WO2024070718A1 - Wiring sheet and sheet-form heater - Google Patents

Wiring sheet and sheet-form heater Download PDF

Info

Publication number
WO2024070718A1
WO2024070718A1 PCT/JP2023/033466 JP2023033466W WO2024070718A1 WO 2024070718 A1 WO2024070718 A1 WO 2024070718A1 JP 2023033466 W JP2023033466 W JP 2023033466W WO 2024070718 A1 WO2024070718 A1 WO 2024070718A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive linear
sheet
linear body
conductive
electrodes
Prior art date
Application number
PCT/JP2023/033466
Other languages
French (fr)
Japanese (ja)
Inventor
雅春 伊藤
拓也 大嶋
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022158993A external-priority patent/JP2024052337A/en
Priority claimed from JP2022158949A external-priority patent/JP2024052310A/en
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2024070718A1 publication Critical patent/WO2024070718A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • the present invention relates to a wiring sheet and a sheet-shaped heater.
  • Patent Document 1 describes a conductive sheet having a pseudo-sheet structure in which a plurality of linear elements extending in one direction are arranged at intervals. A pair of electrodes is provided on both ends of the linear elements, thereby obtaining a wiring sheet that can be used as a heating element.
  • the sheet shape is required to be various. In such cases, the pair of electrodes may not be parallel, or the electrodes may have an irregular shape. Therefore, the distance between the electrodes changes depending on the location in the sheet plane, which may cause overheating in the sheet plane.
  • the object of the present invention is to provide a wiring sheet and a sheet-shaped heater that can prevent overheating within the sheet plane even when a pair of electrodes are not parallel.
  • a pseudo sheet structure having a plurality of conductive linear bodies arranged at intervals and a pair of electrodes, At least one of the conductive linear bodies has a distance between a contact point of the conductive linear body and the electrode different from that of the other conductive linear body, At least one of the conductive linear bodies is different from the other one in at least one of a material, a surface layer material, a diameter, and a wavy shape in a plan view. Wiring sheet.
  • the wiring sheet according to [1] The conductive linear body has a straight or wavy shape in a plan view, and when the length of the conductive linear body between the electrodes of the a-th conductive linear body counting from one end of the pseudo sheet structure is La , the resistivity is ⁇ a , and the cross-sectional area is Sa , and when the length of the conductive linear body between the electrodes of the b-th conductive linear body counting from one end of the pseudo sheet structure is Lb , the resistivity is ⁇ b , and the cross-sectional area is Sb , the condition shown in the following formula (F1) is satisfied: Wiring sheet.
  • the wiring sheet according to [1] or [2], The conductive linear body is made of a material containing tungsten, At least one of the conductive linear bodies has a surface layer material different from that of the other conductive linear bodies. Wiring sheet.
  • a pseudo sheet structure having a plurality of conductive linear bodies arranged at intervals and a pair of electrodes, At least one of the conductive linear bodies is different from the other one in at least one of a material, a surface layer material, a diameter, and a wavy shape in a plan view. Wiring sheet.
  • the conductive linear body is of three or more types, Three or more types of conductive linear bodies are periodically arranged. Wiring sheet.
  • One of the three or more types of conductive linear bodies has a material or a surface layer material different from that of the other types, The conductive linear bodies are spaced apart from each other by 1.5 mm or less. Wiring sheet.
  • FIG. 1 is a schematic diagram showing a wiring sheet according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the II-II cross section of FIG.
  • FIG. 2 is a cross-sectional view showing the III-III section of FIG.
  • FIG. 4 is a schematic diagram showing a wiring sheet according to a second embodiment of the present invention.
  • 5 is a cross-sectional view showing the VV section of FIG. 4.
  • the wiring sheet 100 includes a substrate 1, a pseudo sheet structure 2, a resin layer 3, and a pair of electrodes 4.
  • the wiring sheet 100 includes the resin layer 3 laminated on the substrate 1, and the pseudo sheet structure 2 laminated on the resin layer 3.
  • the pseudo sheet structure 2 includes a plurality of conductive linear members 21 arranged at intervals. 1, the electrodes 4 have irregular shapes and are not parallel when viewed from above, so that at least one of the conductive linear bodies 21 has a length between the electrodes 4 that is different from that of the other conductive linear bodies 21. At least one of the conductive linear bodies 21 is different from the other one in at least one of the material, surface layer material, diameter, and wavy shape in a plan view. Specifically, as shown in Figures 1, 2, and 3, the diameter D of the conductive linear bodies 21 is changed according to the length of the conductive linear body 21 between the electrodes 4.
  • wiring sheet 100 according to this embodiment can suppress overheating within the sheet plane even when a pair of electrodes 4 are not parallel. That is, when the pair of electrodes 4 are not parallel, overheating occurs in the sheet plane because the difference in the distance between the contact points of the conductive linear body 21 and the electrodes 4 results in a difference in the power consumption per unit length between the electrodes 4.
  • the resistance value per unit length of the conductive linear body 21 or the resistance value of the conductive linear body 21 between the electrodes 4 can be adjusted by appropriately adjusting at least one of the material, surface layer material, diameter, and wavy shape in a plan view of the conductive linear body 21. This makes it possible to adjust the power consumption per unit length between the electrodes 4 to be more uniform. In this way, overheating in the sheet plane can be suppressed.
  • the conductive linear objects 21 may be made of different materials.
  • the resistance value per unit length of the conductive linear body 21 can be changed depending on the material by changing the material. For example, the higher the resistivity ⁇ of a material used, the higher the resistance value per unit length of the conductive linear body 21.
  • the surface layer materials of any of the conductive linear bodies 21 may be different from each other.
  • the resistance value per unit length of the conductive linear body 21 can be changed according to the type of surface layer material by changing the type of the surface layer material. For example, the lower the resistivity ⁇ of the surface layer material used, the lower the resistance value per unit length of the conductive linear body 21.
  • the diameters of any of the conductive linear objects 21 may be different.
  • the resistance value per unit length of the conductive linear body 21 can be changed according to the diameter because changing the diameter changes the cross-sectional area S. For example, the larger the diameter of the conductive linear body 21, the lower the resistance value per unit length of the conductive linear body 21.
  • the wavy shape in a plan view may be different between any two adjacent conductive linear objects 21 .
  • the resistance value of the conductive linear body 21 between the electrodes 4 can be changed according to the waveform, wavelength, amplitude, etc., because changing the wave shape (waveform, wavelength, amplitude, etc.) in a plan view changes the length of the conductive linear body 21. For example, the shorter the wavelength and the larger the amplitude, the higher the resistance value of the conductive linear body 21 between the electrodes 4.
  • At least one of the material, surface material, diameter, and wavy shape in plan view of the conductive linear body 21 may be adjusted as appropriate. Two or more of these may also be adjusted in combination.
  • the conductive linear body 21 has a straight or wavy shape in a planar view, and when the length of the conductive linear body 21 between the electrodes 4 of the a-th conductive linear body 21 counting from one end of the pseudo sheet structure 2 is La , the resistivity is ⁇ a , and the cross-sectional area is Sa , and when the length of the conductive linear body 21 between the electrodes 4 of the b-th conductive linear body counting from one end of the pseudo sheet structure 2 is Lb , the resistivity is ⁇ b , and the cross-sectional area is Sb , it is preferable that the condition shown in the following formula (F1) is satisfied.
  • the value of Sb /( ⁇ b ⁇ Lb2 ) is equal to or greater than the lower limit and equal to or less than the upper limit, overheating in the sheet plane can be suppressed.
  • the value of Sb /( ⁇ b ⁇ Lb2 ) is more preferably equal to or greater than 0.63 ⁇ Sa /( ⁇ a ⁇ La2 ) ⁇ , even more preferably equal to or greater than 0.66 ⁇ Sa /( ⁇ a ⁇ La2 ) ⁇ , and particularly preferably equal to or greater than 0.70 ⁇ Sa /( ⁇ a ⁇ La2 ) ⁇ .
  • the value of S b /( ⁇ b ⁇ L b 2 ) is 1.59 ⁇ ⁇ S a /( ⁇ a ⁇ L a 2 ) ⁇ or less, even more preferable that it is 1.52 ⁇ ⁇ S a /( ⁇ a ⁇ L a 2 ) ⁇ or less, and particularly preferable that it is 1.43 ⁇ ⁇ S a /( ⁇ a ⁇ L a 2 ) ⁇ or less.
  • the base material 1 can directly or indirectly support the pseudo sheet structure 2.
  • the base material 1 is not necessarily required.
  • the base material 1 is a member that is provided as necessary.
  • Examples of the substrate 1 include a resin film, paper, a nonwoven fabric, a cloth, and a glass film.
  • the substrate 1 may be transparent or may have visibility. In this way, the wiring sheet 100 can be made transparent or have visibility.
  • the substrate 1 may also have elasticity. For example, if the substrate 1 has elasticity, the elasticity of the wiring sheet 100 can be ensured even when the pseudo sheet structure 2 is provided on the substrate 1.
  • the substrate 1 may be a resin film, a nonwoven fabric, a cloth, or the like.
  • resin films examples include polyethylene films, polypropylene films, polybutene films, polybutadiene films, polymethylpentene films, polyvinyl chloride films, vinyl chloride copolymer films, polyethylene terephthalate films, polyethylene naphthalate films, polybutylene terephthalate films, polyurethane films, ethylene-vinyl acetate copolymer films, ionomer resin films, ethylene-(meth)acrylic acid copolymer films, polystyrene films, polycarbonate films, and polyimide films.
  • stretchable substrates include crosslinked films and laminated films of these.
  • nonwoven fabrics include spunbond nonwoven fabrics, needle punch nonwoven fabrics, melt blown nonwoven fabrics, and spunlace nonwoven fabrics.
  • cloth include woven fabrics and knitted fabrics.
  • the paper, nonwoven fabric, and cloth as the stretchable substrate are not limited to these.
  • the thickness of the substrate 1 is preferably 10 ⁇ m or more and 10 mm or less, more preferably 15 ⁇ m or more and 5 mm or less, and even more preferably 50 ⁇ m or more and 3 mm or less.
  • the pseudo sheet structure 2 has a structure in which a plurality of conductive linear bodies 21 are arranged at intervals from each other.
  • the pseudo sheet structure 2 also has a structure in which a plurality of conductive linear bodies 21 are arranged in a direction intersecting the axial direction of the conductive linear bodies 21.
  • the conductive linear body 21 may be linear in a plan view of the wiring sheet 100, but may also be wavy.
  • Examples of the wave shape include a sine wave, a rectangular wave, a triangular wave, and a sawtooth wave.
  • breakage of the conductive linear body 21 can be suppressed when the wiring sheet 100 is stretched in the axial direction of the conductive linear body 21.
  • the volume resistivity of the conductive linear body 21 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 3 ⁇ m or less, and more preferably 1.0 ⁇ 10 ⁇ 8 ⁇ m or more and 1.0 ⁇ 10 ⁇ 4 ⁇ m or less.
  • the volume resistivity of the conductive linear body 21 was measured as follows: Silver paste was applied to the ends of the conductive linear body 21 and to a portion 40 mm from the ends, and the resistance of the ends and the portion 40 mm from the ends was measured. The volume resistivity of the conductive linear body 21 was then calculated by multiplying the resistance value by the cross-sectional area (unit: m2 ) of the conductive linear body 21 and dividing the obtained value by the measured length (0.04 m).
  • the cross-sectional shape of the conductive linear body 21 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the standpoint of compatibility with the resin layer 3, etc., it is preferable that the cross-sectional shape of the conductive linear body 21 is elliptical or circular.
  • the thickness (diameter) D (see FIG. 2 ) of the conductive linear body 21 is preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the diameter D of the conductive linear body 21 is more preferably 4 ⁇ m or more and 150 ⁇ m or less, and further preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the cross section of the conductive linear body 21 is elliptical, it is preferable that the major axis is in the same range as the diameter D described above.
  • the diameter D of the conductive linear body 21 is determined by observing the conductive linear body 21 using a digital microscope, measuring the diameter of the conductive linear body 21 at five randomly selected points, and averaging the measured values.
  • the interval L (see FIG. 2) between the conductive linear members 21 is preferably 0.3 mm or more and 50 mm or less, more preferably 0.5 mm or more and 30 mm or less, and even more preferably 0.8 mm or more and 20 mm or less. If the spacing between the conductive linear bodies 21 is within the above range, the conductive linear bodies are relatively densely packed, which improves the functionality of the wiring sheet 100, such as maintaining a low resistance of the pseudo sheet structure.
  • the distance L between the conductive linear members 21 is measured, for example, by observing the conductive linear members 21 of the pseudo sheet structure 2 using a digital microscope and measuring the distance between two adjacent conductive linear members 21.
  • the interval between two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged, and is the length between opposing portions of the two conductive linear bodies 21 (see FIG. 2).
  • the interval L is the average value of the intervals between all adjacent conductive linear bodies 21.
  • the conductive linear body 21 may be any form, but may be a linear body including a metal wire (hereinafter also referred to as a "metal wire linear body").
  • Metal wire has high thermal conductivity, high electrical conductivity, and high handling properties.
  • the metal wire linear body can greatly reduce resistance, and even if the diameter of the metal wire linear body is extremely small, it can pass a current required for heating the wiring sheet 100. This makes it possible to make the conductive linear body 21 less visible. That is, when a metal wire linear body is used as the conductive linear body 21, the resistance value of the pseudo sheet structure 2 is reduced while the light transmittance is easily improved. In addition, the wiring sheet 100 is easily able to generate heat quickly. Furthermore, as described above, a linear body having a small diameter is easily obtained.
  • examples of the conductive linear body 21 include a linear body made of a thread with a conductive coating, in addition to a metallic wire linear body.
  • the metal wire linear body may be a linear body made of a single metal wire, or may be a linear body made of a plurality of twisted metal wires.
  • metal wires include wires containing metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (e.g., steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium copper alloys, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten).
  • the metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloys, or solder, or may be coated with a carbon material or polymer, which will be described later.
  • wires containing one or more metals selected from tungsten and molybdenum, and alloys containing these, are preferred from the viewpoint of low volume resistivity.
  • the metal wire may be a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, and the presence of the metal wire can be easily made less noticeable. In addition, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
  • Examples of the carbon material that coats the metal wire include amorphous carbon (for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber), graphite, fullerene, graphene, and carbon nanotubes.
  • amorphous carbon for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber
  • graphite fullerene
  • graphene and carbon nanotubes.
  • the material of the conductive linear bodies 21 contains tungsten, and that at least one of the conductive linear bodies 21 has a surface layer material different from that of the other one. With such a combination, it is easy to produce a wiring sheet 100 that can suppress overheating within the sheet plane.
  • the conductive linear body 21 may be a linear body in which a thread is provided with a conductive coating.
  • the conductive coating include threads spun from resins such as nylon or polyester.
  • the conductive coating include threads such as metal fibers, carbon fibers, or ion-conductive polymer fibers.
  • the conductive coating include coatings of metals, conductive polymers, or carbon materials.
  • the conductive coating can be formed by plating, vapor deposition, or the like.
  • a linear body having a conductive coating applied to the thread can improve the conductivity of the linear body while maintaining the flexibility of the thread. In other words, it becomes easier to reduce the resistance of the pseudo sheet structure 2.
  • the resin layer 3 is a layer containing resin.
  • the pseudo sheet structure 2 can be supported directly or indirectly by this resin layer 3.
  • the resin layer 3 is not necessarily provided.
  • the resin layer 3 is a member that is provided as necessary.
  • the resin layer 3 is preferably a layer containing an adhesive. For example, when forming the pseudo sheet structure 2 on the resin layer 3, the adhesive makes it easy to attach the conductive linear body 21 to the resin layer 3.
  • the resin layer 3 may be a layer made of a resin that can be dried or cured. This provides the resin layer 3 with sufficient hardness to protect the pseudo-sheet structure 2, and the resin layer 3 also functions as a protective film. In addition, the resin layer 3 after curing or drying has impact resistance, and can also suppress deformation of the wiring sheet 100 due to impact.
  • the resin layer 3 is preferably energy ray curable, such as ultraviolet light, visible energy rays, infrared rays, or electron beams, since it can be easily cured in a short time.
  • energy ray curing also includes heat curing by heating using energy rays.
  • the adhesive contained in the resin layer 3 may be a thermosetting adhesive that hardens when heated, a so-called heat seal type adhesive that bonds when heated, or an adhesive that becomes sticky when moistened.
  • the resin layer 3 is energy ray curable.
  • energy ray curable resins include compounds that have at least one polymerizable double bond in the molecule, and acrylate compounds that have a (meth)acryloyl group are preferred.
  • the acrylate-based compounds include, for example, (meth)acrylates containing a chain aliphatic skeleton (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • (meth)acrylates containing a chain aliphatic skeleton trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate,
  • acrylates, etc. alicyclic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate, etc.), oligoester (meth)acrylates, urethane (meth)acrylate oligomers, epoxy-modified (meth)acrylates, polyether (meth)acrylates other than the polyalkylene glycol (meth)acrylates, and itaconic acid oligomers.
  • the weight average molecular weight (Mw) of the energy ray curable resin is preferably 100 or more and 30,000 or less, and more preferably 300 or more and 10,000 or less.
  • the adhesive composition may contain only one type of energy ray-curable resin, or two or more types, and when two or more types are contained, the combination and ratio of these may be selected as desired. Furthermore, the adhesive composition may be combined with a thermoplastic resin, which will be described later, and the combination and ratio may be selected as desired.
  • the resin layer 3 may be an adhesive layer formed from an adhesive (pressure-sensitive adhesive).
  • the adhesive of the adhesive layer is not particularly limited.
  • adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives.
  • the adhesive is at least one selected from the group consisting of acrylic adhesives, urethane adhesives, and rubber adhesives, and it is more preferable that the adhesive is an acrylic adhesive.
  • Acrylic adhesives include, for example, polymers containing structural units derived from alkyl (meth)acrylates having a straight-chain alkyl group or a branched-chain alkyl group (i.e., polymers obtained by polymerizing at least alkyl (meth)acrylates), and acrylic polymers containing structural units derived from (meth)acrylates having a cyclic structure (i.e., polymers obtained by polymerizing at least (meth)acrylates having a cyclic structure).
  • (meth)acrylate is used as a term that refers to both "acrylate” and "methacrylate,” and the same applies to other similar terms.
  • the acrylic polymer is a copolymer
  • the form of copolymerization is not particularly limited.
  • the acrylic copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the acrylic copolymer may be crosslinked with a crosslinking agent.
  • crosslinking agents include known epoxy crosslinking agents, isocyanate crosslinking agents, aziridine crosslinking agents, and metal chelate crosslinking agents.
  • a hydroxyl group or a carboxyl group that reacts with these crosslinking agents can be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer.
  • the resin layer 3 may further contain the energy ray curable resin described above in addition to the adhesive.
  • an acrylic adhesive is used as the adhesive, a compound having both a functional group that reacts with a functional group derived from a monomer component in an acrylic copolymer and an energy ray polymerizable functional group in one molecule may be used as the energy ray curable component.
  • the reaction between the functional group of the compound and the functional group derived from a monomer component in the acrylic copolymer makes the side chain of the acrylic copolymer curable by energy ray irradiation.
  • a component whose side chain is similarly energy ray polymerizable may be used as a polymer component other than the acrylic polymer.
  • thermosetting resin used in the resin layer 3 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, phenoxy resin, amine-based compounds, and acid anhydride-based compounds. These can be used alone or in combination of two or more.
  • epoxy resin from the viewpoint of suitability for curing using an imidazole-based curing catalyst, it is preferable to use epoxy resin, phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and in particular, from the viewpoint of showing excellent curing properties, it is preferable to use epoxy resin, phenol resin, a mixture thereof, or a mixture of epoxy resin and at least one selected from the group consisting of phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds.
  • the moisture-curing resin used in the resin layer 3 is not particularly limited, but examples include moisture-curing urethane resin, which is a resin in which isocyanate groups are generated by moisture, and modified silicone resin.
  • an energy ray curable resin is used as the resin used in the resin layer 3, it is preferable to use a photopolymerization initiator or the like. Furthermore, when a thermosetting resin is used as the resin used in the resin layer 3, it is preferable to use a thermal polymerization initiator or the like. By using a photopolymerization initiator, a thermal polymerization initiator, or the like in the resin layer 3, a crosslinked structure is formed in the resin layer 3, making it possible to more firmly protect the pseudo sheet structure 2.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenyl-phosphine oxide.
  • Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) dihydrochloride, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.), and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
