WO2021201069A1 - Wiring sheet - Google Patents

Wiring sheet Download PDF

Info

Publication number
WO2021201069A1
WO2021201069A1 PCT/JP2021/013759 JP2021013759W WO2021201069A1 WO 2021201069 A1 WO2021201069 A1 WO 2021201069A1 JP 2021013759 W JP2021013759 W JP 2021013759W WO 2021201069 A1 WO2021201069 A1 WO 2021201069A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear body
wiring sheet
pseudo
sheet
conductive linear
Prior art date
Application number
PCT/JP2021/013759
Other languages
French (fr)
Japanese (ja)
Inventor
孝至 森岡
伊藤 雅春
田中 祐介
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2021201069A1 publication Critical patent/WO2021201069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • the present invention relates to a wiring sheet.
  • a sheet-like conductive member having a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals is known.
  • This sheet-shaped conductive member can be used as a member of various articles as a sheet-shaped heating element such as a textile material that generates heat by connecting electrodes.
  • Patent Document 1 describes a sheet-shaped heating element having a pseudo-sheet structure.
  • the pseudo-seat structure is composed of a plurality of metal wires extending in one direction arranged at intervals.
  • An adhesive layer is arranged on one side of the pseudo-sheet structure, and a pair of electrodes are electrically connected to the pseudo-sheet structure to form a sheet.
  • the electrode and the conductive linear body are arranged so as to be in contact with each other at one place on the surface. Therefore, when a thin conductive linear body is used, the contact area between the electrode and the conductive linear body is small, so that there is a problem that the contact resistance between the electrode and the conductive linear body is increased.
  • An object of the present invention is to provide a wiring sheet in which the contact area between the conductive linear body and the electrode is expanded and the electrical resistance between the plurality of conductive linear bodies constituting the pseudo-sheet structure and the electrode is reduced. It is to be.
  • a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals and a pair of electrodes are provided, and the conductive linear structure is provided in a plan view of the pseudo-sheet structure. At least one end of the pseudo-sheet structure in the length direction of the body has a folded edge portion, and the pseudo-sheet structure before folding has a first region, a folded region serving as the folded edge portion, and a folded edge portion in this order from the end.
  • a wiring sheet that later comprises a second region facing the first region and is electrically connected to the pseudo-sheet structure and one of the electrodes in the first region and the second region.
  • both ends of the pseudo-sheet structure in the length direction of the conductive linear body have folded edges, and at the folded edges at both ends, the respective electrodes are described. It is preferable that the first region and the second region are electrically connected.
  • the wiring sheet according to one aspect of the present invention further includes a base material that supports the conductive linear body.
  • the base material is a flexible base material.
  • the flexible base material is a synthetic resin film, paper, non-woven fabric or cloth.
  • the wiring sheet according to one aspect of the present invention further includes a resin layer that supports the conductive linear body.
  • the conductive linear body is embedded in the resin layer.
  • the electrode is a metal wire.
  • the conductive linear body in the first region and the conductive linear body in the second region are in direct or indirect contact with each other. ..
  • the gap between the folded edge portion and the electrode is preferably 50 mm or less in a plan view of the pseudo-sheet structure.
  • the conductive linear body has a wavy shape in a plan view of the pseudo-sheet structure.
  • a wiring sheet in which the contact area between the conductive linear body and the electrode is expanded and the resistance between the plurality of conductive linear bodies and the electrodes constituting the pseudo sheet structure is reduced. be able to.
  • the wiring sheet 100 As shown in FIGS. 1 to 3, the wiring sheet 100 according to the first embodiment of the present invention includes a wide and long base material 1, a resin layer 3 arranged on the base material, and the resin layer.
  • a pseudo-sheet structure 2 arranged on the pseudo-sheet structure 2 and electrodes 4 arranged at both ends of the pseudo-sheet structure 2 are provided.
  • the pseudo-sheet structure 2 and each electrode 4 are electrically connected.
  • the pseudo-sheet structure 2 is composed of, for example, a metal wire having a circular cross section, and in a plan view, a plurality of conductive linear bodies 21 are arranged substantially in parallel at predetermined intervals. There is.
  • the electrode 4 is composed of a plurality of electrode wires 41, and in this embodiment, three electrode wires 41, and each electrode wire 41 is arranged in parallel in a direction perpendicular to the length direction of the conductive linear body 21. ing. Both ends of the base material 1, the resin layer 3, and the pseudo-sheet structure 2 arranged on top of each other of the wiring sheet 100 are folded back toward the pseudo-sheet structure 2 to form a folded end edge 22. In the folded end edge 22, the predetermined length portion from the end of the conductive linear body 21 in the length direction to the folded portion is designated as the first region 5, and the folded portion is designated as the folded region 6, and the folded portion is designated as the folded region 6. The portion facing the one region 5 is referred to as the second region 7.
  • the electrode wire 41 on the folded-back edge portion 22 closest to the folded-back edge portion has a gap G formed from the conductive linear body 21 of the folded-back edge portion as shown in FIG. It is placed in place.
  • the first region 5 and the second region 7 of each conductive linear body 21 are brought into contact with the upper and lower edges of each electrode wire 41 constituting the electrode 4. It is electrically connected.
  • the first region 5 and the second region 7 of the conductive linear body 21 come into contact with the upper and lower edges of each of the electrode wires 41 constituting the electrode 4 at two upper and lower positions, thereby forming the electrode 4.
  • the contact area between each electrode wire 41 and the conductive linear body 21 is increased, and the electrical resistance between the electrode 4 and the pseudo-sheet structure 2 is reduced.
  • the above-mentioned gap G is preferably 50 mm or less.
  • the material such as the base material 1 to be used can be reduced, the rigidity of the folded edge portion can be increased, and the shape can be stabilized.
  • the gap G is more preferably 30 mm or less, further preferably 10 mm or less.
  • the resin layer 3 indicates the pseudo-seat structure 2 by integrating the base material 1 and the pseudo-sheet structure 2 by adhesion, fixation, or the like.
  • the resin layer 3 that supports the conductive linear body 21 has a thickness t, and a part of the conductive linear body 21 having a diameter D is buried in the resin layer 3. Further, the electrode wire 41 in contact with the conductive linear body 21 has a diameter d.
  • the thickness t of the resin layer 3 is preferably 3 ⁇ m or more and 150 ⁇ m or less, and more preferably 5 ⁇ m or more and 100 ⁇ m or less. The thickness t of the resin layer 3 may be appropriately determined depending on the use of the wiring sheet 100.
  • the diameter D of the conductive linear body 21 is preferably 5 ⁇ m or more and 75 ⁇ m or less. From the viewpoint of suppressing the increase in sheet resistance and improving the heat generation efficiency when the wiring sheet 100 is used as a heating element, the diameter D of the conductive linear body 21 is more preferably 8 ⁇ m or more and 60 ⁇ m or less, more preferably 12 ⁇ m. It is more preferably 40 ⁇ m or less.
  • the diameter d of the electrode wire 41 is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and particularly preferably 25 ⁇ m or more and 150 ⁇ m or less.
  • the diameter D of the conductive linear body 21 is the diameter D of the conductive linear body 21 at five randomly selected locations by observing the conductive linear body 21 of the pseudo-sheet structure 2 using a digital microscope. Is measured and used as the average value.
  • the base material 1 supports the conductive linear body 21 via the resin layer 3.
  • the surface of the base material 1 may be smooth or uneven.
  • Examples of the material of the base material 1 include wood, paper (pulp), leather, thermoplastic resin, thermosetting resin, other resins, and modified resins, metals, semi-metals, ceramics, and glass. However, it is not limited to these.
  • the resin used for the base material 1 may be either a homopolymer or a copolymer. Further, the resin used for the base material 1 may be a random copolymer, an alternating copolymer, a block copolymer or a graft polymer.
  • the thermoplastic resin used for the base material 1 is, for example, olefin resin, acrylic resin, styrene resin, fluororesin, polyester, polyarylate, polycarbonate, polyamide, aramid resin, polyamideimide, polyimide, polyurethane, polyether, polyether sulfone. , Polyether ketone, polyether ether ketone, polyarylene sulfide, polyacetal, silicone resin, and modified resins thereof.
  • examples of the modified resin include rubber vulcanized with sulfur or a sulfur compound or a radical polymerization initiator.
  • thermosetting resin examples include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, alkyd resin, urethane resin, thermosetting imide resin and the like.
  • other resins include lacquer and the like.
  • the metal examples include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver and gold, or alloys containing two or more kinds of metals (for example, steel such as stainless steel and carbon steel, brass and phosphor bronze). , Zyryl copper alloy, beryllium copper, iron nickel, dichrome, nickel titanium, cantal, hasteloy, and renium tungsten, etc.).
  • a metalloid silicon and the like can be mentioned.
  • the base material 1 may be composed of one type of layer alone, or may be a combination of two or more types of layers.
  • the pseudo-sheet structure 2 has a structure in which each of the conductive linear bodies 21 is arranged in a plurality of directions at regular intervals in a direction orthogonal to the length direction of the conductive linear bodies 21. ..
  • This interval in the plurality of conductive linear bodies 21 may be an irregular interval.
  • the intervals in the plurality of conductive linear bodies 21 may be a mixture of regular intervals and irregular intervals.
  • the conductive linear bodies 21 are densely arranged in a portion where a large amount of heat is desired to be generated, and the conductive linear bodies 21 are sparsely arranged in a portion where the amount of heat generation is desired to be suppressed. By arranging, the amount of heat generated can be controlled depending on the location.
  • Conduct linear body 21 Metals and carbon nanotubes can be exemplified as constituting the conductive linear body 21, but the conductive linear body 21 is not limited thereto.
  • the metal can be used in the form of a wire.
  • a linear body including a wire made of metal is also referred to as a "metal linear body”.
  • the metal wire has high thermal conductivity, high electrical conductivity, high handleability and versatility.
  • a metal wire is applied as the conductive wire 21
  • the resistance value of the pseudo-sheet structure 2 is reduced due to the high electrical conductivity.
  • the wiring sheet 100 is applied as a heating element, rapid heat generation is easily realized due to high thermal conductivity.
  • the metal is excellent in processability, it is easy to obtain a linear body having a different thickness depending on the portion even if it is a thin linear body, a thick linear body, or a single linear body.
  • the linear body including the metal wire may be a linear body composed of one metal wire, or may be a linear body obtained by twisting a plurality of metal wires.
  • metal wires such as gold and copper having high conductivity can be exemplified.
  • tungsten, nickel-chromium alloy and the like can be exemplified.
  • the material of the metal wire is a metal such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, or gold, or an alloy containing two or more kinds of metals (for example, steel such as stainless steel and carbon steel, brass, phosphorus).
  • Examples include wires containing bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, cantal, hasteroy, renium tungsten, etc.).
  • the metal wire may be plated with gold, copper, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder or the like, and the surface is coated with a carbon material or polymer described later. It may be.
  • a wire containing tungsten, molybdenum, and one or more metals selected from alloys containing these is preferable from the viewpoint of forming a conductive linear body 21 having a low volume resistivity.
  • the metal wire itself or the plated portion is made of a material having a low contact resistance such as gold because the electric resistance with the electrode 4 can be lowered.
  • the metal wire include a metal wire coated with a carbon material.
  • the metal wire is coated with a carbon material, the metallic luster is reduced and the presence of the metal wire can be easily made inconspicuous. Further, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
  • the carbon material for coating the metal wire include amorphous carbon (for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon and carbon fiber, etc.), graphite, fullerene and graphene; carbon nanotubes and the like.
  • a linear body using carbon nanotubes is, for example, a carbon nanotube forest (a growth body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in a direction perpendicular to the substrate, and is an "array". It is obtained by pulling out carbon nanotubes in a sheet shape from the end portion (sometimes referred to as), bundling the pulled out carbon nanotube sheets, and then twisting the bundles of carbon nanotubes. In such a manufacturing method, when no twist is applied at the time of twisting, a ribbon-shaped carbon nanotube linear body is obtained, and when twisted, a thread-like linear body is obtained.
  • a carbon nanotube linear body can also be obtained by spinning or the like from a dispersion liquid of carbon nanotubes.
  • the production of the carbon nanotube linear body by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Laid-Open No. 2012-126635).
  • From the viewpoint of obtaining uniform diameter of the carbon nanotube wire it is desirable to use the filamentous carbon nanotube wire, and from the viewpoint of obtaining a highly pure carbon nanotube wire, the carbon nanotube sheet is twisted. It is preferable to obtain a filamentous carbon nanotube linear body.
  • the carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together.
  • the carbon nanotube linear body may be a linear body in which carbon nanotubes and other conductive materials are composited.
  • a linear body in which carbon nanotubes and other conductive materials are composited is also referred to as a “composite linear body”.
  • Examples of the composite linear body include (1) a carbon nanotube linear body in which carbon nanotubes are pulled out from the edge of a carbon nanotube forest into a sheet, the drawn carbon nanotube sheets are bundled, and then the bundle of carbon nanotubes is twisted.
  • a composite linear structure in which a single metal or metal alloy is supported on the surface of a forest, sheet or bundle of carbon nanotubes, or a twisted linear body by vapor deposition, ion plating, sputtering, wet plating, or the like.
  • the Composite linear body of (2) when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1).
  • the composite linear body of (3) is a composite linear body when two linear bodies are knitted, but at least one linear body of a single metal or a linear body of a metal alloy or a composite.
  • a linear body three or more of a carbon nanotube linear body, a linear body of a single metal, a linear body of a metal alloy, or a composite linear body may be knitted.
  • the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin and zinc, and alloys containing at least one of these metal simple substances (copper-nickel-phosphorus alloy). Alternatively, copper-iron-phosphorus-zinc alloy, etc.) can be mentioned.
  • a linear body having a conductive coating on the thread can be used.
  • the yarn include yarns spun from a resin such as nylon or polyester.
  • the conductive coating include a coating of a metal, a conductive polymer, a carbon material, or the like.
  • the conductive coating can be formed by plating, a vapor deposition method, or the like.
  • a linear body having a conductive coating on the yarn can improve the conductivity of the linear body while maintaining the flexibility of the yarn. That is, it becomes easy to reduce the electric resistance of the pseudo-seat structure 2.
  • the volume resistivity R of the conductive linear body 21 is preferably 1.0 ⁇ 10 -9 ⁇ ⁇ m or more and 1.0 ⁇ 10 -3 ⁇ ⁇ m or less, preferably 1.0 ⁇ 10 -8 ⁇ ⁇ m. More preferably, it is m or more and 1.0 ⁇ 10 -4 ⁇ ⁇ m or less.
  • the measurement of the volume resistivity R of the conductive linear body 21 is as follows.
  • Silver paste is applied to both ends of the conductive linear body 21, and the electric resistance of a portion having a length of 40 mm (0.04 m) from the end is measured to obtain the resistance value of the conductive linear body 21. Then, the cross-sectional area (unit: m 2 ) of the conductive linear body 21 is multiplied by the above resistance value, and the obtained value is divided by the above measured length (0.04 m) to obtain the conductive linear body. The volume resistivity R of the body 21 is calculated.
  • the cross-sectional shape of the conductive linear body 21 may be a polygonal shape, a flat shape, an elliptical shape, or the like. From the viewpoint of compatibility with the resin layer 3, it is preferably circular or elliptical.
  • the resin layer 3 is a layer containing a resin.
  • the resin layer 3 is preferably a layer containing an adhesive. The adhesive makes it easy to attach the conductive linear body 21 to the resin layer 3 or the resin layer 3 to the base material 1.
  • the resin layer 3 is preferably energy ray curable such as ultraviolet rays, visible energy rays, infrared rays or electron beams because it can be easily cured in a short time.
  • energy ray curing also includes thermosetting by heating using energy rays.
  • the adhesive of the resin layer 3 examples include a heat-curable adhesive that cures by heat, a so-called heat-seal type adhesive that adheres by heat, and an adhesive that develops adhesiveness by moistening.
  • the adhesive of the resin layer 3 is energy ray curable.
  • the energy ray-curable resin examples include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
  • Examples of the acrylate-based compound include chain aliphatic skeleton-containing (meth) acrylates (trimethylolpropanthry (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (pentaerythritol tetra (meth) acrylate).
  • chain aliphatic skeleton-containing (meth) acrylates trimethylolpropanthry (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (pentaerythritol tetra (meth) acrylate).
  • Meta acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate, etc.) , Cyclic aliphatic skeleton-containing (meth) acrylate (dicyclopentanyldi (meth) acrylate, dicyclopentadiene di (meth) acrylate, etc.), polyalkylene glycol (meth) acrylate (polyethylene glycol di (meth) acrylate, etc.), Examples thereof include oligoester (meth) acrylate, urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate, polyether (meth) acrylate other than the polyalkylene glycol (meth) acrylate, and itaconic acid
  • the weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 to 30,000, and more preferably 300 to 10,000.
  • the energy ray-curable resin contained in the adhesive composition may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. Further, it may be combined with a thermoplastic resin described later, and the combination and ratio can be arbitrarily selected.
  • the resin layer 3 may be a pressure-sensitive adhesive layer formed of a pressure-sensitive adhesive (pressure-sensitive adhesive).
  • the adhesive in the adhesive layer is not particularly limited.
  • examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a polyvinyl ether-based pressure-sensitive adhesive.
  • the pressure-sensitive adhesive is preferably at least one selected from the group consisting of acrylic-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives, and more preferably acrylic-based pressure-sensitive adhesives.
  • acrylic pressure-sensitive adhesive for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear alkyl group or a branched alkyl group (that is, a polymer obtained by at least polymerizing an alkyl (meth) acrylate). ), An acrylic polymer containing a structural unit derived from a (meth) acrylate having a cyclic structure (that is, a polymer obtained by at least polymerizing a (meth) acrylate having a cyclic structure) and the like.
  • (meth) acrylate is used as a term indicating both "acrylate” and "methacrylate", and the same applies to other similar terms.
  • the acrylic polymer is a copolymer
  • the form of copolymerization is not particularly limited.
  • the acrylic copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the acrylic copolymer may be crosslinked with a crosslinking agent.
  • the cross-linking agent include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • a hydroxyl group or a carboxyl group that reacts with these cross-linking agents should be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer. Can be done.
  • the resin layer 3 may further contain the above-mentioned energy ray-curable resin in addition to the pressure-sensitive adhesive.
  • the energy ray-curable component includes a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer and an energy ray-polymerizable functional group.
  • a compound having both groups in one molecule may be used.
  • the side chain of the acrylic copolymer can be polymerized by energy ray irradiation.
  • a component having an energy ray-polymerizable side chain may be used as the polymer component other than the acrylic polymer.
  • the thermosetting resin used for the resin layer 3 is not particularly limited, and specifically, an epoxy resin, a phenol resin, a melamine resin, a urea resin, a polyester resin, a urethane resin, an acrylic resin, a benzoxazine resin, or a phenoxy resin. , Amine-based compounds, acid anhydride-based compounds, and the like. These can be used alone or in combination of two or more. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using an imidazole-based curing catalyst, and are particularly excellent.
