WO2024071016A1 - センサ増幅回路、センサシステム、およびセンサ増幅回路の較正方法 - Google Patents
センサ増幅回路、センサシステム、およびセンサ増幅回路の較正方法 Download PDFInfo
- Publication number
- WO2024071016A1 WO2024071016A1 PCT/JP2023/034667 JP2023034667W WO2024071016A1 WO 2024071016 A1 WO2024071016 A1 WO 2024071016A1 JP 2023034667 W JP2023034667 W JP 2023034667W WO 2024071016 A1 WO2024071016 A1 WO 2024071016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- magnetic field
- sensor
- operational amplifier
- magnetic
- Prior art date
Links
- 230000003321 amplification Effects 0.000 title claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 title claims description 32
- 238000012937 correction Methods 0.000 claims abstract description 130
- 238000005259 measurement Methods 0.000 claims description 34
- 230000004044 response Effects 0.000 claims description 13
- 238000012886 linear function Methods 0.000 claims description 9
- 230000005641 tunneling Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000004043 responsiveness Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
Definitions
- the present disclosure relates to a sensor amplifier circuit, and more particularly to a sensor amplifier circuit for amplifying an output signal of a magnetic sensor circuit, a sensor system, and a method for calibrating the sensor amplifier circuit.
- the magnetic elements that make up the magnetic sensor circuit have hysteresis and nonlinear characteristics. For this reason, the sensor amplifier circuit that amplifies the output signal of the magnetic sensor circuit is required to have the function of correcting the output signal of the magnetic sensor circuit and improving its linearity.
- Patent Document 1 JP 2015-212634 A discloses a magnetic sensor that is configured to calculate magnetic flux density from the output voltage of a magnetic detection element, and to calculate and output a voltage that is linearly related to the calculated magnetic flux density.
- Patent Document 2 JP 2018-115928 A discloses a method for correcting a current sensor signal, which includes a step of correcting a newly acquired differential output voltage so that it is approximately linear with respect to the measured magnetic field using a plurality of calculated fitting coefficients, and acquiring a corrected output voltage.
- the nonlinear distortion occurring in the output of the magnetic sensor circuit may be small.
- the sensor amplifier circuit does not necessarily need to perform processing to correct the nonlinear distortion.
- conventional sensor amplifier circuits always performed processing to correct nonlinear distortion on the output signal of the magnetic sensor circuit, regardless of whether or not there was a need to correct the nonlinear distortion. This caused problems such as a slow response speed of the sensor amplifier circuit.
- the present disclosure has been made to solve these problems, and its purpose is to improve linearity while maintaining high responsiveness in a sensor amplifier circuit for amplifying the output of a magnetic sensor circuit.
- the sensor amplifier circuit is a sensor amplifier circuit for amplifying an output signal from a magnetic sensor circuit, and includes a first operational amplifier for amplifying the output signal from the magnetic sensor circuit, and a correction circuit for correcting nonlinear distortion contained in the output signal, the magnetic sensor circuit outputs a first signal having a magnitude corresponding to a magnetic field of a first range in a first magnetic field region where a magnetic field of a first range is applied, and outputs a second signal having a magnitude corresponding to a magnetic field of a second range in a second magnetic field region where a magnetic field of a second range larger than the magnetic field of the first range is applied, the correction circuit is configured to switch from a first state in which the nonlinear distortion contained in the output signal is not corrected to a second state in which the nonlinear distortion contained in the output signal is corrected, and the correction circuit switches from the first state to the second state when the output signal from the magnetic sensor circuit changes from the first signal to the second signal.
- the sensor amplifier circuit disclosed herein makes it possible to improve linearity while maintaining high responsiveness.
- FIG. 1 is a schematic configuration diagram of a sensor system using a sensor amplifier circuit according to an embodiment of the present invention.
- 11 is a diagram showing the relationship between a waveform indicating the characteristics of an output voltage of a magnetic sensor circuit with respect to a magnetic field and a first approximation straight line.
- FIG. 11A and 11B are diagrams for explaining the relationship between magnetic field regions (high magnetic field regions and low magnetic field regions) and the presence or absence of linearity correction.
- FIG. 13 is a diagram showing the waveform of a linearity error.
- 11 is a diagram showing a waveform indicating characteristics of an output voltage of a magnetic sensor circuit with respect to a magnetic field, and a relationship between a first approximation line and a second approximation line.
- FIG. 2 is a block diagram showing a configuration of a control device used for calibrating a sensor amplifier circuit
- 5 is a flowchart showing a procedure for measuring an output voltage from a magnetic sensor circuit in response to a magnetic field.
- 5 is a flowchart showing a procedure for determining various setting values of a sensor amplifier circuit.
- 5 is a flowchart showing a procedure for determining various setting values of a sensor amplifier circuit.
- FIG. 13 is a schematic configuration diagram of a sensor system according to a modified example.
- (Sensor system overview) 1 is a schematic configuration diagram of a sensor system 10 using a sensor amplifier circuit 100 according to the present embodiment.
- the sensor system 10 includes a magnetic sensor circuit 50 and the sensor amplifier circuit 100.
- the magnetic sensor circuit 50 has a configuration in which four sensor elements 51 to 54 are bridge-connected.
- each of the sensor elements 51 to 54 is a tunneling magneto-resistive (TMR) element, and is a magnetic sensor whose resistance value changes according to the detected magnetic field.
- TMR tunneling magneto-resistive
- GMR giant magneto resistance
- AMR anisotropic magneto resistance
- Sensor elements 51 and 52 are connected in series between a pair of power supply terminals 5a and 5b.
- Sensor elements 53 and 54 are also connected in series between a pair of power supply terminals 5a and 5b.
- the magnetic sensor circuit 50 operates when a predetermined voltage is applied to the power supply terminals 5a and 5b, and generates a voltage difference between a pair of signal output terminals 5c and 5d in response to the detected magnetic field.
- Signal output terminal 5c is a connection node between sensor element 51 and sensor element 52
- signal output terminal 5d is a connection node between sensor element 53 and sensor element 54.
- the signal output terminals 5c and 5d are connected to the input terminals T1 and T2, respectively, of the sensor amplifier circuit 100.
- the differential voltage between the pair of output signals of the magnetic sensor circuit 50 is provided as an input to the sensor amplifier circuit 100.
- the sensor amplifier circuit 100 includes an output terminal T3, operational amplifiers 111 and 112, a correction circuit 150, a readout circuit 120, and a non-volatile memory 130.
- the readout circuit 120 is, for example, an analog circuit.
- the non-volatile memory 130 is, for example, a read only memory (ROM) or a flash memory.
- the non-inverting input terminal and the inverting input terminal of the operational amplifier 111 are connected to the input terminals T1 and T2, respectively.
- a pair of output signals from the magnetic sensor circuit 50 are input to the non-inverting input terminal and the inverting input terminal of the operational amplifier 111.
- An offset adjustment voltage V1 is applied to the operational amplifier 111.
- the output terminal of the operational amplifier 111 is connected to the inverting input terminal of the operational amplifier 112.
- An offset adjustment voltage V2 is applied to the inverting input terminal of the operational amplifier 112.
- the output terminal of the operational amplifier 112 is connected to the output terminal T3 of the sensor amplifier circuit 100.
- a resistor Ry is connected between the inverting input terminal and the output terminal of the operational amplifier 112 to determine the reference amplification factor of the operational amplifier 112.
- the output terminal of operational amplifier 111 is connected to node N1.
- the inverting input terminal of operational amplifier 112 is connected to node N2.
- a resistor Rx is connected between nodes N1 and N2.
- the correction circuit 150 includes comparators 161 to 16n, resistors R1 to Rn, and switches SW1 to SWn.
- comparators 161 to 16n are connected to the output terminal of operational amplifier 111 at node N1.
- Reference voltages Vr1 to Vrn are applied to the non-inverting input terminals of comparators 161 to 16n, respectively.
- Switches SW1 to SWn are turned on and off according to the on and off outputs of comparators 161 to 16n, respectively.
- Switches SW1 to SWn are each disposed between node N2 and node N3.
- Resistors R1 to Rn are each connected between switches SW1 to SWn and node N2.
- Operational amplifier 111 amplifies the output signal from magnetic sensor circuit 50 using a preset gain (amplification rate). Operational amplifier 111 performs offset adjustment on the output signal from magnetic sensor circuit 50 using an offset setting value determined based on voltage V1. The output signal from operational amplifier 111 is output from output terminal T3 via operational amplifier 112.
- the sensor amplifier circuit 100 uses the correction circuit 150 to correct nonlinear distortion of the signal.
- This nonlinear distortion is caused by the output characteristics of the magnetic sensor circuit 50.
- the output signal from the operational amplifier 111 has nonlinear distortion because it is affected by the nonlinear distortion caused by the output characteristics of the magnetic sensor circuit 50.
- the correction circuit 150 corrects such nonlinear distortion.
- correcting nonlinear distortion is also referred to as "linearity correction.”
- the correction circuit 150 switches between a first state in which no linearity correction is performed, and a second state in which linearity correction is performed, depending on the magnitude of the output signal from the operational amplifier 111.
- the non-volatile memory 130 stores the values of the reference voltages Vr1 to Vrn for the corresponding comparators 161 to 16n.
- the values of the reference voltages Vr1 to Vrn stored in the non-volatile memory 130 are an example of various set values.
- the readout circuit 120 reads the values of the reference voltages Vr1 to Vrn from the non-volatile memory 130, and sets the read values to the corresponding comparators 161 to 16n.
- the comparator 161 switches the switch SW1 from off to on. This forms a first negative feedback circuit that returns to the input terminal of the operational amplifier 112 via the switch SW1 and resistor R1 from the output terminal of the operational amplifier 112.
- the correction circuit 150 corrects the output signal of the operational amplifier 111 with a gain determined by resistor R1. As a result, the nonlinear distortion of the output signal of the magnetic sensor circuit 50 is corrected.
- the comparator 162 switches the switch SW2 from off to on. This forms a loop of a second negative feedback circuit that runs from the output terminal of the operational amplifier 112 back to the input terminal of the operational amplifier 112 via the switch SW2 and resistor R2, in addition to the first negative feedback circuit. This also switches the magnitude of the gain of the correction circuit 150 used for linearity correction.
- the comparator 16n switches the switch SWn from off to on. This forms a loop of the nth negative feedback circuit that returns from the output terminal of the operational amplifier 112 to the input terminal of the operational amplifier 112 via the switch SWn and resistor R2, in addition to the first negative feedback circuit, the second negative feedback circuit, etc. This also switches the magnitude of the gain of the correction circuit 150 used for linearity correction.
- FIG. 1 an example of a correction circuit 150 is shown that is configured by connecting each of the components “switch SW1, resistor R1", “switch SW2, resistor R2”, ... “switch SWn, resistor Rn” in parallel.
- the correction circuit 150 may also be configured such that these components are connected in series and a signal that turns the switch on and off is input to the switch of each component.
- Fig. 2 is a diagram showing the relationship between a waveform W1 indicating the characteristics of the output voltage of the magnetic sensor circuit 50 with respect to a magnetic field, and a first approximate straight line L1.
- Fig. 3 is a diagram for explaining the relationship between the magnetic field region (high magnetic field region and low magnetic field region) and the presence or absence of linearity correction.
- the output of the magnetic sensor circuit 50 has hysteresis and nonlinear characteristics.
- Such waveform W1 is obtained by measuring the output voltage of the magnetic sensor circuit 50 while changing the magnitude of the magnetic field.
- the first approximate straight line L1 is a straight line that shows the ideal output characteristic of the magnetic sensor circuit 50 with respect to the magnetic field.
- a linear function for drawing such an ideal straight line can be calculated.
- the first approximate straight line L1 is derived using all measurement results in the magnetic field range (-N to +N) (mT: millitesla).
- the error between the first approximate straight line L1 and the output of the magnetic sensor circuit 50 will be large in the portion of the waveform W1 indicated by the circular frame F1. If this problem is solved by not using the curved portion where the error is large, the dynamic range of the magnetic sensor circuit 50 that can be used as a sensor will be narrowed.
- the error is small in a low magnetic field region where the absolute value of the magnetic field is within a certain range. Subjecting the output signal, including such a low magnetic field region, to linearity correction not only leads to a decrease in the response speed of the sensor amplifier circuit, but can actually increase the error.
- the sensor amplifier circuit 100 is configured such that, within the magnetic field range -N to +N that is the sensing target of the magnetic sensor circuit 50, the correction circuit 150 does not operate in the magnetic field range of the low magnetic field region (-B ⁇ magnetic field ⁇ +A), but operates in the magnetic field range of the high magnetic field region (-N ⁇ magnetic field ⁇ -B, +A ⁇ magnetic field ⁇ +N).
- the nonlinearity of the waveform W1 becomes stronger due to the influence of the characteristics of the magnetic sensor circuit 50.
- the linearity of the magnetic sensor circuit 50 deteriorates.