  • polymerization initiators may be used alone or in combination of two or more.
  • the amount used is preferably 0.1 parts by mass or more and 100 parts by mass or less, more preferably 1 part by mass or more and 100 parts by mass or less, and even more preferably 1 part by mass or more and 10 parts by mass or less, relative to 100 parts by mass of at least any one of the energy ray curable resin and the thermosetting resin.
  • the resin layer 3 may not be curable, and may be, for example, a layer made of a thermoplastic resin composition.
  • the thermoplastic resin layer can be softened by including a solvent in the thermoplastic resin composition. This makes it easier to attach the conductive linear body 21 to the resin layer 3, for example, when forming the pseudo-sheet structure 2 on the resin layer 3.
  • the thermoplastic resin layer can be dried and solidified by volatilizing the solvent in the thermoplastic resin composition.
  • thermoplastic resin examples include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide, and acrylic resin.
  • solvent examples include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, alkyl halide solvents, and water.
  • the resin layer 3 may contain an inorganic filler. By containing an inorganic filler, the hardness of the resin layer 3 after curing can be further improved.
  • inorganic fillers examples include inorganic powders (e.g., powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), beads made by spheroidizing inorganic powders, single crystal fibers, and glass fibers.
  • silica filler and alumina filler are preferred as inorganic fillers.
  • One type of inorganic filler may be used alone, or two or more types may be used in combination.
  • the resin layer 3 may contain other components.
  • other components include well-known additives such as organic solvents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, antifungal agents, plasticizers, defoamers, and wettability adjusters.
  • the thickness of the resin layer 3 is determined according to the application of the wiring sheet 100.
  • the thickness of the resin layer 3 is preferably 3 ⁇ m or more and 150 ⁇ m or less, and more preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the electrodes 4 are used to supply a current to the conductive linear body 21.
  • the electrodes 4 are in a pair.
  • the electrodes 4 are in direct contact with the conductive linear body 21.
  • the electrodes 4 are disposed so as to be electrically connected to both ends of the conductive linear body 21.
  • the electrode 4 can be formed using a known electrode material. Examples of the electrode material include a conductive paste (such as silver paste), a metal foil (such as copper foil), and a metal wire.
  • the electrode material is a metal wire, the number of metal wires may be one, but is preferably two or more.
  • the electrodes 4 have an irregular shape in a plan view and are not parallel. For example, as shown in Fig.
  • the electrodes 4 have an irregular shape, and at least one of the conductive linear bodies 21 has a different distance between the contact points of the conductive linear body 21 and the electrode 4 from the other conductive linear bodies 21.
  • Such an electrode 4 is easy to fabricate by using a conductive paste.
  • the metal of the metal foil or metal wire examples include copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (for example, steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten, etc.).
  • the metal foil or metal wire may also be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloy, solder, etc.
  • the width of at least one of the electrodes 4 is preferably 10 mm or less, more preferably 3000 ⁇ m or less, and even more preferably 1500 ⁇ m or less, in a plan view of the wiring sheet 100.
  • the width of this electrode is preferably 0.1 mm or more. Note that if at least one of the electrodes is a metal wire, the width of the electrode is the diameter of the metal wire, and when two or more metal wires are used, the width of one electrode refers to the sum of the diameters of the metal wires.
  • the thickness of the electrode 4 is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 170 ⁇ m or less, and even more preferably 10 ⁇ m or more and 150 ⁇ m or less. If the thickness of the electrode 4 is within the above range, the electrical conductivity is high and the resistance is low, and the resistance value with the pseudo-sheet structure can be kept low. In addition, sufficient strength as an electrode is obtained. Note that, when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
  • the wiring sheet 100 can be produced, for example, by the following steps. First, a composition for forming the resin layer 3 is applied onto the substrate 1 to form a coating film. Next, the coating film is dried to prepare the resin layer 3. Next, the conductive linear bodies 21 are arranged on the resin layer 3 to form the pseudo sheet structure 2. For example, in a state where the resin layer 3 with the substrate 1 is arranged on the outer circumferential surface of the drum member, the conductive linear bodies 21 are wound around the resin layer 3 while rotating the drum member.
  • At least one of the conductive linear bodies 21 is different from the other one in at least one of the material, the surface layer material, the diameter, and the wavy shape in a plan view. Then, the bundle of the wound conductive linear bodies 21 is cut along the axial direction of the drum member. This forms the pseudo sheet structure 2 and is placed on the resin layer 3. Then, the resin layer 3 with the substrate 1 on which the pseudo sheet structure 2 is formed is taken out from the drum member to obtain a sheet-like conductive member. According to this method, for example, it is easy to adjust the spacing L between adjacent conductive linear bodies 21 in the pseudo sheet structure 2 by rotating the drum member and moving the payout portion of the conductive linear body 21 along a direction parallel to the axis of the drum member.
  • electrodes 4 are formed on both ends of the conductive linear members 21 in the pseudo sheet structure 2 of the sheet-like conductive member.
  • the electrodes 4 are formed so as to have an irregular shape in a plan view. In this manner, the wiring sheet 100 can be produced.
  • the wiring sheet 100A includes a substrate 1, a pseudo sheet structure 2, a resin layer 3, and a pair of electrodes 4.
  • the wiring sheet 100A includes the resin layer 3 laminated on the substrate 1, and the pseudo sheet structure 2 laminated on the resin layer 3.
  • the pseudo sheet structure 2 includes a plurality of conductive linear members 21 arranged at intervals. At least one of the conductive linear bodies 21 is different from the other one in at least one of the material, surface layer material, diameter, and wavy shape in plan view. Specifically, as shown in Fig. 4 and Fig. 5, two types of conductive linear bodies 21 having different diameters are arranged alternately with a periodicity.
  • wiring sheet 100A according to the present embodiment increases the degree of freedom in design is as follows. That is, in the case of using a single type of conductive linear body 21 as in the past, the resistance value of the pseudo sheet structure 2 was adjusted by changing the material, surface layer material, diameter, etc. of the conductive linear body 21 itself, or by changing the number of conductive linear bodies 21. However, since the types of conductive linear body 21 are limited, it was difficult to adjust the resistance value to the desired value. In contrast, in the present embodiment, the resistance value of the pseudo sheet structure 2 can be adjusted by using, for example, two types of conductive linear body 21 in half each.
  • the resistance value of the pseudo sheet structure 2 can be adjusted by using, for example, two types of conductive linear body 21 in a ratio of 2:1. In this way, by simply using two types of conductive linear body 21, the resistance value of the pseudo sheet structure 2 can be adjusted more freely. Note that if the two types of conductive linear body 21 are arranged with a periodicity, there is almost no problem with the appearance of the wiring sheet 100A. In this way, the degree of freedom in design is increased.
  • the conductive linear objects 21 may be made of different materials.
  • the resistance value per unit length of the conductive linear body 21 can be changed depending on the material by changing the material. For example, the higher the volume resistivity of a material used, the higher the resistance value per unit length of the conductive linear body 21.
  • the surface layer materials of any of the conductive linear bodies 21 may be different from each other.
  • the resistance value per unit length of the conductive linear body 21 can be changed according to the type of surface layer material by changing the type of surface layer material. For example, the lower the volume resistivity of the surface layer material used, the lower the resistance value per unit length of the conductive linear body 21.
  • the diameters of any of the conductive linear objects 21 may be different. Since changing the diameter changes the cross-sectional area, the resistance value per unit length of the conductive linear body 21 can be changed according to the diameter. For example, the larger the diameter of the conductive linear body 21, the lower the resistance value per unit length of the conductive linear body 21.
  • the wavy shape in a plan view may be different between any two adjacent conductive linear objects 21 .
  • the resistance value of the conductive linear body 21 between the electrodes 4 can be changed according to the waveform, wavelength, amplitude, etc., because changing the wave shape (waveform, wavelength, amplitude, etc.) in a plan view changes the length of the conductive linear body 21. For example, the shorter the wavelength and the larger the amplitude, the higher the resistance value of the conductive linear body 21 between the electrodes 4.
  • At least one of the material, surface material, diameter, and wavy shape in plan view of the conductive linear body 21 may be adjusted as appropriate. Two or more of these may also be adjusted in combination.
  • the conductive linear members 21 are of three or more types, and it is preferable that the three or more types of conductive linear members are arranged periodically. In this way, the degree of freedom in design can be further increased by using three or more types of conductive linear bodies 21. Furthermore, by arranging conductive linear bodies 21 with a periodicity, there is almost no problem with the appearance of wiring sheet 100.
  • one type of the three or more types of conductive linear bodies 21 has a material or surface layer material different from the other types, and that the spacing L between the conductive linear bodies 21 is 2.0 mm or less.
  • the resistance value of the conductive linear body 21 itself can be changed considerably.
  • one type of material is carbon nanotubes and the other type of material is metal
  • the difference in resistance value between carbon nanotubes and metal is considerably large, so that the conductive linear body 21 made of carbon nanotubes generates almost no heat when a current is passed through the wiring sheet 100. In this way, a pseudo sheet structure 2 having dummy conductive linear bodies 21 that generate almost no heat can be obtained.
  • the number of conductive linear bodies 21 can also be increased without changing the resistance value of the pseudo sheet structure 2 as a whole.
  • the conductive linear body 21 becomes very easy to see.
  • the interval of the conductive linear body 21 is 2.0 mm or less, there is a phenomenon that the conductive linear body 21 becomes difficult to see.
  • the interval of the conductive linear body 21 is more preferably 1.5 mm or less, and particularly preferably 1.0 mm or less.
  • the conductive linear body 21 is difficult to see, and in this case, it is also said that the visibility of the conductive linear body 21 is good.
  • the number of the conductive linear body 21 can be increased and the interval of the conductive linear body 21 can be adjusted without changing the resistance value of the pseudo sheet structure 2. Therefore, the conductive linear body 21 can be made difficult to see without changing the resistance value of the pseudo sheet structure 2.
  • the interval L between the conductive linear members 21 is preferably 0.05 mm or more, more preferably 0.1 mm or more, and particularly preferably 0.3 mm or more.
  • the distance L between the conductive linear members 21 is measured, for example, by observing the conductive linear members 21 of the pseudo sheet structure 2 using a digital microscope and measuring the distance between two adjacent conductive linear members 21.
  • the interval between two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged, and is the length between opposing portions of the two conductive linear bodies 21 (see FIG. 2).
  • the interval L is the average value of the intervals between all adjacent conductive linear bodies 21.
  • the substrate 1, pseudo sheet structure 2, resin layer 3, and electrode 4 are as described above.
  • the method for manufacturing the wiring sheet 100A is the same as the method for manufacturing the wiring sheet 100 described above.
  • the following advantageous effects can be obtained.
  • (3) by using two or more types of conductive linear bodies 21 that differ in at least one of the material, surface material, diameter, and wavy shape in a planar view, the resistance value of the pseudo sheet structure 2 can be adjusted more freely.
  • the wiring sheet 100A according to the present embodiment has a high degree of freedom in design and can be suitably used as a sheet-type heater.
  • the wiring sheet 100 includes the base material 1, but is not limited thereto.
  • the wiring sheet 100 does not need to include the base material 1.
  • the wiring sheet 100 can be used by being attached to an adherend by the resin layer 3.
  • wiring sheet 100 includes resin layer 3, but is not limited to this.
  • wiring sheet 100 does not need to include resin layer 3.
  • a knitted fabric may be used as substrate 1, and conductive linear members 21 may be woven into substrate 1 to form pseudo sheet structure 2.
  • the present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples in any way.
  • the sheet heaters obtained in the examples were evaluated as follows. [Evaluation of temperature distribution within the sheet plane] At an ambient temperature of 23° C., a current was passed through the sheet heater to generate heat so that the minimum temperature within the surface of the sheet heater reached approximately 33° C. After that, the temperature distribution of the multiple conductive linear bodies was measured from a position 150 mm from the surface of the sheet heater using a thermography camera (FLIR C2 manufactured by FLIR Systems Japan, Inc.). The emissivity was set to 0.95 for the measurements. If the difference between the maximum and minimum temperatures of each conductive linear body was 10° C. or more, the temperature distribution was judged to be "poor," and if the difference was less than 10° C., the temperature distribution was judged to be "good.”
  • Example 1-1 An adhesive sheet (300 mm x 110 mm) was wound around a rubber drum without wrinkles, with one adhesive side facing outward, and both ends in the circumferential direction were fixed with double-sided tape.
  • Various conductive linear bodies wound around a bobbin were attached to the surface of the adhesive sheet located near the end of the rubber drum, and then 10 conductive linear bodies shown in Table 1 below were simultaneously unwound at intervals of 10 mm and wound around the rubber drum.
  • the adhesive sheet was cut with the metal fine wires, and a sheet was obtained in which a pseudo-sheet structure in which the metal fine wires were arranged on the adhesive sheet was laminated.
  • a sheet-like heater was obtained by laminating an electrode sheet prepared in advance on a polycarbonate film on which silver paste ("XA-3676" manufactured by Fujikura Kasei Co., Ltd.) was printed in a predetermined shape in a plan view.
  • the silver paste electrodes were made to have a thickness of 18 ⁇ m and a width of 1 mm.
  • the shape of the electrodes in a planar view is a pair of electrodes (seagull-shaped electrodes) consisting of two semicircular arcs (5 cm in diameter) connected at the ends, facing each other with the arcs on the outside (the distance between the closest points is 6 cm, and the distance between the farthest points is 11 cm).
  • the temperature distribution in the sheet plane of the sheet heater was evaluated, and the results are shown in Table 1.
  • the length L n of the conductive linear body between the electrodes and the resistance value ⁇ n /S n per unit length of the conductive linear body are also shown in Table 1.
  • Example 1-2 A sheet-shaped heater was produced in the same manner as in Example 1-1, except that 10 conductive linear bodies shown in Table 2 below were used. The temperature distribution in the sheet plane of the sheet heater was evaluated. The results are shown in Table 2. The length between the electrodes is also shown in Table 2.
  • Examples 1-3 A sheet-type heater was produced in the same manner as in Example 1-1, except that eight conductive linear bodies as shown in Table 3 below were used, and that the pair of electrodes was formed in a V-shape in plan view (the distance between the closest parts was 6.4 cm, and the distance between the farthest parts was 9.2 cm). The temperature distribution in the sheet plane of the sheet heater was then evaluated. The results are shown in Table 3. The length L n of the conductive linear body between the electrodes and the resistance value ⁇ n /S n per unit length of the conductive linear body are also shown in Table 3.
  • Example 1-1 A sheet-type heater was produced in the same manner as in Example 1-3, except that eight conductive linear bodies shown in Table 4 below were used. The temperature distribution in the sheet plane of the sheet heater was then evaluated. The results are shown in Table 4. The length L n of the conductive linear body between the electrodes and the resistance value ⁇ n /S n per unit length of the conductive linear body are also shown in Table 4.
  • Examples 1-1 to 1-3 show that when at least one of the conductive linear bodies was different from the other one in at least one of the following characteristics: material, surface material, diameter, and wavy shape in plan view (Examples 1-1 to 1-3), the temperature distribution in the sheet plane was good. In contrast, when only the same conductive linear body was used (Comparative Example 1-1), the temperature distribution in the sheet plane was poor. This confirmed that the sheet heaters obtained in Examples 1-1 to 1-3 can suppress overheating in the sheet plane even when the pair of electrodes are not parallel.
  • Example 2-1 An adhesive sheet (140 mm x 100 mm) was wound around a rubber drum without wrinkles, with one adhesive side facing outward, and both ends in the circumferential direction were fixed with double-sided tape.
  • Various conductive linear bodies wound around a bobbin were attached to the surface of the adhesive sheet located near the end of the rubber drum, and then wound around the rubber drum while unwinding the conductive linear bodies in the following arrangement so that the intervals were 2 mm, and the rubber drum was gradually moved in a direction parallel to the drum axis so that the conductive linear bodies were wound around the rubber drum while drawing a spiral at regular intervals.
  • the adhesive sheet was cut along with the conductive linear bodies parallel to the drum axis to obtain a sheet in which a pseudo-sheet structure in which conductive linear bodies were arranged was laminated on the adhesive sheet. Thereafter, the conductive linear bodies were attached to an electrode sheet prepared in advance, which was made of a polycarbonate film printed with silver paste ("XA-3676" manufactured by Fujikura Kasei Co., Ltd.), so that the number of conductive linear bodies was 10, to obtain a sheet-like heater.
  • the silver paste electrodes were fabricated to have a thickness of 18 ⁇ m, a width of 5 mm, and an inter-electrode distance of 120 mm.
  • First wire Tungsten wire, diameter 9 ⁇ m, resistance per unit length 10.5 ⁇ /cm
  • Second wire tungsten wire, diameter 11 ⁇ m, resistance per unit length 7.1 ⁇ /cm
  • Example 2-2 A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows: (Arrangement of Conductive Linear Bodies) Repeat from the first to fifth wires as follows: 1st wire: Tungsten wire, diameter 8 ⁇ m, resistance per unit length 13.3 ⁇ /cm - Second wire: tungsten wire, diameter 8 ⁇ m, resistance per unit length 13.3 ⁇ /cm - 3rd wire: Silver-plated rhenium tungsten wire, diameter 14 ⁇ m, resistance per unit length 5.2 ⁇ /cm 4th wire: tungsten wire, diameter 8 ⁇ m, resistance per unit length 13.3 ⁇ /cm 5th wire: Silver-plated rhenium tungsten wire, diameter 14 ⁇ m, resistance per unit length 5.2 ⁇ /cm
  • Example 2-3 A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows: (Arrangement of Conductive Linear Bodies) 1st to 4th wires: gold-plated tungsten wire, diameter 10 ⁇ m, resistance per unit length 7.7 ⁇ /cm ⁇ 5th and 6th wires: gold-plated tungsten wire, diameter 8 ⁇ m, resistance per unit length 12.5 ⁇ /cm 7th to 10th wires: gold-plated tungsten wire, diameter 10 ⁇ m, resistance per unit length 7.7 ⁇ /cm In addition, by arranging a conductive linear body with high resistivity in the center as in this sheet heater, it is possible to reduce uneven heating at high temperatures.
  • the central part may be affected by the surrounding heated parts and may become overheated.
  • Example 2-4 A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows: (Arrangement of Conductive Linear Bodies) 1st to 9th wires: gold-plated tungsten wire, diameter 10 ⁇ m, resistance per unit length 7.7 ⁇ /cm 10th wire: gold-plated tungsten wire, diameter 8 ⁇ m, resistance per unit length 12.5 ⁇ /cm.
  • conductive linear bodies with high resistivity at the ends as in this sheet heater, uneven heating at low temperatures can be reduced.
  • the approach as in Example 3 is not necessary, and it is preferable to arrange conductive linear bodies with high resistance at the ends.
  • the center can be sufficiently heated, and by arranging conductive linear bodies for adjusting the resistance at the ends that are not required as heating areas, it is possible to control the total resistance of the entire heater and the temperature distribution of the heating areas.
  • Example 2-5 A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows: (Arrangement of Conductive Linear Bodies) Repeat of the first and second wires below: First wire: Tungsten wire, diameter 11 ⁇ m, resistance per unit length 7.1 ⁇ /cm - Second wire: Tungsten wire, diameter 11 ⁇ m, resistance per unit length 7.1 ⁇ /cm, wavy shape in plan view (sine wave with wavelength 5 mm and total amplitude 2 mm)
  • Example 2-6 A sheet-type heater was fabricated in the same manner as in Example 1, except that the conductive linear bodies were arranged as shown below, the intervals between the conductive linear bodies were 1 mm, and the number of the conductive linear bodies was 20. (Arrangement of the conductive linear bodies) Repeat the following from the first to fourth wires: 1st wire: tungsten wire, diameter 9 ⁇ m, resistance per unit length 10.5 ⁇ /cm - 2nd: CNT yarn, diameter 10 ⁇ m, resistance per unit length 450 ⁇ /cm - Third wire: tungsten wire, diameter 11 ⁇ m, resistance per unit length 7.1 ⁇ /cm 4th: CNT yarn, diameter 10 ⁇ m, resistance per unit length 450 ⁇ /cm
  • Example 2-1 A sheet-shaped heater was produced in the same manner as in Example 2-1, except that only one type of conductive linear body (material: tungsten, diameter: 11 ⁇ m, resistance per unit length: 7.1 ⁇ /cm) was used.
  • Example 2-2 A sheet-shaped heater was produced in the same manner as in Example 2-1, except that only one type of conductive linear body (material: tungsten, diameter: 9 ⁇ m, resistance per unit length: 10.5 ⁇ /cm) was used.
  • Example 2-1 to 2-6 show that when at least one of the conductive linear bodies differed from the other one in at least one of the following characteristics (material, surface material, diameter, and wavy shape in plan view) (Examples 2-1 to 2-6), the resistance value of the sheet-type heater could be made closer to the target value compared to when only the same conductive linear bodies were used (Comparative Examples 2-1 and 2-2). This confirmed that the sheet-type heaters obtained in Examples 2-1 to 2-6 have a high degree of freedom in design.