  • a moisture-curable resin may be used for the resin layer 3.
  • the moisture-curable resin used for the resin layer 3 is not particularly limited, and examples thereof include urethane resins and modified silicone resins produced by curing isocyanate with moisture.
  • thermosetting resin When an energy ray-curable resin or a thermosetting resin is used for the resin layer 3, it is preferable to use a photopolymerization initiator, a thermosetting initiator, or the like.
  • a photopolymerization initiator, a thermal polymerization initiator, or the like By using a photopolymerization initiator, a thermal polymerization initiator, or the like, a crosslinked structure is formed, and the pseudo-sheet structure 2 and the electrode 4 can be more firmly bonded and further protected.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -Hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and bis (2,4,6- Trimethylbenzoyl) -phenyl-phosphine oxide and the like can be mentioned.
  • thermal polymerization initiator examples include hydrogen peroxide, peroxodisulfate (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), and azo compounds (2,2'-azobis (2-amidinopropane) di.
  • Hydrochloride 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobisisobutyronitrile and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), etc.
  • examples thereof include organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
  • polymerization initiators can be used alone or in combination of two or more.
  • the amount used shall be 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the energy ray-curable resin or the thermosetting resin. Is preferable, and it is more preferably 1 part by mass or more and 100 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
  • the resin layer 3 may contain a filler.
  • the type of filler is appropriately selected depending on the application of the wiring sheet 100, the resin in the resin layer, and the like.
  • the hardness, thermal conductivity, or insulating property of the cured resin layer 3 can be further improved.
  • the base material 1 contains glass as a main component, the linear expansion coefficients of the resin layer 3 and the base material 1 can be brought close to each other.
  • the inorganic filler examples include inorganic powders (for example, powders such as silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), spherical beads of inorganic powder, single crystal fibers, and the like. Examples include glass fiber. Among these, silica filler and alumina filler are preferable as the inorganic filler.
  • the inorganic filler may be used alone or in combination of two or more.
  • the resin layer 3 may contain other components.
  • Other ingredients include, for example, well-known additives such as organic solvents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, fungicides, plasticizers, defoamers and wettability modifiers. Can be mentioned.
  • the electrode 4 is used to supply an electric current to the conductive linear body 21.
  • the ratio of the resistance values of the electrode 4 and the pseudo-sheet structure 2 is preferably 0.0001 or more and 0.3 or less, and more preferably 0.0005 or more and 0.1 or less.
  • the ratio of the resistance value of the electrode and the pseudo-sheet structure 2 can be obtained by "the resistance value of the electrode 4 / the resistance value of the pseudo-sheet structure 2".
  • the resistance values of the electrode 4 and the pseudo-sheet structure 2 can be measured using a tester. First, the resistance value of the electrode 4 is measured, then the electrode 4 is attached to the pseudo-sheet structure 2, and the resistance value in the attached state is measured. After that, the resistance values of the electrodes 4 and the pseudo-sheet structure 2 are calculated by subtracting the resistance values of the electrodes 4 from the resistance values of the pseudo-sheet structure 2 to which the electrodes are attached.
  • Electrode wire 41 As the electrode wire 41, those mentioned in the conductive linear body 21 can be used. Further, as the electrode wire 41, a strip-shaped conductor such as a foil or a plate may be used. When a strip-shaped conductor is used, the diameter d is read as the thickness. It is preferable that the electrode wire 41 is a strip-shaped conductor such as a foil or a plate because the contact area with the conductive linear body 21 can be widened.
  • FIGS. 4A to 4E The method for manufacturing the wiring sheet according to the present embodiment is manufactured as shown in FIGS. 4A to 4E.
  • the base material 1 is prepared, and then the resin layer 3 is formed on the base material 1.
  • the conductive linear body 21 is provided on the resin layer 3, and the electrode wires 41 are arranged at both ends of the conductive linear body 21.
  • the wiring sheet 100 is created by folding both ends of the conductive linear body 21 in the length direction.
  • the base material 1, the resin layer 3, and the pseudo-sheet structure 2 are folded back.
  • the wiring sheet 100 can be manufactured by bringing the first region 5 of the pseudo-sheet structure 2 into contact with the electrode 4 at the time of folding back.
  • the electrode 4 may be arranged in the first region 5 of the pseudo-sheet structure 2 and the electrode 4 may be brought into contact with the second region 7 when folded back.
  • the base material 1 and the resin layer 3 have thermoplasticity, they may be folded back while being heated.
  • the wiring sheet 100 may be manufactured by folding it back and then curing it.
  • a manufacturing method in which a plurality of conductive linear bodies 21 are provided on the resin layer 3 is manufactured, for example, through the following steps.
  • a cylindrical drum member having a predetermined diameter is prepared, and a base material 1 provided with a resin layer 3 is arranged on the outer peripheral surface of the drum member.
  • a plurality of bobbins around which the conductive linear body 21 is wound are prepared.
  • the conductive linear body 21 is fed out in parallel at a predetermined distance from each bobbin, and the conductive linear body 21 is made of resin by rotating the drum member while adhering the conductive linear body 21 to the resin layer 3.
  • the pseudo-sheet structure 2 is composed of a plurality of conductive linear bodies 21 attached to the resin layer 3.
  • the contact between the conductive linear body 21 and the electrode 4 has been limited to the second region 7 in the past, but in addition to the second region 7, the first region Contact also occurs in 5.
  • the contact area can be expanded and the electrical resistance of the wiring sheet 100 can be reduced.
  • the contact resistance between the conductive linear body 21 and the electrode 4 can be reduced, power loss can be suppressed.
  • the wiring sheet 100 is used as a heating element, the contact resistance between the conductive linear body 21 and the electrode 4 can be reduced, so that the contact between the conductive linear body 21 and the electrode 4 can be reduced. Heat generation due to resistance can be suppressed.
  • the heat generated by the wiring sheet 100 is based on the heat generated by the conductive linear body 21, so that the heat can be uniformly generated.
  • the resin layer 3 has the same configuration as that of the first embodiment except that the resin layer 3 is composed of a plurality of resin strips 31, so the changes will be described, and the other previous description will be described. The parts in common with are omitted.
  • the resin layer 3 arranged on the base material 1 is orthogonal to the length direction of the conductive linear body 21 in a plan view.
  • a plurality of resin strips 31 having a width W in the direction are arranged substantially in parallel with a predetermined interval P.
  • a conductive linear body 21 having a diameter D is arranged on each resin strip-shaped body 31 having a thickness t.
  • the method for producing the resin strip 31 is, for example, the following process.
  • the resin strip 31 can be provided by applying the resin in a plurality of strips.
  • the range in which the resin strip 31 is provided can be limited to the range required for the conductive linear body 21 to adhere to the base material 1, so that the resin used for the resin layer 3 can be used. Can be reduced.
  • the bending resistance can be reduced when the folded edge 22 is manufactured.
  • a plurality of conductive linear bodies 21 having the same amplitude and wavelength in a plan view are aligned in phase. , Arranged and configured almost in parallel at predetermined intervals.
  • the manufacturing method for forming the conductive linear body 21 into a wavy shape is, for example, manufactured through the following steps.
  • the drum member or the bobbin is vibrated in the drum axial direction to be conductive.
  • the sex linear body 21 can have a wavy shape.
  • a flexible base material can be used as the base material 1.
  • the flexible base material refers to a base material that is easily bent at room temperature and has flexibility. Examples of the flexible base material include synthetic resin films, papers, non-woven fabrics and cloths (woven or knitted fabrics).
  • the base material 1 supports the conductive linear body 21 via the resin layer 3.
  • the base material 1 may directly support the conductive linear body 21.
  • all or part of the conductive linear body 21 may be inside the base material 1 except for the portion in contact with the electrode 4.
  • the base material 1 is manufactured as a woven fabric, the conductive linear body 21 is used as a part of the warp or the weft, and is woven to support the conductive linear body 21 by using the base material 1. You may.
  • the folded edge 22 is folded back including the base material 1.
  • the contact resistance can be reduced by expanding the contact area between the conductive linear body 21 constituting the pseudo sheet structure 2 and the electrode 4, the contact resistance can be reduced, so that the wiring sheet 100C shown in FIG. 8 can be used.
  • Only the pseudo sheet structure 2 and the resin layer 3 may be folded back. Further, only the pseudo sheet structure 2 may be folded back. Since the pseudo-sheet structure 2 can be folded back independently of the resin layer 3 or the base material 1, the length of the base material 1 or the resin layer 3 may be longer than the length of the pseudo-sheet structure 2. , Or may be short.
  • the end portion of the conductive linear body 21 in the first region 5 exceeds the upper line of the electrode 4 and is in the second region. It is in a state of being extended in parallel with 7.
  • the electrode 4 and the end portion of the conductive linear body 21 in the first region 5 may be in a contact state different from that of the wiring sheet 100.
  • the wiring sheet 100D shown in FIG. 9A is in a state in which the end portion of the conductive linear body 21 in the first region 5 is bent toward the second region 7 and is in direct contact with the second region 7.
  • FIG. 9B is in a state where the end portion of the conductive linear body 21 in the first region 5 is provided up to a position where it comes into contact with the upper line of the electrode 4.
  • the contact area between the conductive linear body 21 and the electrode 4 can be expanded, so that the conductive wire can be contacted.
  • the contact between the body 21 and the electrode 4 can be stabilized.
  • the contact between the conductive linear body 21 and the electrode 4 may be direct contact or indirect contact. Adhesives or double-sided tape can be used for indirect contact. Further, in the case of direct contact or indirect contact, the contact resistance can be reduced by electrically connecting using a conductive adhesive or a conductive double-sided tape.
  • the contact between the end portion of the conductive linear body 21 in the first region 5 and the conductive linear body 21 in the second region 7 may be fixed by adhesion or the like.
  • the conductive linear bodies 21 may be directly fixed to each other.
  • the base material 1 or the resin layer 3 may be fixed by thermocompression bonding or sewing using a known method depending on the material.
  • the electrode 4 is described as being composed of one electrode wire 41.
  • a conductive linear body 21 is further arranged along the outer edge of the electrode wire 41 at the folded end edge 22, as in the wiring sheet 100F shown in FIG. 10A. There may be almost no gap between the body 21 and the electrode wire 41. Since there is almost no gap between the conductive linear body 21 and the electrode wire 41, the contact area between the conductive linear body 21 and the electrode wire 41 can be maximized.
  • the conductive linear body 21 may be brought into contact with the conductive linear body 21 along one side surface of the electrode wire 41 at the folded end edge 22.
  • the electrode 4 is composed of the electrode wire 41.
  • the electrode 4 may be an electrode obtained by solidifying a liquid conductive material (that is, an electrode made of a solidified liquid conductive material).
  • a liquid conductive material is used, a better connection state between the conductive linear body 21 and the electrode 4 can be ensured.
  • a typical example of the above-mentioned liquid conductive material is a conductive paste.
  • the conductive paste for example, a paste in which metal particles or carbon particles are dispersed in a binder resin and / or an organic solvent can be applied.
  • the metal particles include metal particles such as gold, silver, copper and nickel.
  • the binder resin include well-known resins such as polyester resin, polyurethane resin, epoxy resin and phenol resin.
  • the liquid conductive material for example, solder, conductive ink, or the like may be used in addition to the conductive paste.
  • a conductive foil or plate and a liquid conductive material may be used in combination.
  • a conductive foil or plate may be attached after applying a liquid conductive material to the pseudo-sheet structure 2, or a liquid conductive material may be applied after attaching the conductive foil or plate. ..
  • the combined use of a conductive foil or plate with a liquid conductive material improves the electrical connection of the electrodes.
  • the first region 5 and the second region 7 between the adjacent electrode wires 41 are separated from each other and have a gap.
  • the first region 5 and the second region 7 between the adjacent electrode wires 41 may be brought into contact with each other.
  • the gap is reduced and the contact area between the conductive linear body 21 and the electrode wire 41 is increased, which is preferable.
  • the resin layer 3 and the base material 1 are arranged on one side of the pseudo sheet structure 2.
  • the base material 1 or the resin layer 3 may be present on both sides of the pseudo-sheet structure 2.
  • it may be a composite laminate in which only the pseudo-sheet structure 2 or a laminate composed of the pseudo-sheet structure 2 and the base material 1 or the resin layer 3 is further laminated.
  • the single or plurality of pseudo-sheet structures 2 may be the same or different.
  • the single or plurality of base materials 1 or resin layer 3 may be the same or different.
  • the pseudo-sheet structure 2 is composed of a plurality of conductive linear bodies 21 having a sinusoidal waveform having the same amplitude and wavelength in a plan view and having the same phase. ..
  • the waveform of the conductive linear body 21 may have a wave shape such as a rectangular wave, a triangular wave, and a sawtooth wave. Further, the waveform may be different for each conductive linear body 21. Further, the phase may be different for each conductive linear body 21.
  • the wiring sheet 100 When the wiring sheet 100 is used as a heating element (sheet-shaped heater), examples of the use of the heating element include a defogger and a deicer.
  • examples of the adherend include mirrors in bathrooms, windows of transportation devices (passenger cars, railroads, ships, aircraft, etc.), windows / wallpapers of buildings, eyewear, lighting surfaces of traffic lights, signs, and the like. Be done.
  • heaters have been used to control the temperature of batteries in electric vehicles, and thin heaters are suitable for individual temperature control of laminated cells.
  • the wiring sheet 100 can be used as another use of the heating element as a heater incorporated in a chair or a seat of a transportation device (passenger car, railroad, ship, aircraft, etc.).
  • Example 1 An adhesive sheet having an acrylic pressure-sensitive adhesive (manufactured by Lintec Corporation, trade name: "PK") having a thickness of 20 ⁇ m was prepared on a base material made of a thermal-bonded non-woven fabric made of polyester having a basis weight of 40 g / m 2.
  • a tungsten wire (diameter 25 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: TWG-CS) was prepared.
  • the adhesive sheet was wrapped with the adhesive surface on the outside so that the peripheral surface of the rubber drum member was not wrinkled. Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape.
  • the tungsten wire wound around the bobbin was attached to the surface of each resin strip in the adhesive sheet located near the end of the drum member, and then wound up by the drum member while feeding out the tungsten wire. By rotating the drum member once, the tungsten wire was wound around the adhesive sheet. In this way, a pseudo-sheet structure in which a plurality of tungsten wires were installed at equal intervals was formed on the surface of the adhesive sheet. At this time, the drum member was rotated while vibrating in the direction of the drum axis so that the wound tungsten wire drew a wavy shape. Tungsten wires were provided at equal intervals of 25, and the intervals were 10 mm.
  • a gold-plated copper wire (diameter 150 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: C1100-H AuP) was used.
  • the electrodes were attached to both ends of the tungsten wire in a direction orthogonal to the direction in which the tungsten wire extends.
  • Four gold-plated copper wires were used for each electrode, and a total of eight gold-plated copper wires were used.
  • the distance between the two electrodes was 200 mm at the innermost distance between the copper wires.
  • the gap between the folded edge and the electrode was 5 mm.
  • the width of the first region was 10 mm.
  • a similar non-woven fabric was attached to the adhesive surface on which the tungsten wire of the pseudo-sheet structure was arranged to prepare a wiring sheet.
  • Example 2 Wired in the same manner as in Example 1 except that a tungsten wire was plated with gold as a conductive linear body (diameter 25 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: Au (0.1) -TWG). A sheet was prepared and evaluated in the same manner as in Example 1.
  • Example 3 Gold-plated tungsten wire as a conductive linear body Tungsten wire (diameter 25 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: Au (0.1) -TWG) is used, and gold in Example 1 is used as an electrode. Same as Example 1 except that the four plated copper wires were replaced with conductive copper foil adhesive tape (manufactured by Teraoka Mfg. Co., Ltd., 8323-10 ⁇ 20) and the adhesive surface of the copper foil adhesive tape was attached to the gold-plated tungsten wire surface. To prepare a wiring sheet.
  • conductive copper foil adhesive tape manufactured by Teraoka Mfg. Co., Ltd., 8323-10 ⁇ 20
  • the width of the copper foil was 10 mm, the thickness of the copper foil was 0.035 mm, and the distance between the inner ends of the copper foil at both ends of the gold-plated tungsten wire was 200 mm.
  • the wiring sheet was evaluated in the same manner as in Example 1.
  • FIG. 11 shows the applied voltage in Comparative Example 1 in which the pseudo-sheet structure was in contact with the electrodes only in the first region 5 and the second region 7 and the pseudo-sheet structure was in contact with the electrodes. It is a graph which showed the relationship between a resistance value and a resistance value.
  • FIG. 12 is a graph showing the relationship between the applied voltage and the resistance value in Example 2 and Comparative Example 2.
  • FIG. 13 is a graph showing the relationship between the applied voltage and the resistance value in Example 3 and Comparative Example 3.
  • the wiring sheet in the embodiment has lower electrical resistance than the wiring sheet in the comparative example at each voltage applied to the heater. It is considered that the reason why the wiring sheet in the examples showed low electrical resistance was that the contact area between the conductive linear body and the electrode was expanded, so that the contact resistance between the two was mainly reduced.
  • the resistance value of a conductor increases as the temperature rises. Therefore, when the conductive linear body is heat-generating, it is considered that the applied voltage increases and the resistance value increases. If this is graphed as the relationship between the voltage and the resistance value, it is recognized that the curve or straight line rises to the right. In Examples 2 and 3, a curve rising to the right is obtained in the graph showing the relationship between the voltage and the resistance value. This is considered to indicate that in Examples 2 and 3, heat was generated according to the applied voltage because the resistance due to the contact between the conductive linear body and the electrode was stable. In Example 2, it is recognized that the contact resistance between the conductive linear body and the electrode was stabilized by using the conductive linear body having gold on the surface as well as expanding the contact area by the bent portion.
  • Example 3 in addition to the reason of Example 2, a copper foil capable of increasing the contact area with the conductive linear body is used for the electrode, so that the conductive linear body and the electrode are separated from each other. It is considered that the contact resistance is stable. On the other hand, if the contact between the conductive linear body and the electrode is unstable, the heat generation becomes unstable due to the unstable contact resistance, and the resistance value against the applied voltage is also considered to be unstable.
  • the present invention it is possible to provide a wiring sheet with reduced electrical resistance. Further, according to the present invention, it is considered that the contact resistance between the conductive linear body and the electrode is reduced. Therefore, when the wiring sheet is used as a heating element, the contact resistance between the conductive linear body and the electrode is considered to be reduced. It is possible to provide a wiring sheet that suppresses heat generation at the contact portion of the wire and generates heat more uniformly.
  • Base material 2 ... Pseudo-sheet structure, 21 ... Conductive linear body, 22 ... Folded edge, 3 ... Resin layer, 31 ... Resin strip, 4 ... Electrode, 41 ... Electrode wire, 5 ... First Area, 6 ... Folded area, 7 ... Second area, 100, 100A-100H ... Wiring sheet.

