WO2023063379A1 - Wiring sheet - Google Patents

Wiring sheet Download PDF

Info

Publication number
WO2023063379A1
WO2023063379A1 PCT/JP2022/038141 JP2022038141W WO2023063379A1 WO 2023063379 A1 WO2023063379 A1 WO 2023063379A1 JP 2022038141 W JP2022038141 W JP 2022038141W WO 2023063379 A1 WO2023063379 A1 WO 2023063379A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive linear
linear body
conductive
electrode
resin layer
Prior art date
Application number
PCT/JP2022/038141
Other languages
French (fr)
Japanese (ja)
Inventor
孝至 森岡
祐馬 勝田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023063379A1 publication Critical patent/WO2023063379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • the present invention relates to wiring sheets.
  • Patent Document 1 describes a conductive sheet having a pseudo-sheet structure in which a plurality of linear bodies extending in one direction are arranged at intervals. ing. By providing a pair of electrodes on both ends of the plurality of linear bodies, a wiring sheet that can be used as a heating element is obtained.
  • the planar heater it may be required to set the temperature for each location within the sheet plane. The planar heater described in Patent Document 1 cannot meet such requirements.
  • An object of the present invention is to provide a wiring sheet that can change the amount of current for each location within the plane of the sheet.
  • a first pseudo-sheet structure in which a plurality of first conductive linear bodies are arranged at intervals, and a first electrode electrically connected to one or more of the first conductive linear bodies , a second electrode paired with the first electrode and electrically connected to one of the first conductive linear bodies that is not electrically connected to the first electrode; and a plurality of second conductive and a second pseudo-sheet structure in which linear bodies are arranged at intervals, wherein the volume resistivity of the first conductive linear bodies is the volume resistance of the second conductive linear bodies.
  • the first conductive linear bodies and the second conductive linear bodies intersect at each intersection, and the first conductive linear bodies and the The second conductive linear bodies are electrically connected at the intersections, and the resistance value is different between any of the second conductive linear bodies between the intersections. wiring sheet.
  • the wiring sheet described in [1] has a different thickness between any of the second conductive linear bodies.
  • the wiring sheet has different intervals between any of the first conductive linear bodies.
  • the first conductive linear body and the second conductive linear body are gold-plated linear bodies. , wiring sheet.
  • FIG. 1 is a schematic exploded perspective view showing a wiring sheet according to a first embodiment of the invention
  • FIG. FIG. 2 is a sectional view showing the II-II section of FIG. 1
  • FIG. 2 is a cross-sectional view showing the III-III cross section of FIG. 1
  • 1 is a schematic plan view showing a wiring sheet according to a first embodiment of the invention
  • Fig. 10 is a schematic perspective view showing a first pseudo sheet structure, first electrodes and second electrodes according to a second embodiment of the present invention.
  • the wiring sheet 100 As shown in FIGS. 1, 2, 3, and 4, the wiring sheet 100 according to the present embodiment has a first base material 1 and a plurality of first conductive linear bodies 21 arranged at intervals.
  • a first pseudo sheet structure 2, a first resin layer 3, a first electrode 41, a second electrode 42, a second substrate 5, and a plurality of second conductive linear bodies 61 are arranged at intervals.
  • a second pseudo sheet structure 6 and a second resin layer 7 are provided.
  • the first electrode 41 and the second electrode 42 are paired.
  • the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 .
  • the second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 .
  • first conductive linear bodies 21 and second conductive linear bodies 61 intersect at respective intersections. Also, the first conductive linear body 21 and the second conductive linear body 61 are electrically connected at the intersection. Moreover, the resistance value is different between any of the second conductive linear bodies 61 between the intersections.
  • the volume resistivity of the first conductive linear bodies 21 is smaller than the volume resistivity of the second conductive linear bodies 61 . Therefore, heat generation in the first conductive linear body 21 can be reduced, and heat generation in the second conductive linear body 61 can be increased. It should be noted that the heat generated by the second conductive linear body 61 can more appropriately heat the portion to be heated.
  • the resistance value is different between any of the second conductive linear bodies 61 between the intersections, it is possible to change the amount of current between the intersections. can. By changing the amount of current between intersections, the amount of heat generated can be adjusted for each location on the sheet plane, so the temperature can be set for each location on the sheet plane.
  • the spacing between any of the first conductive linear bodies 21 may be different.
  • the lengths of the second conductive linear bodies 61 between the intersections are also different.
  • the resistance values of the second conductive linear bodies 61 between the intersections will be different.
  • the resistance value of the second conductive linear body 61 between the intersections is becomes higher as it approaches . Therefore, the amount of current flowing through the second conductive linear body 61 between the intersections becomes smaller toward the ends.
  • any one of the second conductive linear bodies 61 may have a different thickness.
  • the resistance value of the second conductive linear body 61 decreases as the thickness (diameter) D2 of the second conductive linear body 61 increases if the material is the same. Then, as shown in FIG. 3, when the thickness of the second conductive linear body 61 becomes thicker toward the central portion, the resistance value of the second conductive linear body 61 between the intersections is It gets lower the closer you get to the edge. Therefore, the amount of current flowing through the second conductive linear body 61 between the intersections increases toward the central portion.
  • the material may be different between any of the second conductive linear bodies 61 .
  • the resistance value of the second conductive linear body 61 can be changed according to the material by changing the material. For example, the higher the volume resistivity of the material used for the second conductive linear bodies 61, the higher the resistance value of the second conductive linear bodies 61 between the intersections.
  • the first substrate 1 can support the first pseudo-sheet structure 2 directly or indirectly.
  • the second substrate 5 can support the second pseudo-sheet structure 6 directly or indirectly.
  • the first base material 1 and the second base material 5 do not necessarily have to be provided.
  • the first base material 1 and the second base material 5 are members provided as needed. Examples of the first base material 1 and the second base material 5 include synthetic resin film, paper, nonwoven fabric, cloth, and glass film.
  • the first substrate 1 and the second substrate 5 may be transparent substrates or substrates having visibility. In this way, the wiring sheet 100 can be transparent or have visibility. Also, the first base material 1 and the second base material 5 may be stretchable base materials.
  • the stretchability of the wiring sheet 100 can be ensured even when the first pseudo sheet structure 2 is provided on the first base material 1 .
  • a synthetic resin film, a nonwoven fabric, a cloth, or the like can be used as the first base material 1 and the second base material 5.
  • synthetic resin films include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film.
  • stretchable substrates include these crosslinked films and laminated films.
  • nonwoven fabrics include spunbond nonwoven fabrics, needle-punched nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, and the like. Fabrics include, for example, woven fabrics and knitted fabrics. Paper, non-woven fabric, and cloth as stretchable substrates are not limited to these.
  • the thicknesses of the first base material 1 and the second base material 5 are not particularly limited.
  • the thickness of the first base material 1 and the second base material 5 is preferably 10 ⁇ m or more and 10 mm or less, more preferably 15 ⁇ m or more and 3 mm or less, and even more preferably 50 ⁇ m or more and 1.5 mm or less.
  • the first pseudo sheet structure 2 has a structure in which a plurality of first conductive linear bodies 21 are arranged at intervals. Also, the first pseudo sheet structure 2 is arranged in a plurality in a direction intersecting with the axial direction of the first conductive linear body 21 .
  • the second pseudo sheet structure 6 has a structure in which a plurality of second conductive linear bodies 61 are arranged at intervals. The second pseudo sheet structure 6 has a structure in which a plurality of second conductive linear bodies 61 are arranged in a direction intersecting the axial direction of the second conductive linear bodies 61 .
  • the first conductive linear bodies 21 and the second conductive linear bodies 61 may be linear or wavy in a plan view of the wiring sheet 100 .
  • Wave shapes include, for example, sine waves, rectangular waves, triangular waves, and sawtooth waves.
  • the first pseudo-sheet structure 2 has such a structure, when the wiring sheet 100 is stretched in the axial direction of the first conductive linear bodies 21, the first conductive linear bodies 21 Disconnection can be suppressed.
  • the volume resistivity of the first conductive linear body 21 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 5 ⁇ m or less, and preferably 5.0 ⁇ 10 ⁇ 9 ⁇ ⁇ m or more and 5.0 ⁇ 10 ⁇ 6 ⁇ m or less is more preferable.
  • the volume resistivity of the first conductive linear body 21 is within the above range, when the first conductive linear body 21 and the second conductive linear body 61 are electrically connected, the first conductive wire Heat generation in the shaped body 21 can be reduced, and heat generation in the second conductive linear body 61 can be increased.
  • the volume resistivity of the second conductive linear body 61 is preferably 1.0 ⁇ 10 ⁇ 9 ⁇ m or more and 1.0 ⁇ 10 ⁇ 3 ⁇ m or less, and preferably 1.0 ⁇ 10 ⁇ 8 ⁇ ⁇ m or more and 1.0 ⁇ 10 ⁇ 4 ⁇ m or less is more preferable.
  • the volume resistivity of the second conductive linear bodies 61 is within the above range, the surface resistance of the second pseudo-sheet structure 6 tends to decrease.
  • the measurement of the volume resistivity of the first conductive linear body 21 and the second conductive linear body 61 is as follows.
  • Silver paste is applied to one end of the first conductive linear body 21 or the second conductive linear body 61 and a portion of 40 mm in length from the end, and the end and a portion of 40 mm in length from the end are coated. is measured, and the resistance value of the first conductive linear body 21 or the second conductive linear body 61 is obtained. Then, the cross-sectional area (unit: m 2 ) of the first conductive linear body 21 or the second conductive linear body 61 is multiplied by the above resistance value, and the obtained value is divided into the above measured length (0. 04m) to calculate the volume resistivity of the first conductive linear body 21 or the second conductive linear body 61 .
  • the cross-sectional shape of the first conductive linear body 21 and the second conductive linear body 61 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the viewpoint of compatibility with the first resin layer 3 and the second resin layer 7, the cross-sectional shape of the first conductive linear body 21 and the second conductive linear body 61 is elliptical or circular. is preferred.
  • the thickness (diameter) D1 of the first conductive linear body 21 and the second conductive linear body 61 is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the diameter D1 of the first conductive linear body 21 and the diameter D2 of the second conductive linear body 61 are It is more preferably 8 ⁇ m or more and 150 ⁇ m or less, and even more preferably 12 ⁇ m or more and 100 ⁇ m or less.
  • the cross sections of the first conductive linear body 21 and the second conductive linear body 61 are elliptical, it is preferable that the major axis be in the same range as the diameter D1 and the diameter D2.
  • the diameter D1 of the first conductive linear body 21 and the diameter D2 of the second conductive linear body 61 are determined by observing the first conductive linear body 21 and the second conductive linear body 61 using a digital microscope. Then, the diameters of the first conductive linear body 21 and the second conductive linear body 61 are measured at five randomly selected locations, and the average value is taken.
  • the interval L1 between the first conductive linear members 21 (see FIG. 2) and the interval L2 between the second conductive linear members 61 (see FIG. 3) are preferably 0.3 mm or more and 50 mm or less. It is more preferably 5 mm or more and 30 mm or less, and further preferably 0.8 mm or more and 20 mm or less. If the distance between the first conductive linear bodies 21 or between the second conductive linear bodies 61 is within the above range, the conductive linear bodies are densely packed to some extent, so that the resistance of the pseudo sheet structure can be lowered. It is possible to improve the function of the wiring sheet 100 such as maintenance.
  • the interval L1 between the first conductive linear members 21 and the interval L2 between the second conductive linear members 61 are determined by using a digital microscope, for example, the first conductive linear members 21 of the first pseudo-sheet structure 2. Observe and measure the distance between two adjacent first conductive linear bodies 21 .
  • the interval between two adjacent first conductive linear bodies 21 is the length along the direction in which the first conductive linear bodies 21 are arranged, and It is the length between opposing portions of the body 21 (see FIG. 2).
  • the interval L1 is the average value of the intervals between all adjacent first conductive linear members 21 when the first conductive linear members 21 are arranged at uneven intervals.
  • the interval L2 is the average value of the intervals between all adjacent second conductive linear members 61 when the second conductive linear members 61 are arranged at uneven intervals.
  • the first conductive linear body 21 and the second conductive linear body 61 are not particularly limited, but may be linear bodies containing metal wires (hereinafter also referred to as "metal wire linear bodies"). good. Metal wires have high thermal conductivity, high electrical conductivity, high handling properties, and versatility. The metal wire linear body can greatly reduce the resistance, and even if the diameter of the metal wire linear body is extremely small, the electric current required for heat generation of the wiring sheet 100 can be applied. Thereby, the first conductive linear body 21 and the second conductive linear body 61 can be made difficult to be visually recognized.
  • the resistance values of the first pseudo-sheet structure bodies 2 and the second pseudo-sheet structure bodies 6 are reduced.
  • the wiring sheet 100 is likely to generate heat quickly.
  • a linear body containing carbon nanotubes and a thread are coated with a conductive coating. A linear body is mentioned.
  • the metallic wire linear body may be a linear body made of one metal wire, or may be a linear body made by twisting a plurality of metal wires.
  • Metal wires include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (for example, steel such as stainless steel and carbon steel, brass, phosphorus bronze, zirconium-copper alloys, beryllium-copper, iron-nickel, nichrome, nickel-titanium, kanthal, hastelloy, and rhenium-tungsten, etc.).
  • the metal wire may be plated with tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like, and the surface is coated with a carbon material, polymer, or the like, which will be described later. There may be.
  • a wire containing one or more metals selected from tungsten, molybdenum, and alloys containing these is preferable from the viewpoint of low volume resistivity.
  • Metal wires also include metal wires coated with carbon materials. When the metal wire is coated with a carbon material, the metallic luster is reduced, making it easier to make the presence of the metal wire inconspicuous. Metal corrosion is also suppressed when the metal wire is coated with a carbon material.
  • Examples of the carbon material that coats the metal wire include amorphous carbon (eg, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.), graphite, fullerene, graphene, carbon nanotubes, and the like.
  • amorphous carbon eg, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.
  • graphite fullerene
  • graphene carbon nanotubes, and the like.
  • a linear body containing carbon nanotubes is, for example, a carbon nanotube forest (a growing body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in the vertical direction to the substrate, and is called an “array”). It can be obtained by drawing carbon nanotubes in a sheet form from the end of the carbon nanotube, bundling the drawn carbon nanotube sheet, and then twisting the bundle of carbon nanotubes. In such a production method, a ribbon-like carbon nanotube linear body is obtained when twisting is not applied during twisting, and a thread-like linear body is obtained when twisting is applied.
  • a ribbon-shaped carbon nanotube linear body is a linear body that does not have a structure in which carbon nanotubes are twisted.
  • a carbon nanotube linear body can be obtained by spinning a carbon nanotube dispersion.
  • Production of carbon nanotube linear bodies by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Application Laid-Open No. 2012-126635).
  • a filamentous carbon nanotube linear body it is desirable to use a filamentous carbon nanotube linear body. It is preferable to obtain a filamentous carbon nanotube linear body by
  • the carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together.
