌した。TBD(0.5eq.,229mg,1.64mmol)を追加し、同温で更に6時間20分撹拌してから放冷した。
 Fragment B-1(150mg)を用いて同様に処理した反応液と、先の反応液を合一し、5%クエン酸水溶液(25mL)を加え、酢酸エチル(40mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して橙色油状物として粗体(3.86g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=75/25~0/100→酢酸エチル/メタノール=60/40)し、褐色油状物として化合物14-1と化合物14-1’の混合物(2.64g,酢酸エチルおよび不純物少量含有,化合物14-1:化合物14-1’=およそ2:1,見かけ収率化合物14-1:64%,化合物14-1’:32%)を得た。
 窒素雰囲気下、化合物14-1と化合物14-1’の混合物(2.64g,化合物14-1:化合物14-1’=2:1として計算,合計:3.22mmol)のアセトニトリル(14mL)溶液に室温でチオフェノール(3.0eq.,985μL,9.66mmol)およびDIPEA(3.0eq.,1.68mL,9.66mmol)を加え、同温で1時間30分撹拌した。チオフェノール(3.0eq.,985μL,9.66mmol)およびDIPEA(3.0eq.,1.68mL,9.66mmol)を追加して同温で更に3時間撹拌してから反応液を減圧濃縮し、褐色油状物として粗体(5.43g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=90/10~60/40)し、橙色油状物として化合物14-2と化合物14-2’の混合物(2.02g,不純物少量含有,化合物14-2:化合物14-2’=およそ2:1,見かけ収率 化合物14-2:65%,化合物14-2’:33%)を得た。
 窒素雰囲気下、N-Fmoc-L-バリン(Fragment C-1,2.0eq.,1.08g,3.18mmol)、EDCI(2.0eq.,610mg,3.18mmol)およびHOBt・HO(2.0eq.,487mg,3.18mmol)をDMF(17mL)に溶解し室温で1時間10分撹拌後、化合物14-2と化合物14-2’の混合物(1.0eq.,1.01g,化合物14-2:化合物14-2’=2:1として計算,合計:1.59mmol)を加え、同温で3時間30分撹拌した。反応液に、5%炭酸水素ナトリウム水溶液(50mL)を加え、酢酸エチル(100mL)で1回、酢酸エチル(10mL)で1回分液抽出した。有機層を合一して5%クエン酸水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して橙色油状物として粗体(2.08g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=80/20)し、白色粘体として化合物14-3と化合物14-3’の混合物(1.71g,不純物含有,化合物14-3:化合物14-3’=およそ2:1,見かけ収率定量的)を得た。
 窒素雰囲気下、化合物14-3と化合物14-3’の混合物(1.0eq.,1.71g,1.59mmolとして計算)のTHF(15mL)/水(7mL)混合液に室温で水酸化リチウム一水和物(6.0eq.,400mg,9.54mmol)を加え、同温で21時間撹拌した。反応液を氷冷して5%クエン酸水溶液(30mL)および塩化ナトリウム(10g)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回、THF(10mL)で2回分液抽出した後、有機層を合一して硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して固体を含む黄色油状物として粗体(1.72g)を得た。これにTHF(100mL)を加え、不溶物をろ別した後、ろ液を減圧濃縮して黄色油状物として粗体(1.61g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=20/80~0/100→酢酸エチル/メタノール=5/95)し、白色粘体として化合物14-4と化合物14-4’の混合物(0.74g,不純物含有,化合物14-4:化合物14-4’=およそ1:1,見かけ収率化合物14-4:39%,化合物14-4’:39%)を得た。
 窒素雰囲気下、HATU(5.0eq.,2.36g,6.20mmol)のDMF(1225mL)溶液に室温でDIPEA(10.0eq.,2.16mL,12.40mmol)を加えた。次いで、同温で化合物14-4と化合物14-4’の混合物(1.0eq.,0.74g,化合物14-4:化合物14-4’=1:1として計算,合計:1.24mmol)のDMF(15mL)溶液を18時間かけて加え、滴下完了後、室温でさらに4.5時間撹拌した。反応液を浴温50℃で減圧濃縮し、褐色固体として化合物14-5と化合物14-6の混合物(3.80g)を得た。
 窒素雰囲気下、化合物14-5と化合物14-6の混合物(3.80g)のTHF(15mL)溶液に室温で5%クエン酸水溶液(10mL)を加え、同温で45.5時間撹拌した。反応液に飽和塩化ナトリウム水溶液(40mL)を加え、酢酸エチル(50mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して硫酸ナトリウムで乾燥、硫酸ナトリウムをろ別し、減圧濃縮して褐色固体として粗体(3.44g)を得た。粗体に酢酸エチルを加え不溶物をろ別し、ろ液を減圧濃縮して、濃縮残渣を以下の通りフラッシュシリカゲルカラム精製し、淡黄色粘体として化合物14-6(0.32g,少量の不純物および異性体含有、見かけ収率49%)を得た。
 1回目:順相シリカゲル50g,ヘキサン/酢酸エチル=65/35~0/100→酢酸エチル/メタノール=90/10
 2回目:逆相シリカゲル60g,水/アセトニトリル=90/10~0/100
 3回目:逆相シリカゲル60g,水/アセトニトリル=90/10~0/100
 窒素雰囲気下、化合物14-6(1.0eq.,0.32g,異性体混合物,0.613mmol)のジクロロメタン(13mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,0.39g,0.920mmol)を加え、室温で2時間30分撹拌した。反応液を氷冷し、5%炭酸水素ナトリウム水溶液(10mL)および5%チオ硫酸ナトリウム水溶液(10mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一して有機層を5%塩化ナトリウム水溶液(10mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して黄色油状物としてAldehyde(0.32g,異性体含有)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,0.32g,異性体混合物,0.613mmolとして計算)のt-ブチルアルコール(17mL)/アミレン(4.1mL)/水(4.1mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,335mg,2.15mmol)および80%亜塩素酸ナトリウム(4.5eq.,312mg,2.76mmol)を加え、同温で50分間撹拌した。反応液に飽和塩化ナトリウム水溶液(30mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、淡黄色粘体として化合物14-7(0.34g,異性体混合物,不純物含有,化合物14-6から2段階の見かけ収率定量的)を得た。
 窒素雰囲気下、化合物14-7(1.0eq.,0.34g,異性体混合物,0.613mmolとして計算)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,335mg,0.920mmol)のジクロロメタン(13mL)溶液に、氷冷下でDIPEA(1.5eq.,160μL,0.920mmol)およびHATU(1.5eq.,350mg,0.920mmol)を加え、同温で1時間15分撹拌後、室温で4時間15分撹拌した。
 反応液に5%クエン酸水溶液(15mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(30mL)で1回、5%クエン酸水溶液(30mL)で1回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。減圧濃縮して得られた赤褐色油状の粗体(0.60g)を以下の通りフラッシュシリカゲルカラム精製し、無色粘体として化合物14-8(78mg,酢酸エチル1.2wt%含有,換算収率15%)を得た。
 1回目:順相シリカゲル25g,クロロホルム/酢酸エチル= 90/10~60/40
2回目:NHシリカゲル23g,ヘキサン/酢酸エチル=50/50~80/20
3回目:順相シリカゲル25g,クロロホルム/酢酸エチル=85/15~50/50
4回目:順相シリカゲル25g,クロロホルム/酢酸エチル=80/20~0/100
5回目:順相シリカゲル25g,クロロホルム/酢酸エチル=75/25~70/30
6回目:順相シリカゲル10g,クロロホルム/酢酸エチル=75/25~60/40
7回目:順相シリカゲル10g,クロロホルム/酢酸エチル=78/22~40/60
 窒素雰囲気下、化合物14-8(1.0eq.,78mg,酢酸エチル1.2wt%含有,0.091mmol)のTHF(3.9mL)/水(0.39mL)混合液に、室温でTFA(2.0eq.,14.0μL,0.182mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.9mg)を加え、系内を水素置換後、同温で4時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.9mg)を追加して同温で更に3時間撹拌後、セライトろ過により触媒をろ別し、ろ液を減圧濃縮して淡黄色粘体として粗体(68mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル60g,0.05%TFA水溶液/0.05%TFAアセトニトリル溶液=95/5~73/27)した後、凍結乾燥を行い白色固体として化合物14のTFA塩(42.6mg,収率72%,純度99.6%)を得た。
 H-NMR(400MHz,DO)δ8.55(d,J=7.2Hz,0.1H),8.41(d,J=8.0Hz,0.4H),7.24(t,J=8.0Hz,1H),7.06(dd,J=8.0,2.0Hz,1H),6.93(d,J=8.0Hz,1H),6.61(s,1H),4.32(dd,J=9.2,5.2Hz,1H),4.10(d,J=10.4Hz,1H),3.87(dd,J=10.8,5.2Hz,1H),3.21(dd,J=12.4,5.2Hz,1H),2.84(t,J=12.4Hz,1H),2.64(s,3H),2.43-2.25(m,2H),2.27-2.07(m,2H),1.95-1.68(m,3H),1.36(s,3H),1.00(t,J=7.6Hz,3H),0.77(d,J=6.8Hz,3H),0.69(d,J=6.4Hz,3H).
 (実施例23:化合物16の合成)
 窒素雰囲気下、Fragment A-2(1.05eq.,1.00g,酢酸エチル1.9wt%,酢酸0.3wt%含有,1.76mmol)およびFragment B-9(1.0eq.,671mg,1.68mmol)のトルエン(18mL)溶液に室温でTBD(1.05eq.,245mg,1.76mmol)を加え、外温50℃で2時間20分撹拌した。TBD(0.3eq.,70mg,0.503mmol)を追加し、同温で15.5時間撹拌してから再度TBD(0.2eq.,47mg,0.335mmol)を追加し、同温で更に4時間撹拌し放冷した。反応液に5%クエン酸水溶液(20mL)を加え、酢酸エチル(20mL)で1回、酢酸エチル(5mL)で2回分液抽出した。有機層を合一し、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色油状物として粗体(1.928g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=80/20~0/100)し、無色油状物として化合物16-1と化合物16-1の脱PMB体の混合物(1.537g,不純物含有,化合物16-1:脱PMB体=およそ2:1,見かけ収率定量的)を得た。
 窒素雰囲気下、化合物16-1と化合物16-1の脱PMB体の混合物(1.0eq.,1.53g,1.67mmolとして計算)のDMF(7.65mL)溶液に室温で1-ドデカンチオール(6.0eq.,2.38mL,10.0mmol)を加えてから氷冷し、DBU(6.0eq.,1.50mL,10.0mmol)を加え、室温で1.5時間撹拌した。反応液に酢酸エチル(40mL)、5%クエン酸水溶液(13.4mL)および水(100mL)を加えて1回分液抽出した。水層に5%クエン酸水溶液(1mL)を追加して酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色油状物として粗体(3.43g)を得た。
 同様の操作で化合物16-1(219mg)から得た粗体(505mg)と先の粗体を合一してフラッシュシリカゲルカラム精製(順相シリカゲル50g,ヘキサン/酢酸エチル=70/30~0/100→酢酸エチル/メタノール=60/40~20/80)し、黄色油状物として化合物16-2と化合物16-2の脱PMB体の混合物(1.272g,不純物含有,化合物16-2:脱PMB体=およそ2:1,化合物16-2:見かけ収率61%,脱PMB体:見かけ収率30%)を得た。
 窒素雰囲気下、N-Fmoc-L-バリン(Fragment C-1,2.0eq.,1.18g,3.48mmol)、EDCI(2.0eq.,667mg,3.48mmol)およびHOBt・HO(2.0eq.,533mg,3.48mmol)をDMF(20mL)に溶解し室温で1時間撹拌後、化合物16-2と化合物16-2の脱PMB体の混合物(1.0eq.,1.272g,化合物16-2:脱PMB体=2:1,1.74mmolとして計算)のDMF(2mL)溶液を加えて同温で1時間50分撹拌した。その後、外温40℃に昇温して1時間20分撹拌し、室温に戻して50分間撹拌して、別途30分間撹拌したN-Fmoc-L-バリン(Fragment C-1,1.0eq.,591mg,1.74mmol)、EDCI(1.0eq.,334mg,1.74mmol)およびHOBt・HO(1.0eq.,267mg,1.74mmol)のDMF(10mL)溶液を加えた。室温で30分間撹拌後、DIPEA(0.2eq.,61μL,0.35mmol)を加え同温で20分間撹拌後、再度DIPEA(0.5eq.,152μL,0.87mmol)を加え同温で40分間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(50mL)を加え、トルエン(90mL)で1回、酢酸エチル(15mL)で2回分液抽出した。有機層を合一し、5%クエン酸水溶液(50mL)で1回、5%炭酸水素ナトリウム水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色粘体として化合物16-3(2.94g,不純物含有,見かけ収率定量的)を得た。
 窒素雰囲気下、化合物16-3(1.0eq.,2.75g,1.55mmolとして計算)のTHF(24mL)/水(12mL)混合液に室温で水酸化リチウム一水和物(10eq.,650mg,15.5mmol)を加えた。同温で16.5時間撹拌後、反応液を氷冷し、5%クエン酸水溶液(43mL)を加えてpHを3とし、塩化ナトリウム(14g)を溶解してから酢酸エチル(25mL)およびTHF(10mL)を加えて1回分液抽出した。水層をTHF(15mL)で3回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡橙色油状物として粗体(2.49g)を得た。
 同様の条件で化合物16-3(0.32g)から得た粗体(0.16g)と先の粗体を合一してTHF(50mL)を加え、不溶物をろ別した。ろ液を減圧濃縮後、濃縮残渣に酢酸エチルを加え、再度不溶物をろ別し、ろ液を減圧濃縮して橙色油状物として粗体(2.72g)を得た。粗体を4回フラッシュシリカゲルカラム精製(順相シリカゲル25g,1回目:ヘキサン/酢酸エチル=80/20~0/100→酢酸エチル/メタノール=30/70,2回目:酢酸エチル/メタノール=100/0~30/70,3回目:クロロホルム/メタノール=100/0~30/70,4回目:クロロホルム/メタノール=100/0~50/50)し、淡褐色粘体として化合物16-4(543mg,酢酸エチル4.7wt%含有,Fragment B-9から4段階の換算収率36%)および、褐色粘体として化合物16-4の脱TBS体(232mg,酢酸エチル3.9wt%含有,Fragment B-9から4段階の換算収率18%)を得た。
 窒素雰囲気下、HATU(5.0eq.,1.31g,3.44mmol)のDMF(680mL)溶液に室温でDIPEA(10.0eq.,1.20mL,6.89mmol)を加えた。次いで、同温で化合物16-4(1.0eq.,542mg,酢酸エチル4.7wt%含有,0.689mmol)のDMF(10mL)溶液を16.5時間かけて加え、滴下完了後、室温でさらに1時間撹拌した。反応液を浴温50℃で減圧濃縮して褐色油状物として化合物16-5および化合物16-6の混合物(5.749g)を得た。
 窒素雰囲気下、化合物16-5および化合物16-6の混合物(5.749g)を外温70℃で3.5時間撹拌後、室温まで放冷しTHF(15mL)および5%クエン酸水溶液(10mL)を加え、同温で17時間撹拌した。反応液に酢酸エチル(50mL)および水(30mL)を加えて1回分液抽出し、水層に水(80mL)を加えてから酢酸エチル(20mL)で2回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色油状物として粗体(0.62g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=60/40~20/80)し、黄色粘体として化合物16-6(164mg,酢酸エチル5.4wt%含有,2段階の換算収率36%)を得た。
 窒素雰囲気下、化合物16-6(1.0eq.,225mg,0.349mmol)のジクロロメタン(7mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,222mg,0.524mmol)を加え、室温で1.5時間撹拌した。反応液を氷冷し5%炭酸水素ナトリウム水溶液(6mL)および5%チオ硫酸ナトリウム水溶液(6mL)を加え、酢酸エチル(30mL)で1回、酢酸エチル(10mL)で2回分液抽出した。有機層を合一し、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して黄色油状物としてAldehyde(193mg,収率90%)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,191mg,0.349mmolとして計算)のt-ブチルアルコール(10mL)/アミレン(2.4mL)/水(2.4mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,191mg,1.22mmol)および80%亜塩素酸ナトリウム(4.5eq.,178mg,1.57mmol)を加え、同温で1時間撹拌した。反応液に飽和塩化ナトリウム水溶液(20mL)を加え、酢酸エチル(20mL)で1回、酢酸エチル(7mL)で2回分液抽出した後、有機層を合一し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮し、淡黄色粘体として化合物16-7(201mg,酢酸エチル2.5wt%含有,2段階の換算収率89%)を得た。
 窒素雰囲気下、化合物16-7(1.0eq.,98mg,酢酸エチル2.5wt%含有,0.151mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,82.5mg,0.227mmol)のジクロロメタン(3mL)溶液に、氷冷下でDIPEA(1.5eq.,39.5μL,0.227mmol)およびHATU(1.5eq.,86.3mg,0.227mmol)を加え、同温で1時間撹拌後、室温で3時間撹拌した。室温でDIPEA(1.0eq.,26.3μL,0.151mmol)を追加し、同温で1.5時間撹拌後、再度DIPEA(1.0eq.,26.3μL,0.151mmol)を追加した。同温で17時間撹拌してから、5%クエン酸水溶液(15mL)を加え、酢酸エチル(10mL)で1回、酢酸エチル(7mL)で2回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(15mL)/5%塩化ナトリウム水溶液(15mL)混合液で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。減圧濃縮し、黄色油状物として得た粗体(183mg)を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル10g,クロロホルム/酢酸エチル=60/40~10/90,2回目:順相シリカゲル25g,クロロホルム/酢酸エチル=90/10~60/40)し、無色粘体として化合物16-8(28mg,収率20%)を得た。
 窒素雰囲気下、化合物16-8(1.0eq.,27mg,0.029mmol)のTHF(1.4mL)/水(0.14mL)混合液に、室温でTFA(2.0eq.,4.4μL,0.057mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,1.4mg)を加え、系内を水素置換後、同温で2.5時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.7mg)を追加して同温で更に20.5時間撹拌してからセライトろ過により触媒をろ別し、ろ液を減圧濃縮して褐色粘体として粗体(37mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル30g,1回目:0.05%TFA水溶液/0.05%TFAアセトニトリル溶液=95/5~70/30,2回目:0.05%TFA水溶液/0.05%TFAアセトニトリル溶液=99/1~70/30)した後、凍結乾燥を行い白色固体として化合物16のTFA塩(17.5mg,収率94%,純度99.0%)を得た。
 H-NMR(400MHz,DO)δ8.80(d,J=7.6Hz,0.3H),8.45(d,J=8.8Hz,0.1H),8.11(d,J=9.6Hz,0.8H),6.84(s,2H),6.76(s,1H),4.79(d,J=9.6Hz,1H),4.34(dd,J=9.2,4.8Hz,1H),4.03(d,J=10.0Hz,1H),4.00(dd,J=8.4,5.2Hz,1H),3.16(dd,J=13.6,5.2Hz,1H),2.85(dd,J=13.6,8.4Hz,1H),2.64(s,3H),2.44-2.28(m,2H),2.20-2.08(m,1H),1.96-1.81(m,2H),1.48(s,3H),1.47(s,3H),0.79(d,J=6.8Hz,3H),0.70(d,J=6.8Hz,3H).
 (実施例24:化合物17の合成)
 窒素雰囲気下、化合物16-7(1.0eq.,100mg,酢酸エチル2.5wt%含有,0.154mmol)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,81.0mg,0.232mmol)のジクロロメタン(3mL)溶液に、氷冷下でDIPEA(1.5eq.,40.3μL,0.232mmol)およびHATU(1.5eq.,88.0mg,0.232mmol)を加え、同温で1時間撹拌後、室温で5時間撹拌した。
 室温でDIPEA(2.0eq.,53.7μL,0.308mmol)を追加し、同温で17時間撹拌後、5%クエン酸水溶液(15mL)を加え、酢酸エチル(15mL)で1回、酢酸エチル(7mL)で2回分液抽出した。有機層を合一し、5%炭酸水素ナトリウム水溶液(15mL)で1回、5%塩化ナトリウム水溶液(15mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。減圧濃縮し、黄色油状物として得た粗体(181mg)を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル10g,クロロホルム/酢酸エチル=90/10~50/50,2回目:順相シリカゲル25g,クロロホルム/酢酸エチル=90/10~67/33)し、無色粘体として化合物17-1(30mg,収率21%)を得た。
 窒素雰囲気下、化合物17-1(1.0eq.,27mg,0.029mmol)のTHF(1.4mL)/水(0.14mL)混合液に、室温でTFA(2.0eq.,4.5μL,0.058mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4.1mg)を加え、系内を水素置換後、同温で19時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して褐色粘体として粗体(40mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/0.05%TFAアセトニトリル溶液=99/1~70/30)した後、凍結乾燥を行い白色固体として化合物17のTFA塩(20.1mg,quant.,純度99.6%)を得た。
 H-NMR(400MHz,DO)δ6.84(s,2H),6.73(s,1H),4.79(s,1H),4.63(dd,J=7.6,5.2Hz,1H),4.01(d,J=10.4Hz,1H),3.99(dd,J=8.0,5.2Hz,1H),3.15(dd,J=13.6,4.8Hz,1H),2.95-2.77(m,2H),2.63(s,3H),1.92-1.78(m,1H,1.48(s,3H),1.46(s,3H),0.78(d,J=6.4Hz,3H),0.69(d,J=6.8Hz,3H).
 (実施例25:化合物18の合成)
 窒素雰囲気下、化合物1-7(1.0eq.,66mg,0.103mmol)、4-アミノ酪酸ベンジルエステルパラトルエンスルホン酸塩(Fragment D-4,1.5eq.,57mg,0.156mmol)のTHF(2.64mL)溶液に、氷冷下でDEPBT(1.5eq.,46mg,0.154mmol)およびDIPEA(1.5eq.,53μL,0.312mmol)を加え、同温で1時間、室温で17時間撹拌した。化合物1-7(5mg)を用いて、同様の操作で反応させた反応液と上記の反応液を合一し、酢酸エチル(10mL)および5%クエン酸水溶液(10mL)を加えて1回分液抽出した後、有機層を5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮し、淡褐色粘体として粗体(89mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=70/30~0/100)し、白色固体として化合物18-1(44mg,酢酸エチル1.8wt%含有,換算収率48%)を得た。
 窒素雰囲気下、化合物18-1(1.0eq.,44mg,酢酸エチル1.8wt%含有,0.053mmol)のTHF(2.2mL)/水(0.11mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4.4mg)およびTFA(5.0eq.,20μL,0.261mmol)を加え、系内を水素置換後、同温で24時間撹拌した。反応液にTHF(6.6mL)、水(0.33mL)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.2mg)を加えて6時間撹拌し、再度10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.2mg)を加えて17時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(43mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル60g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い、白色固体として化合物18のTFA塩(16.9mg,収率51%,純度95.0%)を得た。
 H-NMR(400MHz,DO)δ6.90-6.75(m,3H),4.04(d,J=10.0Hz,1H),3.97(dd,J=9.2,4.8Hz,1H),3.21-3.12(m,3H),2.84(dd,J=13.2,9.2Hz,1H),2.65(s,3H),2.31(t,J=7.6Hz,2H),2.00-1.82(m,2H),1.75-1.67(m,2H),1.64-1.55(m,1H),1.55(s,3H),0.96(t,J=7.6Hz,3H),0.78(d,J=6.8Hz,3H),0.70(d,J=6.4Hz,3H).
 (実施例26:化合物20の合成)
 窒素雰囲気下、化合物1-7(1.0eq.,123mg,0.191mmol)のTHF(1mL)溶液に、氷冷下で2,4,6-コリジン(1.5eq.,35.0mg,0.288mmol)、DEPBT(1.5eq.,86.6mg,0.289mmol)および、D-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-5,1.5eq.,106mg,0.290mmol)を加え、室温で22時間撹拌した。反応液に酢酸エチル(10mL)を加え、水(5mL)/飽和塩化アンモニウム水溶液(5mL)混合液で2回、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(301mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル8g,ヘキサン/酢酸エチル=80/20~0/100、2回目:順相シリカゲル4g,ヘキサン/酢酸エチル=50/50)し、淡白色液体として化合物20-1(28.1mg,収率15%)を得た。
 窒素雰囲気下、化合物20-1(1.0eq.,28mg,0.029mmol)のTHF(840μL)/水(42μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.5mg)およびTFA(5.0eq.,11.3μL,0.148mmol)を加え、系内を水素置換後、同温で6.5時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して粗体(24.8mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い、白色固体として化合物20のTFA塩(13.4mg,収率68%,純度94.3%)を得た。
 H-NMR(400MHz,DO)δ6.93-6.82(m,3H),4.88(s,1H),4.29(dd,J=9.2,5.2Hz,1H),4.09(d,J=10.0Hz,1H),4.04(dd,J=8.8,5.2Hz,1H),3.23(dd,J=13.6,4.8Hz,1H),2.89(dd,J=13.2,8.8Hz,1H),2.70(s,3H),2.51-2.46(m,2H),2.22-2.13(m,1H),2.05-1.87(m,3H),1.72-1.63(m,1H),1.55(s,3H),1.05(t,J=7.2Hz,3H),0.84(d,J=7.2Hz,3H),0.76(d,J=6.8Hz,3H).
 (実施例27:化合物21の合成)
 窒素雰囲気下、化合物1-7(1.0eq.,207mg,0.322mmol)のTHF(3.2mL)溶液に、氷冷下で2,4,6-コリジン(2.8eq.,110mg,0.911mmol)、DEPBT(1.5eq.,145mg,0.483mmol)およびD-アスパラギン酸ジベンジルエステルパラトルエンスルホン酸塩(Fragment D-6,1.5eq.,236mg,0.486mmol)を加え、室温で20時間撹拌した。反応液に酢酸エチル(15mL)を加え、水(5mL)/飽和塩化アンモニウム水溶液(5mL)混合液で2回、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で2回分液洗浄した。有機層を飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して粗体(438mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル8g,ヘキサン/酢酸エチル=75/25~0/100、2回目:順相シリカゲル5g,ヘキサン/酢酸エチル=67/23~50/50)し、淡白色液体として化合物21-1(32.4mg,収率11%)を得た。
 化合物20の合成と同様に反応を行い、化合物21-1から化合物21のTFA塩(12.1mg,収率58%,純度95.2%)を得た。
 H-NMR(400MHz,DO)δ6.92-6.82(m,3H),4.74-4.70(m,1H),4.09(d,J=10.0Hz,1H),4.04(dd,J=8.8,4.8Hz,1H),3.22(dd,J=13.6,4.8Hz,1H),3.00(dd,J=17.2,4.8Hz,1H),2.93-2.83(m,2H),2.70(s,3H),1.98-1.87(m,2H),1.72-1.63(m,1H),1.54(s,3H),1.02(t,J=7.2Hz,3H),0.84(d,J=6.4Hz,3H),0.76(d,J=6.4Hz,3H).