Abstract

A wiring sheet (100) equipped with a pseudo-sheet structure (2) in which a plurality of conductive wire-like bodies (21) are arranged with intervals therebetween, and also equipped with a pair of electrodes (4), wherein: at least one end of the pseudo-sheet structure in the lengthwise direction of the conductive wire-like bodies when seen from a planar view of the pseudo-sheet structure (2) is equipped with a folded-back edge section; the pseudo-sheet structure before being folded back is provided with, in the following order from the end thereof, a first region (5), a fold-back region (6) which becomes the folded-back edge section, and a second region (7) which faces the first region (5) after the folding back occurs; and the pseudo-sheet structure (2) and one of the electrodes (4) are electrically connected to one another in the first region (5) and the second region (7).

Description

配線シートWiring sheet
 本発明は、配線シートに関する。 The present invention relates to a wiring sheet.
 複数の導電性線状体が間隔をもって配列された疑似シート構造を有するシート状導電部材が知られている。このシート状導電部材は、例えば、電極を接続することによって発熱するテキスタイルの材料等のシート状発熱体として、種々の物品の部材に利用できる。 A sheet-like conductive member having a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals is known. This sheet-shaped conductive member can be used as a member of various articles as a sheet-shaped heating element such as a textile material that generates heat by connecting electrodes.
 例えば、シート状発熱体として、特許文献1には、疑似シート構造体を有するシート状発熱体が記載されている。疑似シート構造体は、一方向に延びた複数の金属ワイヤーが間隔をもって配列されて構成されている。疑似シート構造体の片面に接着層が配されるとともに、疑似シート構造体に一対の電極が電気的に接続されてシートが構成されている。 For example, as a sheet-shaped heating element, Patent Document 1 describes a sheet-shaped heating element having a pseudo-sheet structure. The pseudo-seat structure is composed of a plurality of metal wires extending in one direction arranged at intervals. An adhesive layer is arranged on one side of the pseudo-sheet structure, and a pair of electrodes are electrically connected to the pseudo-sheet structure to form a sheet.
国際公開2017/086395号International release 2017/086395
 特許文献1に記載のシート状発熱体は、電極と、導電性線状体とが、表面の1箇所で接触するように配されている。このため、細い導電性線状体を使用すると、電極と導電性線状体との接触面積が少ないため、電極と導電性線状体との間の接触抵抗が高くなる問題があった。 In the sheet-shaped heating element described in Patent Document 1, the electrode and the conductive linear body are arranged so as to be in contact with each other at one place on the surface. Therefore, when a thin conductive linear body is used, the contact area between the electrode and the conductive linear body is small, so that there is a problem that the contact resistance between the electrode and the conductive linear body is increased.
 本発明の目的は、導電性線状体と電極との接触面積を拡大し、疑似シート構造体を構成する複数の導電性線状体と電極との間の電気抵抗を低減した配線シートを提供することである。 An object of the present invention is to provide a wiring sheet in which the contact area between the conductive linear body and the electrode is expanded and the electrical resistance between the plurality of conductive linear bodies constituting the pseudo-sheet structure and the electrode is reduced. It is to be.
 本発明の一態様によれば、複数の導電性線状体が間隔をもって配列された疑似シート構造体と、一対の電極とを備え、前記疑似シート構造体の平面視において、前記導電性線状体の長さ方向における前記疑似シート構造体の少なくとも一端が折り返し縁部を備え、折り返し前の前記疑似シート構造体は、端から順に、第一領域、前記折り返し縁部となる折り返し領域、および折り返し後に前記第一領域と対向する第二領域を備え、前記疑似シート構造体と前記電極の一方とは、前記第一領域、および前記第二領域において、電気的に接続している、配線シートが提供される。 According to one aspect of the present invention, a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals and a pair of electrodes are provided, and the conductive linear structure is provided in a plan view of the pseudo-sheet structure. At least one end of the pseudo-sheet structure in the length direction of the body has a folded edge portion, and the pseudo-sheet structure before folding has a first region, a folded region serving as the folded edge portion, and a folded edge portion in this order from the end. A wiring sheet that later comprises a second region facing the first region and is electrically connected to the pseudo-sheet structure and one of the electrodes in the first region and the second region. Provided.
 本発明の一態様にかかる配線シートにおいて、前記導電性線状体の長さ方向における前記疑似シート構造体の両端が折り返し縁部を有し、前記両端の折り返し縁部で、それぞれの電極が前記第一領域、および前記第二領域において電気的に接続していることが好ましい。 In the wiring sheet according to one aspect of the present invention, both ends of the pseudo-sheet structure in the length direction of the conductive linear body have folded edges, and at the folded edges at both ends, the respective electrodes are described. It is preferable that the first region and the second region are electrically connected.
 本発明の一態様にかかる配線シートにおいて、さらに、前記導電性線状体を支持する基材を備えることが好ましい。 It is preferable that the wiring sheet according to one aspect of the present invention further includes a base material that supports the conductive linear body.
 本発明の一態様にかかる配線シートにおいて、前記基材が、柔軟性基材であることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that the base material is a flexible base material.
 本発明の一態様にかかる配線シートにおいて、前記柔軟性基材が、合成樹脂フィルム、紙、不織布または布であることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that the flexible base material is a synthetic resin film, paper, non-woven fabric or cloth.
 本発明の一態様にかかる配線シートにおいて、さらに、前記導電性線状体を支持する樹脂層を備えることが好ましい。 It is preferable that the wiring sheet according to one aspect of the present invention further includes a resin layer that supports the conductive linear body.
 本発明の一態様にかかる配線シートにおいて、さらに、前記導電性線状体の少なくとも一部は、前記樹脂層に埋まっていることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that at least a part of the conductive linear body is embedded in the resin layer.
 本発明の一態様にかかる配線シートにおいて、前記電極が、金属ワイヤーであることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that the electrode is a metal wire.
 本発明の一態様にかかる配線シートにおいて、前記第一領域における前記導電性線状体と、前記第二領域における前記導電性線状体とが、直接または間接的に接触していることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that the conductive linear body in the first region and the conductive linear body in the second region are in direct or indirect contact with each other. ..
 本発明の一態様にかかる配線シートにおいて、前記疑似シート構造体の平面視において、前記折り返し縁部と、電極との間隙が、50mm以下であることが好ましい。 In the wiring sheet according to one aspect of the present invention, the gap between the folded edge portion and the electrode is preferably 50 mm or less in a plan view of the pseudo-sheet structure.
 本発明の一態様にかかる配線シートにおいて、前記疑似シート構造体の平面視において、前記導電性線状体が波形状であることが好ましい。 In the wiring sheet according to one aspect of the present invention, it is preferable that the conductive linear body has a wavy shape in a plan view of the pseudo-sheet structure.
 本発明の一態様にかかる配線シートにおいて、発熱体として用いることが好ましい。 It is preferable to use it as a heating element in the wiring sheet according to one aspect of the present invention.
 本発明によれば、導電性線状体と電極との接触面積を拡大し、疑似シート構造体を構成する複数の導電性線状体と電極との間の抵抗を低減した配線シートを提供することができる。 According to the present invention, there is provided a wiring sheet in which the contact area between the conductive linear body and the electrode is expanded and the resistance between the plurality of conductive linear bodies and the electrodes constituting the pseudo sheet structure is reduced. be able to.
本発明の第一実施形態にかかる配線シートを示す概略図である。It is the schematic which shows the wiring sheet which concerns on 1st Embodiment of this invention. 図1のII-II線に沿った断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section along the line II-II of FIG. 図1のIII-III線に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the line III-III of FIG. 本発明の第一実施形態にかかる配線シートの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the wiring sheet which concerns on 1st Embodiment of this invention. 本発明の第一実施形態にかかる配線シートの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the wiring sheet which concerns on 1st Embodiment of this invention. 本発明の第一実施形態にかかる配線シートの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the wiring sheet which concerns on 1st Embodiment of this invention. 本発明の第一実施形態にかかる配線シートの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the wiring sheet which concerns on 1st Embodiment of this invention. 本発明の第一実施形態にかかる配線シートの製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the wiring sheet which concerns on 1st Embodiment of this invention. 本発明の第二実施形態にかかる配線シートの要部を示す概略図である。It is the schematic which shows the main part of the wiring sheet which concerns on 2nd Embodiment of this invention. 図5のVI-VI線に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the VI-VI line of FIG. 本発明の第三実施形態にかかる配線シートの要部を示す概略図である。It is the schematic which shows the main part of the wiring sheet which concerns on 3rd Embodiment of this invention. 本発明の他の実施形態にかかる配線シートの要部を示す概略図である。It is the schematic which shows the main part of the wiring sheet which concerns on other embodiment of this invention. 本発明の他の実施形態にかかる配線シートにおける断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section in the wiring sheet which concerns on other embodiment of this invention. 本発明の他の実施形態にかかる配線シートにおける断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section in the wiring sheet which concerns on other embodiment of this invention. 本発明の他の実施形態にかかる配線シートにおける断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section in the wiring sheet which concerns on other embodiment of this invention. 本発明の他の実施形態にかかる配線シートにおける断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section in the wiring sheet which concerns on other embodiment of this invention. 本発明の他の実施形態にかかる配線シートにおける断面の要部を示す断面図である。It is sectional drawing which shows the main part of the cross section in the wiring sheet which concerns on other embodiment of this invention. 実施例1および比較例1の電圧-抵抗の関係を示すグラフである。It is a graph which shows the relationship of voltage | resistance of Example 1 and Comparative Example 1. 実施例2および比較例2の電圧-抵抗の関係を示すグラフである。It is a graph which shows the relationship of voltage | resistance of Example 2 and Comparative Example 2. 実施例3および比較例3の電圧-抵抗の関係を示すグラフである。It is a graph which shows the relationship of voltage | resistance of Example 3 and Comparative Example 3.
 [第一実施形態]
 以下、本発明の実施形態について、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大または縮小をして図示した部分がある。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the contents of the embodiments. In addition, in the drawing, there is a part shown by being enlarged or reduced for easy explanation.
(配線シート)
 本発明の第一実施形態にかかる配線シート100は、図1ないし図3に示すように、広幅、長尺の基材1と、この基材上に配置された樹脂層3と、この樹脂層3上に配置された疑似シート構造体2と、この疑似シート構造体2の両端にそれぞれ配置された電極4とを備えて構成されている。疑似シート構造体2と各電極4とは、電気的に接続されている。
 疑似シート構造体2は、例えば、断面円形の金属線などで構成され、平面視において、複数本の導電性線状体21が所定の間隔をおいて、ほぼ並行に配置されて、構成されている。また、電極4は、複数本、本実施例では3本の電極ワイヤー41から構成されており、各電極ワイヤー41は、導電性線状体21の長さ方向と垂直な方向に並行に配置されている。
 配線シート100の重ねて配置された基材1、樹脂層3および疑似シート構造体2の両端部は、それぞれ疑似シート構造体2側に折り返され、折り返し端縁22が構成されている。
 折り返し端縁22において、導電性線状体21の長さ方向における端から折り返される部分までの所定長さ部分は、第一領域5とされ、折り返される部分は折り返し領域6とされ、折り返し後に第一領域5と対向する部分は、第二領域7とされる。
 また、疑似シート構造体2の平面視において、折り返し端縁22における最も折り返し縁部側にある電極ワイヤー41は、図2に示されるように折り返し縁部の導電性線状体21から間隙Gをおいて配置されている。
 折り返し端縁22を形成することで、電極4を構成する各電極ワイヤー41の上下両縁には、各導電性線状体21の第一領域5と第二領域7とが当接されて、電気的に接続される。このように、電極4を構成する各電極ワイヤー41の上下両縁に導電性線状体21の第一領域5と第二領域7とが上下2箇所で接触することにより、電極4を構成する各電極ワイヤー41と導電性線状体21との接触面積が増加し、電極4と疑似シート構造体2との電気抵抗が低減されることとなる。
(Wiring sheet)
As shown in FIGS. 1 to 3, the wiring sheet 100 according to the first embodiment of the present invention includes a wide and long base material 1, a resin layer 3 arranged on the base material, and the resin layer. A pseudo-sheet structure 2 arranged on the pseudo-sheet structure 2 and electrodes 4 arranged at both ends of the pseudo-sheet structure 2 are provided. The pseudo-sheet structure 2 and each electrode 4 are electrically connected.
The pseudo-sheet structure 2 is composed of, for example, a metal wire having a circular cross section, and in a plan view, a plurality of conductive linear bodies 21 are arranged substantially in parallel at predetermined intervals. There is. Further, the electrode 4 is composed of a plurality of electrode wires 41, and in this embodiment, three electrode wires 41, and each electrode wire 41 is arranged in parallel in a direction perpendicular to the length direction of the conductive linear body 21. ing.
Both ends of the base material 1, the resin layer 3, and the pseudo-sheet structure 2 arranged on top of each other of the wiring sheet 100 are folded back toward the pseudo-sheet structure 2 to form a folded end edge 22.
In the folded end edge 22, the predetermined length portion from the end of the conductive linear body 21 in the length direction to the folded portion is designated as the first region 5, and the folded portion is designated as the folded region 6, and the folded portion is designated as the folded region 6. The portion facing the one region 5 is referred to as the second region 7.
Further, in the plan view of the pseudo-sheet structure 2, the electrode wire 41 on the folded-back edge portion 22 closest to the folded-back edge portion has a gap G formed from the conductive linear body 21 of the folded-back edge portion as shown in FIG. It is placed in place.
By forming the folded end edge 22, the first region 5 and the second region 7 of each conductive linear body 21 are brought into contact with the upper and lower edges of each electrode wire 41 constituting the electrode 4. It is electrically connected. In this way, the first region 5 and the second region 7 of the conductive linear body 21 come into contact with the upper and lower edges of each of the electrode wires 41 constituting the electrode 4 at two upper and lower positions, thereby forming the electrode 4. The contact area between each electrode wire 41 and the conductive linear body 21 is increased, and the electrical resistance between the electrode 4 and the pseudo-sheet structure 2 is reduced.
 前述の間隙Gは、50mm以下が好ましい。間隙Gを50mm以下とすることによって、使用する基材1等の材料を低減し、折り返し縁部の剛性を上げ、形状を安定させることができる。
 間隙Gは、30mm以下がより好ましく、10mm以下がさらに好ましい。
The above-mentioned gap G is preferably 50 mm or less. By setting the gap G to 50 mm or less, the material such as the base material 1 to be used can be reduced, the rigidity of the folded edge portion can be increased, and the shape can be stabilized.
The gap G is more preferably 30 mm or less, further preferably 10 mm or less.
 樹脂層3は、基材1と疑似シート構造体2とを接着または固着等により一体化して疑似シート構造体2を指示するものである。
 導電性線状体21を支持する樹脂層3は厚さtを有しており、直径Dを有する導電性線状体21の一部は樹脂層3に埋まっている。また、導電性線状体21と接触する電極ワイヤー41は、直径dを有する。
 樹脂層3の厚さtは、接着性の観点から、3μm以上150μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。樹脂層3の厚さtは、配線シート100の用途に応じて適宜決定してもよい。
 導電性線状体21の直径Dは、5μm以上75μm以下であることが好ましい。シート抵抗の上昇抑制と、配線シート100を発熱体として用いた場合の発熱効率の向上との観点から、導電性線状体21の直径Dは、8μm以上60μm以下であることがより好ましく、12μm以上40μm以下であることがさらに好ましい。
 電極ワイヤー41の直径dは、10μm以上300μm以下であることが好ましく、20μm以上200μm以下であることがより好ましく、25μm以上150μm以下であることが特に好ましい。
The resin layer 3 indicates the pseudo-seat structure 2 by integrating the base material 1 and the pseudo-sheet structure 2 by adhesion, fixation, or the like.
The resin layer 3 that supports the conductive linear body 21 has a thickness t, and a part of the conductive linear body 21 having a diameter D is buried in the resin layer 3. Further, the electrode wire 41 in contact with the conductive linear body 21 has a diameter d.
From the viewpoint of adhesiveness, the thickness t of the resin layer 3 is preferably 3 μm or more and 150 μm or less, and more preferably 5 μm or more and 100 μm or less. The thickness t of the resin layer 3 may be appropriately determined depending on the use of the wiring sheet 100.
The diameter D of the conductive linear body 21 is preferably 5 μm or more and 75 μm or less. From the viewpoint of suppressing the increase in sheet resistance and improving the heat generation efficiency when the wiring sheet 100 is used as a heating element, the diameter D of the conductive linear body 21 is more preferably 8 μm or more and 60 μm or less, more preferably 12 μm. It is more preferably 40 μm or less.
The diameter d of the electrode wire 41 is preferably 10 μm or more and 300 μm or less, more preferably 20 μm or more and 200 μm or less, and particularly preferably 25 μm or more and 150 μm or less.
 導電性線状体21の直径Dは、デジタル顕微鏡を用いて、疑似シート構造体2の導電性線状体21を観察し、無作為に選んだ5箇所で、導電性線状体21の直径を測定し、その平均値とする。 The diameter D of the conductive linear body 21 is the diameter D of the conductive linear body 21 at five randomly selected locations by observing the conductive linear body 21 of the pseudo-sheet structure 2 using a digital microscope. Is measured and used as the average value.
(基材)
 基材1は、樹脂層3を介して導電性線状体21を支持する。基材1の表面は、平滑であっても、凹凸であっても、いずれでもよい。
(Base material)
The base material 1 supports the conductive linear body 21 via the resin layer 3. The surface of the base material 1 may be smooth or uneven.
 基材1の材質として、例えば、木材、紙(パルプ)、レザー、熱可塑性樹脂、熱硬化性樹脂、その他の樹脂およびそれらを変性した樹脂、金属、半金属、セラミックス並びにガラスなどを例示することができるがこれらに限定されるものではない。 Examples of the material of the base material 1 include wood, paper (pulp), leather, thermoplastic resin, thermosetting resin, other resins, and modified resins, metals, semi-metals, ceramics, and glass. However, it is not limited to these.
 基材1に用いる樹脂は、単独重合体または共重合体のいずれであってもよい。また、基材1に用いる樹脂は、ランダム共重合体、交互共重合体、ブロック共重合体またはグラフト重合体であってもよい。 The resin used for the base material 1 may be either a homopolymer or a copolymer. Further, the resin used for the base material 1 may be a random copolymer, an alternating copolymer, a block copolymer or a graft polymer.
 基材1に用いる熱可塑性樹脂は、例えば、オレフィン樹脂、アクリル樹脂、スチレン樹脂、フッ素樹脂、ポリエステル、ポリアリレート、ポリカーボネート、ポリアミド、アラミド樹脂、ポリアミドイミド、ポリイミド、ポリウレタン、ポリエーテル、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリーレンスルフィド、ポリアセタール、シリコーン樹脂およびこれらを変性した樹脂等が挙げられる。 The thermoplastic resin used for the base material 1 is, for example, olefin resin, acrylic resin, styrene resin, fluororesin, polyester, polyarylate, polycarbonate, polyamide, aramid resin, polyamideimide, polyimide, polyurethane, polyether, polyether sulfone. , Polyether ketone, polyether ether ketone, polyarylene sulfide, polyacetal, silicone resin, and modified resins thereof.
 上記の変性して製造する樹脂の他、樹脂の変性物としては、硫黄もしくは硫黄化合物またはラジカル重合開始剤を用いて加硫したゴムが挙げられる。 In addition to the above-mentioned modified resin produced, examples of the modified resin include rubber vulcanized with sulfur or a sulfur compound or a radical polymerization initiator.
 熱硬化性樹脂として、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、アルキド樹脂、ウレタン樹脂および熱硬化性イミド樹脂等が挙げられる。
 その他の樹脂として、例えば、漆等が挙げられる。
 金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属、または、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、およびレニウムタングステン等)が挙げられる。また、半金属としては、ケイ素等が挙げられる。
Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, alkyd resin, urethane resin, thermosetting imide resin and the like.
Examples of other resins include lacquer and the like.
Examples of the metal include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver and gold, or alloys containing two or more kinds of metals (for example, steel such as stainless steel and carbon steel, brass and phosphor bronze). , Zyryl copper alloy, beryllium copper, iron nickel, dichrome, nickel titanium, cantal, hasteloy, and renium tungsten, etc.). Moreover, as a metalloid, silicon and the like can be mentioned.
 基材1は、1種類の層単独からなるものでもよく、また、2種以上の層が組み合わされたものであってもよい。 The base material 1 may be composed of one type of layer alone, or may be a combination of two or more types of layers.
(疑似シート構造体)
 疑似シート構造体2は、前述のように、各導電性線状体21が、導電性線状体21の長さ方向と直交する方向に、規則的な間隔で、複数配列された構造を有する。複数の導電性線状体21におけるこの間隔は、不規則な間隔であってもよい。また、複数の導電性線状体21におけるこの間隔は、規則的な間隔と不規則な間隔とが混在してもよい。
 例えば、配線シートを発熱体として用いた場合に、発熱量を多くしたい部分では、導電性線状体21を密に配列させ、発熱量を抑制したい部分では、導電性線状体21を疎に配列することによって、場所により発熱量を制御することができる。
(Pseudo sheet structure)