- the gain setting value and offset setting value of the operational amplifier 111 are calculated based on the second approximate straight line L2.
- the second approximate straight line L2 is derived using the measurement results of the output voltage of the magnetic sensor circuit 50 in the low magnetic field region. Therefore, in the low magnetic field region, the error between the output of the magnetic sensor circuit 50 and the output of the operational amplifier 111 is small, but in the high magnetic field region, the error between the output of the magnetic sensor circuit 50 and the output of the operational amplifier 111 is large.
- the sensor amplifier circuit 100 therefore operates the correction circuit 150 in the high magnetic field region to correct the linearity. As a result, the sensor amplifier circuit 100 brings the output characteristics of the operational amplifier 111 closer to the second approximate straight line L2, which is an ideal straight line.
- the linearity correction of the sensor amplifier circuit 100 will be further described with reference to Figures 1 and 3. Note that to obtain the waveform W1 as shown in Figures 2 and 3, the output voltage of the magnetic sensor circuit 50 may be measured, or the output of the sensor system 10 including the magnetic sensor circuit 50 and the sensor amplifier circuit 100 ("OUT" of the output terminal T3) may be measured.
- the operational amplifier 111 performs gain correction and offset adjustment so that the output signal from the magnetic sensor circuit 50 follows the second approximate straight line L2.
- a voltage corresponding to the boundary value between the magnetic field range of the low magnetic field region and the magnetic field range of the high magnetic field region is applied to the comparator 161 as the reference voltage Vr1.
- the switches SW1 to SWn of the correction circuit 150 are turned off. Therefore, in the low magnetic field region, the output signal of the operational amplifier 111 is not corrected by the correction circuit 150 and is input to the output terminal T3 via the operational amplifier 112.
- the output voltage of the operational amplifier 111 changes stepwise at each correction point so as to follow an ideal linear output (second approximate straight line L2).
- the zigzag line in the high magnetic field region represents how the output voltage of the operational amplifier 111 changes stepwise at each correction point.
- the correction circuit 150 turns off all of the switches SW1 to SWn and does not perform linearity correction.
- the sensor amplifier circuit 100 simply amplifies the output voltage from the magnetic sensor circuit 50 in the operational amplifier 111 with a gain that matches the full scale required for the sensor.
- the correction circuit 150 automatically switches the magnitude of the gain for linearity correction. This allows the gain to be automatically adjusted at each correction point.
- Fig. 4 is a diagram showing a waveform W2 of a linearity error.
- Fig. 5 is a diagram showing the relationship between a waveform W1 showing the characteristics of the output voltage of the magnetic sensor circuit 50 with respect to the magnetic field, the first approximation line L1, and the second approximation line L2.
- the linearity error (%) is calculated by calculating the difference between the first approximate straight line L1 and the waveform W1 shown in Figure 2.
- the waveform W2 shows the relationship between the magnetic field and the linearity error calculated in this way. As shown in Figure 4, the maximum and minimum values of the linearity error are identified from the waveform W2 of the linearity error.
- the magnetic field corresponding to the minimum value of the linearity error is set as the boundary magnetic field +A
- the magnetic field corresponding to the maximum value of the linearity error is set as the boundary magnetic field -B.
- the magnetic field range of the low magnetic field region is set as "-B ⁇ magnetic field ⁇ +A”
- the magnetic field range of the high magnetic field region is set as "-N ⁇ magnetic field ⁇ -B, +A ⁇ magnetic field ⁇ +N”.
- the magnetic field ranges of the low magnetic field region and the high magnetic field region are set based on the first approximate straight line L1.
- the waveform of the linearity error may be symmetrical with respect to the X-axis as compared to the waveform W2. This embodiment can also be applied to such magnetic sensor circuits.
- the second approximate straight line L2 shown in FIG. 5 is derived as an ideal straight line of the sensor output signal with respect to the magnetic field, similar to the first approximate straight line L1.
- the first approximate straight line L1 is derived using all measurement results in the magnetic field range (-N to +N) (mT).
- the second approximate straight line L2 is derived using only the measurement results in the low magnetic field region (-B to +A) (mT).
- the second approximate line L2 more accurately approximates the output characteristics of the magnetic sensor circuit 50 in the low magnetic field region than the first approximate line L1. As also shown in FIG. 5, the second approximate line L2 better reflects the output characteristics of the magnetic sensor circuit 50 in the low magnetic field region than the first approximate line L1.
- the accuracy of the output signal of the operational amplifier 111 in the low magnetic field region can be improved by designing the gain correction value and offset adjustment value of the operational amplifier 111 based on the second approximate straight line L2 rather than designing the gain correction value and offset adjustment value of the operational amplifier 111 based on the first approximate straight line L1. For this reason, the gain correction value and offset adjustment value of the operational amplifier 111 are designed based on the second approximate straight line L2.
- the accuracy of the output signal of the operational amplifier 111 in the low magnetic field region is high. Therefore, there is no need to operate the correction circuit 150 in the low magnetic field region. If the correction circuit 150 is operated in the low magnetic field region, unnecessary linearity correction may be added, which may actually reduce the accuracy of the output signal of the operational amplifier 111. Rather, by not operating the correction circuit 150 in the low magnetic field region, there is an advantage in that the response speed of the sensor amplifier circuit 100 in the low magnetic field region can be increased. For this reason, the sensor amplifier circuit 100 does not operate the correction circuit 150 in the low magnetic field region.
- the sensor amplifier circuit 100 operates the correction circuit 150 in the high magnetic field region.
- the output voltage of the operational amplifier 111 changes stepwise at each correction point so as to follow an ideal linear output (second approximate straight line L2). Therefore, the sensor amplifier circuit 100 according to this embodiment can improve linearity while maintaining high responsiveness.
- FIG. 6 is a block diagram showing the configuration of a control device 500 used for calibrating the sensor amplifier circuit 100. As shown in FIG.
- the control device 500 is typically configured as a computer (computing device).
- the control device 500 includes a processor 501, a RAM (Random Access Memory) 502, a ROM (Read Only Memory) 503, and a communications interface 504.
- the control device 500 uses the RAM as a working area and executes various processes according to programs stored in the ROM 503.
- the control device 500 is connected to the non-volatile memory 130 via the interface 504.
- the control device 500 is connected to the measurement device 400 via the interface 504.
- the control device 500 executes various processes for calibrating the sensor amplifier circuit 100.
- the control device 500 controls the measurement device 400 to measure the output voltage of the magnetic sensor circuit 50 while changing the magnetic field (measurement process).
- the control device 500 uses the measurement results to determine various setting values for the sensor amplifier circuit 100 (determination process).
- the control device 500 writes the determined setting values to the non-volatile memory 130 (write process).
- the control device 500 executes at least the first to third processes described above.
- FIG. 7 is a flowchart showing the procedure for measuring the output voltage from the magnetic sensor circuit 50 in response to a magnetic field.
- the control device 500 can obtain the waveform W1 shown in FIG. 2.
- the process based on this flowchart is executed by the control device 500. The process will be explained below according to the flowchart. Note that an example of measuring the output voltage of the magnetic sensor circuit 50 to obtain the waveform W1 will be explained here. However, instead of measuring the output voltage of the magnetic sensor circuit 50 to obtain the waveform W1, the output of the sensor system 10 including the magnetic sensor circuit 50 and the sensor amplifier circuit 100 ("OUT" of output terminal T3) may be measured.
- the control device 500 controls the measuring device 400 so that a magnetic field of +N (mT) is applied to the magnetic sensor circuit 50 (step S1).
- the control device 500 causes the measuring device 400 to measure the output voltage of the magnetic sensor circuit 50 (step S2).
- the measuring device 400 measures the output voltage of the magnetic sensor circuit 50 for a magnetic field of +N (mT).
- the measuring device 400 transmits the measurement result to the control device 500.
- the control device 500 stores the measurement result.
- the measuring device 400 transmits the measurement result to the control device 500 each time a measurement is made, and the control device 500 stores the measurement result.
- control device 500 controls the measuring device 400 so that the magnetic field applied to the magnetic sensor circuit 50 decreases by M (mT) from +N (mT) (step S2).
- the magnitude of M (mT) is the amount of change in the magnetic field when measuring the output voltage of the magnetic sensor circuit 50 while changing the magnetic field.
- the measuring device 400 measures the output voltage of the magnetic sensor circuit 50 while decreasing the magnetic field from +N (mT) by M (mT) in accordance with the control of the control device 500.
- control device 500 determines whether the magnetic field applied to the magnetic sensor circuit 50 is less than -N (mT), which is the lower limit of the magnetic field range width (step S4).
- the control device 500 repeats the processing of steps S1 to S3 until the magnetic field applied to the magnetic sensor circuit 50 is less than -N (mT).
- the measuring device 400 measures the output voltage of the magnetic sensor circuit 50 while increasing the magnetic field from -N (mT) by M (mT).
- the control device 500 controls the measuring device 400 so that the magnetic field applied to the magnetic sensor circuit 50 increases from +N (mT) by M (mT) (step S5).
- the control device 500 causes the measuring device 400 to measure the output voltage of the magnetic sensor circuit 50 (step S6).
- the measuring device 400 measures the output voltage of the magnetic sensor circuit 50 for a magnetic field of -N+M (mT).
- the control device 500 determines whether the magnetic field applied to the magnetic sensor circuit 50 exceeds +N (mT), which is the upper limit of the magnetic field range width (step S7).
- the control device 500 repeats the process of steps S5 to S7 until the magnetic field applied to the magnetic sensor circuit 50 exceeds +N (mT). If the magnetic field applied to the magnetic sensor circuit 50 exceeds +N (mT), which is the upper limit of the magnetic field range width, the control device 500 ends the process based on this flowchart.
- the control device 500 obtains data for plotting the waveform W1 shown in FIG. 2.
- FIGS. 8 and 9 are flowcharts showing the procedure for determining various setting values of the sensor amplifier circuit 100.
- the gain setting value and offset setting value of the operational amplifier 111, and the setting value of the correction circuit 150 are determined.
- the setting values of the correction circuit 150 include the values of the reference voltages Vr1 to Vrn of the comparators 161 to 16n.
- the processing based on this flowchart is executed by the control device 500. The processing will be explained below according to the flowchart.
- the control device 500 calculates a first approximation equation for identifying the first approximation line L1 from the measurement results of the output voltage of the magnetic sensor circuit 50 in the range of ⁇ N (mT) (step S11).
- the control device 500 calculates the first approximation equation using, for example, the least squares method.
- the control device 500 may use the calculated first approximation equation to display the first approximation line L1 (see FIG. 2) on a monitor or the like.
- control device 500 calculates the linearity error from the measurement result of the output voltage of the magnetic sensor circuit 50 in the range of ⁇ N (mT) and the value calculated using the first approximation formula (step S12).
- the control device 500 may use the calculated linearity error to display the linearity error waveform W2 (see FIG. 4) on a monitor or the like.
- control device 500 determines whether or not there are any maximum and minimum values in the linearity error waveform W2 (step S13). Examples of maximum and minimum values are shown in FIG. 4.
- the control device 500 determines whether the maximum and minimum values are in a magnetic field range other than 0 ⁇ 1 (mT) (step S14).
- the control device 500 sets the boundary magnetic fields +A, -B (see Figure 4) based on the maximum and minimum values only if they are in a magnetic field range other than 0 ⁇ 1 (mT).
- the hysteresis characteristics of the magnetic sensor circuit 50 are strong near 0 (mT). For this reason, the control device 500 does not set the boundary magnetic fields +A, -B if there are maximum and minimum values only in the magnetic field range of 0 ⁇ 1 (mT).
- control device sets the entire range of ⁇ N (mT) as the magnetic field range of the low magnetic field region (step S26). As a result, a high magnetic field region is not set in the range of ⁇ N (mT).
- the sensor amplifier circuit 100 performs linearity correction in the low magnetic field region, but does not perform linearity correction in the high magnetic field region. Therefore, if the entire magnetic field range of ⁇ N (mT) is set as the magnetic field range of the low magnetic field region, the sensor amplifier circuit 100 does not operate the correction circuit 150 in the entire magnetic field range of ⁇ N (mT).
- control device 500 determines the gain setting value and offset setting value of the operational amplifier 111 based on the first approximate straight line L1 that follows the first approximate equation (step S27).
- control device 500 determines in step S14 that there are maximum and minimum values in a magnetic field range other than 0 ⁇ 1 (mT), it sets boundary magnetic fields +A and -B. However, before setting the boundary magnetic fields +A and -B, the control device 500 determines the number of minimum and maximum values that exist in the magnetic field range other than 0 ⁇ 1 (mT).
- the control device 500 sets the magnitude of the magnetic field corresponding to that minimum value as the boundary magnetic field + A (mT) (step S16).
- control device 500 sets the magnetic field magnitude corresponding to the minimum value closest to +N (mT) shown in Figure 4 among the multiple minimum values as the boundary magnetic field +A (mT) (step S17).