  • the carbon nanotube linear body may be a linear body in which a carbon nanotube and another conductive material are combined (hereinafter also referred to as a "composite linear body").
  • a composite linear body for example, (1) a carbon nanotube linear body in which carbon nanotubes are pulled out in a sheet form from the ends of a carbon nanotube forest, the pulled out carbon nanotube sheets are bundled, and then the bundles of carbon nanotubes are twisted.
  • a composite linear body in which a single metal or metal alloy is supported on the surface of a carbon nanotube forest, sheet or bundle, or twisted linear body by vapor deposition, ion plating, sputtering, wet plating, etc.
  • a metal when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1).
  • the composite linear body of (3) is a composite linear body obtained by knitting two linear bodies.
  • linear bodies As long as linear bodies are included, three or more carbon nanotube linear bodies, linear bodies made of a single metal, linear bodies made of a metal alloy, or composite linear bodies may be woven together.
  • the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin, and zinc, and alloys containing at least one of these simple metals (copper-nickel- phosphorus alloys, copper-iron-phosphorus-zinc alloys, etc.).
  • the first conductive linear body 21 and the second conductive linear body 61 may be linear bodies in which a thread is coated with a conductive coating.
  • the yarn includes yarn spun from a resin such as nylon or polyester. Threads also include threads such as metal fibers, carbon fibers, or fibers of ion-conducting polymers.
  • Examples of conductive coatings include coatings of metals, conductive polymers, carbon materials, and the like. The conductive coating can be formed by plating, vapor deposition, or the like.
  • a linear body in which a thread is coated with a conductive coating can improve the conductivity of the linear body while maintaining the flexibility of the thread. That is, it becomes easy to reduce the resistance of the first pseudo-seat structure 2 and the second pseudo-seat structure 6 .
  • the first conductive linear body 21 is preferably plated with gold. Since the first conductive linear body 21 is plated with gold, the resistance value of the first pseudo sheet structure 2 is stabilized, so that uneven heat generation can be easily suppressed. From the same point of view, the second conductive linear body 61 is also preferably plated with gold.
  • the first resin layer 3 and the second resin layer 7 are layers containing resin.
  • the first pseudo-sheet structure 2 can be directly or indirectly supported by the first resin layer 3 .
  • the first resin layer 3 and the second resin layer 7 may not necessarily be provided.
  • the first resin layer 3 and the second resin layer 7 are members provided as needed.
  • the second pseudo sheet structure 6 can be directly or indirectly supported by the second resin layer 7 .
  • the first resin layer 3 and the second resin layer 7 are preferably layers containing an adhesive.
  • the adhesive facilitates the attachment of the first conductive linear bodies 21 to the first resin layer 3 .
  • the first resin layer 3 and the second resin layer 7 may be layers made of a resin that can be dried or cured. As a result, sufficient hardness is imparted to the first resin layer 3 and the second resin layer 7 to protect the first pseudo-sheet structure 2 and the second pseudo-sheet structure 6, and the first resin layer 3 and the second The resin layer 7 also functions as a protective film. Moreover, the first resin layer 3 and the second resin layer 7 after curing or drying have impact resistance, and can suppress deformation of the wiring sheet 100 due to impact.
  • the first resin layer 3 and the second resin layer 7 are preferably curable with energy rays such as ultraviolet rays, visible energy rays, infrared rays, or electron beams in that they can be easily cured in a short time.
  • energy ray curing includes heat curing by heating using energy rays.
  • the adhesive contained in the first resin layer 3 and the second resin layer 7 is a thermosetting adhesive that hardens with heat, a so-called heat-seal type adhesive that adheres with heat, and an adhesive that develops sticking properties when wet. Also included are agents and the like. However, from the viewpoint of ease of application, it is preferable that the first resin layer 3 and the second resin layer 7 are energy ray-curable. Examples of energy ray-curable resins include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
  • acrylate compounds include chain aliphatic skeleton-containing (meth)acrylates (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra( meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate, etc.) , cycloaliphatic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate,
  • the weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 or more and 30,000 or less, more preferably 300 or more and 10,000 or less.
  • the energy ray-curable resin contained in the adhesive composition may be of one type or two or more types, and when two or more types are used, the combination and ratio thereof can be arbitrarily selected. Furthermore, it may be combined with a thermoplastic resin, which will be described later, and the combination and ratio can be arbitrarily selected.
  • the first resin layer 3 and the second resin layer 7 may be adhesive layers formed from an adhesive (pressure-sensitive adhesive).
  • the adhesive for the adhesive layer is not particularly limited. Examples of adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives. Among these, the adhesive is preferably at least one selected from the group consisting of an acrylic adhesive, a urethane adhesive, and a rubber adhesive, and more preferably an acrylic adhesive.
  • acrylic pressure-sensitive adhesives include polymers containing structural units derived from alkyl (meth)acrylates having straight-chain alkyl groups or branched-chain alkyl groups (that is, polymers obtained by polymerizing at least alkyl (meth)acrylates ), an acrylic polymer containing structural units derived from a (meth)acrylate having a cyclic structure (that is, a polymer obtained by polymerizing at least a (meth)acrylate having a cyclic structure), and the like.
  • (meth)acrylate” is used as a term indicating both "acrylate” and "methacrylate”, and the same applies to other similar terms.
  • the acrylic polymer is a copolymer
  • the form of copolymerization is not particularly limited.
  • the acrylic copolymer may be block copolymer, random copolymer or graft copolymer.
  • the acrylic copolymer may be crosslinked with a crosslinking agent.
  • the cross-linking agent include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • a hydroxyl group or a carboxyl group that reacts with these cross-linking agents should be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer. can be done.
  • the first resin layer 3 and the second resin layer 7 further contain the energy ray-curable resin described above in addition to the adhesive.
  • the energy-ray-curable components include a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer, and an energy-ray-polymerizable functional group.
  • a compound having both groups in one molecule may be used.
  • the reaction between the functional group of the compound and the functional group derived from the monomer component in the acrylic copolymer enables the side chain of the acrylic copolymer to be cured by irradiation with energy rays.
  • a component having an energy ray-polymerizable side chain may be used as a polymer component other than the acrylic polymer.
  • thermosetting resin used for the first resin layer 3 and the second resin layer 7 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, and acrylic resin. Examples include resins, benzoxazine resins, phenoxy resins, amine compounds, acid anhydride compounds, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using imidazole curing catalysts, and are particularly excellent.
  • the moisture-curable resin used for the first resin layer 3 and the second resin layer 7 is not particularly limited, and examples thereof include urethane resins, modified silicone resins, etc., which are resins in which isocyanate groups are generated by moisture.
  • an energy ray-curable resin is used as the resin used for the first resin layer 3 and the second resin layer 7, it is preferable to use a photopolymerization initiator or the like.
  • a thermosetting resin as the resin used for the first resin layer 3 and the second resin layer 7, it is preferable to use a thermal polymerization initiator or the like.
  • a photopolymerization initiator, a thermal polymerization initiator, or the like is used to form a crosslinked structure in the first resin layer 3 and the second resin layer 7, thereby forming a first pseudo It becomes possible to protect the seat structure 2 and the second pseudo seat structure 6 more firmly.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6) -trimethylbenzoyl)-phenyl-phosphine oxide and the like.
  • Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) di hydrochloride, 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.) , and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
  • polymerization initiators can be used singly or in combination of two or more.
  • the amount used is 0.1 mass parts with respect to 100 mass parts of at least one of the energy ray-curable resin and the thermosetting resin. It is preferably from 1 to 100 parts by mass, more preferably from 1 to 100 parts by mass, and even more preferably from 1 to 10 parts by mass.
  • the first resin layer 3 and the second resin layer 7 may be layers made of, for example, a thermoplastic resin composition instead of being curable.
  • a thermoplastic resin composition By including a solvent in the thermoplastic resin composition, the thermoplastic resin layer can be softened. This makes it easy to attach the first conductive linear bodies 21 to the first resin layer 3 when forming the first pseudo sheet structure 2 on the first resin layer 3 , for example.
  • the thermoplastic resin layer can be dried and solidified.
  • thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide and acrylic resin.
  • solvents include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, halogenated alkyl-based solvents, and water.
  • the first resin layer 3 and the second resin layer 7 may contain an inorganic filler. By containing the inorganic filler, the hardness of the first resin layer 3 and the second resin layer 7 after curing can be further improved.
  • inorganic fillers examples include inorganic powders (for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), beads obtained by spheroidizing inorganic powders, single crystal fibers, and glass fiber.
  • silica fillers and alumina fillers are preferred as inorganic fillers.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the first resin layer 3 and the second resin layer 7 may contain other components.
  • Other components include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, plasticizers, antifoaming agents, and well-known additives such as wettability modifiers. agents.
  • the thicknesses of the first resin layer 3 and the second resin layer 7 are determined according to the use of the wiring sheet 100.
  • the thickness of the first resin layer 3 and the second resin layer 7 is preferably 3 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the first electrode 41 and the second electrode 42 are used to supply current to the first conductive linear body 21 .
  • the first electrode 41 and the second electrode 42 are paired.
  • the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 .
  • the second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 .
  • the plurality of arranged first conductive linear bodies 21 are preferably in contact with the first electrodes 41 and the second electrodes 42 alternately. With such a configuration, in a plan view of the wiring sheet 100, the intersection points at which the first conductive linear bodies 21 and the second conductive linear bodies 61 intersect can be arranged without variation.
  • the 1st electrode 41 and the 2nd electrode 42 can be formed using a well-known electrode material.
  • electrode materials include conductive paste (silver paste, etc.), metal foil (copper foil, etc.), metal wire, and the like.
  • the electrode material is a metal wire, the number of metal wires may be one, but preferably two or more.
  • the metal of the metal foil or metal wire includes metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or two metals. alloys containing more than one species (eg, steels such as stainless steel, carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium-copper, iron-nickel, nichrome, nickel-titanium, kanthal, Hastelloy, and rhenium-tungsten). Also, the metal foil or metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like.
  • the width of one of the first electrode 41 and the second electrode 42 is preferably 10 mm or less, more preferably 3000 ⁇ m or less, and more preferably 1500 ⁇ m or less in a plan view of the wiring sheet 100. More preferred.
  • the width of the electrode is the diameter of the metal wire, and when two or more metal wires are used, the width of one electrode is the diameter of each metal wire. It means peace.
  • the thickness of the first electrode 41 and the second electrode 42 is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 2 ⁇ m or more and 170 ⁇ m or less, and even more preferably 10 ⁇ m or more and 150 ⁇ m or less. If the thicknesses of the first electrode 41 and the second electrode 42 are within the above range, the electric conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. Moreover, sufficient strength as an electrode can be obtained. In addition, when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
  • the method for manufacturing the wiring sheet 100 according to this embodiment is not particularly limited.
  • the wiring sheet 100 can be manufactured, for example, by the following steps. First, a composition for forming the first resin layer 3 is applied onto the first base material 1 to form a coating film. Next, the coating film is dried to produce the first resin layer 3 . Next, the first pseudo sheet structure 2 is formed by arranging the first conductive linear bodies 21 on the first resin layer 3 . For example, in a state in which the first resin layer 3 with the first base material 1 is arranged on the outer peripheral surface of the drum member, the first conductive linear body 21 is spirally applied onto the first resin layer 3 while rotating the drum member. shape.
  • the bundle of the spirally wound first conductive linear body 21 is cut along the axial direction of the drum member.
  • the first pseudo sheet structure 2 is formed and placed on the first resin layer 3 .
  • the first resin layer 3 with the first substrate 1 on which the first pseudo sheet structure 2 is formed is taken out from the drum member to obtain the first sheet-like conductive member.
  • the first pseudo-sheet structure 2 is moved by moving the feeding portion of the first conductive linear body 21 along the direction parallel to the axis of the drum member. It is easy to adjust the interval L1 between the first conductive linear bodies 21 adjacent to each other.
  • the first electrode 41 and the second electrode 42 are attached to both ends of the first conductive linear body 21 in the first pseudo sheet structure 2 of the sheet-like conductive member.
  • the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 .
  • the second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 . Therefore, the first conductive linear body 21 may be partly cut to shorten it, or an insulating tape may be pasted on one of both ends of the first conductive linear body 21 .
  • a second sheet-like conductive member comprising a second base material 5, a second pseudo sheet structure 6, and a second resin layer 7 is prepared in the same manner as in the method for producing the first sheet-like conductive member described above. make.
  • a second sheet-like conductive member is arranged on the first sheet-like conductive member provided with the first electrode 41 and the second electrode 42 .
  • the wiring sheet 100 can be produced as described above.
  • an insulating member 8 is provided at one end of the first conductive linear body 21 . Since the insulating member 8 is provided between the first conductive linear body 21 and the first electrode 41 in the second and fourth from the left side of the first conductive linear body 21, the One conductive linear body 21 and first electrode 41 are not electrically connected. On the other hand, among the first conductive linear bodies 21, the insulating members 8 are provided between the first conductive linear bodies 21 and the second electrodes 42 on the first, third and fifth from the left side. Therefore, the first conductive linear body 21 and the second electrode 42 are not electrically connected. Thus, the first electrode 41 is electrically connected to the first, third, and fifth from the left side of the first conductive linear body 21 .
  • the second electrode 42 is electrically connected to the second and fourth wires from the left side of the first conductive linear body 21 that are not electrically connected to the first electrode 41 .
  • the first electrodes 41 can be made to have the first conductivity without shortening a part of the first conductive linear bodies 21 . It can be electrically connected to a part of the linear body 21, and the second electrode 42 is electrically connected to the first conductive linear body 21 that is not electrically connected to the first electrode 41.
  • As the insulating member 8 a known insulating tape or the like can be appropriately used, and for example, a polyimide tape can be used.
  • the first electrode 41 can be electrically connected to a part of the first conductive linear body 21 without shortening the part of the first conductive linear body 21, and
  • the electrodes 42 can be electrically connected to those of the first conductive wires 21 that are not electrically connected to the first electrodes 41 .
  • the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
  • the wiring sheet 100 includes the first base material 1 and the second base material 5, but is not limited to this.
  • the wiring sheet 100 does not have to include the first base material 1 and the second base material 5 .
  • the first resin layer 3 or the second resin layer 7 can be used to attach the wiring sheet 100 to the adherend.

