WO2024070999A1 - 測量装置 - Google Patents

測量装置 Download PDF

Info

Publication number
WO2024070999A1
WO2024070999A1 PCT/JP2023/034631 JP2023034631W WO2024070999A1 WO 2024070999 A1 WO2024070999 A1 WO 2024070999A1 JP 2023034631 W JP2023034631 W JP 2023034631W WO 2024070999 A1 WO2024070999 A1 WO 2024070999A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected
tracking
light receiving
distance measuring
Prior art date
Application number
PCT/JP2023/034631
Other languages
English (en)
French (fr)
Inventor
太一 湯浅
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023102433A external-priority patent/JP2024050408A/ja
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2024070999A1 publication Critical patent/WO2024070999A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present invention relates to a surveying device capable of acquiring the three-dimensional coordinates of a measurement object.
  • Surveying equipment such as laser scanners and total stations have optical distance measuring devices that detect the distance to the object being measured using prism distance measurement, which uses a retroreflective prism as the object being measured, and non-prism distance measurement, which does not use a reflecting prism.
  • some surveying instruments particularly those that perform prism distance measurement, have a tracking function for automatically tracking the object being measured.
  • external light such as sunlight may enter the tracking system and become stray light that may be received by the light receiving element.
  • stray light When stray light occurs, it may cause the prism being tracked to be erroneously detected, interfering with automatic tracking and automatic aiming of the prism.
  • the present invention provides a surveying device that suppresses the generation of stray light and improves tracking accuracy.
  • the present invention relates to a surveying device that includes a distance measuring light emitting section that emits distance measuring light to a measurement object, a distance measuring light receiving section having a light receiving element that receives the reflected distance measuring light from the measurement object, a tracking light emitting section that emits a tracking light to the measurement object coaxially with the distance measuring light, a tracking light receiving section having a tracking light receiving element that receives the reflected tracking light incident coaxially with the reflected distance measuring light, and a calculation control section that calculates the distance to the measurement object based on the reception result of the reflected distance measuring light to the light receiving element and tracks the measurement object based on the reception result of the reflected tracking light to the tracking light receiving element, and the distance measuring light receiving section and the tracking light receiving section have a receiving prism that internally reflects the reflected distance measuring light and the reflected tracking light multiple times, and at least one chamfer is formed at a corner of the receiving prism that is located outside the optical path of the reflected tracking light, and the chamfer is configured
  • the present invention also relates to a surveying device in which the light-receiving prism is configured to have a wavelength separation surface that transmits either the reflected distance measuring light or the reflected tracking light and reflects the other.
  • the present invention also relates to a surveying device that is configured to provide a wavelength selection section that transmits only the reflected tracking light on the surface of the light receiving prism that faces the tracking light receiving element.
  • the present invention also relates to a surveying device in which the wavelength selection section is smaller than the surface, and a masking section is formed on the portion of the surface where the wavelength selection section is not provided.
  • the present invention also relates to a surveying device that is configured to form a wavelength selection film on the surface of the receiving prism on which the reflected tracking light is incident with a rotationally symmetric angle of incidence.
  • the present invention also relates to a surveying device that is configured to apply anti-reflection treatment to the surface of the light receiving prism that is located outside the optical paths of the reflected distance measuring light and the reflected tracking light.
  • the present invention also relates to a surveying device in which the light receiving prism has a separation surface that separates the reflected distance measuring light and the reflected tracking light, and an anti-reflection section is provided on the portion of the separation surface that is outside the optical paths of the reflected distance measuring light and the reflected tracking light.
  • the present invention relates to a surveying device in which the light-receiving prism has a recess formed on the side opposite to the incident surface of the reflected distance measuring light, the recess being recessed toward the incident surface, and the light-receiving element is disposed in the recess.
  • a distance measuring light emitting unit emits distance measuring light to a measuring object
  • a distance measuring light receiving unit having a light receiving element that receives the reflected distance measuring light from the measuring object
  • a tracking light emitting unit emits tracking light coaxially with the distance measuring light to the measuring object
  • a tracking light receiving unit having a tracking light receiving element that receives the reflected tracking light incident coaxially with the reflected distance measuring light
  • a distance measuring unit calculates the distance to the measuring object based on the result of reception of the reflected distance measuring light by the light receiving element, and calculates the distance to the measuring object based on the result of reception of the reflected tracking light by the tracking light receiving element.
  • a calculation control unit that tracks the object to be measured based on the distance measurement light receiving unit and the tracking light receiving unit have a light receiving prism that internally reflects the reflected distance measurement light and the reflected tracking light multiple times, and at least one chamfer is formed at a corner of the light receiving prism that is located outside the optical path of the reflected tracking light, and the chamfer is configured to have an anti-reflection treatment applied to the chamfer, thereby suppressing the generation of stray light due to external light entering the chamfer, suppressing erroneous detection of the object to be measured due to stray light, and improving tracking accuracy.
  • FIG. 1 is a front sectional view showing a surveying instrument according to a first embodiment of the present invention.
  • FIG. 2A is a block diagram showing a distance measuring light receiving section and a tracking light receiving section of a surveying instrument according to a first embodiment of the present invention
  • FIG. 2B is a view taken along the arrow A in FIG. 2A.
  • FIG. 3 is an explanatory diagram showing an example of an optical path of external light incident on the light-receiving prism according to the first embodiment of the present invention.
  • FIG. 4(A) is a block diagram showing the distance measuring light receiving section and the tracking light receiving section of a surveying instrument according to a first modified example of the first embodiment of the present invention, and FIG.
  • FIG. 4(B) is a view taken along the arrow B in FIG. 4(A).
  • FIG. 5 is a block diagram showing a distance measuring light receiving section and a tracking light receiving section of a surveying instrument according to a second modified example of the first embodiment of the present invention.
  • FIG. 6(A) is a block diagram showing the distance measuring light receiving section and the tracking light receiving section of a surveying device according to a second embodiment of the present invention
  • FIG. 6(B) is a view taken in the direction of arrow C in FIG. 6(A)
  • FIG. 6(C) is a view taken in the direction of arrow D in FIG. 6(A).
  • FIG. 7 is a block diagram showing a distance measuring section of a surveying instrument according to a third embodiment of the present invention.
  • 8A and 8B are explanatory diagrams showing an example of an optical path of external light incident on a light-receiving prism according to the third embodiment of the present invention.
  • the surveying device 1 is, for example, a laser scanner, and is composed of a leveling unit 2 attached to a tripod (not shown) and a surveying device main body 3 attached to the leveling unit 2.
  • the leveling unit 2 has a leveling screw 10, which is used to level the surveying device main body 3.
  • the surveying device main body 3 comprises a fixed section 4, a support section 5, a horizontal rotation shaft 6, a horizontal rotation bearing 7, a horizontal rotation motor 8 as a horizontal rotation drive section, a horizontal angle encoder 9 as a horizontal angle detection section, a vertical rotation shaft 11, a vertical rotation bearing 12, a vertical rotation motor 13 as a vertical rotation drive section, a vertical angle encoder 14 as a vertical angle detection section, a scanning mirror 15 as a vertical rotation section, an operation panel 16 that serves both as an operation section and a display section, a calculation control section 17, a memory section 18, a distance measurement section 19, etc.
  • the calculation control section 17 a CPU specialized for this device or a general-purpose CPU is used.
  • the horizontal rotation bearing 7 is fixed to the fixed part 4.
  • the horizontal rotation shaft 6 has a vertical axis 6a, and the horizontal rotation shaft 6 is supported rotatably by the horizontal rotation bearing 7.
  • the support part 5 is supported by the horizontal rotation shaft 6, and the support part 5 rotates horizontally together with the horizontal rotation shaft 6.
  • the horizontal rotation motor 8 is provided between the horizontal rotation bearing 7 and the support frame 5, and the horizontal rotation motor 8 is controlled by the calculation control unit 17.
  • the calculation control unit 17 causes the horizontal rotation motor 8 to rotate the support frame 5 about the axis 6a.
  • the relative rotation angle of the support part 5 with respect to the fixed part 4 is detected by the horizontal angle encoder 9.
  • the detection signal from the horizontal angle encoder 9 is input to the calculation control part 17, which calculates horizontal angle data.
  • the calculation control part 17 performs feedback control of the horizontal rotation motor 8 based on the horizontal angle data.
  • the base 5 is provided with the vertical rotation shaft 11 having a horizontal axis 11a.
  • the vertical rotation shaft 11 is rotatable via the vertical rotation bearing 12.
  • the intersection of the axis 6a and the axis 11a is the emission position of the distance measuring light, and is the origin of the coordinate system of the surveying device main body 3.
  • a recess 21 is formed in the support portion 5.
  • One end of the vertical rotation shaft 11 extends into the recess 21, and the scanning mirror 15 is fixed to the one end, and the scanning mirror 15 is stored in the recess 21.
  • the vertical angle encoder 14 is provided on the other end of the vertical rotation shaft 11.
  • the vertical rotation motor 13 is provided on the vertical rotation shaft 11, and the vertical rotation motor 13 is controlled by the calculation control unit 17.
  • the calculation control unit 17 rotates the vertical rotation shaft 11 by the vertical rotation motor 13, and the scanning mirror 15 rotates around the axis 11a.
  • the rotation angle of the scanning mirror 15 is detected by the vertical angle encoder 14, and the detection signal is input to the calculation control unit 17.
  • the calculation control unit 17 calculates vertical angle data of the scanning mirror 15 based on the detection signal, and performs feedback control of the vertical rotation motor 13 based on the vertical angle data.
  • the horizontal angle data, vertical angle data, and measurement results calculated by the calculation control unit 17 are stored in the memory unit 18.
  • various storage means such as HDD as a magnetic storage device, CD or DVD as an optical storage device, memory card as a semiconductor storage device, USB memory, etc.
  • the memory unit 18 may be detachable from the support unit 5, or may be capable of sending data to an external storage device or external data processing device via a communication means (not shown).
  • the memory unit 18 stores various programs such as a sequence program that controls the distance measurement operation, a calculation program that calculates distance by the distance measurement operation, a calculation program that calculates an angle based on horizontal angle data and vertical angle data, a program that calculates the three-dimensional coordinates of a desired measurement point based on distance and angle, and a tracking program for tracking a measurement target.
  • various processes are performed by executing the various programs by the calculation control unit 17.
  • the operation panel 16 is, for example, a touch panel, and serves both as an operation section for inputting distance measurement instructions and measurement conditions, such as changing the measurement point interval, and as a display section for displaying distance measurement results and images, etc.
  • the distance measurement unit 19 has a distance measurement light emitting unit 23 and a distance measurement light receiving unit 24.
  • the distance measurement unit is made up of the distance measurement light emitting unit 23 and the distance measurement light receiving unit 24.
  • the distance measurement unit 19 also has a tracking light emitting unit 25 and a tracking light receiving unit 26, and the tracking light emitting unit 25 and the tracking light receiving unit 26 make up a tracking unit.
  • the distance measurement light emitting unit 23 has a distance measurement optical axis 27.
  • the distance measurement light emitting unit 23 has, in order from the light emitting side, a light emitting element 28, such as a laser diode (LD), arranged on the distance measurement optical axis 27, a collimator lens 29, a dichroic mirror 31, and a reflecting prism 32 arranged on the reflected optical axis of the dichroic mirror 31.
  • the scanning mirror 15 is provided on the reflected optical axis of the reflecting prism 32.
  • the reflecting prism 32 is attached to a window portion 30 made of a transparent material such as glass.
  • the collimator lens 29, the dichroic mirror 31, the reflecting prism 32, etc. constitute a projection optical system.
  • the distance measurement optical axis 27, the distance measurement optical axis 27 reflected by the dichroic mirror 31, and the distance measurement optical axis 27 reflected by the reflecting prism 32 are collectively referred to as the distance measurement optical axis 27.
  • the light emitting element 28 emits a laser beam of a predetermined wavelength as distance measuring light 33, and the collimator lens 29 is configured to collimate the distance measuring light 33.
  • the dichroic mirror 31 deflects the distance measuring optical axis 27 at a right angle so that it coincides with the tracking optical axis described below.
  • the distance measurement light receiving unit 24 has the light receiving optical axis 34.
  • the distance measurement light receiving unit 24 also has, in order from the light receiving side, the light receiving element 35 arranged on the light receiving optical axis 34, a light receiving prism 36, and a light receiving lens 37 having a predetermined NA arranged on the light receiving optical axis 34 reflected by the light receiving prism 36.
  • the light receiving prism 36, the light receiving lens 37, etc. constitute the light receiving optical system.
  • the light receiving optical axis 34 and the light receiving optical axis 34 reflected by the light receiving prism 36 are collectively referred to as the light receiving optical axis 34.
  • the tracking light emitting unit 25 has a tracking optical axis 38.
  • the tracking light emitting unit 25 also has, in order from the light emitting side, a tracking light emitting element 39, such as a laser diode (LD), arranged on the tracking optical axis 38, a light projecting lens 41, the dichroic mirror 31, and a reflecting prism 32 arranged on the reflected optical axis of the dichroic mirror 31.
  • a tracking light emitting element 39 such as a laser diode (LD)
  • LD laser diode
  • the light projecting lens 41, the dichroic mirror 31, the reflecting prism 32, etc. constitute a tracking light projection optical system.
  • the tracking optical axis 38 and the tracking optical axis 38 reflected by the reflecting prism 32 are collectively referred to as the tracking optical axis 38.
  • the tracking light emitting element 39 emits a laser beam of a wavelength different from that of the distance measuring light 33, for example, a part of red or a near-infrared wavelength, as tracking light 42, and the light projecting lens 41 is positioned so that the tracking light 42 has a predetermined spread angle. Also, the dichroic mirror 31 transmits the tracking light axis 38 so that it coincides with the distance measuring light axis 27 reflected by the dichroic mirror 31. In other words, the dichroic mirror 31 has the optical property of reflecting the distance measuring light 33 and transmitting the tracking light 42.
  • the tracking light receiving unit 26 has the tracking light receiving optical axis 43.
  • the tracking light receiving unit 26 also has, in order from the light receiving side, the tracking light receiving element 44 arranged on the tracking light receiving optical axis 43, a light receiving prism 36, and the light receiving lens 37 arranged on the tracking light receiving element 44 reflected by the light receiving prism 36.
  • the distance measurement light 33 which is a pulsed light, is emitted from the light emitting element 28.
  • the distance measurement light 33 is collimated by the collimator lens 29, reflected at a right angle by the dichroic mirror 31, and reflected at a right angle by the reflecting prism 32.
  • the distance measurement optical axis 27 of the distance measurement light 33 reflected by the reflecting prism 32 coincides with the axis 11a, and the distance measurement light 33 is deflected at a right angle by the scanning mirror 15.
  • the scanning mirror 15 rotates around the axis 11a, the distance measurement light is rotated (scanned) orthogonal to the axis 11a and within a plane including the axis 6a.
  • a tracking light 42 is emitted from the tracking light emitting element 39.
  • the tracking light 42 is set to a predetermined spread angle by the projection lens 41, passes through the dichroic mirror 31 so as to coincide with the distance measurement light axis 27, and is reflected at a right angle by the reflecting prism 32.