- the control device 500 sets the magnetic field magnitude corresponding to that maximum value as the boundary magnetic field -B (mT) (step S19). If multiple maximum values exist in the magnetic field range other than 0 ⁇ 1 (mT) (NO in step S18), the control device 500 sets the magnetic field magnitude corresponding to the maximum value closest to -N (mT) shown in Figure 4 among the multiple maximum values as the boundary magnetic field -B (mT) (step S20).
- the control device 500 sets the magnetic field ranges of the low magnetic field region and the high magnetic field region based on the boundary magnetic fields +A and -B (step S21). More specifically, the control device 500 sets "-B ⁇ magnetic field ⁇ +A” as the magnetic field range of the low magnetic field region. The control device 500 sets "-N ⁇ magnetic field ⁇ -B, +A ⁇ magnetic field ⁇ +N" as the magnetic field range of the high magnetic field region.
- the control device 500 calculates a second approximation equation for identifying the second approximation line L2 from the measurement results of the output voltage of the magnetic sensor circuit 50 in the low magnetic field region (step S22).
- the control device 500 calculates the second approximation equation, for example, using the least squares method.
- the control device 500 may use the calculated second approximation equation to display the second approximation line L2 (see FIG. 3) on a monitor or the like.
- the control device 500 determines the gain setting value and offset setting value of the operational amplifier 111 based on the second approximate straight line L2 according to the second approximate equation (step S23). More specifically, the control device 500 first derives the slope and offset of the second approximate straight line L2. Next, the control device 500 determines the gain setting value and offset setting value from the full scale required as the sensing function of the magnetic sensor circuit 50 and the voltage value when the magnetic field is 0 (mT). In this way, the gain setting value is determined based on the output characteristics of the magnetic sensor circuit 50 in the low magnetic field region.
- control device 500 determines the setting value of the correction circuit 150 based on the measurement result of the output voltage of the magnetic sensor circuit 50 in the high magnetic field region and the second approximate line L2 (step S24). As a result, the reference voltages Vr1 to Vrn of the comparators 161 to 16n are determined as the setting values of the correction circuit 150.
- control device 500 stores the setting value of the correction circuit 150 in the non-volatile memory 130 (step S25), and ends the processing based on this flowchart. Note that the control device 500 may also store the setting value determined in step S23 or step S27 in the non-volatile memory 130.
- control device 500 may set the magnetic field ranges of the low magnetic field region and the high magnetic field region based on only one of the boundary magnetic fields +A and -B shown in FIG. 4.
- control device 500 may set the magnetic field range of the low magnetic field region as "-A ⁇ magnetic field ⁇ +A.”
- the control device 500 may set the magnetic field range of the low magnetic field region as "-B ⁇ magnetic field ⁇ +B.”
- the control device 500 may set the region excluding the magnetic field range of the low magnetic field region from the range of ⁇ N (mT) as the magnetic field range of the high magnetic field region.
- the second approximation formula may be calculated by selecting any magnetic field that belongs to the magnetic field range of the low magnetic field region and using the measurement results of the output voltage of the magnetic sensor circuit 50 within that range.
- the magnetic field range of the low magnetic field region may be set to a range wider than the magnetic field range of the low magnetic field region set based on the magnetic fields of the maximum and minimum points.
- the sensor amplifier circuit 100 does not operate the correction circuit 150 in a low magnetic field region, and operates the correction circuit 150 in a high magnetic field region.
- a sensor amplifier circuit that always performs linearity correction on a signal output from a sensor.
- a calculation unit that performs calculations for linearity correction is mounted in the sensor amplifier circuit.
- the calculation section needs to be constructed using large-scale digital circuits, which increases the chip area and results in a problem of a large sensor amplifier circuit.
- the linearity correction calculation process takes time, which reduces responsiveness.
- linearity correction is always performed on the output from the sensor, the problem of reduced responsiveness will occur.
- One option for improving responsiveness is to increase the operating frequency of the calculation unit.
- a new problem arises in that the higher the operating frequency of the calculation unit, the greater the current consumption and high-frequency noise.
- linearity correction is always performed on the output from the sensor, there is a risk that unnecessary calculations will be performed on output that does not actually require correction. In this case, there is also the possibility of larger output errors.
- the correction circuit 150 does not operate in the low magnetic field region, and therefore the response can be improved compared to conventional sensor amplifier circuits that always perform linearity correction on the output from the sensor. Moreover, in the sensor amplifier circuit 100, in the low magnetic field region, the output from the magnetic sensor circuit 50 is amplified with high precision based on the second approximate straight line L2 corresponding to the low magnetic field region. Therefore, in the sensor amplifier circuit 100, the accuracy does not decrease even if the correction circuit 150 does not operate. Furthermore, since the correction circuit 150 is configured as an analog circuit, the response speed can be improved compared to when the correction circuit 150 is configured as a digital circuit.
- the sensor amplifier circuit 100 In the low magnetic field region, the sensor amplifier circuit 100 simply amplifies the output signal of the magnetic sensor circuit 50 using the operational amplifier 111, and the linearity performance of the magnetic sensor circuit 50 is used as is. This reduces error factors, and improves the accuracy of the sensor output for magnetic fields in the low magnetic field region.
- the sensor amplifier circuit 100 uses the correction circuit 150 to correct the linearity of the sensor output. This makes it possible to expand the range in which the linearity of the relationship between the magnetic field and the output voltage is maintained. As a result, the dynamic range of the magnetic sensor circuit 50 can be expanded.
- the sensor amplifier circuit 100 amplifies the output of the magnetic sensor circuit 50 based on the measurement results of the output voltage of the magnetic sensor circuit 50 in the low magnetic field region. For this reason, in the high magnetic field region, the error between the second approximate straight line L2 and the output of the magnetic sensor circuit 50 becomes large.
- the sensor amplifier circuit 100 can perform linearity correction so as to approach the output characteristics of an ideal sensor even in the high magnetic field region. As a result, the dynamic range of the magnetic sensor circuit 50 that can be used as a sensor can be expanded. In this way, the sensor amplifier circuit 100 is highly versatile because it can correct linearity regardless of the characteristics of the magnetic sensor circuit 50 alone.
- the sensor amplifier circuit 100 operates the correction circuit 150 only in high magnetic field regions. This allows the dynamic range that can be used as a sensor for the magnetic sensor circuit 50 to be expanded.
- the correction circuit 150 is composed of analog circuits, and the circuit operation is automatically and immediately determined depending on the magnitude of the applied voltage. In this way, the correction circuit 150 has excellent response speed because it does not perform calculations including feedback routines.
- the “operational amplifier 111" and “operational amplifier 112" in the embodiment correspond to the “first operational amplifier” and “second operational amplifier” in this disclosure, respectively.
- the “low magnetic field region” and “high magnetic field region” in the embodiment correspond to the “first magnetic field region” and “second magnetic field region” in this disclosure.
- the magnetic sensor circuit 50 outputs a first signal corresponding to a magnetic field in a first range (-B ⁇ magnetic field ⁇ +A) in a low magnetic field region (first magnetic field region) where a magnetic field in a first range is applied, and outputs a second signal corresponding to a magnetic field in a second range (-N ⁇ magnetic field ⁇ -B, +A ⁇ magnetic field ⁇ +N) where a magnetic field stronger than the magnetic field in the first range is applied.
- the correction circuit 150 is configured to switch from a first state (all switches SW1 to SWn are off) in which the nonlinear distortion contained in the output signal of the magnetic sensor circuit 50 is not corrected, to a second state (one of the switches SW1 to SWn is on) in which the nonlinear distortion contained in the output signal of the magnetic sensor circuit 50 is corrected.
- the correction circuit 150 switches from the first state to the second state when the output signal from the magnetic sensor circuit 50 changes from a first signal corresponding to the magnetic field in the first range to a second signal corresponding to the magnetic field in the second range.
- the operational amplifier 111 When the first signal is input, the operational amplifier 111 outputs a signal based on the gain setting value and the offset setting value. Because the voltage of this signal is lower than the reference voltage Vr1 of the correction circuit 150, all of the switches SW1 to SWn of the correction circuit 150 remain in the off state.
- the operational amplifier 111 When the second signal is input, the operational amplifier 111 outputs a signal based on the gain setting value and the offset setting value. Because the voltage of this signal is higher than any of the reference voltages Vr1 to Vrn of the correction circuit 150, at least one of the switches SW1 to SWn of the correction circuit 150 changes from off to on. In this way, the correction circuit 150 detects that the output signal from the magnetic sensor circuit 50 has changed from the first signal to the second signal based on the change in the magnitude of the output signal from the operational amplifier 111.
- the calibration method of the sensor amplifier circuit 100 includes steps of measuring the output voltage of the magnetic sensor circuit in response to the magnetic field (steps S1 to S7), calculating a first relational expression (first approximation expression) that expresses the relationship between the magnetic field and the output voltage of the magnetic sensor circuit as a linear function using the measurement results from the measuring step (step S11), determining the maximum value (maximum value, minimum value) of the linearity error based on the first relational expression and the measurement results from the measuring step (steps S13, S14, S15, S18), determining the boundary between the first range and the second range using the maximum value of the linearity error (steps S16, S17, S19, S20), calculating a second relational expression (step S22) that expresses the relationship between the magnetic field and the output voltage of the magnetic sensor circuit as a linear function using the measurement results in the first magnetic field region from among the measurement results from the measuring step, and determining the gain and offset of the first operational amplifier using
- the (Modification of Sensor System) 10 is a schematic configuration diagram of a sensor system 11 according to a modified example.
- the sensor system 11 includes a magnetic sensor circuit 50 and a sensor amplifier circuit 101.
- the sensor amplifier circuit 101 includes a correction circuit 151.
- the sensor system 11 according to the modified example is different from the sensor systems 11 described so far in the configuration of the correction circuit.
- enable switches ESW1 to ESWn are added to the components of the correction circuit 150.
- the enable switch ESW1 is disposed between the comparator 161 and the switch SW1.
- the enable switch ESW2 is disposed between the comparator 162 and the switch SW2.
- the enable switch ESWn is disposed between the comparator 16n and the switch SWn.
- the readout circuit 120 controls the on/off of the enable switches ESW1 to ESWn.
- the relationship Vr1 ⁇ Vr2 ⁇ ... ⁇ Vrn holds for the values of the reference voltages Vr1 to Vrn used in the correction circuit 150.
- the linearity correction point is determined based on the relationship Vr1 ⁇ Vr2 ⁇ ... ⁇ Vrn.
- the readout circuit 120 When the readout circuit 120 does not perform linearity correction, it turns off all of the enable switches ESW1 to ESWn. When the readout circuit 120 performs linearity correction at a correction point determined by one of the comparators 161 to 16n, it turns on the enable switch connected to the corresponding comparator among the enable switches ESW1 to ESWn and turns off the other enable switches.
- the readout circuit 120 When the readout circuit 120 performs linearity correction at a correction point determined by any two of the comparators 161 to 16n, it turns on the enable switches ESW1 to ESWn that are connected to the corresponding two comparators and turns off the other enable switches.
- the readout circuit 120 can perform linearity correction using one of the comparators 161-16n, and can also perform linearity correction using multiple comparators among the comparators 161-16n. Therefore, according to the modified example, it is possible to provide a sensor system 11 and a sensor amplifier circuit 101 that allow free selection of a comparator with a convenient voltage range. Furthermore, in the modified example, since the enable switches ESW1-ESWn are employed, it is possible to prevent the comparators 161-16n from malfunctioning. For example, it is possible to prevent the switch SW1 from turning on due to a malfunction of the comparator 161, even if the voltage of the node N1 is equal to or lower than the reference voltage Vr1.
- information that determines the timing for turning on and off the enable switches ESW1 to ESWn is stored as one of the setting values in the non-volatile memory 130. More specifically, the non-volatile memory 130 stores registers used to control the enable switches ESW1 to ESWn, one for each of the enable switches ESW1 to ESWn.
- the readout circuit 120 controls the on-off of the enable switches ESW1 to ESWn based on the setting value read out from the non-volatile memory 130.
- the reference voltages Vr1 to Vrn function as threshold voltages that determine the correction operation of the correction circuit 151.
- a certain voltage range is set for each of the reference voltages Vr1 to Vrn.
- it is possible to set the same voltage width (0.5V) for each reference voltage such as "2.5V ⁇ Vr1 ⁇ 3.0V”, "2.8V ⁇ Vr2 ⁇ 3.3V", ....
- the readout circuit 120 turns on only the enable switch ESW2 and turns off the other enable switches.
- the resolution required for adjusting the threshold voltage is 0.1V. If an adjustment range in 0.1V increments is required for all voltages from 0V to 5V that can be observed at node N1, then 50 adjustment patterns will be required. In this case, the non-volatile memory 130 will require a 6-bit register area for one reference voltage. Therefore, to accommodate reference voltages Vr1 to Vrn, the non-volatile memory 130 will require a register area of "6 bits x N".
