WO2024070699A1 - Lid member and method for manufacturing same - Google Patents

Lid member and method for manufacturing same Download PDF

Info

Publication number
WO2024070699A1
WO2024070699A1 PCT/JP2023/033377 JP2023033377W WO2024070699A1 WO 2024070699 A1 WO2024070699 A1 WO 2024070699A1 JP 2023033377 W JP2023033377 W JP 2023033377W WO 2024070699 A1 WO2024070699 A1 WO 2024070699A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
frame
lid member
frame portion
glass
Prior art date
Application number
PCT/JP2023/033377
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 間嶌
景 寺田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024070699A1 publication Critical patent/WO2024070699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass

Definitions

  • the present invention relates to a lid member for a package and a method for manufacturing the lid member.
  • Patent Document 1 discloses an airtight package that includes a base (substrate) on which a light-emitting element (LED element) is mounted, and a lid member (transparent body) that is fixed to the base so as to cover the light-emitting element.
  • a base substrate
  • a lid member transparent body
  • the lid member in this package has a plate-shaped frame portion (brim portion) and a dome-shaped protrusion portion (convex lid portion) that protrudes from the frame portion.
  • a first bonding pattern made of a metal layer is formed on the base.
  • a second bonding pattern made of a metal layer is formed on the frame of the lid member.
  • the lid member is joined to the base by joining the first bonding pattern and the second bonding pattern with solder. This hermetically seals the space for accommodating the light-emitting element formed between the base and the protruding portion of the lid member (see claim 1 in the same document).
  • One method for forming a metal layer as the second bonding pattern on the frame of the lid member is, for example, a film formation process using physical vapor deposition.
  • the cover member is formed, for example, by heating a flat glass plate (forming process).
  • forming process a portion of the glass plate is heated and softened to form a protrusion, and the remaining plate-like portion that surrounds the periphery of the protrusion becomes the frame.
  • metal particles may penetrate into the inside of the protrusion and adhere to the inner surface of the protrusion.
  • metal particles adhere to the inner surface of the protrusion the light extraction efficiency of the lid member decreases, which is undesirable.
  • the present invention was made in consideration of the above circumstances, and its technical objective is to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member when a metal layer is formed on the lid member by physical vapor deposition.
  • the present invention is intended to solve the above problems, and is a method for manufacturing a glass lid member used in a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, and a molding process for forming the protrusion by sucking a part of the glass plate while the glass plate is fixed to a support base, the support base having a fixing part for fixing the frame, and the fixing part sucking the frame in the same direction as the part of the glass plate in the molding process.
  • the molding process causes warping of the frame of the lid member, which creates a gap between the frame and the masking member, allowing metal particles for forming the metal layer to penetrate into the protruding portion.
  • warping of the frame can be prevented by sucking the frame with the fixed portion of the support stand during the molding process. This allows the masking member to be in good contact with the frame. Therefore, when a metal layer is formed on the lid member by physical vapor deposition, it is possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member.
  • the suction of the portion of the glass sheet and the suction of the frame portion by the fixing portion may be performed by a common suction device. This can simplify the device configuration for carrying out this method.
  • the suction of the portion of the glass sheet and the suction of the frame by the fixing part may be performed simultaneously. This allows the forming step to be performed efficiently.
  • the protrusion and the frame may be formed by heating the glass plate.
  • the support base may have a plurality of spaces for forming a plurality of the protrusions on the glass sheet, the plurality of spaces being arranged in multiple rows and columns
  • the fixing portion may have a plurality of suction portions for sucking the glass sheet, and the plurality of suction portions may be arranged in multiple rows and columns to correspond to the plurality of spaces.
  • This configuration allows multiple protrusions to be efficiently formed on the glass sheet.
  • the present invention is directed to solving the above problems, and is a method for manufacturing a glass lid member used in a package including a light-emitting element, the lid member comprising a plate-shaped frame portion and a protrusion portion protruding from the frame portion, the protrusion portion having an inner surface and an outer surface, the frame portion having a first main surface connected to the inner surface of the protrusion portion and a second main surface connected to the outer surface of the protrusion portion, the method comprising: a forming step of forming the protrusion portion by sucking a part of the glass plate while the glass plate is fixed to a support; a processing step of processing the frame portion after the forming step; and a film-forming step of forming a metal layer on the frame portion by physical vapor deposition after the processing step, the processing step being characterized in that a processing treatment is performed to flatten the first main surface of the frame portion.