Abstract

Provided is a wiring sheet (100) comprising a pseudo-sheet structure (2) in which a plurality of electroconductive linear bodies (21) are arranged with gaps therebetween, and a pair of electrodes (4), at least one of the electroconductive linear bodies (21) being such that the distance between contact points of the electrically conductive linear body (21) and the electrodes (4) is different from that of another of the electroconductive linear bodies (21), and at least one of the electroconductive linear bodies (21) being such that at least one from among the material quality, the surface layer material, the diameter, and the plan-view waveform shape is different from that of another of the electroconductive linear bodies (21).

Description

配線シート及びシート状ヒータWiring sheet and sheet heater
 本発明は、配線シート及びシート状ヒータに関する。 The present invention relates to a wiring sheet and a sheet-shaped heater.
 面状ヒータの用途に用いることができる配線シートとして、例えば、特許文献1には、一方向に延びた複数の線状体が間隔をもって配列された疑似シート構造体を有する導電性シートが記載されている。そして、複数の線状体の両端に、一対の電極が設けられることで、発熱体として用いることができる配線シートが得られる。
 一方で、面状ヒータにおいては、シート形状を様々な形状にすることが要求される場合がある。このような場合には、一対の電極が平行ではなく、また、電極が異形状となることがある。そのため、シート平面内の場所により電極間の距離が変わってしまうので、シート平面内に過加熱が発生してしまう場合があるという問題があった。
As an example of a wiring sheet that can be used for a sheet heater, Patent Document 1 describes a conductive sheet having a pseudo-sheet structure in which a plurality of linear elements extending in one direction are arranged at intervals. A pair of electrodes is provided on both ends of the linear elements, thereby obtaining a wiring sheet that can be used as a heating element.
On the other hand, in the case of a sheet heater, there are cases where the sheet shape is required to be various. In such cases, the pair of electrodes may not be parallel, or the electrodes may have an irregular shape. Therefore, the distance between the electrodes changes depending on the location in the sheet plane, which may cause overheating in the sheet plane.
国際公開第2017/086395号International Publication No. 2017/086395
 本発明の目的は、一対の電極が平行ではない場合にも、シート平面内での過加熱を抑制できる配線シート及びシート状ヒータを提供することである。 The object of the present invention is to provide a wiring sheet and a sheet-shaped heater that can prevent overheating within the sheet plane even when a pair of electrodes are not parallel.
[1] 複数の導電性線状体が間隔をもって配列された疑似シート構造体と、一対の電極とを備え、
 前記導電性線状体のうちの少なくとも1本は、前記導電性線状体と前記電極との接点間の距離が、他の1本と異なり、
 前記導電性線状体のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なる、
 配線シート。
[1] A pseudo sheet structure having a plurality of conductive linear bodies arranged at intervals and a pair of electrodes,
At least one of the conductive linear bodies has a distance between a contact point of the conductive linear body and the electrode different from that of the other conductive linear body,
At least one of the conductive linear bodies is different from the other one in at least one of a material, a surface layer material, a diameter, and a wavy shape in a plan view.
Wiring sheet.
[2] [1]に記載の配線シートにおいて、
 前記導電性線状体が、平面視において、直線状又は波状形状であり、前記疑似シート構造体の一端から数えてa本目の導電性線状体における、前記電極間の導電性線状体の長さをL、抵抗率をρ、断面積をSとし、前記疑似シート構造体の一端から数えてb本目の導電性線状体における、前記電極間の導電性線状体の長さをL、抵抗率をρ、断面積をSとした場合に、下記数式(F1)で示す条件を満たす、
 配線シート。
0.60×{S/(ρ・L )} ≦ S/(ρ・L ) ≦ 1.67×{S/(ρ・L )}・・・(F1)
[2] The wiring sheet according to [1],
The conductive linear body has a straight or wavy shape in a plan view, and when the length of the conductive linear body between the electrodes of the a-th conductive linear body counting from one end of the pseudo sheet structure is La , the resistivity is ρa , and the cross-sectional area is Sa , and when the length of the conductive linear body between the electrodes of the b-th conductive linear body counting from one end of the pseudo sheet structure is Lb , the resistivity is ρb , and the cross-sectional area is Sb , the condition shown in the following formula (F1) is satisfied:
Wiring sheet.
0.60×{S a /(ρ a ·L a 2 )}≦S b /(ρ b ·L b 2 )≦1.67×{S a /(ρ a ·L a 2 )} ... (F1)
[3] [1]又は[2]に記載の配線シートにおいて、
 前記導電性線状体の材質がタングステンを含有し、
 前記導電性線状体のうちの少なくとも1本は、表層材料が、他の1本と異なる、
 配線シート。
[3] The wiring sheet according to [1] or [2],
The conductive linear body is made of a material containing tungsten,
At least one of the conductive linear bodies has a surface layer material different from that of the other conductive linear bodies.
Wiring sheet.
[4] [1]から[3]のいずれかに記載の配線シートを備える、
 シート状ヒータ。
[4] A wiring sheet according to any one of [1] to [3],
Sheet heater.
[5] 複数の導電性線状体が間隔をもって配列された疑似シート構造体と、一対の電極とを備え、
 前記導電性線状体のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なる、
 配線シート。
[5] A pseudo sheet structure having a plurality of conductive linear bodies arranged at intervals and a pair of electrodes,
At least one of the conductive linear bodies is different from the other one in at least one of a material, a surface layer material, a diameter, and a wavy shape in a plan view.
Wiring sheet.
[6] [5]に記載の配線シートにおいて、
 前記導電性線状体は、3種類以上であり、
 3種類以上の導電性線状体が、周期性をもって配置されている、
 配線シート。
[6] The wiring sheet according to [5],
the conductive linear body is of three or more types,
Three or more types of conductive linear bodies are periodically arranged.
Wiring sheet.
[7] [6]に記載の配線シートにおいて、
 前記3種類以上の導電性線状体のうちの1種類は、他の種類と材質又は表層材料が異なり、
 前記導電性線状体の間隔が、1.5mm以下である、
 配線シート。
[7] The wiring sheet according to [6],
One of the three or more types of conductive linear bodies has a material or a surface layer material different from that of the other types,
The conductive linear bodies are spaced apart from each other by 1.5 mm or less.
Wiring sheet.
[8] [5]から[7]のいずれかに記載の配線シートを備える、
 シート状ヒータ。
[8] A wiring sheet according to any one of [5] to [7],
Sheet heater.
 本発明の一態様によれば、一対の電極が平行ではない場合にも、シート平面内での過加熱を抑制できる配線シート及びシート状ヒータを提供できる。 According to one aspect of the present invention, it is possible to provide a wiring sheet and a sheet-like heater that can suppress overheating within the sheet plane even when a pair of electrodes are not parallel.
本発明の第一実施形態に係る配線シートを示す概略図である。1 is a schematic diagram showing a wiring sheet according to a first embodiment of the present invention. 図1のII-II断面を示す断面図である。FIG. 2 is a cross-sectional view showing the II-II cross section of FIG. 図1のIII-III断面を示す断面図である。FIG. 2 is a cross-sectional view showing the III-III section of FIG. 本発明の第二実施形態に係る配線シートを示す概略図である。FIG. 4 is a schematic diagram showing a wiring sheet according to a second embodiment of the present invention. 図4のV-V断面を示す断面図である。5 is a cross-sectional view showing the VV section of FIG. 4.
[第一実施形態]
 以下、本発明について第一実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
[First embodiment]
Hereinafter, the present invention will be described with reference to the drawings, taking a first embodiment as an example. The present invention is not limited to the contents of the embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
(配線シート)
 本実施形態に係る配線シート100は、図1、図2及び図3に示すように、基材1と、疑似シート構造体2と、樹脂層3と、一対の電極4とを備えている。具体的には、配線シート100は、基材1上に樹脂層3が積層され、樹脂層3上に疑似シート構造体2が積層されている。疑似シート構造体2は、複数の導電性線状体21が間隔をもって配列されている。
 そして、例えば、図1に示すように、平面視において電極4は異形状となっており、平行になっていない。そのため、導電性線状体21のうちの少なくとも1本は、電極4間の導電性線状体21の長さが、他の1本と異なっている。
 また、導電性線状体21のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なっている。具体的には、図1、図2及び図3で示すように、導電性線状体21同士の直径Dを、電極4間の導電性線状体21の長さに応じて、変化させている。
(Wiring sheet)
1, 2 and 3, the wiring sheet 100 according to this embodiment includes a substrate 1, a pseudo sheet structure 2, a resin layer 3, and a pair of electrodes 4. Specifically, the wiring sheet 100 includes the resin layer 3 laminated on the substrate 1, and the pseudo sheet structure 2 laminated on the resin layer 3. The pseudo sheet structure 2 includes a plurality of conductive linear members 21 arranged at intervals.
1, the electrodes 4 have irregular shapes and are not parallel when viewed from above, so that at least one of the conductive linear bodies 21 has a length between the electrodes 4 that is different from that of the other conductive linear bodies 21.
At least one of the conductive linear bodies 21 is different from the other one in at least one of the material, surface layer material, diameter, and wavy shape in a plan view. Specifically, as shown in Figures 1, 2, and 3, the diameter D of the conductive linear bodies 21 is changed according to the length of the conductive linear body 21 between the electrodes 4.
 本実施形態に係る配線シート100により、一対の電極4が平行ではない場合にも、シート平面内での過加熱を抑制できる理由は、以下の通りであると本発明者らは推察する。
 すなわち、一対の電極4が平行ではない場合に、シート平面内で過加熱が生じる理由は、導電性線状体21と電極4との接点間の距離が異なることで、電極4間の単位長さあたりの消費電力が、異なってしまうためである。これに対し、本実施形態においては、導電性線状体21において、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つを、適宜調整することで、導電性線状体21の単位長さあたりの抵抗値、或いは、電極4間の導電性線状体21の抵抗値を調整できる。そして、これにより、電極4間の単位長さあたりの消費電力をより均一となるように、調整できる。このようにして、シート平面内での過加熱を抑制できる。
The inventors surmise that the reason why wiring sheet 100 according to this embodiment can suppress overheating within the sheet plane even when a pair of electrodes 4 are not parallel is as follows.
That is, when the pair of electrodes 4 are not parallel, overheating occurs in the sheet plane because the difference in the distance between the contact points of the conductive linear body 21 and the electrodes 4 results in a difference in the power consumption per unit length between the electrodes 4. In contrast, in the present embodiment, the resistance value per unit length of the conductive linear body 21 or the resistance value of the conductive linear body 21 between the electrodes 4 can be adjusted by appropriately adjusting at least one of the material, surface layer material, diameter, and wavy shape in a plan view of the conductive linear body 21. This makes it possible to adjust the power consumption per unit length between the electrodes 4 to be more uniform. In this way, overheating in the sheet plane can be suppressed.
 本実施形態においては、例えば、導電性線状体21同士のいずれかの間で、材質が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、材質を変えれば、材質に応じて変化させることができる。例えば、抵抗率ρの高い材質を用いるほど、導電性線状体21の単位長さあたりの抵抗値は高くなる。
In this embodiment, for example, the conductive linear objects 21 may be made of different materials.
The resistance value per unit length of the conductive linear body 21 can be changed depending on the material by changing the material. For example, the higher the resistivity ρ of a material used, the higher the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、表層材料が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、表層材料の種類を変えれば、表層材料の種類に応じて変化させることができる。例えば、表層材料として抵抗率ρの低いものを用いるほど、導電性線状体21の単位長さあたりの抵抗値は低くなる。
The surface layer materials of any of the conductive linear bodies 21 may be different from each other.
The resistance value per unit length of the conductive linear body 21 can be changed according to the type of surface layer material by changing the type of the surface layer material. For example, the lower the resistivity ρ of the surface layer material used, the lower the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、直径が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、直径を変えれば、断面積Sが変化するため、直径に応じて変化させることができる。例えば、導電性線状体21の直径を太くするほど、導電性線状体21の単位長さあたりの抵抗値は低くなる。
The diameters of any of the conductive linear objects 21 may be different.
The resistance value per unit length of the conductive linear body 21 can be changed according to the diameter because changing the diameter changes the cross-sectional area S. For example, the larger the diameter of the conductive linear body 21, the lower the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、平面視における波状形状が異なるようにしてもよい。
 電極4間の導電性線状体21の抵抗値は、平面視における波状形状(波形、波長及び振幅等)を変えれば、導電性線状体21の長さが変化するため、波形、波長及び振幅等に応じて変化させることができる。例えば、波長が短くなるほど、また、振幅が大きくなるほど、電極4間の導電性線状体21の抵抗値は高くなる。
The wavy shape in a plan view may be different between any two adjacent conductive linear objects 21 .
The resistance value of the conductive linear body 21 between the electrodes 4 can be changed according to the waveform, wavelength, amplitude, etc., because changing the wave shape (waveform, wavelength, amplitude, etc.) in a plan view changes the length of the conductive linear body 21. For example, the shorter the wavelength and the larger the amplitude, the higher the resistance value of the conductive linear body 21 between the electrodes 4.
 本実施形態においては、導電性線状体21において、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つを、適宜調整すればよい。また、これらの2つ以上を、組み合わせて、調整してもよい。 In this embodiment, at least one of the material, surface material, diameter, and wavy shape in plan view of the conductive linear body 21 may be adjusted as appropriate. Two or more of these may also be adjusted in combination.
 本実施形態においては、導電性線状体21が、平面視において、直線状又は波状形状であり、疑似シート構造体2の一端から数えてa本目の導電性線状体21における、電極4間の導電性線状体21の長さをL、抵抗率をρ、断面積をSとし、疑似シート構造体2の一端から数えてb本目の導電性線状体における、電極4間の導電性線状体21の長さをL、抵抗率をρ、断面積をSとした場合に、下記数式(F1)で示す条件を満たすことが好ましい。
0.60×{S/(ρ・L )} ≦ S/(ρ・L ) ≦ 1.67×{S/(ρ・L )}・・・(F1)
In this embodiment, the conductive linear body 21 has a straight or wavy shape in a planar view, and when the length of the conductive linear body 21 between the electrodes 4 of the a-th conductive linear body 21 counting from one end of the pseudo sheet structure 2 is La , the resistivity is ρa , and the cross-sectional area is Sa , and when the length of the conductive linear body 21 between the electrodes 4 of the b-th conductive linear body counting from one end of the pseudo sheet structure 2 is Lb , the resistivity is ρb , and the cross-sectional area is Sb , it is preferable that the condition shown in the following formula (F1) is satisfied.
0.60×{S a /(ρ a ·L a 2 )}≦S b /(ρ b ·L b 2 )≦1.67×{S a /(ρ a ·L a 2 )} ... (F1)
 S/(ρ・L )の値が、前記下限以上であり、かつ、前記上限以下であれば、シート平面内での過加熱を抑制できる。また、同様の観点から、S/(ρ・L )の値は、0.63×{S/(ρ・L )}以上であることがさらに好ましく、0.66×{S/(ρ・L )}以上であることがさらにより好ましく、0.70×{S/(ρ・L )}以上であることが特に好ましい。また、同様の観点から、S/(ρ・L )の値は、1.59×{S/(ρ・L )}以下であることがさらに好ましく、1.52×{S/(ρ・L )}以下であることがさらにより好ましく、1.43×{S/(ρ・L )}以下であることが特に好ましい。 If the value of Sb /( ρb · Lb2 ) is equal to or greater than the lower limit and equal to or less than the upper limit, overheating in the sheet plane can be suppressed. From the same viewpoint, the value of Sb /( ρb · Lb2 ) is more preferably equal to or greater than 0.63×{ Sa /( ρa · La2 )}, even more preferably equal to or greater than 0.66×{ Sa /( ρa · La2 )} , and particularly preferably equal to or greater than 0.70×{ Sa /( ρa · La2 )} . From the same viewpoint, it is more preferable that the value of S b /(ρ b ·L b 2 ) is 1.59 × {S a /(ρ a ·L a 2 )} or less, even more preferable that it is 1.52 × {S a /(ρ a ·L a 2 )} or less, and particularly preferable that it is 1.43 × {S a /(ρ a ·L a 2 )} or less.
(基材)
 基材1は、疑似シート構造体2を直接的又は間接的に支持できる。なお、基材1は、必ずしも備えていなくてもよい。基材1は必要に応じて設けられる部材である。
 基材1としては、例えば、樹脂フィルム、紙、不織布、布及びガラスフィルム等が挙げられる。基材1は、透明性を有していてもよく、又は視認性を有していてもよい。このようにすれば、配線シート100を、透明にしたり、視認性を有するものにできる。また、基材1は、伸縮性を有していてもよい。例えば、基材1が伸縮性を有していれば、疑似シート構造体2を基材1上に設けた場合でも、配線シート100の伸縮性を確保できる。
 基材1としては、樹脂フィルム、不織布、及び布等を用いることができる。
 樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びポリイミドフィルム等が挙げられる。その他、伸縮性基材としては、これらの架橋フィルム及び積層フィルム等が挙げられる。
 また、不織布としては、例えば、スパンボンド不織布、ニードルパンチ不織布、メルトブロー不織布、及びスパンレース不織布等が挙げられる。布としては、例えば、織物及び編物等が挙げられる。伸縮性基材としての紙、不織布、及び布はこれらに限定されない。
 基材1の厚さは、特に限定されない。基材1の厚さは、10μm以上10mm以下であることが好ましく、15μm以上5mm以下であることがより好ましく、50μm以上3mm以下であることがさらに好ましい。
(Base material)
The base material 1 can directly or indirectly support the pseudo sheet structure 2. The base material 1 is not necessarily required. The base material 1 is a member that is provided as necessary.
