JPH0362492A - Transparent face heating element - Google Patents

Transparent face heating element

Info

Publication number
JPH0362492A
JPH0362492A JP19715889A JP19715889A JPH0362492A JP H0362492 A JPH0362492 A JP H0362492A JP 19715889 A JP19715889 A JP 19715889A JP 19715889 A JP19715889 A JP 19715889A JP H0362492 A JPH0362492 A JP H0362492A
Authority
JP
Japan
Prior art keywords
electrodes
distance
heating element
transparent
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19715889A
Other languages
Japanese (ja)
Inventor
Teru Tanimura
谷村 暉
Michihiro Yamashita
山下 満弘
Megumi Sugisawa
杉澤 芽久美
Masakazu Kitano
北野 正和
Kazuo Hirota
広田 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP19715889A priority Critical patent/JPH0362492A/en
Publication of JPH0362492A publication Critical patent/JPH0362492A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly generate a heat from the whole heat generating surface by giving a surface resistance value according to the change of distance between electrodes of a transparent face heating element in which a pair of facing electrodes are not parallel to each other to a transparent conductive film. CONSTITUTION:The thickness of a transparent conductive film is changed according to the distance between electrodes to change the surface resistance value. Namely, the transparent conductive film is thinned where the distance between electrodes is long, and thickened where the distance between electrodes is short. When the distance between electrodes is L cm and the surface resistance value of the transparent conductor is R (OMEGA/opening), the surface resistance value R of the part of the distance L is regulated according to the distance L between electrodes to satisfy the value of R=A/L<2> (wherein A is a constant determined by applied voltage). The surface resistance is changed in the longitudinal direction of the band electrode from side edge to side edge on the both sides having no pair of electrodes, but not changed in the direction along the distance between electrodes.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、透明面状発熱体に関し、詳しくは向い合う辺
縁間の距離が異なるにもかかわらず均一に発熱すること
ができ、デフロスタ、透明ヒータ等として好適に利用す
ることができる透明面状発熱体に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a transparent sheet heating element, and more specifically, it is capable of uniformly generating heat despite the difference in distance between opposing edges, and is suitable for use as a defroster, The present invention relates to a transparent sheet heating element that can be suitably used as a transparent heater or the like.

(従来の技術) 従来、デフロスタ等に用いられる面状発熱体にとしては
9発熱体となる透明導電膜に電圧を印加して通電により
発熱させるために、一対の帯状の電極を透明導電膜の向
い合う平行な辺縁に設けた面状発熱体が知られている。
(Prior art) Conventionally, in order to apply a voltage to a transparent conductive film that becomes the heating element and generate heat by energization, a pair of band-shaped electrodes are attached to the transparent conductive film. Planar heating elements provided on opposing parallel edges are known.

(発明が解決しようとする課題) しかし、上記のような透明面状発熱体を適用する窓等の
形状は必ずしも向い合う辺縁が平行ではないので、適用
する平面形状の自由度が著しく制限されることになる。
(Problem to be Solved by the Invention) However, since the opposing edges of windows to which the above-mentioned transparent sheet heating element is applied are not necessarily parallel, the degree of freedom in the planar shape to which it is applied is severely limited. That will happen.

また、向い合う辺縁が平行でない平面形の透明面状発熱
体では、その辺縁に沿って一対の平行にならない帯状の
電極を設けて電圧を印加した場合に、相対的に電極間の
距離が短いところでは、その間の電気抵抗値が低いので
表面温度が高くなり、逆に電極間の距離が長いところで
は抵抗値が高くなるので1表面温度は低くなり、均一な
発熱が得られず、かつ発熱効果も悪いものである。例え
ば、デフロスタとして用いた場合1表面温度の低いとこ
ろではガラス面等に部分的に曇りが生じ、視界も遮られ
、温度の高いところでは火傷等の危険をともなうことも
ある。また、逆に均一な発熱を得るために、一対の帯状
の電極を透明面状発熱体の湾曲した辺縁の湾曲した部分
を外して直線的に平行に設けた場合には、電極が辺縁の
縁枠より内側に位置することになるので、電極が目ざわ
りとなり見苦しく、かつ電極に挟まれていない部分は発
熱が得られないことになる。
In addition, in a planar transparent sheet heating element whose opposing edges are not parallel, when a pair of non-parallel band-shaped electrodes are provided along the edges and a voltage is applied, the relative distance between the electrodes is When the distance between the electrodes is short, the electrical resistance between them is low, so the surface temperature becomes high; conversely, where the distance between the electrodes is long, the resistance value becomes high, so the surface temperature becomes low, and uniform heat generation cannot be obtained. Moreover, the heat generation effect is also poor. For example, when used as a defroster, the glass surface may partially fog up in areas where the surface temperature is low, blocking visibility, and may pose a risk of burns or the like in areas where the temperature is high. On the other hand, in order to obtain uniform heat generation, if a pair of band-shaped electrodes are installed straight in parallel by removing the curved portion of the curved edge of the transparent heating element, the electrodes Since the electrodes are located inside the edge frame, the electrodes become noticeable and unsightly, and the areas not sandwiched between the electrodes cannot generate heat.