 (実施例28:化合物23の合成)
 窒素雰囲気下、Fragment A-3’(1.0eq.,3.46g,A3’-4のPMBエステル体を約30%含む,4.78mmolとして計算)およびFragment B-1(1.3eq.2.52g,6.14mmol)のトルエン(50mL)溶液に氷冷下でTBD(1.3eq.,853mg,6.13mmol)を加え、室温で16時間撹拌した。減圧濃縮によりトルエンを留去して、茶褐色アモルファスとして粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=5/1~1/1)し、黄色粘体として化合物23-1(4.02g,不純物を含む,見かけ収率92%)を得た。
 窒素雰囲気下、化合物23-1(1.0eq.,4.02g,4.37mmol)のDMF(40mL)溶液に氷冷下で炭酸セシウム(1.5eq.,2.33g,6.61mmol)およびチオフェノール(1.5eq.,650μL,6.37mmol)を加え、室温で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(40mL)加え、ヘキサン(12.5mL)/酢酸エチル(37.5mL)混合液で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した後、硫酸マグネシウムを加え乾燥した。硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,ヘキサン/酢酸エチル=5/1~2/1)し、淡黄色粘体として化合物23-2(2.70g,収率84%)を得た。
 窒素雰囲気下、化合物23-2(1.0eq.,2.70g,3.68mmol)のDMF(40mL)溶液に氷冷下でEDCI(1.2eq.,867mg,4.52mmol)、HOBt・HO(1.2eq.,679mg,4.43mmol)およびN-Fmoc-L-Val(1.2eq.,1.52g,4.47mmol)を加え、室温で3時間撹拌した。反応液に水(40mL)を加え、ヘキサン(12.5mL)/酢酸エチル(37.5mL)混合液で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(100mL)で1回、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物23-3(4.34g,粗収率112%)を得た。
 化合物23-3(1.0eq.,4.34g,3.68mmol)のTHF(24mL)/水(12mL)混合液に室温下で水酸化リチウム(4.0eq.,353mg,14.72mmol)を加え、室温で4時間撹拌した。反応液に氷冷下で2N塩酸水溶液を加えてpHを7とし、酢酸エチル(20mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(3.81g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル70g,酢酸エチル/メタノール=1/0~3/1)し、白色アモルファスとして化合物23-4(1.84g,2段階収率70%)を得た。
 化合物23-4(1.0eq.,796mg,1.12mmol)のジクロロメタン(110mL)溶液を室温で、HATU(5.0eq.,2.12g,5.57mmol)、HOAt(5.0eq.,2764mg,5.61mmol)およびDIPEA(5.0.eq,950μL,5.59mmol)のジクロロメタン(560mL)溶液に約100μL/minで19時間かけて滴下した後、室温で23時間撹拌した。反応液を減圧濃縮してジクロロメタンを留去した後、酢酸エチル(30mL)を加え、飽和塩化アンモニウム水溶液(30mL)で2回、水(30mL)で1回、飽和炭酸水素ナトリウム水溶液(30mL)で2回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。飽和塩化アンモニウム水溶液の水層と飽和炭酸水素ナトリウム水溶液の水層をそれぞれ酢酸エチル(20mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色アモルファスとして粗体(1.04g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物23-5(598mg,収率77%)を得た。
 窒素雰囲気下、化合物23-5(1.0eq.,598mg,861μmol)のTHF(10mL)溶液に氷冷下でTBAF(1M in THF,1.5eq.,1.3mL,1.30mmol)を加え、室温で1.5時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加えて1回分液洗浄した。水層を酢酸エチル(10mL)で2回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(747mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/アセトン=1/1~1/10)し、白色固体(482mg)を得た。得られた白色固体をさらにヘキサン/酢酸エチル(1/1)混合液を用いて再結晶することで不純物を除去し、化合物23-6(259mg,収率52%)を得た。
 窒素雰囲気下、化合物23-6(1.0eq.,256mg,442μmol)のジクロロメタン(5mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,284mg,670μmol)を加え、室温で1時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(5mL)および飽和炭酸水素ナトリウム水溶液(5mL)を加え、ジクロロメタン(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮してAldehyde(267mg、粗収率104%)を得た。
 Aldehyde(1.0eq.,267mg,442μmolとして計算)のt-ブチルアルコール(3mL)/アミレン(1mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,238mg,1.53mmol)および80%亜塩素酸ナトリウム(4.6eq.,228mg,2.02mmol)の水(1mL)溶液を加え、室温で30分間撹拌した。反応液に飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別した後、減圧濃縮して粗体(273mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,クロロホルム/メタノール=100/1~30/1)し、白色アモルファスとして化合物23-7(218mg,2段階収率83%)を得た。
 窒素雰囲気下、化合物23-7(1.0eq.,211mg,356μmol)のジクロロメタン(4mL)溶液に、氷冷下で2,6-ルチジン(1.1eq.,45μL,386μmol)、HATU(1.1eq.,151mg,397μmol)およびL-グルタミン酸ベンジルエステル塩酸塩(Fragment D-1,1.1eq.,144mg,395μmol)を加え、氷冷下で2時間撹拌した。2,6-ルチジン(0.24eq.,10μL,86μmol)、HATU(0.5eq.,70mg,184μmol)およびL-グルタミン酸ベンジルエステル塩酸塩(Fragment D-1,0.5eq.,66mg,180μmol)を追加し、氷冷下で2時間撹拌した後、室温で2時間撹拌した。反応液に飽和塩化アンモニウム水溶液(4mL)を加え、1回分液洗浄した。その後、水層を酢酸エチル(5mL)で2回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(443mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル13g,ヘキサン/酢酸エチル=70/30~30/70、2回目:順相シリカゲル7g,ヘキサン/酢酸エチル=3/1~1/3)し、白色アモルファスとして化合物23-8(32mg,収率10%)を得た。
 窒素雰囲気下、化合物23-8(1.0eq.,28mg,31μmol)のジクロロメタン(500μL)溶液に、氷冷下でTFA(10.5eq.,25μL,327μmol)を加え、室温で1時間撹拌した。氷冷下でTFA(31.5eq.,75μL,980μmol)を追加し、室温で2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(5mL)を加え、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して化合物23-9(26mg、粗収率105%)を得た。
 化合物23-9(1.0eq.,26mg,31μmolとして計算)のアセトニトリル(600μL)/水(300μL)混合液に、室温で37%ホルムアルデヒド水溶液(9.9eq.,25μL,308μmol)および酢酸(2.8eq.,5μL,87μmol)を加え、室温で30分間撹拌した。次に氷冷下で、2-ピコリンボラン(3.0eq.,10mg,94μmol)を加え、室温で1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(5mL)を加え、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(29mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,クロロホルム/メタノール=50/1~20/1)し、白色アモルファスとして化合物23-9(13mg,2段階収率50%)を得た。
 窒素雰囲気下、化合物23-10(1.0eq.,12mg,0.014mmol)のTHF(2.4mL)/水(120μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,1.2mg)およびTFA(5.0eq.,5.5μL,0.072mmol)を加え、系内を水素置換後、同温で16時間撹拌した。セライトろ過により触媒をろ別後、ろ液に5%炭酸水素ナトリウム水溶液(2mL)を加えて酢酸エチル(2mL)で2回分液抽出した。有機層を5%塩化ナトリウム水溶液(2mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して化合物23-10(12mg)を回収した。
 (再反応)
 回収した化合物23-10(12mg)のTHF(2.4mL)/水(120μL)混合液に、窒素雰囲気下で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,1.2mg)およびTFA(5.0eq.,5.5μL,0.072mmol)を加え、系内を水素置換後、触媒を追加しながら室温で74時間撹拌した。触媒を追加した時間(再反応の仕込みからの経過時間を表す)と追加量を以下に示す。
時間(h)  触媒の追加量(mg)
1.5     0.7
4.5     0.7
20      0.6
24.5    0.6
27      0.6
29      0.6
44      1.2
52.5    1.2
69      1.2
72      1.2
 セライトろ過により触媒をろ別後、ろ液を減圧濃縮し、フラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い、白色固体として化合物23のTFA塩(5.1mg,収率52%,純度93.4%)を得た。
 H-NMR(400MHz,DO)δ6.93-6.88(m,3H),4.35(dd,J=13.2,4.8Hz,1H),4.04(d,J=10.0Hz,1H),3.93(dd,J=11.6,5.2Hz,1H),3.40(dd,J=12.4,5.2Hz,1H),2.97(brs,6H),2.80(t,J=12.0Hz,1H),2.48-2.32(m,2H),2.21-2.13(m,1H),2.10-2.01(m,1H),1.98-1.89(m,1H),1.88-1.78(m,1H),1.66(s,3H),1.65-1.58(m,1H),1.04(t,J=7.2Hz,3H),0.81(d,J=6.8Hz,3H),0.72(d,J=6.4Hz,3H).
 (実施例29:化合物22の合成)
 窒素雰囲気下、3-ニトロ-L-チロシン(1.0eq.,5.11g,22.59mmol)のDME(200mL)/水(220mL)混合液に、室温で10%炭酸ナトリウム水溶液(1.1eq.,26.34g,24.85mmol)およびCbzOSu(1.1eq.,6.19g,24.84mmol)のDME(20mL)溶液を加え、同温で2時間撹拌した。DMEを減圧留去後、残渣に1M塩酸水溶液(52mL)を加えてpHを2~3とし、析出した固体をろ取した。固体を水洗後、減圧乾燥して黄土色固体としてA8-4(8.61g,不純物含有,quant.)を得た。
 窒素雰囲気下、A8-4(1.0eq.,8.61g,不純物含有,22.59mmolとして計算)のDMF(45mL)溶液に、氷冷下で炭酸カリウム(2.2eq.,6.87g,49.70mmol)、BnBr(2.2eq.,8.50g,49.70mmol)およびTBAI(0.1eq.,834mg,2.26mmol)を加え、室温で2時間、外温30℃で1.5時間撹拌した。
 A8-4(322mg)を用いて処理した反応液と先の反応液を合一し、水(90mL)を加え、酢酸エチル(80mL)で1回、酢酸エチル(25mL)で2回分液抽出した後、有機層を合一して5%塩化ナトリウム水溶液(50mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた褐色油状の粗体(15.24g)をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=80/20~50/50)し、淡橙色固体としてA8-5(12.33g,N-ヒドロキシスクシンイミド0.7wt%含有,3-ニトロ-L-チロシンから2段階の換算収率97%)を得た。
 窒素雰囲気下、A8-5(1.0eq.,2.00g,N-ヒドロキシスクシンイミド0.7wt%含有,3.67mmol)のDMF(16mL)溶液に、酸化銀(I)(2.0eq.,1.70g,7.34mmol)およびヨウ化メチル(2.4eq.,1.24g,8.74mmol)を加え、マイクロ波照射下(80℃)で25分間撹拌した。
 A8-5(9.01g)を用いて同様に処理して得られた反応液と先の反応液を合一し、セライトろ過により不溶解物をろ別した。残渣を酢酸エチル(250mL)で洗浄後、ろ液を5%チオ硫酸ナトリウム水溶液(200mL)で1回、5%塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して橙色粘体を得た。この橙色粘体をトルエン(100mL)に溶解し、水(100mL)で1回、5%塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後に減圧濃縮し、橙色粘体としてA8-6およびA8’―1の混合物(4:1,10.91g,トルエン1.3wt%含有,換算収率97%)を得た。
 窒素雰囲気下、A8-6およびA8’―1の混合物(4:1,1.0eq.,10.91g,トルエン1.3wt%含有,19.42mmol)のTHF(77mL)/エタノール(77mL)/水(16mL)混合液に、鉄粉(5.0eq.,5.42g,97.08mmol)および塩化アンモニウム(2.5eq.,2.60g,48.61mmol)を加え、外温75℃で4.5時間撹拌した。反応液を室温まで放冷後、セライトろ過により不溶解物をろ別し、残渣を酢酸エチル(200mL)および水(200mL)で洗浄した。ろ液の有機層を回収して5%塩化ナトリウム水溶液(200mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後に減圧濃縮し、黄褐色粘体としてFragment A-8およびFragment A-8’の混合物(4:1,10.16g,酢酸エチル0.3wt%含有,換算収率99%)を得た。
 窒素雰囲気下、Fragment A-8およびFragment A-8’の混合物(4:1,2.0eq.,5.15g,酢酸エチル0.3wt%含有,9.79mmol)およびFragment B-1(1.0eq.,2.01g,4.90mmol)のトルエン(49mL)溶液を外温50℃で19.5時間撹拌した。反応液を減圧濃縮して淡褐色粘体として化合物22-1および化合物22-1’の混合物(7.45g,quant.)を得た。
 窒素雰囲気下、化合物22-1および化合物22-1’の混合物(1.0eq.,7.45g,4.90mmolとして計算)のDMF(37mL)溶液に室温で1-ドデカンチオール(9.0eq.,8.93g,44.12mmol)およびDBU(9.0eq.,6.71g,44.08mmol)を加え、同温で3.5時間撹拌した。反応液にトルエン(80mL)を加えて5%クエン酸水溶液(80mL)で2回分液洗浄し、有機層に酢酸エチル(80mL)を加えて5%炭酸水素ナトリウム水溶液(80mL)/飽和塩化ナトリウム水溶液(80mL)混合液で1回、飽和塩化ナトリウム水溶液(80mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた黄色油状の粗体(16.37g)をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=90/10~50/50)し、淡橙色粘体として化合物22-2および化合物22-2’の混合物(5.20g,Fragment A-8および酢酸エチル含有,quant.)を得た。
 窒素雰囲気下、化合物22-2および化合物22-2’の混合物(1.0eq.,4.68g,Fragment A-8および酢酸エチル含有,4.41mmolとして計算)のDMF(44mL)溶液にN-Fmoc-L-バリン(Fragment C-1,1.1eq.,1.65g,4.86mmol)、EDCI(1.1eq.,0.93g,4.85mmol)、HOBt・HO(1.1eq.,0.74g,4.83mmol)およびトリエチルアミン(1.5eq.,0.67g,6.62mmol)を加え、室温で2時間撹拌した。反応液にトルエン(90mL)を加え、5%クエン酸水溶液(90mL)で1回、5%炭酸水素ナトリウム水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色粘体として粗体(6.76g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル100g,ヘキサン/酢酸エチル=92/8~34/66,2回目:順相シリカゲル50g,ヘキサン/酢酸エチル=80/20)し、白色アモルファスとして化合物22-3(2.50g,酢酸エチル1.1wt%含有,Fragment B-1から3段階の換算収率47%)を得た。
 窒素雰囲気下、化合物22-3(1.0eq.,2.50g,酢酸エチル1.1wt%含有,2.31mmol)のDMF(25mL)溶液にピペリジン(1.25mL)を加え、室温で1時間撹拌した。反応液を氷冷して5%クエン酸水溶液(50mL)を加え、トルエン(50mL)で1回分液抽出した。有機層を5%炭酸水素ナトリウム水溶液(50mL)で1回、5%塩化ナトリウム水溶液(50mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(2.61g)をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=90/10~0/100)し、黄色粘体としてIntermediate(1.93g,酢酸エチル4.0wt%含有,換算収率95%)を得た。
 窒素雰囲気下、Intermediate(1.0eq.,1.93g,酢酸エチル4.0wt%含有,2.18mmol)のTHF(19mL)/水(9.5mL)混合液に水酸化リチウム一水和物(2.0eq.,0.18g,4.29mmol)を加え、室温で3時間撹拌した。反応液を氷冷して5%クエン酸水溶液(30mL)を加え、酢酸エチル(30mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(30mL)で2回分液洗浄し、硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別し、減圧濃縮して淡黄色アモルファスの粗体(2.03g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,酢酸エチル/メタノール=100/0~80/20)し、淡黄色アモルファス(1.78g)を得た。この淡黄色アモルファスを酢酸エチル(20mL)に溶解し、5%塩化ナトリウム水溶液(20mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体の淡黄色アモルファスの化合物22-4(1.72g,酢酸エチル4.2wt%,酢酸0.2wt%含有,換算収率99%)を得た。
 窒素雰囲気下、HATU(5.0eq.,4.12g,10.84mmol)のアセトニトリル(2150mL)溶液に室温でDIPEA(10.0eq.,2.80g,21.67mmol)を加えた。次いで、同温で化合物22-4(1.0eq.,1.72g,酢酸エチル4.2wt%,酢酸0.2wt%含有,2.17mmol)のアセトニトリル(11.5mL)/THF(11.5mL)溶液を44時間かけて加え、滴下完了後、室温でさらに1時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(20mL)を加えて不溶解物をろ別した。ろ液を5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して褐色アモルファスとして粗体(2.50g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=80/20)し、白色アモルファスとして化合物22-5(439mg,酢酸エチル0.4wt%含有,換算収率27%)を得た。
 窒素雰囲気下、化合物22-5(1.0eq.,364mg,0.488mmol)のTHF(1.08mL)/水(1.08mL)混合液にクエン酸(10.0eq.,939mg,4.89mmol)を加え、室温で18.5時間撹拌した。反応液に酢酸エチル(20mL)および水(20mL)を加えて1回分液抽出し、有機層を5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮して淡黄色粘体の粗体(371mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=90/10~0/100)し、白色固体として化合物22-6(285mg,酢酸エチル3.0wt%含有,換算収率90%)を得た。
 窒素雰囲気下、化合物22-6(1.0eq.,235mg,酢酸エチル3.0wt%含有,0.36mmol)のジクロロメタン(2.4mL)溶液に、氷冷下で2,4,6-コリジン(5.0eq.,0.24mL,1.82mmol)およびデス-マーチンペルヨージナン(1.5eq.,231mg,0.54mmol)を加え、同温で2時間撹拌した。同温で反応液に5%炭酸水素ナトリウム水溶液(10mL)、5%チオ硫酸ナトリウム水溶液(10mL)および酢酸エチル(20mL)を加えて1回分液抽出した。有機層を5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して橙色アモルファスのAldehyde(262mg)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,258mg,0.36mmolとして計算)のt-ブチルアルコール(10mL)/アミレン(2.5mL)/水(2.5mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,197mg,1.26mmol)および80%亜塩素酸ナトリウム(4.5eq.,183mg,1.62mmol)を加え、同温で0.5時間撹拌した。
 Aldehyde(9.4mg)を用いて、同様に処理して得られた反応液と先の反応液を合一し、酢酸エチル(30mL)を加えて5%塩化ナトリウム水溶液(30mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して淡褐色アモルファスの粗体(303mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(順相シリカゲル10g,1回目:酢酸エチル/メタノール=100/0~70/30,2回目:ヘキサン/酢酸エチル=90/10~0/100→酢酸エチル/メタノール=100/0~70/30)し、化合物22-7(182mg,酢酸エチル3.5wt%含有,化合物22-6から2段階の換算収率75%)を得た。
 窒素雰囲気下、化合物22-7(1.0eq.,156mg,酢酸エチル3.5wt%含有,0.235mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,128mg,0.352mmol)のTHF(1mL)溶液に、氷冷下で2,4,6-コリジン(3.0eq.,93μL,0.706mmol)およびDEPBT(1.5eq.,105mg,0.351mmol)を加え、同温で5時間、室温で21.5時間撹拌した。反応液に酢酸エチル(3mL)を加え、5%クエン酸水溶液(3mL)で1回、5%炭酸水素ナトリウム水溶液(3mL)で1回、5%塩化ナトリウム水溶液(3mL)で1回分液洗浄し、硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別した。減圧濃縮して得られた淡褐色粘体の粗体(262mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=65/35~50/50)し、黄色粘体として化合物22-8(89.6mg,酢酸エチル1.9wt%含有,換算収率39%)を得た。
 窒素雰囲気下、化合物22-8(1.0eq.,20mg,酢酸エチル1.9wt%含有,0.021mmol)のTHF(1mL)/水(50μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4mg)を加え、系内を水素置換後、同温で22時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮し粗体を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い白色固体として化合物22のTFA塩(12.4mg,収率77%,純度98.8%)を得た。
 H-NMR(400MHz,DO)δ7.22-7.21(m,2H),7.07-7.05(d,J=8.8Hz,1H),4.36(dd,J=9.2,4.8Hz,1H),4.05-4.02(m,2H),3.36(dd,J=12.8,4.8Hz,1H),2.87(dd,J=12.0Hz,1H),2.71(s,3H),2.48-2.34(m,2H),2.21-2.03(m,2H),2.00-1.76(m,3H),1.71(s,3H),1.06(t,J=7.2Hz,3H),0.80(d,J=6.8Hz,3H),0.72(d,J=6.8Hz,3H).
 (実施例29A:化合物24の合成)
 Fragment A-2から化合物1-2までの2工程は実施例7に記載の通りに行った。
 化合物1-2から化合物24-1への合成は以下のとおりに行った。
 化合物1-2(1.0eq.,300mg,0.384mmol)のDMF(5mL)溶液に、氷冷下でHOBt・HO(1.2eq.,72.8mg,0.475mmol)、EDCI(1.2eq.,88.5mg,0.462mmol)およびN-Fmoc-L-フェニルアラニン(Fragment C-6,1.2eq.,182mg,0.470mmol)を加え、室温で18時間撹拌した。反応液にヘキサン(5mL)/酢酸エチル(15mL)混合液を加えた後、水(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物24-1(460mg,粗収率104%)を得た。
 化合物24-1から化合物24-2への合成は以下のとおりに行った。
 化合物24-1(1.0eq.,460mg,0.384mmolとして計算)のTHF(3mL)/水(1.5mL)混合液に、氷冷下で水酸化リチウム(6.0eq.,55.5mg,2.32mmol)を加え、室温で4時間撹拌した。反応液に氷冷下で2N塩酸水溶液(0.7mL)を加えてpHを7にした後、水(10mL)を加えた。酢酸エチル(10mL)で3回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色固体として粗体(474mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,酢酸エチル/メタノール=100/0~50/50)し、白色アモルファスとして化合物24-2(267mg,化合物1-2から2段階の収率86%)を得た。
 化合物24-2から化合物24-3への合成は以下のとおりに行った。
 化合物24-2(1.0eq.,257mg,0.318mmol)のアセトニトリル(32mL)溶液を室温で、HATU(5.0eq.,604mg,1.59mmol)、HOAt(5.0eq.,216mg,1.59mmol)およびDIPEA(10eq.,410mg,24.9mmol)のアセトニトリル(160mL)溶液に約33μL/minで16時間かけて滴下した後、室温で8時間撹拌した。反応液を水(50mL)/飽和炭酸水素ナトリウム水溶液(50mL)混合液で1回、飽和塩化アンモニウム水溶液(50mL)で1回分液洗浄した。水層を合一して酢酸エチル(100mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色液体として粗体(963mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル6g,ヘキサン/酢酸エチル=80/20~17/83)し、淡黄色固体として化合物24-3(109mg,収率43%)を得た。
 化合物24-3から化合物24-4への合成は以下のとおりに行った。
 化合物24-3(1.0eq.,107mg,0.135mmol)のTHF(2mL)溶液に室温でTBAF(1M in THF,2.5eq.,0.34mL,0.340mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体(122mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/5~0/100)し、白色アモルファスとして化合物24-4(70.7mg,収率77%)を得た。
 化合物24-4から化合物24-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物24-4(1.0eq.,68.8mg,0.102mmol)のジクロロメタン(11mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,65.5mg,0.154mmol)を加え、室温で3時間撹拌した。同温で反応液にデス-マーチンペルヨージナン(1.0eq.,43.3mg,0.102mmol)を追加した後、19時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(10mL)を加えてクエンチし、酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色固体としてAldehyde(77.3mg,quant.)を得た。
 Aldehyde(1.0eq.,77.3mg,0.102mmolとして計算)のアミレン(0.5mL)/t-ブチルアルコール(2mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,56.1mg,0.360mmol)および80%亜塩素酸ナトリウム(4.5eq.,51.3mg,0.454mmol)の水(0.5mL)溶液を加え、同温で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加えた。酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色固体として粗体(74.8mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=25/75~0/100)し、白色アモルファスとして化合物24-5(49.5mg,化合物24-4から2段階収率70%)を得た。
 化合物24-5から化合物24-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物24-5(1.0eq.,49.0mg,71.0μmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,38.9mg,107μmol)のTHF(1mL)溶液に、氷冷下でDEPBT(1.5eq.,31.8mg,107μmol)および2,4,6-コリジン(3.0eq.,25.8mg,213μmol)を加え、同温で3時間撹拌し、室温で18時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、水(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物として粗体(96.9mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~50/50,2回目:順相シリカゲル5g,ヘキサン/酢酸エチル=67/23~50/50)し、白色アモルファスとして化合物24-6(22.9mg,収率32%)を得た。
 化合物24-6から化合物24への合成は以下のとおりに行った。
 窒素雰囲気下、化合物24-6(1.0eq.,23mg,0.023mmol)のTHF(1400μL)/水(70μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.1mg)およびTFA(5.0eq.,8.8μL,0.115mmol)を加え、系内を水素置換後、同温で29.5時間撹拌した。この間、20時間後、26時間後の時点で10%パラジウム-炭素を1.2mgずつ追加した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~85/15)し、凍結乾燥を行い、白色固体として化合物24のTFA塩(8.7mg,収率53%,純度99.8%)を得た。
 H-NMR(400MHz,DO)δ7.38-7.15(m,5H),6.92(s,3H),4.74-4.71(m,1H),4.22(dd,J=8.0,6.0Hz,1H),3.87(dd,J=9.2,4.4Hz,1H),3.18(dd,J=13.2,4.4Hz,1H),3.10(dd,J=14.4,7.6Hz,1H),2.90(dd,J=13.6,9.6Hz,1H),2.81(dd,J=13.6,8.8Hz,1H),2.48-2.27(m,5H),2.18-2.04(m,1H),2.03-1.87(m,2H),1.75-1.63(m,1H),1.54(s,3H),1.00(t,J=7.2Hz,3H).