Examples of the substrate 1 include a resin film, paper, a nonwoven fabric, a cloth, and a glass film. The substrate 1 may be transparent or may have visibility. In this way, the wiring sheet 100 can be made transparent or have visibility. The substrate 1 may also have elasticity. For example, if the substrate 1 has elasticity, the elasticity of the wiring sheet 100 can be ensured even when the pseudo sheet structure 2 is provided on the substrate 1.
The substrate 1 may be a resin film, a nonwoven fabric, a cloth, or the like.
Examples of resin films include polyethylene films, polypropylene films, polybutene films, polybutadiene films, polymethylpentene films, polyvinyl chloride films, vinyl chloride copolymer films, polyethylene terephthalate films, polyethylene naphthalate films, polybutylene terephthalate films, polyurethane films, ethylene-vinyl acetate copolymer films, ionomer resin films, ethylene-(meth)acrylic acid copolymer films, polystyrene films, polycarbonate films, and polyimide films. Other examples of stretchable substrates include crosslinked films and laminated films of these.
Examples of nonwoven fabrics include spunbond nonwoven fabrics, needle punch nonwoven fabrics, melt blown nonwoven fabrics, and spunlace nonwoven fabrics. Examples of cloth include woven fabrics and knitted fabrics. The paper, nonwoven fabric, and cloth as the stretchable substrate are not limited to these.
There is no particular limitation on the thickness of the substrate 1. The thickness of the substrate 1 is preferably 10 μm or more and 10 mm or less, more preferably 15 μm or more and 5 mm or less, and even more preferably 50 μm or more and 3 mm or less.
(疑似シート構造体)
 疑似シート構造体2は、複数の導電性線状体21が、互いに間隔をもって配列された構造とされている。また、疑似シート構造体2は、導電性線状体21の軸方向と交差する方向に、複数配列された構造とされている。
(Pseudo seat structure)
The pseudo sheet structure 2 has a structure in which a plurality of conductive linear bodies 21 are arranged at intervals from each other. The pseudo sheet structure 2 also has a structure in which a plurality of conductive linear bodies 21 are arranged in a direction intersecting the axial direction of the conductive linear bodies 21.
 導電性線状体21は、配線シート100の平面視において、直線状であってもよいが、波形状を成していてもよい。波形状としては、例えば、正弦波、矩形波、三角波、及びのこぎり波等が挙げられる。例えば、疑似シート構造体2が、このような構造であれば、導電性線状体21の軸方向に、配線シート100を伸張した際に、導電性線状体21の断線を抑制できる。 The conductive linear body 21 may be linear in a plan view of the wiring sheet 100, but may also be wavy. Examples of the wave shape include a sine wave, a rectangular wave, a triangular wave, and a sawtooth wave. For example, if the pseudo sheet structure 2 has such a structure, breakage of the conductive linear body 21 can be suppressed when the wiring sheet 100 is stretched in the axial direction of the conductive linear body 21.
 導電性線状体21の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。導電性線状体21の体積抵抗率を上記範囲にすると、疑似シート構造体2の面抵抗が低下しやすくなる。
 導電性線状体21の体積抵抗率の測定は、次のとおりである。導電性線状体21の端部及び端部からの長さが40mmの部分に銀ペーストを塗布し、端部及び端部から長さ40mmの部分の抵抗を測定する。そして、導電性線状体21の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体21の体積抵抗率を算出する。
The volume resistivity of the conductive linear body 21 is preferably 1.0×10 −9 Ω·m or more and 1.0×10 −3 Ω·m or less, and more preferably 1.0×10 −8 Ω·m or more and 1.0×10 −4 Ω·m or less. When the volume resistivity of the conductive linear body 21 is in the above range, the surface resistance of the pseudo sheet structure 2 is likely to be reduced.
The volume resistivity of the conductive linear body 21 was measured as follows: Silver paste was applied to the ends of the conductive linear body 21 and to a portion 40 mm from the ends, and the resistance of the ends and the portion 40 mm from the ends was measured. The volume resistivity of the conductive linear body 21 was then calculated by multiplying the resistance value by the cross-sectional area (unit: m2 ) of the conductive linear body 21 and dividing the obtained value by the measured length (0.04 m).
 導電性線状体21の断面の形状は、特に限定されず、多角形、扁平形、楕円形、又は円形等を取り得る。樹脂層3との馴染み等の観点から、導電性線状体21の断面の形状は、楕円形、又は円形であることが好ましい。 The cross-sectional shape of the conductive linear body 21 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the standpoint of compatibility with the resin layer 3, etc., it is preferable that the cross-sectional shape of the conductive linear body 21 is elliptical or circular.
 導電性線状体21の断面が円形である場合には、導電性線状体21の太さ(直径)D(図2参照)は、3μm以上200μm以下であることが好ましい。シート抵抗の上昇抑制と、配線シート100の発熱効率及び耐絶縁破壊特性の向上との観点から、導電性線状体21の直径Dは、4μm以上150μm以下であることがより好ましく、5μm以上100μm以下であることがさらに好ましい。
 導電性線状体21の断面が楕円形である場合には、長径が上記の直径Dと同様の範囲にあることが好ましい。
When the cross section of the conductive linear body 21 is circular, the thickness (diameter) D (see FIG. 2 ) of the conductive linear body 21 is preferably 3 μm or more and 200 μm or less. From the viewpoints of suppressing an increase in sheet resistance and improving the heat generation efficiency and dielectric breakdown resistance characteristics of the wiring sheet 100, the diameter D of the conductive linear body 21 is more preferably 4 μm or more and 150 μm or less, and further preferably 5 μm or more and 100 μm or less.
When the cross section of the conductive linear body 21 is elliptical, it is preferable that the major axis is in the same range as the diameter D described above.
 導電性線状体21の直径Dは、デジタル顕微鏡を用いて、導電性線状体21を観察し、無作為に選んだ5箇所で、導電性線状体21の直径を測定し、その平均値とする。 The diameter D of the conductive linear body 21 is determined by observing the conductive linear body 21 using a digital microscope, measuring the diameter of the conductive linear body 21 at five randomly selected points, and averaging the measured values.
 導電性線状体21の間隔L(図2参照)は、0.3mm以上50mm以下であることが好ましく、0.5mm以上30mm以下であることがより好ましく、0.8mm以上20mm以下であることがさらに好ましい。
 導電性線状体21同士の間隔が上記範囲であれば、導電性線状体がある程度密集しているため、疑似シート構造体の抵抗を低く維持する等の、配線シート100の機能の向上を図ることができる。
The interval L (see FIG. 2) between the conductive linear members 21 is preferably 0.3 mm or more and 50 mm or less, more preferably 0.5 mm or more and 30 mm or less, and even more preferably 0.8 mm or more and 20 mm or less.
If the spacing between the conductive linear bodies 21 is within the above range, the conductive linear bodies are relatively densely packed, which improves the functionality of the wiring sheet 100, such as maintaining a low resistance of the pseudo sheet structure.
 導電性線状体21の間隔Lは、デジタル顕微鏡を用いて、例えば、疑似シート構造体2の導電性線状体21を観察し、隣り合う2つの導電性線状体21の間隔を測定する。
 なお、隣り合う2つの導電性線状体21の間隔とは、導電性線状体21を配列させていった方向に沿った長さであって、2つの導電性線状体21の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体21の配列が不等間隔である場合には、全ての隣り合う導電性線状体21同士の間隔の平均値である。
The distance L between the conductive linear members 21 is measured, for example, by observing the conductive linear members 21 of the pseudo sheet structure 2 using a digital microscope and measuring the distance between two adjacent conductive linear members 21.
The interval between two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged, and is the length between opposing portions of the two conductive linear bodies 21 (see FIG. 2). When the conductive linear bodies 21 are arranged at uneven intervals, the interval L is the average value of the intervals between all adjacent conductive linear bodies 21.
 導電性線状体21の態様は、特に制限はないが、金属ワイヤーを含む線状体(以下「金属ワイヤー線状体」とも称する)であることがよい。金属ワイヤーは高い熱伝導性、高い電気伝導性、高いハンドリング性、を有する。金属ワイヤー線状体は抵抗を大きく低下させることが可能であり、金属ワイヤー線状体の直径を極めて小さくしても、配線シート100の発熱に必要な電流で通電できる。これにより、導電性線状体21が視認されにくい状態にできる。すなわち、導電性線状体21として金属ワイヤー線状体を適用すると、疑似シート構造体2の抵抗値を低減しつつ、光線透過性が向上しやすくなる。また、配線シート100は、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。
 なお、導電性線状体21としては、金属ワイヤー線状体の他に、糸に導電性被覆が施された線状体が挙げられる。
The conductive linear body 21 may be any form, but may be a linear body including a metal wire (hereinafter also referred to as a "metal wire linear body"). Metal wire has high thermal conductivity, high electrical conductivity, and high handling properties. The metal wire linear body can greatly reduce resistance, and even if the diameter of the metal wire linear body is extremely small, it can pass a current required for heating the wiring sheet 100. This makes it possible to make the conductive linear body 21 less visible. That is, when a metal wire linear body is used as the conductive linear body 21, the resistance value of the pseudo sheet structure 2 is reduced while the light transmittance is easily improved. In addition, the wiring sheet 100 is easily able to generate heat quickly. Furthermore, as described above, a linear body having a small diameter is easily obtained.
In addition, examples of the conductive linear body 21 include a linear body made of a thread with a conductive coating, in addition to a metallic wire linear body.
 金属ワイヤー線状体は、1本の金属ワイヤーからなる線状体であってもよいし、複数本の金属ワイヤーを撚った線状体であってもよい。
 金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよく、後述する炭素材料、又はポリマー等により表面が被覆されたものであってもよい。特に、タングステン及びモリブデン、並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の観点から好ましい。
 金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
 金属ワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等)、グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。
The metal wire linear body may be a linear body made of a single metal wire, or may be a linear body made of a plurality of twisted metal wires.
Examples of metal wires include wires containing metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (e.g., steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium copper alloys, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten). The metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloys, or solder, or may be coated with a carbon material or polymer, which will be described later. In particular, wires containing one or more metals selected from tungsten and molybdenum, and alloys containing these, are preferred from the viewpoint of low volume resistivity.
The metal wire may be a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced, and the presence of the metal wire can be easily made less noticeable. In addition, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
Examples of the carbon material that coats the metal wire include amorphous carbon (for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber), graphite, fullerene, graphene, and carbon nanotubes.
 なお、本実施形態においては、導電性線状体21の材質がタングステンを含有し、導電性線状体21のうちの少なくとも1本は、表層材料が、他の1本と異なることが好ましい。このような組合せであれば、シート平面内での過加熱を抑制できる配線シート100を作製しやすい。 In this embodiment, it is preferable that the material of the conductive linear bodies 21 contains tungsten, and that at least one of the conductive linear bodies 21 has a surface layer material different from that of the other one. With such a combination, it is easy to produce a wiring sheet 100 that can suppress overheating within the sheet plane.
 導電性線状体21は、糸に導電性被覆が施された線状体であってもよい。糸としては、
ナイロン、又はポリエステル等の樹脂から紡糸した糸等が挙げられる。また、糸としては、金属繊維、炭素繊維、又はイオン導電性ポリマーの繊維等の糸も挙げられる。導電性被覆としては、金属、導電性高分子、又は炭素材料等の被膜等が挙げられる。導電性被覆は、めっき、蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、疑似シート構造体2の抵抗を、低下させることが容易となる。
The conductive linear body 21 may be a linear body in which a thread is provided with a conductive coating.
Examples of the conductive coating include threads spun from resins such as nylon or polyester. Examples of the conductive coating include threads such as metal fibers, carbon fibers, or ion-conductive polymer fibers. Examples of the conductive coating include coatings of metals, conductive polymers, or carbon materials. The conductive coating can be formed by plating, vapor deposition, or the like. A linear body having a conductive coating applied to the thread can improve the conductivity of the linear body while maintaining the flexibility of the thread. In other words, it becomes easier to reduce the resistance of the pseudo sheet structure 2.
(樹脂層)
 樹脂層3は、樹脂を含む層である。この樹脂層3により、疑似シート構造体2を、直接的又は間接的に支持できる。樹脂層3は、必ずしも備えていなくてもよい。樹脂層3は必要に応じて設けられる部材である。樹脂層3は、接着剤を含む層であることが好ましい。例えば、樹脂層3に疑似シート構造体2を形成する際に、接着剤により、導電性線状体21の樹脂層3への貼り付けが容易となる。
(Resin Layer)
The resin layer 3 is a layer containing resin. The pseudo sheet structure 2 can be supported directly or indirectly by this resin layer 3. The resin layer 3 is not necessarily provided. The resin layer 3 is a member that is provided as necessary. The resin layer 3 is preferably a layer containing an adhesive. For example, when forming the pseudo sheet structure 2 on the resin layer 3, the adhesive makes it easy to attach the conductive linear body 21 to the resin layer 3.
 樹脂層3は、乾燥又は硬化可能な樹脂からなる層であってもよい。これにより、疑似シート構造体2を保護するために十分な硬度が樹脂層3に付与され、樹脂層3は保護膜としても機能する。また、硬化又は乾燥後の樹脂層3は、耐衝撃性を有し、衝撃による配線シート100の変形も抑制できる。 The resin layer 3 may be a layer made of a resin that can be dried or cured. This provides the resin layer 3 with sufficient hardness to protect the pseudo-sheet structure 2, and the resin layer 3 also functions as a protective film. In addition, the resin layer 3 after curing or drying has impact resistance, and can also suppress deformation of the wiring sheet 100 due to impact.
 樹脂層3は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線、又は電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。 The resin layer 3 is preferably energy ray curable, such as ultraviolet light, visible energy rays, infrared rays, or electron beams, since it can be easily cured in a short time. Note that "energy ray curing" also includes heat curing by heating using energy rays.
 樹脂層3に含まれる接着剤は、熱により硬化する熱硬化性の接着剤、熱により接着するいわゆるヒートシールタイプの接着剤、湿潤させて貼付性を発現させる接着剤等も挙げられる。ただし、適用の簡便さからは、樹脂層3が、エネルギー線硬化性であることが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The adhesive contained in the resin layer 3 may be a thermosetting adhesive that hardens when heated, a so-called heat seal type adhesive that bonds when heated, or an adhesive that becomes sticky when moistened. However, for ease of application, it is preferable that the resin layer 3 is energy ray curable. Examples of energy ray curable resins include compounds that have at least one polymerizable double bond in the molecule, and acrylate compounds that have a (meth)acryloyl group are preferred.
 前記アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート、及びジシクロペンタジエンジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。 The acrylate-based compounds include, for example, (meth)acrylates containing a chain aliphatic skeleton (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. acrylates, etc.), alicyclic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate, etc.), oligoester (meth)acrylates, urethane (meth)acrylate oligomers, epoxy-modified (meth)acrylates, polyether (meth)acrylates other than the polyalkylene glycol (meth)acrylates, and itaconic acid oligomers.
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100以上30000以下であることが好ましく、300以上10000以下であることがより好ましい。 The weight average molecular weight (Mw) of the energy ray curable resin is preferably 100 or more and 30,000 or less, and more preferably 300 or more and 10,000 or less.
 接着剤組成物が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。さらに、後述する熱可塑性樹脂と組み合わせてもよく、組み合わせ及び比率は任意に選択できる。 The adhesive composition may contain only one type of energy ray-curable resin, or two or more types, and when two or more types are contained, the combination and ratio of these may be selected as desired. Furthermore, the adhesive composition may be combined with a thermoplastic resin, which will be described later, and the combination and ratio may be selected as desired.