- the same voltage range for example, 0.5 V
- the resolution required for adjusting the threshold voltage is 0.1 V.
- the number of adjustment patterns for the reference voltage is limited to five, so the number of bits of the register area required for one reference voltage is three.
- the non-volatile memory 130 only needs a register area of "3 bits x N". Therefore, by setting the same voltage range (for example, 0.5 V) for each of the reference voltages Vr1 to Vrn, the capacity required for the non-volatile memory 130 can be reduced.
- FIG. 10 an example of a correction circuit 151 is shown that is configured by connecting each of the components “switch SW1, resistor R1", “switch SW2, resistor R2”, ... “switch SWn, resistor Rn” in parallel.
- the correction circuit 151 may also be configured such that these components are connected in series and a signal that turns on and off the switch of each component is input via a corresponding enable switch.
- a sensor amplifier circuit is a sensor amplifier circuit for amplifying an output signal from a magnetic sensor circuit, and includes a first operational amplifier for amplifying the output signal from the magnetic sensor circuit, and a correction circuit for correcting nonlinear distortion contained in the output signal, wherein the magnetic sensor circuit outputs a first signal having a magnitude corresponding to a magnetic field of a first range in a first magnetic field region where a magnetic field of a first range is applied, and outputs a second signal having a magnitude corresponding to a magnetic field of a second range in a second magnetic field region where a magnetic field of a second range larger than the magnetic field of the first range is applied, and the correction circuit is configured to switch from a first state in which the nonlinear distortion contained in the output signal is not corrected to a second state for correcting the nonlinear distortion contained in the output signal, and the correction circuit switches from the first state to the second state when the output signal from the magnetic sensor circuit changes from the first signal to the second signal.
- the correction circuit automatically switches from the first state to the second state when the output signal from the magnetic sensor circuit changes from the first signal to the second signal.
- the correction circuit detects that the output signal from the magnetic sensor circuit has changed from a first signal to a second signal based on a change in the magnitude of the output signal from the first operational amplifier.
- the first operational amplifier amplifies the output signal from the magnetic sensor circuit based on a predetermined gain, and the gain is a value determined based on the output characteristics of the magnetic sensor circuit in the first magnetic field region.
- the sensor amplifier circuit described in any one of paragraphs 1 to 4 further includes a memory in which a setting value for the correction circuit is stored, and a readout circuit that reads out the setting value stored in the memory and sets the setting value in the correction circuit.
- the magnetic sensor circuit includes a magnetic sensor element, and the magnetic sensor element is configured by a tunneling magneto-resistive (TMR) element.
- TMR tunneling magneto-resistive
- the sensor amplifier circuit further includes a second operational amplifier, the output terminal of the first operational amplifier is connected to the inverting input terminal of the second operational amplifier, the correction circuit includes a first negative feedback circuit and a second negative feedback circuit connected in parallel between the output terminal of the second operational amplifier and the inverting input terminal of the second operational amplifier, a first comparator and a second comparator, the first negative feedback circuit has a first resistor and a first switch that opens and closes the first negative feedback circuit, the second negative feedback circuit has a second resistor and a second switch that opens and closes the second negative feedback circuit, the first comparator closes the first switch when the output voltage of the first operational amplifier reaches a first reference voltage, and the second comparator closes the second switch when the output voltage of the first operational amplifier reaches a second reference voltage that is greater than the first reference voltage.
- the sensor system includes a magnetic sensor circuit and a sensor amplifier circuit described in any one of the above items 1 to 8.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
センサ増幅回路(100)は、磁気センサ回路(50)からの出力信号を増幅するためのセンサ増幅回路(100)であって、磁気センサ回路(50)からの出力信号を増幅する第1演算増幅器111と、出力信号に含まれる非線形歪みを補正する補正回路(150)とを備え、磁気センサ回路(50)は、第1範囲の磁界が印加された第1磁界領域において第1範囲の磁界に対応する大きさの第1信号を出力し、第1範囲の磁界よりも大きい第2範囲の磁界が印加された第2磁界領域において第2範囲の磁界に対応する大きさの第2信号を出力し、補正回路(150)は、出力信号に含まれる非線形歪みを補正しない第1状態から、出力信号に含まれる非線形歪みを補正するための第2状態に切り替わるように構成されており、補正回路(150)は、磁気センサ回路(50)からの出力信号が第1信号から第2信号に変化したときに、第1状態から第2状態に切り替わる。
Description
本開示は、センサ増幅回路に関し、より特定的には、磁気センサ回路の出力信号を増幅するためのセンサ増幅回路、センサシステム、およびセンサ増幅回路の較正方法に関する。
磁気センサ回路を構成する磁気素子は、ヒステリシスおよび非線形特性を有する。このため、磁気センサ回路の出力信号を増幅するためのセンサ増幅回路には、磁気センサ回路の出力信号を補正し、その直線性を改善するための機能が求められる。
特開2015-212634号公報(特許文献1)には、磁気検出素子の出力電圧から磁束密度を演算し、演算した磁束密度に対して線形の関係となる電圧を演算し出力するように構成される、磁気センサが開示されている。
特開2018-115928号公報(特許文献2)には、算出された複数のフィッティング係数を用いて、新たに取得した差動出力電圧を被測定磁界に対して略線形となるように補正し、補正出力電圧を取得するステップを含む、電流センサの信号補正方法が開示されている。
磁気センサ回路に入力される磁界の大きさによっては、磁気センサ回路の出力に生じる非線形歪みが小さい場合がある。このような場合、センサ増幅回路は、必ずしも非線形歪みを補正するための処理をする必要がない。しかしながら、従来のセンサ増幅回路は、非線形歪みを補正する必要性の有無に関わらず、磁気センサ回路の出力信号に対して常に非線形歪みを補正する処理をしていた。このため、センサ増幅回路の応答速度が遅くなるなどの問題が生じていた。
本開示は、このような課題を解決するためになされたものであって、その目的は、磁気センサ回路の出力を増幅するためのセンサ増幅回路において、高い応答性を確保しながら、直線性を改善することである。
本開示に係るセンサ増幅回路は、磁気センサ回路からの出力信号を増幅するためのセンサ増幅回路であって、磁気センサ回路からの出力信号を増幅する第1演算増幅器と、出力信号に含まれる非線形歪みを補正する補正回路とを備え、磁気センサ回路は、第1範囲の磁界が印加された第1磁界領域において第1範囲の磁界に対応する大きさの第1信号を出力し、第1範囲の磁界よりも大きい第2範囲の磁界が印加された第2磁界領域において第2範囲の磁界に対応する大きさの第2信号を出力し、補正回路は、出力信号に含まれる非線形歪みを補正しない第1状態から、出力信号に含まれる非線形歪みを補正するための第2状態に切り替わるように構成されており、補正回路は、磁気センサ回路からの出力信号が第1信号から第2信号に変化したときに、第1状態から第2状態に切り替わる。
本開示に係るセンサ増幅回路によれば、高い応答性を確保しながら、直線性を改善することが可能となる。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
(センサシステムの概要)
図1は、本実施の形態に係るセンサ増幅回路100を用いたセンサシステム10の概略構成図である。図1を参照して、センサシステム10は、磁気センサ回路50およびセンサ増幅回路100を含む。
図1は、本実施の形態に係るセンサ増幅回路100を用いたセンサシステム10の概略構成図である。図1を参照して、センサシステム10は、磁気センサ回路50およびセンサ増幅回路100を含む。
磁気センサ回路50は、4つのセンサ素子51~54がブリッジ接続された構成を有している。図1の例においては、センサ素子51~54の各々は、トンネル型磁気抵抗トンネル型磁気抵抗(Tunneling Magneto-Resistive:TMR)素子であり、検出される磁界に応じて抵抗値が変化する磁気センサである。センサ素子51~54として、TMR素子を用いることにより、高感度かつ高精度なセンシング機能を備えるセンサシステム10を提供できる。