Abstract

This wiring sheet comprises: a first pseudo-sheet structure (2) in which a plurality of first linear conductive bodies (21) are arranged at intervals; a first electrode (41) electrically connected to one or more among the first linear conductive bodies (21); a second electrode (42) paired with the first electrode (41) and electrically connected to the first linear conductive bodies (21) that are not electrically connected to the first electrode (41); and a second pseudo-sheet structure in which a plurality of second linear conductive bodies (61) are arranged at intervals. The volume resistivity of the first linear conductive bodies (21) is lower than the volume resistivity of the second linear conductive bodies (61). The resistance values differ between any of the second linear conductive bodies (61) that intersect at respective intersections in a plan view of the wiring sheet (100), are electrically connected at the intersections, and are between the intersections.

Description

配線シートwiring sheet
 本発明は、配線シートに関する。 The present invention relates to wiring sheets.
 面状ヒータの用途に用いることができる配線シートとして、例えば、特許文献1には、一方向に延びた複数の線状体が間隔をもって配列された疑似シート構造体を有する導電性シートが記載されている。そして、複数の線状体の両端に、一対の電極が設けられることで、発熱体として用いることができる配線シートが得られる。
 一方で、面状ヒータにおいては、シート平面内の場所ごとに温度を設定することが要求される場合がある。このような要求に、特許文献1に記載の面状ヒータでは対応することができない。
As a wiring sheet that can be used for planar heaters, for example, Patent Document 1 describes a conductive sheet having a pseudo-sheet structure in which a plurality of linear bodies extending in one direction are arranged at intervals. ing. By providing a pair of electrodes on both ends of the plurality of linear bodies, a wiring sheet that can be used as a heating element is obtained.
On the other hand, in the planar heater, it may be required to set the temperature for each location within the sheet plane. The planar heater described in Patent Document 1 cannot meet such requirements.
国際公開第2017/086395号WO2017/086395
 本発明の目的は、シート平面内の場所ごとに電流量を変化させることができる配線シートを提供することである。 An object of the present invention is to provide a wiring sheet that can change the amount of current for each location within the plane of the sheet.
[1] 複数の第一導電性線状体が間隔をもって配列された第一疑似シート構造体と、前記第一導電性線状体のうちの1本以上に電気的に接続する第一電極と、前記第一電極と対となり、前記第一導電性線状体のうちの前記第一電極と電気的に接続していないものに電気的に接続する第二電極と、複数の第二導電性線状体が間隔をもって配列された第二疑似シート構造体と、を備える配線シートであって、前記第一導電性線状体の体積抵抗率は、前記第二導電性線状体の体積抵抗率よりも小さく、前記配線シートの平面視において、前記第一導電性線状体と前記第二導電性線状体とは、各交点で交差しており、前記第一導電性線状体と前記第二導電性線状体とは、前記交点において、電気的に接続しており、前記交点間における前記第二導電性線状体同士のいずれかの間で、抵抗値が異なっている、配線シート。 [1] A first pseudo-sheet structure in which a plurality of first conductive linear bodies are arranged at intervals, and a first electrode electrically connected to one or more of the first conductive linear bodies , a second electrode paired with the first electrode and electrically connected to one of the first conductive linear bodies that is not electrically connected to the first electrode; and a plurality of second conductive and a second pseudo-sheet structure in which linear bodies are arranged at intervals, wherein the volume resistivity of the first conductive linear bodies is the volume resistance of the second conductive linear bodies. In a plan view of the wiring sheet, the first conductive linear bodies and the second conductive linear bodies intersect at each intersection, and the first conductive linear bodies and the The second conductive linear bodies are electrically connected at the intersections, and the resistance value is different between any of the second conductive linear bodies between the intersections. wiring sheet.
[2] [1]に記載の配線シートにおいて、前記第二導電性線状体同士のいずれかの間で、太さが異なっている、配線シート。 [2] In the wiring sheet described in [1], the wiring sheet has a different thickness between any of the second conductive linear bodies.
[3] [1]又は[2]に記載の配線シートにおいて、前記第二導電性線状体同士のいずれかの間で、材質が異なっている、配線シート。 [3] The wiring sheet according to [1] or [2], wherein the material is different between any of the second conductive linear bodies.
[4] [1]から[3]のいずれかに記載の配線シートにおいて、前記第一導電性線状体同士のいずれかの間で、間隔が異なっている、配線シート。 [4] In the wiring sheet according to any one of [1] to [3], the wiring sheet has different intervals between any of the first conductive linear bodies.
[5] [1]から[4]のいずれかに記載の配線シートにおいて、前記第一導電性線状体及び前記第二導電性線状体は、金めっきが施された線状体である、配線シート。 [5] In the wiring sheet according to any one of [1] to [4], the first conductive linear body and the second conductive linear body are gold-plated linear bodies. , wiring sheet.
 本発明によれば、シート平面内の場所ごとに電流量を変化させることができる配線シートを提供できる。 According to the present invention, it is possible to provide a wiring sheet that can change the amount of current for each location within the plane of the sheet.
本発明の第一実施形態に係る配線シートを示す概略分解斜視図である。1 is a schematic exploded perspective view showing a wiring sheet according to a first embodiment of the invention; FIG. 図1のII-II断面を示す断面図である。FIG. 2 is a sectional view showing the II-II section of FIG. 1; 図1のIII-III断面を示す断面図である。FIG. 2 is a cross-sectional view showing the III-III cross section of FIG. 1; 本発明の第一実施形態に係る配線シートを示す概略平面図である。1 is a schematic plan view showing a wiring sheet according to a first embodiment of the invention; FIG. 本発明の第二実施形態に係る第一疑似シート構造体、第一電極及び第二電極を示す概略斜視図である。[ Fig. 10] Fig. 10 is a schematic perspective view showing a first pseudo sheet structure, first electrodes and second electrodes according to a second embodiment of the present invention.
[第一実施形態]
 以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
[First embodiment]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described with reference to the drawings, taking an embodiment as an example. The invention is not limited to the content of the embodiments. In the drawings, some parts are enlarged or reduced for ease of explanation.
(配線シート)
 本実施形態に係る配線シート100は、図1、図2、図3、及び図4に示すように、第一基材1と、複数の第一導電性線状体21が間隔をもって配列された第一疑似シート構造体2と、第一樹脂層3と、第一電極41と、第二電極42と、第二基材5と、複数の第二導電性線状体61が間隔をもって配列された第二疑似シート構造体6と、第二樹脂層7と、を備える。
 第一電極41と、第二電極42とは、対になっている。また、第一電極41は、第一導電性線状体21のうちの1本以上に電気的に接続している。第二電極42は、第一導電性線状体21のうちの第一電極41と電気的に接続していないものに電気的に接続している。一方で、第二電極42は、第一導電性線状体21のうちの第一電極41と電気的に接続しているものには、電気的に接続していない。
 第一導電性線状体21の体積抵抗率は、第二導電性線状体61の体積抵抗率よりも小さい。また、配線シート100の平面視において、第一導電性線状体21と第二導電性線状体61とは、各交点で交差している。また、第一導電性線状体21と第二導電性線状体61とは、前記交点において、電気的に接続している。そして、前記交点間における第二導電性線状体61同士のいずれかの間で、抵抗値が異なっている。
(wiring sheet)
As shown in FIGS. 1, 2, 3, and 4, the wiring sheet 100 according to the present embodiment has a first base material 1 and a plurality of first conductive linear bodies 21 arranged at intervals. A first pseudo sheet structure 2, a first resin layer 3, a first electrode 41, a second electrode 42, a second substrate 5, and a plurality of second conductive linear bodies 61 are arranged at intervals. A second pseudo sheet structure 6 and a second resin layer 7 are provided.
The first electrode 41 and the second electrode 42 are paired. Also, the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 . The second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 . On the other hand, the second electrode 42 is not electrically connected to one of the first conductive linear bodies 21 that is electrically connected to the first electrode 41 .
The volume resistivity of first conductive linear body 21 is smaller than the volume resistivity of second conductive linear body 61 . In addition, in a plan view of wiring sheet 100, first conductive linear bodies 21 and second conductive linear bodies 61 intersect at respective intersections. Also, the first conductive linear body 21 and the second conductive linear body 61 are electrically connected at the intersection. Moreover, the resistance value is different between any of the second conductive linear bodies 61 between the intersections.
 本実施形態に係る配線シート100においては、第一導電性線状体21の体積抵抗率が、第二導電性線状体61の体積抵抗率よりも小さい。そのため、第一導電性線状体21での発熱を小さくでき、第二導電性線状体61での発熱を大きくできる。なお、第二導電性線状体61が発熱する方が、加熱したい箇所をより適切に発熱させることができる。 In the wiring sheet 100 according to this embodiment, the volume resistivity of the first conductive linear bodies 21 is smaller than the volume resistivity of the second conductive linear bodies 61 . Therefore, heat generation in the first conductive linear body 21 can be reduced, and heat generation in the second conductive linear body 61 can be increased. It should be noted that the heat generated by the second conductive linear body 61 can more appropriately heat the portion to be heated.
 本実施形態に係る配線シート100においては、交点間における第二導電性線状体61同士のいずれかの間で、抵抗値が異なっているため、その交点間ごとに電流量を変化させることができる。そして、交点間ごとに電流量を変化させることで、シート平面内の場所ごとに発熱量を調整できるので、シート平面内の場所ごとに温度を設定することが可能となる。 In the wiring sheet 100 according to the present embodiment, since the resistance value is different between any of the second conductive linear bodies 61 between the intersections, it is possible to change the amount of current between the intersections. can. By changing the amount of current between intersections, the amount of heat generated can be adjusted for each location on the sheet plane, so the temperature can be set for each location on the sheet plane.
 ここで、交点間における第二導電性線状体61同士の抵抗値を変化させる方法としては、例えば、次のような方法が挙げられる。
 例えば、図2に示すように、第一導電性線状体21同士のいずれかの間で、間隔が異なるようにしてもよい。
 第一導電性線状体21の間隔L1が異なる場合、交点間における第二導電性線状体61の長さが異なることになる。その場合、第二導電性線状体61の材質及び太さが同じであれば、交点間における第二導電性線状体61同士の抵抗値が異なることになる。そして、図2に示すように、第一導電性線状体21の間隔L1が端部に近づくほど長くなる場合には、交点間における第二導電性線状体61の抵抗値は、端部に近づくほど高くなる。そのため、交点間における第二導電性線状体61を流れる電流量は、端部に近づくほど少なくなる。
Here, as a method for changing the resistance value between the second conductive linear bodies 61 between the intersections, for example, the following method can be used.
For example, as shown in FIG. 2, the spacing between any of the first conductive linear bodies 21 may be different.
When the intervals L1 of the first conductive linear bodies 21 are different, the lengths of the second conductive linear bodies 61 between the intersections are also different. In that case, if the material and thickness of the second conductive linear bodies 61 are the same, the resistance values of the second conductive linear bodies 61 between the intersections will be different. Then, as shown in FIG. 2, when the interval L1 between the first conductive linear bodies 21 becomes longer toward the end, the resistance value of the second conductive linear body 61 between the intersections is becomes higher as it approaches . Therefore, the amount of current flowing through the second conductive linear body 61 between the intersections becomes smaller toward the ends.
 図3に示すように、第二導電性線状体61同士のいずれかの間で、太さが異なるようにしてもよい。
 第二導電性線状体61の抵抗値は、同じ材質であれば、第二導電性線状体61の太さ(直径)D2が太くなるほど低くなる。そして、図3に示すように、第二導電性線状体61の太さが、中央部に近づくほど太くなる場合には、交点間における第二導電性線状体61の抵抗値は、中央部に近づくほど低くなる。そのため、交点間における第二導電性線状体61を流れる電流量は、中央部に近づくほど多くなる。
As shown in FIG. 3, any one of the second conductive linear bodies 61 may have a different thickness.
The resistance value of the second conductive linear body 61 decreases as the thickness (diameter) D2 of the second conductive linear body 61 increases if the material is the same. Then, as shown in FIG. 3, when the thickness of the second conductive linear body 61 becomes thicker toward the central portion, the resistance value of the second conductive linear body 61 between the intersections is It gets lower the closer you get to the edge. Therefore, the amount of current flowing through the second conductive linear body 61 between the intersections increases toward the central portion.
 第二導電性線状体61同士のいずれかの間で、材質が異なるようにしてもよい。
 第二導電性線状体61の抵抗値は、材質を変えれば、材質に応じて変化させることができる。例えば、第二導電性線状体61の体積抵抗率の高い材質を用いるほど、交点間における第二導電性線状体61の抵抗値は高くなる。
The material may be different between any of the second conductive linear bodies 61 .
The resistance value of the second conductive linear body 61 can be changed according to the material by changing the material. For example, the higher the volume resistivity of the material used for the second conductive linear bodies 61, the higher the resistance value of the second conductive linear bodies 61 between the intersections.
(基材)
 第一基材1は、第一疑似シート構造体2を直接的又は間接的に支持できる。第二基材5は、第二疑似シート構造体6を直接的又は間接的に支持できる。なお、第一基材1及び第二基材5は、必ずしも備えていなくてもよい。第一基材1及び第二基材5は必要に応じて設けられる部材である。
 第一基材1及び第二基材5としては、例えば、合成樹脂フィルム、紙、不織布、布及びガラスフィルム等が挙げられる。第一基材1及び第二基材5は、透明な基材、又は視認性を有する基材であってもよい。このようにすれば、配線シート100を、透明にしたり、視認性を有するものにできる。また、第一基材1及び第二基材5は、伸縮性基材であってもよい。例えば、第一基材1が伸縮性基材であれば、第一疑似シート構造体2を第一基材1上に設けた場合でも、配線シート100の伸縮性を確保できる。
 第一基材1及び第二基材5としては、合成樹脂フィルム、不織布、及び布等を用いることができる。
 合成樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、及びポリイミドフィルム等が挙げられる。その他、伸縮性基材としては、これらの架橋フィルム及び積層フィルム等が挙げられる。
 また、不織布としては、例えば、スパンボンド不織布、ニードルパンチ不織布、メルトブロー不織布、及びスパンレース不織布等が挙げられる。布としては、例えば、織物及び編物等が挙げられる。伸縮性基材としての紙、不織布、及び布はこれらに限定されない。
 第一基材1及び第二基材5の厚さは特に限定されない。第一基材1及び第二基材5の厚さは、10μm以上10mm以下であることが好ましく、15μm以上3mm以下であることがより好ましく、50μm以上1.5mm以下であることがさらに好ましい。
(Base material)
The first substrate 1 can support the first pseudo-sheet structure 2 directly or indirectly. The second substrate 5 can support the second pseudo-sheet structure 6 directly or indirectly. In addition, the first base material 1 and the second base material 5 do not necessarily have to be provided. The first base material 1 and the second base material 5 are members provided as needed.
Examples of the first base material 1 and the second base material 5 include synthetic resin film, paper, nonwoven fabric, cloth, and glass film. The first substrate 1 and the second substrate 5 may be transparent substrates or substrates having visibility. In this way, the wiring sheet 100 can be transparent or have visibility. Also, the first base material 1 and the second base material 5 may be stretchable base materials. For example, if the first base material 1 is a stretchable base material, the stretchability of the wiring sheet 100 can be ensured even when the first pseudo sheet structure 2 is provided on the first base material 1 .
As the first base material 1 and the second base material 5, a synthetic resin film, a nonwoven fabric, a cloth, or the like can be used.
Examples of synthetic resin films include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film. , polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene/(meth)acrylic acid copolymer film, ethylene/(meth)acrylic acid ester copolymer film, polystyrene film, polycarbonate film, and polyimide film etc. In addition, stretchable substrates include these crosslinked films and laminated films.
Examples of nonwoven fabrics include spunbond nonwoven fabrics, needle-punched nonwoven fabrics, meltblown nonwoven fabrics, spunlaced nonwoven fabrics, and the like. Fabrics include, for example, woven fabrics and knitted fabrics. Paper, non-woven fabric, and cloth as stretchable substrates are not limited to these.
The thicknesses of the first base material 1 and the second base material 5 are not particularly limited. The thickness of the first base material 1 and the second base material 5 is preferably 10 μm or more and 10 mm or less, more preferably 15 μm or more and 3 mm or less, and even more preferably 50 μm or more and 1.5 mm or less.
(疑似シート構造体)
 第一疑似シート構造体2は、複数の第一導電性線状体21が、互いに間隔をもって配列された構造とされている。また、第一疑似シート構造体2は、第一導電性線状体21の軸方向と交差する方向に、複数配列された構造とされている。
 第二疑似シート構造体6も同様に、複数の第二導電性線状体61が、互いに間隔をもって配列された構造とされている。また、第二疑似シート構造体6は、第二導電性線状体61が、第二導電性線状体61の軸方向と交差する方向に、複数配列された構造とされている。
(pseudo sheet structure)
The first pseudo sheet structure 2 has a structure in which a plurality of first conductive linear bodies 21 are arranged at intervals. Also, the first pseudo sheet structure 2 is arranged in a plurality in a direction intersecting with the axial direction of the first conductive linear body 21 .