 樹脂層3は、粘着剤(感圧性接着剤)から形成される粘着剤層であってもよい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤、及びポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤、及びゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。 The resin layer 3 may be an adhesive layer formed from an adhesive (pressure-sensitive adhesive). The adhesive of the adhesive layer is not particularly limited. For example, adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives. Among these, it is preferable that the adhesive is at least one selected from the group consisting of acrylic adhesives, urethane adhesives, and rubber adhesives, and it is more preferable that the adhesive is an acrylic adhesive.
 アクリル系粘着剤としては、例えば、直鎖のアルキル基又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。 Acrylic adhesives include, for example, polymers containing structural units derived from alkyl (meth)acrylates having a straight-chain alkyl group or a branched-chain alkyl group (i.e., polymers obtained by polymerizing at least alkyl (meth)acrylates), and acrylic polymers containing structural units derived from (meth)acrylates having a cyclic structure (i.e., polymers obtained by polymerizing at least (meth)acrylates having a cyclic structure). Here, "(meth)acrylate" is used as a term that refers to both "acrylate" and "methacrylate," and the same applies to other similar terms.
 アクリル系重合体が共重合体である場合、共重合の形態としては、特に限定されない。アクリル系共重合体としては、ブロック共重合体、ランダム共重合体、又はグラフト共重合体のいずれであってもよい。 When the acrylic polymer is a copolymer, the form of copolymerization is not particularly limited. The acrylic copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、及び金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、アクリル系重合体の単量体成分に由来する官能基として、これらの架橋剤と反応する水酸基又はカルボキシル基等をアクリル系共重合体に導入することができる。 The acrylic copolymer may be crosslinked with a crosslinking agent. Examples of crosslinking agents include known epoxy crosslinking agents, isocyanate crosslinking agents, aziridine crosslinking agents, and metal chelate crosslinking agents. When crosslinking the acrylic copolymer, a hydroxyl group or a carboxyl group that reacts with these crosslinking agents can be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer.
 樹脂層3が、粘着剤から形成される場合、樹脂層3は、粘着剤の他に、さらに上述したエネルギー線硬化性樹脂を含有していてもよい。また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分に由来する官能基と反応する官能基と、エネルギー線重合性の官能基の両方を一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により硬化可能となる。粘着剤がアクリル系粘着剤以外の場合においても、アクリル系重合体以外の重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。 When the resin layer 3 is formed from an adhesive, the resin layer 3 may further contain the energy ray curable resin described above in addition to the adhesive. When an acrylic adhesive is used as the adhesive, a compound having both a functional group that reacts with a functional group derived from a monomer component in an acrylic copolymer and an energy ray polymerizable functional group in one molecule may be used as the energy ray curable component. The reaction between the functional group of the compound and the functional group derived from a monomer component in the acrylic copolymer makes the side chain of the acrylic copolymer curable by energy ray irradiation. Even when the adhesive is other than an acrylic adhesive, a component whose side chain is similarly energy ray polymerizable may be used as a polymer component other than the acrylic polymer.
 樹脂層3に用いられる熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましい。 The thermosetting resin used in the resin layer 3 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, benzoxazine resin, phenoxy resin, amine-based compounds, and acid anhydride-based compounds. These can be used alone or in combination of two or more. Among these, from the viewpoint of suitability for curing using an imidazole-based curing catalyst, it is preferable to use epoxy resin, phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds, and in particular, from the viewpoint of showing excellent curing properties, it is preferable to use epoxy resin, phenol resin, a mixture thereof, or a mixture of epoxy resin and at least one selected from the group consisting of phenol resin, melamine resin, urea resin, amine-based compounds, and acid anhydride-based compounds.
 樹脂層3に用いられる湿気硬化性樹脂としては、特に限定されず、湿気でイソシアネート基が生成してくる樹脂である湿気硬化性ウレタン樹脂、及び変性シリコーン樹脂等が挙げられる。 The moisture-curing resin used in the resin layer 3 is not particularly limited, but examples include moisture-curing urethane resin, which is a resin in which isocyanate groups are generated by moisture, and modified silicone resin.
 樹脂層3に用いられる樹脂として、エネルギー線硬化性樹脂を用いる場合、光重合開始剤等を用いることが好ましい。また、樹脂層3に用いられる樹脂として、熱硬化性樹脂を用いる場合、熱重合開始剤等を用いることが好ましい。樹脂層3は、光重合開始剤、熱重合開始剤等が用いられることで、樹脂層3に架橋構造が形成され、疑似シート構造体2を、より強固に保護することが可能になる。 When an energy ray curable resin is used as the resin used in the resin layer 3, it is preferable to use a photopolymerization initiator or the like. Furthermore, when a thermosetting resin is used as the resin used in the resin layer 3, it is preferable to use a thermal polymerization initiator or the like. By using a photopolymerization initiator, a thermal polymerization initiator, or the like in the resin layer 3, a crosslinked structure is formed in the resin layer 3, making it possible to more firmly protect the pseudo sheet structure 2.
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロロアントラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等が挙げられる。 Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyl diphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenyl-phosphine oxide.
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)、及び有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等)等が挙げられる。 Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) dihydrochloride, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.), and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂、及び熱硬化性樹脂の少なくともいずれかの硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることがさらに好ましい。
These polymerization initiators may be used alone or in combination of two or more.
When forming a crosslinked structure using these polymerization initiators, the amount used is preferably 0.1 parts by mass or more and 100 parts by mass or less, more preferably 1 part by mass or more and 100 parts by mass or less, and even more preferably 1 part by mass or more and 10 parts by mass or less, relative to 100 parts by mass of at least any one of the energy ray curable resin and the thermosetting resin.
 樹脂層3は、硬化性でなく、例えば、熱可塑性樹脂組成物からなる層であってもよい。そして、熱可塑性樹脂組成物中に溶剤を含有させることで、熱可塑性樹脂層を軟化させることができる。これにより、例えば、樹脂層3に疑似シート構造体2を形成する際に、導電性線状体21の樹脂層3への貼り付けが容易となる。一方で、熱可塑性樹脂組成物中の溶剤を揮発させることで、熱可塑性樹脂層を乾燥させ、固化させることができる。 The resin layer 3 may not be curable, and may be, for example, a layer made of a thermoplastic resin composition. The thermoplastic resin layer can be softened by including a solvent in the thermoplastic resin composition. This makes it easier to attach the conductive linear body 21 to the resin layer 3, for example, when forming the pseudo-sheet structure 2 on the resin layer 3. On the other hand, the thermoplastic resin layer can be dried and solidified by volatilizing the solvent in the thermoplastic resin composition.
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリエーテル、ポリエーテルサルホン、ポリイミド及びアクリル樹脂等が挙げられる。
 溶剤としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、炭化水素系溶剤、ハロゲン化アルキル系溶媒及び水等が挙げられる。
Examples of the thermoplastic resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide, and acrylic resin.
Examples of the solvent include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, alkyl halide solvents, and water.
 樹脂層3は、無機充填材を含有していてもよい。無機充填材を含有することで、硬化後の樹脂層3の硬度をより向上させることができる。 The resin layer 3 may contain an inorganic filler. By containing an inorganic filler, the hardness of the resin layer 3 after curing can be further improved.
 無機充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、及び窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラー及びアルミナフィラーが好ましい。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of inorganic fillers include inorganic powders (e.g., powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), beads made by spheroidizing inorganic powders, single crystal fibers, and glass fibers. Among these, silica filler and alumina filler are preferred as inorganic fillers. One type of inorganic filler may be used alone, or two or more types may be used in combination.
 樹脂層3には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。 The resin layer 3 may contain other components. Examples of other components include well-known additives such as organic solvents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, antifungal agents, plasticizers, defoamers, and wettability adjusters.
 樹脂層3の厚さは、配線シート100の用途に応じて決定される。例えば、接着性の観点から、樹脂層3の厚さは、3μm以上150μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。 The thickness of the resin layer 3 is determined according to the application of the wiring sheet 100. For example, from the viewpoint of adhesion, the thickness of the resin layer 3 is preferably 3 μm or more and 150 μm or less, and more preferably 5 μm or more and 100 μm or less.
(電極)
 電極4は、導電性線状体21に電流を供給するために用いられる。電極4は、一対になっている。電極4は、導電性線状体21に直接的に接触する。そして、電極4は、導電性線状体21の両端部に電気的に接続されて配置される。
 電極4は、公知の電極材料を用いて形成できる。電極材料としては、導電性ペースト(銀ペースト等)、金属箔(銅箔等)、及び金属ワイヤー等が挙げられる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。
 本実施形態において、電極4は、平面視において異形状となっており、平行になっていない。そして、例えば、図1に示すように、電極4は異形状となっており、導電性線状体21のうちの少なくとも1本は、導電性線状体21と電極4との接点間の距離が、他の1本と異なっている。このような電極4は、導電性ペーストを使用すると作製しやすい。
(electrode)
The electrodes 4 are used to supply a current to the conductive linear body 21. The electrodes 4 are in a pair. The electrodes 4 are in direct contact with the conductive linear body 21. The electrodes 4 are disposed so as to be electrically connected to both ends of the conductive linear body 21.
The electrode 4 can be formed using a known electrode material. Examples of the electrode material include a conductive paste (such as silver paste), a metal foil (such as copper foil), and a metal wire. When the electrode material is a metal wire, the number of metal wires may be one, but is preferably two or more.
In this embodiment, the electrodes 4 have an irregular shape in a plan view and are not parallel. For example, as shown in Fig. 1, the electrodes 4 have an irregular shape, and at least one of the conductive linear bodies 21 has a different distance between the contact points of the conductive linear body 21 and the electrode 4 from the other conductive linear bodies 21. Such an electrode 4 is easy to fabricate by using a conductive paste.
 電極材料が、金属箔又は金属ワイヤーである場合、金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)が挙げられる。また、金属箔又は金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよい。 When the electrode material is a metal foil or metal wire, examples of the metal of the metal foil or metal wire include copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (for example, steels such as stainless steel and carbon steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, Kanthal, Hastelloy, and rhenium tungsten, etc.). The metal foil or metal wire may also be plated with gold, tin, zinc, silver, nickel, chromium, nickel chromium alloy, solder, etc.
 電極4のうち、少なくとも一方の電極の幅は、配線シート100の平面視において、10mm以下であることが好ましく、3000μm以下であることがより好ましく、1500μm以下であることがさらに好ましい。また、この電極の幅は、0.1mm以上であることが好ましい。なお、少なくとも一方の電極が金属ワイヤーである場合には、電極の幅は、金属ワイヤーの直径であり、金属ワイヤーを2本以上用いた場合の一方の電極の幅とは、各金属ワイヤーの直径の和のことをいう。 The width of at least one of the electrodes 4 is preferably 10 mm or less, more preferably 3000 μm or less, and even more preferably 1500 μm or less, in a plan view of the wiring sheet 100. The width of this electrode is preferably 0.1 mm or more. Note that if at least one of the electrodes is a metal wire, the width of the electrode is the diameter of the metal wire, and when two or more metal wires are used, the width of one electrode refers to the sum of the diameters of the metal wires.
 電極4の厚さは、2μm以上200μm以下であることが好ましく、5μm以上170μm以下であることがより好ましく、10μm以上150μm以下であることがさらに好ましい。電極4の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり疑似シート構造体との抵抗値を低く抑えられる。また、電極として十分な強度が得られる。なお、電極が金属ワイヤーである場合には、電極の厚さは、金属ワイヤーの直径である。 The thickness of the electrode 4 is preferably 2 μm or more and 200 μm or less, more preferably 5 μm or more and 170 μm or less, and even more preferably 10 μm or more and 150 μm or less. If the thickness of the electrode 4 is within the above range, the electrical conductivity is high and the resistance is low, and the resistance value with the pseudo-sheet structure can be kept low. In addition, sufficient strength as an electrode is obtained. Note that, when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
(配線シートの製造方法)
 本実施形態に係る配線シート100の製造方法は、特に限定されない。配線シート100は、例えば、次の工程により、製造できる。
 まず、基材1の上に、樹脂層3の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、樹脂層3を作製する。次に、樹脂層3上に、導電性線状体21を配列しながら配置して、疑似シート構造体2を形成する。例えば、ドラム部材の外周面に基材1付きの樹脂層3を配置した状態で、ドラム部材を回転させながら、樹脂層3上に導電性線状体21を巻き付ける。ここで、導電性線状体21のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なっている。その後、巻き付けた導電性線状体21の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体2を形成すると共に、樹脂層3に配置する。そして、疑似シート構造体2が形成された基材1付きの樹脂層3をドラム部材から取り出し、シート状導電部材が得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体21の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体2における隣り合う導電性線状体21の間隔Lを調整することが容易である。
 次に、シート状導電部材の疑似シート構造体2における導電性線状体21の両端部に、電極4を形成する。ここで、電極4は、平面視において異形状となるように、形成する。このようにして、配線シート100を作製できる。
(Method of manufacturing wiring sheet)
There are no particular limitations on the method for producing the wiring sheet 100 according to the present embodiment. The wiring sheet 100 can be produced, for example, by the following steps.
First, a composition for forming the resin layer 3 is applied onto the substrate 1 to form a coating film. Next, the coating film is dried to prepare the resin layer 3. Next, the conductive linear bodies 21 are arranged on the resin layer 3 to form the pseudo sheet structure 2. For example, in a state where the resin layer 3 with the substrate 1 is arranged on the outer circumferential surface of the drum member, the conductive linear bodies 21 are wound around the resin layer 3 while rotating the drum member. Here, at least one of the conductive linear bodies 21 is different from the other one in at least one of the material, the surface layer material, the diameter, and the wavy shape in a plan view. Then, the bundle of the wound conductive linear bodies 21 is cut along the axial direction of the drum member. This forms the pseudo sheet structure 2 and is placed on the resin layer 3. Then, the resin layer 3 with the substrate 1 on which the pseudo sheet structure 2 is formed is taken out from the drum member to obtain a sheet-like conductive member. According to this method, for example, it is easy to adjust the spacing L between adjacent conductive linear bodies 21 in the pseudo sheet structure 2 by rotating the drum member and moving the payout portion of the conductive linear body 21 along a direction parallel to the axis of the drum member.
Next, electrodes 4 are formed on both ends of the conductive linear members 21 in the pseudo sheet structure 2 of the sheet-like conductive member. Here, the electrodes 4 are formed so as to have an irregular shape in a plan view. In this manner, the wiring sheet 100 can be produced.
(実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態によれば、数式(F1)で示す条件を満たすことで、電極4間の単位長さあたりの消費電力をより均一となるように、調整している。これにより、一対の電極が平行ではない場合にも、シート平面内での過加熱を抑制できる。
(2)本実施形態に係る配線シート100は、シート平面内での過加熱を抑制できるので、シート状ヒータとして好適に使用できる。
(Effects of the embodiment)
According to this embodiment, the following advantageous effects can be obtained.