  • the tracking light axis 38 of the tracking light 42 reflected by the reflecting prism 32 is deflected at a right angle by the scanning mirror 15, and rotates (scans) coaxially with the distance measurement light 33.
  • the distance measuring light 33 (hereinafter referred to as reflected distance measuring light 45) and the tracking light 42 (hereinafter referred to as reflected tracking light 46) reflected by the object to be measured are incident on the scanning mirror 15 coaxially and are deflected by the scanning mirror 15.
  • the reflected distance measuring light 45 and the reflected tracking light 46 deflected by the scanning mirror 15 are incident on the light receiving prism 36 via the light receiving lens 37.
  • the reflected distance measuring light 45 and the reflected tracking light 46 incident on the light receiving prism 36 are internally reflected multiple times within the light receiving prism 36, and then separated into the reflected distance measuring light 45 and the reflected tracking light 46.
  • the reflected distance measuring light 45 is received by the light receiving element 35, and the reflected tracking light 46 is received by the tracking light receiving element 44.
  • the light receiving element 35 is, for example, an avalanche photodiode (APD) or an equivalent photoelectric conversion element.
  • the tracking light receiving element 44 is a CCD or CMOS sensor that is a collection of pixels, and the position of each pixel on the tracking light receiving element 44 can be identified. For example, each pixel has pixel coordinates with the center of the tracking light receiving element 44 as the origin, and the position on the tracking light receiving element 44 is identified by the pixel coordinates.
  • the calculation control unit 17 performs distance measurement for each pulse of the distance measuring light 33 based on the time difference between the light emission timing of the light emitting element 28 and the light reception timing of the light receiving element 35 (i.e., the round trip time of the pulsed light) and the speed of light (Time of Flight).
  • the light emission timing of the light emitting element 28, i.e., the pulse interval, can be changed via the operation panel 16.
  • the base stand 5 and the scanning mirror 15 each rotate at a constant speed, and the vertical rotation of the scanning mirror 15 and the horizontal rotation of the base stand 5 cooperate to scan the distance measurement light 33 two-dimensionally.
  • the vertical angle and horizontal angle are detected for each pulse of light by the vertical angle encoder 14 and the horizontal angle encoder 9, so that vertical angle data and horizontal angle data can be obtained.
  • the calculation control unit 17 calculates the three-dimensional coordinates of the measurement object and three-dimensional point cloud data corresponding to the measurement object based on the vertical angle data, horizontal angle data, and distance measurement data.
  • the calculation control unit 17 also calculates the incident position of the reflected tracking light 46 with respect to the tracking light receiving element 44, and based on the deviation between the incident position and the center of the tracking light receiving element 44, controls the horizontal rotation motor 8 and the vertical rotation motor 13 so that the incident position of the reflected tracking light 46 becomes the center of the tracking light receiving element 44. This causes the surveying device main body 3 to track the measurement object.
  • the light receiving prism 36 is composed of a first light receiving prism 47, which is a quadrangular prism having a predetermined refractive index, and a second light receiving prism 48, which is a quadrangular prism formed by combining triangular prisms.
  • the first light receiving prism 47 has a first surface 47a on which the reflected distance measuring light 45 and the reflected tracking light 46 that have passed through the light receiving lens 37 are incident, a second surface 47b on which the reflected distance measuring light 45 and the reflected tracking light 46 that have passed through the surface of the first surface 47a are reflected, a third surface 47c on which the reflected distance measuring light 45 and the reflected tracking light 46 that have been successively reflected by the second surface 47b and the first surface 47a are incident, and a fourth surface 47d as a transmitting surface through which the reflected distance measuring light 45 and the reflected tracking light 46 that have been reflected by the third surface 47c in a direction intersecting the reflected distance measuring light 45 and the reflected tracking light 46 that have entered the first surface 47a are transmitted.
  • the corner formed by the second surface 47b and the third surface 47c is chamfered to form a first chamfered portion 49.
  • the corner formed by the first surface 47a and the third surface 47c is chamfered to form a second chamfered portion 51.
  • the first chamfered portion 49 and the second chamfered portion 51 are located outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, respectively. It is desirable that the areas of the first chamfered portion 49 and the second chamfered portion 51 be as large as possible while ensuring the effective luminous flux of the reflected distance measuring light 45 and the reflected tracking light 46.
  • the first chamfered portion 49 and the second chamfered portion 51 are subjected to an anti-reflection treatment.
  • the anti-reflection treatment is, for example, deposition of an anti-reflection film or application of black paint, and is configured to prevent reflection of light incident on the first chamfered portion 49 and the second chamfered portion 51.
  • the second light receiving prism 48 is, for example, a cube, and a dichroic filter film is provided on the joint surface between the triangular prisms, and the dichroic filter film forms a wavelength separation surface 52.
  • the wavelength separation surface 52 is configured to reflect, for example, the reflected distance measuring light 45 and transmit the reflected tracking light 46.
  • the second light receiving prism 48 also has a fifth surface 48a that is joined to the fourth surface 47d, and a sixth surface 48b that faces the fifth surface 48a.
  • the wavelength separation surface 52 is inclined at 45° with respect to the fifth surface 48a, and the surface adjacent to the fifth surface 48a and facing the wavelength separation surface 52 on the side opposite the fifth surface 48a is a seventh surface 48c.
  • a wavelength selection plate 53 is attached to the sixth surface 48b as a wavelength selection section.
  • the wavelength selection plate 53 is larger than the diameter of the light beam of the reflected tracking light 46 incident on the sixth surface 48b, and for example, one side is several mm smaller than the sixth surface 48b.
  • the wavelength selection plate 53 is, for example, a bandpass filter or colored glass, and is configured to block light other than the reflected tracking light 46.
  • the portion of the sixth surface 48b to which the wavelength selection plate 53 is not attached is outside the optical path of the reflected tracking light 46, and a masking section 55 is formed by applying black paint or masking with a light shielding plate.
  • the wavelength selection plate 53 may have the same shape as the sixth surface 48b. In this case, a portion several mm from the end of the sixth surface 48b is masked to form the masking portion 55, thereby obtaining the same effect as when the wavelength selection plate 53 is provided with one side several mm smaller than the sixth surface 48b.
  • the first light receiving prism 47 and the second light receiving prism 48 are integrated by bonding the fourth surface 47d and the fifth surface 48a together to form the light receiving prism 36.
  • Figure 3 shows an example of the optical path of the external light 54 when it is received by the light receiving prism 36 and becomes stray light.
  • the external light 54 passes outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, and is received by the tracking light receiving element 44.
  • the first chamfered portion 49 and the second chamfered portion 51 are not formed on the first light receiving prism 47.
  • the tracking light receiving element 44 is provided on the reflecting side of the wavelength separation surface 52, and the wavelength separation surface 52 reflects the external light 54 in a rightward direction relative to the paper surface.
  • the external light 54 passes outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, i.e., the location where the first chamfered portion 49 is formed (waved line in FIG. 3), and is received by the tracking light receiving element 44.
  • the first chamfered portion 49 and the second chamfered portion 51 are provided, and further, an anti-reflection film or black paint is applied to the first chamfered portion 49 and the second chamfered portion 51 to prevent reflection of light incident on the first chamfered portion 49 and the second chamfered portion 51.
  • the external light 54 incident on the portion where the first chamfered portion 49 is formed is not reflected by the first chamfered portion 49 and is not received by the tracking light receiving element 44, so the probability of stray light occurring can be reduced, for example, from 0.24% to 0.17%.
  • the reflected distance measuring light 45 and the reflected tracking light 46 that are incident on the light receiving prism 36 are refracted in the process of passing through the light receiving lens 37 and the first surface 47a.
  • the reflected distance measuring light 45 and the reflected tracking light 46 are sequentially reflected by the second surface 47b and the first surface 47a inside the first light receiving prism 47, and are incident on the third surface 47c.
  • the reflected distance measuring light 45 and the reflected tracking light 46 are also reflected by the third surface 47c toward the fourth surface 47d, that is, in a direction that intersects with the reflected distance measuring light 45 and the reflected tracking light 46 that are incident from the first surface 47a.
  • the external light 54 which is incident together with the reflected distance measuring light 45 and the reflected tracking light 46 and passes outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, is prevented from being reflected within the first light receiving prism 47 by the first chamfered portion 49 and the second chamfered portion 51.
  • the reflected distance measuring light 45 and the reflected tracking light 46 that have passed through the fourth surface 47d and the fifth surface 48a are incident on the wavelength separation surface 52.
  • the reflected tracking light 46 passes through the wavelength separation surface 52, the sixth surface 48b and the wavelength selection plate 53, and is received by the tracking light receiving element 44.
  • the wavelength selection plate 53 In the process of passing through the wavelength selection plate 53, light of wavelengths other than the reflected tracking light 46, for example, the external light (stray light) 54, can be blocked.
  • the reflected distance measuring light 45 is deflected by 90° by the wavelength separation surface 52 toward the front of the paper, i.e., in a direction perpendicular to the receiving optical axis 34 of the reflected distance measuring light 45 incident on the light receiving prism 36, and is received by the light receiving element 35 after passing through the seventh surface 48c.
  • the first chamfered portion 49 and the second chamfered portion 51 are formed outside the optical path of the reflected distance measuring light 45 and the reflected tracking light 46 that are internally reflected within the light receiving prism 36, and anti-reflection processing is performed on the first chamfered portion 49 and the second chamfered portion 51 by applying an anti-reflection film or black paint.
  • the external light (stray light) 54 passing outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46 is prevented from being reflected by the first chamfered portion 49 and the second chamfered portion 51, so that erroneous detection of the measurement object caused by the external light 54 being received by the tracking light receiving element 44 can be suppressed, and tracking accuracy can be improved.
  • the wavelength selection plate 53 that transmits only the reflected tracking light 46 is provided on the sixth surface 48b of the second light receiving prism 48, so that only the reflected tracking light 46 is received by the tracking light receiving element 44.
  • the external light 54 that has passed through the optical path of the reflected tracking light 46 can be prevented from being received by the tracking light receiving element 44, thereby preventing erroneous detection of the object to be measured and improving tracking accuracy.
  • the wavelength selection plate 53 has a side length that is several mm shorter than the sixth surface 48b, and a masking portion 55 is formed in the portion where the wavelength selection plate 53 is not attached.
  • the masking portion 55 is located outside the optical path of the reflected tracking light 46, and the light that enters the masking portion 55 is the external light 54.
  • reflection of the external light 54 incident on the masking portion 55 can be prevented, which can suppress erroneous detection of the measurement object due to stray light and improve tracking accuracy.
  • the reflected distance measuring light 45 and the reflected tracking light 46 are internally reflected multiple times within the light receiving prism 36, the length in the optical axis direction of the distance measuring light receiving unit 24 and the tracking light receiving unit 26 can be shortened, and the distance measuring unit 19 can be made smaller.
  • the first chamfered portion 49 and the second chamfered portion 51 are subjected to an anti-reflection treatment, and the masking portion 55 is formed on the sixth surface 48b.
  • anti-reflection treatment may also be applied to surfaces outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, for example, the side surfaces of the light receiving prism 36 (the rear and front sides with respect to the page surface in FIG. 2(A)) on which the reflected distance measuring light 45 and the reflected tracking light 46 are not incident.
  • the reflection of the external light 54 within the light receiving prism 36 can be further suppressed, so that the generation of stray light can be further suppressed and the tracking accuracy can be further improved.
  • FIGS. 4(A) and 4(B) show a first modified example of the first embodiment.
  • the wavelength separation surface 52 has the optical property of transmitting the reflected distance measuring light 45 and reflecting the reflected tracking light 46. That is, the light receiving element 35 is disposed on the transmitting side of the wavelength separation surface 52, and the tracking light receiving element 44 is disposed on the reflecting side of the wavelength separation surface 52.
  • a wavelength selection plate 53 and a masking portion 55 are provided on the seventh surface 48c. The other configurations are the same as those of the first embodiment.
  • the first chamfered portion 49, the second chamfered portion 51, and the masking portion 55 can block external light 54 passing outside the optical path of the reflected tracking light 46, and suppress the generation of stray light, thereby suppressing erroneous detection of the object to be measured and improving tracking accuracy.
  • the probability of stray light generation can be reduced, for example, from 0.54% to 0.18%, compared to a case in which the first chamfered portion 49 and the second chamfered portion 51 are not provided.
  • FIG. 5 shows a second variation of the first embodiment.
  • the orientation of the wavelength separation surface 52 is different from that of the first embodiment, and the reflection direction of the reflected distance measuring light 45 is also different.
  • the reflected distance measuring light 45 is deflected at a right angle to the right side of the paper, that is, in a direction parallel to the receiving optical axis 34 of the reflected distance measuring light 45 that enters the receiving prism 36.
  • the other configurations are the same as those of the first embodiment.
  • the first chamfered portion 49, the second chamfered portion 51, and the masking portion 55 can block external light 54 passing outside the optical path of the reflected tracking light 46, and suppress the generation of stray light, thereby suppressing erroneous detection of the object to be measured and improving tracking accuracy.
  • the light receiving element 35 may be disposed on the transmission side of the wavelength separation surface 52, and the tracking light receiving element 44 may be disposed on the reflection side of the wavelength separation surface 52.
  • a wavelength selection film 56 is vapor-deposited on the sixth surface 48b as a wavelength selection section.
  • the wavelength selection film 56 has optical properties that reflect the reflected distance measurement light 45 and transmit the reflected tracking light 46.
  • the sixth surface 48b is masked, for example, at a portion several mm from the end, to form a masking portion 55.
  • the masking portion 55 is in the shape of a rectangular frame having a width of several mm. The rest of the configuration is the same as in the first embodiment.
  • the first chamfered portion 49, the second chamfered portion 51, and the masking portion 55 are also formed, so that the external light 54 passing outside the optical path of the reflected tracking light 46 can be prevented from being internally reflected within the light receiving prism 36, and erroneous detection of the object to be measured due to the generation of stray light can be prevented, thereby improving tracking accuracy.
  • the wavelength selection film 56 transmits only the reflected tracking light 46, it is possible to prevent the external light 54 that has passed through the optical path of the reflected tracking light 46 from being received by the tracking light receiving element 44, thereby preventing erroneous detection of the object to be measured due to the generation of stray light.
  • the wavelength selection film 56 is formed on the sixth surface 48b, but the surface on which the wavelength selection film 56 is formed is not limited to the sixth surface 48b.
  • the wavelength selection film 56 may be formed on the joint surface between the fourth surface 47d and the fifth surface 48a, or on the first surface 47a.
  • the wavelength selection film 56 can be formed on any surface of the light receiving prism 36 on which the reflected distance measuring light 45 and the reflected tracking light 46 are incident with rotationally symmetric angles of incidence.
  • the wavelength selection film 56 is formed on the joint surface between the first surface 47a or the fourth surface 47d and the fifth surface 48a, it is necessary to transmit both the reflected distance measuring light 45 and the reflected tracking light 46, so for example, a dual pass filter is used as the wavelength selection film 56.
  • the light receiving element 35 may be disposed on the transmission side of the wavelength separation surface 52, and the tracking light receiving element 44 may be provided on the reflection side of the wavelength separation surface 52.