本発明は上記のような課題を解決するものであって、そ
の目的は向い合う辺縁間の距離が異なるにもかかわらず
均一に発熱することができる透明面状発熱体を提供する
ことにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a transparent sheet heating element that can uniformly generate heat despite the difference in distance between opposing edges. .

(課題を解決するための手段) 本発明者らは上記のごとき課題を解決すべく研究を重ね
た結果9本発明に到達したのである。
(Means for Solving the Problems) The present inventors have conducted repeated research to solve the above problems, and as a result, they have arrived at the present invention.

すなわち1本発明は、透明導電膜からなる抵抗発熱体に
電圧を印加し電流を通じて発熱させる透明面状発熱体に
おいて、向い合う辺縁間の距離が異なる透明導電膜面上
に上記辺縁に沿って一対の帯状の電極を設け、電極間距
離の変化に合わせて電極間距離L(cm)と透明導電膜
の表面抵抗値R(Ω/□)との関係を9式R=A/L2
(A ;印加電圧によって決まる定数)を満足するよう
に調節してなることを特徴とする透明面状発熱体を要旨
とするものである。
That is, one aspect of the present invention is that in a transparent sheet heating element that generates heat through electric current by applying a voltage to a resistive heating element made of a transparent conductive film, a resistive heating element is formed on the surface of the transparent conductive film in which distances between opposing edges are different from each other along the edges. A pair of strip-shaped electrodes are provided, and the relationship between the distance L (cm) between the electrodes and the surface resistance value R (Ω/□) of the transparent conductive film is determined according to the change in the distance between the electrodes using formula 9 R=A/L2
The object of the present invention is to provide a transparent sheet heating element which is adjusted to satisfy (A: a constant determined by applied voltage).

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明においては、透明導電膜の電気抵抗を電極間の距
離に応じて変化させるものである。すなわち、電極間の
距離が長いところでは透明導電膜の表面抵抗値を小さく
して電極間の抵抗値を小さくシ、一方、電極間の距離が
短いところでは透明導電膜の表面抵抗値を大きくして電
極間の抵抗値を高くする。このように電極間の距離に応
じて透明導電膜の表面抵抗値を変化させることによって
In the present invention, the electrical resistance of the transparent conductive film is changed depending on the distance between the electrodes. In other words, where the distance between the electrodes is long, the surface resistance value of the transparent conductive film is decreased to reduce the resistance value between the electrodes, whereas where the distance between the electrodes is short, the surface resistance value of the transparent conductive film is increased. to increase the resistance between the electrodes. By changing the surface resistance value of the transparent conductive film in accordance with the distance between the electrodes in this way.

電極間の距離が変っても電極間の抵抗値を等しくするこ
とができる。
Even if the distance between the electrodes changes, the resistance value between the electrodes can be made equal.

具体的には、電極間の距離に応じて透明導電膜の厚みに
変化を与えて表面抵抗値を変化させる。
Specifically, the surface resistance value is changed by changing the thickness of the transparent conductive film depending on the distance between the electrodes.

すなわち、電極間の距離が長いところでは透明導電膜の
厚みを厚<シ、一方、電極間の距離が短いところは透明
導電膜の厚みを薄くする。
That is, where the distance between the electrodes is long, the thickness of the transparent conductive film is set to less than 1, whereas where the distance between the electrodes is short, the thickness of the transparent conductive film is made thinner.