  • the first main surface of the frame portion can be flattened in the processing process, making it possible to bring the masking member into contact with this first main surface without forming a gap between the first main surface and the masking member.
  • the processing step may involve physical polishing of the first main surface of the frame.
  • the processing step may be configured to press the frame against the grinding tool with a pressing member, and the pressing member may have a housing portion for housing the protruding portion. With this configuration, it is possible to prevent the pressing member from coming into contact with the protruding portion during the processing step.
  • the present invention is directed to solving the above problems, and is a glass lid member used for a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, the protrusion having an inner surface and an outer surface, the frame having a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion, and the first main surface having a polished surface.
  • the masking member can be brought into contact with the polished surface without any gaps. This makes it possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member when forming a metal layer on the lid member by physical vapor deposition.
  • the present invention is directed to solving the above problems, and is a glass lid member used for a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, the protrusion having a top and a base integrally formed with the frame, and the frame being thinner than the base.
  • the protrusion may have a top, and the top of the protrusion may be thinner than the frame. This can improve the light extraction efficiency of the lid member used in the package.
  • the frame portion may be thicker than the top of the protrusion.
  • the present invention when a metal layer is formed on a lid member by physical vapor deposition, it is possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member.
  • FIG. FIG. FIG. FIG. FIG. FIG. FIG. FIG. FIG. 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package.
  • 11 is a cross-sectional view showing a state in which contact between the cover member and the masking member is poor.
  • FIG. 4A to 4C are cross-sectional views showing a bonding step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a bonding step in the method of manufacturing the package.
  • 1 is a cross-sectional view showing a glass substrate for manufacturing a lid member for a package.
  • FIG. 11 is a cross-sectional view showing another example of the cover member.
  • FIG. 11 is a cross-sectional view showing another example of the cover member.
  • FIG. 11 is a plan view showing another example of the cover member.
  • FIG. 19 is a plan view showing a molding device for molding the lid member shown in FIG. 18 .
  • FIG. 11 is a plan view showing another example of the cover member.
  • FIG. 11 is a bottom view showing another example of the lid member.
  • FIG. 11 is a cross-sectional view showing another example of a package.
  • FIG. 11 is a cross-sectional view showing another example of the cover member.
  • FIG. 11 is a cross-sectional view showing another example of a package.
  • FIG. 11A and 11B are cross-sectional views showing another example of a preparation step in the method of manufacturing a package.
  • 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • FIG. 11A and 11B are cross-sectional views showing another example of a preparation step in the method of manufacturing a package.
  • 4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package.
  • 1A to 1C are cross-sectional views showing a processing step in a preparation step of a method of manufacturing a package.
  • 4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package.
  • Figures 1 to 15 show one embodiment of a package with a lid member according to the present invention and a method for manufacturing the package.
  • the package 1 includes a base 2, a light-emitting element 3 supported by the base 2, a lid member 4 that covers the base 2 and the light-emitting element 3, and a sealing portion 5 that hermetically bonds the base 2 and the lid member 4.
  • Figures 3 and 4 show the base 2 before the lid member 4 is bonded.
  • the base 2 has a first main surface 2a that supports the light-emitting element 3, a second main surface 2b located on the opposite side of the first main surface 2a, and a metal layer 6 formed on the first main surface 2a.
  • Examples of materials for the substrate 2 include ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride, glass ceramics made by mixing and sintering these ceramics with glass powder, and alloys such as Fe-Ni-Co alloys, Cu-W alloys, and Kovar (registered trademark).
  • ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride
  • glass ceramics made by mixing and sintering these ceramics with glass powder
  • alloys such as Fe-Ni-Co alloys, Cu-W alloys, and Kovar (registered trademark).
  • the metal layer 6 has a frame shape that surrounds the light-emitting element 3.
  • the metal layer 6 is rectangular in shape, but is not limited to this shape.