  • the orientation of the wavelength separation surface 52 may be deflected to change the reflection direction of the reflected distance measuring light 45.
  • a laser scanner is used as the surveying device 1, but it goes without saying that even when a total station is used as the surveying device 1, it is possible to form a chamfer outside the optical path of the reflected tracking light 46 and to apply anti-reflection processing to the surface outside the optical path according to the present invention.
  • the light receiving prism 36 of this embodiment can be used in place of the dichroic prism of the surveying device shown in Patent Document 2.
  • FIG. 7 the same reference numerals are used for the same parts as in FIG. 2, and their description will be omitted.
  • a parallel plane plate 58 is provided between the light emitting element 28 of the distance measurement light emitting unit 23 and the collimator lens 29.
  • a reflecting prism 59 serving as a deflection optical member is provided on the reflected optical axis of the dichroic mirror 31, and a scanning mirror 15 is provided on the reflected optical axis of the reflecting prism 59.
  • a window portion 61 made of a transparent material and rotating integrally with the scanning mirror 15 is provided on the reflected optical axis of the scanning mirror 15.
  • the parallel plane plate 58 is, for example, a glass plate having a predetermined thickness, and is configured to expand the spread angle of the distance measurement light 33, and is arranged so that the entrance surface and exit surface are perpendicular to the distance measurement optical axis 27.
  • the parallel plane plate 58 can be inserted and removed from the distance measurement optical axis 27 by a driving mechanism such as a solenoid (not shown), and the parallel plane plate 58 is inserted and removed as appropriate depending on the object to be measured.
  • the parallel plane plate 58 when performing prism measurement in which the object to be measured is a prism having retroreflective properties, the parallel plane plate 58 is inserted onto the distance measurement optical axis 27, and when performing non-prism distance measurement in which the object to be measured is a prism other than a prism, the parallel plane plate 58 is removed from the distance measurement optical axis 27.
  • the reflecting prism 59 is formed by joining two trapezoidal prisms together, and is configured to reflect the distance measurement light 33 and the tracking light 42 at the joint surface 62 of each prism.
  • the exit surface of the reflecting prism 59 is configured so that the distance measurement light axis 27 reflected at the joint surface 62 enters at a slight incline, preventing the distance measurement light 33 internally reflected at the exit surface of the reflecting prism 59 from being received by the light receiving element (receiving optical fiber) 35.
  • the inclination angle of the joint surface 62 is an angle that deflects (reflects) the distance measurement light axis 27 so that it coincides with the light receiving light axis 34 and the axis 11a.
  • the light receiving prism 63 is composed of a first prism 64, a second prism 65, and a third prism 66.
  • the upper side relative to the paper surface in FIG. 7 will be referred to as the top, the lower side relative to the paper surface as the bottom, the right side relative to the paper surface as the right, the left side relative to the paper surface as the left, the back side relative to the paper surface as the back, and the front side relative to the paper surface as the front.
  • the first prism 64 has a predetermined refractive index and is a polygonal prism having four reflecting surfaces, namely a first surface 64a, a second surface 64b, a third surface 64c, and a fourth surface 64d.
  • the first surface 64a is an incident surface for the reflected distance measuring light 45 and the reflected tracking light 46, and is configured to be perpendicular to the light receiving optical axis 34 and the tracking receiving light optical axis 43 that are incident on the first prism 64.
  • an anti-reflection film AR coating
  • AR coating is provided over the entire surface of the first surface 64a.
  • the second surface 64b faces the first surface 64a and has a smaller area than the first surface 64a, with the upper end of the second surface 64b located lower than the upper end of the first surface 64a and the lower end of the second surface 64b located higher than the lower end of the first surface 64a. Furthermore, the second surface 64b is configured to be inclined at a predetermined angle so as to move away from the first surface 64a from the bottom to the top. Also, the second surface 64b is, for example, a mirror that has been subjected to a mirror finish.
  • the third surface 64c is formed between the upper end of the first surface 64a and the upper end of the second surface 64b, and is configured to be inclined downward at a predetermined angle from the first surface 64a toward the second surface 64b.
  • the fourth surface 64d is provided between the lower end of the first surface 64a and the lower end of the second surface 64b, facing the third surface 64c, and is configured to be inclined upward at a predetermined angle from the first surface 64a toward the second surface 64b.
  • the third surface 64c is, for example, a mirror that has been subjected to a mirror finish.
  • the corner formed by the first surface 64a and the third surface 64c is chamfered to form a first chamfered portion 67.
  • the corner formed by the second surface 64b and the third surface 64c is chamfered to form a second chamfered portion 68.
  • the first chamfered portion 67 and the second chamfered portion 68 are formed outside the optical path of the reflected distance measuring light 45 that is internally reflected within the first prism 64.
  • An anti-reflective coating is applied to the first chamfered portion 67 and the second chamfered portion 68.
  • the second prism 65 has a predetermined refractive index and is a pentagonal prism having five faces, namely a first face 65a, a second face 65b, a third face 65c, a fourth face 65d, and a fifth face 65e.
  • the first face 65a is an entrance face onto which the reflected distance measuring light 45 reflected within the first prism 64 is incident at an angle of incidence of 0°, has the same area as the fourth face 64d, and is bonded to the fourth face 64d.
  • the fourth face 64d and the first face 65a form a bonding surface that bonds the first prism 64 and the second prism 65.
  • the second surface 65b extends from the left end of the first surface 65a in a direction away from the first prism 64. Also, for example, the angle between the first surface 65a and the second surface 65b is a right angle.
  • the third surface 65c extends from the lower end of the second surface 65b toward the right side so as to face the first surface 65a.
  • the angle formed between the second surface 65b and the third surface 65c is, for example, an obtuse angle.
  • the fourth surface 65d extends from the right end of the third surface 65c in a direction approaching the first prism 64, and the fifth surface 65e is formed between the upper end of the fourth surface 65d and the right end of the first surface 65a.
  • the angle between the first surface 65a and the fifth surface 65e is an obtuse angle.
  • the fourth surface 64d and the first surface 65a are surfaces of the same area and are joined together, so that the second surface 64b of the first prism 64 and the fifth surface 65e of the second prism 65 are continuous.
  • the second surface 64b is inclined from the joining surface in a direction away from the incident surface (the first surface 64a) of the reflected distance measuring light 45 and the reflected tracking light 46 from below toward the top
  • the fifth surface 65e is inclined from the joining surface in a direction away from the first surface 64a from below. Therefore, the second surface 64b and the fifth surface 65e form a recess 69 recessed toward the first surface 64a. That is, the recess 69 is formed on the surface of the light receiving prism 63 opposite the incident surface of the reflected distance measuring light 45 and the reflected tracking light 46.
  • the third prism 66 has a predetermined refractive index and is a quadrangular prism having four surfaces, namely a first surface 66a, a second surface 66b, a third surface 66c, and a fourth surface 66d.
  • the first surface 66a is the incident surface of the reflected distance measuring light 45 that has passed through the second prism 65, has the same area as the third surface 65c, and is bonded to the third surface 65c.
  • the third surface 65c and the first surface 66a form a bonding surface that bonds the second prism 65 and the third prism 66.
  • the bonding surface serves as a separation surface for the reflected distance measuring light 45 and the reflected tracking light 46.
  • a non-coated area 71 is provided as an anti-reflection section in a portion of the end of the separation surface on the side of the light receiving lens 37, i.e., outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, for example, in an area of a few mm in width.
  • the non-coated area 71 is designed to prevent reflection of external light 54, and can prevent the occurrence of reflected stray light on the separation surface.
  • a dichroic film 72 is provided on the separation surface other than the portion where the non-coated portion 71 is provided.
  • the dichroic film 72 is larger than the light flux of the reflected distance measuring light 45 and the reflected tracking light 46 that are incident on the joining surface, and has the optical property of reflecting the reflected distance measuring light 45 and transmitting the reflected tracking light 46.
  • the second surface 66b extends from the left end of the first surface 66a in a direction away from the second prism 65.
  • the second surface 65b and the second surface 66b are continuous and flush with each other.
  • the third surface 66c extends from the lower end of the second surface 66b in a direction away from the incident surface (the first surface 64a) of the reflected distance measuring light 45 and the reflected tracking light 46. Furthermore, for example, the angle formed between the second surface 66b and the third surface 66c is a right angle, and the third surface 66c is parallel to the fourth surface 64d of the first prism 64 and the first surface 65a of the second prism 65. Furthermore, a fourth surface 66d is formed between the right end of the third surface 66c and the right end of the first surface 66a.
  • a bandpass filter 73 of a predetermined size is provided at the center of the third surface 66c, and anti-reflection paint 74 is applied around the periphery of the bandpass filter 73.
  • the size of the bandpass filter 73 is equal to or slightly larger than the beam diameter of the reflected tracking light 46 that passes through the dichroic film 72.
  • the bandpass filter 73 can remove light of a wavelength different from the wavelength of the tracking light 42 from the reflected tracking light 46.
  • the light receiving element for example, the light receiving surface of the light receiving optical fiber 75, is provided at the focusing position of the reflected distance measuring light 45 reflected by the dichroic film 72, facing the fifth surface 65e.
  • the light receiving surface of the light receiving optical fiber 75 is located in the recess 69, and the light receiving optical fiber 75 passes through the back side of the light receiving prism 63 and is bent toward the incident surface side of the light receiving prism 63.
  • the light receiving optical axis 34 of the reflected distance measuring light 45 reflected by the dichroic film 72 is parallel or approximately parallel to the second surface 64b of the first prism 64.
  • the most protruding portion (the portion protruding by the bending radius of the light receiving optical fiber 75) is located above the light receiving prism 63, and the bent light receiving optical fiber 75 can be prevented from protruding from the recess 69 in a direction away from the first prism 64.
  • the light receiving optical system can be prevented from expanding in the direction of the light receiving optical axis 34.
  • the light receiving optical fiber 75 can be prevented from approaching the second surface 64b and hindering the bending of the light receiving optical fiber 75.
  • a tracking light receiving element 44 is provided at the focusing position of the reflected tracking light 46 that is transmitted through the dichroic film 72, facing the third surface 66c.
  • the tracking light receiving element 44 is also provided on the sensor substrate 76.
  • the right end (lower end) of the second chamfered portion 68, the right end of the receiving optical fiber 75 bent toward the incident surface of the receiving prism 63, and the right end of the sensor substrate 76 are located on approximately the same plane.
  • the reflected distance measuring light 45 and the reflected tracking light 46 that have passed through the light receiving lens 37 are incident on the first surface 64a of the first prism 64 at right angles and on the same axis.
  • the reflected distance measuring light 45 and the reflected tracking light 46 that have entered the first prism 64 are reflected in the same plane by the second surface 64b, the first surface 64a, the third surface 64c, and the first surface 64a, successively, and are incident on the fourth surface 64d (the first surface 65a) at right angles.
  • the reflected distance measuring light 45 and the reflected tracking light 46 that enter the second prism 65 enter the third surface 65c (the first surface 66a), i.e., the dichroic film 72 as a separation surface, and are separated into the reflected distance measuring light 45 and the reflected tracking light 46.
  • the reflected distance measuring light 45 is reflected by the dichroic film 72, enters the fifth surface 65e at a right angle, and is received by the receiving optical fiber 75.
  • the reflected tracking light 46 passes through the dichroic film 72, enters the third surface 66c at a right angle, and in the process of passing through the bandpass filter 73, light with a wavelength different from that of the tracking light 42 is removed, and is received by the tracking light receiving element 44.
  • the external light 54 When external light 54 is received by the light receiving prism 63 and becomes stray light passing outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, the external light 54 is prevented from being reflected as stray light by the first chamfered portion 67, the second chamfered portion 68, or the non-coated portion 71, and the stray light is absorbed, blocked, and removed by the anti-reflection coating 74.
  • FIG. 8(A) and 8(B) show an example of the optical path of the external light 54 when the external light 54 is incident on the light receiving prism 63.
  • the first prism 64 does not have the first chamfered portion 67, and a dichroic film is applied to the non-coated portion 71 of the joint surface (separation surface) between the second prism 65 and the third prism 66.
  • the angle of incidence when incident perpendicularly to the first surface 64a of the first prism 64 is set to 0°, and the optical path when incident at 0° becomes the optical path of the reflected distance measuring light 45 and the reflected tracking light 46.
  • Figure 8 (A) shows the optical path when the light beam of the external light 54 is incident on the first surface 64a at an incident angle of approximately -13°.
  • the external light 54 that enters the light-receiving prism 63 is reflected at the corner formed by the first surface 64a and the third surface 64c during the process of internal reflection within the light-receiving prism 63, and enters the tracking light-receiving element 44.
  • first chamfered portion 67 at the corner formed by the first surface 64a and the third surface 64c and applying an anti-reflective coating to the first chamfered portion 67, it is possible to remove the external light 54 that is incident at an incident angle of approximately -13°.
  • Figure 8 (B) shows the optical path when the light beam of the external light 54 is incident on the first surface 64a at an incident angle of approximately +11°.
  • the external light 54 that enters the light-receiving prism 63 is reflected by the end of the joint surface between the second prism 65 and the third prism 66 on the light-receiving lens 37 side, i.e., the uncoated portion 71 in Figure 7, during the process of internal reflection within the light-receiving prism 63, and enters the tracking light-receiving element 44.
  • the second chamfered portion 68 and the anti-reflection coating 74 can also remove the external light 54 that is incident on the first surface 64a at a predetermined angle of incidence and passes outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46.
  • the first chamfered portion 67 and the second chamfered portion 68 are also formed outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, and anti-reflection coating is applied to the first chamfered portion 67 and the second chamfered portion 68 to provide anti-reflection coating.
  • the external light (stray light) 54 passing outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46 is prevented from being reflected by the first chamfered portion 67 and the second chamfered portion 68, so that erroneous detection of the measurement object caused by the external light 54 being received by the tracking light receiving element 44 can be suppressed, and tracking accuracy can be improved.
  • the non-coated area 71 is provided at the end on the light receiving lens 37 side that is located outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46, and anti-reflection processing is performed.
  • the external light (stray light) 54 passing outside the optical paths of the reflected distance measuring light 45 and the reflected tracking light 46 is prevented from being reflected by the non-coated portion 71, so that erroneous detection of the object to be measured caused by the external light 54 being received by the tracking light receiving element 44 can be suppressed, and the tracking accuracy can be further improved.
  • the light receiving prism 63 is composed of the first prism 64, the second prism 65, and the third prism 66, and the first prism 64 and the second prism 65 form the recess 69 recessed toward the first surface 64a on the surface opposite to the incident surface (the first surface 64a) of the reflected distance measuring light 45 and the reflected tracking light 46.
  • the recess 69 is provided with the light receiving optical fiber 75, which is a light receiving element.
  • the receiving fiber 75 does not protrude in the direction of the receiving optical axis 34 reflected by the scanning mirror 15 (left and right direction relative to the paper surface in Figure 7), so the length of the distance measuring light receiving unit 24 in the direction of the receiving optical axis 34 can be shortened, and the distance measuring unit 19 and the surveying device 1 can be made smaller.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