本発明にいう電極間の距離とは、向い合った帯状の電極
の同じ側の端と端を結ぶ直線に直角に2つの電極間を測
ったものである。ただし、この場合、2つの電極の一方
の端と端を結ぶ直線と、もう一方の電極の端と端を結ぶ
直線とは平行である。
The distance between electrodes as used in the present invention is measured between two electrodes at right angles to a straight line connecting the ends of the opposite strip-shaped electrodes on the same side. However, in this case, the straight line connecting one end of the two electrodes and the straight line connecting the other end of the electrode are parallel.

第1図は1本発明の透明面状発熱体の平面図の一例を示
すものであるが、第1図において、電極E間の距離はL
で示され、中央部が最大の電極間距離L m&Kを有し
1両端が最小の電極間距離Laiイを有している。
FIG. 1 shows an example of a plan view of a transparent sheet heating element of the present invention. In FIG. 1, the distance between electrodes E is L.
The central part has the maximum inter-electrode distance Lm&K, and the opposite ends have the minimum inter-electrode distance Lai.

電極間の距離L(cm)、透明導電体の表面抵抗値をR
(Ω/□)とすると、R=A/L2(A ;印加電圧に
より決まる定数)の値を満足するように、電極間の距離
りに応じてその距離りの部分の表面抵抗値Rを調節する
。一対の電極が設けられていない両側の辺縁から辺縁へ
は帯状の電極の長さ方向に表面抵抗値は変化するが、電
極間の距離に沿った方向には表面抵抗値は変化しない。
The distance between the electrodes is L (cm), and the surface resistance value of the transparent conductor is R.
(Ω/□), adjust the surface resistance value R at that distance according to the distance between the electrodes so that it satisfies the value of R=A/L2 (A: a constant determined by the applied voltage). do. The surface resistance value changes in the length direction of the strip-shaped electrode from edge to edge on both sides where a pair of electrodes are not provided, but the surface resistance value does not change in the direction along the distance between the electrodes.

印加電圧により決まる定数Aについて、さらに詳しく説
明する。発熱体の発熱温度(1)と電力密度(W / 
cnf )との間には、相関関係があるので、電力密度
が決まれば1発熱温度が定まることになる。
The constant A determined by the applied voltage will be explained in more detail. Heat generation temperature (1) of heating element and power density (W/
cnf ), there is a correlation, so once the power density is determined, the temperature of one heat generation is determined.

ここで、印加電圧をV(V)とすると、電力密度りは、
D=V’/RxL”が与えられるので。
Here, if the applied voltage is V (V), the power density is
Since D=V'/RxL" is given.

R= V 2/ D X L ”となり、これから定数
A=V’/Dが導かれる。したがって、定数Aは所望す
る発熱温度に応じて、印加電圧によって任意に定めるこ
とができる。
R=V 2/D

本発明は1例えば、第1図に示されるような向い合った
2つの辺縁の一方が直線で他方が曲線を有しかつ向い合
った他の2つの辺縁が平行な平面形状を有する透明面状
発熱体、あるいは向い合った2つの辺縁がともに曲線を
有しかつ向い合った他の2つの辺縁が平行な平面形状を
有する透明面状発熱体等に好ましく適用することができ
る。これらの透明面状発熱体は平面状のものは勿論のこ
と、立体的なものであってその展開図が上記のような平
面形状を有するものでもよい。
For example, the present invention provides a transparent material having two opposing edges, one of which is a straight line and the other curved, and the other two opposing edges having a parallel planar shape, as shown in FIG. It can be preferably applied to a planar heating element or a transparent planar heating element in which two opposing edges are both curved and the other two opposing edges are parallel. These transparent planar heating elements may not only be planar, but may also be three-dimensional and whose developed view has a planar shape as described above.

次に9本発明の透明面状発熱体の応用例を挙げる。第1
図はフルフェイス型のヘルメットの前面を覆う透明なシ
ールドに取り付けて使用するための透明面状発熱体の平
面図であるが、この透明面状発熱体の平面形は上下方向
に両辺縁に近いところが狭く、中央部が広くなっている
。ところで。
Next, nine application examples of the transparent planar heating element of the present invention will be given. 1st
The figure is a plan view of a transparent sheet heating element that is used by attaching it to a transparent shield that covers the front of a full-face helmet.The planar shape of this transparent sheet heating element is close to both edges in the vertical direction. However, it is narrow and wide in the center. by the way.