 (実施例29B:化合物25の合成)
化合物25を合成した。
 Fragment A-2”(1.2eq.,9.47g,16.0mmol)のCPME(40mL)溶液に、MS3Å(3.0g)を加えた。氷冷下でTBD(1.1eq.,2.46g,17.6mmol)を加え、そこにFragment B-1(1.0eq.,6.59g,16.0mmol)のCPME(40mL)溶液を35分間かけて滴下した。系内を窒素置換し、室温で4時間撹拌した後、TBD(0.20eq.,447mg,3.21mmol)を追加し同温で19時間撹拌した。MS3Åをろ別し、ろ液を減圧濃縮して褐色粘状の粗体(20.4g)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル200g,ヘキサン/酢酸エチル=80/20~0/100)し、黄色粘状として化合物25-1(13.1g,収率91%)を得た。
 窒素雰囲気下、化合物25-1(1.0eq.,2.56g,2.83mmol)のDMF(28mL)溶液に、室温で炭酸セシウム(1.5eq.,1.40g,4.29mmol)、チオフェノール(1.6eq.,0.45mL,4.41mmol)を加え、室温で2.5時間撹拌した。反応液にヘキサン(40mL)/酢酸エチル(120mL)混合液を加え、水(100mL)で3回、飽和塩化ナトリウム(50mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(3.08g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル60g,ヘキサン/酢酸エチル=75/25~0/100)し、褐色油状物として化合物25-2(2.13g,粗収率105%)を得た。
 窒素雰囲気下、化合物25-2(1.0eq.,727mg,1.01mmol)および5-t-Bu-N-Fmoc-L-グルタミン酸(Fragment C-9:1.2eq.,519mg,1.22mmol)のDMF(10mL)溶液に室温でHOBt・HO(1.2eq.,187mg,1.22mmol)およびEDCI(1.2eq.,232mg,1.21mmol)を加え、同温で2.5時間撹拌した。反応液にヘキサン(4mL)/酢酸エチル(12mL)混合液を加え、水(10mL)で1回分液洗浄した。水層をヘキサン(5mL)/酢酸エチル(5mL)混合液で1回分液抽出した後、有機層を合一し、水(10mL)で2回、塩化ナトリウム水溶液(5mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物25-3(1.22g,粗収率108%)を得た。
 窒素雰囲気下、化合物25-3(1.0eq.,1.22g,1.01mmolとして計算)のTHF(7mL)/水(3mL)混合液に水酸化リチウム(4.0eq.,95.3mg,4.00mmol)を室温で加え、同温で2.5時間撹拌した。氷冷下で2N塩酸水溶液(1.0mL)を加えた後、酢酸エチル(10mL)で1回、酢酸エチル(5mL)で1回分液抽出した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色液体として粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル8.8g,酢酸エチル/メタノール=1/0~3/1)し、白色アモルファスとして化合物25-4(565mg,2段階収率69%)を得た。
 化合物25-4(1.0eq.,565mg,696μmol)のアセトニトリル(18mL)/THF(18mL)溶液を、HATU(2.0eq.,531mg,1.40mmol)、HOAt(2.0eq.,190mg,1.39mmol)およびDIPEA(2.0eq.,240μL,1.41mmol)のアセトニトリル(350mL)溶液に室温で5.5時間かけて滴下した後、室温でさらに18時間撹拌した。反応液を約20mLになるまで減圧濃縮した後、飽和塩化アンモニウム水溶液(8mL)で1回分液洗浄した。水層を酢酸エチル(5mL)で1回分液抽出した後、有機層を合一し、飽和塩化アンモニウム水溶液(8mL)で1回、飽和塩化ナトリウム水溶液(8mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して橙色アモルファスとして粗体(868mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル7.3g,ヘキサン/酢酸エチル=3/1~2/1)し、白色アモルファスとして化合物25-5(160mg,29%)を得た。
 窒素雰囲気下、化合物25-5(1.0eq.,160mg,201μmol,)のTHF(2mL)溶液に室温でTBAF(1M in THF,1.5eq.,300μL,300μmol)を加えた後、室温で1.5時間撹拌した。反応液に飽和塩化アンモニウム水溶液(2mL)を加え、酢酸エチル(8mL)で1回、酢酸エチル(5mL)で1回分液抽出した。有機層を合一し、飽和塩化アンモニウム水溶液(3mL)で3回、飽和塩化ナトリウム水溶液(3mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡褐色アモルファスとして粗体(156mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル6.0g,ヘキサン/酢酸エチル=3/2~0/1)し、白色アモルファスとして化合物25-6(116mg,85%)を得た。
 窒素雰囲気下、化合物25-6(1.0eq.,116mg,171μmol)のジクロロメタン(1.7mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,109mg,257μmol)を加え、室温で1.5時間撹拌した。反応液に10%亜硫酸水素ナトリウム水溶液(1mL)/飽和炭酸水素ナトリウム水溶液(1mL)混合液を加えた、酢酸エチル(10mL)で1回分液抽出した後、有機層を10%亜硫酸水素ナトリウム水溶液(1mL)/飽和炭酸水素ナトリウム水溶液(1mL)混合液で3回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(121mg)を得た。
 Aldehyde(1.0eq.,121mg,171μmolとして計算)のt-ブチルアルコール(0.9mL)/アミレン(0.4mL)混合液にリン酸二水素ナトリウム二水和物(3.3eq.,88.8mg,569μmol)および80%亜硫酸ナトリウム(3.6eq.,69.6mg,616μmol)の水(0.4ml)溶液を室温で滴下し、同温で2.5時間撹拌した。反応液に飽和塩化アンモニウム水溶液(2mL)を加え、酢酸エチル(7mL)で1回、酢酸エチル(2mL)で1回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(135mg)を得た。粗体をヘキサン(1.8mL)/酢酸エチル(0.2mL)混合液でスラリー洗浄し、白色アモルファスとして化合物25-7(122mg,粗収率103%,不純物含有)を得た。
 窒素雰囲気下、化合物25-7(1.0eq.,122mg,171μmolとして計算)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1:1.5eq,95.9mg,264μmol)の酢酸エチル(1.3mL)/水(0.4mL)混合液に氷冷下でDIPEA(2.5eq.,73μL,429μmol)およびDMT-MM(1.7eq.,82.1mg,297μmol)を加え、氷冷下で2時間撹拌した。反応液に酢酸エチル(7mL)を加えた後、水(2mL)で1回、飽和塩化アンモニウム水溶液(2mL)で1回、飽和炭酸水素ナトリウム水溶液(2mL)で1回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(203mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル5.0g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物25-8を(128mg,3段階収率75%)を得た。
 窒素雰囲気下、化合物25-8(1.0eq.,128mg,128μmol)のジクロロメタン(1.2mL)溶液に、室温でTFA(12eq.,120μL,1.56mmol)を加え、室温で6時間撹拌した。室温でTFA(4.0eq.,40μL,392μmol)を追加し、室温で18時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(1.5mL)および水(2mL)を加えた後、ジクロロメタン(5mL)で1回、ジクロロメタン(3mL)で2回分液抽出した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡褐色アモルファスとして粗体(107mg)を得た。粗体を酢酸エチル(1mL)に溶解した後、ヘキサン(0.5mL)を滴下して析出した白色固体をろ取することで化合物25-9(101mg,収率93%)を得た。
 化合物25-9(1.0eq.,101mg,45.8μmol)のTHF(2mL)/水(1mL)混合液に、室温で酢酸(5.0eq.,34μL,595μmol)を加え、室温で20分間撹拌した。室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,10.6mg)を加え、系内を水素置換後、同温で22時間撹拌した。セライトろ過により触媒をろ別した後、ろ液を減圧濃縮して粗体を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル10g,1回目:0.05%酢酸水溶液/アセトニトリル=95/5~0/100、2回目:0.05%酢酸水溶液/アセトニトリル=95/5~92/5)し、凍結乾燥を行い白色固体として化合物25酢酸塩(3.0mg,収率4.4%,純度96.9%)を得た。
 H-NMR(400MHz,DO)δ6.89-6.79(m,3H),4.37(dd,J=13,6.4Hz,1H),4.18(dd,J=8.8,4.8Hz,1H),3.87(dd,J=9.2,4.4Hz,1H),3.12(dd,J=13.4,4.6Hz,1H),2.83(dd,J=13.2,9.2Hz,1H)2.60(s,3H),2.27(t,J=7.6Hz,2H),2.18-2.14(m,2H),2.11-1.99(m,1H),1.90-1.79(m,3H),1.76-1.68(m,1H,),1.67-1.57(m,1H),1.44(s,3H),0.87(t,J=7.2Hz,3H).
 (実施例29C:化合物27の合成)
 Fragment A-2から化合物1-2までの2工程は実施例7に記載の通りに行った。
 化合物1-2から化合物27-1への合成は以下のとおりに行った。
 化合物1-2(1.0eq.,583mg,0.749mmol)のDMF(8mL)溶液に、氷冷下でHOBt・HO(1.2eq.,139mg,0.906mmol)、EDCI(1.2eq.,174mg,0.906mmol)およびFmoc-L-Ser(Bzl)-OH(Fragment C-7,1.2eq.,375mg,0.897mmol)を加え、室温で3時間撹拌した。反応液にヘキサン(10mL)/酢酸エチル(30mL)混合液を加えた後、水(20mL)で2回、水(10mL)/飽和炭酸水素ナトリウム水溶液(10mL)混合液で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物27-1(898mg,粗収率102%)を得た。
 化合物27-1から化合物27-2への合成は以下のとおりに行った。
 化合物27-1(1.0eq.,898mg,0.747mmolとして計算)のTHF(8mL)/水(4mL)混合液に、氷冷下で水酸化リチウム(6.1eq.,110mg,4.57mmol)を加え、室温で3.5時間撹拌した。反応液に2N塩酸水溶液(1.3mL)を加えてpHを7にした。反応液に酢酸エチル(20mL)を加えた後、水(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(1.13g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル15g,酢酸エチル/メタノール=100/0~50/50)し、白色アモルファスとして化合物27-2(621mg,化合物1-2から2段階の収率99%)を得た。
 化合物27-2から化合物27-3への合成は以下のとおりに行った。
 化合物27-2(1.0eq.,605mg,0.722mmol)のアセトニトリル(72mL)溶液を室温で、HATU(5.0eq.,1.37mg,3.61mmol)、HOAt(5.0eq.,493mg,3.62mmol)およびDIPEA(9.8eq.,912mg,7.06mmol)のアセトニトリル(360mL)溶液に約53μl/minで23時間かけて滴下した後、室温で17時間撹拌した。反応液を水(200mL)/飽和炭酸水素ナトリウム水溶液(100mL)混合液で1回、水(50mL)/飽和塩化アンモニウム水溶液(50mL)混合液で1回分液洗浄した。水層を合一して酢酸エチル(100mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物として粗体(1.94g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル28g,ヘキサン/酢酸エチル=80/20~25/75)し、白色アモルファスとして化合物27-3(154mg,収率26%)を得た。
 化合物27-3から化合物27-4への合成は以下のとおりに行った。
 化合物27-3(1.0eq.,135mg,0.165mmol)のTHF(2mL)溶液に室温でTBAF(1M in THF,1.5eq.,0.25mL,0.250mmol)を加え、同温で2時間撹拌した。反応液に室温でTBAF(1M in THF,0.73eq.,0.12mL,0.120mmol)を追加し、さらにに同温で3時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色アモルファスとして粗体(122mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル4g,ヘキサン/酢酸エチル=50/50~17/83)し、白色アモルファスとして化合物27-4(89.9mg,収率77%)を得た。
 化合物27-4から化合物27-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物27-4(1.0eq.,89.9mg,0.127mmol)のジクロロメタン(1mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,81.7mg,0.193mmol)を加え、室温で2時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、10%亜硫酸ナトリウム水溶液(9mL)/飽和炭酸水素ナトリウム水溶液(9mL)混合液で1回分液洗浄した。水層を酢酸エチル(10mL)で3回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(87.7mg,収率98%)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,87.0mg,0.124mmol)のアミレン(0.5mL)/t-ブチルアルコール(2mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,66.5mg,0.426mmol)および80%亜塩素酸ナトリウム(4.4eq.,61.9mg,0.548mmol)の水(0.5mL)溶液を加え、同温で17時間撹拌した。反応液に飽和塩化アンモニウム水溶液(15mL)を加えた後、酢酸エチル(15mL)で3回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(93.2mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~40/60)し、白色アモルファスとして化合物27-5(81.4mg,収率91%)を得た。
 化合物27-5から化合物27-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物27-5(1.0eq.,79.4mg,110μmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,61.0mg,168μmol)のTHF(1mL)溶液に、氷冷下でDEPBT(1.5eq.,50.2mg,168μmol)および2,4,6-コリジン(3.0eq.,40.5mg,334μmol)を加え、同温で6.5時間撹拌し、室温で15.5時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄後した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(151mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~50/50,2回目:順相シリカゲル5g,ヘキサン/酢酸エチル=67/23~50/50)し、白色アモルファスとして化合物27-6(31.4mg,収率28%)を得た。
 化合物27-6から化合物27への合成は以下のとおりに行った。
 窒素雰囲気下、化合物27-6(1.0eq.,20mg,0.0194mmol)のTHF(2000μL)/水(100μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.0mg)およびTFA(2.0eq.,3μL,0.0392mmol)を加え、系内を水素置換後、同温で23時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体を得た。同様の操作で化合物27-6(10mg,0.0097mmol)から得られた粗体と上記粗体を合一してフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)し、凍結乾燥を行い、白色固体として化合物27のTFA塩(12.8mg,収率67%,純度96.8%)を得た。
 H-NMR(400MHz,DO)δ7.19(s,1H),6.99(dd,J=8.0,2.0Hz,1H),6.94(d,J=8.4Hz,1H),4.73-4.70(m,1H),4.58-4.53(m,1H),4.50(dd,J=9.2,4.8Hz,1H),4.02(dd,J=9.6,4.0Hz,1H),3.83-3.70(m,2H),3.24(dd,J=13.2,4.0Hz,1H),3.01(dd,J=13.2,9.6Hz,1H),2.73(s,3H),2.56-2.39(m,2H),2.30-2.18(m,1H),2.08-1.91(m,2H),1.80-1.67(m,1H),1.59(s,3H),0.93(t,J=7.2Hz,3H).
 (実施例29D:化合物28の合成)
 化合物28の合成を行った。
 Fragment A-2から化合物1-2までの2工程は実施例7に記載の通りに行った。
 化合物1-2から化合物28-1への合成は以下のとおりに行った。
 化合物1-2(1.0eq.,582mg,0.745mmol)のDMF(8mL)溶液に、氷冷下でHOBt・HO(1.2eq.,138mg,0.896mmol)、EDCI(1.2eq.,172mg,0.899mmol)およびFmoc-L-Thr(Bzl)-OH(Fragment C-8,1.2eq.,387mg,0.897mmol)を加え、室温で2時間撹拌した。反応液にヘキサン(5mL)/酢酸エチル(15mL)混合液を加えた後、水(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体の化合物28-1(837mg,粗収率94%)を得た。
 化合物28-1から化合物28-2への合成は以下のとおりに行った。
 化合物28-1(1.0eq.,825mg,0.691mmol)のTHF(7mL)/水(3.5mL)混合液に、室温で水酸化リチウム(6.0eq.,100mg,4.18mmol)を加え、室温で2.5時間撹拌した。反応液に2N塩酸水溶液(1.2mL)を加えてpHを7にした後、反応液に酢酸エチル(20mL)を加え、水(10mL)で2回分液洗浄した。水層を合一して酢酸エチル(10mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別して減圧濃縮し、黄色油状物として粗体(957mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル15g,酢酸エチル/メタノール=100/0~50/50)し、白色アモルファスとして化合物28-2(526mg,収率89%)を得た。
 化合物28-2から化合物28-3への合成は以下のとおりに行った。
 化合物28-2(1.0eq.,523mg,0.614mmol)のアセトニトリル(62mL)溶液を室温で、HATU(5.0eq.,1.17mg,3.07mmol)、HOAt(5.0eq.,419mg,3.08mmol)およびDIPEA(9.8eq.,760mg,5.88mmol)のアセトニトリル(310mL)溶液に約57μl/minで18時間かけて滴下した後、室温で3時間撹拌した。反応液を水(160mL)/飽和炭酸水素ナトリウム水溶液(40mL)混合液で1回、水(80mL)/飽和塩化アンモニウム水溶液(20mL)混合液で1回分液洗浄した。水層を合一して酢酸エチル(100mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色油状物として粗体(1.20g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル28g,ヘキサン/酢酸エチル=80/20~67/23)し、白色アモルファスとして化合物28-3(146mg,収率28%)を得た。
 化合物28-3から化合物28-4への合成は以下のとおりに行った。
 化合物28-3(1.0eq.,141mg,0.169mmol)のTHF(2mL)溶液に氷冷下でTBAF(1M in THF,2.5eq.,0.42mL,0.420mmol)を加え、室温で2時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体(106mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~17/83)し、白色アモルファスとして化合物28-4(58.7mg,収率48%)を得た。
 化合物28-4から化合物28-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物28-4(1.0eq.,55.9mg,77.7μmol)のジクロロメタン(1mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,49.9mg,118μmol)を加え、室温で1.5時間撹拌した。氷冷下で反応液にデス-マーチンペルヨージナン(0.49eq.,16.3mg,38.4μmol)を追加し、室温で2.5時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、10%亜硫酸ナトリウム水溶液(9mL)/飽和炭酸水素ナトリウム水溶液(9mL)混合液で1回分液洗浄した。水層を酢酸エチル(10mL)で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(57.9mg,粗収率104%)を得た。
 Aldehyde(1.0eq.,57.1mg,77.7μmolとして計算)のアミレン(0.5mL)/t-ブチルアルコール(2mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,41.4mg,265μmol)および80%亜塩素酸ナトリウム(3.8eq.,33.2mg,294μmol)の水(0.5mL)溶液を加え、同温で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(15mL)を加え、酢酸エチル(15mL)で3回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(61.8mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=33/67)し、白色アモルファスとして化合物28-5(47.8mg,化合物28-4から2段階収率84%)を得た。
 化合物28-5から化合物28-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物28-5(1.0eq.,47.4mg,64.6μmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,35.5mg,97.6μmol)のTHF(1mL)溶液に、氷冷下でDEPBT(1.5eq.,29.2mg,97.6μmol)および2,4,6-コリジン(2.9eq.,23.0mg,190μmol)を加え、同温で7時間撹拌し、室温で16時間撹拌した。反応液に酢酸エチル(10mL)を加えた後、飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(90.3mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~50/50)し、白色アモルファスとして化合物28-6(18.2mg,収率27%)を得た。
 化合物28-6から化合物28への合成は以下のとおりに行った。
 窒素雰囲気下、化合物28-6(1.0eq.,18mg,0.017mmol)のTHF(1800μL)/水(90μL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,1.8mg)およびTFA(2.0eq.,2.6μL,0.035mmol)を加え、系内を水素置換後、同温で31.5時間撹拌した。この間、23時間後、29時間後の時点で10%パラジウム-炭素を1.8mgずつ追加した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)し、凍結乾燥を行い、白色固体として化合物28のTFA塩(6.6mg,収率57%,純度98.3%)を得た。
 H-NMR(400MHz,DO)δ7.04(s,1H),6.97(dd,J=8.4,2.0Hz,1H),6.93(d,J=8.4Hz,1H),4.42(dd,J=9.2,5.2Hz,1H),4.38(d,J=6.8Hz,1H),4.12-4.02(m,2H),3.24(dd,J=13.6,4.4Hz,1H),2.99(dd,J=13.6,9.2Hz,1H),2.74(s,3H),2.52-2.36(m,2H),2.26-
2.13(m,1H),2.05-1.90(m,2H),1.79-1.66(m,1H),1.58(s,3H),1.11(d,J=6.4Hz,3H),0.97(t,J=7.2Hz,3H).
 (実施例29E:化合物29の合成)
 Fragment A-2’’→化合物25-2の2工程は、実施例29Bに記載の通りに行った。
 化合物25-2から化合物29-1への合成は以下のとおりに行った。
 化合物25-2(1.0eq.,847mg,1.18mmol)のDMF(12mL)溶液に、室温でHOBt・HO(1.2eq.,218mg,1.42mmol)、EDCI(1.2eq.,272mg,1.42mmol)およびFmoc-L-Tyr(Bzl)-OH(Fragment C-11,1.2eq.,701mg,1.42mmol)を加え、室温で1時間撹拌した。反応液にヘキサン(15mL)/酢酸エチル(45mL)混合液を加え、水(40mL)で2回、飽和炭酸水素ナトリウム水溶液(40mL)で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡褐色アモルファスとして粗体の化合物29-1(1.55g,粗収率110%)を得た。
 化合物29-1から化合物29-2への合成は以下のとおりに行った。
 化合物29-1(1.0eq.,1.55g,1.18mmolとして計算)のTHF(8mL)/水(4mL)混合液に、室温で水酸化リチウム(6.0eq.,170mg,7.09mmol)を加え、室温で3.5時間撹拌した。反応液に1N塩酸水溶液(4.2mL)を加えてpHを7にした。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、分液洗浄中に生じた白色固体をろ別した。ろ液を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して褐色粘体として粗体(1.46g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,酢酸エチル/メタノール=100/0~40/60)し、淡褐色アモルファスとして化合物29-2(996mg,2段階収率96%)を得た。
 化合物29-2から化合物29-3への合成は以下のとおりに行った。
 化合物29-2(1.0eq.,937mg,1.06mmol)のアセトニトリル(27mL)/THF(27mL)混合液を室温で、HATU(2.0eq.,809mg,2.13mmol)、HOAt(2.0eq.,290mg,2.13mmol)およびDIPEA(2.0eq.,360μL,2.12mmol)のアセトニトリル(532mL)溶液に約56μL/minで16時間かけて滴下した後、室温で2時間撹拌した。反応液を減圧濃縮した後、濃縮物に酢酸エチル(50mL)を加え、水(25mL)/飽和塩化アンモニウム水溶液(25mL)混合液で2回、飽和炭酸水素ナトリウム水溶液(30mL)で1回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して赤褐色粘体として粗体(1.66g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=80/20~50/50)し、白色アモルファスとして化合物29-3(243mg,収率27%)を得た。
 化合物29-3から化合物29-4への合成は以下のとおりに行った。
 化合物29-3(1.0eq.,238mg,0.276mmol)のTHF(2.8mL)溶液に、室温でTBAF(1M in THF,2.0eq.,552μL,0.552mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(30mL)を加え、飽和塩化アンモニウム水溶液(20mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(226mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~0/100)し、白色アモルファスとして化合物29-4(201mg,収率97%)を得た。
 化合物29-4から化合物29-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物29-4(1.0eq.,196mg,0.262mmol)のジクロロメタン(2.6mL)溶液に、室温でデス-マーチンペルヨージナン(1.5eq.,169mg,0.398mmol)を加え、同温で1時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液を加え、酢酸エチル(20mL)で1回分液抽出した。有機層を10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(199mg)を得た。
 Aldehyde(1.0eq.,197mg,0.262mmolとして計算)のアミレン(1mL)/t-ブチルアルコール(4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,141mg,0.904mmol)および80%亜塩素酸ナトリウム(4.6eq.,135mg,1.20mmol)の水(1mL)溶液を加え、同温で2.5時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(5mL)/飽和塩化アンモニウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色固体として化合物29-5(197mg,収率99%)を得た。
 化合物29-5から化合物29-6への合成は以下のとおりに行った。
 化合物29-5(1.0eq.,195mg,0.256mmol)の酢酸エチル(3mL)/水(900μL)混合液に、室温でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,141mg,0.387mmol)を加えた。氷冷下でDIPEA(2.4eq.,103μL,0.606mmol)を加えて5分間撹拌した後、DMT-MM(1.7eq.,122mg,0.439mmol)加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、水(10mL)で2回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色アモルファスとして粗体(316mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=88/12~50/50)し、白色アモルファスとして化合物29-6(206mg,収率75%)を得た。
 化合物29-6から化合物29-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物29-6(1.0eq.,204mg,0.190mmol)のジクロロメタン(2mL)溶液に、室温でTFA(10eq.,145μL,1.89mmol)を加え、同温で18時間撹拌した。その後、TFA(10eq.,145μL,1.89mmol)を追加し、同温で6時間撹拌した。氷冷下で飽和炭酸水素ナトリウム水溶液(10mL)を加えてpHを8にした。酢酸エチル(20mL)を加えた後、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別して減圧濃縮し、白色アモルファスとして粗体の化合物29-7(182mg,粗収率98%)を得た。
 化合物29-7から化合物29への合成は以下のとおりに行った。
 窒素雰囲気下、化合物29-7(1.0eq.,182mg,0.187mmol)のTHF(1mL)/酢酸(1mL)混合液に、室温で10%パラジウムー炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,18.1mg)を加え、系内を水素置換後、同温で23時間撹拌した。セライトろ過により触媒をろ別して、ろ液を減圧濃縮した。濃縮残渣にアセトンを加えることで析出した白色固体をろ取した。この固体を水に溶解した後、0.45μmのフィルターでろ過し、ろ液を減圧濃縮して灰色固体の粗体(52.7mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル10g,1回目:0.05%酢酸水溶液/アセトニトリル=95/5~70/30,2回目:0.05%酢酸水溶液/アセトニトリル=95/5~88/12)した後、凍結乾燥を行い白色固体として化合物29の酢酸塩(10.3mg,収率9%,純度98.3%)を得た。
 H-NMR(400MHz,DO)δ7.77(d,J=9.6Hz,0.4H),6.86(d,J=8.1Hz,2H),6.78-6.68(m,3H),6.62(d,J=8.1Hz,2H),3.92(brt,J=7.0Hz,1H),3.78(dd,J=8.6,4.6Hz,1H),3.04(dd,J=13.6,4.6Hz,1H),2.86(dd,J=13.8,8.1Hz,1H),2.75(dd,J=13.6,8.6Hz,1H),2.58(dd,J=13.8,8.1Hz,1H),2.27-2.17(m,5H),1.94-1.86(m,1H),1.81-1.72(m,2H),1.59-1.51(m,1H),1.29(s,3H),0.877(t,J=7.2Hz,3H).