測定対象物に測距光を射出する測距光射出部(23)と、前記測定対象物からの反射測距光を受光する受光素子を有する測距光受光部(24)と、前記測定対象物に前記測距光と同軸で追尾光を射出する追尾光射出部(25)と、前記反射測距光と同軸で入射した反射追尾光を受光する追尾受光素子を有する追尾光受光部と、前記受光素子に対する前記反射測距光の受光結果に基づき前記測定対象物の距離を演算し、前記追尾受光素子に対する反射追尾光の受光結果に基づき前記測定対象物を追尾する演算制御部(17)とを具備し、前記測距光受光部と前記追尾光受光部は前記反射測距光と前記反射追尾光を複数回内部反射させる受光プリズムを有し、該受光プリズムの前記反射追尾光の光路外に位置する角部に少なくとも1つの面取り部を形成し、該面取り部に反射防止加工を施す様構成された。

Description

測量装置
 本発明は、測定対象物の3次元座標を取得可能な測量装置に関するものである。
 レーザスキャナやトータルステーション等の測量装置は、測定対象物として再帰反射性を有するプリズムを用いたプリズム測距、反射プリズムを用いないノンプリズム測距により測定対象物迄の距離を検出する光波距離測定装置を有している。
 又、特にプリズム測距を行う測量装置には、測定対象物を自動追尾する為の追尾機能を有するものもある。然し乍ら、測量装置を屋外で使用する場合、太陽光等の外光が追尾系に入り込み、迷光となって受光素子に受光される虞れがある。迷光が発生すると、迷光により追尾対象のプリズムを誤検出する場合があり、プリズムの自動追尾や自動視準の妨げとなっていた。
特開2021-25993号公報 特開2021-101155号公報
 本発明は、迷光の発生を抑制し、追尾精度の向上を図る測量装置を提供するものである。
 本発明は、測定対象物に測距光を射出する測距光射出部と、前記測定対象物からの反射測距光を受光する受光素子を有する測距光受光部と、前記測定対象物に前記測距光と同軸で追尾光を射出する追尾光射出部と、前記反射測距光と同軸で入射した反射追尾光を受光する追尾受光素子を有する追尾光受光部と、前記受光素子に対する前記反射測距光の受光結果に基づき前記測定対象物の距離を演算し、前記追尾受光素子に対する反射追尾光の受光結果に基づき前記測定対象物を追尾する演算制御部とを具備し、前記測距光受光部と前記追尾光受光部は前記反射測距光と前記反射追尾光を複数回内部反射させる受光プリズムを有し、該受光プリズムの前記反射追尾光の光路外に位置する角部に少なくとも1つの面取り部を形成し、該面取り部に反射防止加工を施す様構成された測量装置に係るものである。
 又本発明は、前記受光プリズムは、前記反射測距光と前記反射追尾光のうちのいずれか一方を透過し、いずれか他方を反射する波長分離面を有する様構成された測量装置に係るものである。
 又本発明は、前記受光プリズムの前記追尾受光素子と対向する面に、前記反射追尾光のみを透過させる波長選択部を設ける様構成された測量装置に係るものである。
 又本発明は、前記波長選択部は前記面よりも小さく、該面の前記波長選択部が設けられなかった部分にマスキング部を形成する様構成された測量装置に係るものである。
 又本発明は、前記受光プリズムの前記反射追尾光の入射角が回転対称となった状態で入射する面に対して、波長選択膜を形成する様構成された測量装置に係るものである。
 又本発明は、前記受光プリズムの前記反射測距光と前記反射追尾光の光路外に位置する面に反射防止加工を施す様構成された測量装置に係るものである。
 又本発明は、前記受光プリズムは、前記反射測距光と前記反射追尾光を分離させる分離面を有し、該分離面のうち前記反射測距光と前記反射追尾光の光路外の部分に反射防止部を設ける様構成された測量装置に係るものである。
 更に又本発明は、前記受光プリズムは、前記反射測距光の入射面と反対側の面に、前記入射面側に窪んだ凹部が形成され、該凹部に前記受光素子が配設される様構成された測量装置に係るものである。
 本発明によれば、測定対象物に測距光を射出する測距光射出部と、前記測定対象物からの反射測距光を受光する受光素子を有する測距光受光部と、前記測定対象物に前記測距光と同軸で追尾光を射出する追尾光射出部と、前記反射測距光と同軸で入射した反射追尾光を受光する追尾受光素子を有する追尾光受光部と、前記受光素子に対する前記反射測距光の受光結果に基づき前記測定対象物の距離を演算し、前記追尾受光素子に対する反射追尾光の受光結果に基づき前記測定対象物を追尾する演算制御部とを具備し、前記測距光受光部と前記追尾光受光部は前記反射測距光と前記反射追尾光を複数回内部反射させる受光プリズムを有し、該受光プリズムの前記反射追尾光の光路外に位置する角部に少なくとも1つの面取り部を形成し、該面取り部に反射防止加工を施す様構成されたので、前記面取り部に入射した外光による迷光の発生が抑制され、迷光による測定対象物の誤検出が抑制され、追尾精度の向上が図れる。
図1は本発明の第1の実施例に係る測量装置を示す正断面図である。 図2(A)は本発明の第1の実施例に係る測量装置の測距光受光部及び追尾光受光部を示す構成図であり、図2(B)は図2(A)のA矢視図である。 図3は本発明の第1の実施例に係る受光プリズムに入射した外光の光路の一例を示す説明図である。 図4(A)は本発明の第1の実施例の第1の変形例に係る測量装置の測距光受光部及び追尾光受光部を示す構成図であり、図4(B)は図4(A)のB矢視図である。 図5は本発明の第1の実施例の第2の変形例に係る測量装置の測距光受光部及び追尾光受光部を示す構成図である。 図6(A)は本発明の第2の実施例に係る測量装置の測距光受光部及び追尾光受光部を示す構成図であり、図6(B)は図6(A)のC矢視図であり、図6(C)は図6(A)のD矢視図である。 図7は本発明の第3の実施例に係る測量装置の距離測定部を示す構成図である。 図8(A)、図8(B)は本発明の第3の実施例に係る受光プリズムに入射した外光の光路の一例を示す説明図である。
 以下、図面を参照しつつ本発明の実施例を説明する。
 先ず、図1に於いて、本発明の第1の実施例に係る測量装置について説明する。
 測量装置1は、例えばレーザスキャナであり、三脚(図示せず)に取付けられる整準部2と、該整準部2に取付けられた測量装置本体3とから構成される。
 前記整準部2は整準ネジ10を有し、該整準ネジ10により前記測量装置本体3の整準を行う。
 該測量装置本体3は、固定部4と、托架部5と、水平回転軸6と、水平回転軸受7と、水平回転駆動部としての水平回転モータ8と、水平角検出部としての水平角エンコーダ9と、鉛直回転軸11と、鉛直回転軸受12と、鉛直回転駆動部としての鉛直回転モータ13と、鉛直角検出部としての鉛直角エンコーダ14と、鉛直回転部である走査ミラー15と、操作部と表示部とを兼用する操作パネル16と、演算制御部17と、記憶部18と、距離測定部19等を具備している。尚、前記演算制御部17としては、本装置に特化したCPU、或は汎用CPUが用いられる。
 前記水平回転軸受7は前記固定部4に固定される。前記水平回転軸6は鉛直な軸心6aを有し、前記水平回転軸6は前記水平回転軸受7に回転自在に支持される。又、前記托架部5は前記水平回転軸6に支持され、前記托架部5は水平方向に前記水平回転軸6と一体に回転する様になっている。
 前記水平回転軸受7と前記托架部5との間には前記水平回転モータ8が設けられ、該水平回転モータ8は前記演算制御部17により制御される。該演算制御部17は、前記水平回転モータ8により、前記托架部5を前記軸心6aを中心に回転させる。
 前記托架部5の前記固定部4に対する相対回転角は、前記水平角エンコーダ9によって検出される。該水平角エンコーダ9からの検出信号は前記演算制御部17に入力され、該演算制御部17により水平角データが演算される。該演算制御部17は、前記水平角データに基づき、前記水平回転モータ8に対するフィードバック制御を行う。
 又、前記托架部5には、水平な軸心11aを有する前記鉛直回転軸11が設けられている。該鉛直回転軸11は、前記鉛直回転軸受12を介して回転自在となっている。尚、前記軸心6aと前記軸心11aの交点が、測距光の射出位置であり、前記測量装置本体3の座標系の原点となっている。
 前記托架部5には、凹部21が形成されている。前記鉛直回転軸11は、一端部が前記凹部21内に延出し、前記一端部に前記走査ミラー15が固着され、該走査ミラー15は前記凹部21に収納されている。又、前記鉛直回転軸11の他端部には、前記鉛直角エンコーダ14が設けられている。
 前記鉛直回転軸11に前記鉛直回転モータ13が設けられ、該鉛直回転モータ13は前記演算制御部17に制御される。該演算制御部17は、前記鉛直回転モータ13により前記鉛直回転軸11を回転させ、前記走査ミラー15は前記軸心11aを中心に回転される。
 前記走査ミラー15の回転角は、前記鉛直角エンコーダ14によって検出され、検出信号は前記演算制御部17に入力される。該演算制御部17は、検出信号に基づき前記走査ミラー15の鉛直角データを演算し、該鉛直角データに基づき前記鉛直回転モータ13に対するフィードバック制御を行う。
 又、前記演算制御部17で演算された水平角データ、鉛直角データや測定結果は、前記記憶部18に保存される。該記憶部18としては、磁気記憶装置としてのHDD、光記憶装置としてのCD、DVD、半導体記憶装置としてのメモリカード、USBメモリ等種々の記憶手段が用いられる。該記憶部18は、前記托架部5に対して着脱可能であってもよく、或は図示しない通信手段を介して外部記憶装置や外部データ処理装置にデータを送出可能としてもよい。
 前記記憶部18には、測距作動を制御するシーケンスプログラム、測距作動により距離を演算する演算プログラム、水平角データ及び鉛直角データに基づき角度を演算する演算プログラム、距離と角度に基づき所望の測定点の3次元座標を演算するプログラム、測定対象物を追尾する為の追尾プログラム等の各種プログラムが格納される。又、前記演算制御部17により各種プログラムが実行されることで、各種処理が実行される。
 前記操作パネル16は、例えばタッチパネルであり、測距の指示や測定条件、例えば測定点間隔の変更等を行う操作部と、測距結果や画像等を表示する表示部とを兼用している。
 次に、図1、図2(A)、図2(B)を参照して、前記距離測定部19について説明する。
 該距離測定部19は、測距光射出部23と測距光受光部24とを有している。尚、前記測距光射出部23と前記測距光受光部24とにより測距部が構成される。又、前記距離測定部19は、追尾光射出部25と追尾光受光部26とを有し、前記追尾光射出部25と前記追尾光受光部26とにより追尾部が構成される。
 前記測距光射出部23は、測距光軸27を有している。又、前記測距光射出部23は、発光側から順に、前記測距光軸27上に設けられた発光素子28、例えばレーザダイオード(LD)と、コリメータレンズ29と、ダイクロイックミラー31と、該ダイクロイックミラー31の反射光軸上に設けられた反射プリズム32とを有している。又、該反射プリズム32の反射光軸上には前記走査ミラー15が設けられている。前記反射プリズム32は、ガラス等の透明材料からなる窓部30に取付けられている。
 尚、前記コリメータレンズ29、前記ダイクロイックミラー31、前記反射プリズム32等は投光光学系を構成する。又、本実施例では、前記測距光軸27と、前記ダイクロイックミラー31で反射された前記測距光軸27と、前記反射プリズム32で反射された前記測距光軸27とを総称して、該測距光軸27としている。
 前記発光素子28は、所定波長のレーザ光線を測距光33として射出し、前記コリメータレンズ29は、前記測距光33を平行光束とする様構成される。又、前記ダイクロイックミラー31は、前記測距光軸27を後述する追尾光軸と合致する様直角に偏向する。