フルフェイス型のヘルメットは、冬季等外気温が低い時
にはヘルメットの内側は体温で暖まるので。
Full-face helmets use body heat to warm the inside of the helmet when the outside temperature is low, such as in the winter.

ヘルメットのシールドの内面が曇ることになり。The inner surface of the helmet shield will become cloudy.

視界が遮られて危険な事態を生ずる。そこでこの曇りを
防ぐために、ヘルメットのシールドに本発明の透明面状
発熱体を結合し、シールドを加熱すると、シールドが均
一に加熱され、シールド全面の曇りを均一に除去するこ
とができる。
Visibility may be blocked, creating a dangerous situation. In order to prevent this fogging, the transparent sheet heating element of the present invention is coupled to the shield of the helmet and the shield is heated, thereby uniformly heating the shield and uniformly removing fog over the entire surface of the shield.

本発明の透明面状発熱体は、透明なフィルム等を基板と
し、その上に酸化インジウム、酸化錫。
The transparent planar heating element of the present invention uses a transparent film or the like as a substrate, and indium oxide and tin oxide are placed on the substrate.

酸化インジウム・酸化錫混合物(ITO)等の金属酸化
物の透明導電膜を真空蒸着法、イオンブレーティング法
、スパッタリング法等により形成することによって製造
される。
It is manufactured by forming a transparent conductive film of a metal oxide such as an indium oxide/tin oxide mixture (ITO) by a vacuum evaporation method, an ion blasting method, a sputtering method, or the like.

(実施例) 以下2本発明を実施例によって具体的に説明する。(Example) The present invention will be specifically explained below using two examples.

実施例1 厚さ75μmの透明なポリエチレンテレフタレートフィ
ルムを基板として用い、その上に真空蒸着法によって、
 ITOからなる透明導電膜を形成した。
Example 1 A transparent polyethylene terephthalate film with a thickness of 75 μm was used as a substrate, and by vacuum evaporation method,
A transparent conductive film made of ITO was formed.

その際、横方向の長さW=30cm、Lmax=13c
m。
At that time, the horizontal length W = 30cm, Lmax = 13c
m.

L、ゎ= 9 cmとする第1図に示す形状にしたとき
に9式R=A/L2(ただし、 A=2500)で算出
した表面抵抗値が第2図の曲線aで示される分布を示す
ように厚み0.2〜0.3μmの透明導電膜を形成し、
透明導電フィルムを作成した。
When L, ゎ = 9 cm and the shape shown in Fig. 1 is used, the surface resistance value calculated by formula 9 R = A / L2 (however, A = 2500) is distributed as shown by curve a in Fig. 2. As shown, a transparent conductive film with a thickness of 0.2 to 0.3 μm is formed,
A transparent conductive film was created.

得られた透明導電フィルムを第1図の形状とし。The obtained transparent conductive film was shaped as shown in FIG.

互いに向かい合う曲線の辺縁と直線の辺縁に沿ってそれ
ぞれ導電性ペースト(銀ペースト)によって巾1cmの
帯状の電極Eを形成し1次いで各電極Eにリード線を結
合し、フルフェイス型ヘルメットのシールド用の透明面
状発熱体を得た。
Strip-shaped electrodes E with a width of 1 cm are formed using conductive paste (silver paste) along the curved edges and straight edges that face each other, and then a lead wire is connected to each electrode E to form a full-face helmet. A transparent planar heating element for shielding was obtained.

この透明面状発熱体をITO側がヘルメットのシールド
側になるようにシリコーン系粘着剤によってシールド外
面に貼設した。
This transparent sheet heating element was attached to the outer surface of the shield with a silicone adhesive so that the ITO side was on the shield side of the helmet.

シールド外面上の透明面状発熱体に直流電源により電圧
12Vを印加し、温度10℃、相対湿度60%の雰囲気
で発熱させ9通電後10分間後に、接触表面温度計を用
いてシールドの内側の温度(℃)を測定したところ、第
3図に数字で示すように、一対の電極が平行でない場合
でもシールド全面にわたり均一に発熱させることができ
た。
A voltage of 12 V is applied to the transparent heating element on the outer surface of the shield using a DC power supply to generate heat in an atmosphere with a temperature of 10°C and a relative humidity of 60%.9 After 10 minutes of electricity application, the inside of the shield is measured using a contact surface thermometer. When the temperature (° C.) was measured, as shown by the numbers in FIG. 3, even when the pair of electrodes were not parallel, it was possible to generate heat uniformly over the entire surface of the shield.