 (実施例29F:化合物31の合成)
 化合物25-2までの実験項は実施例29Bに記載の通りに行った。
 化合物25-2から化合物31-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物25-2(1.0eq.,1.00g,1.39mmol)のDMF(15mL)溶液に氷冷下でEDCI(1.2eq.,321mg,1.68mmol)、HOBt・HO(1.2eq.,256mg,1.67mmol)およびN-Fmoc-L-Arg(Pbf)-OH(Fragment C-14,1.2eq.,1.08g,1.67mmol)を加え、室温で4時間撹拌した。氷冷下で水(40mL)を滴下した後、ヘキサン(5mL)/酢酸エチル(15mL)混合液で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(30mL)で2回分液洗浄した後、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡褐色アモルファスとして粗体(2.18g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=50/50~0/100)し、白色アモルファスとして化合物31-1(1.78g,収率95%)を得た。
 化合物31-1から化合物31-2への合成は以下のとおりに行った。
 化合物31-1(1.0eq.,1.57g,1.17mmol)のTHF(8mL)/水(4mL)混合液に室温で水酸化リチウム(4.1eq.,115mg,4.79mmol)を加え、室温で3.5時間撹拌した。氷冷下で1N塩酸水溶液(2.5mL)を加えてpHを7にした後、酢酸エチル(20mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色固体を得た。得られた固体をヘキサン/酢酸エチル=2/1混合液、次いで水で洗浄することで、粗体(1.36g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル40g,酢酸エチル/メタノール=10/1~3/1)し、白色固体として化合物31-2(775mg,収率64%)を得た。
 化合物31-2から化合物31-3への合成は以下のとおりに行った。
 化合物31-2(1.0eq.,553mg,534μmol)のDMF(3mL)溶液にアセトニトリル(27mL)を加え、この溶液を室温でHATU(3.0eq.,611mg,1.61mmol)、HOAt(3.1eq.,222mg,1.63mmol)およびDIPEA(3.0.eq,275μL,1.62mmol)のアセトニトリル(270mL)溶液に約30μL/minで17時間かけて滴下した後、室温で3時間撹拌した。反応液を減圧濃縮してアセトニトリルを留去した後、酢酸エチル(30mL)を加え、飽和炭酸水素ナトリウム水溶液(30mL)で2回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色アモルファスとして粗体(566mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=50/50~0/100)し、白色固体として化合物31-3(237mg,収率44%)を得た。
 化合物31-3から化合物31-4への合成は以下のとおりに行った。
 窒素雰囲気下、化合物31-3(1.0eq.,316mg,311μmol)のTHF(5mL)溶液に氷冷下でTBAF(1M in THF,1.5eq.,470μL,470μmol)を加え、室温で1時間撹拌した。TBAF(1M in THF,1.5eq.,470μL,470μmol)を追加し、2時間撹拌した。さらにTBAF(1M in THF,0.5eq.,150μL,150μmol)を追加し、1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(5mL)を加えた。反応液の有機層を回収した後、水層を酢酸エチル(5mL)で2回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(433mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,クロロホルム/メタノール=100/0~85/15)し、白色アモルファスとして化合物31-4(297mg,不純物含有,見かけ収率106%)を得た。
 化合物31-4から化合物31-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物31-4(1.0eq.,297mg,311μmol)のジクロロメタン(3mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,201mg,474μmol)を加え、室温で1時間撹拌した。反応液に20%亜硫酸ナトリウム水溶液(5mL)および飽和炭酸水素ナトリウム水溶液(5mL)を加え、ジクロロメタン(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮してAldehyde(297mg、粗収率106%)を得た。
 Aldehyde(1.0eq.,297mg,311μmolとして計算)のt-ブチルアルコール(3mL)/アミレン(1mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.6eq.,172mg,1.11mmol)および80%亜塩素酸ナトリウム(4.6eq.,161mg,1.42mmol)の水(1mL)溶液を加え、室温で30分間撹拌した。反応液に飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体(282mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,クロロホルム/メタノール=100/0~75/25)し、白色アモルファスとして化合物31-5(236mg,2段階収率83%)を得た。 
 化合物31-5から化合物31-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物31-5(1.0eq.,232mg,253μmol)の酢酸エチル(1.4mL)/水(0.6mL)混合液に、氷冷下でDIPEA(2.6eq.,110μL,647μmol)、L-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,139mg,383μmol)およびDMT-MM(1.8eq.,127mg,460μmol)を加え、氷冷下で2時間撹拌した後、室温で1時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液(10mL)で1回、水(10mL)で1回、1N塩酸水溶液(10mL)で1回、水(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄褐色アモルファスとして粗体(299mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~0/100)し、黄色アモルファスとして化合物31-6(222mg,収率72%)を得た。
 化合物31-6から化合物31-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物31-6(1.0eq.,193mg,157μmol)のジクロロメタン(2mL)溶液に、室温下でTFA(16.7eq.,200μL,2.61mmol)を加え、室温で1時間撹拌した。TFA(25.0eq.,300μL,3.92mmol)を追加し、さらに17時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(10mL)を加え、酢酸エチル(5mL)で3回分液抽出した後、有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して橙黄色アモルファスとして粗体(156mg)を得た。粗体に酢酸エチル(2mL)を加えた後、40℃に加温して溶解させた。そこにヘキサン(2mL)を加え、生じた淡黄色固体をろ取し、ヘキサン/酢酸エチル=2/1混合液で洗浄することで淡黄色固体として化合物31-7(126mg,収率92%)を得た。
 化合物31-7から化合物31への合成は以下のとおりに行った。
 窒素雰囲気下、化合物31-7(1.0eq.,120mg,137μmol)のTHF(2.0mL)/水(0.2mL)混合液に、室温でTFA(9.5eq.,100μL,1.31mmol)を加え、室温で2時間撹拌した。次に室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,12.5mg)を加え、系内を水素置換後、室温で20時間撹拌した。セライトろ過により触媒をろ別し、ろ液をさらに0.45μmフィルターでろ過した後、ろ液を減圧濃縮して橙色アモルファスとして粗体(142mg)を得た。粗体を3回フラッシュシリカゲルカラム精製(逆相シリカゲル6g,1回目:0.05%酢酸水溶液/アセトニトリル=97/3~20/80,2回目:0.05%酢酸水溶液/アセトニトリル=97/3,3回目:0.05%酢酸水溶液/アセトニトリル=97/3)した後、凍結乾燥を行い白色固体として化合物31の酢酸塩(5.8mg,収率7%,純度94%)を得た。
 H-NMR(400MHz,DO)δ6.80-6.71(m,3H),4.75(s,1H),4.36(t,J=7.6Hz,1H),4.03(dd,J=8.6,4.3Hz,1H),3.89(dd,J=8.4,4.8Hz,1H),3.10(dd,J=13.54.3Hz,1H),3.03-2.92(m,2H),2.80(dd,J=13.5,8.6Hz,1H),2.58(s,3H),2.07(t,J=7.8Hz,2H),1.97-1.81(m,2H),1.78-1.68(m,1H),1.66-1.56(m,2H),1.49-1.31(m,5H),1.29-1.18(m,1H),0.91(t,J=7.2Hz,3H).
 (実施例29H:化合物32の合成)
本実施例では化合物32の合成を行った。
 Fragment A-2’’→化合物25-2の2工程は、実施例29Bに記載の方法と同様に行った。
 化合物25-2から化合物32-1への合成は以下のとおりに行った。
 化合物25-2(1.0eq.,1.14g,1.59mmolとして計算)のDMF(1.6mL)溶液に、室温でHOBt・HO(1.2eq.,294mg,1.92mmol)、EDCI(1.2eq.,367mg,1.91mmol)およびFmoc-L-Gln(Trt)-OH(Fragment C-13,1.2eq.,1.17g,1.92mmol)を加え、室温で3時間撹拌した。反応液にヘキサン(15mL)/酢酸エチル(45mL)混合液を加え、水(40mL)で2回、飽和炭酸水素ナトリウム水溶液(40mL)で2回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別後、減圧濃縮して白色アモルファスの粗体(2.42g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル=75/25~60/40)し、白色アモルファスとして化合物32-1(1.77g,収率85%)を得た。
 化合物32-1から化合物32-2への合成は以下のとおりに行った。
 化合物32-1(1.0eq.,1.34g,1.34mmol)のTHF(8mL)/水(4mL)混合液に、室温で水酸化リチウム(6.0eq.,194mg,8.11mmol)を加え、室温で3.5時間撹拌した。反応液に1N塩酸水溶液(5.2mL)を加えてpHを7にした。反応液に酢酸エチル(20mL)を加え、水(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別して減圧濃縮し、淡黄色アモルファスとして粗体(1.43g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,酢酸エチル/メタノール=100/0~40/60)した。その後、濃縮物に酢酸エチルを加えることで析出した白色固体をろ別し、ろ液を減圧濃縮することで白色アモルファスとして化合物32-2(979mg,収率73%)を得た。
 化合物32-2から化合物32-3への合成は以下のとおりに行った。
 化合物32-2(1.0eq.,976mg,0.978mmol)のアセトニトリル(25mL)/THF(25mL)混合液を、室温でHATU(2.0eq.,745mg,1.96mmol)、HOAt(2.0eq.,268mg,1.97mmol)およびDIPEA(2.0eq.,332μL,1.95mmol)のアセトニトリル(490mL)溶液に約46μL/minで18時間かけて滴下した後、室温で2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(30mL)を加えた後、減圧濃縮により有機溶媒を留去した。濃縮物に酢酸エチル(50mL)を加え、水(50mL)で1回、飽和炭酸水素ナトリウム水溶液(30mL)で1回、飽和塩化アンモニウム水溶液(25mL)で2回、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して橙色アモルファスとして粗体(964mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=25/75~0/100)し、淡黄色油状物として化合物32-3(172mg,収率18%)を得た。
 化合物32-3から化合物32-4への合成は以下のとおりに行った。
 化合物32-3(1.0eq.,172mg,0.176mmol)のTHF(2mL)溶液に、室温でTBAF(1M in THF,2.0eq.,351μL,0.351mmol)を加え、同温で3時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加えてクエンチした。酢酸エチル(30mL)を加えた後、飽和塩化アンモニウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体(147mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=60/40~0/100)し、淡黄色油状物として化合物32-4(92.3mg,収率61%)を得た。
 化合物32-4から化合物32-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物32-4(1.0eq.,92.3mg,0.107mmol)のジクロロメタン(1mL)溶液に、室温でデス-マーチンペルヨージナン(1.5eq.,68.5mg,0.162mmol)を加え、同温で3時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液を加えた後、酢酸エチル(20mL)で1回分液抽出した。有機層を10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色固体としてAldehyde(80.7mg,収率88%)を得た。
 Aldehyde(1.0eq.,79.6mg,92.2μmol)のアミレン(1mL)/t-ブチルアルコール(4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,49.2mg,0.315mmol)および80%亜塩素酸ナトリウム(4.5eq.,46.9mg,0.413mmol)の水(1mL)溶液を加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加えた後、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(88.2mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=33/67~0/100)し、白色アモルファスとして化合物32-5(71.0mg,収率88%)を得た。
 化合物32-5から化合物32-6への合成は以下のとおりに行った。
 化合物32-5(1.0eq.,70.2mg,79.9μmol)の酢酸エチル(1mL)/水(300μL)混合液に、室温でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,44.4mg,0.122mmol)を加え、氷冷した。その後、DIPEA(2.4eq.,32.6μL,0.192mmol)を添加し10分間撹拌した。DMT-MM(1.7eq.,38.2mg,0.138mmol)を添加した後、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色アモルファスとして粗体(110mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=88/12~31/69)し、黄色固体として化合物32-6(79.2mg,収率83%)を得た。
 化合物32-6から化合物32-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物32-6(1.0eq.,79.2mg,66.6μmol)のジクロロメタン(1mL)溶液に、室温でTFA(15eq.,76.5μL,1.00mmol)を加え、同温で7時間撹拌した。その後、TFA(15eq.,76.5μL,1.00mmol)を追加し、同温で17時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(10mL)を加えてクエンチし、酢酸エチル(20mL)で1回分液抽出した。有機層を水(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮した。濃縮残渣に酢酸エチルを加えることで析出した白色固体をろ取することで化合物32-7(34.6mg,収率36%)を得た。
 化合物32-7から化合物32への合成は以下のとおりに行った。
 化合物32-7(1.0eq.,34.6mg,40.9μmol)のTHF(1.38mL)/水(69.2μL)混合液に、室温でTFA(5.0eq.,15.6μL,0.204mmol)を加え、同温で1時間撹拌した。その後、系内を窒素置換し、10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.6mg)を加え、系内を水素置換後、同温で17時間撹拌した。セライトろ過により触媒をろ別した。ろ液をさらに0.45μmのフィルターでろ過した後、減圧濃縮して淡桃色固体として粗体(43.4mg)を得た。粗体を3回フラッシュシリカゲルカラム精製(1回目:逆相シリカゲル6g,0.05%酢酸水溶液/アセトニトリル=95/5~90/10,2回目:逆相シリカゲル10g,0.05%酢酸水溶液/アセトニトリル=99/1~95/5,3回目:逆相シリカゲル6g,0.05%酢酸水溶液/アセトニトリル=98/2)することにより、化合物32の酢酸塩と不純物の混合物(7.3mg)を得た。
 H-NMR(400MHz,DO)δ6.85-6.79(m,3H),4.36(t,J=7.5Hz,1H),4.14(dd,J=8.9,4.8Hz,1H),3.89(dd,J=9.0,4.6Hz,1H),3.13(dd,J=13.7,4.6Hz,1H),2.83(dd,J=13.7,9.0Hz,1H),2.61(s,3H),2.24(t,J=7.6Hz,2H),1.43(s,3H),0.889(t,J=7.3Hz,3H).
 (実施例29I:化合物35の合成)
 Fragment A-10+Fragment B-1から化合物35-1への合成は以下のとおりに行った。
 窒素雰囲気下、Fragment A-10(1.0eq.,7.61g,16.93mmol)のCPME(85mL)溶液に室温でMS3A(3.8g)、氷冷下でTBD(1.1eq.,2.49g,17.86mmol)を加えた。同温で、Fragment B-1(1.2eq.8.42g,20.51mmol)のCPME(80mL)溶液を滴下した後、室温で16時間撹拌した。減圧濃縮によりCPMEを留去して、粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル150g,ヘキサン/酢酸エチル=3/1~1/1)し、淡黄色粘体として化合物35-1(12.21g,収率84%)を得た。
 化合物35-1から化合物35-2への合成は以下のとおりに行った。
 化合物35-1(1.0eq.,4.73g,5.50mmol)のTHF(30mL)/メタノール(15mL)/水(15mL)混合液に室温下で水酸化リチウム(3.0eq.,390mg,16.29mmol)を加え、室温で1.5時間撹拌した。1N塩酸水溶液(15mL)を加え、pHを約5にした後、酢酸エチル(30mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体の化合物35-2(4.82g,粗収率104%)を得た。
 化合物35-2から化合物35-3への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-2(1.0eq.,1.21g,1.43mmol)の酢酸エチル(10mL)/水(3mL)混合液に室温でL-トリプトファン-OMe塩酸塩(1.5eq.,551mg,2.16mmol)、氷冷下でDIPEA(1.7eq.,410μL,2.41mmol)およびDMT-MM(1.7eq.,678mg,2.45mmol)を加え、室温で2.5時間撹拌した。酢酸エチル(20mL)を加えた後、1N塩酸水溶液(30mL)で1回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体の化合物35-3(1.61g,粗収率107%)を得た。
 化合物35-3から化合物35-4への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-3(1.0eq.,1.61g,1.43mmolとして計算)のDMF(15mL)溶液に室温下で炭酸セシウム(1.3eq.,658mg,1.87mmol)およびチオフェノール(1.3eq.,190μL,1.86mmol)を加え、室温で2時間撹拌した。水(15mL)を加えた後、ヘキサン(7.5mL)/酢酸エチル(22.5mL)混合液で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(100mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(1.98g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物35-4(1.15g,収率87%)を得た。
 化合物35-4から化合物35-5への合成は以下のとおりに行った。
 化合物35-4(1.0eq.,1.15g,1.34mmol)のTHF(8mL)/メタノール(4mL)/水(4mL)混合液に室温下で水酸化リチウム(3.1eq.,100mg,4.17mmol)を加え、室温で3時間撹拌した。反応液に1N塩酸水溶液(2.5mL)を加え、pHを7にした後、水(10mL)を加えた。減圧濃縮により有機溶媒を留去した後、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体の化合物35-5(1.09g,粗収率96%)を得た。
 化合物35-5から化合物35-6への合成は以下のとおりに行った。
 化合物35-5(1.0eq.,1.09g,1.29mmol)のジクロロメタン(33mL)溶液を室温で、DMT-MMT(2.0eq.,850mg,2.59mmol)およびDIPEA(2.0eq,440μL,2.59mmol)のジクロロメタン(109mL)溶液に約120μL/minで4.5時間かけて滴下した後、室温で19時間撹拌した。反応液を減圧濃縮してジクロロメタンを留去した後、酢酸エチル(20mL)を加え、1N塩酸水溶液(20mL)で2回、飽和塩化ナトリウム水溶液(20mL)1回で分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して灰色アモルファスとして粗体(1.24g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=75/25~0/100)し、白色固体として化合物35-6(237mg,収率22%)を得た。
 化合物35-6から化合物35-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-6(1.0eq.,237mg,286μmol)のTHF(4mL)/水(2mL)混合液に室温でクエン酸(10.0eq.,550mg,2.86mmol)を加え、外温40℃で15時間撹拌した。飽和炭酸水素ナトリウム水溶液(10mL)を加えてクエンチした後、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(227mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/アセトニトリル=50/50)し、白色アモルファスとして化合物35-7(187mg,91%)を得た。
 化合物35-6から化合物35-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-7(1.0eq.,187mg,261μmol)のジクロロメタン(3mL)溶液に室温下でデス-マーチンペルヨージナン(1.5eq.,167mg,394μmol)を加え、室温で1時間撹拌した。20%亜硫酸ナトリウム水溶液(10mL)および飽和炭酸水素ナトリウム水溶液(10mL)を加え、ジクロロメタン(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、この洗液をジクロロメタン(10mL)で再度2回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色アモルファスとして粗体のAldehyde(197mg、粗収率106%)を得た。
 Aldehyde(1.0eq.,197mg,261μmolとして計算)のt-ブチルアルコール(1.8mL)/アミレン(0.6mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,144mg,923μmol)および80%亜塩素酸ナトリウム(4.5eq.,134mg,1.18mmol)の水(0.6mL)溶液を加え、室温で30分間撹拌した。水(10mL)を加えた後、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して茶色アモルファスとして粗体(201mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~0/100)し、淡橙色固体として化合物35-8(121mg,64%)を得た。
 化合物35-8から化合物35-9への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-8(1.0eq.,121mg,166μmol)の酢酸エチル(1.4mL)/水(0.6mL)混合液に、室温下でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,90mg,247μmol)、氷冷下でDIPEA(2.5eq.,70μL,412μmol)およびDMT-MM(1.7eq.,80mg,289μmol)を加え、氷冷下で3時間撹拌した。酢酸エチル(10mL)を加えた後、1N塩酸水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して橙色アモルファスとして粗体(170mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル5g,ヘキサン/酢酸エチル=75/25~25/75、2回目:NHシリカゲル10g,ヘキサン/酢酸エチル=3/1~1/7)し、白色アモルファスとして化合物35-9(29mg,17%)を得た。
 化合物35-9から化合物35への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-9(1.0eq.,29mg,27.9μmol)のTHF(0.5mL)/酢酸(0.5mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4.3mg)を加え、系内を水素置換後、室温で20時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,4.9mg)を追加し、系内を水素置換後、室温で20時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮し、灰色固体を得た。この固体に適当量のアセトニトリル/水=1/1混合液を加えた後、0.45μmフィルターでろ過し、黒色不溶物を除去した。ろ液を減圧濃縮し、灰色固体として粗体(18mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル6g,0.05%酢酸水溶液/アセトニトリル=99/1~10/90)し、白色固体として化合物35の酢酸塩と不純物の混合物(11.8mg)を得た。
[M+H]+=638.27
 質量分析の結果から、目的物が生成していると判断される。
 (実施例29I2:化合物37の合成)
 Fragment A-13およびFragment B-1から化合物37-1への合成は以下のとおり行った。
 Fragment A-13(1.0eq.,2.37g,6.35mmol)のCPME(16mL)溶液に氷冷下でTBD(1.05eq.,929mg,6.68mmol)を加え、そこにFragment B-1(1.4eq.,3.76g,9.16mmol)のCPME(16mL)溶液を35分間かけて滴下し、室温で6時間撹拌した。反応液を減圧濃縮して褐色粘状の粗体(7.82g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル150g,ヘキサン/酢酸エチル=67/33~40/60)し、白色アモルファスとして化合物37-1(4.17g,収率84%)を得た。
 化合物37-1から化合物37-2への合成は以下のとおりに行った。
 化合物37-1(1.0eq.,4.12g,5.25mmol)のTHF(26mL)/メタノール(13mL)/水(13mL)混合液に、室温で水酸化リチウム(3.0eq.,378mg,15.8mmol)を加え、同温で1時間撹拌した。反応液に1N塩酸水溶液(9mL)を加えてpHを7にした後、反応液に酢酸エチル(40mL)を加え、水(20mL)で1回分液洗浄した。水層を酢酸エチル(10mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして化合物37-2(4.35g,quant.)を得た。
 化合物37-2から化合物37-3への合成は以下のとおりに行った。
 化合物37-2(1.0eq.,1.07g,1.39mmolとして計算)の酢酸エチル(14mL)/水(4.2mL)混合液に、室温でL-バリン-OMe塩酸塩(1.5eq.,350mg,2.09mmol)、DIPEA(1.7eq.,402μL,2.36mmol)およびDMT-MM(1.7eq.,654mg,2.36mmol)を加え、同温で1時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物37-3(1.21g,粗収率99%)を得た。
 化合物37-3から化合物37-4への合成は以下のとおりに行った。
 窒素雰囲気下、化合物37-3(1.0eq.,1.22g,1.38mmol)のDMF(14mL)溶液に、室温で炭酸セシウム(3.0eq.,1.35g,4.13mmol)およびチオフェノール(3.0eq.,421μL,4.13mmol)を加え、同温で1時間撹拌した。反応液にヘキサン(10mL)/酢酸エチル(30mL)混合液を加え、水(20mL)で3回、飽和塩化ナトリウム(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状の粗体(1.34g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,ヘキサン/酢酸エチル=50/50~40/60)し、黄色油状として化合物37-4(833mg,収率87%)を得た。
 化合物37-4から化合物37-5への合成は以下のとおりに行った。
 化合物37-4(1.0eq.,822mg,1.18mmol)のTHF(6mL)/メタノール(3mL)/水(3mL)混合液に、室温で水酸化リチウム(3.0eq.,85.0mg,3.55mmol)を加え、同温で1時間撹拌した。反応液に1N塩酸水溶液(1.5mL)を加えてpHを7にした。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回分液洗浄した。水層を酢酸エチル(10mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして化合物37-5(764mg,粗収率95%)を得た。
 化合物37-5から化合物37-6への合成は以下のとおりに行った。
 化合物37-5(1.0eq.,699mg,1.02mmol)のジクロロメタン(42mL)溶液を室温で、DMT-MMT(2.0eq.,671mg,2.04mmol)およびDIPEA(2.0eq.,348μL,2.05mmol)のジクロロメタン(70mL)溶液に約40μL/minで滴下し、同温で19.5時間撹拌した。反応液を飽和塩化アンモニウム水溶液(30mL)で3回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体を得た。化合物37-5(50.3mg,73.5μmol)から同様の反応により得られた粗体を、先に取得した粗体と混合した。酢酸エチルを加えることで析出した白色固体をろ別し、ろ液を減圧濃縮することで淡黄色アモルファスとして粗体(789mg)を得た。粗体を3回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル30g,ヘキサン/酢酸エチル=80/20~59/41、2回目:NHシリカゲル5g,ヘキサン/酢酸エチル=75/25~0/100、3回目:順相シリカゲル5g,ヘキサン/酢酸エチル=80/20~74/26)し、白色アモルファスとして化合物37-6(234mg,収率32%)を得た。
 化合物37-6から化合物37-7への合成は以下のとおりに行った。
 化合物37-6(1.0eq.,231mg,0.348mmol)のTHF(3.5mL)溶液に、室温でTBAF(1M in THF,2.0eq.,695μL,0.695mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(10mL)で3回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(211mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=50/50~0/100)し、白色アモルファスとして化合物37-7(144mg,収率75%)を得た。
 化合物37-7から化合物37-8への合成は以下のとおりに行った。
 窒素雰囲気下、化合物37-7(1.0eq.,139mg,0.252mmol)のジクロロメタン(2.5mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,161mg,0.379mmol)を加え、室温で2時間撹拌した。氷冷下でデス-マーチンペルヨージナン(1.0eq.,107mg,0.252mmol)を追加し、室温で1.5時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)の混合液を加え、酢酸エチル(20mL)で1回分液抽出した。有機層を10%亜硫酸ナトリウム水溶液(5mL)/飽和重曹水(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(132mg,粗収率95%)を得た。
 Aldehyde(1.0eq.,131mg,0.238mmol)のアミレン(1mL)/t-ブチルアルコール(4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,127mg,0.816mmol)および80%亜塩素酸ナトリウム(4.5eq.,121mg,1.07mmol)の水(1mL)溶液を加え、同温で1時間撹拌した。反応液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物37-8(143mg,粗収率106%)を得た。
 化合物37-8から化合物37-9への合成は以下のとおりに行った。
 化合物37-8(1.0eq.,138mg,0.238mmolとして計算)の酢酸エチル(1.4mL)/水(0.42mL)混合液に、室温でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,130mg,0.357mmol)を加えた。氷冷下でDIPEA(2.4eq.,97.2μL,0.572mmol)を加えて30分間撹拌した後、DMT-MM(1.7eq.,113mg,0.408mmol)加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状として粗体(250mg)を得た。粗体をフラッシュシリカゲルカラム精製(NHシリカゲル6g,ヘキサン/酢酸エチル=75/25~50/50)し、白色アモルファスとして化合物37-9(155mg,収率75%)を得た。
 化合物37-9から化合物37への合成は以下のとおりに行った。
 窒素雰囲気下、化合物37-9(1.0eq.,154mg,0.176mmol)のTHF(3mL)/水(0.3mL)混合液に室温でTFA(5.0eq.,67.1μL,0.877mmol)を加え、同温で40分間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,15.4mg)を加え、系内を水素置換後、同温で16時間撹拌した。セライトろ過により触媒をろ別した後、ろ液を0.45μmのフィルターでろ過し、ろ液を減圧濃縮して白色固体の粗体(137mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル10g,水/アセトニトリル=95/5~81/19)した後、凍結乾燥を行い白色固体として化合物37のTFA塩(50.1mg,収率51%,純度99.3%)を得た。
 H-NMR(400MHz,DMSO-d6)δ8.30(d,J=8.2Hz,1H),8.15(d,J=7.1Hz,1H),7.58(d,J=8.9Hz,1H),6.89-6.85(m,3H),4.71(d,J=9.6Hz,1H),4.21-4.14(m,2H),3.68(s,3H),2.84-2.72(m,2H),2.32-2.18(m,5H),2.09-2.00(m,1H),1.93-1.71(m,3H),1.64-1.55(m,1H),1.32(s,3H),0.92(t,J=7.2Hz,3H),0.79(d,J=6.4Hz,6H).