 前記測距光受光部24は、前記受光光軸34を有している。又、前記測距光受光部24は、受光側から順に前記受光光軸34上に設けられた前記受光素子35と、受光プリズム36と、該受光プリズム36で反射された前記受光光軸34上に設けられた所定のNAを有する受光レンズ37を有している。
 尚、前記受光プリズム36、前記受光レンズ37等で受光光学系が構成される。又、本実施例では、前記受光光軸34と、前記受光プリズム36で反射された前記受光光軸34とを総称して、該受光光軸34としている。
 前記追尾光射出部25は、追尾光軸38を有している。又、前記追尾光射出部25は、発光側から順に、前記追尾光軸38上に設けられた追尾発光素子39、例えばレーザダイオード(LD)と、投光レンズ41と、前記ダイクロイックミラー31と、該ダイクロイックミラー31の反射光軸上に設けられた反射プリズム32とを有している。
 尚、前記投光レンズ41、前記ダイクロイックミラー31、前記反射プリズム32等は追尾投光光学系を構成する。又、本実施例では、前記追尾光軸38と、前記反射プリズム32で反射された前記追尾光軸38とを総称して、該追尾光軸38としている。
 前記追尾発光素子39は、前記測距光33とは異なる波長、例えば赤色の一部又は近赤外波長のレーザ光線を追尾光42として射出し、前記投光レンズ41は前記追尾光42を所定の広がり角となる様配置する。又、前記ダイクロイックミラー31は、該ダイクロイックミラー31で反射された測距光軸27と合致する様に前記追尾光軸38を透過する。即ち、前記ダイクロイックミラー31は、前記測距光33を反射し、前記追尾光42を透過する光学特性を有している。
 前記追尾光受光部26は、前記追尾受光光軸43を有している。又、前記追尾光受光部26は、受光側から順に前記追尾受光光軸43上に設けられた前記追尾受光素子44と、受光プリズム36と、該受光プリズム36で反射された前記追尾受光素子44上に設けられた前記受光レンズ37を有している。
 前記発光素子28からパルス光の前記測距光33が射出される。該測距光33は、前記コリメータレンズ29で平行光束とされ、前記ダイクロイックミラー31で直角に反射され、前記反射プリズム32で直角に反射される。該反射プリズム32で反射された前記測距光33の前記測距光軸27は、前記軸心11aと合致しており、前記測距光33は前記走査ミラー15によって直角に偏向される。該走査ミラー15が前記軸心11aを中心に回転することで、測距光は前記軸心11aと直交し、且つ前記軸心6aを含む平面内で回転(走査)される。
 又、前記測距光33の射出と並行して、前記追尾発光素子39から追尾光42が射出される。該追尾光42は、前記投光レンズ41で所定の広がり角とされ、前記測距光軸27と合致する様前記ダイクロイックミラー31を透過し、前記反射プリズム32で直角に反射される。該反射プリズム32で反射された前記追尾光42の前記追尾光軸38は、前記走査ミラー15によって直角に偏向され、前記測距光33と同軸で回転(走査)される。
 測定対象物で反射された前記測距光33(以下反射測距光45)及び前記追尾光42(以下反射追尾光46)は、前記走査ミラー15に同軸で入射し、該走査ミラー15で偏向される。該走査ミラー15で偏向された前記反射測距光45及び前記反射追尾光46は、前記受光レンズ37を経て前記受光プリズム36に入射する。該受光プリズム36に入射した前記反射測距光45及び前記反射追尾光46は、前記受光プリズム36内で複数回内部反射された後、前記反射測距光45と前記反射追尾光46に分離され、前記反射測距光45は前記受光素子35で受光され、前記反射追尾光46は前記追尾受光素子44で受光される。
 前記受光素子35は、例えばアバランシェフォトダイオード(APD)、或は同等の光電変換素子となっている。又、前記追尾受光素子44は、画素の集合体であるCCD、或はCMOSセンサであり、各画素は前記追尾受光素子44上での位置が特定できる様になっている。例えば、各画素は、前記追尾受光素子44の中心を原点とした画素座標を有し、該画素座標によって前記追尾受光素子44上での位置が特定される。
 前記演算制御部17は、前記発光素子28の発光タイミングと、前記受光素子35の受光タイミングの時間差(即ち、パルス光の往復時間)と光速に基づき、前記測距光33の1パルス毎に測距を実行する(Time Of Flight)。尚、前記発光素子28の発光のタイミング、即ちパルス間隔は、前記操作パネル16を介して変更可能となっている。
 前記托架部5と前記走査ミラー15とがそれぞれ定速で回転し、該走査ミラー15の鉛直方向の回転と、前記托架部5の水平方向の回転との協動により、前記測距光33が2次元に走査される。又、各パルス光毎に前記鉛直角エンコーダ14、前記水平角エンコーダ9により鉛直角、水平角を検出することで、鉛直角データ、水平角データが取得できる。前記演算制御部17は、鉛直角データ、水平角データ、測距データとにより、測定対象物の3次元座標及び測定対象物に対応する3次元の点群データを演算する。
 又、前記演算制御部17は、前記反射追尾光46の前記追尾受光素子44に対する入射位置を演算し、該入射位置と前記追尾受光素子44の中心との偏差に基づき、前記反射追尾光46の入射位置が前記追尾受光素子44の中心となる様に前記水平回転モータ8と前記鉛直回転モータ13を制御する。これにより、前記測量装置本体3が測定対象物を追尾する。
 次に、図2(A)、図2(B)に於いて、前記測距光受光部24及び前記追尾光受光部26の詳細について説明する。
 前記受光プリズム36は所定の屈折率を有する4角形のプリズムである第1受光プリズム47と、3角形のプリズムを組合わせて形成した4角形のプリズムである第2受光プリズム48とから構成されている。
 前記第1受光プリズム47は、前記受光レンズ37を透過した前記反射測距光45及び前記反射追尾光46が入射する第1面47a、該第1面47aの表面を透過した前記反射測距光45及び前記反射追尾光46が反射する第2面47b、該第2面47bと前記第1面47aで順次反射された前記反射測距光45及び前記反射追尾光46が入射する第3面47c、前記第1面47aに入射した前記反射測距光45及び前記反射追尾光46と交差する方向に前記第3面47cで反射された前記反射測距光45前記反射追尾光46が透過する透過面としての第4面47dとを有している。
 又、前記第2面47bと前記第3面47cとで形成される角部に面取り加工が施され、第1面取り部49が形成されている。又、前記第1面47aと前記第3面47cとで形成される角部に面取り加工が施され、第2面取り部51が形成されている。
 前記第1面取り部49と前記第2面取り部51は、それぞれ前記反射測距光45及び前記反射追尾光46の光路外に位置している。前記第1面取り部49と前記第2面取り部51の面積は、前記反射測距光45及び前記反射追尾光46の有効光束を確保しつつ、最大限の大きさとすることが望ましい。又、前記第1面取り部49と前記第2面取り部51には、反射防止加工が施されている。該反射防止加工は、例えば反射防止膜の蒸着や黒色塗料の塗布であり、前記第1面取り部49と前記第2面取り部51に入射した光の反射を防止する様に構成されている。
 前記第2受光プリズム48は、例えば立方体であり、3角形のプリズム同士の接合面にはダイクロイックフィルタ膜が設けられ、該ダイクロイックフィルタ膜により波長分離面52が形成されている。該波長分離面52は、例えば反射測距光45を反射し、前記反射追尾光46を透過する様構成されている。
 又、前記第2受光プリズム48は、前記第4面47dと接合される第5面48aと、第5面48aと対向する第6面48bを有している。前記波長分離面52は、前記第5面48aに対して45°傾斜しており、該第5面48aと隣接し、且つ該第5面48aと対向する側の前記波長分離面52に対向する面は第7面48cとなっている。
 前記第6面48bには、波長選択部としての波長選択板53が接着されている。該波長選択板53は、前記第6面48bに入射する前記反射追尾光46の光束径よりも大きくなっており、例えば1辺が該第6面48bよりも数mm程度小さくなっている。前記波長選択板53は、例えばバンドパスフィルタや色ガラスであり、前記反射追尾光46以外の光を遮断する様に構成されている。
 又、前記第6面48bの前記波長選択板53が接着されていない部分は、前記反射追尾光46の光路外となっており、黒色塗料の塗布や遮光板の設置によるマスキング加工が施されたマスキング部55が形成されている。
 尚、前記波長選択板53は、前記第6面48bと同形状であってもよい。この場合には、前記第6面48bの端部から数mmの部分に対してマスキング加工を施し、前記マスキング部55を形成することで、1辺が前記第6面48bよりも数mm小さい前記波長選択板53を設けた場合と同等の効果を得ることができる。
 前記第1受光プリズム47と前記第2受光プリズム48は、前記第4面47dと前記第5面48aとが接合されることで一体化され、受光プリズム36が構成されている。
 図3は、前記受光プリズム36に外光54が受光され、迷光となった際の、前記外光54の光路の一例を示している。前記反射測距光45及び前記反射追尾光46の光路外を前記外光54が通過し、前記追尾受光素子44に受光される。尚、図3では、前記第1受光プリズム47に前記第1面取り部49及び前記第2面取り部51が形成されていない。又、便宜上前記波長分離面52の反射側に前記追尾受光素子44を設けると共に、前記波長分離面52が紙面に対して右方向に前記外光54を反射している。
 図3に示される様に、前記外光54は前記反射測距光45及び前記反射追尾光46の光路外、即ち前記第1面取り部49が形成された箇所(図3中波線)を通過し、前記追尾受光素子44に受光されている。第1の実施例では、前記第1面取り部49、前記第2面取り部51を設け、更に前記第1面取り部49、前記第2面取り部51に反射防止膜や黒色塗料を塗布し、前記第1面取り部49、前記第2面取り部51に入射した光の反射を防止している。
 従って、前記第1面取り部49が形成された箇所に入射した前記外光54は、前記第1面取り部49によって反射されることがなく、前記追尾受光素子44に受光されることがないので、迷光の発生確率を例えば0.24%から0.17%迄低下させることができる。
 前記受光プリズム36に入射した前記反射測距光45及び前記反射追尾光46は、前記受光レンズ37及び前記第1面47aを透過する過程で屈折される。前記反射測距光45及び前記反射追尾光46は、前記第1受光プリズム47の内部で前記第2面47b、前記第1面47aで順次反射され、前記第3面47cに入射する。又、前記反射測距光45及び前記反射追尾光46は、前記第3面47cで前記第4面47dに向って、即ち前記第1面47aから入射した前記反射測距光45及び前記反射追尾光46と交差する方向に反射される。
 又、前記反射測距光45及び前記反射追尾光46と共に入射し、前記反射測距光45及び前記反射追尾光46の光路外を通過する前記外光54は、前記第1面取り部49及び前記第2面取り部51により前記第1受光プリズム47内での反射が防止される。
 前記第4面47dと前記第5面48aを透過した前記反射測距光45及び前記反射追尾光46は、前記波長分離面52に入射する。前記反射追尾光46は、前記波長分離面52を透過し、前記第6面48b及び前記波長選択板53を透過して前記追尾受光素子44に受光される。尚、前記波長選択板53を透過する過程で、前記反射追尾光46以外の波長の光、例えば前記外光(迷光)54を遮断することができる。
 又、前記反射測距光45は、前記波長分離面52によって、紙面に対して手前方向、即ち前記受光プリズム36に入射する前記反射測距光45の前記受光光軸34と直交する方向に90°偏向され、前記第7面48cを透過して前記受光素子35に受光される。