なお、検出される物理量に応じて抵抗値が変化する素子であれば、センサ素子51~54として他の抵抗素子を用いてもよい。たとえば、TMR素子に代えて、巨大磁気抵抗(GMR:Giant Magneto Resistance)素子や、異方性磁気抵抗(AMR:Anisotropic Magneto Resistance)素子などを採用してもよい。
センサ素子51,52は、一対の電源端子5a,5bの間に直列に接続されている。また、センサ素子53,54も、一対の電源端子5a,5bの間に直列に接続されている。磁気センサ回路50は、電源端子5a,5bに所定の電圧が印加されることによって動作し、検出された磁界に応じて、一対の信号出力端子5c,5dに電圧差を生じさせる。信号出力端子5cは、センサ素子51とセンサ素子52との接続ノードであり、信号出力端子5dは、センサ素子53とセンサ素子54との接続ノードである。
信号出力端子5c,5dは、センサ増幅回路100の入力端子T1,T2にそれぞれ接続される。すなわち、磁気センサ回路50の一対の出力信号の差電圧は、センサ増幅回路100の入力として与えられる。
センサ増幅回路100は、入力端子T1,T2に加えて、出力端子T3と、演算増幅器111,112と、補正回路150と、読出回路120と、不揮発性メモリ130とを含む。読出回路120は、たとえば、アナログ回路により構成される。不揮発性メモリ130は、たとえば、ROM(Read Only Memory)やフラッシュメモリなどにより構成される。
演算増幅器111の非反転入力端子および反転入力端子は、入力端子T1,T2にそれぞれ接続されている。演算増幅器111の非反転入力端子および反転入力端子には、磁気センサ回路50からの一対の出力信号が入力される。演算増幅器111には、オフセット調整用の電圧V1が印加される。演算増幅器111の出力端子は、演算増幅器112の反転入力端子と接続される。演算増幅器112の反非転入力端子には、オフセット調整用の電圧V2が印加される。演算増幅器112の出力端子は、センサ増幅回路100の出力端子T3と接続される。演算増幅器112の反転入力端子と出力端子との間には、演算増幅器112の基準の増幅率を定めるための抵抗Ryが接続される。
演算増幅器111の出力端子は、ノードN1と接続される。演算増幅器112の反転入力端子は、ノードN2と接続される。ノードN1とノードN2との間には抵抗Rxが接続される。
補正回路150は、比較器161~16nと、抵抗R1~Rnと、スイッチSW1~SWnとを含む。
比較器161~16nの反転入力端子は、演算増幅器111の出力端子とノードN1において接続されている。比較器161~16nの非反転入力端子には、参照電圧Vr1~Vrnがそれぞれ印加されている。スイッチSW1~SWnは、比較器161~16nの出力のオンおよびオフに従って、それぞれオンおよびオフする。
スイッチSW1~SWnは、ノードN2とノードN3との間にそれぞれ配置されている。抵抗R1~Rnは、スイッチSW1~SWnとノードN2との間にそれぞれ接続されている。
演算増幅器111は、予め設定されたゲイン(増幅率)を用いて、磁気センサ回路50からの出力信号を増幅する。演算増幅器111は、電圧V1に基づいて定まるオフセット設定値を用いて、磁気センサ回路50からの出力信号にオフセット調整を行う。演算増幅器111からの出力信号は、演算増幅器112を介して、出力端子T3から出力される。
センサ増幅回路100は、補正回路150を用いて、信号の非線形歪みを補正する。この非線形歪みは、磁気センサ回路50の出力特性により生じる。演算増幅器111からの出力信号は、磁気センサ回路50の出力特性により生じる非線形歪みの影響を受けるため、非線形歪みを有する。補正回路150は、このような非線形歪みを補正する。以下、非線形歪みを補正することを、「リニアリティ補正」ともいう。補正回路150は、演算増幅器111からの出力信号の大きさに応じて、リニアリティ補正をしない第1状態と、リニアリティ補正をする第2状態とに切り替わる。
補正回路150において用いられる参照電圧Vr1~Vrnの値に関して、Vr1<Vr2<…<Vrnの関係が成立する。不揮発性メモリ130は、参照電圧Vr1~Vrnの値を、対応する比較器161~16n別に格納している。不揮発性メモリ130に格納された参照電圧Vr1~Vrnの値は、各種の設定値の一例である。読出回路120は、不揮発性メモリ130から参照電圧Vr1~Vrnの値を読み出し、読み出した値を対応する比較器161~16nに設定する。
比較器161は、演算増幅器111の出力が参照電圧Vr1を超えると、スイッチSW1をオフからオンに切り替える。これにより、演算増幅器112の出力端子からスイッチSW1および抵抗R1を経由して演算増幅器112の入力端子に戻る第1負帰還回路が形成される。補正回路150は、抵抗R1によって定められるゲインによって、演算増幅器111の出力信号を補正する。その結果、磁気センサ回路50の出力信号の非線形歪みが補正されることになる。
比較器162は、演算増幅器111の出力が参照電圧Vr2を超えると、スイッチSW2をオフからオンに切り替える。これにより、第1負帰還回路に加えて、演算増幅器112の出力端子からスイッチSW2および抵抗R2を経由して演算増幅器112の入力端子に戻る第2負帰還回路のループが形成される。また、これにより、リニアリティ補正に用いられる補正回路150のゲインの大きさが切り替えられる。
比較器16nは、演算増幅器111の出力が参照電圧Vrnを超えると、スイッチSWnをオフからオンに切り替える。これにより、第1負帰還回路、第2負帰還回路、…に加えて、演算増幅器112の出力端子からスイッチSWnおよび抵抗R2を経由して演算増幅器112の入力端子に戻る第n負帰還回路のループが形成される。また、これにより、リニアリティ補正に用いられる補正回路150のゲインの大きさが切り替えられる。
したがって、演算増幅器111の出力信号が大きくなるにつれて、演算増幅器112の負帰還回路を介して演算増幅器112の出力端子から入力端子へ戻るフィードバック信号が大きくなり、リニアリティ補正に用いられる補正量が多くなる。
このように、参照電圧Vr1~Vrnを互いに異なる値に設定することによって、補正回路150に複数の補正ポイントを設定することができる。補正ポイントが多ければ多いほど、リニアリティを細かく調整することができる。リニアリティを細かく調整することによって、演算増幅器111の出力を目標の特性に近づけることができる。
演算増幅器111の出力が参照電圧Vr1以下のときには、比較器161~16nのすべての出力がオフの状態になる。このとき、演算増幅器112の負帰還回路が開放し、補正回路150による補正が行われない状態になる。
図1においては、「スイッチSW1,抵抗R1」、「スイッチSW2,抵抗R2」、…「スイッチSWn,抵抗Rn」の各々の構成要素を並列接続することにより構成される補正回路150の例が示されている。しかしながら、これらの構成要素を直列に接続し、各構成要素のスイッチに対して、スイッチをオンオフする信号が入力されるように、補正回路150を構成してもよい。
(リニアリティ補正)
次に、図2および図3を用いて、本実施の形態に係るリニアリティ補正について説明する。図2は、磁界に対する磁気センサ回路50の出力電圧の特性を示す波形W1と、第1近似直線L1との関係を示す図である。図3は、磁界領域(高磁界領域および低磁界領域)と、リニアリティ補正の有無との関係を説明するための図である。
次に、図2および図3を用いて、本実施の形態に係るリニアリティ補正について説明する。図2は、磁界に対する磁気センサ回路50の出力電圧の特性を示す波形W1と、第1近似直線L1との関係を示す図である。図3は、磁界領域(高磁界領域および低磁界領域)と、リニアリティ補正の有無との関係を説明するための図である。
図2の波形W1に示されるように、磁気センサ回路50の出力は、ヒステリシスおよび非線形特性を有する。磁界の大きさを変化させつつ、磁気センサ回路50の出力電圧を測定することによって、このような波形W1が得られる。第1近似直線L1は、磁界に対する磁気センサ回路50の理想的な出力特性を示す直線である。磁界に対する磁気センサ回路50の出力電圧の測定結果を利用することによって、このような理想的な直線を描くための一次関数を算出することができる。特に、第1近似直線L1は、磁界レンジ(-N~+N)(mT:ミリテスラ)のすべての測定結果を用いて導出される。
仮に、第1近似直線L1に基づいて磁気センサ回路50からの出力を補正した場合、波形W1の丸枠F1に示される部分では第1近似直線L1と磁気センサ回路50の出力との誤差が大きくなるという問題が生じる。この問題を解決するため、誤差が大きくなる曲線部分を使用しないようにすると、センサとして使用可能な磁気センサ回路50のダイナミックレンジが狭くなるという問題が生じる。
一般に、磁気センサ回路からの出力信号と近似直線との誤差が小さい磁界範囲も存在し得る。たとえば、磁界の絶対値が所定範囲の低磁界領域においては、その誤差が小さくなる。そのような低磁界領域を含めて、出力信号をリニアリティ補正の対象とすることは、センサ増幅回路の応答速度の低下を招くばかりでなく、却って誤差を大きくする要因となる。
そこで、図3に示されるように、センサ増幅回路100は、磁気センサ回路50のセンシング対象となる磁界範囲-N~+Nのうち、低磁界領域の磁界範囲(-B≦磁界≦+A)においては補正回路150が動作せず、高磁界領域の磁界範囲(-N≦磁界<-B、+A<磁界≦+N)においては、補正回路150が動作するように構成されている。
図3に示されるように、高磁界領域では、磁気センサ回路50の特性の影響を受け、波形W1の非線形性が強くなる。換言すると、高磁界領域では、磁気センサ回路50のリニアリティが劣化する。演算増幅器111のゲイン設定値およびオフセット設定値は、第2近似直線L2に基づいて算出されている。第2近似直線L2は、低磁界領域における磁気センサ回路50の出力電圧の測定結果を用いて導出される。そのため、低磁界領域では、磁気センサ回路50の出力と、演算増幅器111の出力との誤差が小さくなるが、高磁界領域では、磁気センサ回路50の出力と、演算増幅器111の出力との誤差が大きくなる。
そこで、センサ増幅回路100は、高磁界領域において、補正回路150を動作させることにより、リニアリティを補正する。これにより、センサ増幅回路100は、演算増幅器111の出力特性を、理想的な直線である第2近似直線L2に近づける。
図1および図3を参照しつつ、センサ増幅回路100のリニアリティ補正についてさらに説明する。なお、図2および図3に示されるような波形W1を取得するために、磁気センサ回路50の出力電圧を測定してもよく、磁気センサ回路50およびセンサ増幅回路100を含むセンサシステム10の出力(出力端子T3の「OUT」)を測定してもよい。
演算増幅器111は、磁気センサ回路50からの出力信号が第2近似直線L2に従うように、ゲイン補正およびオフセット調整を行う。比較器161には、参照電圧Vr1として、低磁界領域の磁界範囲と高磁界領域の磁界範囲との境界値に対応する電圧が印加されている。低磁界領域においては、補正回路150のスイッチSW1~SWnがオフの状態になる。このため、低磁界領域においては、演算増幅器111の出力信号が補正回路150により補正されることなく、演算増幅器112を介して出力端子T3へ入力される。
高磁界領域においては、補正回路150のスイッチSW1~SWnの少なくともいずれか1つがオンの状態になる。このため、高磁界領域においては、演算増幅器111の出力信号が補正回路150により補正された後、演算増幅器112を介して出力端子T3へ入力される。
補正回路150においては、演算増幅器111の出力電圧が、各比較器161~16nに設定された所定の参照電圧に到達するごとに、各スイッチSW1~SWnがオンする。これにより、演算増幅器111の出力電圧を低下させる方向にオフセットが加えられる。その結果、高磁界領域においては、演算増幅器111の出力電圧は、理想的な線形出力(第2近似直線L2)に追従するように、各補正ポイントにおいて段階的に変化する。図3において、高磁界領域のジグザクラインは、演算増幅器111の出力電圧が各補正ポイントにおいて段階的に変化する様子を表す。
このように、補正回路150は、演算増幅器111の出力電圧が低磁界領域に対応する電圧である場合、すべてのスイッチSW1~SWnをオフにし、リニアリティ補正を行わない。このとき、センサ増幅回路100は、磁気センサ回路50からの出力電圧を、センサとして要求されるフルスケールに合わせたゲインで演算増幅器111において増幅するのみである。補正回路150は、演算増幅器111の出力が高磁界領域に対応する電圧である場合、リニアリティ補正のためのゲインの大きさを自動的に切り替える。これにより、各補正ポイントでゲインが自動的に調整される。
リニアリティ補正によるセンサ検出精度を向上させるには、補正ポイントを多く設けて、より細かにリニアリティを補正する必要がある。しかしながら、その場合、比較器161~16nの数を増加する必要がある。比較器161~16nの数を増加すると、回路のサイズが大きくなってしまい、装置全体の小型化を阻害する要因となり得る。そのため、比較器161~16nの数は、要求されるセンサの検出精度と、センサ増幅回路100の許容サイズとを考慮して適宜選択される。
(較正手順)
次に、図4および図5を用いて、センサ増幅回路100の較正手順を説明する。より詳しくは、ここでは、磁界領域の磁界範囲、高磁界領域の磁界範囲、および第2近似直線L2を決定する手順を説明する。図4は、リニアリティ誤差の波形W2を示す図である。図5は、磁界に対する磁気センサ回路50の出力電圧の特性を示す波形W1と、第1近似直線L1と、第2近似直線L2との関係を示す図である。
次に、図4および図5を用いて、センサ増幅回路100の較正手順を説明する。より詳しくは、ここでは、磁界領域の磁界範囲、高磁界領域の磁界範囲、および第2近似直線L2を決定する手順を説明する。図4は、リニアリティ誤差の波形W2を示す図である。図5は、磁界に対する磁気センサ回路50の出力電圧の特性を示す波形W1と、第1近似直線L1と、第2近似直線L2との関係を示す図である。
図2に示される第1近似直線L1と波形W1との差分を算出することによって、リニアリティ誤差(%)が算出される。波形W2(図4参照)は、磁界と、そのようにして算出されたリニアリティ誤差との関係を示す。図4に示されるように、リニアリティ誤差の波形W2から、リニアリティ誤差の極大値および極小値が特定される。
リニアリティ誤差の極小値に対応する磁界は、境界磁界+Aとして設定され、リニアリティ誤差の極大値に対応する磁界は、境界磁界-Bとして設定される。このとき、低磁界領域の磁界範囲は、「-B≦磁界≦+A」と設定され、高磁界領域の磁界範囲は、「-N≦磁界<-B、+A<磁界≦+N」と設定される。このように、低磁界領域および高磁界領域の磁界範囲は、第1近似直線L1に基づいて設定される。