As described above, the pseudo-sheet structure 2 has a structure in which each of the conductive linear bodies 21 is arranged in a plurality of directions at regular intervals in a direction orthogonal to the length direction of the conductive linear bodies 21. .. This interval in the plurality of conductive linear bodies 21 may be an irregular interval. Further, the intervals in the plurality of conductive linear bodies 21 may be a mixture of regular intervals and irregular intervals.
For example, when a wiring sheet is used as a heating element, the conductive linear bodies 21 are densely arranged in a portion where a large amount of heat is desired to be generated, and the conductive linear bodies 21 are sparsely arranged in a portion where the amount of heat generation is desired to be suppressed. By arranging, the amount of heat generated can be controlled depending on the location.
(導電性線状体)
 導電性線状体21を構成するものとして、金属およびカーボンナノチューブを例示することができるが、これらに限定されるものではない。
 金属はワイヤー状にして用いることができる。以下、金属で構成されたワイヤーを含む線状体を、「金属線状体」ともいう。
(Conductive linear body)
Metals and carbon nanotubes can be exemplified as constituting the conductive linear body 21, but the conductive linear body 21 is not limited thereto.
The metal can be used in the form of a wire. Hereinafter, a linear body including a wire made of metal is also referred to as a "metal linear body".
 金属線状体は、高い熱伝導性、高い電気伝導性、高いハンドリング性および汎用性を有する。導電性線状体21として金属線状体を適用すると、高い電気伝導性によって、疑似シート構造体2の抵抗値を低減する。また、配線シート100を発熱体として適用したとき、高い熱伝導性によって、速やかな発熱が実現されやすくなる。さらに、金属は加工性に優れるため、細い線状体、太い線状体または一本の線状体であっても部位により太さの異なる線状体を得られやすい。 The metal wire has high thermal conductivity, high electrical conductivity, high handleability and versatility. When a metal wire is applied as the conductive wire 21, the resistance value of the pseudo-sheet structure 2 is reduced due to the high electrical conductivity. Further, when the wiring sheet 100 is applied as a heating element, rapid heat generation is easily realized due to high thermal conductivity. Further, since the metal is excellent in processability, it is easy to obtain a linear body having a different thickness depending on the portion even if it is a thin linear body, a thick linear body, or a single linear body.
 金属ワイヤーを含む線状体は、1本の金属ワイヤーからなる線状体であってもよいし、複数本の金属ワイヤーを撚った線状体であってもよい。
 配線シート100を配線用途に使用する場合、導電性の高い金および銅等の金属ワイヤーを例示することができる。また、配線シートを発熱体として使用する場合、タングステンまたはニッケルクロム合金等を例示することができる。
 金属ワイヤーの材料としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属または金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイおよびレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、金、銅、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金またははんだ等でめっきされたものであってもよく、後述する炭素材料またはポリマーにより表面が被覆されたものであってもよい。特に、タングステンおよびモリブデン並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の導電性線状体21とする観点から好ましい。
 さらに、金属ワイヤー自体またはめっき部が金等の接触抵抗が低い材質であると、電極4との電気抵抗を低くできるので、好ましい。
 金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
 金属ワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボンおよびカーボンファイバー等)、グラファイト、フラーレンおよびグラフェン;カーボンナノチューブ等が挙げられる。
The linear body including the metal wire may be a linear body composed of one metal wire, or may be a linear body obtained by twisting a plurality of metal wires.
When the wiring sheet 100 is used for wiring, metal wires such as gold and copper having high conductivity can be exemplified. Further, when the wiring sheet is used as a heating element, tungsten, nickel-chromium alloy and the like can be exemplified.
The material of the metal wire is a metal such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, or gold, or an alloy containing two or more kinds of metals (for example, steel such as stainless steel and carbon steel, brass, phosphorus). Examples include wires containing bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, cantal, hasteroy, renium tungsten, etc.). Further, the metal wire may be plated with gold, copper, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder or the like, and the surface is coated with a carbon material or polymer described later. It may be. In particular, a wire containing tungsten, molybdenum, and one or more metals selected from alloys containing these is preferable from the viewpoint of forming a conductive linear body 21 having a low volume resistivity.
Further, it is preferable that the metal wire itself or the plated portion is made of a material having a low contact resistance such as gold because the electric resistance with the electrode 4 can be lowered.
Examples of the metal wire include a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced and the presence of the metal wire can be easily made inconspicuous. Further, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
Examples of the carbon material for coating the metal wire include amorphous carbon (for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon and carbon fiber, etc.), graphite, fullerene and graphene; carbon nanotubes and the like.
 また、カーボンナノチューブを使用した線状体は、例えば、カーボンナノチューブフォレスト(カーボンナノチューブを、基板に対して垂直方向に配向するよう、基板上に複数成長させた成長体のことであり、「アレイ」と称される場合もある)の端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚ることにより得られる。このような製造方法において、撚りの際に捻りを加えない場合には、リボン状のカーボンナノチューブ線状体が得られ、捻りを加えた場合には、糸状の線状体が得られる。このほか、カーボンナノチューブの分散液から、紡糸をすること等によっても、カーボンナノチューブ線状体を得ることができる。紡糸によるカーボンナノチューブ線状体の製造は、例えば、米国特許出願公開第2013/0251619号明細書(日本国特開2012-126635号公報)に開示されている方法により行うことができる。カーボンナノチューブ線状体の直径の均一さが得られる観点からは、糸状のカーボンナノチューブ線状体を用いることが望ましく、純度の高いカーボンナノチューブ線状体が得られる観点からは、カーボンナノチューブシートを撚ることによって糸状のカーボンナノチューブ線状体を得ることが好ましい。カーボンナノチューブ線状体は、2本以上のカーボンナノチューブ線状体同士が編まれた線状体であってもよい。また、カーボンナノチューブ線状体は、カーボンナノチューブと他の導電性材料が複合された線状体であってもよい。以下、カーボンナノチューブと他の導電性材料が複合された線状体を「複合線状体」ともいう。 A linear body using carbon nanotubes is, for example, a carbon nanotube forest (a growth body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in a direction perpendicular to the substrate, and is an "array". It is obtained by pulling out carbon nanotubes in a sheet shape from the end portion (sometimes referred to as), bundling the pulled out carbon nanotube sheets, and then twisting the bundles of carbon nanotubes. In such a manufacturing method, when no twist is applied at the time of twisting, a ribbon-shaped carbon nanotube linear body is obtained, and when twisted, a thread-like linear body is obtained. In addition, a carbon nanotube linear body can also be obtained by spinning or the like from a dispersion liquid of carbon nanotubes. The production of the carbon nanotube linear body by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Laid-Open No. 2012-126635). From the viewpoint of obtaining uniform diameter of the carbon nanotube wire, it is desirable to use the filamentous carbon nanotube wire, and from the viewpoint of obtaining a highly pure carbon nanotube wire, the carbon nanotube sheet is twisted. It is preferable to obtain a filamentous carbon nanotube linear body. The carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together. Further, the carbon nanotube linear body may be a linear body in which carbon nanotubes and other conductive materials are composited. Hereinafter, a linear body in which carbon nanotubes and other conductive materials are composited is also referred to as a “composite linear body”.
 複合線状体としては、例えば、(1)カーボンナノチューブフォレストの端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚るカーボンナノチューブ線状体を製造する過程において、カーボンナノチューブのフォレスト、シートもしくは束、または撚った線状体の表面に、金属単体または金属合金を蒸着、イオンプレーティング、スパッタリングまたは湿式めっき等により担持させた複合線状体、(2)金属単体の線状体もしくは金属合金の線状体または複合線状体と共に、カーボンナノチューブの束を撚った複合線状体、(3)金属単体の線状体もしくは金属合金の線状体または複合線状体と、カーボンナノチューブ線状体または複合線状体とを編んだ複合線状体等が挙げられる。
 なお、(2)の複合線状体においては、カーボンナノチューブの束を撚る際に、(1)の複合線状体と同様にカーボンナノチューブに対して金属を担持させてもよい。また、(3)の複合線状体は、2本の線状体を編んだ場合の複合線状体であるが、少なくとも1本の金属単体の線状体もしくは金属合金の線状体または複合線状体が含まれていれば、カーボンナノチューブ線状体または金属単体の線状体もしくは金属合金の線状体もしくは複合線状体の3本以上を編み合わせてあってもよい。
 複合線状体の金属としては、例えば、金、銀、銅、鉄、アルミニウム、ニッケル、クロム、スズまたは亜鉛等の金属単体、並びにこれら金属単体の少なくとも一種を含む合金(銅-ニッケル-リン合金または銅-鉄-リン-亜鉛合金等)が挙げられる。
Examples of the composite linear body include (1) a carbon nanotube linear body in which carbon nanotubes are pulled out from the edge of a carbon nanotube forest into a sheet, the drawn carbon nanotube sheets are bundled, and then the bundle of carbon nanotubes is twisted. In the process of manufacturing carbon nanotubes, a composite linear structure in which a single metal or metal alloy is supported on the surface of a forest, sheet or bundle of carbon nanotubes, or a twisted linear body by vapor deposition, ion plating, sputtering, wet plating, or the like. Body, (2) Elementary substance of metal or linear body of metal alloy or composite linear body, and composite linear body of twisted bundles of carbon nanotubes, (3) Linear body of elemental metal or metal alloy Examples thereof include a composite linear body obtained by knitting a linear body or a composite linear body of the above and a carbon nanotube linear body or a composite linear body.
In the composite linear body of (2), when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1). Further, the composite linear body of (3) is a composite linear body when two linear bodies are knitted, but at least one linear body of a single metal or a linear body of a metal alloy or a composite. If a linear body is included, three or more of a carbon nanotube linear body, a linear body of a single metal, a linear body of a metal alloy, or a composite linear body may be knitted.
Examples of the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin and zinc, and alloys containing at least one of these metal simple substances (copper-nickel-phosphorus alloy). Alternatively, copper-iron-phosphorus-zinc alloy, etc.) can be mentioned.
 さらに、導電性線状体21として、糸に導電性被覆が施された線状体を使用できる。糸としては、ナイロンまたはポリエステル等の樹脂から紡糸した糸等が挙げられる。導電性被覆としては、金属、導電性高分子または炭素材料等の被膜等が挙げられる。導電性被覆は、メッキや蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、疑似シート構造体2の電気抵抗を、低下させることが容易となる。 Further, as the conductive linear body 21, a linear body having a conductive coating on the thread can be used. Examples of the yarn include yarns spun from a resin such as nylon or polyester. Examples of the conductive coating include a coating of a metal, a conductive polymer, a carbon material, or the like. The conductive coating can be formed by plating, a vapor deposition method, or the like. A linear body having a conductive coating on the yarn can improve the conductivity of the linear body while maintaining the flexibility of the yarn. That is, it becomes easy to reduce the electric resistance of the pseudo-seat structure 2.
 導電性線状体21の体積抵抗率Rは、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。
 導電性線状体21の体積抵抗率Rを上記範囲にすると、疑似シート構造体2の面抵抗が低下しやすくなる。
 導電性線状体21の体積抵抗率Rの測定は、次の通りである。導電性線状体21の両端に銀ペーストを塗布し、端部からの長さ40mm(0.04m)の部分の電気抵抗を測定し、導電性線状体21の抵抗値を求める。そして、導電性線状体21の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体21の体積抵抗率Rを算出する。
The volume resistivity R of the conductive linear body 21 is preferably 1.0 × 10 -9 Ω · m or more and 1.0 × 10 -3 Ω · m or less, preferably 1.0 × 10 -8 Ω · m. More preferably, it is m or more and 1.0 × 10 -4 Ω · m or less.
When the volume resistivity R of the conductive linear body 21 is set to the above range, the surface resistance of the pseudo-sheet structure 2 tends to decrease.
The measurement of the volume resistivity R of the conductive linear body 21 is as follows. Silver paste is applied to both ends of the conductive linear body 21, and the electric resistance of a portion having a length of 40 mm (0.04 m) from the end is measured to obtain the resistance value of the conductive linear body 21. Then, the cross-sectional area (unit: m 2 ) of the conductive linear body 21 is multiplied by the above resistance value, and the obtained value is divided by the above measured length (0.04 m) to obtain the conductive linear body. The volume resistivity R of the body 21 is calculated.
 導電性線状体21の断面形状は、多角形、扁平形状または楕円形状等であってもよい。樹脂層3との馴染み等の観点から、円形状または楕円形状であることが好ましい。 The cross-sectional shape of the conductive linear body 21 may be a polygonal shape, a flat shape, an elliptical shape, or the like. From the viewpoint of compatibility with the resin layer 3, it is preferably circular or elliptical.
(樹脂層)
 樹脂層3は、樹脂を含む層である。そして、樹脂層3は、接着剤を含む層であることが好ましい。接着剤により、導電性線状体21の樹脂層3への貼り付けまたは樹脂層3の基材1への貼り付けが容易となる。
(Resin layer)
The resin layer 3 is a layer containing a resin. The resin layer 3 is preferably a layer containing an adhesive. The adhesive makes it easy to attach the conductive linear body 21 to the resin layer 3 or the resin layer 3 to the base material 1.
 樹脂層3は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線または電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。 The resin layer 3 is preferably energy ray curable such as ultraviolet rays, visible energy rays, infrared rays or electron beams because it can be easily cured in a short time. The "energy ray curing" also includes thermosetting by heating using energy rays.
 樹脂層3の接着剤は、熱により硬化する熱硬化性のもの、熱により接着するいわゆるヒートシールタイプのもの、湿潤させて貼付性を発現させる接着剤等も挙げられる。ただし、適用の簡便さからは、樹脂層3の接着剤が、エネルギー線硬化性であることが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 Examples of the adhesive of the resin layer 3 include a heat-curable adhesive that cures by heat, a so-called heat-seal type adhesive that adheres by heat, and an adhesive that develops adhesiveness by moistening. However, from the viewpoint of ease of application, it is preferable that the adhesive of the resin layer 3 is energy ray curable. Examples of the energy ray-curable resin include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
 前記アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、および1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンタジエンジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレートおよびイタコン酸オリゴマー等が挙げられる。 Examples of the acrylate-based compound include chain aliphatic skeleton-containing (meth) acrylates (trimethylolpropanthry (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (pentaerythritol tetra (meth) acrylate). Meta) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate, etc.) , Cyclic aliphatic skeleton-containing (meth) acrylate (dicyclopentanyldi (meth) acrylate, dicyclopentadiene di (meth) acrylate, etc.), polyalkylene glycol (meth) acrylate (polyethylene glycol di (meth) acrylate, etc.), Examples thereof include oligoester (meth) acrylate, urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate, polyether (meth) acrylate other than the polyalkylene glycol (meth) acrylate, and itaconic acid oligomer.
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 to 30,000, and more preferably 300 to 10,000.
 接着剤組成物が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせおよび比率は任意に選択できる。さらに、後述する熱可塑性樹脂と組み合わせてもよく、組み合わせおよび比率は任意に選択できる。 The energy ray-curable resin contained in the adhesive composition may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. Further, it may be combined with a thermoplastic resin described later, and the combination and ratio can be arbitrarily selected.
 樹脂層3は、粘着剤(感圧性接着剤)から形成される粘着剤層であってもよい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤およびポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤およびゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。 The resin layer 3 may be a pressure-sensitive adhesive layer formed of a pressure-sensitive adhesive (pressure-sensitive adhesive). The adhesive in the adhesive layer is not particularly limited. For example, examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a polyvinyl ether-based pressure-sensitive adhesive. Among these, the pressure-sensitive adhesive is preferably at least one selected from the group consisting of acrylic-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives, and more preferably acrylic-based pressure-sensitive adhesives.
 アクリル系粘着剤としては、例えば、直鎖のアルキル基または分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。 As the acrylic pressure-sensitive adhesive, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear alkyl group or a branched alkyl group (that is, a polymer obtained by at least polymerizing an alkyl (meth) acrylate). ), An acrylic polymer containing a structural unit derived from a (meth) acrylate having a cyclic structure (that is, a polymer obtained by at least polymerizing a (meth) acrylate having a cyclic structure) and the like. Here, "(meth) acrylate" is used as a term indicating both "acrylate" and "methacrylate", and the same applies to other similar terms.
 アクリル系重合体が共重合体である場合、共重合の形態としては、特に限定されない。アクリル系共重合体としては、ブロック共重合体、ランダム共重合体またはグラフト共重合体のいずれであってもよい。 When the acrylic polymer is a copolymer, the form of copolymerization is not particularly limited. The acrylic copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤および金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、アクリル系重合体の単量体成分に由来する官能基として、これらの架橋剤と反応する水酸基またはカルボキシル基等をアクリル系共重合体に導入することができる。 The acrylic copolymer may be crosslinked with a crosslinking agent. Examples of the cross-linking agent include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. When cross-linking an acrylic copolymer, a hydroxyl group or a carboxyl group that reacts with these cross-linking agents should be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer. Can be done.
 樹脂層3が粘着剤から形成される場合、樹脂層3は、粘着剤の他に、さらに上述したエネルギー線硬化性樹脂を含有していてもよい。
 また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分に由来する官能基と反応する官能基と、エネルギー線重合性の官能基の両方を一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により重合可能となる。粘着剤がアクリル系粘着剤以外の場合においても、アクリル系重合体以外の重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。
When the resin layer 3 is formed of a pressure-sensitive adhesive, the resin layer 3 may further contain the above-mentioned energy ray-curable resin in addition to the pressure-sensitive adhesive.
When an acrylic pressure-sensitive adhesive is applied as the pressure-sensitive adhesive, the energy ray-curable component includes a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer and an energy ray-polymerizable functional group. A compound having both groups in one molecule may be used. By reacting the functional group of the compound with the functional group derived from the monomer component in the acrylic copolymer, the side chain of the acrylic copolymer can be polymerized by energy ray irradiation. Even when the pressure-sensitive adhesive is other than the acrylic pressure-sensitive adhesive, a component having an energy ray-polymerizable side chain may be used as the polymer component other than the acrylic polymer.
 樹脂層3に用いられる熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物および酸無水物系化合物などが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物および酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物またはエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物および酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましい。 The thermosetting resin used for the resin layer 3 is not particularly limited, and specifically, an epoxy resin, a phenol resin, a melamine resin, a urea resin, a polyester resin, a urethane resin, an acrylic resin, a benzoxazine resin, or a phenoxy resin. , Amine-based compounds, acid anhydride-based compounds, and the like. These can be used alone or in combination of two or more. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using an imidazole-based curing catalyst, and are particularly excellent. From the viewpoint of exhibiting curability, at least one selected from the group consisting of epoxy resins, phenol resins, mixtures thereof or epoxy resins, and phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds. It is preferable to use a mixture with.