 上述の様に、第1の実施例では、前記受光プリズム36内を内部反射する前記反射測距光45及び前記反射追尾光46の光路外に前記第1面取り部49と前記第2面取り部51を形成し、前記第1面取り部49と前記第2面取り部51に対して反射防止膜や黒色塗料を塗布することによる反射防止加工を施している。
 従って、前記反射測距光45及び前記反射追尾光46の光路外を通過する前記外光(迷光)54は、前記第1面取り部49と前記第2面取り部51によって反射が防止されるので、前記外光54が前記追尾受光素子44に受光されることによる測定対象物の誤検出を抑制でき、追尾精度を向上させることができる。
 又、前記第2受光プリズム48の前記第6面48bに前記反射追尾光46のみを透過させる前記波長選択板53を設け、前記反射追尾光46のみが前記追尾受光素子44に受光される様に構成している。
 従って、前記反射追尾光46の光路を通過した前記外光54が前記追尾受光素子44に受光されるのを防止することができるので、測定対象物の誤検出が防止され、追尾精度を向上させることができる。
 又、前記波長選択板53は、1辺の長さが前記第6面48bよりも数mm小さく、前記波長選択板53が接着されていない部分にはマスキング部55が形成されている。又、該マスキング部55は前記反射追尾光46の光路外に位置し、前記マスキング部55に入射する光は前記外光54である。
 従って、前記マスキング部55に入射した前記外光54の反射を防止できるので、迷光による測定対象物の誤検出を抑制でき、追尾精度を向上させることができる。
 更に、前記反射測距光45及び前記反射追尾光46を前記受光プリズム36内で複数回内部反射させているので、前記測距光受光部24及び前記追尾光受光部26の光軸方向の長さを短くすることができ、前記距離測定部19の小型化を図ることができる。
 尚、第1の実施例では、前記第1面取り部49と前記第2面取り部51に反射防止処理を施し、前記第6面48bに前記マスキング部55を形成している。一方で、前記反射測距光45及び前記反射追尾光46の光路外にある面、例えば前記反射測距光45及び前記反射追尾光46が入射しない前記受光プリズム36の側面(図2(A)中紙面に対して奥側及び手前側)に対しても反射防止加工を施してもよい。
 前記反射測距光45及び前記反射追尾光46の光路外にある全ての面に対して反射防止加工を施すことで、前記受光プリズム36内での前記外光54の反射をより抑制できるので、迷光の発生を更に抑制でき、追尾精度を更に向上させることができる。
 図4(A)、図4(B)は、第1の実施例の第1の変形例を示している。
 第1の変形例では、波長分離面52が反射測距光45を透過し、反射追尾光46を反射する光学特性を有している。即ち、前記波長分離面52の透過側に受光素子35が配置され、前記波長分離面52の反射側に追尾受光素子44が配置されている。又、第7面48cに波長選択板53及びマスキング部55が設けられている。その他の構成は第1の実施例と同様である。
 第1の変形例に於いても、第1面取り部49と前記第2面取り部51、前記マスキング部55によって前記反射追尾光46の光路外を通過する外光54を遮断でき、迷光の発生を抑制できるので、測定対象物の誤検出を抑制でき、追尾精度の向上を図ることができる。
 又、第1の変形例に於いては、前記第1面取り部49と前記第2面取り部51を設けなかった場合と比べて、迷光の発生確率を例えば0.54%から0.18%に迄低下させることができる。
 図5は、第1の実施例の第2の変形例を示している。
 第2の変形例では、第1の実施例とは前記波長分離面52の向きが異なっており、前記反射測距光45の反射方向も異なっている。第2の変形例では、前記反射測距光45が紙面に対して右側、即ち前記受光プリズム36に入射する前記反射測距光45の前記受光光軸34と平行な方向に直角に偏向される。その他の構成は第1の実施例と同様である。
 第2の変形例に於いても、第1面取り部49と前記第2面取り部51、前記マスキング部55によって前記反射追尾光46の光路外を通過する外光54を遮断でき、迷光の発生を抑制できるので、測定対象物の誤検出を抑制でき、追尾精度の向上を図ることができる。
 尚、図示はしないが、第2の変形例に於いても、前記波長分離面52の透過側に前記受光素子35を配置、前記波長分離面52の反射側に前記追尾受光素子44を配置してもよいのは言う迄もない。
 次に、図6(A)~図6(C)に於いて、本発明の第2の実施例について説明する。尚、図6(A)~図6(C)中、図2(A)、図2(B)と同等のものには同符号を付し、その説明を省略する。
 第2の実施例では、波長選択板53(図2(A)参照)に代えて、第6面48bに波長選択部としての波長選択膜56が蒸着されている。該波長選択膜56は、反射測距光45を反射し、反射追尾光46を透過させる光学特性を有している。
 又、前記第6面48bには、図6(C)に示される様に、例えば端部から数mmの部分に対してマスキング加工を施し、マスキング部55を形成している。該マスキング部55は、数mmの幅を有する矩形の枠状となっている。その他の構成は第1の実施例と同様である。
 第2の実施例に於いても、第1面取り部49、前記第2面取り部51、前記マスキング部55が形成されているので、前記反射追尾光46の光路外を通過する外光54が受光プリズム36内で内部反射するのを抑制でき、迷光が発生することによる測定対象物の誤検出を抑制でき、追尾精度を向上させることができる。
 又、前記波長選択膜56が前記反射追尾光46のみを透過させるので、該反射追尾光46の光路を通過した前記外光54が追尾受光素子44に受光されるのを防止することができ、迷光の発生による測定対象物の誤検出を防止することができる。
 尚、第2の実施例では、前記波長選択膜56を前記第6面48bに形成しているが、前記波長選択膜56を形成する面は前記第6面48bに限られるものではない。例えば、前記波長選択膜56は、第4面47dと第5面48aとの接合面に形成してもよいし、第1面47aに形成してもよい。即ち、前記受光プリズム36の、前記反射測距光45及び前記反射追尾光46の入射角が回転対称となった状態で入射する面であれば、前記波長選択膜56を形成することができる。
 一方で、前記第1面47aや前記第4面47dと前記第5面48aとの接合面に前記波長選択膜56を形成する場合、前記反射測距光45と前記反射追尾光46の両方を透過させる必要があるので、前記波長選択膜56としては、例えばデュアルパスフィルタが用いられる。
 尚、第2の実施例に於いても、第1の実施例の第1の変形例と同様、前記波長分離面52の透過側に前記受光素子35を配置し、前記波長分離面52の反射側に前記追尾受光素子44を設けてもよい。又、第1の実施例の第2の変形例と同様、前記波長分離面52の向きを偏向し、前記反射測距光45の反射方向を異ならせてもよい。
 又、第1の実施例及び第2の実施例では、測量装置1としてレーザスキャナを使用する場合について説明したが、前記測量装置1としてトータルステーションを用いる場合にも、本発明の、前記反射追尾光46の光路外に面取り部を形成し、光路外の面に反射防止加工を施すことが可能であるのは言う迄もない。
 例えば、特許文献2に示される測量装置のダイクロイックプリズムに代えて、本実施例の受光プリズム36を適用することができる。
 次に、図7を参照し、本発明の第3の実施例について説明する。尚、図7中、図2中と同等のものには同符号を付し、その説明を省略する。
 第3の実施例に於ける距離測定部19では、測距光射出部23の発光素子28とコリメータレンズ29との間に平行平面板58が設けられている。又、ダイクロイックミラー31の反射光軸上に偏向光学部材としての反射プリズム59が設けられ、該反射プリズム59の反射光軸上に走査ミラー15が設けられている。更に、該走査ミラー15の反射光軸上には、透明材料で形成され、前記走査ミラー15と一体に回転する窓部61が設けられている。
 前記平行平面板58は、例えば所定の板厚を有するガラス板であり、測距光33の広がり角を拡大する様に構成されており、入射面及び射出面が前記測距光軸27と直交する様に配置される。又、前記平行平面板58は、図示しないソレノイド等の駆動機構により、測距光軸27に対して挿脱可能となっており、測定対象物に応じて適宜前記平行平面板58が挿脱される。即ち、測定対象物が再帰反射性を有するプリズム等であるプリズム測定を実行する場合は、前記平行平面板58を前記測距光軸27上に挿入し、測定対象物がプリズム以外のノンプリズム測距を実行する場合は、前記平行平面板58を前記測距光軸27上から取除く様構成される。
 前記反射プリズム59は、2つの台形状のプリズムを接合させて形成され、各プリズムの接合面62で測距光33と追尾光42を反射する様に構成されている。前記反射プリズム59の射出面は、前記接合面62で反射された前記測距光軸27が僅かに傾斜して入射する様構成されており、前記反射プリズム59の射出面で内部反射された前記測距光33が受光素子(受光ファイバ)35に受光されるのを防止している。尚、前記接合面62の傾斜角は、前記測距光軸27が受光光軸34及び軸心11aと合致する様、前記測距光軸27を偏向(反射)させる角度となっている。
 次に、第3の実施例に係る受光プリズム63について説明する。該受光プリズム63は、第1プリズム64と第2プリズム65と第3プリズム66とから構成されている。尚、以下の説明では、図7中、紙面に対して上側を上、紙面に対して下側を下、紙面に対して右側を右、紙面に対して左側を左、紙面に対して奥側を奥、紙面に対して手前側を手前として説明する。
 前記第1プリズム64は、所定の屈折率を有し、4つの反射面、即ち第1面64a、第2面64b、第3面64c、第4面64dを有する多角形のプリズムとなっている。前記第1面64aは、反射測距光45及び反射追尾光46の入射面であり、前記第1プリズム64に入射する前記受光光軸34及び追尾受光光軸43と直交する様構成されている。又、前記第1面64aには全面に亘って反射防止膜(ARコート)が設けられている。
 前記第2面64bは、前記第1面64aと対向し、該第1面64aよりも面積が小さくなっており、前記第2面64bの上端は前記第1面64aの上端よりも下側に位置し、前記第2面64bの下端は前記第1面64aの下端よりも上側に位置している。更に、前記第2面64bは、下方から上方に向って前記第1面64aから離反する様に所定角度傾斜する様構成されている。又、前記第2面64bは、例えば鏡面加工が施されたミラーとなっている。
 前記第3面64cは、前記第1面64aの上端と前記第2面64bの上端との間に形成され、前記第1面64aから前記第2面64bに向って下方に所定角度傾斜する様に構成される。更に第4面64dは、前記第1面64aの下端と前記第2面64bの下端との間に前記第3面64cと対向して設けられ、前記第1面64aから前記第2面64bに向って上方に所定角度傾斜する様に構成される。又、前記第3面64cは、例えば鏡面加工が施されたミラーとなっている。
 前記第1面64aと前記第3面64cとで形成される角部には、面取り加工が施され、第1面取り部67が形成される。又、前記第2面64bと前記第3面64cとで形成される角部には、面取り加工が施され、第2面取り部68が形成される。尚、前記第1面取り部67と前記第2面取り部68は、前記第1プリズム64内を内部反射する前記反射測距光45の光路外に形成される。又、前記第1面取り部67と前記第2面取り部68には、反射防止塗料が塗布されている。
 前記第2プリズム65は、所定の屈折率を有し、5つの面、即ち第1面65aと、第2面65bと、第3面65cと、第4面65dと、第5面65eとを有する5角形のプリズムとなっている。前記第1面65aは、前記第1プリズム64内で反射された反射測距光45が入射角0°で入射する入射面であり、前記第4面64dと同一面積を有し、該第4面64dと接合されている。即ち、前記第4面64dと前記第1面65aは前記第1プリズム64と前記第2プリズム65とを接合させる接合面となる。