 (実施例29J:化合物39の合成)
 化合物23-7の合成は実施例28に記載の通りに行った。
 化合物23-7から化合物39-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物23-7(1.0eq.,201mg,339μmol)およびL-グルタミン酸ジベンジルエステルパラトルエンスルホン酸塩(Fragment D-2’,1.6eq.,255mg,524μmol)のTHF(4mL)溶液に、氷冷下でDEPBT(1.5eq.,154mg,516μmol)および2,4,6-コリジン(3.1eq.,140μL,1.06mmol)を加え、氷冷下で8時間撹拌した後、室温で20時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(10mL)を加えた後、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(15mL)/飽和塩化ナトリウム水溶液(15mL)混合液で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(524mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル8g,ヘキサン/酢酸エチル=80/20~10/90、2回目:順相シリカゲル10g,ヘキサン/酢酸エチル=2/1~1/2)し、淡黄色アモルファスとして化合物39-1(51mg,収率17%)を得た。
 化合物39-1から化合物39-2への合成は以下のとおりに行った。
 窒素雰囲気下、化合物39-1(1.0eq.,51mg,57μmol)のジクロロメタン(1mL)溶液に、氷冷下でTFA(23.0eq.,100μL,1.31mmol)を加え、室温で1.5時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(5mL)を加えた後、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して化合物39-2(45mg、粗収率100%)を得た。
 化合物39-2から化合物39-3への合成は以下のとおりに行った。
 化合物39-2(1.0eq.,45mg,57μmolとして計算)のアセトニトリル(400μL)/水(200μL)混合液に、室温下で37%ホルムアルデヒド水溶液(10.8eq.,50μL,616μmol)および酢酸(2.2eq.,7μL,122μmol)を加え、室温で30分間撹拌した。次に氷冷下で、2-ピコリンボラン(2.5eq.,15mg,142μmol)を加え、室温で30分間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(5mL)を加えた後、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(29mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル7g,クロロホルム/メタノール=50/1~30/1)し、白色アモルファスとして化合物39-3(26mg,2段階収率57%)を得た。
 化合物39-3から化合物39への合成は以下のとおりに行った。
 窒素雰囲気下、化合物39-3(1.0eq.,26mg,32μmol)のTHF(2mL)/水(100μL)混合液に、室温下でTFA(4.0eq.,10μL,131μmol)を加え、同温で2時間撹拌した。次に室温下で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3mg)を加え、系内を水素置換後、室温で2時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(24mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル12g,0.05%TFA水溶液/アセトニトリル=100/0~0/100)した後、凍結乾燥を行い白色固体として化合物39のTFA塩(8.0mg,収率37%,純度93%)を得た。
 H-NMR(400MHz,DO)δ6.81-6.76(m,3H),4.45(dd,J=7.4,5.0Hz,1H),3.93(d,J=10.4Hz,1H),3.82(dd,J=11.6,5.2Hz,1H),3.29(dd,J=12.4,5.2Hz,1H),2.86(brs,1H),2.81-2.65(m,3H),1.99-1.90(m,1H),1.76-1.66(m,1H),1.57-1.46(m,4H),0.93(t,J=7.2Hz,3H),0.69(d,J=6.8Hz,3H),0.59(d,J=6.8Hz,3H).
 (実施例29K:化合物40の合成)
化合物40を合成した。
 合成は以下の通りに行った。
 窒素雰囲気下、化合物23-2(1.0eq.,1.02g,1.39mmolとして計算)および5-t-Bu-N-Fmoc-L-アスパラギン酸(Fragment C-9,1.2eq.,697mg,1.64mmol)のDMF(14mL)溶液に室温でHOBt・HO(1.2eq.,251mg,1.63mmol)およびEDCI(1.2eq.,312mg,1.63mmol)を加え、同温で19時間撹拌した。ヘキサン(5mL)/酢酸エチル(15mL)混合液を加えた後、水(10mL)で3回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体の化合物40-1(1.59g,粗収率100%)を得た。
 窒素雰囲気下、化合物40-1(1.0eq.,1.59g,1.39mmol)のTHF(10mL)/水(5mL)混合液に水酸化リチウム(3.9eq.,130mg,5.44mmol)を室温で加え、同温で2.5時間撹拌した。氷冷下で2N塩酸水溶液(1.8mL)を加えた後、酢酸エチル(10mL)で1回、酢酸エチル(5mL)で1回分液抽出した。有機層を合一して硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(2.36g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル17.8g,酢酸エチル/メタノール=1/0~10/1)し、白色アモルファスとして化合物40-2(601mg,2段階収率54%)を得た。
 化合物40-2(1.0eq.,601mg,754μmol)のジクロロメタン(15mL)溶液を、HATU(2.0eq.,576mg,1.52mmol)、HOAt(2.0eq.,206mg,1.52mmol)およびDIPEA(2.0eq.,250μL,1.47mmol)のジクロロメタン(380mL)溶液に室温で2.5時間かけて滴下した後、同温で2.5時間撹拌した。反応液を50mLになるまで減圧濃縮した後、飽和塩化アンモニウム水溶液(50mL)を加え、酢酸エチル(75mL)で1回、酢酸エチル(30mL)で1回分液抽出した。有機層を合一して飽和炭酸水素ナトリウム水溶液(30mL)で1回、水(20mL)で1回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して橙色アモルファスとして粗体(758mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル7.9g,ヘキサン/酢酸エチル=3/1~2/1)し、白色アモルファスとして化合物40-3(254mg,見かけ収率43%,約25%のジアステレオマー含有)を得た。
 窒素雰囲気下、化合物40-3(1.0eq.,254mg,325μmol,約25%のジアステレオマー含有)のTHF(3mL)溶液に氷冷下でTBAF(1M in THF,1.5eq.,500μL,500μmol)を加えた後、室温で1時間撹拌した。反応液に飽和塩化アンモニウム水溶液(3mL)を加え、酢酸エチル(15mL)で分液抽出した。有機層を飽和塩化アンモニウム水溶液(3mL)で3回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(243mg)を得た。粗体をヘキサン(2.7mL)/酢酸エチル(0.3mL)で3回スラリー洗浄することで白色固体として化合物40-4(207mg,収率95%,約25%のジアステレオマー含有)を得た。
 窒素雰囲気下、化合物40-4(1.0eq.,207mg,310μmol,約25%のジアステレオマー含有)のジクロロメタン(3mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,198mg,466μmol)を加え、室温で1.5時間撹拌した。反応液に10%亜硫酸水素ナトリウム水溶液(2mL)/飽和炭酸水素ナトリウム水溶液(2mL)混合液を加えた後、酢酸エチル(15mL)で分液抽出した。有機層を飽和炭酸水素ナトリウム水溶液(3mL)で2回、水(3mL)で1回、飽和塩化ナトリウム水溶液(2mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色固体としてAldehyde(196mg)を得た。
 Aldehyde(1.0eq.,196mg,310μmolとして計算)のt-ブチルアルコール(1.5mL)/アミレン(0.7mL)混合液にリン酸二水素ナトリウム二水和物(3.5eq.,169mg,1.08mmol)および80%亜硫酸ナトリウム(4.6eq.,160mg,1.41mmol)の水(0.7ml)溶液を室温で滴下し、同温で2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(3mL)を加え、酢酸エチル(5mL)で2回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(233mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル4.3g,ヘキサン/酢酸エチル=2/1→酢酸エチル/メタノール=5/1)し、白色アモルファスとして化合物40-5(74.8mg,収率35%)を得た。
 窒素雰囲気下、化合物40-5(1.0eq.,116mg,170μmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq,93.8mg,257μmol)のTHF(1.7mL)溶液に氷冷下で2,4,6-コリジン(3.1eq.,70μL,531μmol)およびDEPBT(1.5eq.,78.0mg,261μmol)を加え、氷冷下で6時間撹拌した後、室温で18時間撹拌した。反応液に飽和塩化アンモニウム水溶液(2mL)を加えた後、酢酸エチル(8mL)で1回、酢酸エチル(5mL)で1回分液抽出した。有機層を合一し、飽和炭酸水素ナトリウム水溶液(3mL)で1回、飽和塩化ナトリウム水溶液(3mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して深緑色粘体として粗体(244mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル4.1g,ヘキサン/酢酸エチル=3/1~1/1、2回目:順相シリカゲル5.7g,ヘキサン/酢酸エチル=3/1~1/1)し、白色アモルファスとして化合物40-6を(45.3mg,収率27%)を得た。
 窒素雰囲気下、化合物40-6(1.0eq.,45.3mg,45.8μmol)のジクロロメタン(400μL)溶液に、室温でTFA(14eq.,50μL,653μmol)を加え、室温で1.5時間撹拌した。氷冷下でTFA(7.1eq.,25μL,327μmol)を加え、室温で2時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(1mL)を加え、酢酸エチル(4mL)で1回分液抽出した。有機層を水(1mL)で1回分液洗浄した後、水層を酢酸エチル(5mL)で再度分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して化合物40-7の粗体(44.9mg,粗収率118%)を得た。
 化合物40-7(1.0eq.,45.3mg,45.8μmol)のアセトニトリル(300μL)/水(150μL)混合液に、室温で酢酸(2.0eq.,5.3μL,92.7μmol)および37%ホルムアルデヒド水溶液(10eq.,34.3μL,465μmol)を加え、室温で30分間撹拌した。次に氷冷下で2-ピコリンボラン(2.6eq.,12.5mg,117μmol)を加え、室温で1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液(500μL)を加え、酢酸エチル(5mL)で2回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(42.1mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5.7g,酢酸エチル/メタノール=1/0~3/1)し、白色アモルファスとして化合物40-8(23.8mg,2段階収率60%)を得た。
 窒素雰囲気下、化合物40-8(1.0eq.,36mg,0.042mmol)のTHF(1440μL)/水(72μL)混合液に、室温でTFA(5.0eq.,16μL,0.209mmol)を加え、同温で1時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,3.6mg)を加え、系内を水素置換後、同温で23.5時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)し、凍結乾燥を行い、白色固体として化合物40のTFA塩(15.3mg,収率52%,純度95.0%)を得た。
 H-NMR(400MHz,DO)δ7.04(s,1H),6.95(s,2H),4.77-4.74(m,1H),4.48-4.39(m,2H),3.92(dd,J=11.2,4.8Hz,1H),3.42(dd,J=12.4,4.8Hz,1H),3.01(brs,6H),2.88(t,J=12.0Hz,1H),2.52-2.36(m,2H),2.35-2.15(m,3H),2.13-1.87(m,3H),1.86-1.74(m,1H),1.73-1.60(m,4H),1.03(t,J=7.2Hz,3H).
 (実施例29M2:化合物41および42の合成)
 窒素雰囲気下、Fragment A-2’(1.05eq.,4.00g,酢酸エチル1.1wt%含有,7.53mmol)およびFragment B-1(1.0eq.,2.94g,7.16mmol)のトルエン(72mL)溶液に、室温でTBD(1.05eq.,1.05g,7.54mmol)を加えて21時間撹拌した。反応液に5%クエン酸水溶液(30mL)を加えて分液洗浄し、有機層を5%塩化ナトリウム水溶液(30mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色粘体として化合物41-1と化合物41-1の脱Bn体の混合物(7.28g)を得た。
 窒素雰囲気下、化合物41-1と化合物41-1の脱Bn体の混合物(1.0eq.,7.28g,7.16mmolとして計算)のジクロロメタン(30mL)溶液に室温でベンジルアルコール(0.2eq.,0.15g,1.39mmol)、DMAP(0.05eq.,44mg,0.36mmol)およびEDCI(0.2eq.,0.27g,1.41mmol)を加え、同温で1時間撹拌した。反応液に5%クエン酸水溶液(30mL)/5%塩化ナトリウム水溶液(20mL)に混合液で1回、5%炭酸水素ナトリウム水溶液(30mL)で1回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(7.67g)を2回フラッシュシリカゲルカラム精製(順相シリカゲル40g,ヘキサン/酢酸エチル=90/10~50/50)し、淡黄色粘体として化合物41-1(5.56g,酢酸エチル2.3wt%含有,換算収率81%)を得た。
 窒素雰囲気下、化合物41-1(1.0eq.,1.00g,酢酸エチル2.3wt%含有,1.04mmol)のDMF(5mL)溶液に室温で4-tert-ブチルベンゼンチオール(3.0eq.,0.52g,3.13mmol)および炭酸セシウム(3.0eq.,1.02g,3.13mmol)を加え、同温で1.5時間撹拌した。反応液にトルエン(20mL)を加え、水(20mL)で1回、5%炭酸カリウム水溶液(20mL)/5%塩化ナトリウム水溶液(20mL)混合液で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.37g)をフラッシュシリカゲルカラム精製(順相シリカゲル,25g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色油状物として化合物41-2(0.76g,酢酸エチル3.0wt%含有,換算収率94%)を得た。
 窒素雰囲気下、化合物41-2(1.0eq.,660mg,酢酸エチル3.0wt%含有,0.85mmol)のDMF(6.6mL)溶液にN-Fmoc-N-メチル-L-バリン(Fragment C-10,1.5eq.,0.45g,1.27mmol)、EDCI(1.5eq.,0.25g,1.30mmol)およびHOBt・HO(1.5eq.,0.20g,1.31mmol)を加え、室温で19.5時間撹拌した。反応液にトルエン(15mL)を加え、5%炭酸水素ナトリウム水溶液(15mL)で1回、5%塩化ナトリウム水溶液(15mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して淡黄色粘体として化合物41-3(0.99g)を得た。
 窒素雰囲気下、化合物41-3(1.0eq.,0.99g,0.85mmolとして計算)のDMF(10mL)溶液にピペリジン(0.5mL)を加え、室温で1時間撹拌した。反応液にトルエン(20mL)を加え、5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(0.92g)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色粘体としてIntermediate(700mg,酢酸エチル5.0wt%含有,化合物41-2から2段階の換算収率90%)を得た。
 窒素雰囲気下、Intermediate(1.0eq.,800mg,酢酸エチル5.0wt%含有,0.88mmol)のTHF(4mL)/水(2mL)混合液に水酸化リチウム一水和物(2.0eq.,74mg,1.76mmol)を加え、室温で3時間撹拌した。反応液を氷冷して5%クエン酸水溶液(10mL)を加え、酢酸エチル(10mL)で1回分液抽出した後、有機層を5%塩化ナトリウム水溶液(10mL)で2回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(780mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル/メタノール=90/10/0~0/100/0~0/70/30)し、淡黄色アモルファスとして化合物41-4(688mg,酢酸エチル3.8wt%,酢酸0.1wt%含有,換算収率97%)を得た。
 窒素雰囲気下、PyBroP(5.0eq.,1.54g,3.30mmol)のアセトニトリル(648mL)溶液に室温でDIPEA(10.0eq.,0.85g,6.58mmol)を加えた。外温50oCで化合物41-4(1.0eq.,529mg,酢酸エチル3.8wt%,酢酸0.1wt%含有,0.66mmol)のアセトニトリル(6.3mL)/THF(6.3mL)混合液を21時間かけて加え、滴下完了後、同温でさらに0.5時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(10mL)を加えて超音波照射後、不溶解物をろ別した。ろ液を5%クエン酸水溶液(10mL)で1回、5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.65g)をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色アモルファスとして化合物41-5(113mg,酢酸エチル1.3wt%含有,換算収率22%)を得た。
 窒素雰囲気下、化合物41-5(1.0eq.,0.178mmol)のTHF(1mL)/水(0.5mL)混合液にクエン酸(10.0eq.,343mg,1.79mmol)を加え、室温で15.5時間撹拌した後、外温40oCで4.5時間撹拌した。反応液を放冷した後、酢酸エチル(3mL)を加え、水(3mL)で1回、5%炭酸水素ナトリウム水溶液(3mL)で1回、5%塩化ナトリウム水溶液(3mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(136mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=35/65)し、白色アモルファスとして化合物41-6(92mg,酢酸エチル2.1wt%含有,換算収率78%)を得た。
 窒素雰囲気下、化合物41-6(1.0eq.,92mg,酢酸エチル2.1wt%含有,0.14mmol)のジクロロメタン(1mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,89mg,0.21mmol)を加えて3時間撹拌した後、さらに室温で14時間撹拌した。室温でデス-マーチンペルヨージナン(1.5eq.,89mg,0.21mmol)を加え、同温でさらに2.5時間した。反応液を氷冷し、5%炭酸水素ナトリウム水溶液(3mL)および5%チオ硫酸ナトリウム水溶液(3mL)を加えて酢酸エチル(6mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(6mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して黄色粘体としてAldehyde(102mg)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,102mg,0.14mmolとして計算)のt-ブチルアルコール(2mL)/アミレン(0.5mL)/水(0.5mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,77mg,0.49mmol)および80%亜塩素酸ナトリウム(4.5eq.,71mg,0.63mmol)を加え、同温で1.5時間撹拌した。反応液に酢酸エチル(6mL)を加え、5%塩化ナトリウム水溶液(6mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して得られた粗体(114mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル/メタノール=90/10/0~0/100/0~0/80/20)し、淡黄色アモルファスとして化合物41-7(93mg,酢酸エチル4.3wt%含有,化合物41-6から2段階の換算収率97%)を得た。
 窒素雰囲気下、化合物41-7(1.0eq.,20mg,酢酸エチル4.3wt%含有,0.029mmol)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,15mg,0.043mmol)の酢酸エチル(200μL)/水(60μL)混合液に、氷冷下でDIPEA(2.5eq.,12.4μL,0.073mmol)およびDMT-MM(15.1%含水,1.7eq.,14mg,0.051mmol)を加えて3時間撹拌した後、さらに室温で14.5時間撹拌した。反応液に酢酸エチル(1mL)を加え、5%クエン酸水溶液(1mL)で1回、5%炭酸水素ナトリウム水溶液(1mL)で1回、5%塩化ナトリウム水溶液(1mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(25mg)を得た。
 同様の操作で化合物41-7(20mg)から得られた粗体と上記粗体を合一し、フラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~50/50)し、淡黄色アモルファスとして化合物41-8(49mg,不純物8.9%,酢酸エチル0.4wt%含有,換算収率80%)を得た。
 窒素雰囲気下、化合物41-8(1.0eq.,26mg,不純物8.9%,酢酸エチル0.4wt%含有,0.025mmol)のTHF(1mL)/水(50μL)混合液に、室温でTFA(2.0eq.,3.8μL,0.050mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.6mg)を加え、系内を水素置換後、同温で26時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して粗体(34mg)を得た。
 同様の操作で化合物41-8(20mg)から得られた粗体と上記粗体を合一し、フラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した。凍結乾燥を行い、白色固体として化合物41のTFA塩(23.4mg,収率80%,純度97.7%)を得た。
 H-NMR(400MHz,DO)δ6.94-6.87(m,2H),6.58(d,J=1.6Hz,1H),4.93-4.90(m,1H),4.72(d,J=11.2Hz,1H),4.68-4.65(m,2H),3.31(dd,J=14.0,4.4Hz,1H),2.99-2.84(m,3H),2.74(s,3H),2.70(s,3H),2.22-2.12(m,1H),2.02-1.93(m,1H),1.83-1.73(m,1H),1.51(s,3H),1.07(t,J=7.2Hz,3H),0.82(t,J=7.2Hz,6H).
 窒素雰囲気下、化合物41-7(1.0eq.,51mg,酢酸エチル4.3wt%含有,0.074mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,41mg,0.113mmol)の酢酸エチル(500μL)/水(150μL)混合液に、氷冷下でDIPEA(2.5eq.,32μL,0.188mmol)およびDMT-MM(15.1%含水,1.7eq.,41mg,0.126mmol)を加えて3時間撹拌した後、さらに室温で20時間撹拌した。反応液に酢酸エチル(2mL)を加え、5%クエン酸水溶液(2mL)で1回、5%炭酸水素ナトリウム水溶液(2mL)で1回、5%塩化ナトリウム水溶液(2mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(94mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~50/50)し、淡黄色アモルファスとして化合物42-1(76mg,不純物13.4%含有,換算収率92%)を得た。
 窒素雰囲気下、化合物42-1(1.0eq.,64mg,不純物13.4%含有,0.057mmol)のTHF(2mL)/水(100μL)混合液に、室温でTFA(2.0eq.,8.8μL,0.115mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,6.4mg)を加え、系内を水素置換後、同温で19.5時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,6.4mg)を加え、同温でさらに4.5時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して得られた粗体(42mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%TFA水溶液/アセトニトリル=95/5~90/10)した。凍結乾燥を行い、白色固体として化合物42のTFA塩(21.4mg,収率55%,純度98.6%)を得た。
 H-NMR(400MHz,DO)δ6.94-6.87(m,2H),6.59(s,1H),4.92-4.90(m,1H),4.73(d,J=11.6Hz,1H),4.67(dd,J=8.0,4.8Hz,1H),4.40(dd,J=9.2,4.8Hz,1H),3.32(dd,J=14.0,4.8Hz,1H),2.97(dd,J=14.0,8.0Hz,1H),2.75(s,3H),2.70(s,3H),2.52-2.37(m,2H),2.26-2.12(m,2H),2.05-1.90(m,2H),1.84-1.72(m,1H),1.51(s,3H),1.08(t,J=7.2Hz,3H),0.82(t,J=7.2Hz,6H).
 (実施例29M3:化合物43および44の合成)
 窒素雰囲気下、化合物41-1(1.0eq.,2.00g,酢酸エチル2.3wt%含有,2.09mmol)のDMF(10mL)溶液に氷冷下で炭酸カリウム(2.0eq.,0.58g,4.20mmol)およびヨウ化メチル(2.0eq.,0.59g,4.16mmol)を加え、同温で3時間撹拌した後、室温で14時間撹拌した。反応液にトルエン(30mL)を加え、5%塩化ナトリウム水溶液(30mL)で3回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して無色油状物として化合物43-1(2.01g,酢酸エチル3.2wt%含有,換算収率98%)を得た。
 窒素雰囲気下、化合物43-1(1.0eq.,2.22g,2.26mmol)のDMF(11mL)溶液に室温で炭酸セシウム(3.0eq.,2.22g,6.81mmol)および4-tert-ブチルベンゼンチオール(3.0eq.,1.13g,6.80mmol)を加え、同温で1.5時間撹拌した。反応液にトルエン(30mL)を加え、水(30mL)で1回、5%炭酸カリウム水溶液(30mL)/5%塩化ナトリウム水溶液(30mL)混合液で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(3.28g)をフラッシュシリカゲル精製(順相シリカゲル25g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色油状物として化合物43-2(1.71g,酢酸エチル3.5wt%含有,換算収率95%)を得た。
 窒素雰囲気下、化合物43-2(1.0eq.,0.76g,酢酸エチル3.5wt%含有,0.96mmol)のDMF(7.5mL)溶液にN-Fmoc-L-バリン(Fragment C-1,1.5eq.,0.49g,1.44mmol)、HATU(1.5eq.,0.55g,1.45mmol)およびDIPEA(3.0eq.,0.37g,2.86mmol)を加え、室温で16時間撹拌した。反応液にトルエン(20mL)を加え、5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.29g)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=75/25)し、淡橙色アモルファスとして化合物43-3(0.99g,酢酸エチル及び不純物を含有,見かけ収率95%)を得た。
 窒素雰囲気下、化合物43-3(1.0eq.,0.99g,酢酸エチル及び不純物を含有,0.91mmolとして計算)のDMF(9mL)溶液にピペリジン(0.45mL)を加え、室温で1時間撹拌した。反応液にトルエン(20mL)を加え、5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(0.91g)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=90/10~0/100)し、黄色粘体としてIntermediate(729mg,酢酸エチル3.8wt%含有,化合物43-2から2段階の換算収率85%)を得た。
 窒素雰囲気下、Intermediate(1.0eq.,727mg,酢酸エチル3.8wt%含有,0.81mmol)のTHF(4mL)/水(2mL)混合液に水酸化リチウム一水和物(2.4eq.,82mg,1.94mmol)を加え、室温で2時間撹拌した。反応液を氷冷して5%クエン酸水溶液(10mL)を加え、酢酸エチル(10mL)で1回分液抽出した後、有機層を5%塩化ナトリウム水溶液(10mL)で2回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(720mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル/メタノール=90/10/0~0/100/0~0/50/50)し、淡褐色アモルファスとして化合物43-4(657mg,酢酸エチル3.5wt%含有,quant)を得た。
 窒素雰囲気下、PyBroP(5.0eq.,1.89g,4.05mmol)のアセトニトリル(797mL)溶液に室温でDIPEA(10.0eq.,1.05g,8.12mmol)を加えた。外温50oCで化合物43-4(1.0eq.,654mg,酢酸エチル3.5wt%含有,0.81mmol)のアセトニトリル(7.5mL)/THF(7.5mL)混合液を20時間かけて加え、滴下完了後、同温でさらに0.5時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチル(10mL)を加えて超音波照射後、不溶解物をろ別した。ろ液を5%クエン酸水溶液(10mL)で1回、5%炭酸水素ナトリウム水溶液(10mL)で1回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.46g)をフラッシュシリカゲルカラム精製(順相シリカゲル100g,ヘキサン/酢酸エチル=75/25)し、白色アモルファスとして化合物43-5(201mg,酢酸エチル1.1wt%含有,換算収率32%)を得た。
 窒素雰囲気下、化合物43-5(1.0eq.,189mg,酢酸エチル1.1wt%含有,0.247mmol)のTHF(1.9mL)溶液に氷冷下でTBAF(1.1M in THF,1.1eq.,0.247mL,0.272mmol)を加え、同温で10分間撹拌した後、室温で1時間撹拌した。反応液にトルエン(10mL)を加え、10%塩化アンモニウム水溶液(10mL)で3回、5%塩化ナトリウム水溶液(10mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(164mg)を得た。
 同様の操作で化合物43-5(10mg)から得られた粗体(8mg)と上記粗体を合一してフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=90/10~0/100)し、白色アモルファスとして化合物43-6(165mg,酢酸エチル4.9wt%含有,換算収率94%)を得た。
 窒素雰囲気下、化合物43-6(1.0eq.,71mg,酢酸エチル4.9wt%含有,0.105mmol)のジクロロメタン(0.6mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,67mg,0.158mmol)を加え、同温で2.5時間撹拌した。デス-マーチンペルヨージナン(0.5eq.,22mg,0.052mmol)を加え、同温でさらに1時間撹拌した後、5%炭酸水素ナトリウム水溶液(2mL)および5%チオ硫酸ナトリウム水溶液(2mL)を加えて酢酸エチル(4mL)で1回分液抽出した。有機層を5%塩化ナトリウム水溶液(4mL)で1回分液洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(71mg)を得た。
 窒素雰囲気下、Aldehyde(1.0eq.,69mg,0.102mmolとして計算)のt-ブチルアルコール(1.2mL)/アミレン(0.3mL)/水(0.3mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,57mg,0.365mmol)および80%亜塩素酸ナトリウム(4.5eq.,53mg,0.469mmol)を加え、同温で1時間撹拌した。反応液に酢酸エチル(3mL)を加え、5%塩化ナトリウム水溶液(3mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して得られた粗体(75mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル/メタノール=90/10/0~0/100/0~0/80/20)し、淡黄色アモルファスとして化合物43-7(70mg,酢酸エチル4.1wt%含有,化合物43-6から2段階の換算収率97%)を得た。
 窒素雰囲気下、化合物43-7(1.0eq.,63mg,酢酸エチル5.0wt%含有,0.091mmol)およびL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,50mg,0.137mmol)の酢酸エチル(630μL)/水(190μL)混合液に、氷冷下でDIPEA(2.5eq.,39μL,0.229mmol)およびDMT-MM(15.1%含水,1.7eq.,51mg,0.156mmol)を加え、同温で1.5時間撹拌した。反応液に酢酸エチル(2mL)を加え、5%クエン酸水溶液(2mL)で1回、5%炭酸水素ナトリウム水溶液(2mL)で1回、5%塩化ナトリウム水溶液(2mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(92mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~50/50)し、白色アモルファスとして化合物43-8(64mg,不純物2.1%,酢酸エチル0.2wt%含有,換算収率71%)を得た。
 窒素雰囲気下、化合物43-8(1.0eq.,56mg,不純物2.1%,酢酸エチル0.2wt%含有,0.057mmol)のTHF(1.6mL)/水(400μL)混合液に、室温で酢酸(5.0eq.,16.2μL,0.283mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.8mg)を加え、系内を水素置換後、同温で16.5時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,2.9mg)を追加し、3.5時間撹拌した。さらに10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,11.2mg)を追加し、6時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して得られた粗体(27.6mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%酢酸水溶液/アセトニトリル=95/5~90/10)した。凍結乾燥を行い、白色固体として化合物43(17.2mg,酢酸1.0wt%含有,換算収率53%,純度99.0%)を得た。
 H-NMR(400MHz,D2O)δ6.89(d,J=8.0Hz,1H),6.81(dd,J=8.0,2.0Hz,1H),6.48(d,J=2.0Hz,1H),5.50(s,1H),4.70(d,J=10.8Hz,1H),4.21(dd,J=9.2,4.8Hz,1H),4.03(dd,J=7.2,4.0Hz,1H),3.40(s,3H),3.17(dd,J=14.0,4.4Hz,1H),3.00(dd,J=14.0,7.2Hz,1H),2.71(s,3H),2.31(t,J=7.6Hz,3H),2.15-1.94(m,3H),1.93-1.78(m,2H),1.61(s,3H),0.98(t,J=7.2Hz,3H),0.94(d,J=6.4Hz,3H),0.86(d,J=6.8Hz,3H).