 樹脂層3に湿気硬化性樹脂を用いてもよい。樹脂層3に用いる湿気硬化性樹脂としては、特に限定されず、イソシアネートが湿気で硬化して生成するウレタン樹脂および変性シリコーン樹脂等が挙げられる。 A moisture-curable resin may be used for the resin layer 3. The moisture-curable resin used for the resin layer 3 is not particularly limited, and examples thereof include urethane resins and modified silicone resins produced by curing isocyanate with moisture.
 樹脂層3にエネルギー線硬化性樹脂または熱硬化性樹脂を用いる場合、光重合開始剤または熱重合開始剤等を用いることが好ましい。光重合開始剤または熱重合開始剤等を用いることで、架橋構造が形成され、疑似シート構造体2と電極4とをより強固に接合し、さらに保護することが可能になる。 When an energy ray-curable resin or a thermosetting resin is used for the resin layer 3, it is preferable to use a photopolymerization initiator, a thermosetting initiator, or the like. By using a photopolymerization initiator, a thermal polymerization initiator, or the like, a crosslinked structure is formed, and the pseudo-sheet structure 2 and the electrode 4 can be more firmly bonded and further protected.
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロロアントラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等が挙げられる。 Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -Hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and bis (2,4,6- Trimethylbenzoyl) -phenyl-phosphine oxide and the like can be mentioned.
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、およびペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリルおよび2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)および有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイドおよびクメンヒドロパーオキサイド等)等が挙げられる。 Examples of the thermal polymerization initiator include hydrogen peroxide, peroxodisulfate (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), and azo compounds (2,2'-azobis (2-amidinopropane) di. Hydrochloride, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobisisobutyronitrile and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), etc.) and Examples thereof include organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂または熱硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることが特に好ましい。
These polymerization initiators can be used alone or in combination of two or more.
When a crosslinked structure is formed using these polymerization initiators, the amount used shall be 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the energy ray-curable resin or the thermosetting resin. Is preferable, and it is more preferably 1 part by mass or more and 100 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
 樹脂層3は、充填材を含有していてもよい。充填材の種類は配線シート100の用途、樹脂層における樹脂等により、適宜選択される。 The resin layer 3 may contain a filler. The type of filler is appropriately selected depending on the application of the wiring sheet 100, the resin in the resin layer, and the like.
 例えば、樹脂層3に含有する充填材に無機充填材を使用することで、硬化後の樹脂層3の硬度、熱伝導性または絶縁性をより向上させることができる。この具体的な例として、基材1がガラスを主成分とする場合に、樹脂層3と基材1の線膨張係数を近づけることを挙げることができる。 For example, by using an inorganic filler as the filler contained in the resin layer 3, the hardness, thermal conductivity, or insulating property of the cured resin layer 3 can be further improved. As a specific example of this, when the base material 1 contains glass as a main component, the linear expansion coefficients of the resin layer 3 and the base material 1 can be brought close to each other.
 無機充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、および窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラーおよびアルミナフィラーが好ましい。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the inorganic filler include inorganic powders (for example, powders such as silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), spherical beads of inorganic powder, single crystal fibers, and the like. Examples include glass fiber. Among these, silica filler and alumina filler are preferable as the inorganic filler. The inorganic filler may be used alone or in combination of two or more.
 樹脂層3には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤および濡れ性調整剤等の周知の添加剤が挙げられる。 The resin layer 3 may contain other components. Other ingredients include, for example, well-known additives such as organic solvents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, fungicides, plasticizers, defoamers and wettability modifiers. Can be mentioned.
(電極)
 電極4は、導電性線状体21に電流を供給するために用いられる。
 電極4と疑似シート構造体2の抵抗値の比は、0.0001以上0.3以下であることが好ましく、0.0005以上0.1以下であることがより好ましい。電極と疑似シート構造体2の抵抗値の比は、「電極4の抵抗値/疑似シート構造体2の抵抗値」により求めることができる。この範囲内にあることで、配線シート100を発熱体として用いた場合、電極部分での異常発熱が抑制される。疑似シート構造体2をシート状ヒーターとして用いる場合、疑似シート構造体2が発熱し、発熱効率の良好なシート状ヒーターを得ることができる。
 電極4と疑似シート構造体2の抵抗値は、テスターを用いて測定することができる。まず電極4の抵抗値を測定し、次に、疑似シート構造体2に電極4を貼付し、貼付状態の抵抗値を測定する。その後、電極を貼付した疑似シート構造体2の抵抗値から電極4の抵抗値を引くことで、電極4および疑似シート構造体2それぞれの抵抗値を算出する。
(electrode)
The electrode 4 is used to supply an electric current to the conductive linear body 21.
The ratio of the resistance values of the electrode 4 and the pseudo-sheet structure 2 is preferably 0.0001 or more and 0.3 or less, and more preferably 0.0005 or more and 0.1 or less. The ratio of the resistance value of the electrode and the pseudo-sheet structure 2 can be obtained by "the resistance value of the electrode 4 / the resistance value of the pseudo-sheet structure 2". Within this range, when the wiring sheet 100 is used as a heating element, abnormal heat generation at the electrode portion is suppressed. When the pseudo sheet structure 2 is used as the sheet heater, the pseudo sheet structure 2 generates heat, and a sheet heater having good heat generation efficiency can be obtained.
The resistance values of the electrode 4 and the pseudo-sheet structure 2 can be measured using a tester. First, the resistance value of the electrode 4 is measured, then the electrode 4 is attached to the pseudo-sheet structure 2, and the resistance value in the attached state is measured. After that, the resistance values of the electrodes 4 and the pseudo-sheet structure 2 are calculated by subtracting the resistance values of the electrodes 4 from the resistance values of the pseudo-sheet structure 2 to which the electrodes are attached.
(電極ワイヤー)
 電極ワイヤー41は、導電性線状体21で挙げたものを使用することができる。
 また、電極ワイヤー41は、箔または板等の帯状導電体を使用してもよい。
 帯状導電体を使用する場合には、直径dは、厚さと読み替える。
 電極ワイヤー41が、箔または板等の帯状導電体であると、導電性線状体21との接触面積を広くすることができるため好ましい。
(Electrode wire)
As the electrode wire 41, those mentioned in the conductive linear body 21 can be used.
Further, as the electrode wire 41, a strip-shaped conductor such as a foil or a plate may be used.
When a strip-shaped conductor is used, the diameter d is read as the thickness.
It is preferable that the electrode wire 41 is a strip-shaped conductor such as a foil or a plate because the contact area with the conductive linear body 21 can be widened.
(製造方法)
 本実施形態にかかる配線シートの製造方法は、図4A~図4Eに示すようにして製造される。図4Aおよび図4Bのように、基材1を準備し、次いで、基材1上に樹脂層3を形成する。さらに、図4Cおよび図4Dのように導電性線状体21を樹脂層3上に設け、導電性線状体21上の両端に電極ワイヤー41を配置する。そして、図4Eのように導電性線状体21の長さ方向の両端を折り返すことにより、配線シート100を作成する方法である。
(Production method)
The method for manufacturing the wiring sheet according to the present embodiment is manufactured as shown in FIGS. 4A to 4E. As shown in FIGS. 4A and 4B, the base material 1 is prepared, and then the resin layer 3 is formed on the base material 1. Further, as shown in FIGS. 4C and 4D, the conductive linear body 21 is provided on the resin layer 3, and the electrode wires 41 are arranged at both ends of the conductive linear body 21. Then, as shown in FIG. 4E, the wiring sheet 100 is created by folding both ends of the conductive linear body 21 in the length direction.
 折り返し端縁22の製造は、基材1、樹脂層3および疑似シート構造体2を折り返す。この折り返すときに、疑似シート構造体2の第一領域5を電極4に接触させることで、配線シート100を製造することができる。
 電極4を疑似シート構造体2の第一領域5に配置しておき、折り返すときに電極4を第二領域7に接触させてもよい。
 また、基材1および樹脂層3が、熱可塑性を有する場合には、加熱しながら折り返してもよい。
 さらに、基材1または樹脂層3が硬化性樹脂である場合には、折り返した後に、硬化を行うことによって、配線シート100を製造してもよい。
In the production of the folded edge 22, the base material 1, the resin layer 3, and the pseudo-sheet structure 2 are folded back. The wiring sheet 100 can be manufactured by bringing the first region 5 of the pseudo-sheet structure 2 into contact with the electrode 4 at the time of folding back.
The electrode 4 may be arranged in the first region 5 of the pseudo-sheet structure 2 and the electrode 4 may be brought into contact with the second region 7 when folded back.
When the base material 1 and the resin layer 3 have thermoplasticity, they may be folded back while being heated.
Further, when the base material 1 or the resin layer 3 is a curable resin, the wiring sheet 100 may be manufactured by folding it back and then curing it.
 前述の樹脂層3の形成方法としては、樹脂を塗布することにより設けることができる。
 複数の導電性線状体21を樹脂層3に設ける製造方法は、例えば、次の工程を経て製造される。
 所定直径の円筒状ドラム部材を準備し、このドラム部材の外周面に樹脂層3が設けられた基材1を配置する。導電性線状体21を巻き付けた複数のボビンを用意する。それぞれのボビンから所定間隔を離して平行に導電性線状体21を繰り出し、樹脂層3に導電性線状体21を付着させながらドラム部材を回転させることで、導電性線状体21を樹脂層3に付着させる。樹脂層3に付着された複数本の導電性線状体21により疑似シート構造体2が構成される。
As the method for forming the resin layer 3 described above, it can be provided by applying a resin.
A manufacturing method in which a plurality of conductive linear bodies 21 are provided on the resin layer 3 is manufactured, for example, through the following steps.
A cylindrical drum member having a predetermined diameter is prepared, and a base material 1 provided with a resin layer 3 is arranged on the outer peripheral surface of the drum member. A plurality of bobbins around which the conductive linear body 21 is wound are prepared. The conductive linear body 21 is fed out in parallel at a predetermined distance from each bobbin, and the conductive linear body 21 is made of resin by rotating the drum member while adhering the conductive linear body 21 to the resin layer 3. Adhere to layer 3. The pseudo-sheet structure 2 is composed of a plurality of conductive linear bodies 21 attached to the resin layer 3.
(第一実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態によれば、従来、導電性線状体21と電極4との間の接触が第二領域7に限定されていたのに対し、第二領域7に加え、第一領域5においても接触が生じる。これにより、接触面積が拡大し、配線シート100の電気抵抗を低減することができる。
 また、導電性線状体21と電極4との間の接触抵抗が低減できるので、電力損失を抑制することができる。
(2)配線シート100を発熱体として用いた場合には、導電性線状体21と電極4との間の接触抵抗を低減できるので、導電性線状体21と電極4との間の接触抵抗による発熱を抑制できる。これにより、配線シート100の発熱は、導電性線状体21による発熱に基づくものとなるので、均一に発熱させることができる。
(Action and effect of the first embodiment)
According to this embodiment, the following effects can be obtained.
(1) According to the present embodiment, the contact between the conductive linear body 21 and the electrode 4 has been limited to the second region 7 in the past, but in addition to the second region 7, the first region Contact also occurs in 5. As a result, the contact area can be expanded and the electrical resistance of the wiring sheet 100 can be reduced.
Further, since the contact resistance between the conductive linear body 21 and the electrode 4 can be reduced, power loss can be suppressed.
(2) When the wiring sheet 100 is used as a heating element, the contact resistance between the conductive linear body 21 and the electrode 4 can be reduced, so that the contact between the conductive linear body 21 and the electrode 4 can be reduced. Heat generation due to resistance can be suppressed. As a result, the heat generated by the wiring sheet 100 is based on the heat generated by the conductive linear body 21, so that the heat can be uniformly generated.
 [第二実施形態]
 次に、本発明の第二実施形態を図面に基づいて説明する。
 本発明の第二実施形態では、樹脂層3が、複数の樹脂帯状体31から構成されている以外は、第一実施形態と同様の構成なので、変更点について説明し、それ以外の前の説明と共通する箇所は省略する。
[Second Embodiment]
Next, the second embodiment of the present invention will be described with reference to the drawings.
In the second embodiment of the present invention, the resin layer 3 has the same configuration as that of the first embodiment except that the resin layer 3 is composed of a plurality of resin strips 31, so the changes will be described, and the other previous description will be described. The parts in common with are omitted.
 本実施形態にかかる配線シート100Aは、図5および図6に示すように、基材1上に配置された樹脂層3が、平面視において、導電性線状体21の長さ方向と直交する方向に幅Wを有する複数の樹脂帯状体31が所定の間隔Pをおいて、ほぼ並行に配置されて構成されている。そして、厚さtを有する各樹脂帯状体31上に直径Dを有する導電性線状体21が配置されている。 In the wiring sheet 100A according to the present embodiment, as shown in FIGS. 5 and 6, the resin layer 3 arranged on the base material 1 is orthogonal to the length direction of the conductive linear body 21 in a plan view. A plurality of resin strips 31 having a width W in the direction are arranged substantially in parallel with a predetermined interval P. Then, a conductive linear body 21 having a diameter D is arranged on each resin strip-shaped body 31 having a thickness t.
(製造方法)
 樹脂帯状体31を製造方法は、例えば、次の工程を経て製造される。
 第一実施形態における製造方法において、樹脂を複数の帯状に塗布することによって、樹脂帯状体31を設けることができる。
(Production method)
The method for producing the resin strip 31 is, for example, the following process.
In the manufacturing method of the first embodiment, the resin strip 31 can be provided by applying the resin in a plurality of strips.
(第二実施形態の作用効果)
(3)本実施形態によれば、樹脂帯状体31を設ける範囲が、導電性線状体21を基材1に付着するのに必要な範囲に限定できるので、樹脂層3に使用する樹脂を低減できる。
(4)本実施形態によれば、各樹脂帯状体31の間に間隙ができるので、折り返し端縁22を製造するときに、折り曲げ抵抗を低減することができる。
(Action and effect of the second embodiment)
(3) According to the present embodiment, the range in which the resin strip 31 is provided can be limited to the range required for the conductive linear body 21 to adhere to the base material 1, so that the resin used for the resin layer 3 can be used. Can be reduced.
(4) According to the present embodiment, since a gap is formed between the resin strips 31, the bending resistance can be reduced when the folded edge 22 is manufactured.
 [第三実施形態]
 次に、本発明の第三実施形態を図面に基づいて説明する。
 本発明の第三実施形態では、導電性線状体21が波形状である以外は、第一実施形態または第二実施形態と同様の構成であるから、変更点を説明し、それ以外の前の説明と共通する箇所は、省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to the drawings.
In the third embodiment of the present invention, except that the conductive linear body 21 has a wavy shape, the configuration is the same as that of the first embodiment or the second embodiment. The parts common to the explanation of are omitted.
 本実施形態にかかる配線シート100Bは、図7に示すように、疑似シート構造体2は、平面視において、同一の振幅および波長の波形を有する複数の導電性線状体21が位相をそろえて、所定の間隔をおいて、ほぼ並行に配置されて、構成される。 As shown in FIG. 7, in the wiring sheet 100B according to the present embodiment, in the pseudo-sheet structure 2, a plurality of conductive linear bodies 21 having the same amplitude and wavelength in a plan view are aligned in phase. , Arranged and configured almost in parallel at predetermined intervals.
(製造方法)
 導電性線状体21を波形状とする製造方法は、例えば、次の工程を経て製造される。
 第一実施形態における製造方法において、樹脂層3に導電性線状体21を付着させながら円筒状ドラム部材を回転させるときに、ドラム部材またはボビンをドラム軸方向に振動させながら行うことによって、導電性線状体21を波形状とすることができる。
(Production method)
The manufacturing method for forming the conductive linear body 21 into a wavy shape is, for example, manufactured through the following steps.
In the manufacturing method of the first embodiment, when the cylindrical drum member is rotated while the conductive linear body 21 is attached to the resin layer 3, the drum member or the bobbin is vibrated in the drum axial direction to be conductive. The sex linear body 21 can have a wavy shape.
(第三実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(5)本実施形態によれば、配線シート100Bを折り曲げ等で変形させても、導電性線状体21の波形が変形することによって形状の変化に対応することができる。このため、導電性線状体21の破断を抑止したり、導電性線状体21と電極4との接点に加わる力を緩和できることから、接触を維持することができる。
(Action and effect of the third embodiment)
According to this embodiment, the following effects can be obtained.
(5) According to the present embodiment, even if the wiring sheet 100B is deformed by bending or the like, it is possible to cope with the change in shape by deforming the waveform of the conductive linear body 21. Therefore, the breakage of the conductive linear body 21 can be suppressed, and the force applied to the contact point between the conductive linear body 21 and the electrode 4 can be relaxed, so that the contact can be maintained.
 [実施形態の変形]
 本発明は、前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形および改良等は、本発明に含まれる。
 第一実施形態における配線シート100において、基材1として、柔軟性基材を用いることができる。柔軟性基材は、常温で基材自体が容易に曲げ易く可撓性を有する基材をいう。柔軟性基材として、合成樹脂フィルム、紙、不織布および布(織布または編物)等が挙げられる。
[Modification of Embodiment]
The present invention is not limited to the above-described embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.
In the wiring sheet 100 of the first embodiment, a flexible base material can be used as the base material 1. The flexible base material refers to a base material that is easily bent at room temperature and has flexibility. Examples of the flexible base material include synthetic resin films, papers, non-woven fabrics and cloths (woven or knitted fabrics).
 第一実施形態における配線シート100において、基材1は樹脂層3を介して、導電性線状体21を支持する。しかし、基材1は導電性線状体21を直接支持してもよい。
 例えば、電極4との接触する部分を除き、導電性線状体21の全部または一部は、基材1の内部にあってもよい。また、基材1を織物として製造するときに、導電性線状体21を経糸または緯糸の一部として使用し、織り込むことによって、基材1を用いて、導電性線状体21を支持してもよい。
In the wiring sheet 100 of the first embodiment, the base material 1 supports the conductive linear body 21 via the resin layer 3. However, the base material 1 may directly support the conductive linear body 21.
For example, all or part of the conductive linear body 21 may be inside the base material 1 except for the portion in contact with the electrode 4. Further, when the base material 1 is manufactured as a woven fabric, the conductive linear body 21 is used as a part of the warp or the weft, and is woven to support the conductive linear body 21 by using the base material 1. You may.
 第一実施形態における配線シート100において、折り返し端縁22では、基材1を含めて折り返されている。しかし、疑似シート構造体2を構成する導電性線状体21と電極4との接触面積を拡大することで、接触抵抗を低減することができるから、図8に示す配線シート100Cのように、疑似シート構造体2および樹脂層3のみを折り返してもよい。また、疑似シート構造体2のみを折り返してもよい。
 疑似シート構造体2は、樹脂層3または基材1と独立して折り返すことができるので、基材1または樹脂層3の長さは、疑似シート構造体2の長さよりも長くあってもよく、または短くあってもよい。
In the wiring sheet 100 of the first embodiment, the folded edge 22 is folded back including the base material 1. However, since the contact resistance can be reduced by expanding the contact area between the conductive linear body 21 constituting the pseudo sheet structure 2 and the electrode 4, the contact resistance can be reduced, so that the wiring sheet 100C shown in FIG. 8 can be used. Only the pseudo sheet structure 2 and the resin layer 3 may be folded back. Further, only the pseudo sheet structure 2 may be folded back.
Since the pseudo-sheet structure 2 can be folded back independently of the resin layer 3 or the base material 1, the length of the base material 1 or the resin layer 3 may be longer than the length of the pseudo-sheet structure 2. , Or may be short.
 第一実施形態における配線シート100において、図2に示すように、折り返し端縁22において、第一領域5における導電性線状体21の端部は、電極4の上線を超えて、第二領域7と平行に延長された状態にある。しかし、図9Aおよび図9Bに示すように折り返し端縁22において、電極4と第一領域5における導電性線状体21の端部とが、配線シート100と異なる接触状態であってもよい。
 図9Aに示す配線シート100Dは、第一領域5における導電性線状体21の端部が第二領域7側に折り曲げられ、第二領域7と直接接触した状態である。また、図9Bに示す配線シート100Eは、第一領域5における導電性線状体21の端部が電極4の上線に接触する位置まで設けられた状態である。
 図9Aの接触では、電極ワイヤー41の外縁に沿って第一領域5を接触させることができることから、導電性線状体21と電極4との接触面積を拡大することができるので、導電性線状体21と電極4との接触を安定させることができる。導電性線状体21と電極4との接触は、直接接触していてもよいし、間接的に接触していてもよい。間接的に接触させるために、接着剤または両面テープを用いることができる。さらに、直接接触させたり、間接的に接触させる場合には、導電性接着剤または導電性両面テープを用いて電気的に接続することで、接触抵抗を低減することができる。
 また、第一領域5における導電性線状体21の端部と第二領域7における導電性線状体21との接触は、接着等によって固定されていてもよい。固定は、導電性線状体21同士を直接固定してもよい。また、基材1または樹脂層3を熱圧着または縫い合わせ等によって、材質に応じた公知の方法を利用して固定してもよい。
 なお、説明を簡略にするために、電極4は、1本の電極ワイヤー41から構成されるものとして記載した。
In the wiring sheet 100 of the first embodiment, as shown in FIG. 2, at the folded end edge 22, the end portion of the conductive linear body 21 in the first region 5 exceeds the upper line of the electrode 4 and is in the second region. It is in a state of being extended in parallel with 7. However, as shown in FIGS. 9A and 9B, at the folded end edge 22, the electrode 4 and the end portion of the conductive linear body 21 in the first region 5 may be in a contact state different from that of the wiring sheet 100.