 前記第2面65bは、前記第1面65aの左端から前記第1プリズム64と離反する方向に延出する。又、例えば前記第1面65aと前記第2面65bとの成す角度は例えば直角である。
 前記第3面65cは、前記第2面65bの下端から右側に向って前記第1面65aと対向する様に延出する。又、例えば前記第2面65bと前記第3面65cとの成す角度は例えば鈍角となる。
 前記第4面65dは、前記第3面65cの右端から前記第1プリズム64と近接する方向に延出し、前記第5面65eは、前記第4面65dの上端と前記第1面65aの右端との間に形成される。又、前記第1面65aと前記第5面65eとの成す角度は鈍角となっている。
 前記第4面64dと前記第1面65aとは同一面積の面であり、接合されているので、前記第1プリズム64の前記第2面64bと前記第2プリズム65の第5面65eは連続する。又、前記第2面64bは接合面を起点として下方から上方に向って前記反射測距光45と前記反射追尾光46の入射面(前記第1面64a)から離反する方向に傾斜し、前記第5面65eは接合面を起点として下方に向って前記第1面64aから離反する方向に傾斜している。従って、前記第2面64bと前記第5面65eとにより、前記第1面64aに向って窪んだ凹部69が形成される。即ち、該凹部69は、前記受光プリズム63の前記反射測距光45と前記反射追尾光46の入射面の反対側の面に形成される。
 前記第3プリズム66は、所定の屈折率を有し、4つの面、即ち第1面66aと、第2面66bと、第3面66cと、第4面66dとを有する4角形のプリズムとなっている。前記第1面66aは、前記第2プリズム65内を透過した前記反射測距光45の入射面であり、前記第3面65cと同一面積を有し、該第3面65cと接合されている。即ち、該第3面65cと前記第1面66aは前記第2プリズム65と前記第3プリズム66とを接合させる接合面となっている。又、該接合面は、前記反射測距光45と前記反射追尾光46の分離面となっている。
 該分離面のうち、前記受光レンズ37側の端部の一部、即ち前記反射測距光45と前記反射追尾光46の光路外には、例えば幅数mm程度の範囲に反射防止部としての非コーティング箇所71が設けられている。該非コーティング箇所71は、外光54の反射を防止する様になっており、前記分離面での反射迷光の発生を防止可能となっている。
 又、前記分離面のうち、前記非コーティング箇所71が設けられた部分以外の部分には、ダイクロイック膜72が設けられている。該ダイクロイック膜72は、前記接合面に入射する前記反射測距光45と前記反射追尾光46の光束よりも大きくなっており、前記反射測距光45を反射し、前記反射追尾光46を透過する光学特性を有している。
 前記第2面66bは、前記第1面66aの左端から前記第2プリズム65と離反する方向に延出する。又、前記第2面65bと前記第2面66bとは連続し、且つ面一となる。
 前記第3面66cは、前記第2面66bの下端から前記反射測距光45と前記反射追尾光46の入射面(前記第1面64a)から離反する方向に延出する。又、例えば前記第2面66bと前記第3面66cとの成す角度は例えば直角であり、該第3面66cは前記第1プリズム64の前記第4面64d及び前記第2プリズム65の前記第1面65aと平行となっている。更に、前記第3面66cの右端と前記第1面66aの右端との間に第4面66dが形成される。
 又、前記第3面66cの中心には、所定の大きさのバンドパスフィルタ73が設けられ、該バンドパスフィルタ73の周囲には反射防止塗料74が塗布されている。該バンドパスフィルタ73の大きさは、前記ダイクロイック膜72を透過する前記反射追尾光46の光束径と同等又は僅かに大きくなっている。前記バンドパスフィルタ73により、前記追尾光42の波長とは異なる波長の光を前記反射追尾光46から除去することができる。
 前記第5面65eと対向し、前記ダイクロイック膜72で反射される前記反射測距光45の集光位置には、前記受光素子、例えば受光ファイバ75の受光面が設けられている。該受光ファイバ75の受光面は前記凹部69に位置し、前記受光ファイバ75は前記受光プリズム63の奥側を通り、該受光プリズム63の入射面側に向って屈曲されている。
 尚、前記ダイクロイック膜72で反射された前記反射測距光45の前記受光光軸34は、前記第1プリズム64の前記第2面64bと平行又は略平行となっている。前記受光光軸34と前記第2面64bとが平行又は略平行となることで、最も突出する部分(前記受光ファイバ75の曲げ半径だけ突出する部分)が前記受光プリズム63の上方に位置することとなり、屈曲された前記受光ファイバ75が前記第1プリズム64から離反する方向に前記凹部69から突出することを防止できる。即ち、受光光学系が前記受光光軸34方向に拡大することを防止できる。又、前記受光ファイバ75が前記第2面64bに近接し、前記受光ファイバ75の屈曲を妨げることを防止できる。
 前記第3面66cと対向し、前記ダイクロイック膜72を透過する前記反射追尾光46の集光位置には、追尾受光素子44が設けられている。又、該追尾受光素子44は、センサ基板76に設けられている。
 尚、前記第2面取り部68の右端(下端)と、前記受光プリズム63の入射面に向って屈曲された受光ファイバ75の右端と、前記センサ基板76の右端とは、略同一平面上に位置している。
 受光レンズ37を透過した前記反射測距光45と前記反射追尾光46は、前記第1プリズム64の前記第1面64aに対して直角に同軸で入射する。前記第1プリズム64内に入射した前記反射測距光45と前記反射追尾光46は、前記第2面64b、前記第1面64a、前記第3面64c、前記第1面64aで順次同一平面内で反射され、前記第4面64d(前記第1面65a)に直角に入射する。
 前記第2プリズム65内に入射した前記反射測距光45と前記反射追尾光46は、前記第3面65c(前記第1面66a)、即ち分離面としての前記ダイクロイック膜72に入射し、前記反射測距光45と前記反射追尾光46に分離される。
 前記反射測距光45は、前記ダイクロイック膜72で反射され、前記第5面65eに直角に入射し、前記受光ファイバ75に受光される。又、前記反射追尾光46は、前記ダイクロイック膜72を透過し、前記第3面66cに直角に入射し、前記バンドパスフィルタ73を通過する過程で前記追尾光42の波長とは異なる波長の光が除去され、前記追尾受光素子44に受光される。
 尚、前記受光プリズム63に外光54が受光され、前記反射測距光45と前記反射追尾光46の光路外を通過する迷光となった際には、前記外光54は前記第1面取り部67や前記第2面取り部68、或は前記非コーティング箇所71で反射迷光が防止され、前記反射防止塗料74で迷光が吸収及び遮断され、除去される。
 例えば、図8(A)、図8(B)は、前記外光54が前記受光プリズム63に入射した際の、前記外光54の光路の一例を示している。又、図8(A)、図8(B)に於いては、前記第1プリズム64には前記第1面取り部67が設けられておらず、前記第2プリズム65と前記第3プリズム66との接合面(分離面)には前記非コーティング箇所71にダイクロイック膜が塗布されているものとする。尚、以下の説明に於いては、前記第1プリズム64の前記第1面64aに対して垂直に入射した場合の入射角を0°としており、0°で入射した場合の光路が前記反射測距光45と前記反射追尾光46の光路となる。
 図8(A)は、前記外光54の光束が前記第1面64aに対して約-13°の入射角で入射した場合の光路を示している。図8(A)に示される様に、前記受光プリズム63内に入射した前記外光54は、前記受光プリズム63内を内部反射する過程で、前記第1面64aと前記第3面64cとで形成される角部で反射され、前記追尾受光素子44に入射する。
 従って、前記第1面64aと前記第3面64cとで形成される角部に前記第1面取り部67を形成し、該第1面取り部67に反射防止塗料を塗布することで、約-13°の入射角で入射する前記外光54を除去することができる。
 又、図8(B)は、前記外光54の光束が前記第1面64aに対して約+11°の入射角で入射した場合の光路を示している。図8(B)に示される様に、前記受光プリズム63内に入射した前記外光54は、前記受光プリズム63内を内部反射する過程で、前記第2プリズム65と前記第3プリズム66との接合面の前記受光レンズ37側の端部、即ち図7中で前記非コーティング箇所71で反射され、前記追尾受光素子44に入射する。
 従って、前記第2プリズム65と前記第3プリズム66との接合面の前記受光レンズ37側の端部に前記非コーティング箇所71を設けることで、約+11°の入射角で入射する前記外光54による迷光の発生を防止することができる。
 更に、前記第2面取り部68、前記反射防止塗料74によっても、前記第1面64aに対して所定の入射角で入射、前記反射測距光45と前記反射追尾光46の光路外を通過する前記外光54を除去することができる。
 第3の実施例に於いても、前記反射測距光45と前記反射追尾光46の光路外に前記第1面取り部67と前記第2面取り部68とを形成し、前記第1面取り部67と前記第2面取り部68に反射防止塗料を塗布して反射防止加工を施している。
 従って、前記反射測距光45及び前記反射追尾光46の光路外を通過する前記外光(迷光)54は、前記第1面取り部67と前記第2面取り部68によって反射が防止されるので、前記外光54が前記追尾受光素子44に受光されることによる測定対象物の誤検出を抑制でき、追尾精度を向上させることができる。
 又、前記第2プリズム65と前記第3プリズム66との接合面に於いて、前記反射測距光45と前記反射追尾光46の光路外に位置する前記受光レンズ37側の端部に前記非コーティング箇所71を設け、反射防止加工を施している。
 従って、前記反射測距光45及び前記反射追尾光46の光路外を通過する前記外光(迷光)54は、前記非コーティング箇所71によって反射が防止されるので、前記外光54が前記追尾受光素子44に受光されることによる測定対象物の誤検出を抑制でき、追尾精度を更に向上させることができる。
 更に、第3の実施例では、前記受光プリズム63が前記第1プリズム64と前記第2プリズム65と前記第3プリズム66とから構成され、前記第1プリズム64と前記第2プリズム65とにより、前記反射測距光45と前記反射追尾光46の入射面(前記第1面64a)と反対側の面に、前記第1面64aに向って窪んだ前記凹部69を形成している。又、該凹部69に受光素子である前記受光ファイバ75が設けられている。
 従って、該受光ファイバ75が前記走査ミラー15で反射された前記受光光軸34方向(図7中紙面に対して左右方向)に突出することがないので、前記測距光受光部24の前記受光光軸34方向の長さを短くすることができ、前記距離測定部19及び前記測量装置1の小型化を図ることができる。
    1       測量装置
    3       測量装置本体
    17      演算制御部
    19      距離測定部
    23      測距光射出部
    24      測距光受光部
    25      追尾光射出部
    26      追尾光受光部
    33      測距光
    36      受光プリズム
    42      追尾光
    45      反射測距光
    46      反射追尾光
    49      第1面取り部
    51      第2面取り部
    52      波長分離面
    53      波長選択板
    54      外光
    55      マスキング部
    56      波長選択膜