Similarly, the second pseudo sheet structure 6 has a structure in which a plurality of second conductive linear bodies 61 are arranged at intervals. The second pseudo sheet structure 6 has a structure in which a plurality of second conductive linear bodies 61 are arranged in a direction intersecting the axial direction of the second conductive linear bodies 61 .
 第一導電性線状体21及び第二導電性線状体61は、配線シート100の平面視において、直線状であってもよいが、波形状を成していてもよい。波形状としては、例えば、正弦波、矩形波、三角波、及びのこぎり波等が挙げられる。例えば、第一疑似シート構造体2が、このような構造であれば、第一導電性線状体21の軸方向に、配線シート100を伸張した際に、第一導電性線状体21の断線を抑制できる。 The first conductive linear bodies 21 and the second conductive linear bodies 61 may be linear or wavy in a plan view of the wiring sheet 100 . Wave shapes include, for example, sine waves, rectangular waves, triangular waves, and sawtooth waves. For example, if the first pseudo-sheet structure 2 has such a structure, when the wiring sheet 100 is stretched in the axial direction of the first conductive linear bodies 21, the first conductive linear bodies 21 Disconnection can be suppressed.
 第一導電性線状体21の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-5Ω・m以下であることが好ましく、5.0×10-9Ω・m以上5.0×10-6Ω・m以下であることがより好ましい。第一導電性線状体21の体積抵抗率を上記範囲にすると、第一導電性線状体21と第二導電性線状体61とが電気的に接続したときに、第一導電性線状体21での発熱を小さくでき、第二導電性線状体61での発熱を大きくできる。
 第二導電性線状体61の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。第二導電性線状体61の体積抵抗率を上記範囲にすると、第二疑似シート構造体6の面抵抗が低下しやすくなる。
 第一導電性線状体21及び第二導電性線状体61の体積抵抗率の測定は、次のとおりである。第一導電性線状体21又は第二導電性線状体61の一方の端部及び端部からの長さ40mmの部分に銀ペーストを塗布し、端部及び端部から長さ40mmの部分の抵抗を測定し、第一導電性線状体21又は第二導電性線状体61の抵抗値を求める。そして、第一導電性線状体21又は第二導電性線状体61の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、第一導電性線状体21又は第二導電性線状体61の体積抵抗率を算出する。
The volume resistivity of the first conductive linear body 21 is preferably 1.0×10 −9 Ω·m or more and 1.0×10 −5 Ω·m or less, and preferably 5.0×10 −9 Ω ·m or more and 5.0×10 −6 Ω·m or less is more preferable. When the volume resistivity of the first conductive linear body 21 is within the above range, when the first conductive linear body 21 and the second conductive linear body 61 are electrically connected, the first conductive wire Heat generation in the shaped body 21 can be reduced, and heat generation in the second conductive linear body 61 can be increased.
The volume resistivity of the second conductive linear body 61 is preferably 1.0×10 −9 Ω·m or more and 1.0×10 −3 Ω·m or less, and preferably 1.0×10 −8 Ω ·m or more and 1.0×10 −4 Ω·m or less is more preferable. When the volume resistivity of the second conductive linear bodies 61 is within the above range, the surface resistance of the second pseudo-sheet structure 6 tends to decrease.
The measurement of the volume resistivity of the first conductive linear body 21 and the second conductive linear body 61 is as follows. Silver paste is applied to one end of the first conductive linear body 21 or the second conductive linear body 61 and a portion of 40 mm in length from the end, and the end and a portion of 40 mm in length from the end are coated. is measured, and the resistance value of the first conductive linear body 21 or the second conductive linear body 61 is obtained. Then, the cross-sectional area (unit: m 2 ) of the first conductive linear body 21 or the second conductive linear body 61 is multiplied by the above resistance value, and the obtained value is divided into the above measured length (0. 04m) to calculate the volume resistivity of the first conductive linear body 21 or the second conductive linear body 61 .
 第一導電性線状体21及び第二導電性線状体61の断面の形状は、特に限定されず、多角形状、扁平形状、楕円形状、又は円形状等を取り得る。第一樹脂層3及び第二樹脂層7との馴染み等の観点から、第一導電性線状体21及び第二導電性線状体61の断面の形状は、楕円形状、又は円形状であることが好ましい。 The cross-sectional shape of the first conductive linear body 21 and the second conductive linear body 61 is not particularly limited, and may be polygonal, flat, elliptical, circular, or the like. From the viewpoint of compatibility with the first resin layer 3 and the second resin layer 7, the cross-sectional shape of the first conductive linear body 21 and the second conductive linear body 61 is elliptical or circular. is preferred.
 第一導電性線状体21及び第二導電性線状体61の断面が円形状である場合には、第一導電性線状体21の太さ(直径)D1及び第二導電性線状体61の太さ(直径)D2(図2及び図3参照)は、それぞれ、5μm以上200μm以下であることが好ましい。シート抵抗の上昇抑制と、配線シート100の発熱効率及び耐絶縁破壊特性の向上との観点から、第一導電性線状体21の直径D1及び第二導電性線状体61の直径D2は、8μm以上150μm以下であることがより好ましく、12μm以上100μm以下であることがさらに好ましい。
 第一導電性線状体21及び第二導電性線状体61の断面が楕円形状である場合には、長径が上記の直径D1、及び直径D2と同様の範囲にあることが好ましい。
When the cross sections of the first conductive linear body 21 and the second conductive linear body 61 are circular, the thickness (diameter) D1 of the first conductive linear body 21 and the second conductive linear body The thickness (diameter) D2 (see FIGS. 2 and 3) of the body 61 is preferably 5 μm or more and 200 μm or less. From the viewpoint of suppressing an increase in sheet resistance and improving heat generation efficiency and dielectric breakdown resistance of the wiring sheet 100, the diameter D1 of the first conductive linear body 21 and the diameter D2 of the second conductive linear body 61 are It is more preferably 8 μm or more and 150 μm or less, and even more preferably 12 μm or more and 100 μm or less.
When the cross sections of the first conductive linear body 21 and the second conductive linear body 61 are elliptical, it is preferable that the major axis be in the same range as the diameter D1 and the diameter D2.
 第一導電性線状体21の直径D1及び第二導電性線状体61の直径D2は、デジタル顕微鏡を用いて、第一導電性線状体21及び第二導電性線状体61を観察し、無作為に選んだ5箇所で、第一導電性線状体21及び第二導電性線状体61の直径を測定し、その平均値とする。 The diameter D1 of the first conductive linear body 21 and the diameter D2 of the second conductive linear body 61 are determined by observing the first conductive linear body 21 and the second conductive linear body 61 using a digital microscope. Then, the diameters of the first conductive linear body 21 and the second conductive linear body 61 are measured at five randomly selected locations, and the average value is taken.
 第一導電性線状体21の間隔L1(図2参照)、及び第二導電性線状体61の間隔L2(図3参照)は、0.3mm以上50mm以下であることが好ましく、0.5mm以上30mm以下であることがより好ましく、0.8mm以上20mm以下であることがさらに好ましい。
 第一導電性線状体21同士、又は第二導電性線状体61同士の間隔が上記範囲であれば、導電性線状体がある程度密集しているため、疑似シート構造体の抵抗を低く維持する等の、配線シート100の機能の向上を図ることができる。
The interval L1 between the first conductive linear members 21 (see FIG. 2) and the interval L2 between the second conductive linear members 61 (see FIG. 3) are preferably 0.3 mm or more and 50 mm or less. It is more preferably 5 mm or more and 30 mm or less, and further preferably 0.8 mm or more and 20 mm or less.
If the distance between the first conductive linear bodies 21 or between the second conductive linear bodies 61 is within the above range, the conductive linear bodies are densely packed to some extent, so that the resistance of the pseudo sheet structure can be lowered. It is possible to improve the function of the wiring sheet 100 such as maintenance.
 第一導電性線状体21の間隔L1及び第二導電性線状体61の間隔L2は、デジタル顕微鏡を用いて、例えば、第一疑似シート構造体2の第一導電性線状体21を観察し、隣り合う2つの第一導電性線状体21の間隔を測定する。
 なお、隣り合う2つの第一導電性線状体21の間隔とは、第一導電性線状体21を配列させていった方向に沿った長さであって、2つの第一導電性線状体21の対向する部分間の長さである(図2参照)。間隔L1は、第一導電性線状体21の配列が不等間隔である場合には、全ての隣り合う第一導電性線状体21同士の間隔の平均値である。また、間隔L2は、第二導電性線状体61の配列が不等間隔である場合には、全ての隣り合う第二導電性線状体61同士の間隔の平均値である。
The interval L1 between the first conductive linear members 21 and the interval L2 between the second conductive linear members 61 are determined by using a digital microscope, for example, the first conductive linear members 21 of the first pseudo-sheet structure 2. Observe and measure the distance between two adjacent first conductive linear bodies 21 .
The interval between two adjacent first conductive linear bodies 21 is the length along the direction in which the first conductive linear bodies 21 are arranged, and It is the length between opposing portions of the body 21 (see FIG. 2). The interval L1 is the average value of the intervals between all adjacent first conductive linear members 21 when the first conductive linear members 21 are arranged at uneven intervals. In addition, the interval L2 is the average value of the intervals between all adjacent second conductive linear members 61 when the second conductive linear members 61 are arranged at uneven intervals.
 第一導電性線状体21及び第二導電性線状体61の態様は、特に制限はないが、金属ワイヤーを含む線状体(以下「金属ワイヤー線状体」とも称する)であることがよい。金属ワイヤーは高い熱伝導性、高い電気伝導性、高いハンドリング性、及び汎用性を有する。金属ワイヤー線状体は抵抗を大きく低下させることが可能であり、金属ワイヤー線状体の直径を極めて小さくしても、配線シート100の発熱に必要な電流で通電できる。これにより、第一導電性線状体21及び第二導電性線状体61が視認されにくい状態にできる。すなわち、第一導電性線状体21及び第二導電性線状体61として金属ワイヤー線状体を適用すると、第一疑似シート構造体2及び第二疑似シート構造体6の抵抗値を低減しつつ、光線透過性が向上しやすくなる。また、配線シート100は、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。
 なお、第一導電性線状体21及び第二導電性線状体61としては、金属ワイヤー線状体の他に、カーボンナノチューブを含む線状体、及び、糸に導電性被覆が施された線状体が挙げられる。
The first conductive linear body 21 and the second conductive linear body 61 are not particularly limited, but may be linear bodies containing metal wires (hereinafter also referred to as "metal wire linear bodies"). good. Metal wires have high thermal conductivity, high electrical conductivity, high handling properties, and versatility. The metal wire linear body can greatly reduce the resistance, and even if the diameter of the metal wire linear body is extremely small, the electric current required for heat generation of the wiring sheet 100 can be applied. Thereby, the first conductive linear body 21 and the second conductive linear body 61 can be made difficult to be visually recognized. That is, when metal wire linear bodies are used as the first conductive linear bodies 21 and the second conductive linear bodies 61, the resistance values of the first pseudo-sheet structure bodies 2 and the second pseudo-sheet structure bodies 6 are reduced. In addition, it becomes easy to improve the light transmittance. Moreover, the wiring sheet 100 is likely to generate heat quickly. Furthermore, as described above, it is easy to obtain a filamentous body having a small diameter.
As the first conductive linear body 21 and the second conductive linear body 61, in addition to the metal wire linear body, a linear body containing carbon nanotubes and a thread are coated with a conductive coating. A linear body is mentioned.
 金属ワイヤー線状体は、1本の金属ワイヤーからなる線状体であってもよいし、複数本の金属ワイヤーを撚った線状体であってもよい。
 金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよく、後述する炭素材料、ポリマー等により表面が被覆されたものであってもよい。特に、タングステン及びモリブデン、並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の観点から好ましい。
 金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
 金属ワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等)、グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。
The metallic wire linear body may be a linear body made of one metal wire, or may be a linear body made by twisting a plurality of metal wires.
Metal wires include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or alloys containing two or more metals (for example, steel such as stainless steel and carbon steel, brass, phosphorus bronze, zirconium-copper alloys, beryllium-copper, iron-nickel, nichrome, nickel-titanium, kanthal, hastelloy, and rhenium-tungsten, etc.). The metal wire may be plated with tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like, and the surface is coated with a carbon material, polymer, or the like, which will be described later. There may be. In particular, a wire containing one or more metals selected from tungsten, molybdenum, and alloys containing these is preferable from the viewpoint of low volume resistivity.
Metal wires also include metal wires coated with carbon materials. When the metal wire is coated with a carbon material, the metallic luster is reduced, making it easier to make the presence of the metal wire inconspicuous. Metal corrosion is also suppressed when the metal wire is coated with a carbon material.
Examples of the carbon material that coats the metal wire include amorphous carbon (eg, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.), graphite, fullerene, graphene, carbon nanotubes, and the like.
 カーボンナノチューブを含む線状体は、例えば、カーボンナノチューブフォレスト(カーボンナノチューブを、基板に対して垂直方向に配向するよう、基板上に複数成長させた成長体のことであり、「アレイ」と称される場合もある)の端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚ることにより得られる。このような製造方法において、撚りの際に捻りを加えない場合には、リボン状のカーボンナノチューブ線状体が得られ、捻りを加えた場合には、糸状の線状体が得られる。リボン状のカーボンナノチューブ線状体は、カーボンナノチューブが捻られた構造を有しない線状体である。このほか、カーボンナノチューブの分散液から、紡糸をすること等によっても、カーボンナノチューブ線状体を得ることができる。紡糸によるカーボンナノチューブ線状体の製造は、例えば、米国特許出願公開第2013/0251619号明細書(日本国特開2012-126635号公報)に開示されている方法により行うことができる。カーボンナノチューブ線状体の直径の均一さが得られる観点からは、糸状のカーボンナノチューブ線状体を用いることが望ましく、純度の高いカーボンナノチューブ線状体が得られる観点からは、カーボンナノチューブシートを撚ることによって糸状のカーボンナノチューブ線状体を得ることが好ましい。カーボンナノチューブ線状体は、2本以上のカーボンナノチューブ線状体同士が編まれた線状体であってもよい。また、カーボンナノチューブ線状体は、カーボンナノチューブと他の導電性材料が複合された線状体(以下「複合線状体」とも称する)であってもよい。 A linear body containing carbon nanotubes is, for example, a carbon nanotube forest (a growing body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in the vertical direction to the substrate, and is called an “array”). It can be obtained by drawing carbon nanotubes in a sheet form from the end of the carbon nanotube, bundling the drawn carbon nanotube sheet, and then twisting the bundle of carbon nanotubes. In such a production method, a ribbon-like carbon nanotube linear body is obtained when twisting is not applied during twisting, and a thread-like linear body is obtained when twisting is applied. A ribbon-shaped carbon nanotube linear body is a linear body that does not have a structure in which carbon nanotubes are twisted. Alternatively, a carbon nanotube linear body can be obtained by spinning a carbon nanotube dispersion. Production of carbon nanotube linear bodies by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Application Laid-Open No. 2012-126635). From the viewpoint of obtaining a uniform diameter of the carbon nanotube linear body, it is desirable to use a filamentous carbon nanotube linear body. It is preferable to obtain a filamentous carbon nanotube linear body by The carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together. Further, the carbon nanotube linear body may be a linear body in which a carbon nanotube and another conductive material are combined (hereinafter also referred to as a "composite linear body").
 複合線状体としては、例えば、(1)カーボンナノチューブフォレストの端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚るカーボンナノチューブ線状体を得る過程において、カーボンナノチューブのフォレスト、シート若しくは束、又は撚った線状体の表面に、金属単体又は金属合金を蒸着、イオンプレーティング、スパッタリング、湿式めっき等により担持させた複合線状体、(2)金属単体の線状体若しくは金属合金の線状体又は複合線状体と共に、カーボンナノチューブの束を撚った複合線状体、(3)金属単体の線状体若しくは金属合金の線状体又は複合線状体と、カーボンナノチューブ線状体又は複合線状体とを編んだ複合線状体等が挙げられる。なお、(2)の複合線状体においては、カーボンナノチューブの束を撚る際に、(1)の複合線状体と同様にカーボンナノチューブに対して金属を担持させてもよい。また、(3)の複合線状体は、2本の線状体を編んだ場合の複合線状体であるが、少なくとも1本の金属単体の線状体若しくは金属合金の線状体又は複合線状体が含まれていれば、カーボンナノチューブ線状体又は金属単体の線状体若しくは金属合金の線状体若しくは複合線状体の3本以上を編み合わせてあってもよい。
 複合線状体の金属としては、例えば、金、銀、銅、鉄、アルミニウム、ニッケル、クロム、スズ、及び亜鉛等の金属単体、及び、これら金属単体の少なくとも一種を含む合金(銅-ニッケル-リン合金、及び、銅-鉄-リン-亜鉛合金等)が挙げられる。