(1) According to this embodiment, the condition shown in formula (F1) is satisfied, so that the power consumption per unit length between the electrodes 4 is adjusted to be more uniform. This makes it possible to suppress overheating within the sheet plane even when the pair of electrodes is not parallel.
(2) The wiring sheet 100 according to the present embodiment can be suitably used as a sheet heater because it is possible to prevent overheating within the plane of the sheet.
[第二実施形態]
 次に、本発明について第二実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
[Second embodiment]
Next, the present invention will be described with reference to the drawings, taking a second embodiment as an example. The present invention is not limited to the contents of the embodiment. In the drawings, some parts are illustrated enlarged or reduced in size for ease of explanation.
(配線シート)
 本実施形態に係る配線シート100Aは、図4及び図5に示すように、基材1と、疑似シート構造体2と、樹脂層3と、一対の電極4とを備えている。具体的には、配線シート100Aは、基材1上に樹脂層3が積層され、樹脂層3上に疑似シート構造体2が積層されている。疑似シート構造体2は、複数の導電性線状体21が間隔をもって配列されている。
 そして、導電性線状体21のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なっている。具体的には、図4及び図5で示すように、直径の異なる2種類の導電性線状体21が、周期性をもって、交互に、配置されている。
(Wiring sheet)
4 and 5, the wiring sheet 100A according to the present embodiment includes a substrate 1, a pseudo sheet structure 2, a resin layer 3, and a pair of electrodes 4. Specifically, the wiring sheet 100A includes the resin layer 3 laminated on the substrate 1, and the pseudo sheet structure 2 laminated on the resin layer 3. The pseudo sheet structure 2 includes a plurality of conductive linear members 21 arranged at intervals.
At least one of the conductive linear bodies 21 is different from the other one in at least one of the material, surface layer material, diameter, and wavy shape in plan view. Specifically, as shown in Fig. 4 and Fig. 5, two types of conductive linear bodies 21 having different diameters are arranged alternately with a periodicity.
 本実施形態に係る配線シート100Aにより、設計の自由度が高められる理由は、以下の通りであると本発明者らは推察する。
 すなわち、従来のように、単一種類の導電性線状体21を用いる場合には、導電性線状体21自体の材質、表層材料、及び直径などを変更したり、導電性線状体21の本数を変更することで、疑似シート構造体2としての抵抗値を調整していた。しかしながら、導電性線状体21の種類には、限りがあるため、目的とする抵抗値に調整することは、困難であった。これに対し、本実施形態においては、例えば2種類の導電性線状体21を半分ずつ用いることで、疑似シート構造体2としての抵抗値を調整できる。また、例えば2種類の導電性線状体21を2対1の割合で用いることでも、疑似シート構造体2としての抵抗値を調整できる。このように、使用する導電性線状体21を2種類にするだけで、疑似シート構造体2としての抵抗値をより自由に調整できるようになる。なお、2種類の導電性線状体21を、周期性をもって配置すれば、配線シート100Aとしての見た目の問題もほとんど生じない。このようにして、設計の自由度が高められる。
The present inventors surmise that the reason why wiring sheet 100A according to the present embodiment increases the degree of freedom in design is as follows.
That is, in the case of using a single type of conductive linear body 21 as in the past, the resistance value of the pseudo sheet structure 2 was adjusted by changing the material, surface layer material, diameter, etc. of the conductive linear body 21 itself, or by changing the number of conductive linear bodies 21. However, since the types of conductive linear body 21 are limited, it was difficult to adjust the resistance value to the desired value. In contrast, in the present embodiment, the resistance value of the pseudo sheet structure 2 can be adjusted by using, for example, two types of conductive linear body 21 in half each. In addition, the resistance value of the pseudo sheet structure 2 can be adjusted by using, for example, two types of conductive linear body 21 in a ratio of 2:1. In this way, by simply using two types of conductive linear body 21, the resistance value of the pseudo sheet structure 2 can be adjusted more freely. Note that if the two types of conductive linear body 21 are arranged with a periodicity, there is almost no problem with the appearance of the wiring sheet 100A. In this way, the degree of freedom in design is increased.
 本実施形態においては、例えば、導電性線状体21同士のいずれかの間で、材質が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、材質を変えれば、材質に応じて変化させることができる。例えば、体積抵抗率の高い材質を用いるほど、導電性線状体21の単位長さあたりの抵抗値は高くなる。
In this embodiment, for example, the conductive linear objects 21 may be made of different materials.
The resistance value per unit length of the conductive linear body 21 can be changed depending on the material by changing the material. For example, the higher the volume resistivity of a material used, the higher the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、表層材料が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、表層材料の種類を変えれば、表層材料の種類に応じて変化させることができる。例えば、表層材料として体積抵抗率の低いものを用いるほど、導電性線状体21の単位長さあたりの抵抗値は低くなる。
The surface layer materials of any of the conductive linear bodies 21 may be different from each other.
The resistance value per unit length of the conductive linear body 21 can be changed according to the type of surface layer material by changing the type of surface layer material. For example, the lower the volume resistivity of the surface layer material used, the lower the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、直径が異なるようにしてもよい。
 導電性線状体21の単位長さあたりの抵抗値は、直径を変えれば、断面積が変化するため、直径に応じて変化させることができる。例えば、導電性線状体21の直径を太くするほど、導電性線状体21の単位長さあたりの抵抗値は低くなる。
The diameters of any of the conductive linear objects 21 may be different.
Since changing the diameter changes the cross-sectional area, the resistance value per unit length of the conductive linear body 21 can be changed according to the diameter. For example, the larger the diameter of the conductive linear body 21, the lower the resistance value per unit length of the conductive linear body 21.
 導電性線状体21同士のいずれかの間で、平面視における波状形状が異なるようにしてもよい。
 電極4間の導電性線状体21の抵抗値は、平面視における波状形状(波形、波長及び振幅等)を変えれば、導電性線状体21の長さが変化するため、波形、波長及び振幅等に応じて変化させることができる。例えば、波長が短くなるほど、また、振幅が大きくなるほど、電極4間の導電性線状体21の抵抗値は高くなる。
The wavy shape in a plan view may be different between any two adjacent conductive linear objects 21 .
The resistance value of the conductive linear body 21 between the electrodes 4 can be changed according to the waveform, wavelength, amplitude, etc., because changing the wave shape (waveform, wavelength, amplitude, etc.) in a plan view changes the length of the conductive linear body 21. For example, the shorter the wavelength and the larger the amplitude, the higher the resistance value of the conductive linear body 21 between the electrodes 4.
 本実施形態においては、導電性線状体21において、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つを、適宜調整すればよい。また、これらの2つ以上を、組み合わせて、調整してもよい。 In this embodiment, at least one of the material, surface material, diameter, and wavy shape in plan view of the conductive linear body 21 may be adjusted as appropriate. Two or more of these may also be adjusted in combination.
 本実施形態においては、導電性線状体21は、3種類以上であり、3種類以上の導電性線状体が、周期性をもって配置されていることが好ましい。
 このように、3種類以上の導電性線状体21を用いれば、設計の自由度を更に高められる。また、導電性線状体21を、周期性をもって配置すれば、配線シート100としての見た目の問題もほとんど生じない。
In this embodiment, the conductive linear members 21 are of three or more types, and it is preferable that the three or more types of conductive linear members are arranged periodically.
In this way, the degree of freedom in design can be further increased by using three or more types of conductive linear bodies 21. Furthermore, by arranging conductive linear bodies 21 with a periodicity, there is almost no problem with the appearance of wiring sheet 100.
 また、本実施形態においては、3種類以上の導電性線状体21のうちの1種類は、他の種類と材質又は表層材料が異なり、導電性線状体21の間隔Lが、2.0mm以下であることが好ましい。
 材質又は表層材料を変化させることにより、導電性線状体21自体の抵抗値をかなり大きく変化させることができる。例えば、他の種類の材質が金属の場合に、1種類の材質をカーボンナノチューブとした場合、カーボンナノチューブと金属とでは、抵抗値の差がかなり大きいので、配線シート100に電流を流したときに、材質がカーボンナノチューブである導電性線状体21は、ほとんど発熱しなくなる。このようにすれば、ほとんど発熱しないダミーの導電性線状体21を有する疑似シート構造体2を得られる。そして、疑似シート構造体2としての抵抗値を変えずに、導電性線状体21の本数を増やすこともできる。
 なお、導電性線状体21の視認性と人間の目の空間周波数特性の関係性から、導電性線状体21の間隔Lが、2.5mm以上の場合、導電性線状体21が非常に見え易くなることが分かっている。一方で、導電性線状体21の間隔が、2.0mm以下であると、導電性線状体21が見え難くなるといった現象がある。また、同様の観点から、導電性線状体21の間隔は、1.5mm以下であることがより好ましく、1.0mm以下であることが特に好ましい。導電性線状体21は、通常、見え難い方が好ましく、この場合を、導電性線状体21の視認性が良好であるともいう。そして、本実施形態においては、疑似シート構造体2としての抵抗値を変えずに、導電性線状体21の本数を増やし、導電性線状体21の間隔を調整できる。そのため、疑似シート構造体2としての抵抗値を変えずに、導電性線状体21を見え難くできる。
 また、導電性線状体21の間隔Lは、0.05mm以上であることが好ましく、0.1mm以上であることがより好ましく、0.3mm以上であることが特に好ましい。導電性線状体21の間隔Lを上記の値とすることで隣り合う導電性線状体21同士が接触することを防ぐことができる。
In addition, in this embodiment, it is preferable that one type of the three or more types of conductive linear bodies 21 has a material or surface layer material different from the other types, and that the spacing L between the conductive linear bodies 21 is 2.0 mm or less.
By changing the material or surface layer material, the resistance value of the conductive linear body 21 itself can be changed considerably. For example, if one type of material is carbon nanotubes and the other type of material is metal, the difference in resistance value between carbon nanotubes and metal is considerably large, so that the conductive linear body 21 made of carbon nanotubes generates almost no heat when a current is passed through the wiring sheet 100. In this way, a pseudo sheet structure 2 having dummy conductive linear bodies 21 that generate almost no heat can be obtained. The number of conductive linear bodies 21 can also be increased without changing the resistance value of the pseudo sheet structure 2 as a whole.
In addition, from the relationship between the visibility of the conductive linear body 21 and the spatial frequency characteristics of the human eye, it has been found that when the interval L of the conductive linear body 21 is 2.5 mm or more, the conductive linear body 21 becomes very easy to see. On the other hand, when the interval of the conductive linear body 21 is 2.0 mm or less, there is a phenomenon that the conductive linear body 21 becomes difficult to see. From the same viewpoint, the interval of the conductive linear body 21 is more preferably 1.5 mm or less, and particularly preferably 1.0 mm or less. It is usually preferable that the conductive linear body 21 is difficult to see, and in this case, it is also said that the visibility of the conductive linear body 21 is good. In this embodiment, the number of the conductive linear body 21 can be increased and the interval of the conductive linear body 21 can be adjusted without changing the resistance value of the pseudo sheet structure 2. Therefore, the conductive linear body 21 can be made difficult to see without changing the resistance value of the pseudo sheet structure 2.
Moreover, the interval L between the conductive linear members 21 is preferably 0.05 mm or more, more preferably 0.1 mm or more, and particularly preferably 0.3 mm or more. By setting the interval L between the conductive linear members 21 to the above value, it is possible to prevent adjacent conductive linear members 21 from contacting each other.
 導電性線状体21の間隔Lは、デジタル顕微鏡を用いて、例えば、疑似シート構造体2の導電性線状体21を観察し、隣り合う2つの導電性線状体21の間隔を測定する。
 なお、隣り合う2つの導電性線状体21の間隔とは、導電性線状体21を配列させていった方向に沿った長さであって、2つの導電性線状体21の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体21の配列が不等間隔である場合には、全ての隣り合う導電性線状体21同士の間隔の平均値である。
The distance L between the conductive linear members 21 is measured, for example, by observing the conductive linear members 21 of the pseudo sheet structure 2 using a digital microscope and measuring the distance between two adjacent conductive linear members 21.
The interval between two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged, and is the length between opposing portions of the two conductive linear bodies 21 (see FIG. 2). When the conductive linear bodies 21 are arranged at uneven intervals, the interval L is the average value of the intervals between all adjacent conductive linear bodies 21.
 基材1、疑似シート構造体2、樹脂層3、及び電極4については、前述のとおりである。また、配線シート100Aの製造方法は、前述の配線シート100の製造方法と同様である。 The substrate 1, pseudo sheet structure 2, resin layer 3, and electrode 4 are as described above. The method for manufacturing the wiring sheet 100A is the same as the method for manufacturing the wiring sheet 100 described above.
(第二実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(3)本実施形態によれば、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが異なっている2種類以上の導電性線状体21を使用することで、疑似シート構造体2としての抵抗値をより自由に調整できる。
(4)本実施形態に係る配線シート100Aは、設計の自由度が高いので、シート状ヒータとして好適に使用できる。
(Functions and Effects of the Second Embodiment)
According to this embodiment, the following advantageous effects can be obtained.
(3) According to this embodiment, by using two or more types of conductive linear bodies 21 that differ in at least one of the material, surface material, diameter, and wavy shape in a planar view, the resistance value of the pseudo sheet structure 2 can be adjusted more freely.
(4) The wiring sheet 100A according to the present embodiment has a high degree of freedom in design and can be suitably used as a sheet-type heater.
[実施形態の変形]
 本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、前述の実施形態では、配線シート100は、基材1を備えているが、これに限定されない。例えば、配線シート100は、基材1を備えていなくてもよい。このような場合には、樹脂層3により、配線シート100を被着体に貼り付けて使用できる。
 前述の実施形態では、配線シート100は、樹脂層3を備えているが、これに限定されない。例えば、配線シート100は、樹脂層3を備えていなくてもよい。このような場合には、基材1として編物を用い、導電性線状体21を基材1中に編み込むことで、疑似シート構造体2を形成してもよい。
[Modifications of the embodiment]
The present invention is not limited to the above-described embodiment, and includes modifications and improvements within the scope of the present invention that can achieve the object of the present invention.
For example, in the above-described embodiment, the wiring sheet 100 includes the base material 1, but is not limited thereto. For example, the wiring sheet 100 does not need to include the base material 1. In such a case, the wiring sheet 100 can be used by being attached to an adherend by the resin layer 3.
In the above-described embodiment, wiring sheet 100 includes resin layer 3, but is not limited to this. For example, wiring sheet 100 does not need to include resin layer 3. In such a case, a knitted fabric may be used as substrate 1, and conductive linear members 21 may be woven into substrate 1 to form pseudo sheet structure 2.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
 また、実施例で得られたシート状ヒータの評価は、以下のようにして、行った。
[シート平面内での温度分布の評価]
 環境温度23℃においてシート状ヒータに電流を流して、シート状ヒータ面内の最低温度が33℃程度となるように発熱させた後に、シート状ヒータの表面から150mmの位置からサーモグラフィーカメラ(フリアーシステムズジャパン株式会社製の「FLIR C2」)を用いて、複数の導電性線状体の温度分布を測定した。この際の放射率を0.95と設定して測定した。そして、各導電性線状体における最高温度と最低温度との差が10℃以上であった場合には、温度分布は「不良」と判定し、その差が10℃未満である場合には、温度分布は「良好」と判定した。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples in any way.
The sheet heaters obtained in the examples were evaluated as follows.
[Evaluation of temperature distribution within the sheet plane]
At an ambient temperature of 23° C., a current was passed through the sheet heater to generate heat so that the minimum temperature within the surface of the sheet heater reached approximately 33° C. After that, the temperature distribution of the multiple conductive linear bodies was measured from a position 150 mm from the surface of the sheet heater using a thermography camera (FLIR C2 manufactured by FLIR Systems Japan, Inc.). The emissivity was set to 0.95 for the measurements. If the difference between the maximum and minimum temperatures of each conductive linear body was 10° C. or more, the temperature distribution was judged to be "poor," and if the difference was less than 10° C., the temperature distribution was judged to be "good."
[実施例1-1]
 ゴムドラムに粘着シート(300mm×110mm)を、一方の粘着面が外側を向くようにしてしわのないように巻きつけ、円周方向における両端部を両面テープで固定した。ボビンに巻き付けた各種の導電性線状体を、ゴムドラムの端部付近に位置する粘着シート表面に付着させた上で、下記表1に示す導電性線状体を10本同時に間隔が10mmとなるように繰り出しながらゴムドラムで一周巻き取った。金属細線ごと粘着シートを切断し、粘着シートに金属細線が配列した疑似シート構造体が積層されたシートを得た。その後、あらかじめ用意しておいた、ポリカーボネートフィルム上に銀ペースト(藤倉化成株式会社製の「XA-3676」)を平面視にて所定形状に印刷した電極シートと貼合して、シート状ヒータを得た。なお、銀ペーストの電極は、厚さ18μmで、幅1mmとなるように作製した。また、電極の平面視における形状は、2つの半円(直径5cm)の円弧が端部で連結した電極(カモメ型電極)が、円弧を外側にして向かい合い一対をなす形状(最近接部の距離は6cmであり、最離間部の距離は11cmである。)である。