なお、磁気センサ回路の種類によっては、リニアリティ誤差の波形が波形W2をX軸に線対称にしたものとなる場合もある。本実施の形態は、このような磁気センサ回路にも適用可能である。
図5に示される第2近似直線L2は、第1近似直線L1と同様に、磁界に対するセンサ出力信号の、理想的な直線として導出される。既に説明したとおり、第1近似直線L1は、磁界レンジ(-N~+N)(mT)のすべての測定結果を用いて導出される。これに対して、第2近似直線L2は、低磁界領域(-B~+A)(mT)の測定結果のみを用いて導出される。
それゆえ、第2近似直線L2は、第1近似直線L1よりも、低磁界領域における磁気センサ回路50の出力特性を近似する精度が高い。図5にも示されるように、第2近似直線L2は、第1近似直線L1よりも、低磁界領域における磁気センサ回路50の出力特性を良好に反映している。
そのため、第1近似直線L1に基づいて演算増幅器111のゲイン補正値およびオフセット調整値を設計するよりも、第2近似直線L2に基づいて演算増幅器111のゲイン補正値およびオフセット調整値を設計した方が、低磁界領域における演算増幅器111の出力信号の精度を高めることができる。このような理由により、演算増幅器111のゲイン補正値およびオフセット調整値は、第2近似直線L2に基づいて設計されている。
それゆえ、センサ増幅回路100は、低磁界領域における演算増幅器111の出力信号の精度が高い。したがって、低磁界領域において、補正回路150を動作させる必要がない。低磁界領域において、補正回路150を動作させると、不必要なリニアリティ補正が付加されることで演算増幅器111の出力信号の精度が却って低下するおそれがある。むしろ、補正回路150を低磁界領域で動作させないことで、低磁界領域におけるセンサ増幅回路100の応答速度を高めることができるというメリットがある。このような理由により、センサ増幅回路100は、低磁界領域においては、補正回路150を動作させない。
これに対して、センサ増幅回路100は、高磁界領域においては、補正回路150を動作させる。これにより、図3を用いて既に説明したとおり、演算増幅器111の出力電圧は、理想的な線形出力(第2近似直線L2)に追従するように、各補正ポイントにおいて段階的に変化する。したがって、本実施の形態に係るセンサ増幅回路100によれば、高い応答性を確保しながら、直線性を改善することができる。
(制御装置)
図6は、センサ増幅回路100の較正に用いられる制御装置500の構成を示すブロック図である。
図6は、センサ増幅回路100の較正に用いられる制御装置500の構成を示すブロック図である。
制御装置500は、典型的には、コンピュータ(コンピューティング装置)により構成される。制御装置500は、プロセッサ501と、RAM(Random Access Memory)502と、ROM(Read Only Memory)503と、通信用のインターフェース504とを備える。制御装置500は、RAMを作業領域として用いつつ、ROM503に格納されたプログラムに従って各種の処理を実行する。
制御装置500は、インターフェース504を介して不揮発性メモリ130と接続される。制御装置500は、インターフェース504を介して測定装置400と接続される。
制御装置500は、センサ増幅回路100を較正するための各種の処理を実行する。制御装置500は、第1に、測定装置400を制御して、磁界を変化させつつ磁気センサ回路50の出力電圧を測定する(測定処理)。制御装置500は、第2に、その測定結果を用いて、センサ増幅回路100の各種の設定値を決定する(決定処理)。制御装置500は、第3に、決定した設定値を不揮発性メモリ130に書込む(書込処理)。制御装置500は、少なくとも、上記第1~第3の処理を実行する。
次に、フローチャートに基づいて、制御装置500によって実現される、センサ増幅回路100の較正手順を説明する。
図7は、磁界に対する磁気センサ回路50からの出力電圧を測定する手順を示すフローチャートである。本フローチャートに基づく測定結果を用いることによって、制御装置500は、図2に示される波形W1を得ることができる。本フローチャートに基づく処理は、制御装置500によって実行される。以下、フローチャートに従って、その処理を説明する。なお、ここでは、波形W1を取得するために、磁気センサ回路50の出力電圧を測定する例を説明する。ただし、波形W1を取得するために、磁気センサ回路50の出力電圧を測定することに代えて、磁気センサ回路50およびセンサ増幅回路100を含むセンサシステム10の出力(出力端子T3の「OUT」)を測定してもよい。
はじめに、制御装置500は、磁気センサ回路50に+N(mT)の磁界が印加されるように、測定装置400を制御する(ステップS1)。次に、制御装置500は、測定装置400に、磁気センサ回路50の出力電圧を測定させる(ステップS2)。測定装置400は、+N(mT)の磁界に対する磁気センサ回路50の出力電圧を測定する。測定装置400は、測定結果を制御装置500へ送信する。制御装置500は、測定結果を記憶する。以下、同様に、測定装置400は、測定の都度、測定結果を制御装置500へ送信し、制御装置500は、測定結果を記憶する。
次に、制御装置500は、磁気センサ回路50に印加される磁界が+N(mT)からM(mT)下がるように、測定装置400を制御する(ステップS2)。ここで、M(mT)の大きさは、磁界を変化させつつ磁気センサ回路50の出力電圧を測定するときの、磁界の変化幅である。測定装置400は、制御装置500の制御に従い、磁界を+N(mT)からM(mT)ずつ下げつつ、磁気センサ回路50の出力電圧を測定する。
次に、制御装置500は、磁気センサ回路50に印加される磁界が磁界レンジ幅の下限値である-N(mT)未満となったか否かを判定する(ステップS4)。制御装置500は、磁気センサ回路50に印加される磁界が-N(mT)未満となるまで、ステップS1~ステップS3の処理を繰り返す。
測定装置400は、磁気センサ回路50に印加される磁界が-N(mT)未満となった場合、磁界を-N(mT)からM(mT)ずつ上げつつ、磁気センサ回路50の出力電圧を測定する。このために、制御装置500は、磁気センサ回路50に印加される磁界が+N(mT)からM(mT)上がるように、測定装置400を制御する(ステップS5)。次に、制御装置500は、測定装置400に、磁気センサ回路50の出力電圧を測定させる(ステップS6)。このとき、測定装置400は、-N+M(mT)の磁界に対する磁気センサ回路50の出力電圧を測定する。
次に、制御装置500は、磁気センサ回路50に印加される磁界が磁界レンジ幅の上限値である+N(mT)を超えたか否かを判定する(ステップS7)。制御装置500は、磁気センサ回路50に印加される磁界が+N(mT)を超えるまで、ステップS5~ステップS7の処理を繰り返す。制御装置500は、磁気センサ回路50に印加される磁界が磁界レンジ幅の上限値である+N(mT)を超えた場合、本フローチャートに基づく処理を終了する。制御装置500は、ステップS1~ステップ7の処理を実行することにより、図2に示される波形W1を描くためのデータを取得する。
図8および図9は、センサ増幅回路100の各種の設定値を決定するための手順を示すフローチャートである。本フローチャートに基づく処理が実行されることによって、演算増幅器111のゲイン設定値およびオフセット設定値、並びに、補正回路150の設定値が決定される。補正回路150の設定値には、比較器161~16nの参照電圧Vr1~Vrnの値が含まれる。本フローチャートに基づく処理は、制御装置500によって実行される。以下、フローチャートに従って、その処理を説明する。
はじめに、制御装置500は、±N(mT)の範囲における磁気センサ回路50の出力電圧の測定結果から、第1近似直線L1を特定するための第1近似式を算出する(ステップS11)。制御装置500は、たとえば、最小二乗法を用いて第1近似式を算出する。第1近似式は、「出力電圧=傾き×X(入力磁界)+オフセット」という形式の1次関数である。制御装置500は、算出された第1近似式を用いて、モニターなどに第1近似直線L1(図2参照)を表示してもよい。
次に、制御装置500は、±N(mT)の範囲における磁気センサ回路50の出力電圧の測定結果と、第1近似式を用いて算出された値とから、リニアリティ誤差を算出する(ステップS12)。制御装置500は、算出されたリニアリティ誤差を用いて、リニアリティ誤差の波形W2(図4参照)をモニターなどに表示してもよい。
次に、制御装置500は、リニアリティ誤差の波形W2に、極大値および極小値が存在するか否かを判定する(ステップS13)。極大値および極小値については、図4に例示されている。
制御装置500は、リニアリティ誤差の波形W2に極大値および極小値が存在する場合、極大値および極小値は、0±1(mT)以外の磁界範囲に存在するか否かを判定する(ステップS14)。制御装置500は、0±1(mT)以外の磁界範囲に極大値および極小値が存在する場合にのみ、それらに基づいて境界磁界+A,-B(図4参照)を設定する。0(mT)付近では、磁気センサ回路50のヒステリシス特性が強く現れる。このため、制御装置500は、0±1(mT)の磁界範囲にのみ極大値および極小値が存在する場合、境界磁界+A,-Bを設定しない。
したがって、制御装置は、リニアリティ誤差の波形W2に、極大値および極小値が存在しない場合(ステップ13にてNO)、および0±1(mT)の磁界範囲にのみ極大値および極小値が存在する場合(ステップ14にてNO)、±N(mT)のすべての範囲を低磁界領域の磁界範囲として設定する(ステップS26)。その結果、±N(mT)の範囲には、高磁界領域が設定されない。
既に説明したとおり、本実施の形態に係るセンサ増幅回路100は、低磁界領域においてリニアリティ補正を行ない、高磁界領域においてリニアリティ補正を行わない。したがって、±N(mT)のすべての磁界範囲が低磁界領域の磁界範囲として設定された場合、センサ増幅回路100は、±N(mT)のすべての磁界領域において、補正回路150を動作させない。
次に、制御装置500は、第1近似式に従う第1近似直線L1に基づいて、演算増幅器111のゲイン設定値およびオフセット設定値を決定する(ステップS27)。
制御装置500は、ステップS14において、0±1(mT)以外の磁界範囲に、極大値および極小値が存在すると判定した場合、境界磁界+A,-Bを設定する。ただし、制御装置500は、境界磁界+A,-Bを設定する前に、0±1(mT)以外の磁界範囲に存在する極小値および極大値の数を判定する。
0±1(mT)以外の磁界範囲に存在する極小値および極大値が、各々1つであると限らない。磁気センサ回路50のヒステリシス特性と第1近似式との関係によっては、0±1(mT)以外の磁界範囲に、極小値または極大値が複数存在する場合もある。制御装置500は、0±1(mT)以外の磁界範囲に、極小値が1つだけ存在する場合(ステップS15にてYES)、その極小値に対応する磁界の大きさを境界磁界+A(mT)として設定する(ステップS16)。
制御装置500は、0±1(mT)以外の磁界範囲に、極小値が複数存在する場合(ステップS15にてNO)、複数の極小値のうち、図4に示される+N(mT)に最も近い極小値に対応する磁界の大きさを境界磁界+A(mT)として設定する(ステップS17)。
制御装置500は、0±1(mT)以外の磁界範囲に、極大値が1つだけ存在する場合(ステップS18にてYES)、その極大値に対応する磁界の大きさを境界磁界-B(mT)として設定する(ステップS19)。制御装置500は、0±1(mT)以外の磁界範囲に、極大値が複数存在する場合(ステップS18にてNO)、複数の極大値のうち、図4に示される-N(mT)に最も近い極大値に対応する磁界の大きさを境界磁界-B(mT)として設定する(ステップS20)。
次に、制御装置500は、境界磁界+A,-Bに基づいて、低磁界領域および高磁界領域の磁界範囲を設定する(ステップS21)。より具体的には、制御装置500は、低磁界領域の磁界範囲として、「-B≦磁界≦+A」を設定する。制御装置500は、高磁界領域の磁界範囲として、「-N≦磁界<-B、+A<磁界≦+N」を設定する。
次に、制御装置500は、低磁界領域における磁気センサ回路50の出力電圧の測定結果から、第2近似直線L2を特定するための第2近似式を算出する(ステップS22)。制御装置500は、たとえば、最小二乗法を用いて第2近似式を算出する。第2近似式は、第1近似式と同様、「出力電圧=傾き×X(入力磁界)+オフセット」という形式の1次関数である。制御装置500は、算出された第2近似式を用いて、モニターなどに第2近似直線L2(図3参照)を表示してもよい。
次に、制御装置500は、第2近似式に従う第2近似直線L2に基づいて、演算増幅器111のゲイン設定値およびオフセット設定値を決定する(ステップS23)。より具体的には、制御装置500は、はじめに、第2近似直線L2の傾きとオフセットとを導く。次に、制御装置500は、磁気センサ回路50のセンシング機能として要求されるフルスケール、および磁界が0(mT)のときの電圧の値から、ゲイン設定値およびオフセット設定値を決定する。このように、ゲイン設定値は、低磁界領域における磁気センサ回路50の出力特性に基づいて決定される。
次に、制御装置500は、高磁界領域における磁気センサ回路50の出力電圧の測定結果と第2近似直線L2とに基づいて、補正回路150の設定値を決定する(ステップS24)。これにより、補正回路150の設定値として、比較器161~16nの参照電圧Vr1~Vrnが定められる。
次に、制御装置500は、補正回路150の設定値を不揮発性メモリ130に格納し(ステップS25)、本フローチャートに基づく処理を終える。なお、制御装置500は、ステップS23またはステップS27において決定した設定値も不揮発性メモリ130に格納してもよい。
以上、図7および図8を用いて、センサ増幅回路100の較正手順を説明した。ここでは、コンピュータの一例となる制御装置500によって、センサ増幅回路100を較正する手順を説明した。しかし、上記各手順の少なくとも一部が、制御装置500に代えて、較正に関わる担当者の手作業によって実行されるようにしてもよい。
上記説明においては、低磁界領域の磁界範囲として、「-B≦磁界≦+A」が設定され、高磁界領域の磁界範囲として、「-N≦磁界<-B、+A<磁界≦+N」が設定される例を説明した。しかしながら、制御装置500は、図4に示される境界磁界+A,-Bのうちの一方のみに基づいて、低磁界領域および高磁界領域の磁界範囲を設定してもよい。
たとえば、制御装置500は、低磁界領域の磁界範囲として、「-A≦磁界≦+A」を設定してもよい。あるいは、制御装置500は、低磁界領域の磁界範囲として、「-B≦磁界≦+B」を設定してもよい。制御装置500は、低磁界領域の磁界範囲を決定した後、±N(mT)の範囲から低磁界領域の磁界範囲を除く領域を、高磁界領域の磁界範囲として設定すればよい。
低磁界領域の磁界範囲に属する任意の磁界を選択し、その範囲内における磁気センサ回路50の出力電圧の測定結果を用いて、第2近似式を算出してもよい。