得られた透明面状発熱体の透過度(平行光線550nm
にて測定)は、中央部の表面抵抗値が低くて膜厚が厚く
なった部分で透過度が69%、左右両辺に近いところの
表面抵抗値の高い部分で73%であり。
Transmittance of the obtained transparent sheet heating element (parallel light 550 nm
The transmittance was 69% in the center where the surface resistance was low and the film was thick, and 73% in the high surface resistance near both the left and right sides.

ヘルメット用のシールドとして使用上において何等問題
のないものであった。
There was no problem in using it as a helmet shield.

比較例1 全面に厚み0.3μmの均一な厚みのITOからなる透
明導電層を形成した以外は、実施例1と同様にして表面
抵抗値15Ω/□の透明導電フィルムを得た。得られた
透明導電フィルムから、実施例1と同様にして透明面状
発熱体を作成し、以下実施例1と同様にしてヘルメット
のシールド外面に貼設して発熱させたところ、第4図に
示すような温度分布であった。第4図から明らかなよう
に、極めて大きな温度分布を示しており、不均一に発熱
していることが判る。
Comparative Example 1 A transparent conductive film having a surface resistance value of 15 Ω/□ was obtained in the same manner as in Example 1, except that a transparent conductive layer made of ITO with a uniform thickness of 0.3 μm was formed on the entire surface. A transparent planar heating element was made from the obtained transparent conductive film in the same manner as in Example 1, and then attached to the outer surface of the shield of a helmet to generate heat in the same manner as in Example 1. The temperature distribution was as shown. As is clear from FIG. 4, there is an extremely large temperature distribution, and it can be seen that heat is generated non-uniformly.

(発明の効果) 本発明は上記のごとく、対向する一対の電極が平行でな
い透明面状発熱体において、電極間の距離の変化に応じ
た表面抵抗値を、透明導電膜に与えるものであるので1
発熱面の全面にわたり均一な発熱が得られる。
(Effects of the Invention) As described above, the present invention provides a transparent conductive film with a surface resistance value that corresponds to a change in the distance between the electrodes in a transparent planar heating element in which a pair of opposing electrodes are not parallel. 1
Uniform heat generation can be obtained over the entire heating surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の透明面状発熱体の一例を示す平面図、
第2図は透明面状発熱体の表面抵抗値の変化を示すグラ
フ、第3図は表面温度測定値を記入した実施例の透明面
状発熱体の平面図、第4図は表面温度測定値を記入した
比較例の透明面状発熱体の平面図である。
FIG. 1 is a plan view showing an example of the transparent heating element of the present invention;
Figure 2 is a graph showing changes in surface resistance of the transparent sheet heating element, Figure 3 is a plan view of the transparent sheet heating element of the example with measured surface temperature values, and Figure 4 is the measured surface temperature values. FIG. 3 is a plan view of a transparent sheet heating element of a comparative example with .

Claims (1)

【特許請求の範囲】[Claims] (1)透明導電膜からなる抵抗発熱体に電圧を印加し電
流を通じて発熱させる透明面状発熱体において、向い合
う辺縁間の距離が異なる透明導電膜面上に上記辺縁に沿
って一対の帯状の電極を設け、電極間の距離の変化に合
わせて電極間の距離L(cm)と透明導電膜の表面抵抗
値R(Ω/□)との関係を、式R=A/L^2(A;印
加電圧によって決まる定数)を満足するように調節して
なることを特徴とする透明面状発熱体。
(1) In a transparent sheet heating element that generates heat by applying a voltage to a resistive heating element made of a transparent conductive film and passing an electric current, a pair of resistive heating elements are placed on the surface of the transparent conductive film with different distances between opposing edges along the edges. Strip-shaped electrodes are provided, and the relationship between the distance L (cm) between the electrodes and the surface resistance value R (Ω/□) of the transparent conductive film is calculated using the formula R=A/L^2 according to the change in the distance between the electrodes. A transparent planar heating element, characterized in that it is adjusted to satisfy (A: a constant determined by applied voltage).
JP19715889A 1989-07-28 1989-07-28 Transparent face heating element Pending JPH0362492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19715889A JPH0362492A (en) 1989-07-28 1989-07-28 Transparent face heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19715889A JPH0362492A (en) 1989-07-28 1989-07-28 Transparent face heating element