  • the metal layer 6 may be configured, for example, in a circular shape so as to surround the light-emitting element 3.
  • the metal layer 6 includes three layers, which are, in order from the first principal surface 2a side, a base layer, an intermediate layer, and a surface layer.
  • metals used in the base layer include Cr, Ta, W, Ti, Mo, Ni, Pt, etc.
  • metals used in the intermediate layer include Ni, Pt, Pd, etc.
  • metals used in the surface layer include Au, Sn, Ag, Ni, Pt, etc.
  • the metal used in the metal layer 6 may be a single metal or an alloy.
  • Methods for forming the metal layer 6 on the first main surface 2a of the substrate 2 include, for example, film formation methods such as sputtering, vacuum deposition, ion-assisted or ion-plating vacuum deposition, and CVD.
  • the light-emitting element 3 is fixed to the first main surface 2a of the base 2.
  • the package 1 uses an ultraviolet irradiating LED as the light-emitting element 3, but the light-emitting element 3 according to the present invention is not limited to this embodiment, and an infrared LED or a visible light LED can also be used.
  • Figures 5 and 6 show the lid member 4 before it is bonded to the base 2.
  • the lid member 4 is manufactured by molding a portion of a plate glass.
  • the glass used for the lid member 4 is preferably non-alkali glass, borosilicate glass, aluminosilicate glass, quartz glass, or crystallized glass.
  • Non-alkali glass, borosilicate glass, or aluminosilicate glass can achieve both high transmittance and high workability during molding.
  • Quartz glass can have a significantly high transmittance in the ultraviolet range while maintaining workability during molding.
  • Crystallized glass can achieve both high transmittance and high breaking strength.
  • the glass when the glass is borosilicate glass, aluminosilicate glass, or alkali-free glass, the glass composition preferably contains, in mass %, SiO2 : 50-75%, Al2O3 : 1-25%, B2O3 : 1-30%, Li2O + Na2O + K2O : 0-20%, and MgO+CaO+SrO+BaO: 0-20%. Glasses whose composition falls within the above composition ranges fall under these glass types.
  • the glass composition preferably contains, in mass %, SiO2 : 60-80 % , Al2O3 : 3-30%, Li2O + Na2O + K2O : 1-20%, MgO+CaO+SrO+BaO: 5-20%, and is a low-thermal expansion crystallized glass in which ⁇ -quartz solid solution or ⁇ -spodumene precipitates as crystals from inside the glass.
  • low thermal expansion refers to a thermal expansion coefficient value of -10 ⁇ 10-7 to 20 ⁇ 10-7 /°C in the temperature range of 30 to 300°C.
  • the cover member 4 includes a plate-shaped frame portion 7, a dome-shaped protrusion portion 8 protruding from the frame portion 7, and a connecting portion 9 connecting the frame portion 7 and the protrusion portion 8.
  • the cover member 4 can also include a first anti-reflection film 10a and a second anti-reflection film 10b.
  • the frame portion 7 has, for example, a certain thickness, but is not limited to this embodiment.
  • the thickness of the frame portion 7 is, for example, 0.2 mm or more and 2 mm or less.
  • the frame portion 7 has a first main surface 7a and a second main surface 7b located opposite the first main surface 7a.
  • the surface roughness (arithmetic mean roughness) Ra of the first main surface 7a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the surface roughness Ra of the second main surface 7b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the protrusion 8 is for forming a storage space for the light-emitting element 3 together with the first main surface 2a of the base 2.
  • the protrusion 8 is formed at the center of the frame 7, but is not limited to this form.
  • the protrusion 8 has an inner surface 8a configured as a concave curved surface, an outer surface 8b configured as a convex curved surface, and an opening 8c formed on the inner surface 8a side.
  • the protrusion 8 also has a base 11, a midway portion 12, and a top 13.
  • the base 11 is configured integrally with the connecting portion 9.
  • the midway portion 12 is located between the base 11 and the top 13.
  • the base 11 is defined as a portion where a normal line (hereinafter referred to as a "first line”) L1 to the top 13 is drawn, and a straight line (hereinafter referred to as a "second line”) L2 drawn along the second main surface 7b of the frame 7 is drawn from an intersection P1 between the first line L1 and a straight line (hereinafter referred to as a "second line”) L2 that forms an angle of 5° with the second line L2, and where this third line L3 intersects with the protrusion 8.