As a composite linear body, for example, (1) a carbon nanotube linear body in which carbon nanotubes are pulled out in a sheet form from the ends of a carbon nanotube forest, the pulled out carbon nanotube sheets are bundled, and then the bundles of carbon nanotubes are twisted. In the process of obtaining a composite linear body in which a single metal or metal alloy is supported on the surface of a carbon nanotube forest, sheet or bundle, or twisted linear body by vapor deposition, ion plating, sputtering, wet plating, etc. , (2) a composite linear body in which a bundle of carbon nanotubes is twisted together with a linear body of a single metal or a linear body or a composite linear body of a metal alloy, (3) a linear body of a single metal or a metal alloy Composite linear bodies obtained by weaving linear bodies or composite linear bodies and carbon nanotube linear bodies or composite linear bodies, and the like. In the composite linear body of (2), when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1). The composite linear body of (3) is a composite linear body obtained by knitting two linear bodies. As long as linear bodies are included, three or more carbon nanotube linear bodies, linear bodies made of a single metal, linear bodies made of a metal alloy, or composite linear bodies may be woven together.
Examples of the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin, and zinc, and alloys containing at least one of these simple metals (copper-nickel- phosphorus alloys, copper-iron-phosphorus-zinc alloys, etc.).
 第一導電性線状体21及び第二導電性線状体61は、糸に導電性被覆が施された線状体であってもよい。糸としては、ナイロン、又はポリエステル等の樹脂から紡糸した糸等が挙げられる。また、糸としては、金属繊維、炭素繊維、又はイオン導電性ポリマーの繊維等の糸も挙げられる。導電性被覆としては、金属、導電性高分子、及び炭素材料等の被膜等が挙げられる。導電性被覆は、めっき、又は蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、第一疑似シート構造体2及び第二疑似シート構造体6の抵抗を、低下させることが容易となる。 The first conductive linear body 21 and the second conductive linear body 61 may be linear bodies in which a thread is coated with a conductive coating. The yarn includes yarn spun from a resin such as nylon or polyester. Threads also include threads such as metal fibers, carbon fibers, or fibers of ion-conducting polymers. Examples of conductive coatings include coatings of metals, conductive polymers, carbon materials, and the like. The conductive coating can be formed by plating, vapor deposition, or the like. A linear body in which a thread is coated with a conductive coating can improve the conductivity of the linear body while maintaining the flexibility of the thread. That is, it becomes easy to reduce the resistance of the first pseudo-seat structure 2 and the second pseudo-seat structure 6 .
 第一導電性線状体21は、第一導電性線状体21と第一電極41及び第二電極42との接触抵抗を抑制する観点で、金めっきが施されていることが好ましい。第一導電性線状体21は、金めっきが施されていることにより、第一疑似シート構造体2の抵抗値が安定するため、発熱ムラを抑制しやすくなる。また、同様の観点から、第二導電性線状体61も、金めっきが施されていることが好ましい。 From the viewpoint of suppressing the contact resistance between the first conductive linear body 21 and the first electrode 41 and the second electrode 42, the first conductive linear body 21 is preferably plated with gold. Since the first conductive linear body 21 is plated with gold, the resistance value of the first pseudo sheet structure 2 is stabilized, so that uneven heat generation can be easily suppressed. From the same point of view, the second conductive linear body 61 is also preferably plated with gold.
(樹脂層)
 第一樹脂層3及び第二樹脂層7は、樹脂を含む層である。この第一樹脂層3により、第一疑似シート構造体2を、直接的又は間接的に支持できる。第一樹脂層3及び第二樹脂層7は、必ずしも備えていなくてもよい。第一樹脂層3及び第二樹脂層7は必要に応じて設けられる部材である。また、この第二樹脂層7により、第二疑似シート構造体6を、直接的又は間接的に支持できる。第一樹脂層3及び第二樹脂層7は、接着剤を含む層であることが好ましい。例えば、第一樹脂層3に第一疑似シート構造体2を形成する際に、接着剤により、第一導電性線状体21の第一樹脂層3への貼り付けが容易となる。
(resin layer)
The first resin layer 3 and the second resin layer 7 are layers containing resin. The first pseudo-sheet structure 2 can be directly or indirectly supported by the first resin layer 3 . The first resin layer 3 and the second resin layer 7 may not necessarily be provided. The first resin layer 3 and the second resin layer 7 are members provided as needed. Moreover, the second pseudo sheet structure 6 can be directly or indirectly supported by the second resin layer 7 . The first resin layer 3 and the second resin layer 7 are preferably layers containing an adhesive. For example, when forming the first pseudo sheet structure 2 on the first resin layer 3 , the adhesive facilitates the attachment of the first conductive linear bodies 21 to the first resin layer 3 .
 第一樹脂層3及び第二樹脂層7は、乾燥又は硬化可能な樹脂からなる層であってもよい。これにより、第一疑似シート構造体2及び第二疑似シート構造体6を保護するために十分な硬度が第一樹脂層3及び第二樹脂層7に付与され、第一樹脂層3及び第二樹脂層7は保護膜としても機能する。また、硬化又は乾燥後の第一樹脂層3及び第二樹脂層7は、耐衝撃性を有し、衝撃による配線シート100の変形も抑制できる。 The first resin layer 3 and the second resin layer 7 may be layers made of a resin that can be dried or cured. As a result, sufficient hardness is imparted to the first resin layer 3 and the second resin layer 7 to protect the first pseudo-sheet structure 2 and the second pseudo-sheet structure 6, and the first resin layer 3 and the second The resin layer 7 also functions as a protective film. Moreover, the first resin layer 3 and the second resin layer 7 after curing or drying have impact resistance, and can suppress deformation of the wiring sheet 100 due to impact.
 第一樹脂層3及び第二樹脂層7は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線、又は電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。 The first resin layer 3 and the second resin layer 7 are preferably curable with energy rays such as ultraviolet rays, visible energy rays, infrared rays, or electron beams in that they can be easily cured in a short time. The term "energy ray curing" includes heat curing by heating using energy rays.
 第一樹脂層3及び第二樹脂層7に含まれる接着剤は、熱により硬化する熱硬化性の接着剤、熱により接着するいわゆるヒートシールタイプの接着剤、湿潤させて貼付性を発現させる接着剤等も挙げられる。ただし、適用の簡便さからは、第一樹脂層3及び第二樹脂層7が、エネルギー線硬化性であることが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The adhesive contained in the first resin layer 3 and the second resin layer 7 is a thermosetting adhesive that hardens with heat, a so-called heat-seal type adhesive that adheres with heat, and an adhesive that develops sticking properties when wet. Also included are agents and the like. However, from the viewpoint of ease of application, it is preferable that the first resin layer 3 and the second resin layer 7 are energy ray-curable. Examples of energy ray-curable resins include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferred.
 前記アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート、及びジシクロペンタジエンジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。 Examples of the acrylate compounds include chain aliphatic skeleton-containing (meth)acrylates (trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra( meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate, etc.) , cycloaliphatic skeleton-containing (meth)acrylates (dicyclopentanyl di(meth)acrylate, dicyclopentadiene di(meth)acrylate, etc.), polyalkylene glycol (meth)acrylates (polyethylene glycol di(meth)acrylate, etc.) , oligoester (meth)acrylates, urethane (meth)acrylate oligomers, epoxy-modified (meth)acrylates, polyether (meth)acrylates other than the above polyalkylene glycol (meth)acrylates, and itaconic acid oligomers.
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100以上30000以下であることが好ましく、300以上10000以下であることがより好ましい。 The weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 or more and 30,000 or less, more preferably 300 or more and 10,000 or less.
 接着剤組成物が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。さらに、後述する熱可塑性樹脂と組み合わせてもよく、組み合わせ及び比率は任意に選択できる。 The energy ray-curable resin contained in the adhesive composition may be of one type or two or more types, and when two or more types are used, the combination and ratio thereof can be arbitrarily selected. Furthermore, it may be combined with a thermoplastic resin, which will be described later, and the combination and ratio can be arbitrarily selected.
 第一樹脂層3及び第二樹脂層7は、粘着剤(感圧性接着剤)から形成される粘着剤層であってもよい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤、及びポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤、及びゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。 The first resin layer 3 and the second resin layer 7 may be adhesive layers formed from an adhesive (pressure-sensitive adhesive). The adhesive for the adhesive layer is not particularly limited. Examples of adhesives include acrylic adhesives, urethane adhesives, rubber adhesives, polyester adhesives, silicone adhesives, and polyvinyl ether adhesives. Among these, the adhesive is preferably at least one selected from the group consisting of an acrylic adhesive, a urethane adhesive, and a rubber adhesive, and more preferably an acrylic adhesive.
 アクリル系粘着剤としては、例えば、直鎖のアルキル基又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。 Examples of acrylic pressure-sensitive adhesives include polymers containing structural units derived from alkyl (meth)acrylates having straight-chain alkyl groups or branched-chain alkyl groups (that is, polymers obtained by polymerizing at least alkyl (meth)acrylates ), an acrylic polymer containing structural units derived from a (meth)acrylate having a cyclic structure (that is, a polymer obtained by polymerizing at least a (meth)acrylate having a cyclic structure), and the like. Here, "(meth)acrylate" is used as a term indicating both "acrylate" and "methacrylate", and the same applies to other similar terms.
 アクリル系重合体が共重合体である場合、共重合の形態としては、特に限定されない。アクリル系共重合体としては、ブロック共重合体、ランダム共重合体、又はグラフト共重合体のいずれであってもよい。 When the acrylic polymer is a copolymer, the form of copolymerization is not particularly limited. The acrylic copolymer may be block copolymer, random copolymer or graft copolymer.
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、アクリル系重合体の単量体成分に由来する官能基として、これらの架橋剤と反応する水酸基又はカルボキシル基等をアクリル系共重合体に導入することができる。 The acrylic copolymer may be crosslinked with a crosslinking agent. Examples of the cross-linking agent include known epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. When cross-linking an acrylic copolymer, a hydroxyl group or a carboxyl group that reacts with these cross-linking agents should be introduced into the acrylic copolymer as a functional group derived from the monomer component of the acrylic polymer. can be done.
 第一樹脂層3及び第二樹脂層7が、粘着剤から形成される場合、第一樹脂層3及び第二樹脂層7は、粘着剤の他に、さらに上述したエネルギー線硬化性樹脂を含有していてもよい。また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分に由来する官能基と反応する官能基と、エネルギー線重合性の官能基の両方を一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により硬化可能となる。粘着剤がアクリル系粘着剤以外の場合においても、アクリル系重合体以外の重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。 When the first resin layer 3 and the second resin layer 7 are formed from an adhesive, the first resin layer 3 and the second resin layer 7 further contain the energy ray-curable resin described above in addition to the adhesive. You may have Further, when an acrylic pressure-sensitive adhesive is applied as the pressure-sensitive adhesive, the energy-ray-curable components include a functional group that reacts with a functional group derived from a monomer component in the acrylic copolymer, and an energy-ray-polymerizable functional group. A compound having both groups in one molecule may be used. The reaction between the functional group of the compound and the functional group derived from the monomer component in the acrylic copolymer enables the side chain of the acrylic copolymer to be cured by irradiation with energy rays. Even when the pressure-sensitive adhesive is not an acrylic pressure-sensitive adhesive, a component having an energy ray-polymerizable side chain may be used as a polymer component other than the acrylic polymer.
 第一樹脂層3及び第二樹脂層7に用いられる熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましい。 The thermosetting resin used for the first resin layer 3 and the second resin layer 7 is not particularly limited, and specific examples include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, urethane resin, and acrylic resin. Examples include resins, benzoxazine resins, phenoxy resins, amine compounds, acid anhydride compounds, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, epoxy resins, phenol resins, melamine resins, urea resins, amine compounds and acid anhydride compounds are preferably used from the viewpoint of being suitable for curing using imidazole curing catalysts, and are particularly excellent. At least one selected from the group consisting of epoxy resins, phenolic resins, mixtures thereof, or epoxy resins and phenolic resins, melamine resins, urea resins, amine-based compounds, and acid anhydride-based compounds from the viewpoint of exhibiting curability. Preference is given to using mixtures with seeds.
 第一樹脂層3及び第二樹脂層7に用いられる湿気硬化性樹脂としては、特に限定されず、湿気でイソシアネート基が生成してくる樹脂であるウレタン樹脂、変性シリコーン樹脂等が挙げられる。 The moisture-curable resin used for the first resin layer 3 and the second resin layer 7 is not particularly limited, and examples thereof include urethane resins, modified silicone resins, etc., which are resins in which isocyanate groups are generated by moisture.
 第一樹脂層3及び第二樹脂層7に用いられる樹脂として、エネルギー線硬化性樹脂を用いる場合、光重合開始剤等を用いることが好ましい。また、第一樹脂層3及び第二樹脂層7に用いられる樹脂として、熱硬化性樹脂を用いる場合、熱重合開始剤等を用いることが好ましい。第一樹脂層3及び第二樹脂層7は、光重合開始剤、熱重合開始剤等が用いられることで、第一樹脂層3及び第二樹脂層7に架橋構造が形成され、第一疑似シート構造体2及び第二疑似シート構造体6を、より強固に保護することが可能になる。 When an energy ray-curable resin is used as the resin used for the first resin layer 3 and the second resin layer 7, it is preferable to use a photopolymerization initiator or the like. Moreover, when using a thermosetting resin as the resin used for the first resin layer 3 and the second resin layer 7, it is preferable to use a thermal polymerization initiator or the like. In the first resin layer 3 and the second resin layer 7, a photopolymerization initiator, a thermal polymerization initiator, or the like is used to form a crosslinked structure in the first resin layer 3 and the second resin layer 7, thereby forming a first pseudo It becomes possible to protect the seat structure 2 and the second pseudo seat structure 6 more firmly.
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロロアントラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等が挙げられる。 Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, 2-chloroanthraquinone, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and bis(2,4,6) -trimethylbenzoyl)-phenyl-phosphine oxide and the like.
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)、及び有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等)等が挙げられる。 Thermal polymerization initiators include hydrogen peroxide, peroxodisulfates (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), azo compounds (2,2'-azobis(2-amidinopropane) di hydrochloride, 4,4′-azobis(4-cyanovaleric acid), 2,2′-azobisisobutyronitrile, and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), etc.) , and organic peroxides (benzoyl peroxide, lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, etc.).
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂、及び熱硬化性樹脂の少なくともいずれかの硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることがさらに好ましい。
These polymerization initiators can be used singly or in combination of two or more.
When forming a crosslinked structure using these polymerization initiators, the amount used is 0.1 mass parts with respect to 100 mass parts of at least one of the energy ray-curable resin and the thermosetting resin. It is preferably from 1 to 100 parts by mass, more preferably from 1 to 100 parts by mass, and even more preferably from 1 to 10 parts by mass.
 第一樹脂層3及び第二樹脂層7は、硬化性でなく、例えば、熱可塑性樹脂組成物からなる層であってもよい。そして、熱可塑性樹脂組成物中に溶剤を含有させることで、熱可塑性樹脂層を軟化させることができる。これにより、例えば、第一樹脂層3に第一疑似シート構造体2を形成する際に、第一導電性線状体21の第一樹脂層3への貼り付けが容易となる。一方で、熱可塑性樹脂組成物中の溶剤を揮発させることで、熱可塑性樹脂層を乾燥させ、固化させることができる。 The first resin layer 3 and the second resin layer 7 may be layers made of, for example, a thermoplastic resin composition instead of being curable. By including a solvent in the thermoplastic resin composition, the thermoplastic resin layer can be softened. This makes it easy to attach the first conductive linear bodies 21 to the first resin layer 3 when forming the first pseudo sheet structure 2 on the first resin layer 3 , for example. On the other hand, by volatilizing the solvent in the thermoplastic resin composition, the thermoplastic resin layer can be dried and solidified.