The wiring sheet 100D shown in FIG. 9A is in a state in which the end portion of the conductive linear body 21 in the first region 5 is bent toward the second region 7 and is in direct contact with the second region 7. Further, the wiring sheet 100E shown in FIG. 9B is in a state where the end portion of the conductive linear body 21 in the first region 5 is provided up to a position where it comes into contact with the upper line of the electrode 4.
In the contact of FIG. 9A, since the first region 5 can be brought into contact with the outer edge of the electrode wire 41, the contact area between the conductive linear body 21 and the electrode 4 can be expanded, so that the conductive wire can be contacted. The contact between the body 21 and the electrode 4 can be stabilized. The contact between the conductive linear body 21 and the electrode 4 may be direct contact or indirect contact. Adhesives or double-sided tape can be used for indirect contact. Further, in the case of direct contact or indirect contact, the contact resistance can be reduced by electrically connecting using a conductive adhesive or a conductive double-sided tape.
Further, the contact between the end portion of the conductive linear body 21 in the first region 5 and the conductive linear body 21 in the second region 7 may be fixed by adhesion or the like. For fixing, the conductive linear bodies 21 may be directly fixed to each other. Further, the base material 1 or the resin layer 3 may be fixed by thermocompression bonding or sewing using a known method depending on the material.
For the sake of brevity, the electrode 4 is described as being composed of one electrode wire 41.
 図9Aに示す配線シート100Dは、さらに、図10Aに示す配線シート100Fのように、折り返し端縁22における電極ワイヤー41の外縁に沿って、導電性線状体21が配置され、導電性線状体21と電極ワイヤー41との間にほとんど間隙を有しなくてもよい。
 導電性線状体21と電極ワイヤー41との間にほとんど間隙を有しないことから、導電性線状体21と電極ワイヤー41との接触面積を最大化することができる。
 図10Bに示す配線シート100Gおよび図10Cに示す配線シート100Hのように、折り返し端縁22において、電極ワイヤー41の一方側面に沿って導電性線状体21を接触させてもよい。
In the wiring sheet 100D shown in FIG. 9A, a conductive linear body 21 is further arranged along the outer edge of the electrode wire 41 at the folded end edge 22, as in the wiring sheet 100F shown in FIG. 10A. There may be almost no gap between the body 21 and the electrode wire 41.
Since there is almost no gap between the conductive linear body 21 and the electrode wire 41, the contact area between the conductive linear body 21 and the electrode wire 41 can be maximized.
Like the wiring sheet 100G shown in FIG. 10B and the wiring sheet 100H shown in FIG. 10C, the conductive linear body 21 may be brought into contact with the conductive linear body 21 along one side surface of the electrode wire 41 at the folded end edge 22.
 第一実施形態における配線シート100において、電極4は、電極ワイヤー41より構成されている。しかし、電極4は、液状の導電材料を固化した電極であってもよい(つまり、液状の導電材料の固化物からなる電極)。液状の導電材料を使用すると、導電性線状体21と電極4とのより良好な接続状態を確保できる。
 前述の液状の導電材料としては、導電性ペーストが代表的に挙げられる。導電性ペーストとしては、例えば、金属粒子または炭素粒子をバインダー樹脂および/または有機溶剤に分散させたペーストが適用できる。金属粒子としては、例えば、金、銀、銅およびニッケル等の金属の粒子が挙げられる。バインダー樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂およびフェノール樹脂等の周知の樹脂が挙げられる。
 液状の導電材料としては、導電性ペースト以外に、例えば、半田および導電性インク等を用いてもよい。
In the wiring sheet 100 of the first embodiment, the electrode 4 is composed of the electrode wire 41. However, the electrode 4 may be an electrode obtained by solidifying a liquid conductive material (that is, an electrode made of a solidified liquid conductive material). When a liquid conductive material is used, a better connection state between the conductive linear body 21 and the electrode 4 can be ensured.
A typical example of the above-mentioned liquid conductive material is a conductive paste. As the conductive paste, for example, a paste in which metal particles or carbon particles are dispersed in a binder resin and / or an organic solvent can be applied. Examples of the metal particles include metal particles such as gold, silver, copper and nickel. Examples of the binder resin include well-known resins such as polyester resin, polyurethane resin, epoxy resin and phenol resin.
As the liquid conductive material, for example, solder, conductive ink, or the like may be used in addition to the conductive paste.
 さらに、電極4は、導電性の箔または板と液状の導電材料とを併用してもよい。疑似シート構造体2に液状の導電材料を塗布したのちに導電性の箔または板を張り付けても良いし、導電性の箔または板を取り付けたのちに、液状の導電材料を塗布してもよい。
 導電性の箔または板と液状の導電材料を併用することで、電極の電気的な接続がより良好なものとなる。
Further, as the electrode 4, a conductive foil or plate and a liquid conductive material may be used in combination. A conductive foil or plate may be attached after applying a liquid conductive material to the pseudo-sheet structure 2, or a liquid conductive material may be applied after attaching the conductive foil or plate. ..
The combined use of a conductive foil or plate with a liquid conductive material improves the electrical connection of the electrodes.
 第一実施形態における配線シート100において、隣り合う電極ワイヤー41の間の第一領域5および第二領域7とは、離れており間隙を有する。しかし、隣り合う電極ワイヤー41の間の第一領域5および第二領域7を、接触させてもよい。第一領域5および第二領域7を接触させることによって、間隙が減少し、導電性線状体21と電極ワイヤー41との接触面積が拡大するので好ましい。 In the wiring sheet 100 of the first embodiment, the first region 5 and the second region 7 between the adjacent electrode wires 41 are separated from each other and have a gap. However, the first region 5 and the second region 7 between the adjacent electrode wires 41 may be brought into contact with each other. By bringing the first region 5 and the second region 7 into contact with each other, the gap is reduced and the contact area between the conductive linear body 21 and the electrode wire 41 is increased, which is preferable.
 第一実施形態における配線シート100において、疑似シート構造体2の片面に樹脂層3および基材1が配されている。しかし、基材1または樹脂層3は、疑似シート構造体2の両面に存在してもよい。また、疑似シート構造体2のみまたは疑似シート構造体2と基材1もしくは樹脂層3とから構成させる積層体をさらに2つ以上積層させた複合積層体としてもよい。複合積層体とする場合に、単数または複数の疑似シート構造体2は、同一でも異なっていてもよい。同様に単数または複数の基材1または樹脂層3は同一でも異なっていてもよい。 In the wiring sheet 100 of the first embodiment, the resin layer 3 and the base material 1 are arranged on one side of the pseudo sheet structure 2. However, the base material 1 or the resin layer 3 may be present on both sides of the pseudo-sheet structure 2. Further, it may be a composite laminate in which only the pseudo-sheet structure 2 or a laminate composed of the pseudo-sheet structure 2 and the base material 1 or the resin layer 3 is further laminated. In the case of a composite laminated body, the single or plurality of pseudo-sheet structures 2 may be the same or different. Similarly, the single or plurality of base materials 1 or resin layer 3 may be the same or different.
 第三実施形態における配線シート100Bにおいて、疑似シート構造体2は、平面視において、同一の振幅および波長の正弦波形を有し、位相がそろった複数の導電性線状体21から構成されている。しかし、導電性線状体21の波形は、矩形波、三角波およびのこぎり波等の波形状であってもよい。また、導電性線状体21毎に異なった波形であってもよい。さらに、導電性線状体21毎に位相が異なっていてもよい。 In the wiring sheet 100B of the third embodiment, the pseudo-sheet structure 2 is composed of a plurality of conductive linear bodies 21 having a sinusoidal waveform having the same amplitude and wavelength in a plan view and having the same phase. .. However, the waveform of the conductive linear body 21 may have a wave shape such as a rectangular wave, a triangular wave, and a sawtooth wave. Further, the waveform may be different for each conductive linear body 21. Further, the phase may be different for each conductive linear body 21.
(配線シートの用途)
 配線シート100を発熱体(シート状ヒーター)として用いる場合、発熱体の用途としては、例えば、デフォッガー(defogger)およびデアイサー(deicer)等も挙げられる。この場合、被着体としては、例えば、浴室等の鏡、輸送用装置(乗用車、鉄道、船舶および航空機等)の窓、建物の窓・壁紙、アイウェア、信号機の点灯面および標識等が挙げられる。近年では、電気自動車のバッテリーの温度コントロールにヒーターが使われており、薄いヒーターはラミネート型セルの個別の温度コントロールに好適である。また、配線シート100を発熱体の他の一つの用途として、椅子または輸送用装置(乗用車、鉄道、船舶および航空機等)のシートに組み込んだヒーターとして利用することができる。
(Use of wiring sheet)
When the wiring sheet 100 is used as a heating element (sheet-shaped heater), examples of the use of the heating element include a defogger and a deicer. In this case, examples of the adherend include mirrors in bathrooms, windows of transportation devices (passenger cars, railroads, ships, aircraft, etc.), windows / wallpapers of buildings, eyewear, lighting surfaces of traffic lights, signs, and the like. Be done. In recent years, heaters have been used to control the temperature of batteries in electric vehicles, and thin heaters are suitable for individual temperature control of laminated cells. Further, the wiring sheet 100 can be used as another use of the heating element as a heater incorporated in a chair or a seat of a transportation device (passenger car, railroad, ship, aircraft, etc.).
 以下、本発明について、実施例および比較例に示して説明するが、本発明がこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 [実施例1]
 目付40g/mのポリエステル製のサーマルボンド不織布からなる基材にアクリル系粘着剤(リンテック社製、商品名:「PK」)が厚さ20μmで形成された粘着シートを作製した。導電性線状体として、タングステンワイヤー(直径25μm、メーカー名:株式会社トクサイ製、製品名:TWG-CS)を準備した。
 周面がゴム製のドラム部材にしわのないように粘着面を外側にして粘着シートを巻きつけた。円周方向における粘着シートの両端部を両面テープで固定した。ボビンに巻き付けたタングステンワイヤーをドラム部材の端部付近に位置する粘着シートにおける各樹脂帯状体の表面に付着させた上で、タングステンワイヤーを繰り出しながらドラム部材で巻き取った。
 ドラム部材を1周回転させることで、タングステンワイヤーが粘着シート上に巻きつくようにした。このようにして、粘着シートの表面上に、複数のタングステンワイヤーが等間隔に設置された疑似シート構造体を形成した。この際、ドラム部材は、ドラム軸方向に振動させながら回転するようにして、巻き付けられたタングステンワイヤーが波形状を描くようにした。タングステンワイヤーは等間隔に25本設けられ、間隔は10mmであった。次に、電極として、金めっき銅線(直径150μm、メーカー名:株式会社トクサイ製、製品名:C1100-H AuP)を使用した。電極は、タングステンワイヤーの両端部に同タングステンワイヤーが延びる方向と直交する方向に取り付けた。金めっき銅線は、各電極に4本を使用し、両極あわせて8本を使用した。両電極間の距離は、最も内側の銅線間距離において200mmであった。その後、両端部を折り返すことで、各4本の電極の上下を疑似シート構造体で挟み込み、上下からタングステンワイヤーと電極が接するようにした。なお、折り返し縁部と、電極との間隙は5mmであった。また、第一領域の幅は、10mmであった。続いて、疑似シート構造体のタングステンワイヤーを配置した粘着面に、同様の不織布を貼り合わせて、配線シートを作製した。
[Example 1]
An adhesive sheet having an acrylic pressure-sensitive adhesive (manufactured by Lintec Corporation, trade name: "PK") having a thickness of 20 μm was prepared on a base material made of a thermal-bonded non-woven fabric made of polyester having a basis weight of 40 g / m 2. As a conductive linear body, a tungsten wire (diameter 25 μm, manufacturer name: manufactured by Tokusai Co., Ltd., product name: TWG-CS) was prepared.
The adhesive sheet was wrapped with the adhesive surface on the outside so that the peripheral surface of the rubber drum member was not wrinkled. Both ends of the adhesive sheet in the circumferential direction were fixed with double-sided tape. The tungsten wire wound around the bobbin was attached to the surface of each resin strip in the adhesive sheet located near the end of the drum member, and then wound up by the drum member while feeding out the tungsten wire.
By rotating the drum member once, the tungsten wire was wound around the adhesive sheet. In this way, a pseudo-sheet structure in which a plurality of tungsten wires were installed at equal intervals was formed on the surface of the adhesive sheet. At this time, the drum member was rotated while vibrating in the direction of the drum axis so that the wound tungsten wire drew a wavy shape. Tungsten wires were provided at equal intervals of 25, and the intervals were 10 mm. Next, as an electrode, a gold-plated copper wire (diameter 150 μm, manufacturer name: manufactured by Tokusai Co., Ltd., product name: C1100-H AuP) was used. The electrodes were attached to both ends of the tungsten wire in a direction orthogonal to the direction in which the tungsten wire extends. Four gold-plated copper wires were used for each electrode, and a total of eight gold-plated copper wires were used. The distance between the two electrodes was 200 mm at the innermost distance between the copper wires. After that, by folding back both ends, the upper and lower parts of each of the four electrodes were sandwiched between pseudo-sheet structures so that the tungsten wire and the electrodes were in contact with each other from above and below. The gap between the folded edge and the electrode was 5 mm. The width of the first region was 10 mm. Subsequently, a similar non-woven fabric was attached to the adhesive surface on which the tungsten wire of the pseudo-sheet structure was arranged to prepare a wiring sheet.
 配線シートに、直流電源を用いて2.0Vから6.0Vの電圧をかけ、電流値から抵抗値を求めた。これによって、配線シートの評価をおこなった。
 [実施例2]
 導電性線状体としてタングステンワイヤーを金めっきタングステンワイヤー(直径25μm、メーカー名:株式会社トクサイ製、製品名:Au(0.1)-TWG)を用いた以外、実施例1と同様にして配線シートを作製し、実施例1と同様に評価をおこなった。
A voltage of 2.0 V to 6.0 V was applied to the wiring sheet using a DC power supply, and the resistance value was obtained from the current value. Based on this, the wiring sheet was evaluated.
[Example 2]
Wired in the same manner as in Example 1 except that a tungsten wire was plated with gold as a conductive linear body (diameter 25 μm, manufacturer name: manufactured by Tokusai Co., Ltd., product name: Au (0.1) -TWG). A sheet was prepared and evaluated in the same manner as in Example 1.
 [実施例3]
 導電性線状体としてタングステンワイヤーを金めっきタングステンワイヤー(直径25μm、メーカー名:株式会社トクサイ製、製品名:Au(0.1)-TWG)を用い、また、電極として、実施例1における金めっき銅線4本を導電性銅箔粘着テープ(寺岡製作所製、8323-10×20)に代え、金めっきタングステンワイヤー面に銅箔粘着テープの粘着面を貼り合せた以外、実施例1と同様にして配線シートを作製した。銅箔の幅は10mmであり、銅箔の厚さは0.035mmであり、金めっきタングステンワイヤーの両端部にある銅箔における内側端部間の距離は、200mmであった。
 実施例1と同様に、配線シートの評価をおこなった。
[Example 3]
Gold-plated tungsten wire as a conductive linear body Tungsten wire (diameter 25 μm, manufacturer name: manufactured by Tokusai Co., Ltd., product name: Au (0.1) -TWG) is used, and gold in Example 1 is used as an electrode. Same as Example 1 except that the four plated copper wires were replaced with conductive copper foil adhesive tape (manufactured by Teraoka Mfg. Co., Ltd., 8323-10 × 20) and the adhesive surface of the copper foil adhesive tape was attached to the gold-plated tungsten wire surface. To prepare a wiring sheet. The width of the copper foil was 10 mm, the thickness of the copper foil was 0.035 mm, and the distance between the inner ends of the copper foil at both ends of the gold-plated tungsten wire was 200 mm.
The wiring sheet was evaluated in the same manner as in Example 1.
 [比較例1]
 電極を取り付けたあとに、端部を折り返さずに不織布を貼り合わせた以外、実施例1と同様にして配線シート、評価をおこなった。
[Comparative Example 1]
After the electrodes were attached, the wiring sheet and evaluation were carried out in the same manner as in Example 1 except that the non-woven fabric was attached without folding back the ends.
 [比較例2]
 電極を取り付けたあとに、端部を折り返さずに不織布を貼り合わせた以外、実施例2と同様にして配線シート、評価をおこなった。
[Comparative Example 2]
After the electrodes were attached, the wiring sheet and evaluation were carried out in the same manner as in Example 2 except that the non-woven fabric was attached without folding back the ends.
 [比較例3]
 電極を取り付けたあとに、端部を折り返さずに不織布を貼り合わせた以外、実施例3と同様にして配線シート、評価をおこなった。
[Comparative Example 3]
After the electrodes were attached, the wiring sheet and evaluation were carried out in the same manner as in Example 3 except that the non-woven fabric was attached without folding back the ends.
 図11は、第一領域5と第二領域7において疑似シート構造体が電極と接触した実施例1および第二領域7のみで、疑似シート構造体が電極と接触した比較例1における加えた電圧と抵抗値との関係を示したグラフである。
 同様に、図12は、実施例2と比較例2における加えた電圧と抵抗値との関係を示したグラフである。
 同様に、図13は、実施例3と比較例3における加えた電圧と抵抗値との関係を示したグラフである。
FIG. 11 shows the applied voltage in Comparative Example 1 in which the pseudo-sheet structure was in contact with the electrodes only in the first region 5 and the second region 7 and the pseudo-sheet structure was in contact with the electrodes. It is a graph which showed the relationship between a resistance value and a resistance value.
Similarly, FIG. 12 is a graph showing the relationship between the applied voltage and the resistance value in Example 2 and Comparative Example 2.
Similarly, FIG. 13 is a graph showing the relationship between the applied voltage and the resistance value in Example 3 and Comparative Example 3.
 図11から図13のいずれにおいても、ヒーターに加えた各電圧において比較例における配線シートに対し、実施例における配線シートは、電気抵抗が低いことが示されている。
 実施例における配線シートが低い電気抵抗を示したのは、導電性線状体と電極との間の接触面積が拡大したため、主に両者の間の接触抵抗が低下したことによるものと考えられる。
In any of FIGS. 11 to 13, it is shown that the wiring sheet in the embodiment has lower electrical resistance than the wiring sheet in the comparative example at each voltage applied to the heater.
It is considered that the reason why the wiring sheet in the examples showed low electrical resistance was that the contact area between the conductive linear body and the electrode was expanded, so that the contact resistance between the two was mainly reduced.
 また、一般に、導体は、温度の上昇とともに、抵抗値が増大する。このため、導電性線状体が、発熱性である場合、加える電圧が高くなるとともに抵抗値が増大すると考えられる。これを電圧と抵抗値との関係としてグラフにすると右上がりの曲線または直線になるものと認められる。
 実施例2および3では、電圧と抵抗値との関係を示すグラフにおいて、右上がりの曲線が得られている。これは、実施例2および3では、導電性線状体と電極との間の接触による抵抗が安定したため、加える電圧に応じて、発熱したことを示していると考えられる。
 実施例2では、折り曲げ部による接触面積の拡大とともに、金を表面に有する導電性線状体を使用したことにより、導電性線状体と電極との間の接触抵抗が安定したものと認められる。また、実施例3では、実施例2の理由に加え、導電性線状体と接触面積を大きくすることができる銅箔を電極に用いたことにより、導電性線状体と電極との間の接触抵抗が安定したものと考えられる。
 これに対し、導電性線状体と電極との間の接触が不安定であると、不安定な接触抵抗により、発熱も不安定になり、加える電圧に対する抵抗値も不安定になると考えられる。
Also, in general, the resistance value of a conductor increases as the temperature rises. Therefore, when the conductive linear body is heat-generating, it is considered that the applied voltage increases and the resistance value increases. If this is graphed as the relationship between the voltage and the resistance value, it is recognized that the curve or straight line rises to the right.
In Examples 2 and 3, a curve rising to the right is obtained in the graph showing the relationship between the voltage and the resistance value. This is considered to indicate that in Examples 2 and 3, heat was generated according to the applied voltage because the resistance due to the contact between the conductive linear body and the electrode was stable.
In Example 2, it is recognized that the contact resistance between the conductive linear body and the electrode was stabilized by using the conductive linear body having gold on the surface as well as expanding the contact area by the bent portion. .. Further, in Example 3, in addition to the reason of Example 2, a copper foil capable of increasing the contact area with the conductive linear body is used for the electrode, so that the conductive linear body and the electrode are separated from each other. It is considered that the contact resistance is stable.
On the other hand, if the contact between the conductive linear body and the electrode is unstable, the heat generation becomes unstable due to the unstable contact resistance, and the resistance value against the applied voltage is also considered to be unstable.
 以上、本発明によれば、電気抵抗を低減した配線シートを提供できることが確認された。また、本発明によれば、導電性線状体と電極との間の接触抵抗を低減したと考えられるため、配線シートを発熱体として用いた場合に、導電性線状体と電極との間の接触部分の発熱を抑制し、より均一に発熱する配線シートを提供できる。 As described above, it has been confirmed that according to the present invention, it is possible to provide a wiring sheet with reduced electrical resistance. Further, according to the present invention, it is considered that the contact resistance between the conductive linear body and the electrode is reduced. Therefore, when the wiring sheet is used as a heating element, the contact resistance between the conductive linear body and the electrode is considered to be reduced. It is possible to provide a wiring sheet that suppresses heat generation at the contact portion of the wire and generates heat more uniformly.
 1…基材、2…疑似シート構造体、21…導電性線状体、22…折り返し端縁、3…樹脂層、31…樹脂帯状体、4…電極、41…電極ワイヤー、5…第一領域、6…折り返し領域、7…第二領域、100,100A~100H…配線シート。 1 ... Base material, 2 ... Pseudo-sheet structure, 21 ... Conductive linear body, 22 ... Folded edge, 3 ... Resin layer, 31 ... Resin strip, 4 ... Electrode, 41 ... Electrode wire, 5 ... First Area, 6 ... Folded area, 7 ... Second area, 100, 100A-100H ... Wiring sheet.