Claims (8)

  1.  測定対象物に測距光を射出する測距光射出部と、前記測定対象物からの反射測距光を受光する受光素子を有する測距光受光部と、前記測定対象物に前記測距光と同軸で追尾光を射出する追尾光射出部と、前記反射測距光と同軸で入射した反射追尾光を受光する追尾受光素子を有する追尾光受光部と、前記受光素子に対する前記反射測距光の受光結果に基づき前記測定対象物の距離を演算し、前記追尾受光素子に対する反射追尾光の受光結果に基づき前記測定対象物を追尾する演算制御部とを具備し、前記測距光受光部と前記追尾光受光部は前記反射測距光と前記反射追尾光を複数回内部反射させる受光プリズムを有し、該受光プリズムの前記反射追尾光の光路外に位置する角部に少なくとも1つの面取り部を形成し、該面取り部に反射防止加工を施す様構成された測量装置。
  2.  前記受光プリズムは、前記反射測距光と前記反射追尾光のうちのいずれか一方を透過し、いずれか他方を反射する波長分離面を有する様構成された請求項1の測量装置。
  3.  前記受光プリズムの前記追尾受光素子と対向する面に、前記反射追尾光のみを透過させる波長選択部を設ける様構成された請求項2の測量装置。
  4.  前記波長選択部は前記面よりも小さく、該面の前記波長選択部が設けられなかった部分にマスキング部を形成する様構成された請求項3の測量装置。
  5.  前記受光プリズムの前記反射追尾光の入射角が回転対称となった状態で入射する面に対して、波長選択膜を形成する様構成された請求項2の測量装置。
  6.  前記受光プリズムの前記反射測距光と前記反射追尾光の光路外に位置する面に反射防止加工を施す様構成された請求項1~請求項5のうちいずれか1項の測量装置。
  7.  前記受光プリズムは、前記反射測距光と前記反射追尾光を分離させる分離面を有し、該分離面のうち前記反射測距光と前記反射追尾光の光路外の部分に反射防止部を設ける様構成された請求項1~請求項6のうちいずれか1項の測量装置。
  8.  前記受光プリズムは、前記反射測距光の入射面と反対側の面に、前記入射面側に窪んだ凹部が形成され、該凹部に前記受光素子が配設される様構成された請求項1~請求項6のうちいずれか1項の測量装置。
PCT/JP2023/034631 2022-09-29 2023-09-25 測量装置 WO2024070999A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-156080 2022-09-29
JP2022156080 2022-09-29
JP2023-102433 2023-06-22
JP2023102433A JP2024050408A (ja) 2022-09-29 2023-06-22 測量装置

Publications (1)

Publication Number Publication Date
WO2024070999A1 true WO2024070999A1 (ja) 2024-04-04

Family

ID=90477794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034631 WO2024070999A1 (ja) 2022-09-29 2023-09-25 測量装置

Country Status (1)

Country Link
WO (1) WO2024070999A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195830A (ja) * 2000-10-19 2002-07-10 Asahi Optical Co Ltd 測量機のゴースト・フレア防止装置
JP2004144902A (ja) * 2002-10-23 2004-05-20 Olympus Corp 傾きセンサ装置
JP2017037027A (ja) * 2015-08-12 2017-02-16 株式会社トプコン 自動測量機
JP2022023609A (ja) * 2020-07-27 2022-02-08 株式会社トプコン 測量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195830A (ja) * 2000-10-19 2002-07-10 Asahi Optical Co Ltd 測量機のゴースト・フレア防止装置
JP2004144902A (ja) * 2002-10-23 2004-05-20 Olympus Corp 傾きセンサ装置
JP2017037027A (ja) * 2015-08-12 2017-02-16 株式会社トプコン 自動測量機
JP2022023609A (ja) * 2020-07-27 2022-02-08 株式会社トプコン 測量装置

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
EP3812700B1 (en) Surveying instrument
US10649071B2 (en) Scanning optical system and radar
US10634767B2 (en) Electronic distance measuring instrument
KR101806753B1 (ko) 스캐닝 엔진에 대한 모듈식 광학계
EP3945283B1 (en) Surveying instrument
JP2022110635A (ja) 測量装置
WO2024070999A1 (ja) 測量装置
US20170307874A1 (en) Scanning Optical System And Radar
JP2024050408A (ja) 測量装置
JP6676974B2 (ja) 対象物検出装置
JP6867736B2 (ja) 光波距離測定装置
JP2008171444A (ja) 光走査型タッチパネル
WO2017176410A1 (en) Time-of-flight detector with single-axis scan
JP2023127741A (ja) 測量装置
JP6732442B2 (ja) 光波距離測定装置
JP7416647B2 (ja) 測量装置
JP7403328B2 (ja) 測量装置
JP7421437B2 (ja) 測量装置
JP2023127742A (ja) 測量装置
US20230033565A1 (en) Surveying instrument
JP2023050683A (ja) 測量装置
WO2017126356A1 (ja) 対象物検出装置
WO2019227448A1 (zh) 距离探测装置
JPH04166786A (ja) 投光受光光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872224

Country of ref document: EP

Kind code of ref document: A1