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリエーテル、ポリエーテルサルホン、ポリイミド及びアクリル樹脂等が挙げられる。
 溶剤としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、炭化水素系溶剤、ハロゲン化アルキル系溶媒及び水等が挙げられる。
Examples of thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyether, polyethersulfone, polyimide and acrylic resin.
Examples of solvents include alcohol-based solvents, ketone-based solvents, ester-based solvents, ether-based solvents, hydrocarbon-based solvents, halogenated alkyl-based solvents, and water.
 第一樹脂層3及び第二樹脂層7は、無機充填材を含有していてもよい。無機充填材を含有することで、硬化後の第一樹脂層3及び第二樹脂層7の硬度をより向上させることができる。 The first resin layer 3 and the second resin layer 7 may contain an inorganic filler. By containing the inorganic filler, the hardness of the first resin layer 3 and the second resin layer 7 after curing can be further improved.
 無機充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、及び窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラー及びアルミナフィラーが好ましい。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of inorganic fillers include inorganic powders (for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, and boron nitride), beads obtained by spheroidizing inorganic powders, single crystal fibers, and glass fiber. Among these, silica fillers and alumina fillers are preferred as inorganic fillers. An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
 第一樹脂層3及び第二樹脂層7には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。 The first resin layer 3 and the second resin layer 7 may contain other components. Other components include, for example, organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, plasticizers, antifoaming agents, and well-known additives such as wettability modifiers. agents.
 第一樹脂層3及び第二樹脂層7の厚さは、配線シート100の用途に応じて決定される。例えば、接着性の観点から、第一樹脂層3及び第二樹脂層7の厚さは、3μm以上150μm以下であることが好ましく、5μm以上100μm以下であることがより好ましい。 The thicknesses of the first resin layer 3 and the second resin layer 7 are determined according to the use of the wiring sheet 100. For example, from the viewpoint of adhesion, the thickness of the first resin layer 3 and the second resin layer 7 is preferably 3 μm or more and 150 μm or less, more preferably 5 μm or more and 100 μm or less.
(電極)
 第一電極41及び第二電極42は、第一導電性線状体21に電流を供給するために用いられる。第一電極41と、第二電極42とは、対になっている。また、第一電極41は、第一導電性線状体21のうちの1本以上に電気的に接続している。第二電極42は、第一導電性線状体21のうちの第一電極41と電気的に接続していないものに電気的に接続している。なお、複数の配列された第一導電性線状体21は、第一電極41及び第二電極42と交互に、接触していることが好ましい。このような構成であれば、配線シート100の平面視において、第一導電性線状体21と第二導電性線状体61とが交差している交点を、バラツキなく配置できる。
 第一電極41及び第二電極42は、公知の電極材料を用いて形成できる。電極材料としては、導電性ペースト(銀ペースト等)、金属箔(銅箔等)、及び金属ワイヤー等が挙げられる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。
(electrode)
The first electrode 41 and the second electrode 42 are used to supply current to the first conductive linear body 21 . The first electrode 41 and the second electrode 42 are paired. Also, the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 . The second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 . The plurality of arranged first conductive linear bodies 21 are preferably in contact with the first electrodes 41 and the second electrodes 42 alternately. With such a configuration, in a plan view of the wiring sheet 100, the intersection points at which the first conductive linear bodies 21 and the second conductive linear bodies 61 intersect can be arranged without variation.
The 1st electrode 41 and the 2nd electrode 42 can be formed using a well-known electrode material. Examples of electrode materials include conductive paste (silver paste, etc.), metal foil (copper foil, etc.), metal wire, and the like. When the electrode material is a metal wire, the number of metal wires may be one, but preferably two or more.
 電極材料が、金属箔又は金属ワイヤーである場合、金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、及び金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)が挙げられる。また、金属箔又は金属ワイヤーは、金、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよい。 When the electrode material is a metal foil or metal wire, the metal of the metal foil or metal wire includes metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, and gold, or two metals. alloys containing more than one species (eg, steels such as stainless steel, carbon steel, brass, phosphor bronze, zirconium-copper alloys, beryllium-copper, iron-nickel, nichrome, nickel-titanium, kanthal, Hastelloy, and rhenium-tungsten). Also, the metal foil or metal wire may be plated with gold, tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like.
 第一電極41及び第二電極42のうち、一方の電極の幅は、配線シート100の平面視において、10mm以下であることが好ましく、3000μm以下であることがより好ましく、1500μm以下であることがさらに好ましい。なお、一方の電極が金属ワイヤーである場合には、電極の幅は、金属ワイヤーの直径であり、金属ワイヤーを2本以上用いた場合の一方の電極の幅とは、各金属ワイヤーの直径の和のことをいう。 The width of one of the first electrode 41 and the second electrode 42 is preferably 10 mm or less, more preferably 3000 μm or less, and more preferably 1500 μm or less in a plan view of the wiring sheet 100. More preferred. When one electrode is a metal wire, the width of the electrode is the diameter of the metal wire, and when two or more metal wires are used, the width of one electrode is the diameter of each metal wire. It means peace.
 第一電極41及び第二電極42の厚さは、2μm以上200μm以下であることが好ましく、2μm以上170μm以下であることがより好ましく、10μm以上150μm以下であることがさらに好ましい。第一電極41及び第二電極42の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり疑似シート構造体との抵抗値を低く抑えられる。また、電極として十分な強度が得られる。なお、電極が金属ワイヤーである場合には、電極の厚さは、金属ワイヤーの直径である。 The thickness of the first electrode 41 and the second electrode 42 is preferably 2 µm or more and 200 µm or less, more preferably 2 µm or more and 170 µm or less, and even more preferably 10 µm or more and 150 µm or less. If the thicknesses of the first electrode 41 and the second electrode 42 are within the above range, the electric conductivity is high and the resistance is low, and the resistance value with the pseudo sheet structure can be kept low. Moreover, sufficient strength as an electrode can be obtained. In addition, when the electrode is a metal wire, the thickness of the electrode is the diameter of the metal wire.
(配線シートの製造方法)
 本実施形態に係る配線シート100の製造方法は、特に限定されない。配線シート100は、例えば、次の工程により、製造できる。
 まず、第一基材1の上に、第一樹脂層3の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、第一樹脂層3を作製する。次に、第一樹脂層3上に、第一導電性線状体21を配列しながら配置して、第一疑似シート構造体2を形成する。例えば、ドラム部材の外周面に第一基材1付きの第一樹脂層3を配置した状態で、ドラム部材を回転させながら、第一樹脂層3上に第一導電性線状体21を螺旋状に巻き付ける。その後、螺旋状に巻き付けた第一導電性線状体21の束をドラム部材の軸方向に沿って切断する。これにより、第一疑似シート構造体2を形成すると共に、第一樹脂層3に配置する。そして、第一疑似シート構造体2が形成された第一基材1付きの第一樹脂層3をドラム部材から取り出し、第一シート状導電部材が得られる。この方法によれば、例えば、ドラム部材を回転させながら、第一導電性線状体21の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、第一疑似シート構造体2における隣り合う第一導電性線状体21の間隔L1を調整することが容易である。
 次に、第一電極41及び第二電極42を、シート状導電部材の第一疑似シート構造体2における第一導電性線状体21の両端部に、貼り合わせる。このとき、第一電極41は、第一導電性線状体21のうちの1本以上に電気的に接続させる。第二電極42は、第一導電性線状体21のうちの第一電極41と電気的に接続していないものに電気的に接続させる。そのために、第一導電性線状体21の一部を切断して、短くしてもよく、第一導電性線状体21の両端部の一方の上に、絶縁テープを貼ってもよい。
 次に、前述の第一シート状導電部材の作製方法と同様にして、第二基材5と、第二疑似シート構造体6と、第二樹脂層7とを備える第二シート状導電部材を作製する。
 次いで、第一電極41及び第二電極42が設けられた第一シート状導電部材の上に、第二シート状導電部材を配置する。
 以上のようにして、配線シート100を作製できる。
(Manufacturing method of wiring sheet)
The method for manufacturing the wiring sheet 100 according to this embodiment is not particularly limited. The wiring sheet 100 can be manufactured, for example, by the following steps.
First, a composition for forming the first resin layer 3 is applied onto the first base material 1 to form a coating film. Next, the coating film is dried to produce the first resin layer 3 . Next, the first pseudo sheet structure 2 is formed by arranging the first conductive linear bodies 21 on the first resin layer 3 . For example, in a state in which the first resin layer 3 with the first base material 1 is arranged on the outer peripheral surface of the drum member, the first conductive linear body 21 is spirally applied onto the first resin layer 3 while rotating the drum member. shape. After that, the bundle of the spirally wound first conductive linear body 21 is cut along the axial direction of the drum member. As a result, the first pseudo sheet structure 2 is formed and placed on the first resin layer 3 . Then, the first resin layer 3 with the first substrate 1 on which the first pseudo sheet structure 2 is formed is taken out from the drum member to obtain the first sheet-like conductive member. According to this method, for example, while rotating the drum member, the first pseudo-sheet structure 2 is moved by moving the feeding portion of the first conductive linear body 21 along the direction parallel to the axis of the drum member. It is easy to adjust the interval L1 between the first conductive linear bodies 21 adjacent to each other.
Next, the first electrode 41 and the second electrode 42 are attached to both ends of the first conductive linear body 21 in the first pseudo sheet structure 2 of the sheet-like conductive member. At this time, the first electrode 41 is electrically connected to one or more of the first conductive linear bodies 21 . The second electrode 42 is electrically connected to one of the first conductive linear bodies 21 that is not electrically connected to the first electrode 41 . Therefore, the first conductive linear body 21 may be partly cut to shorten it, or an insulating tape may be pasted on one of both ends of the first conductive linear body 21 .
Next, a second sheet-like conductive member comprising a second base material 5, a second pseudo sheet structure 6, and a second resin layer 7 is prepared in the same manner as in the method for producing the first sheet-like conductive member described above. make.
Next, a second sheet-like conductive member is arranged on the first sheet-like conductive member provided with the first electrode 41 and the second electrode 42 .
The wiring sheet 100 can be produced as described above.
(第一実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)配線シート100においては、交点間における第二導電性線状体61同士のいずれかの間で、抵抗値が異なっているため、その交点間ごとに電流量を変化させることができる。
(Action and effect of the first embodiment)
According to this embodiment, the following effects can be obtained.
(1) In the wiring sheet 100, since the resistance value is different between any of the second conductive linear bodies 61 between the intersections, the amount of current can be changed between the intersections.
[第二実施形態]
 次に、本発明の第二実施形態を図面に基づいて説明する。本発明は本実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
 第二実施形態においては、第一電極41及び第二電極42を設ける方法が、第一実施形態とは異なっている。
 以下の説明では、第一実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第一実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
[Second embodiment]
Next, a second embodiment of the present invention will be described based on the drawings. The present invention is not limited to the content of this embodiment. In the drawings, some parts are enlarged or reduced for ease of explanation.
In the second embodiment, the method of providing the first electrode 41 and the second electrode 42 is different from the first embodiment.
In the following description, the differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted or simplified. The same reference numerals are given to the same configurations as in the first embodiment, and the explanations thereof are omitted or simplified.
 本実施形態においては、図5に示すように、第一導電性線状体21の両端部の一方に、絶縁部材8が設けられている。第一導電性線状体21のうち、左側から2本目及び4本目には、第一導電性線状体21と第一電極41との間に、絶縁部材8が設けられているため、第一導電性線状体21と第一電極41とは、電気的に接続していない。一方、第一導電性線状体21のうち、左側から1本目、3本目及び5本目には、第一導電性線状体21と第二電極42との間に、絶縁部材8が設けられているため、第一導電性線状体21と第二電極42とは、電気的に接続していない。
 このように、第一電極41は、第一導電性線状体21のうちの左側から1本目、3本目及び5本目に、電気的に接続している。第二電極42は、第一導電性線状体21のうちの第一電極41と電気的に接続していない左側から2本目及び4本目に、電気的に接続している。
 このような構造であれば、前述の第一実施形態に係る配線シート100のように、第一導電性線状体21の一部を短くしなくても、第一電極41を第一導電性線状体21のうちの一部に電気的に接続でき、かつ、第二電極42を第一導電性線状体21のうちの第一電極41と電気的に接続していないものに電気的に接続できる。
 絶縁部材8としては、公知の絶縁テープ等を適宜用いることができ、例えば、ポリイミドテープを使用できる。
In this embodiment, as shown in FIG. 5, an insulating member 8 is provided at one end of the first conductive linear body 21 . Since the insulating member 8 is provided between the first conductive linear body 21 and the first electrode 41 in the second and fourth from the left side of the first conductive linear body 21, the One conductive linear body 21 and first electrode 41 are not electrically connected. On the other hand, among the first conductive linear bodies 21, the insulating members 8 are provided between the first conductive linear bodies 21 and the second electrodes 42 on the first, third and fifth from the left side. Therefore, the first conductive linear body 21 and the second electrode 42 are not electrically connected.
Thus, the first electrode 41 is electrically connected to the first, third, and fifth from the left side of the first conductive linear body 21 . The second electrode 42 is electrically connected to the second and fourth wires from the left side of the first conductive linear body 21 that are not electrically connected to the first electrode 41 .
With such a structure, unlike the wiring sheet 100 according to the above-described first embodiment, the first electrodes 41 can be made to have the first conductivity without shortening a part of the first conductive linear bodies 21 . It can be electrically connected to a part of the linear body 21, and the second electrode 42 is electrically connected to the first conductive linear body 21 that is not electrically connected to the first electrode 41. can connect to
As the insulating member 8, a known insulating tape or the like can be appropriately used, and for example, a polyimide tape can be used.
(第二実施形態の作用効果)
 本実施形態によれば、前記第一実施形態における作用効果(1)に加え、下記作用効果(2)を奏することができる。
(2)第一導電性線状体21の一部を短くしなくても、第一電極41を第一導電性線状体21のうちの一部に電気的に接続でき、かつ、第二電極42を第一導電性線状体21のうちの第一電極41と電気的に接続していないものに電気的に接続できる。
(Action and effect of the second embodiment)
According to this embodiment, in addition to the effect (1) in the first embodiment, the following effect (2) can be achieved.
(2) The first electrode 41 can be electrically connected to a part of the first conductive linear body 21 without shortening the part of the first conductive linear body 21, and The electrodes 42 can be electrically connected to those of the first conductive wires 21 that are not electrically connected to the first electrodes 41 .
[実施形態の変形]
 本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、前述の実施形態では、配線シート100は、第一基材1及び第二基材5を備えているが、これに限定されない。例えば、配線シート100は、第一基材1及び第二基材5を備えていなくてもよい。このような場合には、第一樹脂層3又は第二樹脂層7により、配線シート100を被着体に貼り付けて使用できる。
[Modification of Embodiment]
The present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
For example, in the above-described embodiment, the wiring sheet 100 includes the first base material 1 and the second base material 5, but is not limited to this. For example, the wiring sheet 100 does not have to include the first base material 1 and the second base material 5 . In such a case, the first resin layer 3 or the second resin layer 7 can be used to attach the wiring sheet 100 to the adherend.
 1…第一基材、2…第一疑似シート構造体、21…第一導電性線状体、3…第一樹脂層、41…第一電極、42…第二電極、5…第二基材、6…第二疑似シート構造体、61…第二導電性線状体、7…第二樹脂層、8…絶縁部材、100…配線シート。 DESCRIPTION OF SYMBOLS 1... First base material 2... First pseudo-sheet structure 21... First conductive linear body 3... First resin layer 41... First electrode 42... Second electrode 5... Second group Material 6... Second pseudo sheet structure 61... Second conductive linear body 7... Second resin layer 8... Insulating member 100... Wiring sheet.