なお、複数の磁気センサ回路50の出力電圧の測定結果(キャリブレーションデータ)から境界磁界を決める場合、必ずしも、極大点および極小点の磁界を基準にして低磁界領域の磁界範囲を設定する必要はない。たとえば、極大点および極小点の磁界を基準にして設定される低磁界領域の磁界範囲よりも広い範囲を、低磁界領域の磁界範囲として設定してもよい。
(従来のセンサ増幅回路との比較)
以上のように、センサ増幅回路100は、低磁界領域においては補正回路150を動作させず、高磁界領域においては補正回路150を動作させる。従来、センサから出力された信号に対して、常にリニアリティ補正を行うセンサ増幅回路が知られている。このような従来のセンサ増幅回路においては、たとえば、リニアリティ補正のための演算を行う演算部がセンサ増幅回路内に搭載されている。
以上のように、センサ増幅回路100は、低磁界領域においては補正回路150を動作させず、高磁界領域においては補正回路150を動作させる。従来、センサから出力された信号に対して、常にリニアリティ補正を行うセンサ増幅回路が知られている。このような従来のセンサ増幅回路においては、たとえば、リニアリティ補正のための演算を行う演算部がセンサ増幅回路内に搭載されている。
このような従来のセンサ増幅回路においては、演算部を大規模なデジタル回路で構成する必要があるため、チップ面積が大きくなり、その結果、センサ増幅回路が大型化してしまうという問題がある。また、リニアリティ補正の演算処理に時間がかかるため、応答性が低下する。
センサからの出力に対して常にリニアリティ補正をする場合には、応答性がより一層低下するという問題が発生する。応答性を高めるため、演算部の動作周波数を上げることも考えられる。しかし、演算部の動作周波数を高くするほど、消費電流と高周波ノイズとが増大するという新たな問題が生じる。また、センサからの出力に対して常にリニアリティ補正をする場合には、本来、補正が必要でない出力に対して余計な演算が加わるおそれがある。この場合、出力の誤差が大きくなる可能性もある。
本実施の形態に係るセンサ増幅回路100では、低磁界領域においては、補正回路150が動作しないため、センサからの出力に対して常にリニアリティ補正をするような従来のセンサ増幅回路に比べて,応答性を高めることができる。しかも、センサ増幅回路100では、低磁界領域においては、低磁界領域に対応する第2近似直線L2に基づいて磁気センサ回路50からの出力が精度良く増幅される。このため、センサ増幅回路100では、補正回路150が動作しなくとも、精度が低下することがない。さらに、補正回路150がアナログ回路で構成されているため、補正回路150がデジタル回路で構成されている場合と比較して、応答速度を高めることができる。
以下、本実施の形態に係るセンサ増幅回路100により奏される効果をさらに列挙する。センサ増幅回路100は、低磁界領域においては、磁気センサ回路50の出力信号を演算増幅器111により増幅させるのみであり、磁気センサ回路50のリニアリティ性能がそのまま使用される。このため、誤差要因が少なくなり、低磁界領域の磁界に対するセンサ出力の精度を高めることができる。
センサ増幅回路100は、強磁界領域においては、補正回路150を用いてセンサ出力のリニアリティを補正する。これにより、磁界と出力電圧との関係のリニアリティを保つ範囲を広げることができる。その結果、磁気センサ回路50のダイナミックレンジを広げることができる。
センサ増幅回路100は、低磁界領域における磁気センサ回路50の出力電圧の測定結果に基づいて磁気センサ回路50の出力を増幅している。このため、高磁界領域では、第2近似直線L2と磁気センサ回路50の出力との誤差が大きくなる。しかし、センサ増幅回路100は、補正回路150を動作させることによって、高磁界領域においても、理想的なセンサの出力特性に近づくようにリニアリティ補正をすることができる。その結果、センサとして使用できる磁気センサ回路50のダイナミックレンジを広げることができる。このように、センサ増幅回路100は、磁気センサ回路50の特性のみによらずにリニアリティを補正できるため、高い汎用性を備える。
センサ増幅回路100は、高磁界領域でのみ補正回路150を動作させる。これにより、磁気センサ回路50のセンサとして使用できるダイナミックレンジを広げることができる。
補正回路150は、アナログ回路で構成されており、印加電圧の大きさによって、回路動作が自動的かつ即座に確定する。このように、補正回路150は、フィードバックルーチンなどを含むような演算処理をしていないため、応答速度に優れている。
実施の形態における「演算増幅器111」および「演算増幅器112」は、本開示における「第1演算増幅器」および「第2演算増幅器」にそれぞれ対応する。実施の形態における「低磁界領域」および「高磁界領域」は、本開示における「第1磁界領域」および「第2磁界領域」に対応する。
図3に示されるように、磁気センサ回路50は、第1範囲(-B≦磁界≦+A)の磁界が印加された低磁界領域(第1磁界領域)において第1範囲の磁界に対応する第1信号を出力し、第1範囲の磁界よりも大きい第2範囲(-N≦磁界<-B、+A<磁界≦+N)の磁界が印加された高磁界領域(第2磁界領域)において第2範囲の磁界に対応する第2信号を出力する。
補正回路150は、磁気センサ回路50の出力信号に含まれる非線形歪みを補正しない第1状態(すべてのスイッチSW1~SWnがオフ)から、磁気センサ回路50の出力信号に含まれる非線形歪みを補正するための第2状態(スイッチSW1~SWnのいずれかがオン)に切り替わるように構成されている。補正回路150は、磁気センサ回路50からの出力信号が上記第1範囲の磁界に対応する第1信号から上記第2範囲の磁界に対応する第2信号に変化したときに、第1状態から前記第2状態に切り替わる。
演算増幅器111は、第1信号が入力されたとき、ゲイン設定値およびオフセット設定値に基づいた信号を出力する。この信号の電圧は、補正回路150の参照電圧Vr1よりも低いため、補正回路150のすべてのスイッチSW1~SWnがオフの状態を維持する。
演算増幅器111は、第2信号が入力されたとき、ゲイン設定値およびオフセット設定値に基づいた信号を出力する。この信号の電圧は、補正回路150の参照電圧Vr1~Vrnのいずれかよりも高いため、補正回路150のスイッチSW1~SWnの少なくともいずれかがオフからオンに変化する。このように、補正回路150は、演算増幅器111からの出力信号の大きさが変化したことに基づいて、磁気センサ回路50からの出力信号が第1信号から第2信号に変化したことを検知する。
図7および図8に示されるように、センサ増幅回路100の較正方法は、磁界に対する磁気センサ回路の出力電圧を測定するステップ(ステップS1~ステップS7)と、測定するステップによる測定結果を用いて、磁界と磁気センサ回路の出力電圧との関係を一次関数で表す第1関係式(第1近似式)を算出するステップ(ステップS11)と、第1関係式と、測定するステップによる測定結果とに基づいて、リニアリティ誤差の最大値(極大値、極小値)を決定するステップ(ステップS13,ステップS14,ステップS15,ステップS18)と、リニアリティ誤差の最大値を用いて、第1範囲と第2範囲との境界を決定するステップ(ステップS16,ステップS17,ステップS19,ステップS20)と、測定するステップによる測定結果のうち、第1磁界領域における測定結果を用いて、磁界と磁気センサ回路の出力電圧との関係を一次関数で表す第2関係式(ステップS22)を算出するステップと、第2関係式を用いて、第1演算増幅器のゲインおよびオフセットを決定するステップ(ステップS23)とを含む。
(センサシステムの変形例)
図10は、変形例に係るセンサシステム11の概略構成図である。センサシステム11は、磁気センサ回路50およびセンサ増幅回路101を含む。センサ増幅回路101は、補正回路151を含む。変形例に係るセンサシステム11は、これまでに説明したセンサシステム11と比較して、補正回路の構成が異なっている。変形例に係る補正回路151には、補正回路150の構成要素に対してイネーブル(Enable)スイッチESW1~ESWnが追加されている。
図10は、変形例に係るセンサシステム11の概略構成図である。センサシステム11は、磁気センサ回路50およびセンサ増幅回路101を含む。センサ増幅回路101は、補正回路151を含む。変形例に係るセンサシステム11は、これまでに説明したセンサシステム11と比較して、補正回路の構成が異なっている。変形例に係る補正回路151には、補正回路150の構成要素に対してイネーブル(Enable)スイッチESW1~ESWnが追加されている。
イネーブルスイッチESW1は、比較器161とスイッチSW1との間に配置されている。イネーブルスイッチESW2は、比較器162とスイッチSW2との間に配置されている。イネーブルスイッチESWnは、比較器16nとスイッチSWnとの間に配置されている。
読出回路120は、イネーブルスイッチESW1~ESWnのオンオフを制御する。すでに説明したように、補正回路150において用いられる参照電圧Vr1~Vrnの値に関して、Vr1<Vr2<…<Vrnの関係が成立する。換言すると、リニアリティの補正ポイントは、Vr1<Vr2<…<Vrnの関係に基づいて定められる。
読出回路120は、リニアリティ補正をしない場合、イネーブルスイッチESW1~ESWnをすべてオフにする。読出回路120は、比較器161~16nのうち、いずれか1つによって定まる補正ポイントでリニアリティ補正をする場合、イネーブルスイッチESW1~ESWnのうち、対応する比較器に接続されるイネーブルスイッチをオンにし、その他のイネーブルスイッチをオフにする。
読出回路120は、比較器161~16nのうち、いずれか2つによって定まる補正ポイントでリニアリティ補正をする場合、イネーブルスイッチESW1~ESWnのうち、対応する2つの比較器に接続されるイネーブルスイッチをオンにし、その他のイネーブルスイッチをオフにする。
このように、変形例において、読出回路120は、比較器161~16nのうちの1つを用いてリニアリティ補正をすることができると共に、比較器161~16nのうちの複数の比較器を用いてリニアリティ補正をすることができる。したがって、変形例によれば、都合のよい電圧範囲の比較器を自由に選択可能なセンサシステム11およびセンサ増幅回路101を提供することができる。さらに、変形例では、イネーブルスイッチESW1~ESWnが採用されているため、比較器161~16nが誤動作することを防止できる。たとえば、ノードN1の電圧が参照電圧Vr1以下であるにも関わらず、比較器161の誤動作によって、スイッチSW1がオンすることを防止できる。
なお、イネーブルスイッチESW1~ESW1をオンオフさせるためのタイミングを定める情報は、設定値のひとつとして、不揮発性メモリ130に格納されている。より具体的には、不揮発性メモリ130には、イネーブルスイッチESW1~ESWnの制御に用いられるレジスタがイネーブルスイッチESW1~ESn別に格納されている。読出回路120は、不揮発性メモリ130から読み出した設定値に基づいて、イネーブルスイッチESW1~ESWnのオンオフを制御する。
参照電圧Vr1~Vrnは、補正回路151の補正動作を定める閾値電圧として機能する。変形例においては、参照電圧Vr1~Vrnの各々に、一定の電圧範囲が設定されている。このとき、「2.5V<Vr1<3.0V」、「2.8V<Vr2<3.3V」、…などのように、各参照電圧に同じ電圧幅(0.5V)を設定することが考えられる。この場合、読出回路120は、ノードN1の電圧が3.0Vである場合、イネーブルスイッチESW2のみをオンにし、その他のイネーブルスイッチをオフにする。
ここで、閾値電圧の調整に必要な分解能を0.1Vと仮定する。ノードN1において観測され得る0V~5Vまでのすべての電圧を対象として、0.1V刻みの調整範囲が要求される場合、50段階の調整パターンが必要になる。この場合、不揮発性メモリ130には、1つの参照電圧に対して6ビットのレジスタ領域が必要となる。したがって、参照電圧Vr1~Vrnに対応するためには、不揮発性メモリ130に「6ビット×N」のレジスタ領域が必要となる。
これに対して、参照電圧Vr1~Vrnの各々に、同じ電圧幅(たとえば、0.5V)を設定した場合を考える。閾値電圧の調整に必要な分解能を0.1Vと仮定する。この場合、参照電圧の調整パターンは5パターンに限られるため、1つの参照電圧に必要なレジスタ領域のビット数は3である。参照電圧Vr1~Vrnに対応する場合、不揮発性メモリ130に「3ビット×N」のレジスタ領域があればよい。したがって、参照電圧Vr1~Vrnの各々に、同じ電圧幅(たとえば、0.5V)を設定することで、不揮発性メモリ130に必要とされる容量を低減することができる。
図10においては、「スイッチSW1,抵抗R1」、「スイッチSW2,抵抗R2」、…「スイッチSWn,抵抗Rn」の各々の構成要素を並列接続することにより構成される補正回路151の例が示されている。しかしながら、これらの構成要素を直列に接続し、各構成要素のスイッチに対して、対応するイネーブルスイッチを介して、スイッチをオンオフする信号が入力されるように、補正回路151を構成してもよい。
[態様]
(第1項)一態様に係るセンサ増幅回路は、磁気センサ回路からの出力信号を増幅するためのセンサ増幅回路であって、磁気センサ回路からの出力信号を増幅する第1演算増幅器と、出力信号に含まれる非線形歪みを補正する補正回路とを備え、磁気センサ回路は、第1範囲の磁界が印加された第1磁界領域において第1範囲の磁界に対応する大きさの第1信号を出力し、第1範囲の磁界よりも大きい第2範囲の磁界が印加された第2磁界領域において第2範囲の磁界に対応する大きさの第2信号を出力し、補正回路は、出力信号に含まれる非線形歪みを補正しない第1状態から、出力信号に含まれる非線形歪みを補正するための第2状態に切り替わるように構成されており、補正回路は、磁気センサ回路からの出力信号が第1信号から第2信号に変化したときに、第1状態から第2状態に切り替わる。
(第1項)一態様に係るセンサ増幅回路は、磁気センサ回路からの出力信号を増幅するためのセンサ増幅回路であって、磁気センサ回路からの出力信号を増幅する第1演算増幅器と、出力信号に含まれる非線形歪みを補正する補正回路とを備え、磁気センサ回路は、第1範囲の磁界が印加された第1磁界領域において第1範囲の磁界に対応する大きさの第1信号を出力し、第1範囲の磁界よりも大きい第2範囲の磁界が印加された第2磁界領域において第2範囲の磁界に対応する大きさの第2信号を出力し、補正回路は、出力信号に含まれる非線形歪みを補正しない第1状態から、出力信号に含まれる非線形歪みを補正するための第2状態に切り替わるように構成されており、補正回路は、磁気センサ回路からの出力信号が第1信号から第2信号に変化したときに、第1状態から第2状態に切り替わる。
(第2項)第1項に記載のセンサ増幅回路において、補正回路は、磁気センサ回路からの出力信号が第1信号から第2信号に変化したときに、第1状態から第2状態に自動的に切り替わる。