Claims (12)

  1.  複数の導電性線状体が間隔をもって配列された疑似シート構造体と、一対の電極とを備え、
     前記疑似シート構造体の平面視において、前記導電性線状体の長さ方向における前記疑似シート構造体の少なくとも一端が折り返し縁部を備え、
     折り返し前の前記疑似シート構造体は、端から順に、第一領域、前記折り返し縁部となる折り返し領域、および折り返し後に前記第一領域と対向する第二領域を備え、
     前記疑似シート構造体と前記電極の一方とは、前記第一領域、および前記第二領域において、電気的に接続している、
     配線シート。
    A pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals and a pair of electrodes are provided.
    In a plan view of the pseudo-sheet structure, at least one end of the pseudo-sheet structure in the length direction of the conductive linear body is provided with a folded edge portion.
    The pseudo-sheet structure before folding includes a first region, a folding region serving as the folding edge portion, and a second region facing the first region after folding, in order from the end.
    The pseudo-sheet structure and one of the electrodes are electrically connected in the first region and the second region.
    Wiring sheet.
  2.  請求項1に記載の配線シートにおいて、
     前記導電性線状体の長さ方向における前記疑似シート構造体の両端が折り返し縁部を有し、
     前記両端の折り返し縁部で、それぞれの電極が前記第一領域、および前記第二領域において電気的に接続している、
     配線シート。
    In the wiring sheet according to claim 1,
    Both ends of the pseudo-sheet structure in the length direction of the conductive linear body have folded edges.
    At the folded edges at both ends, the respective electrodes are electrically connected in the first region and the second region.
    Wiring sheet.
  3.  請求項1または2に記載の配線シートにおいて、
     さらに、前記導電性線状体を支持する基材を備える、
     配線シート。
    In the wiring sheet according to claim 1 or 2.
    Further, a base material for supporting the conductive linear body is provided.
    Wiring sheet.
  4.  請求項3に記載の配線シートにおいて、
     前記基材が、柔軟性基材である、
     配線シート。
    In the wiring sheet according to claim 3,
    The base material is a flexible base material.
    Wiring sheet.
  5.  請求項4に記載の配線シートにおいて、
     前記柔軟性基材が、合成樹脂フィルム、紙、不織布または布である、
     配線シート。
    In the wiring sheet according to claim 4,
    The flexible substrate is a synthetic resin film, paper, non-woven fabric or cloth.
    Wiring sheet.
  6.  請求項1から5のいずれか一項に記載の配線シートにおいて、
     さらに、前記導電性線状体を支持する樹脂層を備える、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 5,
    Further, a resin layer for supporting the conductive linear body is provided.
    Wiring sheet.
  7.  請求項6に記載の配線シートにおいて、
     さらに、前記導電性線状体の少なくとも一部は、前記樹脂層に埋まっている、
     配線シート。
    In the wiring sheet according to claim 6,
    Further, at least a part of the conductive linear body is embedded in the resin layer.
    Wiring sheet.
  8.  請求項1から7のいずれか一項に記載の配線シートにおいて、
     前記電極が、金属ワイヤーである、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 7.
    The electrode is a metal wire,
    Wiring sheet.
  9.  請求項1から8のいずれか一項に記載の配線シートにおいて、
     前記第一領域における前記導電性線状体と、前記第二領域における前記導電性線状体とが、直接または間接的に接触している、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 8.
    The conductive linear body in the first region and the conductive linear body in the second region are in direct or indirect contact with each other.
    Wiring sheet.
  10.  請求項1から9のいずれか一項に記載の配線シートにおいて、
     前記疑似シート構造体の平面視において、前記折り返し縁部と、電極との間隙が、50mm以下である、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 9,
    In the plan view of the pseudo-sheet structure, the gap between the folded edge portion and the electrode is 50 mm or less.
    Wiring sheet.
  11.  請求項1から10のいずれか一項に記載の配線シートにおいて、
     前記疑似シート構造体の平面視において、前記導電性線状体が波形状である、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 10.
    In the plan view of the pseudo-sheet structure, the conductive linear body has a wavy shape.
    Wiring sheet.
  12.  請求項1から11のいずれか一項に記載の配線シートにおいて、
     発熱体として用いる、
     配線シート。
    In the wiring sheet according to any one of claims 1 to 11.
    Used as a heating element,
    Wiring sheet.
PCT/JP2021/013759 2020-04-03 2021-03-31 Wiring sheet WO2021201069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067614A JP2021163723A (en) 2020-04-03 2020-04-03 Wiring sheet
JP2020-067614 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021201069A1 true WO2021201069A1 (en) 2021-10-07