 窒素雰囲気下、化合物43-7(1.0eq.,67mg,酢酸エチル4.1wt%含有,0.098mmol)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,51mg,0.146mmol)の酢酸エチル(670μL)/水(200μL)混合液に、氷冷下でDIPEA(2.5eq.,42μL,0.247mmol)およびDMT-MM(15.1%含水,1.7eq.,54mg,0.166mmol)を加え、氷冷下で1.5時間撹拌した。反応液に酢酸エチル(2mL)を加え、5%クエン酸水溶液(2mL)で1回、5%炭酸水素ナトリウム水溶液(2mL)で1回、5%塩化ナトリウム水溶液(2mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(98mg)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~50/50)し、白色アモルファスとして化合物44-1(71mg,不純物1.4%,酢酸エチル0.7wt%含有,換算収率75%)を得た。
 窒素雰囲気下、化合物44-1(1.0eq.,68mg,不純物1.4%,酢酸エチル0.7wt%含有,0.070mmol)のTHF(2mL)/水(500μL)混合液に、室温で酢酸(5.0eq.,20μL,0.350mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,6.8mg)を加え、系内を水素置換後、同温で16時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して得られた粗体(49mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%酢酸水溶液/アセトニトリル=95/5~90/10)した。凍結乾燥を行い、白色固体として化合物44(32.6mg,酢酸1.2wt%含有,換算収率83%,純度97.4%)を得た。
 H-NMR(400MHz,DO)δ6.88(d,J=8.0Hz,1H),6.81(dd,J=8.0,1.6Hz,1H),6.51(d,J=1.6Hz,1H),5.52(s,1H),4.69(d,J=10.4Hz,1H),4.55(dd,J=8.4,4.4Hz,1H),4.01(dd,J=7.6,4.4Hz,1H),3.36(s,3H),3.16(dd,J=14.0,4.4Hz,1H),2.99(dd,J=14.0,7.6Hz,1H),2.83(dd,J=16.8,4.0Hz,1H),2.71(s,3H),2.69(dd,J=16.8,8.4Hz,1H),2.09-1.94(m,2H),1.93-1.80(m,1H),1.60(s,3H),1.00(t,J=7.2Hz,3H),0.93(d,J=6.4Hz,3H),0.84(d,J=6.8Hz,3H).
 (実施例29M4:化合物45の合成)
 化合物35-2(1.0eq.,3.00g,3.55mmol)およびD-Val-OMe塩酸塩(Fragment C-1d,1.5eq.,0.89g,5.3mmol)の酢酸エチル(30mL)/水(9.0mL)混合液に室温でDIPEA(1.7eq.,1.0mL,5.9mmol)を加えた。室温でDMT-MM(15.1%含水,1.7eq.,1.96g,6.01mmol)を加え、同温で1時間撹拌した。反応液の有機層を回収した後、有機層を10%クエン酸水溶液(15mL)で1回、10%塩化ナトリウム水溶液(15mL)で1回、5%炭酸水素ナトリウム水溶液(15mL)で1回、10%塩化ナトリウム水溶液(15mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して黄色粘体として化合物45-1(3.50g)を取得した。
 窒素雰囲気下、化合物45-1(1.0eq.,3.50g,3.55mmolとして計算)のDMF(8.5mL)溶液に、室温で4-tert-ブチル-ベンゼンチオール(3.0eq.,1.77g,10.6mmol)および炭酸セシウム(3.0eq.,3.47g,10.7mmol)を加え、同温で1時間撹拌した。酢酸エチル(17.0mL)および水(25.5mL)を加えて1回分液抽出した。有機層を10%塩化ナトリウム水溶液(17.0mL)で2回分液洗浄した後、有機層を硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別後、減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル34g,n-ヘプタン/酢酸エチル=4/1~1/1)し、黄色液体として化合物45-2(2.68g,化合物35-2からの2段階収率97.7%)を取得した。
  窒素雰囲気下、化合物45-2(1.0eq.,2.68g,3.46mmol)のTHF(10.7mL)/メタノール(5.36mL)/水(5.36mL)混合液に室温で水酸化リチウム一水和物(2.5eq.,0.363g,8.65mmol)を加えた。同温で1時間撹拌した後、酢酸エチル(13.4mL)および水(8.0mL)を加え1回分液抽出した後、有機層を10%塩化ナトリウム水溶液(13.4mL)で2回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮した。白色固体として化合物45-3(2.44g,収率92.7%)を得た。
 窒素雰囲気下、DMT-MMT(2.0eq.,0.88g,2.67mmol)およびDIPEA(2.0eq.,453μL,2.66mmol)のジクロロメタン(101.25mL)溶液に、化合物45-3(1.0eq.,1.0125g,1.33mmol)のジクロロメタン(32.4mL)溶液を、室温で19時間かけて滴下した後、同温で2時間撹拌した。35℃で5.0wt%以下まで減圧濃縮した後、濃縮残渣に酢酸エチル(10mL)を加え、10%クエン酸水溶液(5.0mL)で1回、10%塩化ナトリウム水溶液(5.0mL)で1回、5%炭酸水素ナトリウム水溶液(5.0mL)で1回、10%塩化ナトリウム水溶液(5.0mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、ろ液を減圧濃縮して粗体(1.14g)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:順相シリカゲル41.50g,n-ヘプタン/酢酸エチル=5/1~3/1,2回目:NHシリカゲル17.73g,n-ヘプタン/酢酸エチル=2/1)し、無色油状物として化合物45-4(187.94mg,収率19.0%)を取得した。
 窒素雰囲気下、化合物45-4(1.0eq.,187.90mg,0.253mmol)のTHF(1.69mL)/水(0.56mL)混合液に、室温でクエン酸(10.0eq.,486.5mg,2.53mmol)を加えた後、35℃で16時間撹拌した。反応液に酢酸エチル(4mL)および水(3.8mL)を加え、1回分液抽出した。有機層を水(3.8mL)で1回分液洗浄した後、水層のpHが8以上になるまで5%炭酸水素ナトリウム水溶液(3.8mL)で1回分液洗浄した。有機層を10%塩化ナトリウム水溶液(3.8mL)で1回分液洗浄した後、各水層を酢酸エチルで再度分液抽出した。有機層を合一し、硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮して粗体(206.2mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル3.8g,n-ヘプタン/酢酸エチル=4/1~2/3)し、無色液体として化合物45-5(174.7mg)を得た。
 窒素雰囲気下、化合物45-5(1.0eq.,109.9mg,0.16mmolとして計算)のジクロロメタン(2.0mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,0.1013g,0.24mmol)を加えて同温で3時間撹拌した後、室温で13時間撹拌した。氷冷下で5%炭酸水素ナトリウム水溶液(2.0mL)および10%亜硫酸ナトリウム水溶液(2.0mL)を加え30分間撹拌した。反応液の有機層を回収し、有機層を5%炭酸水素ナトリウム水溶液(4mL)で2回、10%塩化ナトリウム水溶液(4mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮して茶色固体としてAldehyde(113.7mg)を得た。
 Aldehyde(1.0eq.,113.7mg,0.16mmolとして計算)のt-ブチルアルコール(1.495mL)/スクアレン(0.099mL)/水(0.399mL)混合液に室温でリン酸二水素ナトリウム二水和物(3.5eq.,87.0mg,0.56mmol)を加えた後、80%亜塩素酸ナトリウム(4.5eq.,81.0mg,0.89mmol)を加え同温で1時間撹拌した。反応液に酢酸エチル(4mL)および水(3mL)を加えて1回分液抽出した。有機層を10%塩化ナトリウム水溶液(4mL)で2回分液洗浄した後、得られた有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別後、減圧濃縮して粗体(180.8mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル2g,クロロホルム→酢酸エチル→酢酸エチル/メタノール=2/1)し、淡黄色液体として化合物45-6(108.4mg)を得た。
 化合物45-6(1.0eq.,108.4mg,0.16mmolとして計算)およびL-アスパラギン酸ジベンジルエステル塩酸塩(Fragment D-2,1.5eq.,83.6mg,0.24mmol)の酢酸エチル(1022μL)溶液にDIPEA(2.5eq.,51.5mg,0.40mmol)を室温で加えた後、氷冷下でDMT-MM(14.6%含水,1.7eq.,87.7mg,0.27mmol)および水(3307μL)を加え、同温で6時間撹拌した。反応液の有機層を回収した後、有機層を10%塩化ナトリウム水溶液(2mL)および10%クエン酸水溶液(4mL)を加えて1回分液洗浄した。その後、10%塩化ナトリウム水溶液(4mL)で1回、5%炭酸水素ナトリウム水溶液(4mL)で1回、10%塩化ナトリウム水溶液(4mL)で1回分液洗浄した。有機層を硫酸ナトリウムで乾燥後、硫酸ナトリウムをろ別し、減圧濃縮して粗体(152.2mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル4.0g,n-ヘプタン/酢酸エチル=3/1~2/1)し、黄色液体として化合物45-7(132.4mg,化合物45-4からの3段階収率88.7%,)を取得した。
 窒素雰囲気下、化合物45-7(1.0eq.,186.3mg,0.20mmol)のTHF(1863μL)/酢酸(1863μL)混合液に室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,19.82mg)を加え、系内を水素置換後、室温で22時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して粗体(107.1mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%酢酸水溶液/アセトニトリル=95/5~90/10)した後、凍結乾燥を行い白色固体として化合物45(43.7mg,収率40.4%,純度98.9%)を得た。
 H-NMR(400MHz,DO)δ7.00-6.89(m,3H),4.73(s,1H),4.55-4.51(m,1H),4.08(d,J=6.4Hz,1H),4.02(dd,J=11.6,4.0Hz,1H),3.20(dd,J=12.8,4.0Hz,1H),2.99(t,J=12.4Hz,1H),2.86-2.76(m,2H),2.71(s,3H),2.27-2.15(m,1H),2.06-1.95(m,1H),1.79-1.65(m,1H),1.62(s,3H),1.09(t,J=7.2Hz,3H),0.82(d,J=6.8Hz,6H).
 (実施例29L:化合物47の合成)
 窒素雰囲気下、化合物1-1(1.0eq.,1.69g,1.49mmolとして計算)のTHF(15mL)溶液に氷冷下でTBAF(1.1M in THF,1.2eq.,1.62mL,1.78mmol)を加え、同温で2時間撹拌した。反応液にトルエン(30mL)を加え、10%塩化アンモニウム水溶液(30mL)で3回、5%塩化ナトリウム水溶液(30mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.64g)をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=70/30~0/100)し、白色アモルファスとして化合物47-1(1.19g)を得た。
 窒素雰囲気下、化合物47-1(1.0eq.,1.19g,1.37mmol)のアセトニトリル(8.7mL)/0.67Mリン酸緩衝液(pH6.8,7.3mL)混合液にTEMPO(0.1eq.,22mg,0.14mmol)、80%亜塩素酸ナトリウム(2.0eq.,0.31g,2.74mmol)および次亜塩素酸ナトリウム五水和物(0.02eq.,5mg,0.030mmol)を加え、外温30oCで16.5時間撹拌した。反応液に酢酸エチル(25mL)を加え、5%塩化ナトリウム水溶液(25mL)で2回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して得られた粗体(1.21g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル25g,ヘキサン/酢酸エチル/メタノール=90/10/0~0/100/0~0/80/20)し、白色アモルファスとして化合物47-2(1.18g,換算収率97%)を得た。
 窒素雰囲気下、化合物47-2(1.0eq.,1.45mmol)およびFragment D-12(1.5eq.,0.71g,2.17mmol)のジクロロメタン(5mL)溶液に、氷冷下でPyBroP(1.5eq.,1.01g,2.17mmol)および2,6-ルチジン(3.0eq.,0.51mL,4.38mmol)を加え、同温で1.5時間、室温に昇温しながら20時間撹拌した。反応液に酢酸エチル(20mL)を加え、5%クエン酸水溶液(20mL)で1回、5%炭酸水素ナトリウム水溶液(20mL)で1回、5%塩化ナトリウム水溶液(20mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(2.54g)を得た。
 同様の操作で化合物47-2(50mg)から得られた粗体(84mg)と上記粗体を合一し、2回フラッシュカラムシリカゲル精製(1回目:順相シリカゲル25g,ヘキサン/酢酸エチル=70/30~50/50,2回目:NHシリカゲル16g,ヘキサン/酢酸エチル=50/50~0/100)し、黄色アモルファスとして化合物47-3(1.53g,換算収率85%)を得た。
 窒素雰囲気下、化合物47-3(1.0eq.,500mg,0.42mmol)のDMF(1.5mL)溶液に、氷冷下で炭酸セシウム(1.0eq.,138mg,0.42mmol)および4-tert-ブチルベンゼンチオール(1.0eq.,71μL,0.42mmol)を加え、同温で2時間撹拌した。同温でN-Boc-L-バリン(1.5eq.,138mg,0.64mmol)、HATU(1.5eq.,241mg,0.63mmol)およびDIPEA(2.5eq.,180μL,1.06mmol)を加え、同温で1時間撹拌した。反応液にトルエン(4mL)を加え、水(4mL)で1回、5%クエン酸水溶液(4mL)で1回、5%炭酸水素ナトリウム水溶液(4mL)で1回、5%塩化ナトリウム水溶液(4mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(737mg)を得た。同様の操作で化合物47-3(50mg)から得られた粗体(66mg)と上記粗体を合一してフラッシュシリカゲルカラム精製(NHシリカゲル16g,ヘキサン/酢酸エチル=90/10~0/100)し、淡黄色アモルファスとして化合物47-4(273mg,換算収率49%)を得た。
 窒素雰囲気下、化合物47-4(1.0eq.,249mg,0.21mmol)のジクロロメタン(1.75mL)溶液に、室温でトリエチルシラン(25eq.,0.824mL,5.17mmol)を加えた。氷冷下でTFA(50eq.,0.791mL,10.34mmol)を加え、同温で3.5時間撹拌した後、反応液を減圧濃縮した。
同様の操作で化合物47-4(20mg)から得られた濃縮残渣をジクロロメタンに溶解し、上記の濃縮残渣と合一して再度減圧濃縮し、黄色粘体として化合物47-5(369mg)を得た。
 窒素雰囲気下、HATU(5.0eq.,365mg,0.96mmol)のアセトニトリル(186mL)溶液に室温でDIPEA(10.0eq.,0.327mL,1.92mmol)を加え、同温で化合物47-5(1.0eq.,317mg,0.19mmolとして計算)のアセトニトリル(3mL)/THF(3mL)混合液を20時間かけて加え、滴下完了後、同温でさらに2.5時間撹拌した。反応液を減圧濃縮し、濃縮残渣に酢酸エチルを加えて超音波照射後、不溶解物をろ別した。ろ液を5%クエン酸水溶液(5mL)で1回、5%炭酸水素ナトリウム水溶液(5mL)で1回、5%塩化ナトリウム水溶液(5mL)で1回分液洗浄した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、減圧濃縮して粗体(378mg)を得た。同様の操作で化合物47-5(37mg)から得られた粗体(21mg)と上記粗体を合一し、2回フラッシュカラムシリカゲル精製(順相シリカゲル10g,1回目:ヘキサン/酢酸エチル=60/40~50/50、2回目:クロロホルム/酢酸エチル=85/15~0/100)し、白色アモルファスとして化合物47-6(61mg,化合物47-4から2段階の換算収率30%)を得た。
 窒素雰囲気下、化合物47-6(1.0eq.,56mg,0.058mmol)のTHF(2mL)/水(0.1mL)混合液に、室温で酢酸(5.0eq.,17μL,0.297mmol)および10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,5.6mg)を加え、系内を水素置換後、同温で19時間撹拌した。10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,5.6mg)を追加し、同温でさらに8時間撹拌した。セライトろ過により触媒をろ別後、ろ液を減圧濃縮して得られた粗体(35.5mg)をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%酢酸水溶液/アセトニトリル=95/5~90/10)した。凍結乾燥を行い、白色固体として化合物47(18.7mg,換算収率57%,純度97.1%)を得た。
 H-NMR(400MHz,DO)δ6.92(d,J=8.0Hz,1H),6.88(dd,J=8.0,1.6Hz,1H),6.73(s,1H),5.49(s,1H),4.73-4.69(m,1H),4.08(d,J=11.2Hz,1H),3.99(dd,J=10.4,5.6
Hz,1H),3.32-3.24(m,4H),2.97(dd,J=16.4,6.0Hz,1H),2.80-2.71(m,1H),2.70-2.62(m,4H),2.08-1.94(m,1H),1.86-1.72(m,H),1.71-1.55(m,4H),1.06(t,J=7.2Hz,3H),0.82(d,J=6.4Hz,3H),0.70(d,J=6.8Hz,3H).
 (実施例29M:化合物48の合成)
化合物48を合成した。
 化合物35-2から化合物48-1への合成は以下のとおりに行った。
 窒素雰囲気下、化合物35-2(1.0eq.,1.12g,1.32mmol)の酢酸エチル(10mL)/水(3mL)混合液に室温でL-アラニン-OMe塩酸塩(1.5eq.,278mg,1.99mmol)、氷冷下でDIPEA(1.7eq.,380μL,2.23mmol)およびDMT-MM(1.7eq.,628mg,2.27mmol)を加え、室温で2時間撹拌した。飽和炭酸水素ナトリウム水溶液(20mL)で1回、水(20mL)で1回、1N塩酸水溶液(20mL)で1回、水(20mL)で1回、飽和塩化ナトリウム水溶液(20mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体の化合物48-1(1.24g,粗収率100%)を得た。
 化合物48-1から化合物48-2への合成は以下のとおりに行った。
 窒素雰囲気下、化合物48-1(1.0eq.,1.24g,1.33mmol)のDMF(13mL)溶液に室温下で炭酸セシウム(1.2eq.,572mg,1.62mmol)およびチオフェノール(1.2eq.,160μL,1.57mmol)を加え、室温で3時間撹拌した。水(15mL)を加えた後、ヘキサン(5mL)/酢酸エチル(15mL)混合液で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(50mL)で分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色油状物として粗体(1.45g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=75/25~0/100)し、化合物48-2(836mg,収率84%)を得た。
 化合物48-2から化合物48-3への合成は以下のとおりに行った。
 化合物48-2(1.0eq.,836mg,1.12mmol)のTHF(8mL)/水(4mL)混合液に室温下で水酸化リチウム(3.0eq.,81mg,3.39mmol)を加え、室温で1.5時間撹拌した。1N塩酸水溶液(2.5mL)を加え、pHを7にした後、水(10mL)を加え、酢酸エチル(10mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(25mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体の化合物48-3(833mg,粗収率102%)を得た。
 化合物48-3から化合物48-4への合成は以下のとおりに行った。
 化合物48-3(1.0eq.,833mg,1.12mmol)のジクロロメタン(50mL)溶液を室温で、DMT-MMT(2.0eq.,735mg,2.24mmol)およびDIPEA(2.0eq,380μL,2.23mmol)のジクロロメタン(83mL)溶液に約50μL/minで16時間かけて滴下した後、室温で5時間撹拌した。反応液を減圧濃縮してジクロロメタンを留去した後、酢酸エチル(30mL)を加え、飽和炭酸水素ナトリウム水溶液(30mL)で1回、水(30mL)で1回、1N塩酸水溶液(30mL)で1回、水(30mL)で1回、飽和塩化ナトリウム水溶液(30mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(828mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=75/25~65/35)し、白色アモルファスとして化合物48-4(345mg,不純物含有,見かけ収率43%)を得た。
 化合物48-4から化合物48-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物48-4(1.0eq.,345mg,483μmol)のTHF(5mL)溶液に氷冷下でTBAF(1M in THF,1.5eq.,730μL,730μmol)を加え、室温で1.5時間撹拌した。反応液に飽和塩化アンモニウム水溶液(10mL)を加えた後、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体(333mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~0/100)し、白色固体として化合物48-5(110mg,収率38%)を得た。
 化合物48-5から化合物48-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物48-5(1.0eq.,110mg,183μmol)のジクロロメタン(2mL)溶液に氷冷下でデス-マーチンペルヨージナン(1.5eq.,116mg,274μmol)を加え、室温で1時間撹拌した。デス-マーチンペルヨージナン(1.0eq.,79mg,185μmol)を追加し、30分間撹拌した。20%亜硫酸ナトリウム水溶液(5mL)および飽和炭酸水素ナトリウム水溶液(5mL)を加え、ジクロロメタン(5mL)で3回分液抽出した。有機層を合一し、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体のAldehyde(119mg、粗収率109%)を得た。
 Aldehyde(1.0eq.,119mg,183μmolとして計算)のt-ブチルアルコール(1.2mL)/アミレン(0.4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,100mg,638μmol)および80%亜塩素酸ナトリウム(4.6eq.,94mg,833μmol)の水(0.4mL)溶液を加え、室温で30分間撹拌した。飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(5mL)で3回分液抽出した。有機層を合一し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体の化合物48-6(121mg,粗収率108%)を得た。
 化合物48-6から化合物48-7への合成は以下のとおりに行った。
 窒素雰囲気下、化合物48-6(1.0eq.,121mg,183μmol)の酢酸エチル(1.4mL)/水(0.6mL)混合液に、氷冷下でDIPEA(2.6eq.,80μL,470μmol)、L-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,100mg,275μmol)およびDMT-MM(1.8eq.,89mg,321μmol)を加え、氷冷下で2時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液(10mL)で1回、水(10mL)で1回、1N塩酸水溶液(10mL)で1回、水(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして粗体(157mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル5g,ヘキサン/酢酸エチル=50/50~25/75)し、白色アモルファスとして化合物48-7(136mg,3段階収率80%)を得た。
 化合物48-7から化合物48への合成は以下のとおりに行った。
 窒素雰囲気下、化合物48-7(1.0eq.,136mg,147μmol)のTHF(1mL)/酢酸(1mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,7.1mg)を加え、系内を水素置換後、室温で16時間撹拌した。セライトろ過により触媒をろ別し、ろ液を減圧濃縮して橙色アモルファスとして粗体(106mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル6g,1回目:0.05%酢酸水溶液/アセトニトリル=95/5~20/80,2回目:0.05%酢酸水溶液/アセトニトリル=100/0~87/13)した後、凍結乾燥を行い白色固体として化合物48の酢酸塩(12.8mg,収率17%,純度96%)を得た。
 H-NMR(400MHz,DO)δ7.08(s,1H),6.87-6.80(m,2H),4.56(s,1H),4.36(q,J=7.2Hz,1H),4.18(dd,J=9.0,5.0Hz,1H),3.84(dd,J=9.7,4.2Hz,1H),3.11(dd,J=13.4,4.2Hz,1H),2.87(dd,J=13.4,9.7Hz,1H),2.60(s,3H),2.26(t,J=7.8Hz,2H),2.09-1.98(m,1H),1.88-1.78(m,2H),1.66-1.57(m,1H),1.45(s,3H),1.13(d,J=7.2Hz,3H),0.81(t,J=7.4Hz,3H).