(第3項)第1項または第2項に記載のセンサ増幅回路において、補正回路は、第1演算増幅器からの出力信号の大きさが変化したことに基づいて、磁気センサ回路からの出力信号が第1信号から第2信号に変化したことを検知する。
(第4項)第1項~第3項のいずれか1項に記載のセンサ増幅回路において第1演算増幅器は、所定のゲインに基づいて磁気センサ回路からの出力信号を増幅し、ゲインは、第1磁界領域における磁気センサ回路の出力特性に基づいて決定された値である。
(第5項)第1項~第4項のいずれか1項に記載のセンサ増幅回路において、補正回路の設定値が格納されたメモリと、メモリに格納された設定値を読み出し、補正回路に設定値を設定する読出回路とをさらに備える。
(第6項)第1項~第5項のいずれか1項に記載のセンサ増幅回路において磁気センサ回路には、4つのセンサ素子がブリッジ接続されており、第1演算増幅器は、磁気センサ回路からの一対の出力信号の差電圧を増幅する。
(第7項)第1項~第6項のいずれか1項に記載のセンサ増幅回路において磁気センサ回路は、磁気センサ素子を含み、磁気センサ素子は、トンネル型磁気抵抗(Tunneling Magneto-Resistive:TMR)素子により構成される。
(第8項)第1項~第7項のいずれか1項に記載のセンサ増幅回路において、第2演算増幅器をさらに備え、第1演算増幅器の出力端子と第2演算増幅器の反転入力端子とが接続され、補正回路は、第2演算増幅器の出力端子と第2演算増幅器の反転入力端子との間に並列に接続される、第1負帰還回路および第2負帰還回路と、第1比較器および第2比較器とを含み、第1負帰還回路は、第1抵抗と、第1負帰還回路を開閉する第1スイッチとを有し、第2負帰還回路は、第2抵抗と、第2負帰還回路を開閉する第2スイッチとを有し、第1比較器は、第1演算増幅器の出力電圧が第1参照電圧に到達すると、第1スイッチを閉じ、第2比較器は、第1演算増幅器の出力電圧が第1参照電圧よりも大きい第2参照電圧に到達すると、第2スイッチを閉じる。
(第9項)センサシステムは、第1項~第8項のいずれか1項に記載の磁気センサ回路およびセンサ増幅回路を備える。
(第10項)第1項~第8項のいずれか1項に記載のセンサ増幅回路の較正方法であって磁界に対する磁気センサ回路の出力電圧を測定するステップと、測定するステップによる測定結果を用いて、磁界と磁気センサ回路の出力電圧との関係を一次関数で表す第1関係式を算出するステップと、第1関係式と、測定するステップによる測定結果とに基づいて、リニアリティ誤差の最大値を決定するステップと、リニアリティ誤差の最大値を用いて、第1範囲と第2範囲との境界を決定するステップと、測定するステップによる測定結果のうち、第1磁界領域における測定結果を用いて、磁界と磁気センサ回路の出力電圧との関係を一次関数で表す第2関係式を算出するステップと、第2関係式を用いて、第1演算増幅器のゲインおよびオフセットを決定するステップとを含む。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
5a,5b 電源端子、5c,5d 信号出力端子、10,11 センサシステム、50 磁気センサ回路、51,52,53,54 センサ素子、100,101 センサ増幅回路、111,112 演算増幅器、120 読出回路、130 不揮発性メモリ、150,151 補正回路、161~16n 比較器、190 出力アンプ、400 測定装置、500 制御装置、501 プロセッサ、502 RAM、503 ROM、504 インターフェース、ESW1~ESWn イネーブルスイッチ、F1 丸枠、L1 第1近似直線、L2 第2近似直線、R1~Rn,Rx,Ry 抵抗、SW1~SWn スイッチ、T1,T2 入力端子、T3 出力端子、V1,V2 電圧、Vr1~Vrn 参照電圧、W1,W2 波形。
Claims (10)
- 磁気センサ回路からの出力信号を増幅するためのセンサ増幅回路であって、
前記磁気センサ回路からの出力信号を増幅する第1演算増幅器と、
前記出力信号に含まれる非線形歪みを補正する補正回路とを備え、
前記磁気センサ回路は、第1範囲の磁界が印加された第1磁界領域において前記第1範囲の磁界に対応する大きさの第1信号を出力し、前記第1範囲の磁界よりも大きい第2範囲の磁界が印加された第2磁界領域において前記第2範囲の磁界に対応する大きさの第2信号を出力し、
前記補正回路は、前記出力信号に含まれる非線形歪みを補正しない第1状態から、前記出力信号に含まれる非線形歪みを補正するための第2状態に切り替わるように構成されており、
前記補正回路は、前記磁気センサ回路からの出力信号が前記第1信号から前記第2信号に変化したときに、前記第1状態から前記第2状態に切り替わる、センサ増幅回路。 - 前記補正回路は、前記磁気センサ回路からの出力信号が前記第1信号から前記第2信号に変化したときに、前記第1状態から前記第2状態に自動的に切り替わる、請求項1に記載のセンサ増幅回路。
- 前記補正回路は、前記第1演算増幅器からの出力信号に基づいて、前記磁気センサ回路からの出力信号が前記第1信号から前記第2信号に変化したことを検知する、請求項1または請求項2に記載のセンサ増幅回路。
- 前記第1演算増幅器は、所定のゲインに基づいて前記磁気センサ回路からの出力信号を増幅し、
前記ゲインは、前記第1磁界領域における前記磁気センサ回路の出力特性に基づいて決定された値である、請求項1~請求項3のいずれか1項に記載のセンサ増幅回路。 - 前記補正回路の設定値が格納されたメモリと、
前記メモリに格納された前記設定値を読み出し、前記補正回路に前記設定値を設定する読出回路とをさらに備える、請求項1~請求項4のいずれか1項に記載のセンサ増幅回路。 - 前記磁気センサ回路には、4つのセンサ素子がブリッジ接続されており、
前記第1演算増幅器は、前記磁気センサ回路からの一対の出力信号の差電圧を増幅する、請求項1~請求項5のいずれか1項に記載のセンサ増幅回路。 - 前記磁気センサ回路は、磁気センサ素子を含み、
前記磁気センサ素子は、トンネル型磁気抵抗(Tunneling Magneto-Resistive:TMR)素子により構成される、請求項1~請求項5のいずれか1項に記載のセンサ増幅回路。 - 第2演算増幅器をさらに備え、
前記第1演算増幅器の出力端子と前記第2演算増幅器の反転入力端子とが接続され、
前記補正回路は、
前記第2演算増幅器の出力端子と前記第2演算増幅器の反転入力端子との間に並列に接続される、第1負帰還回路および第2負帰還回路と、
第1比較器および第2比較器とを含み、前記第1負帰還回路は、第1抵抗と、前記第1負帰還回路を開閉する第1スイッチとを有し、
前記第2負帰還回路は、第2抵抗と、前記第2負帰還回路を開閉する第2スイッチとを有し、
前記第1比較器は、前記第1演算増幅器の出力電圧が第1参照電圧に到達すると、前記第1スイッチを閉じ、
前記第2比較器は、前記第1演算増幅器の出力電圧が前記第1参照電圧よりも大きい第2参照電圧に到達すると、前記第2スイッチを閉じる、請求項1~請求項7のいずれか1項に記載のセンサ増幅回路。 - 請求項1~請求項8のいずれか1項に記載の磁気センサ回路およびセンサ増幅回路を備える、センサシステム。
- 請求項1~請求項8に記載のセンサ増幅回路の較正方法であって、
磁界に対する前記磁気センサ回路の出力電圧を測定するステップと、
前記測定するステップによる測定結果を用いて、磁界と前記磁気センサ回路の出力電圧との関係を一次関数で表す第1関係式を算出するステップと、
前記第1関係式と、前記測定するステップによる測定結果とに基づいて、リニアリティ誤差の最大値を決定するステップと、
前記リニアリティ誤差の最大値を用いて、前記第1範囲と前記第2範囲との境界を決定するステップと、
前記測定するステップによる測定結果のうち、前記第1磁界領域における測定結果を用いて、磁界と前記磁気センサ回路の出力電圧との関係を一次関数で表す第2関係式を算出するステップと、
前記第2関係式を用いて、前記第1演算増幅器のゲインおよびオフセットを決定するステップとを含む、センサ増幅回路の較正方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022158183 | 2022-09-30 | ||
JP2022-158183 | 2022-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024071016A1 true WO2024071016A1 (ja) | 2024-04-04 |
Family
ID=90477830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/034667 WO2024071016A1 (ja) | 2022-09-30 | 2023-09-25 | センサ増幅回路、センサシステム、およびセンサ増幅回路の較正方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024071016A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02285212A (ja) * | 1989-04-27 | 1990-11-22 | Honda Motor Co Ltd | 変位センサおよび変位センサ用ic |
CN102778584A (zh) * | 2011-05-11 | 2012-11-14 | 重庆师范大学 | 磁流变液加速度传感器 |
JP2019036938A (ja) * | 2017-08-21 | 2019-03-07 | 茂達電子股▲ふん▼有限公司 | 誤差除去アンプ回路 |
JP2020060457A (ja) * | 2018-10-11 | 2020-04-16 | Tdk株式会社 | 磁気センサ装置 |
US20200150194A1 (en) * | 2017-10-26 | 2020-05-14 | Infineon Technologies Ag | Sensors using digitally assisted 1/x analog gain compensation |
WO2022209797A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | センサー出力補償回路 |
-
2023
- 2023-09-25 WO PCT/JP2023/034667 patent/WO2024071016A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02285212A (ja) * | 1989-04-27 | 1990-11-22 | Honda Motor Co Ltd | 変位センサおよび変位センサ用ic |
CN102778584A (zh) * | 2011-05-11 | 2012-11-14 | 重庆师范大学 | 磁流变液加速度传感器 |
JP2019036938A (ja) * | 2017-08-21 | 2019-03-07 | 茂達電子股▲ふん▼有限公司 | 誤差除去アンプ回路 |
US20200150194A1 (en) * | 2017-10-26 | 2020-05-14 | Infineon Technologies Ag | Sensors using digitally assisted 1/x analog gain compensation |
JP2020060457A (ja) * | 2018-10-11 | 2020-04-16 | Tdk株式会社 | 磁気センサ装置 |
WO2022209797A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | センサー出力補償回路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101943337B1 (ko) | 온도에 따른 감도 및/또는 오프셋을 조절하는 자기장 센서 및 이의 방법 | |
US11204374B2 (en) | Current sensor, and manufacturing method for current sensor | |
JP4736508B2 (ja) | 物理量検出方法及びセンサ装置 | |
US20090115412A1 (en) | Magnetic sensing device and electronic compass using the same | |
US20140358317A1 (en) | Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor | |
US20150236648A1 (en) | Amplifier with offset compensation | |
JP5668224B2 (ja) | 電流センサ | |
US7373266B2 (en) | Sensor calibration using selectively disconnected temperature | |
JPWO2014006914A1 (ja) | 電流センサの製造方法及び電流センサ | |
CN101006355A (zh) | 磁检测装置及使用了该装置的电子方位仪 | |
WO2024071016A1 (ja) | センサ増幅回路、センサシステム、およびセンサ増幅回路の較正方法 | |
JP4284851B2 (ja) | 圧力センサ回路 | |
JP2003050270A (ja) | 磁気センサの出力補正方法及びその補正回路 | |
US9778067B2 (en) | Sensing a physical quantity in relation to a sensor | |
WO2022209797A1 (ja) | センサー出力補償回路 | |
JP2014052262A (ja) | 磁気センサ | |
WO2022209720A1 (ja) | センサー出力補償回路 | |
CN103080754B (zh) | 电流传感器 | |
JP2016163332A (ja) | 比較回路およびセンサ装置 | |
US20230408604A1 (en) | Sensor output compensation circuit | |
JP4147455B2 (ja) | 磁気センサ | |
CN112763089A (zh) | 一种智能化电流传感器信号的调理方法及其调理电路 | |
CN113037955A (zh) | 监测霍尔传感器输出和支持镜头模块致动控制器的电路 | |
CN111624532A (zh) | 一种磁阻感测器系统 | |
Lopez-Martin et al. | Versatile automotive sensor interface asic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23872239 Country of ref document: EP Kind code of ref document: A1 |