 そして、シート状ヒータのシート平面内での温度分布を評価した。得られた結果を表1に示す。また、電極間の導電性線状体の長さL、及び導電性線状体の単位長さあたりの抵抗値ρ/Sを表1に示す。
[Example 1-1]
An adhesive sheet (300 mm x 110 mm) was wound around a rubber drum without wrinkles, with one adhesive side facing outward, and both ends in the circumferential direction were fixed with double-sided tape. Various conductive linear bodies wound around a bobbin were attached to the surface of the adhesive sheet located near the end of the rubber drum, and then 10 conductive linear bodies shown in Table 1 below were simultaneously unwound at intervals of 10 mm and wound around the rubber drum. The adhesive sheet was cut with the metal fine wires, and a sheet was obtained in which a pseudo-sheet structure in which the metal fine wires were arranged on the adhesive sheet was laminated. Then, a sheet-like heater was obtained by laminating an electrode sheet prepared in advance on a polycarbonate film on which silver paste ("XA-3676" manufactured by Fujikura Kasei Co., Ltd.) was printed in a predetermined shape in a plan view. The silver paste electrodes were made to have a thickness of 18 μm and a width of 1 mm. The shape of the electrodes in a planar view is a pair of electrodes (seagull-shaped electrodes) consisting of two semicircular arcs (5 cm in diameter) connected at the ends, facing each other with the arcs on the outside (the distance between the closest points is 6 cm, and the distance between the farthest points is 11 cm).
The temperature distribution in the sheet plane of the sheet heater was evaluated, and the results are shown in Table 1. The length L n of the conductive linear body between the electrodes and the resistance value ρ n /S n per unit length of the conductive linear body are also shown in Table 1.
[実施例1-2]
 導電性線状体として下記表2で示す10本を用いたこと以外は、実施例1-1と同様にして、シート状ヒータを作製した。
 そして、シート状ヒータのシート平面内での温度分布を評価した。得られた結果を表2に示す。また、電極間の長さも表2に示す。
[Example 1-2]
A sheet-shaped heater was produced in the same manner as in Example 1-1, except that 10 conductive linear bodies shown in Table 2 below were used.
The temperature distribution in the sheet plane of the sheet heater was evaluated. The results are shown in Table 2. The length between the electrodes is also shown in Table 2.
[実施例1-3]
 導電性線状体として下記表3で示す8本を用いたこと、及び、平面視にて、一対の電極をハの字状(最近接部の距離は6.4cmであり、最離間部の距離は9.2cmである。)とした以外は、実施例1-1と同様にして、シート状ヒータを作製した。
 そして、シート状ヒータのシート平面内での温度分布を評価した。得られた結果を表3に示す。また、電極間の導電性線状体の長さL、及び導電性線状体の単位長さあたりの抵抗値ρ/Sを表3に示す。
[Examples 1-3]
A sheet-type heater was produced in the same manner as in Example 1-1, except that eight conductive linear bodies as shown in Table 3 below were used, and that the pair of electrodes was formed in a V-shape in plan view (the distance between the closest parts was 6.4 cm, and the distance between the farthest parts was 9.2 cm).
The temperature distribution in the sheet plane of the sheet heater was then evaluated. The results are shown in Table 3. The length L n of the conductive linear body between the electrodes and the resistance value ρ n /S n per unit length of the conductive linear body are also shown in Table 3.
[比較例1-1]
 導電性線状体として下記表4で示す8本を用いたこと以外は、実施例1-3と同様にして、シート状ヒータを作製した。
 そして、シート状ヒータのシート平面内での温度分布を評価した。得られた結果を表4に示す。また、電極間の導電性線状体の長さL、及び導電性線状体の単位長さあたりの抵抗値ρ/Sを表4に示す。
[Comparative Example 1-1]
A sheet-type heater was produced in the same manner as in Example 1-3, except that eight conductive linear bodies shown in Table 4 below were used.
The temperature distribution in the sheet plane of the sheet heater was then evaluated. The results are shown in Table 4. The length L n of the conductive linear body between the electrodes and the resistance value ρ n /S n per unit length of the conductive linear body are also shown in Table 4.
 表1~表4に示した結果から、導電性線状体のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なっている場合(実施例1-1~1-3)には、シート平面内での温度分布が良好であった。これに対し、同じ導電性線状体だけを用いた場合(比較例1-1)には、シート平面内での温度分布が不良であった。このことから、実施例1-1~1-3で得られたシート状ヒータによれば、一対の電極が平行ではない場合にも、シート平面内での過加熱を抑制できることが確認された。 The results shown in Tables 1 to 4 show that when at least one of the conductive linear bodies was different from the other one in at least one of the following characteristics: material, surface material, diameter, and wavy shape in plan view (Examples 1-1 to 1-3), the temperature distribution in the sheet plane was good. In contrast, when only the same conductive linear body was used (Comparative Example 1-1), the temperature distribution in the sheet plane was poor. This confirmed that the sheet heaters obtained in Examples 1-1 to 1-3 can suppress overheating in the sheet plane even when the pair of electrodes are not parallel.
[実施例2-1]
 ゴムドラムに粘着シート(140mm×100mm)を、一方の粘着面が外側を向くようにしてしわのないように巻きつけ、円周方向における両端部を両面テープで固定した。ボビンに巻き付けた各種の導電性線状体を、ゴムドラムの端部付近に位置する粘着シート表面に付着させた上で、下記の導電性線状体の配列で、間隔が2mmとなるように繰り出しながらゴムドラムで巻き取り、少しずつゴムドラムをドラム軸と平行な方向に移動させていき、一定の間隔でらせんを描きながらゴムドラムに巻きつくようにした。ドラム軸と平行に、導電性線状体ごと粘着シートを切断し、粘着シートに、導電性線状体が配列した疑似シート構造体が積層されたシートを得た。その後、あらかじめ用意しておいた、ポリカーボネートフィルム上に銀ペースト(藤倉化成株式会社製の「XA-3676」)を印刷した電極シートに、導電性線状体の本数が10本となるように貼合して、シート状ヒータを得た。なお銀ペーストの電極は、厚さ18μmで、幅5mmで、電極間距離は120mmとなるように作製した。
(導電性線状体の配列)
 下記の1本目及び2本目の繰り返し
・1本目:タングステンワイヤ、直径9μm、単位長さあたりの抵抗値10.5Ω/cm
・2本目:タングステンワイヤ、直径11μm、単位長さあたりの抵抗値7.1Ω/cm
[Example 2-1]
An adhesive sheet (140 mm x 100 mm) was wound around a rubber drum without wrinkles, with one adhesive side facing outward, and both ends in the circumferential direction were fixed with double-sided tape. Various conductive linear bodies wound around a bobbin were attached to the surface of the adhesive sheet located near the end of the rubber drum, and then wound around the rubber drum while unwinding the conductive linear bodies in the following arrangement so that the intervals were 2 mm, and the rubber drum was gradually moved in a direction parallel to the drum axis so that the conductive linear bodies were wound around the rubber drum while drawing a spiral at regular intervals. The adhesive sheet was cut along with the conductive linear bodies parallel to the drum axis to obtain a sheet in which a pseudo-sheet structure in which conductive linear bodies were arranged was laminated on the adhesive sheet. Thereafter, the conductive linear bodies were attached to an electrode sheet prepared in advance, which was made of a polycarbonate film printed with silver paste ("XA-3676" manufactured by Fujikura Kasei Co., Ltd.), so that the number of conductive linear bodies was 10, to obtain a sheet-like heater. The silver paste electrodes were fabricated to have a thickness of 18 μm, a width of 5 mm, and an inter-electrode distance of 120 mm.
(Arrangement of Conductive Linear Bodies)
Repeat of the first and second wires below: First wire: Tungsten wire, diameter 9 μm, resistance per unit length 10.5 Ω/cm
- Second wire: tungsten wire, diameter 11 μm, resistance per unit length 7.1 Ω/cm
[実施例2-2]
 導電性線状体の配列を下記のとおりとした以外は、実施例2-1と同様にして、シート状ヒータを作製した。
(導電性線状体の配列)
 下記の1本目から5本目までの繰り返し
・1本目:タングステンワイヤ、直径8μm、単位長さあたりの抵抗値13.3Ω/cm
・2本目:タングステンワイヤ、直径8μm、単位長さあたりの抵抗値13.3Ω/cm
・3本目:銀鍍金レニウムタングステンワイヤ、直径14μm、単位長さあたりの抵抗値5.2Ω/cm
・4本目:タングステンワイヤ、直径8μm、単位長さあたりの抵抗値13.3Ω/cm
・5本目:銀鍍金レニウムタングステンワイヤ、直径14μm、単位長さあたりの抵抗値5.2Ω/cm
[Example 2-2]
A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows:
(Arrangement of Conductive Linear Bodies)
Repeat from the first to fifth wires as follows: 1st wire: Tungsten wire, diameter 8 μm, resistance per unit length 13.3 Ω/cm
- Second wire: tungsten wire, diameter 8 μm, resistance per unit length 13.3 Ω/cm
- 3rd wire: Silver-plated rhenium tungsten wire, diameter 14 μm, resistance per unit length 5.2 Ω/cm
4th wire: tungsten wire, diameter 8 μm, resistance per unit length 13.3 Ω/cm
5th wire: Silver-plated rhenium tungsten wire, diameter 14 μm, resistance per unit length 5.2 Ω/cm
[実施例2-3]
 導電性線状体の配列を下記のとおりとした以外は、実施例2-1と同様にして、シート状ヒータを作製した。
(導電性線状体の配列)
・1~4本目:金鍍金タングステンワイヤ、直径10μm、単位長さあたりの抵抗値7.7Ω/cm
・5,6本目:金鍍金タングステンワイヤ、直径8μm、単位長さあたりの抵抗値12.5Ω/cm
・7~10本目:金鍍金タングステンワイヤ、直径10μm、単位長さあたりの抵抗値7.7Ω/cm
 なお、このシート状ヒータのように、高抵抗率の導電性線状体を中央に配置することで、高温時の加熱ムラを低減するようにできる。すなわち、ヒータ全体の温度が必要な温度よりも比較的高い場合は、中心部分が周辺の加熱部位から影響を受け、過加熱となる場合がある。その場合は、本実施例のように、中心部に抵抗値の高い導電性線状体を配置することが好ましい。抵抗値の高い導電性線状体を使用し中心の電力を低くすることで中心部の温度を低下させ、過加熱を抑制することが可能となる。
[Example 2-3]
A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows:
(Arrangement of Conductive Linear Bodies)
1st to 4th wires: gold-plated tungsten wire, diameter 10 μm, resistance per unit length 7.7 Ω/cm
・5th and 6th wires: gold-plated tungsten wire, diameter 8 μm, resistance per unit length 12.5 Ω/cm
7th to 10th wires: gold-plated tungsten wire, diameter 10 μm, resistance per unit length 7.7 Ω/cm
In addition, by arranging a conductive linear body with high resistivity in the center as in this sheet heater, it is possible to reduce uneven heating at high temperatures. In other words, if the temperature of the entire heater is relatively higher than the required temperature, the central part may be affected by the surrounding heated parts and may become overheated. In that case, it is preferable to arrange a conductive linear body with high resistance in the center as in this embodiment. By using a conductive linear body with high resistance and reducing the power in the center, it is possible to lower the temperature in the center and prevent overheating.
[実施例2-4]
 導電性線状体の配列を下記のとおりとした以外は、実施例2-1と同様にして、シート状ヒータを作製した。
(導電性線状体の配列)
・1~9本目:金鍍金タングステンワイヤ、直径10μm、単位長さあたりの抵抗値7.7Ω/cm
・10本目:金鍍金タングステンワイヤ、直径8μm、単位長さあたりの抵抗値12.5Ω/cm
 なお、このシート状ヒータのように、高抵抗率の導電性線状体を端部に配置することで、低温時の加熱ムラを低減するようにできる。すなわち、ヒータ全体の温度が必要な温度よりも比較的低い場合は、実施例3のような対応は必要なく、端部に高抵抗値の導電性線状体を配置する方が望ましい。中心は十分に加熱可能で、加熱部位としてあまり必要ない端部に抵抗値調整用の導電性線状体を配置することで、全体の抵抗値の総和と、加熱部位の温度分布を制御することが可能となる。
[Example 2-4]
A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows:
(Arrangement of Conductive Linear Bodies)
1st to 9th wires: gold-plated tungsten wire, diameter 10 μm, resistance per unit length 7.7 Ω/cm
10th wire: gold-plated tungsten wire, diameter 8 μm, resistance per unit length 12.5 Ω/cm
In addition, by arranging conductive linear bodies with high resistivity at the ends as in this sheet heater, uneven heating at low temperatures can be reduced. In other words, when the temperature of the entire heater is relatively lower than the required temperature, the approach as in Example 3 is not necessary, and it is preferable to arrange conductive linear bodies with high resistance at the ends. The center can be sufficiently heated, and by arranging conductive linear bodies for adjusting the resistance at the ends that are not required as heating areas, it is possible to control the total resistance of the entire heater and the temperature distribution of the heating areas.
[実施例2-5]
 導電性線状体の配列を下記のとおりとした以外は、実施例2-1と同様にして、シート状ヒータを作製した。
(導電性線状体の配列)
 下記の1本目及び2本目の繰り返し
・1本目:タングステンワイヤ、直径11μm、単位長さあたりの抵抗値7.1Ω/cm
・2本目:タングステンワイヤ、直径11μm、単位長さあたりの抵抗値7.1Ω/cm、平面視にて波状形状(波長5mmで、全振幅2mmの正弦波)
[Example 2-5]
A sheet-type heater was produced in the same manner as in Example 2-1, except that the conductive linear bodies were arranged as follows:
(Arrangement of Conductive Linear Bodies)
Repeat of the first and second wires below: First wire: Tungsten wire, diameter 11 μm, resistance per unit length 7.1 Ω/cm
- Second wire: Tungsten wire, diameter 11 μm, resistance per unit length 7.1 Ω/cm, wavy shape in plan view (sine wave with wavelength 5 mm and total amplitude 2 mm)
[実施例2-6]
 導電性線状体の配列を下記のとおりとし、導電性線状体の間隔を1mmとし、導電性線状体の本数を20本とした以外は、実施例1と同様にして、シート状ヒータを作製した。(導電性線状体の配列)
 下記の1本目から4本目までの繰り返し
・1本目:タングステンワイヤ、直径9μm、単位長さあたりの抵抗値10.5Ω/cm
・2本目:CNTヤーン、直径10μm、単位長さあたりの抵抗値450Ω/cm
・3本目:タングステンワイヤ、直径11μm、単位長さあたりの抵抗値7.1Ω/cm
・4本目:CNTヤーン、直径10μm、単位長さあたりの抵抗値450Ω/cm
[Example 2-6]
A sheet-type heater was fabricated in the same manner as in Example 1, except that the conductive linear bodies were arranged as shown below, the intervals between the conductive linear bodies were 1 mm, and the number of the conductive linear bodies was 20. (Arrangement of the conductive linear bodies)
Repeat the following from the first to fourth wires: 1st wire: tungsten wire, diameter 9 μm, resistance per unit length 10.5 Ω/cm
- 2nd: CNT yarn, diameter 10 μm, resistance per unit length 450 Ω/cm
- Third wire: tungsten wire, diameter 11 μm, resistance per unit length 7.1 Ω/cm
4th: CNT yarn, diameter 10 μm, resistance per unit length 450 Ω/cm
[比較例2-1]
 導電性線状体として1種類のみ(材質タングステン、直径11μm、単位長さあたりの抵抗値7.1Ω/cm)を用いた以外は、実施例2-1と同様にして、シート状ヒータを作製した。
[Comparative Example 2-1]
A sheet-shaped heater was produced in the same manner as in Example 2-1, except that only one type of conductive linear body (material: tungsten, diameter: 11 μm, resistance per unit length: 7.1 Ω/cm) was used.
[比較例2-2]
 導電性線状体として1種類のみ(材質タングステン、直径9μm、単位長さあたりの抵抗値10.5Ω/cm)を用いた以外は、実施例2-1と同様にして、シート状ヒータを作製した。
[Comparative Example 2-2]
A sheet-shaped heater was produced in the same manner as in Example 2-1, except that only one type of conductive linear body (material: tungsten, diameter: 9 μm, resistance per unit length: 10.5 Ω/cm) was used.
[シート状ヒータの抵抗値]
 銀ペーストで作製した電極に対して、日置電機株式会社製抵抗値計「RM3545」の端子を接触させ、シート状ヒータの抵抗値を測定した。そして、各例で目標値に規定した10Ωに対する割合[(測定値-10)/10×100](単位:%)を算出した。得られた結果を表5に示す。また、各例での導電性線状体の種類を表5に示す。
[Resistance value of sheet heater]
The terminals of a resistance meter "RM3545" manufactured by Hioki E.E. Corporation were brought into contact with the electrodes made of silver paste to measure the resistance of the sheet heater. Then, the ratio [(measured value - 10)/10 x 100] (unit: %) to the target value of 10 Ω for each example was calculated. The results are shown in Table 5. The type of conductive linear body for each example is also shown in Table 5.
[導電性線状体の視認性]
 シート状ヒータを100cm離れた距離から確認したときに、導電性線状体を認識できるか否かを評価する。5人で評価を行い、以下の基準に従って、視認性を評価した。得られた結果を表5に示す。また、各例での導電性線状体の間隔を表5に示す。
A:導電性線状体を認識できた人が、いない。
B:導電性線状体を認識できた人が、1人又は2人である。
F:導電性線状体を認識できた人が、3人以上である。
[Visibility of conductive linear object]
When the sheet heater was viewed from a distance of 100 cm, it was evaluated whether the conductive linear bodies could be recognized. The evaluation was carried out by five people, and visibility was evaluated according to the following criteria. The results are shown in Table 5. The spacing between the conductive linear bodies in each example is also shown in Table 5.
A: No one was able to recognize the conductive linear object.
B: One or two people were able to recognize the conductive linear object.
F: Three or more people were able to recognize the conductive linear object.
 表5に示す結果から、導電性線状体のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なっている場合(実施例2-1~2-6)には、同じ導電性線状体だけを用いた場合(比較例2-1及び2-2)と比較して、シート状ヒータの抵抗値を目標値に近づけることができた。このことから、実施例2-1~2-6で得られたシート状ヒータは、設計の自由度が高いことが確認された。 The results shown in Table 5 show that when at least one of the conductive linear bodies differed from the other one in at least one of the following characteristics (material, surface material, diameter, and wavy shape in plan view) (Examples 2-1 to 2-6), the resistance value of the sheet-type heater could be made closer to the target value compared to when only the same conductive linear bodies were used (Comparative Examples 2-1 and 2-2). This confirmed that the sheet-type heaters obtained in Examples 2-1 to 2-6 have a high degree of freedom in design.
 1…基材、2…疑似シート構造体、21…導電性線状体、3…樹脂層、4…電極、100、100A…配線シート。 1...substrate, 2...pseudo sheet structure, 21...conductive linear body, 3...resin layer, 4...electrode, 100, 100A...wiring sheet.