 (実施例29N:化合物49の合成)
 Fragment A-10から化合物35-2までの2工程は、実施例29Iに記載の通りに行った。
 化合物35-2から化合物49-1への合成は以下の通りに行った。
 化合物35-2(1.0eq.,1.17g,1.39mmolとして計算)の酢酸エチル(14mL)/水(5.2mL)混合液に、室温でL-ロイシン-OMe塩酸塩(1.5eq.,380mg,2.09mmol)、DIPEA(1.7eq.,401μL,2.36mmol)およびDMT-MM(1.7eq.,653mg,2.36mmol)を加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物49-1(1.40g,粗収率104%)を得た。
 化合物49-1から化合物49-2への合成は以下のとおりに行った。
 窒素雰囲気下、化合物49-1(1.0eq.,1.40g,1.39mmolとして計算)のDMF(14mL)溶液に、室温で炭酸セシウム(3.0eq.,1.36g,4.16mmol)およびチオフェノール(3.0eq.,424μL,4.16mmol)を加え、同温で1.5時間撹拌した。反応液にヘキサン(10mL)/酢酸エチル(30mL)混合液を加え、水(20mL)で3回、飽和塩化ナトリウム(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル20g,ヘキサン/酢酸エチル=67/33~33/66)し、淡黄色粘状として化合物49-2(953mg,2段階収率87%)を得た。
 化合物49-2から化合物49-3への合成は以下のとおりに行った。
 化合物49-2(1.0eq.,932mg,1.18mmol)のTHF(12mL)/水(4mL)混合液に、室温で水酸化リチウム(3.0eq.,86.0mg,3.59mmol)を加え、同温で2時間撹拌した。反応液に1N塩酸水溶液(1.8mL)を加えてpHを7にした。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回分液洗浄した。水層を酢酸エチル(10mL)で1回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物49-3(921mg,粗収率101%)を得た。
 化合物49-3から化合物49-4への合成は以下のとおりに行った。
 化合物49-3(1.0eq.,921mg,1.18mmol)のジクロロメタン(55mL)溶液を室温で、DMT-MMT(1.7eq.,655mg,2.00mmol)およびDIPEA(2.0eq.,402μL,2.36mmol)のジクロロメタン(92mL)溶液に約34μL/minで滴下し、同温で19時間撹拌した。反応液を減圧濃縮後、濃縮残渣に酢酸エチル(40mL)を加え、水(20mL)で1回、飽和塩化アンモニウム水溶液(20mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスの粗体(987mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル30g,ヘキサン/酢酸エチル=80/20~65/35)し、白色アモルファスとして化合物49-4(490mg,不純物含有,見かけ収率55%)を得た。
 化合物49-4から化合物49-5への合成は以下のとおりに行った。
 化合物49-4(1.0eq.,480mg,0.635mmolとして計算)のTHF(6mL)溶液に、室温でTBAF(1M in THF,2.0eq.,1.27mL,1.27mmol)を加え、同温で2時間撹拌した。反応液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(459mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル10g,ヘキサン/酢酸エチル=60/40~0/100)し、白色アモルファスとして化合物49-5(345mg,不純物含有,収率85%)を得た。
 化合物49-5から化合物49-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物49-5(1.0eq.,338mg,0.526mmolとして計算)のジクロロメタン(5.3mL)溶液に、氷冷下でデス-マーチンペルヨージナン(2.0eq.,446mg,1.05mmol)を加え、室温で2時間撹拌した。反応液に10%亜硫酸ナトリウム水溶液(10mL)/飽和重曹水(10mL)混合液を加え、酢酸エチル(30mL)で1回分液抽出した。有機層を10%亜硫酸ナトリウム水溶液(10mL)/飽和重曹水(10mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(338mg,粗収率100%)を得た。
 Aldehyde(1.0eq.,338mg,0.526mmolとして計算)のアミレン(1.2mL)/t-ブチルアルコール(5mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.4eq.,278mg,1.78mmol)および、80%亜塩素酸ナトリウム(4.5eq.,268mg,2.37mmol)の水(1.2mL)溶液を加え、同温で1時間撹拌した。反応液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして粗体(367mg)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル6g,ヘキサン/酢酸エチル=33/67~0/100)し、白色アモルファスとして化合物49-6(335mg,不純物含有,見かけ収率97%)を得た。
 化合物49-6から化合物49-7への合成は以下のとおりに行った。
 化合物49-6(1.0eq.,334mg,0.510mmolとして計算)の酢酸エチル(5mL)/水(2.5mL)混合液に、室温でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,279mg,0.768mmol)を加えた。氷冷下でDIPEA(2.5eq.,217μL,1.28mmol)を加え、10分間撹拌した後、DMT-MM(1.7eq.,241mg,0.871mmol)を加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色アモルファスとして粗体(561mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル6g,ヘキサン/酢酸エチル=67/33~50/50、2回目:順相シリカゲル10g,ヘキサン/酢酸エチル=75/25~50/50)し、白色アモルファスとして化合物49-7(132mg,収率28%)を得た。
 化合物49-7から化合物49への合成は以下のとおりに行った。
 窒素雰囲気下、化合物49-7(1.0eq.,131mg,0.140mmol)のTHF(1.5mL)/酢酸(1.5mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,13.1mg)を加え、系内を水素置換後、同温で16時間撹拌した。セライトろ過により触媒をろ別した後、ろ液を0.45μmのフィルターでろ過し、ろ液を減圧濃縮することで、灰色固体の粗体(102mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(逆相シリカゲル30g,1回目:0.05%酢酸水溶液/アセトニトリル=95/5~69/31、2回目:0.05%酢酸水溶液/アセトニトリル=95/5~82/18)した後、凍結乾燥を行い白色固体として化合物49の酢酸塩(39.0mg,収率49%,純度99.0%)を得た。
 H-NMR(400MHz,DO)δ6.87-6.78(m,3H),4.38(t,J=7.2Hz,1H),4.14(dd,J=8.8,4.7Hz,1H),3.86(dd,J=4.6,8.9Hz,1H),3.10(dd,J=4.6,13.4Hz,1H),2.83(dd,J=8.9,13.4Hz,1H),2.57(s,3H),2.20(t,J=7.8Hz,2H),2.03-1.94(m,1H),1.88-1.75(m,2H),1.66-1.57(m,1H),1.49-1.45(m,4H),1.34-1.28(m,2H),0.88(t,J=7.3Hz,3H),0.72(d,J=6.2Hz,3H),0.69(d,J=6.2Hz,3H).
 (実施例29O:化合物50の合成)
 Fragment A-10から化合物35-2の2工程は実施例29Iに記載の通りに行った。
 化合物35-2から化合物50-1への合成は以下のとおりに行った。
 化合物35-2(1.0eq.,1.20g,1.42mmol)の酢酸エチル(11mL)/水(3.3mL)混合液に、室温でL-イソロイシン-OMe塩酸塩(Fragment C-17,1.5eq.,388mg,2.14mmol)、DIPEA(1.7eq.,400μL,2.35mmol)およびDMT-MM(1.7eq.,668mg,2.41mmol)を加え、同温で3時間撹拌した。反応液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(10mL)で3回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスとして化合物50-1(1.54g,粗収率111%)を得た。
 化合物50-1から化合物50-2への合成は以下のとおりに行った。
 窒素雰囲気下、化合物50-1(1.0eq.,1.54g,1.42mmolとして計算)のDMF(14mL)溶液に、氷冷下で炭酸セシウム(1.2eq.,558mg,1.71mmol)およびチオフェノール(1.2eq.,175μL,1.71mmol)を加え、同温で1.5時間撹拌した。ヘキサン(5mL)/酢酸エチル(15mL)混合液を加え、水(14mL)で1回分液洗浄した。水層をヘキサン(3.7mL)/酢酸エチル(1.3mL)混合液で3回分液抽出した後、有機層を合一して水(10mL)で2回、飽和塩化ナトリウム(5mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色粘体として粗体を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル16g,ヘキサン/酢酸エチル=3/1~1/2)し、淡黄色粘体として化合物50-2(1.21g,収率108%)を得た。
 化合物50-2から化合物50-3への合成は以下のとおりに行った。
 化合物50-2(1.0eq.,1.21g,1.42mmolとして計算)のTHF(7mL)/メタノール(3.5mL)/水(4mL)混合液に、氷冷下で水酸化リチウム(2.5eq.,85.7mg,3.57mmol)を加え、同温で3.5時間撹拌した。反応液に1N塩酸水溶液(1.1mL)を加えた後、10mL程度反応液を減圧濃縮により留去した。水(10mL)を加え、酢酸エチル(15mL)で1回、酢酸エチル(3mL)で2回分液抽出した後、有機層を合一して飽和塩化ナトリウム水溶液(3mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物50-3(1.05g,3段階収率95%)を得た。
 化合物50-3から化合物50-4への合成は以下のとおりに行った。
 化合物50-3(1.0eq.,1.05g,1.36mmol)のジクロロメタン(34mL)溶液を室温で、DMT-MMT(2.0eq.,834mg,2.72mmol)およびDIPEA(2.0eq.,460μL,2.70mmol)のジクロロメタン(105mL)溶液に4時間かけて滴下し、滴下後に同温で19時間撹拌した。反応液を減圧濃縮した後、酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(15mL)で1回分液洗浄した。水層を酢酸エチル(10mL)で1回分液抽出した後、有機層を合一し、飽和塩化アンモニウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(5mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して淡黄色アモルファスの粗体(1.30g)を得た。粗体をフラッシュシリカゲルカラム精製(順相シリカゲル13g,ヘキサン/酢酸エチル=3/1~2/1)し、白色アモルファスとして化合物50-4(267mg,不純物含有,見かけ収率26%)を得た。
 化合物50-4から化合物50-5への合成は以下のとおりに行った。
 窒素雰囲気下、化合物50-4(1.0eq.,264mg,0.349mmol)のTHF(3.5mL)/水(1.8mL)混合液に、室温でクエン酸(10eq.,671mg,3.49mmol)を加え、外温35℃で19時間撹拌した。反応液に酢酸エチル(10mL)を加え、水(10mL)で1回、飽和炭酸水素ナトリウム水溶液(10mL)で2回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して粗体を得た。粗体に酢酸エチルを加えた後、減圧濃縮した際に析出した白色固体をろ取することで化合物50-5(177mg,収率79%)を得た。
 化合物50-5から化合物50-6への合成は以下のとおりに行った。
 窒素雰囲気下、化合物50-5(1.0eq.,177mg,0.275mmol)のジクロロメタン(2.8mL)溶液に、氷冷下でデス-マーチンペルヨージナン(1.5eq.,174mg,0.412mmol)を加え、室温で4時間撹拌した。反応液にデス-マーチンペルヨージナン(0.50eq.,58.9mg,0.139mmol)を加え、同温でさらに2時間撹拌した。氷冷下で10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液を加えた後、酢酸エチル(15mL)で1回分液抽出した。有機層を10%亜硫酸ナトリウム水溶液(5mL)/飽和炭酸水素ナトリウム水溶液(5mL)混合液で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとしてAldehyde(184mg,粗収率104%)を得た。
 Aldehyde(1.0eq.,181mg,0.275mmolとして計算)のアミレン(1mL)/t-ブチルアルコール(4mL)混合液に、室温でリン酸二水素ナトリウム二水和物(3.5eq.,151mg,0.967mmol)および80%亜塩素酸ナトリウム(4.5eq.,140mg,1.24mmol)の水(1mL)溶液を加え、同温で1時間撹拌した。反応液に酢酸エチル(10mL)を加え、飽和塩化アンモニウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して白色アモルファスとして化合物50-6(192mg,粗収率106%)を得た。
 化合物50-6から化合物50-7への合成は以下のとおりに行った。
 化合物50-6(1.0eq.,190mg,0.275mmolとして計算)の酢酸エチル(2.8mL)/水(1.4mL)混合液に、室温でL-グルタミン酸ジベンジルエステル塩酸塩(Fragment D-1,1.5eq.,150mg,0.413mmol)を加えた。氷冷下でDIPEA(2.5eq.,117μL,0.688mmol)を加え、5分間撹拌した後、DMT-MM(1.7eq.,130mg,0.470mmol)加え、同温で2時間撹拌した。反応液に酢酸エチル(15mL)を加え、水(10mL)で1回、飽和塩化アンモニウム水溶液(10mL)で1回、飽和塩化ナトリウム水溶液(10mL)で1回分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、硫酸マグネシウムをろ別し、減圧濃縮して黄色アモルファスとして粗体(321mg)を得た。粗体を2回フラッシュシリカゲルカラム精製(1回目:NHシリカゲル6g,ヘキサン/酢酸エチル=67/33~50/50、2回目:順相シリカゲル5g,ヘキサン/酢酸エチル=60/40~50/50)し、白色アモルファスとして化合物50-7(194mg,収率73%)を得た。
 化合物50-7から化合物50への合成は以下のとおりに行った。
 窒素雰囲気下、化合物50-7(1.0eq.,193mg,0.200mmol)のTHF(2mL)/酢酸(2mL)混合液に、室温で10%パラジウム-炭素(エヌ・イー・ケムキャットNXタイプ,50%含水品,19.5mg)を加え、系内を水素置換後、同温で17時間撹拌した。セライトろ過により触媒をろ別した後、ろ液を0.45μmのフィルターでろ過し、ろ液を減圧濃縮して灰色固体の粗体(125mg)を得た。粗体をフラッシュシリカゲルカラム精製(逆相シリカゲル30g,0.05%酢酸水溶液/アセトニトリル=95/5~82/18)した後、凍結乾燥を行い白色固体として化合物50の酢酸塩(70.7mg,収率63%,純度99%)を得た。
 H-NMR(400MHz,DO)δ6.82-6.75(m,3H),4.13-4.09(m,2H),3.91(dd,J=9.0,4.9Hz,1H),3.11(dd,J=13.4,4.9Hz,1H),2.79(dd,J=13.4,9.0Hz,1H),2.59(s,3H),2.21(t,J=7.3Hz,2H),2.01-1.85(m,2H),1.83-1.74(m,1H),1.68-1.56(m,2H),1.45(s,3H),1.30-1.22(m,1H),1.01-0.91(m,4H),0.68(t,J=7.4Hz,3H),0.62(d,J=6.9Hz,3H).
(実施例30:化合物51の合成)
 化合物39は、特開2022-73598の実施例(段落0115~0137)を参照することで製造する。
(実施例31:化合物52の合成)
 化合物40は、特開2022-73598に記載の方法により製造する。
(実施例32:化合物53の合成)
 化合物41は、特開2022-73598記載の方法に準じた方法で製造する。
(実施例33:化合物の活性評価)
(材料)
対照物質(媒体) 
名称:大塚生理食塩液
製造販売元:株式会社大塚製薬工場
使用量:50μL 
保管条件:室温
被験物質
名称:化合物9
供給源:上記実施例で合成
使用量:0.4mL(50mg/mL溶液)
保管条件:冷凍、遮光
 被験物質の調製方法(1mg/mL): 50mg/mLに調製された高濃度溶液を、媒体で50倍希釈して1mg/mL投与液を調製した。
 調製液の保管および使用期限:調製した投与液は,各日1mLずつ分注して冷凍下で保存した。解凍した投与液は,冷蔵下で保管し,解凍日を使用期限とし,残量は廃棄した。
陽性対照物質
名称:MK-801
販売元:SIGMA-ALDRICH
使用量:0.0501g
保管条件:冷蔵(2~8℃) 
 陽性対照物質の調製方法(10mg/mL):0.0501gを秤量し,対照物質(生理食塩液)で全量が5mLになるようにメスアップして調製した。
 調製液の保管および使用期限:調製した投与液は,3日分に分注し,冷蔵下で保存した。使用期限は冷蔵で1カ月以内とした。
試験系
1. 使用動物
種および系統: ラット;Slc:SD 
入荷動物数および性別:雄50匹
入荷時週齢:6週齢
入荷時体重範囲:147.2~170.0g 
供給源:日本エスエルシー株式会社
識別方法:検疫馴化期間中は赤色の油性フェルトペンで尾に番号を示す記号を記入し、各ケージの前面に試験番号、入荷日、週齢、試験項目、性別、検疫動物番号および試験責任者を記入したラベルをつけて個体識別した。群分け後は黒色の油性フェルトペンで尾に試験動物番号を記入した。各ケージの前面には試験番号、試験日、週齢、性別、試験動物番号、試験群および試験責任者を記入したラベルをつけて個体を識別した。
検疫馴化:検疫および馴化期間中は、一般状態観察(1日1回)および体重測定(週1回以上)を実施し、健康状態が良好であり、網膜に異常が認めらない動物を試験に供した。
群分けまでに各個体について網膜の異常を眼底カメラにより判定し、異常個体は認められなかった。
異常動物の取扱い:試験期間中に一般状態および体重の増減等において異常が認められた動物はいなかった。
2. 飼育条件
温度:23.0±3.0℃
湿度:50±20%
換気回数:10回/時以上
照明:12時間(午前6時点灯,午後6時消灯).
飼料:固型飼料MF (オリエンタル酵母工業株式会社)を自由に与えた。
飲水:5-μmカートリッジフィルターを通過させた水道水を自由に与えた。
床敷:ケアフィーズ(ハムリー株式会社) 
飼育ケージ:ポリカーボネート製ケージ(W290×H190×D450mm)
収容動物数:2~3匹/ケージ
(実験方法)
1.試験群
2. 群分け
 前眼房水圧負荷による網膜障害モデルの初回作製前々日に群分けを行った。当日の体重を指標として各群の体重の平均値がほぼ均一となるよう,SAS(Ver.9.3,SAS Institute Japan 株式会社)およびEXSUS(Ver.8.0,株式会社CACクロア)を使用して層別無作為割付を行った。
3. 一般状態観察および体重測定
 動物の体重測定は1週間に1回以上の頻度で行い,一般状態観察は毎日実施した。
4. 投与
投与経路:点眼投与,静脈内投与
投与方法(点眼):ラットの処置眼(右眼)にマイクロピペットを用いて1日4回(1.5時間以上間隔をあけた)点眼投与した。
投与方法(静脈内):投与日の体重から算出した投与液量をシリンジおよび注射針を用いて尾静脈から虚血負荷の約30分前に投与した。
投与時点:以下の日程で投与した。
5. 前眼房水圧負荷による網膜障害モデルの作製
1. モデル作製日(day 0)に10 mg/kg塩酸キシラジンを筋肉内投与した。ラットを麻酔箱に入れイソフルラン(5%,酸素:笑気=1:3)による全身麻酔を行った。麻酔が効いたら麻酔箱から取り出し、吸入麻酔用マスクを装着し、イソフルラン(1~5%,酸素:笑気=1:3)により麻酔を維持した。
2.保温マットで体温を37℃に維持し、ラットの右眼(処置眼)にミドリンP点眼液を点眼して散瞳させた後、クラビット点眼液1.5% (参天製薬株式会社)点眼した。
3. 生理食塩液の入った点滴バッグを予め水面がラットの眼より155cm(100mmHg以上)の高さになるようにボトルをつり上げておいた。点滴バッグを小児用輸液セット(テルモ株式会社)に接続した27Gの注射針の針先から液を少し垂らしながら前眼房に刺入し固定した。なお,モデルの作製は眼圧の日内変動を考慮し,明期(6:00~18:00)に実施した。
4. 前房に針を刺入した後、還流系を会合することにより前眼房内に圧力(100mmHg以上)を負荷し維持した。針の刺入の際に水晶体および虹彩に針が当たらないように注意した。
5. 45分間の虚血負荷後、注射針等を取り外し、吸入麻酔用マスクを外して保温マット下で十分覚醒させてからケージに戻した。
6. 手術後の2日間は処置後の苦痛を軽減される目的で鎮痛剤として10mg/kg塩酸キシラジンを筋肉内投与した。
眼球摘出,眼球固定および病理標本の作製
1. モデル作製14日後にイソフルラン(5%,酸素:笑気=1:3)による全身麻酔後、放血により安楽死させ糸を眼球結膜の12時方向に印付し、眼球摘出を行った。
2. 眼球固定液(スーパーフィックス,倉敷紡績株式会社)に入れ、72時間固定(室温)を行った。
3. 水洗しないで50%アルコールで約24時間脱水した。
4. 70%アルコールで約24時間脱水した。
5. 70%アルコールで約24時間脱水後、切り出しして包埋用カセットに入れ替え、80%アルコールで約24時間脱水した。
6. 自動固定包埋装置に設置して90%アルコール(2時間)→95%アルコール(1.5時間)→100%アルコール(1)~(5)各1時間→キシレン(1)1.5時間→キシレン(2)1.5時間→キシレン(3)1.5時間→パラフィン(1)~(4)各1時間にセットして包埋した。
7. 視神経乳頭を含む横切3枚以上の病理標本(HE染色)を作製した。
病理標本の撮影
 作製した病理標本から薄切による損傷がない標本各個体3枚を任意に選択し、視神経乳頭を含む範囲について光学顕微鏡撮影システムを用いて一定倍率で撮影を行った。
網膜厚の測定
 病理標本の網膜断面写真はImage J [アメリカ国立衛生研究所(NIH)]を用いて視神経乳頭から300、600および900μmの網膜(IPL,INL、ONL) の厚さを測定した。
人道的エンドポイント
 人道的エンドポインを適応し,安楽死した動物は居なかった。
統計学的手法
 得られた試験成績は、個別値、平均値および標準誤差で表示した。網膜層厚は、対照物質および被験物質について一元配置分散分析を行い、群間の差が有意な場合はDunnett’s test を行った。また、対照物質および陽性対照物質の比較ではStudent’s t-testを行った。有意水準はいずれも両側5%(表示: P<0.05 およびP<0.01)とした。
結果および結論
 前眼房水圧負荷モデルのラットに対照物質、被験物質および陽性対照を投与した際の一般状態および網膜厚(内網状層,内顆粒層,外顆粒層)を図1~4および表1~7に示す。
一般状態観察
 モデル作製前から眼球摘出まで本試験で実施した全ての試験群で、一般状態に異常は認められなかった。
網膜厚
 内網状層(IPL) 
 試験群1では、視神経乳頭から300、600および900μmにおいて、27.05±0.96μm、34.15±1.31μmおよび35.52±1.30μmであった。試験群2では、31.31±0.93μm、38.85±1.23μmおよび41.51±1.27μmと対照群と比較して視神経乳頭から300~900μmの全ての計測部位で統計学的に有意差が認められた。試験群3では,37.09±1.42μm,42.95±1.07μmおよび44.32±1.47μmと対照群と比較して視神経乳頭から300~900μmの全ての計測部位で統計学的に有意差が認められた。
 一方,陽性対照として用いた試験群4では,38.05±1.38μm,44.01±2.11μmおよび46.61±2.34μmと対照群と比較して視神経乳頭から300~900μmの全ての計測部位で統計学的に有意な網膜障害抑制を示し、網膜層厚を定量的に評価する実験系として、本試験が適切であったことが確認された。
内顆粒層(INL) 
 試験群1では、視神経乳頭から300、600および900μmにおいて、28.05±1.26μm、29.42±0.78μmおよび28.62±1.47μmであった。試験群2では,28.93±1.27μm,31.25±1.29μmおよび30.39±1.24μmであった。試験群3では,29.27±1.94μm,31.48±1.26μmおよび228.71±1.67μmであり,被験物質群はいずれも対照群と比較して明らかな変化は認められなかった。試験群4では,28.96±1.66μm、31.17±2.21μmおよび31.45±2.48μmと対照群と比較して明らかな変化は認められなかった。
外顆粒層(ONL) 
 試験群1では、視神経乳頭から300、600および900μmにおいて、39.25±2.12μm、39.46±1.43μmおよび39.22±1.84μmであった。試験群2では、40.06±1.61μm、43.03±0.82μmおよび42.55±1.13μmであった。試験群3では、42.79±2.60μm、42.33±1.81μmおよび39.42±1.92μmであり、被験物質群はいずれも対照群と比較して明らかな変化は認められなかった。
 試験群4では、42.08±1.66μm、45.28±1.75μmおよび45.02±1.52μmと対照群と比較して視神経乳頭から600~900μmの計測部位で統計学的に有意差が認められた。
 以上のことから、前眼房水圧負荷ラットモデル対して、化合物9は水圧負荷の虚血により誘発された網膜障害の抑制作用が認められ、本試験条件下において網膜障害に対する予防効果および治療効果を示す可能性が示唆された。
 (要約)
 網膜障害モデルに対する網膜神経保護効果確認試験として、1群各10匹の前眼房水圧負荷ラットモデルを用いて化合物9の神経保護効果について検討した。水圧負荷によるモデルは、吸入麻酔下で155cm(100nnHg以上)の高さにした生理食塩液を輸液セットおよび注射針を用いて前眼房に刺入し、45分間圧力を負荷することで作製した。網膜層厚の評価は、モデル作製14日後に麻酔下放血致死後に眼球を摘出し、視神経乳頭を含む横切りの病理標本を各個体3枚以上作成して光学顕微鏡撮影システムを用いて一定倍率で撮影を行った。撮影した病理標本は,ImageJを用いて視神経乳頭から300、600および900μmの内網状層(IPL),内顆粒層(INL)および外顆粒層(ONL)の厚さを測定した。被験物質は神経保護効果を確認するため、予防効果(試験群2)はモデル作製前日および前々日の2日間(4回/日)点眼投与した。治療効果(試験群3) は網膜障害モデル作製翌日から13日間(4回/日)点眼投与した。対照物質(試験群1) も同様に生理食塩液を13日間(4回/日)点眼投与した。陽性対照物質(試験群4)は,MK-801をモデル作製当日の約30分前に静脈内投与した。
 結果、内顆粒層および外顆粒層に対し、対照群と比較して明らかな変化は認められなかった。内網状層に対しては,試験群2および3で視神経乳頭から300~900μmの全ての計測部位で対照群と比較して統計学的に有意な水圧負荷による網膜障害の抑制効果が認められ、試験群3の効果はMK-801とほぼ同等であった。
 以上のことから、前眼房水圧負荷ラットモデル対して、化合物9は水圧負荷の虚血により誘発された網膜障害の抑制作用が認められ,本試験条件下において網膜障害に対する予防効果および治療効果を示す可能性が示唆された。
(実施例34:ラットレーザー誘発脈絡膜血管新生モデルにおける化合物9の薬効評価)
1.材料
(1) 被験物質
 名称:化合物9
 保存条件:粉末は冷蔵、溶液は冷凍(-20℃)
 供給源:上記実施例で合成
(2) 陽性対照物質
 名称:アフリベルセプト
 製品名:アイリーア(登録商標)硝子体内注射液40 mg/mL
 保存条件:冷蔵にて遮光保存した。
 製造元:バイエル薬品株式会社
 販売元:参天製薬株式会社
(3) 陰性対照物質
 名称:生理食塩液
 保存条件:室温にて保存し、開封後は冷蔵にて保存した。
 製造販売元:株式会社大塚製薬工場
2.被験物質及び対照物質投与液の調製方法
(1) 被験物質投与液(10 mg/mL及び1 mg/mL 化合物9投与液)
 被験物質化合物9を秤量後、生理食塩液に溶解し、10 mg/mL 化合物9投与液を調製した。この溶液を一部採取し、生理食塩液で10倍希釈し、1 mg/mL 化合物9投与液を調製した。調製した10 mg/mL及び1 mg/mL 化合物9投与液は、それぞれ15本のチューブに分取し、-20℃にて冷凍保存した。分取したチューブは、投与日の初回投与直前に冷凍保存より取り出して常温にて自然解凍し、被験物質投与液として使用した。解凍した被験物質投与液は冷蔵保存し、24時間以内に使用した。
(2) 陽性対照物質投与液(アイリーア(登録商標)硝子体内注射液40 mg/mL)
 アイリーア(登録商標)硝子体内注射液40 mg/mL(バイエル薬品株式会社、以下「アイリーア(登録商標)」という)の調製は行わず、第1クール投与時に開封し、そのまま硝子体内投与液として使用した。第1クール投与時に開封したアイリーア(登録商標)のバイアル残余液は冷蔵保存し、第2クールの投与液として使用した。
(3) 陰性対照物質投与液(生理食塩液)
 生理食塩液(株式会社大塚製薬工場)の調製は行わず、開封しそのまま投与液として使用した。生理食塩液は15本のチューブに分取し、冷蔵保存にて1ヵ月以内に使用した。