Claims (5)

  1.  複数の第一導電性線状体が間隔をもって配列された第一疑似シート構造体と、
     前記第一導電性線状体のうちの1本以上に電気的に接続する第一電極と、
     前記第一電極と対となり、前記第一導電性線状体のうちの前記第一電極と電気的に接続していないものに電気的に接続する第二電極と、
     複数の第二導電性線状体が間隔をもって配列された第二疑似シート構造体と、を備える配線シートであって、
     前記第一導電性線状体の体積抵抗率は、前記第二導電性線状体の体積抵抗率よりも小さく、
     前記配線シートの平面視において、前記第一導電性線状体と前記第二導電性線状体とは、各交点で交差しており、
     前記第一導電性線状体と前記第二導電性線状体とは、前記交点において、電気的に接続しており、
     前記交点間における前記第二導電性線状体同士のいずれかの間で、抵抗値が異なっている、
     配線シート。
    a first pseudo-sheet structure in which a plurality of first conductive linear bodies are arranged at intervals;
    a first electrode electrically connected to one or more of the first conductive linear bodies;
    a second electrode paired with the first electrode and electrically connected to one of the first conductive linear bodies that is not electrically connected to the first electrode;
    A wiring sheet comprising a second pseudo-sheet structure in which a plurality of second conductive linear bodies are arranged at intervals,
    The volume resistivity of the first conductive linear body is smaller than the volume resistivity of the second conductive linear body,
    In a plan view of the wiring sheet, the first conductive linear bodies and the second conductive linear bodies intersect at respective intersections,
    the first conductive linear body and the second conductive linear body are electrically connected at the intersection;
    Between any of the second conductive linear bodies between the intersections, the resistance value is different.
    wiring sheet.
  2.  請求項1に記載の配線シートにおいて、
     前記第二導電性線状体同士のいずれかの間で、太さが異なっている、
     配線シート。
    In the wiring sheet according to claim 1,
    thickness is different between any of the second conductive linear bodies;
    wiring sheet.
  3.  請求項1又は請求項2に記載の配線シートにおいて、
     前記第二導電性線状体同士のいずれかの間で、材質が異なっている、
     配線シート。
    In the wiring sheet according to claim 1 or claim 2,
    The material is different between any of the second conductive linear bodies,
    wiring sheet.
  4.  請求項1又は請求項2に記載の配線シートにおいて、
     前記第一導電性線状体同士のいずれかの間で、間隔が異なっている、
     配線シート。
    In the wiring sheet according to claim 1 or claim 2,
    Between any of the first conductive linear bodies, the spacing is different,
    wiring sheet.
  5.  請求項1又は請求項2に記載の配線シートにおいて、
     前記第一導電性線状体及び前記第二導電性線状体は、金めっきが施された線状体である、
     配線シート。
    In the wiring sheet according to claim 1 or claim 2,
    The first conductive linear body and the second conductive linear body are gold-plated linear bodies,
    wiring sheet.
PCT/JP2022/038141 2021-10-14 2022-10-13 Wiring sheet WO2023063379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021168992 2021-10-14
JP2021-168992 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063379A1 true WO2023063379A1 (en) 2023-04-20