Publications (1)

Publication Number Publication Date
JPH0362492A true JPH0362492A (en) 1991-03-18

Family

ID=16369736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19715889A Pending JPH0362492A (en) 1989-07-28 1989-07-28 Transparent face heating element

Country Status (1)

Country Link
JP (1) JPH0362492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279392A (en) * 1995-04-05 1996-10-22 Kitazato Supply:Kk Transparent heating plate and transparent heating device
JP2013008458A (en) * 2011-06-22 2013-01-10 Tsuchiya Co Ltd Planar heating element
JP2018123053A (en) * 2012-12-20 2018-08-09 サン−ゴバン グラス フランスSaint−Gobain Glass France Pane having electric heating layer and production method thereof
JP2018190609A (en) * 2017-05-08 2018-11-29 株式会社ネクスコ・エンジニアリング北海道 Convex surfaced transparent heater, product with convex surfaced transparent heater, and method for manufacturing convex surfaced transparent heater
JP2021131931A (en) * 2020-02-18 2021-09-09 日立造船株式会社 Carbon nanotube heater and method for manufacturing carbon nanotube heater
WO2023063113A1 (en) * 2021-10-15 2023-04-20 株式会社デンソー Film heater
WO2024070718A1 (en) * 2022-09-30 2024-04-04 リンテック株式会社 Wiring sheet and sheet-form heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279392A (en) * 1995-04-05 1996-10-22 Kitazato Supply:Kk Transparent heating plate and transparent heating device
JP2013008458A (en) * 2011-06-22 2013-01-10 Tsuchiya Co Ltd Planar heating element
JP2018123053A (en) * 2012-12-20 2018-08-09 サン−ゴバン グラス フランスSaint−Gobain Glass France Pane having electric heating layer and production method thereof
JP2018190609A (en) * 2017-05-08 2018-11-29 株式会社ネクスコ・エンジニアリング北海道 Convex surfaced transparent heater, product with convex surfaced transparent heater, and method for manufacturing convex surfaced transparent heater
JP2021131931A (en) * 2020-02-18 2021-09-09 日立造船株式会社 Carbon nanotube heater and method for manufacturing carbon nanotube heater
WO2023063113A1 (en) * 2021-10-15 2023-04-20 株式会社デンソー Film heater
WO2024070718A1 (en) * 2022-09-30 2024-04-04 リンテック株式会社 Wiring sheet and sheet-form heater

Similar Documents

Publication Publication Date Title
US5353148A (en) Electrochromic device
US7880120B2 (en) Transparent window pane provided with a resistive heating coating
EP2336819B1 (en) Fog-resistant structure and protective device for eyes
KR100988646B1 (en) Light sense assisting apparatus having electro-conductive transparent layer
US3302002A (en) Uniformly heated conductive panels
JP2016507858A (en) Glass plate with electric heating layer
BR112013003961B1 (en) transparent pane having a heatable coating and method for producing a transparent pane
JP2017533535A (en) Transparent window plate with electric heating layer, method for manufacturing transparent window plate and use of transparent window plate
KR20160136375A (en) Electrically heatable panel with switch region
BR112017011347B1 (en) METHOD TO PRODUCE A COMPOSITE GLASS WITH A FUNCTIONAL COATING PROTECTED AGAINST CORROSION, DEVICE TO PERFORM THE METHOD AND COMPOSITE GLASS
JP2005529055A (en) Heatable window glass panel
BR112016023702B1 (en) TRANSPARENT GLASS PLATE HAVING A HEATED COATING
JPH0362492A (en) Transparent face heating element
GB2184929A (en) Electrically conductive glass sheet
CN110293721A (en) A kind of heatable curved surface safety glass and jig
KR20180095227A (en) Transparent heating elements and Heator comprising flexible and transparent heating elements
JPH05217661A (en) Substratum on which thin-film conductive layer provided with highly conductive bus has been formed and method
EA033621B1 (en) Transparent pane with heated coating
JPH0235015Y2 (en)
JPS62154493A (en) Conductive glass plate
JPS61175068U (en)
KR20190074747A (en) Ultra-thin heat device preventing dew condensation for goggle and method for manufacturing the same
GB751468A (en) Electrically conductive windshield
JPH06260265A (en) Transparent surface heating element
KR102318135B1 (en) Heating element and method for manufacturing thereof