Family

ID=77929496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013759 WO2021201069A1 (en) 2020-04-03 2021-03-31 Wiring sheet

Country Status (2)

Country Link
JP (1) JP2021163723A (en)
WO (1) WO2021201069A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022202230A1 (en) * 2021-03-24 2022-09-29
WO2023063379A1 (en) * 2021-10-14 2023-04-20 リンテック株式会社 Wiring sheet
WO2023080112A1 (en) * 2021-11-02 2023-05-11 リンテック株式会社 Sheet-shaped heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587886U (en) * 1992-04-30 1993-11-26 松下電工株式会社 Sheet heating element
US20100206863A1 (en) * 2007-09-07 2010-08-19 Benecke-Kaliko Ag Electrically conductive, flexible web material
US20120153688A1 (en) * 2009-07-21 2012-06-21 Benecke-Kaliko Ag Flexible flat heating element
JP2015026422A (en) * 2013-07-24 2015-02-05 日産自動車株式会社 Conductive cloth
JP2018039226A (en) * 2016-09-09 2018-03-15 リンテック株式会社 Ice and snow attachment prevention sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587886U (en) * 1992-04-30 1993-11-26 松下電工株式会社 Sheet heating element
US20100206863A1 (en) * 2007-09-07 2010-08-19 Benecke-Kaliko Ag Electrically conductive, flexible web material
US20120153688A1 (en) * 2009-07-21 2012-06-21 Benecke-Kaliko Ag Flexible flat heating element
JP2015026422A (en) * 2013-07-24 2015-02-05 日産自動車株式会社 Conductive cloth
JP2018039226A (en) * 2016-09-09 2018-03-15 リンテック株式会社 Ice and snow attachment prevention sheet

Also Published As

Publication number Publication date
JP2021163723A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
WO2021201069A1 (en) Wiring sheet
TWI824186B (en) Sheet, heating element and heating device
JP7321164B2 (en) METHOD FOR MANUFACTURING ARTICLE WITH CONDUCTIVE SHEET
CN113196419B (en) Conductive adhesive sheet, laminate, and heat-generating device
WO2021192775A1 (en) Wiring sheet and sheet-like heater
JP2020119856A (en) Manufacturing method of sheet-like conductive member, and sheet-like conductive member
WO2021261465A1 (en) Wiring sheet
JP7346152B2 (en) Sheet-shaped conductive member and its manufacturing method
WO2020189173A1 (en) Sheet-shaped conductive member and manufacturing method therefor
JP7308210B2 (en) Sheet-shaped conductive member
WO2021187361A1 (en) Wiring sheet, and sheet-like heater
US20220242099A1 (en) Manufacturing method of sheet-like conductive member, and sheet-like conductive member
WO2021172150A1 (en) Wiring sheet
WO2022070481A1 (en) Wiring sheet and wiring sheet production method
WO2023063378A1 (en) Wiring sheet
WO2023063379A1 (en) Wiring sheet
WO2022102536A1 (en) Wiring sheet and sheet-form heater
WO2023063377A1 (en) Contact sensor and wiring sheet
JP2022085213A (en) Wiring sheet and method for manufacturing the same
US20230115263A1 (en) Sheet-shaped heating element and heat generating device
WO2022202230A1 (en) Wiring sheet
WO2021193239A1 (en) Sheet-like conductive member and sheet-like heater
JP2023059087A (en) wiring sheet
JP2024052337A (en) Wiring sheet and sheet heater
JP2022149123A (en) wiring sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781648

Country of ref document: EP

Kind code of ref document: A1