3.被験物質及び対照物質投与液の投与用量、投与方法、投与回数、投与タイミング
(1) 被験物質投与液1
 投与物質名:化合物9(10 mg/mL溶液)
 投与方法:点眼投与
 投与用量:50 μg/5 μL/eye
 投与眼:右眼(レーザー照射眼)
 投与回数:56回(14日間、4回/日、9、11、13、15時、前後1時間許容)
 投与タイミング:レーザー照射直後から眼球摘出前日(Day 0 ~ 13)
(2) 被験物質投与液2
 投与物質名:化合物9(1 mg/mL溶液)
 投与方法:点眼投与
 投与用量:5 μg/5 μL/eye
 投与眼:右眼(レーザー照射眼)
 投与回数:56回(14日間、4回/日、9、11、13、15時、前後1時間許容)
 投与タイミング:レーザー照射直後から眼球摘出前日(Day 0 ~ 13)
(3) 陽性対照物質
 投与物質名:アイリーア(登録商標)
 投与方法:硝子体内投与
 投与用量:200 μg/5 μL/eye
 投与眼:右眼(レーザー照射眼)
 投与回数:1回(1回/日)
 投与タイミング:レーザー照射直後(Day 0)
(4) 陰性対照物質
 投与物質名:生理食塩液
 投与方法:点眼投与
 投与用量:5 μL/eye
 投与眼:右眼(レーザー照射眼)
 投与回数:56回(14日間、4回/日、9、11、13、15時、前後1時間許容)
 投与タイミング:レーザー照射直後から眼球摘出前日(Day 0 ~ 13)
4.試薬の調製
(1) 塩酸ケタミン/塩酸キシラジン(4:1、v/v)混合溶液
 ケタラール(登録商標)筋注用(ケタミンを50 mg/mL含有:第一三共株式会社)とセラクタール(登録商標)2%注射液(キシラジンを20 mg/mL含有:エランコジャパン株式会社)を4:1の割合で混合して調製し、冷蔵保存にて1週間以内に使用した。
(2) 4%(w/v)FITC-dextran溶液
 Fluorescein isothiocyanate-dextran(平均分子量: 20,000、SIGMA-ALDRICH)をダルベッコリン酸緩衝液(富士フイルム和光純薬株式会社、以下D-PBSと記載)に溶解させ4%(40 mg/mL)溶液を調製し、冷蔵保存にて24時間以内に使用した。
(3) 129.6 mg/mLペントバルビタールナトリウム溶液
 ペントバルビタールナトリウム(東京化成工業株式会社)と生理食塩液を混合して調製し、冷蔵保存にて1週間以内に使用した。
5.試験系
(1) 使用動物
 種:ラット
 系統:BN/SsNSlc
 入手匹数:48匹 
 使用匹数:40匹
週齢(入手時):6週齢
 性別:雄
 入手日:2023年3月2日
 供給源:日本エスエルシー株式会社
 選択理由:眼科薬理試験で広汎に用いられている動物種で、集積データが揃っており、その系統維持が確立されているため
(2) 検疫および予備飼育
 入手した動物は予備飼育を5日間行った。予備飼育期間中に細隙灯顕微鏡(スリットランプSL-15、興和株式会社)を用いて眼の前眼部を観察した後、検査用散瞳剤トロピカミド(ミドリン(登録商標)P点眼液、参天製薬株式会社)を点眼し散瞳させ、中間透光体及び双眼倒像鏡(IO-α、株式会社ナイツ)にて眼底(網膜)を観察した。予備飼育期間中に一般状態(外観、行動及び排泄物の状態など)について観察を行った。入荷日及び予備飼育期間終了日に体重測定を行った。
(3) 動物の個体識別
 入手した動物は尾部に動物番号をフェルトペンで記入し、各ケージを識別カードで個別識別した。各識別カードには以下の内容を記載した。
 動物入手時:試験コード番号、性別、入荷動物番号、試験責任者名
 群分け実施後:試験コード番号、性別、入荷動物番号、試験動物番号、レーザー照射眼(投与眼、摘出眼)、投与物質、投与量、投与方法、投与日、眼球摘出日、クール番号、試験責任者名
(4) 環境条件
(4-1) 動物飼育室
 第一施設 動物飼育室1
(4-2) ケージ
 種類:プラスチックケージ(ポリカーボネート製)
 大きさ:210W×320D×135H mm
 床敷:ソフトチップ(三協ラボサービス株式会社)
 動物の収容数:1匹/ケージ
 ケージの交換頻度:1週間に2回の割合で交換した。
(4-3) 温湿度、換気、照明、清掃・消毒
 温度:19 ~ 25℃
 湿度:30 ~ 70%
 換気回数:6回以上/時間
 照明時間:12時間/日(午前7時~午後7時点灯)
 照明照度:300 Lux以下
 清掃・消毒方法:週に3回以上の割合で飼育室および飼育棚はピューラックス(登録商標)(株式会社オーヤラックス)またはハイジール消毒液10%(丸石製薬株式会社)を水道水でそれぞれ0.02%及び0.1%に調製した溶液で清掃・消毒した。
(4-4) 飼料
 名称:固型飼料 NMF
 購入先:オリエンタル酵母工業株式会社
 給餌頻度:自由に摂取させた。
 栄養組成及び微生物:オリエンタル酵母工業株式会社が発行した分析結果  報告書を入手し、試験施設の許容基準に適合していることを確認した。
 重金属などの混入物:ユーロフィン・フードアンドプロテクト・テスティング株式会社が発行した分析結果報告書を入手し、試験施設の許容基準に適合していることを確認した。
(4-5)飲料水
 飲料水の供給先:水道水(千早赤阪村村営水道)
 飲料水の給水方法:ポリカーボネート製給水瓶で自由に摂取させた。
 飲料水の交換頻度:週に3回以上の割合で交換した。
 飲料水の分析:1年に2回、株式会社 ケイ・エス分析センターにて行った水質検査報告を入手した。分析値が試験施設の許容基準に適合していることを確認した。
6.試験の実施方法
(1) 群分け
 予備飼育期間中の眼科検査で異常が認められなかった個体について、予備飼育終了時に測定した体重が均一となるように、(2)項の群構成に記載の匹数で群分け、クール分けを実施した。群分けにより除外した動物は動物飼育管理責任者に移管した。
(2) 群構成
 群は以下の表8のように設定した。各群10匹でレーザー照射は右眼に実施した。2群の個体にはレーザー照射直後にアイリーア(登録商標)を右眼に硝子体内投与した。1、3、4群の個体にはレーザー照射日から眼球摘出前日まで各群の投与物質を1日4回点眼投与した。
(3) 一般状態観察
 外観、行動及び排泄物などの状態を毎日観察した。
(4) 体重測定
 動物入荷日、予備飼育終了日(群分け日)、点眼投与開始日、レーザー照射日(Day 0)、眼球摘出日(Day 14)に体重測定を行った。
(5) レーザー惹起脈絡膜新生血管モデルの作製
 レーザー照射する動物は、ミドリン(登録商標)P点眼液で散瞳させ、塩酸ケタミン/塩酸キシラジン(4:1、v/v)混合溶液を大腿筋肉内に投与(1 mL/kg)し全身麻酔を施した後、スリットランプ(SL-130、カールツァイスメディテック株式会社)を用いて右眼眼底を観察し、グリーンレーザ光凝固装置(GYC-500、株式会社ニデック)を用いて、網膜の太い毛細血管を避けて6ヵ所にレーザー照射を行った。なお、レーザー条件は、波長532 nm(緑色)、スポットサイズ50 μm、照射時間0.1 sec、レーザー照射強度は300 mWとした。アイリーア(登録商標)投与対象個体を除き、レーザー照射後に角結膜上皮障害治療用点眼剤ヒアルロン酸ナトリウム(ヒアレイン(登録商標)点眼液0.3%、参天製薬株式会社)を両眼に点眼した。
(6) 陽性対照物質(アイリーア(登録商標))の硝子体内投与
 レーザー照射終了後の2群(アイリーア(登録商標)投与群)のマウス右眼に広範囲抗菌点眼剤レボフロキサシン水和物(クラビット(登録商標)1.5%点眼液、参天製薬株式会社)及び眼科用表面麻酔剤オキシブプロカイン塩酸塩(ベノキシール(登録商標)0.4%点眼液、参天製薬株式会社)を単回点眼した後、33Gの2段注射針およびマイクロシリンジ(株式会社伊藤製作所)を用いてアイリーア(登録商標)を200 μg/5 μL/eyeの用量で硝子体内に投与した。投与前にはD-PBSを用いてマイクロシリンジを洗浄した。硝子体内投与後にヒアレイン(登録商標)点眼液0.3%を両眼に点眼した。
(7) 被験物質、陰性対照物質の点眼投与
 各群で定められた投与期間及び回数で((2)項の群構成表を参照)、マイクロピペット(エッペンドルフ リサーチプラスV、Eppendorf)を用い、被験物質及び陰性対照投与液を5 μL/eyeの容量で点眼投与した。その際、チップ外側に被験物質溶液が付着するので、点眼投与ごとに1回1回、付着した被験物質溶液をキムワイプでふき取り、過剰量の被験物質溶液を点眼投与しないように注意した。また、ピペットチップの先端が鋭くとがっているが、眼球表面を傷つけないように注意した。投与液は投与直前に小型微量遠心機Wonder Spinを用いて軽く(数秒程度)遠心し、上清を投与に使用した。
(8) FITC-dextranの尾静脈投与
 レーザー照射14日後(Day 14)に塩酸ケタミン/塩酸キシラジン(4:1、v/v)混合溶液の大腿筋肉内投与(1 mL/kg)による全身麻酔下で、4% FITC-dextran溶液を40 mg/1 mL/匹の用量で尾静脈に投与した。
(9) 眼球摘出及び眼球固定
 4% FITC-dextran溶液の尾静脈投与1分後以降に、129.6 mg/mLペントバルビタールナトリウム溶液の投与による過麻酔により安楽死させ右眼球を摘出した。摘出した眼球は、4%パラホルムアルデヒド・リン酸緩衝液(富士フイルム和光純薬株式会社、以下4% PFAという)で常温下にて12 ~ 30時間固定した。
(10) 脈絡膜フラットマウント標本の作製
 4% PFAで固定した眼球をD-PBSが入ったシャーレに入れ、眼球周辺の余分な組織をトリミングした。実体顕微鏡(EZ-4、ライカマイクロシステムズ株式会社)下で25Gの注射針を用いて角膜輪部に穴を開け、角膜マイクロ剪刀を用い、その穴を起点に角膜全体、虹彩及び水晶体を切除して眼杯の状態にした。マイクロスパーテルを用いて網膜色素上皮細胞以外の網膜組織を剥がし、角膜マイクロ剪刀を用いて眼杯を4~6分割した。この際、照射部位を避けて切開した。角膜マイクロ剪刀を用いて4~6分割した眼杯から視神経を切除しD-PBSで洗浄した。スライドガラスに4~6分割した眼杯を置き、周りの水分は濾紙を用いて吸引した。
 FULLOROMOUNT(DBS社)を適量滴下し、カバーガラスをかぶせ、気泡が混入しないようマニキュアを用いてガラス周りをシールして封入した。完成した標本は、冷蔵・遮光下で24時間程度乾燥させた。乾燥後の標本は引き続き冷蔵・遮光下で保存した。
(11) フラットマウント標本の共焦点顕微鏡写真撮影
 共焦点レーザー顕微鏡(LSM710、Carl Zeiss)を用いて、レーザー痕における脈絡膜血管新生部位の写真(倍率:20倍,画素数:1024×1024 pixel)を撮影した。
(12) フラットマウント標本蛍光眼底画像を用いたCNV面積測定
 蛍光眼底画像による血管新生面積(CNV面積、単位:pixel)は、画像処理ソフトウェアImageJ(アメリカ国立衛生研究所)を用いて算出した。
(13) 脈絡膜フラットマウント標本の廃棄
 脈絡膜フラットマウント標本は蛍光退色により長期の保存が不可能であるため、試験終了後に廃棄した。
7.人道的エンドポイント
 人道的エンドポイント(動物実験における安楽死の指標)に基づいて判断しなければならない動物はいなかった。
8.データの処理
 データは、Excelファイル(Microsoft Excel、Microsoft社)で処理した。
(1) フラットマウント標本蛍光眼底画像によるCNV面積
 レーザー照射を行った1眼6箇所のデータのうち、照射部位が確認できない・境界線が不明瞭・サンプルに傷がある、等の理由で不明瞭な照射部位、複数の照射痕が融合している照射部位、照射痕の直径以上に出血が観察された照射部位、等のデータは除外した。3箇所以上の照射部位から最大値と最小値のCNV面積値を除外し、残りの照射部位のCNV面積値(pixel)の平均を個体値とし、各群の平均値±標準誤差を算出した。また、CNV面積の群値と標準誤差は小数点1桁で表示した。
8.統計学的手法
 検定は統計解析ソフトウェアSPSS(Version 26、IBM社)を用いて行い、有意水準は片側5%とした。
(1) CNVモデルの妥当性評価
 1群を陰性対照群とし、陽性対照群(アイリーア(登録商標)投与群)である2群とのF検定後、等分散である場合はStudent’s t検定を、不等分散である場合はWelch’s t検定を実施し、CNVモデルの妥当性を評価した。
(2) 被験物質の薬効評価
 1群を陰性対照群とし、被験物質投与群である3群(化合物9(1 mg/mL))及び4群(化合物9(10 mg/mL))とのDunnett多重比較検定を実施し、被験物質の薬効を評価した。
9.結果
(1) 一般状態観察及び体重測定
 試験期間中、一般状態に問題のある個体は確認されなかった。また、試験期間中全ての個体で体重は順調に増加し、2群(アイリーア硝子体内投与群)に比較して、残りの点眼投与群では若干緩やかな体重増加推移を示したが、群間で大きな平均体重差は確認されなかった。
 体重推移は図5及び表9、個別体重は表10に示した。
(2) 被験物質の薬効評価
 陰性対照群である1群(生理食塩液点眼投与群)に対し、陽性対照群である2群(アイリーア硝子体内投与群)とのF検定の結果、等分散であったため、Student’s t検定を実施した結果、CNV面積において2群が有意に縮小していた(P=0.009)。
 1群(陰性対照群)を対照群とし、3群(化合物9点眼投与群(低濃度:1 mg/mL))、及び4群(化合物9点眼投与群(高濃度:10 mg/mL)についてDunnett多重比較検定を行った結果、投与用量に相関したCNV面積の縮小が確認されたが、1群に対し3群、4群いずれもCNV面積の有意差については認められなかった。
 各群のCNV面積値の群値は図6及び表11に、統計データ処理結果は表12に、個別CNV面積値は表13及び表14に示した。
 なお、図および表中のIVTは硝子体内、CNVは、脈絡膜血管新生を意味する。
10.結論
 ラットレーザー誘発脈絡膜血管新生モデルに、被験物質化合物9を点眼投与し、脈絡膜血管新生面積(CNV面積)を比較することで薬効を評価した。
 ラット右眼にレーザーを強度300 mWで一眼あたり6ヶ所照射した。また、陰性対照群として生理食塩液点眼投与群、陽性対照群としてアイリーア硝子体内投与群、被験物質投与群として化合物9点眼投与群(低濃度:1 mg/mL)及び化合物9点眼投与群(高濃度:10 mg/mL)の合計4群を設定した。点眼投与は、生理食塩液投与群は5 μL/eye 、化合物9低濃度群は5 μg/5 μL/eye、化合物9高濃度群は50 μg/5 μL/eyeの投与用量で、1日4回の投与頻度にてレーザー照射日から照射13日後までの14日間実施した。照射14日後に尾静脈よりFITC-dextranを投与し、直後に眼球を摘出、固定を行った。網膜層を剥離し脈絡膜フラットマウントを作製し、共焦点レーザー顕微鏡にて撮影した画像にてFITC蛍光を指標にCNV面積を算出した。
 まず、CNVモデルの妥当性を確認するため、1群(陰性対照群)を対照群とし、2群(アイリーア硝子体内投与群)についてStudent’s t検定を行った結果、1群に対し2群のCNV面積が有意に縮小しており(P=0.009)、CNVモデルの妥当性が確認された。
 次に、化合物9の薬効評価を行うことを目的に、1群(陰性対照群)を対照群とし、3群(化合物9点眼投与群(低濃度:1 mg/mL))、及び4群(化合物9点眼投与群(高濃度:10 mg/mL))についてDunnett多重比較検定を行った結果、点眼投与用量に相関したCNV面積の縮小が確認されたが、1群に対し3群、4群いずれもCNV面積の有意差については認められなかった(1群 vs 3群:P=0.517、1群 vs 4群:P=0.176)。
 以上の結果から、ラットレーザー誘発脈絡膜血管新生モデルに対する化合物9の点眼投与にて、投与用量に相関したCNV面積の縮小が確認されたが、CNV面積に及ぼす薬効は、化合物9低濃度投与群(1 mg/mL)及び化合物9高濃度投与群(10 mg/mL)のいずれにおいても認められなかった。
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、日本国特許庁に出願された特願2022-159075号に対して優先権を主張するものであり、その内容はすべてが本明細書において援用される。
 本開示で提供される技術は、眼科疾患を処置または予防するため環状ペプチド誘導体および組成物およびその製造方法において利用することができる。

Claims (25)

  1.  下記式(1)
    により表される化合物またはその薬学的に許容される塩、溶媒和物もしくはプロドラッグを含む、眼科疾患を処置または予防するための組成物。
    [式中、
    、R、R、R、R、R、RおよびR10は各々独立して、
    水素原子、または
    必要に応じて置換された炭化水素基であり、あるいは、
    およびRが、RおよびRが結合する炭素原子および窒素原子と一緒になって、必要に応じて置換されたヘテロシクロアルキル基を形成し、
    およびRは各々独立して、
    水素原子、必要に応じて置換された炭化水素基、カルボキシル基、
    必要に応じて置換されたアルコキシカルボニル基、または
    必要に応じて置換されたアルコキシカルボニルオキシ基であり、
    11、R12、R13、およびR14は各々独立して、
    水素原子、必要に応じて置換された炭化水素基、ヒドロキシ基、
    必要に応じて置換されたアルコキシ基、または
    必要に応じて置換されたアルコキシカルボニルオキシ基であり、
    Xは、CHまたはCOであり、
    Aは、O、NHまたはSであり、ここでNHは必要に応じて置換され得る。]
  2.  前記眼科疾患は、網膜疾患を含む、請求項1に記載の組成物。
  3.  前記眼科疾患は、糖尿病性網膜症、緑内障または加齢黄斑変性のうちの少なくとも一つを含む、請求項1に記載の組成物。
  4.  RおよびRは各々独立して、水素原子、またはC1-6アルキル基である、請求項1から3のいずれか一項に記載の組成物。
  5.  RおよびRは各々独立して、水素原子、メチル基またはエチル基である、請求項1から4のいずれか一項に記載の組成物。
  6.  RおよびRは各々独立して、水素原子、カルボキシル基で置換されたC1-6アルキル基またはカルボキシル基である、請求項1から5のいずれか一項に記載の組成物。
  7.  RおよびRは各々独立して、水素原子、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基またはカルボキシル基である、請求項1から6のいずれか一項に記載の組成物。
  8.  Rは水素原子、またはC1-6アルキル基である、請求項1から7のいずれか一項に記載の組成物。
  9.  Rは水素原子である、請求項1から8のいずれか一項に記載の組成物。
  10.  Rは水素原子、またはC1-6アルキル基である、請求項1から9のいずれか一項に記載の組成物。
  11.  Rは水素原子である、請求項1から10のいずれか一項に記載の組成物。
  12.  Rは水素原子、C1-6アルキル基、ヒドロキシC1-6アルキル基、カルバモイルC1-6アルキル基、C6-10アリールC1-6アルキル基、ヒドロキシC6-10アリールC1-6アルキル基、C5-10ヘテロアリールC1-6アルキル基、カルボキシC1-6アルキル基、アミノC1-6アルキル基、チオC1-6アルキル基、C1-6アルキルチオC1-6アルキル基、またはアミジノアミノC1-6アルキル基である、請求項1から11のいずれか一項に記載の組成物。
  13.  Rは水素原子、メチル基、イソプロピル基、イソブチル基、secブチル基、ベンジル基、ヒドロキシメチル基、1-ヒドロキシエチル基、カルボキシメチル基、カルボキシエチル基、4-ヒドロキシベンジル基、4-アミノブチル基、チオメチル基、2-メチルチオエチル基、カルバモイルメチル基、カルバモイルエチル基、アミジノアミノプロピル基、インドリルメチル基または4-イミダゾールメチル基である、請求項1から12のいずれか一項に記載の組成物。
  14.  Rは水素原子、またはC1-6アルキル基である、請求項1から13のいずれか一項に記載の組成物。
  15.  Rは水素原子である、請求項1から14のいずれか一項に記載の組成物。
  16.  RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になって必要に応じて置換されたヘテロシクロアルキル基を形成する、請求項1から15のいずれか一項に記載の組成物。
  17.  RおよびRは、RおよびRが結合する炭素原子および窒素原子と一緒になってC5-10ヘテロシクロアルキル基を形成する、請求項1から16のいずれか一項に記載の組成物。
  18.  RおよびR10は水素原子、またはC1-6アルキル基である、請求項1から17のいずれか一項に記載の組成物。
  19.  RおよびR10は各々独立して、水素原子またはメチル基である、請求項1から18のいずれか一項に記載の組成物。
  20. 11、R12、R13、およびR14は各々独立して、水素原子、アルコキシ基またはヒドロキシ基である、請求項1から19のいずれか一項に記載の組成物。
  21.  R12は、水素原子、またはヒドロキシ基である、請求項1から20のいずれか一項に記載の組成物。
  22.  R11、R12、R13、およびR14は各々独立して、水素原子、またはヒドロキシ基である、請求項1から21のいずれか一項に記載の組成物。
  23.  Xは、CHまたはCOである、請求項1から22のいずれか一項に記載の組成物。
  24.  Aは、O、C1-6アルキル基で置換されたNH、NHまたはSである、請求項1から23のいずれか一項に記載の組成物。
  25.  Aは、O、NHまたはSである、請求項1から24のいずれか一項に記載の組成物。
PCT/JP2023/035591 2022-09-30 2023-09-29 眼科疾患を処置または予防するための環状ペプチド誘導体組成物 WO2024071370A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159075 2022-09-30
JP2022-159075 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071370A1 true WO2024071370A1 (ja) 2024-04-04

Family

ID=90478092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035591 WO2024071370A1 (ja) 2022-09-30 2023-09-29 眼科疾患を処置または予防するための環状ペプチド誘導体組成物

Country Status (1)

Country Link
WO (1) WO2024071370A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047638A1 (ja) * 2014-09-24 2016-03-31 国立大学法人岩手大学 環状ペプチド誘導体とその製造方法および組成物
JP2021138656A (ja) * 2020-03-05 2021-09-16 株式会社バイオコクーン研究所 神経突起伸長促進剤、神経細胞の樹状突起発現促進剤、及び神経栄養因子様作用物質
JP2022073598A (ja) * 2020-11-02 2022-05-17 公立大学法人大阪 環状ペプチド誘導体の製造方法及び環状ペプチド化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047638A1 (ja) * 2014-09-24 2016-03-31 国立大学法人岩手大学 環状ペプチド誘導体とその製造方法および組成物
JP2021138656A (ja) * 2020-03-05 2021-09-16 株式会社バイオコクーン研究所 神経突起伸長促進剤、神経細胞の樹状突起発現促進剤、及び神経栄養因子様作用物質
JP2022073598A (ja) * 2020-11-02 2022-05-17 公立大学法人大阪 環状ペプチド誘導体の製造方法及び環状ペプチド化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOICHI SUZUKI: "Academic basis for manufacturing and selling silkworm Cordyceps sinensis and innovation in sericulture Discovery of new cyclic peptides and their utilization", KAGAKU TO SEIBUTSU - CHEMISTRY AND BIOLOGY, vol. 59, no. 6, 1 January 2021 (2021-01-01), pages 306 - 311, XP093156875 *
MADELEINE M. JOULLI; SIMON BERRITT; ERNEST HAMEL;: "Structureactivity relationships of ustiloxin analogues", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 52, no. 17, 11 November 2010 (2010-11-11), Amsterdam , NL , pages 2136 - 2139, XP028159057, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2010.11.165 *
SHINICHI ISHIGURO: "A novel cyclic peptide (Naturido) modulates glia–neuron interactions in vitro and reverses ageing-related deficits in senescence-accelerated mice", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, US, vol. 16, no. 1, 21 January 2021 (2021-01-21), US , pages e0245235, XP093156880, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0245235 *

Similar Documents

Publication Publication Date Title
JP4163746B2 (ja) 内部寄生虫を駆除するためのジオキソモルホリンの使用、新規ジオキソモルホリンおよびそれらの製造方法
CA2858787C (en) Prodrugs of tertiary amine compounds
JPH07508723A (ja) 内寄生性生物を駆除するための18の環原子を有する環状デプシペプチドの利用,18の環原子を有する新規環状デプシペプチド、ならびにそれらの製造のための方法
TWI729443B (zh) 做為組蛋白去乙醯酶6抑制劑之1,3,4-㗁二唑衍生物及包含彼之醫藥組合物
JPH08508027A (ja) 金属タンパク加水分解酵素阻害剤である天然アミノ酸誘導体
JP4033920B2 (ja) 内寄生性生物防除剤である組成物
EA027451B1 (ru) Ингибиторы кинуренин-3-монооксигеназы, фармацевтические композиции и их применение
FR2985258A1 (fr) Composes dimeres agonistes des recepteurs des fgfs (fgfrs), leur procede de preparation et leur application en therapeutique
AU2009322112A1 (en) High penetration compositions and their applications
CN106458921A (zh) 作为甲酰肽受体调节剂的咪唑衍生物
JPH07206897A (ja) 12の環原子を有する環状デプシペプチドの内部寄生虫の防除のための利用、12の環原子を有する新規環状デプシペプチド及びそれらの製造法
JP6890865B1 (ja) 狂犬病治療のための環状アミド化合物およびその方法
KR100286406B1 (ko) (1h-인돌-1-일)-2-(아미노)아세트아미드 및 관련 (1h-인돌-1-일)-(아미노알킬)아미드, 중간체 및 이의 제조방법, 및 이를 포함하는약제학적 조성물
WO2019213333A1 (en) Combination therapies with edaravone and prodrugs of edaravone that are orally bioavailable and have altered pharmacokinetic properties
WO2024071370A1 (ja) 眼科疾患を処置または予防するための環状ペプチド誘導体組成物
EP1185526B1 (fr) Derives d&#39; amonium quaternaire, leur procede de preparation et leur usage en pharmacie
TW201103911A (en) Novel fumarate salts of a histamine H3 receptor antagonist
CH648043A5 (fr) Dipeptides, leur preparation et les medicaments qui les contiennent.
WO2024096066A1 (ja) 中枢神経系損傷疾患を処置または予防するための環状ペプチド誘導体組成物
WO2024096067A1 (ja) 神経障害性疼痛および/または炎症性疼痛を処置または予防するための環状ペプチド誘導体組成物
CH661514A5 (fr) Derives du thiadiazole-1,3,4, procede pour leur preparation et agents antiulcereux les contenant.
WO2014064219A1 (fr) Derives de 1 h-indole-3-carboxamide et leurs utilisation comme antagonistes du p2y12
US7799813B2 (en) Salts of substituted 5-membered azacycle and use thereof in the treatment of diseases related to protein aging
TW202430203A (zh) 用於處置或預防眼科疾病的環狀胜肽衍生物組成物
WO2024029630A1 (ja) 環状ペプチド誘導体とその製造方法および組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872590

Country of ref document: EP

Kind code of ref document: A1