Family

ID=85988692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038141 WO2023063379A1 (en) 2021-10-14 2022-10-13 Wiring sheet

Country Status (1)

Country Link
WO (1) WO2023063379A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519076Y1 (en) * 1968-11-27 1976-03-10
JPH0584086U (en) * 1992-04-20 1993-11-12 エヌオーケー株式会社 Sheet heating element
JP2006342449A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Heating supporter
JP2007299546A (en) * 2006-04-27 2007-11-15 Denso Corp Planar heating element
JP2009057042A (en) * 2007-08-31 2009-03-19 Korea Inst Of Machinery & Materials Heating substrate equipped with conductive thin film and electrode, and manufacturing method of the same
US20150195870A1 (en) * 2012-06-26 2015-07-09 Iee International Electronics & Engineering S.A. Ptc heating device without electronic power control
US20190268975A1 (en) * 2018-02-26 2019-08-29 Charmtron Co., Ltd. Plate heater
JP2020008273A (en) * 2018-07-03 2020-01-16 グッドリッチ コーポレイション Floor panel assembly, heater, method of making heating layer for floor panel assembly, and method of making floor panel assembly
JP2021163723A (en) * 2020-04-03 2021-10-11 リンテック株式会社 Wiring sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519076Y1 (en) * 1968-11-27 1976-03-10
JPH0584086U (en) * 1992-04-20 1993-11-12 エヌオーケー株式会社 Sheet heating element
JP2006342449A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Heating supporter
JP2007299546A (en) * 2006-04-27 2007-11-15 Denso Corp Planar heating element
JP2009057042A (en) * 2007-08-31 2009-03-19 Korea Inst Of Machinery & Materials Heating substrate equipped with conductive thin film and electrode, and manufacturing method of the same
US20150195870A1 (en) * 2012-06-26 2015-07-09 Iee International Electronics & Engineering S.A. Ptc heating device without electronic power control
US20190268975A1 (en) * 2018-02-26 2019-08-29 Charmtron Co., Ltd. Plate heater
JP2020008273A (en) * 2018-07-03 2020-01-16 グッドリッチ コーポレイション Floor panel assembly, heater, method of making heating layer for floor panel assembly, and method of making floor panel assembly
JP2021163723A (en) * 2020-04-03 2021-10-11 リンテック株式会社 Wiring sheet

Similar Documents

Publication Publication Date Title
JP7321164B2 (en) METHOD FOR MANUFACTURING ARTICLE WITH CONDUCTIVE SHEET
WO2021201069A1 (en) Wiring sheet
JP2020119856A (en) Manufacturing method of sheet-like conductive member, and sheet-like conductive member
WO2021192775A1 (en) Wiring sheet and sheet-like heater
WO2023063379A1 (en) Wiring sheet
WO2020189173A1 (en) Sheet-shaped conductive member and manufacturing method therefor
JP7345656B2 (en) wiring sheet
WO2022202230A1 (en) Wiring sheet
JP7308210B2 (en) Sheet-shaped conductive member
WO2023063378A1 (en) Wiring sheet
JP2023059087A (en) wiring sheet
WO2022102536A1 (en) Wiring sheet and sheet-form heater
WO2023063377A1 (en) Contact sensor and wiring sheet
WO2021172150A1 (en) Wiring sheet
WO2024070718A1 (en) Wiring sheet and sheet-form heater
JP2024052337A (en) Wiring sheet and sheet heater
WO2021187361A1 (en) Wiring sheet, and sheet-like heater
WO2021193239A1 (en) Sheet-like conductive member and sheet-like heater
JP2022085213A (en) Wiring sheet and method for manufacturing the same
WO2022070481A1 (en) Wiring sheet and wiring sheet production method
JP2022149123A (en) wiring sheet
WO2023188122A1 (en) Wiring sheet
JP2024052310A (en) Wiring sheet and sheet heater
JP2023059085A (en) planar heating element
WO2021261488A1 (en) Wiring sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554600

Country of ref document: JP