Claims (4)

  1.  複数の導電性線状体が間隔をもって配列された疑似シート構造体と、一対の電極とを備え、
     前記導電性線状体のうちの少なくとも1本は、前記導電性線状体と前記電極との接点間の距離が、他の1本と異なり、
     前記導電性線状体のうちの少なくとも1本は、材質、表層材料、直径、及び、平面視における波状形状のうちの少なくとも1つが、他の1本と異なる、
     配線シート。
    A pseudo sheet structure in which a plurality of conductive linear bodies are arranged at intervals, and a pair of electrodes are provided,
    At least one of the conductive linear bodies has a distance between a contact point of the conductive linear body and the electrode different from that of the other conductive linear body,
    At least one of the conductive linear bodies is different from the other one in at least one of a material, a surface layer material, a diameter, and a wavy shape in a plan view.
    Wiring sheet.
  2.  請求項1に記載の配線シートにおいて、
     前記導電性線状体が、平面視において、直線状又は波状形状であり、前記疑似シート構造体の一端から数えてa本目の導電性線状体における、前記電極間の導電性線状体の長さをL、抵抗率をρ、断面積をSとし、前記疑似シート構造体の一端から数えてb本目の導電性線状体における、前記電極間の導電性線状体の長さをL、抵抗率をρ、断面積をSとした場合に、下記数式(F1)で示す条件を満たす、
     配線シート。
    0.60×{S/(ρ・L )} ≦ S/(ρ・L ) ≦ 1.67×{S/(ρ・L )}・・・(F1)
    The wiring sheet according to claim 1 ,
    The conductive linear body has a straight or wavy shape in a plan view, and when the length of the conductive linear body between the electrodes of the a-th conductive linear body counting from one end of the pseudo sheet structure is La , the resistivity is ρa , and the cross-sectional area is Sa , and when the length of the conductive linear body between the electrodes of the b-th conductive linear body counting from one end of the pseudo sheet structure is Lb , the resistivity is ρb , and the cross-sectional area is Sb , the condition shown in the following formula (F1) is satisfied:
    Wiring sheet.
    0.60×{S a /(ρ a ·L a 2 )}≦S b /(ρ b ·L b 2 )≦1.67×{S a /(ρ a ·L a 2 )} ... (F1)
  3.  請求項2に記載の配線シートにおいて、
     前記導電性線状体の材質がタングステンを含有し、
     前記導電性線状体のうちの少なくとも1本は、表層材料が、他の1本と異なる、
     配線シート。
    The wiring sheet according to claim 2,
    The conductive linear body is made of a material containing tungsten,
    At least one of the conductive linear bodies has a surface layer material different from that of the other conductive linear bodies.
    Wiring sheet.
  4.  請求項1から請求項3のいずれか一項に記載の配線シートを備える、
     シート状ヒータ。
    The wiring sheet according to any one of claims 1 to 3,
    Sheet heater.
PCT/JP2023/033466 2022-09-30 2023-09-13 Wiring sheet and sheet-form heater WO2024070718A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-158949 2022-09-30
JP2022158993A JP2024052337A (en) 2022-09-30 2022-09-30 Wiring sheet and sheet heater
JP2022-158993 2022-09-30
JP2022158949A JP2024052310A (en) 2022-09-30 2022-09-30 Wiring sheet and sheet heater

Publications (1)

Publication Number Publication Date
WO2024070718A1 true WO2024070718A1 (en) 2024-04-04

Family

ID=90477484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033466 WO2024070718A1 (en) 2022-09-30 2023-09-13 Wiring sheet and sheet-form heater

Country Status (1)

Country Link
WO (1) WO2024070718A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362492A (en) * 1989-07-28 1991-03-18 Unitika Ltd Transparent face heating element
JP2014160633A (en) * 2013-02-19 2014-09-04 Sanko Name Co Ltd Conductive film heater with shape structure of fixed power surface density
JP2016201343A (en) * 2015-04-07 2016-12-01 フィグラ株式会社 Exothermic glass for led traffic signal
WO2021187361A1 (en) * 2020-03-19 2021-09-23 リンテック株式会社 Wiring sheet, and sheet-like heater
WO2021192775A1 (en) * 2020-03-23 2021-09-30 リンテック株式会社 Wiring sheet and sheet-like heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362492A (en) * 1989-07-28 1991-03-18 Unitika Ltd Transparent face heating element
JP2014160633A (en) * 2013-02-19 2014-09-04 Sanko Name Co Ltd Conductive film heater with shape structure of fixed power surface density
JP2016201343A (en) * 2015-04-07 2016-12-01 フィグラ株式会社 Exothermic glass for led traffic signal
WO2021187361A1 (en) * 2020-03-19 2021-09-23 リンテック株式会社 Wiring sheet, and sheet-like heater
WO2021192775A1 (en) * 2020-03-23 2021-09-30 リンテック株式会社 Wiring sheet and sheet-like heater

Similar Documents

Publication Publication Date Title
JP6178948B1 (en) Sheet, heating element, and heating device
WO2021201069A1 (en) Wiring sheet
WO2021192775A1 (en) Wiring sheet and sheet-like heater
JP2020119856A (en) Manufacturing method of sheet-like conductive member, and sheet-like conductive member
WO2024070718A1 (en) Wiring sheet and sheet-form heater
WO2021187361A1 (en) Wiring sheet, and sheet-like heater
WO2020189173A1 (en) Sheet-shaped conductive member and manufacturing method therefor
JP2024052310A (en) Wiring sheet and sheet heater
JP2024052337A (en) Wiring sheet and sheet heater
WO2023063379A1 (en) Wiring sheet
WO2022202230A1 (en) Wiring sheet
JP7308210B2 (en) Sheet-shaped conductive member
WO2023188122A1 (en) Wiring sheet
WO2022102536A1 (en) Wiring sheet and sheet-form heater
WO2021172150A1 (en) Wiring sheet
WO2023080112A1 (en) Sheet-shaped heater
WO2023063378A1 (en) Wiring sheet
WO2021193239A1 (en) Sheet-like conductive member and sheet-like heater
JP2022149123A (en) wiring sheet
JP2023059087A (en) wiring sheet
JP2022085213A (en) Wiring sheet and method for manufacturing the same
WO2023063377A1 (en) Contact sensor and wiring sheet
JP2023059085A (en) planar heating element
US20240023205A1 (en) Wiring sheet and wiring sheet production method
JP7284749B2 (en) heating sheet