  • first line a normal line
  • second line straight line
  • the portion where the third line L3 intersects with the inner surface 8a of the protrusion 8 is defined as a first base 11a, and the portion where the third line L3 intersects with the outer surface 8b of the protrusion 8 is defined as a second base 11b.
  • the midsection 12 is the portion where a straight line L7 (hereinafter referred to as the "seventh line") L7 that forms an angle of 60° with the second line L2 intersects with the protruding portion 8 when the seventh line L7 is drawn from the intersection P1 between the first line L1 and the second line L2.
  • a straight line L7 hereinafter referred to as the "seventh line” L7 that forms an angle of 60° with the second line L2 intersects with the protruding portion 8 when the seventh line L7 is drawn from the intersection P1 between the first line L1 and the second line L2.
  • the distance from the intersection point P2 between the first line L1 and the inner surface 8a of the protrusion 8 to the intersection point P1 is referred to as the protrusion height of the protrusion 8 and is indicated by the symbol H.
  • the protrusion height H of the protrusion 8 is, for example, 0.5 mm or more and 80 mm or less.
  • the outer diameter D of the protrusion 8 is the diameter of a circle made up of points at the position of the second base 11b, and is, for example, 2 mm or more and 150 mm or less. As shown in FIG. 5, the thickness of the protrusion 8 gradually decreases from the base 11 toward the top 13. Therefore, the thickness Tmin of the top 13 is thinner than the thickness Tmax of the base 11. Furthermore, the thickness Tmax of the top 13 is thinner than the thickness of the frame 7.
  • the thickness Tmax of the base 11 is, for example, 0.19 mm or more and 1.9 mm or less.
  • the thickness Tmin of the top 13 is, for example, 0.15 mm or more and 1 mm or less.
  • the ratio Tmin/Tmax of the thickness Tmax of the base 11 to the thickness Tmin of the top 13 is preferably 0.08 or more and 0.9 or less, more preferably 0.1 or more and 0.8 or less, and even more preferably 0.2 or more and 0.5 or less.
  • the protrusion 8 protrudes from the frame 7 at a predetermined protrusion angle ⁇ .
  • the protrusion angle ⁇ is defined as follows:
  • first reference point RP1 The intersection of the second line L2 and the inner surface 8a of the protrusion 8 is defined as the first reference point RP1.
  • first line L1 a straight line (hereinafter referred to as the "fourth line") L4 parallel to the second line L2 is drawn from point P3, which is at a height position half (H/2) of the protrusion height H, and the intersection of this fourth line L4 and the inner surface 8a of the protrusion 8 is defined as the second reference point RP2.
  • the protrusion angle ⁇ is preferably 40° or more, 45° or more, 50° or more, 60° or more, and preferably 90° or less, 85° or less, 80° or less.
  • the inner surface 8a and outer surface 8b of the protrusion 8 are configured as continuous curved surfaces from the base 11 to the top 13.
  • the surface roughness Ra of the inner surface 8a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the surface roughness Ra of the outer surface 8b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the opening 8c of the protrusion 8 is for inserting the light-emitting element 3 provided on the base 2 into the inside of the protrusion 8 when the cover member 4 is fixed to the base 2.
  • the opening 8c of the protrusion 8 is configured in a circular shape, but is not limited to this shape.
  • the opening length L of the opening 8c (the diameter of the opening 8c in this embodiment) is, for example, 1.5 mm or more and 80 mm or less.
  • the ratio L/H of the opening length L of the opening 8c to the protruding height H of the protruding portion 8 is preferably 1.6 or more, 2.1 or more, and preferably 5 or less, 3 or less.
  • the connecting portion 9 has a curved shape in order to connect the base 11 and the frame portion 7.
  • the connecting portion 9 has a first curved surface 9a that connects the first main surface 7a of the frame portion 7 and the inner surface 8a of the protruding portion 8, and a second curved surface 9b that connects the outer surface 8b of the protruding portion 8 and the second main surface 7b of the frame portion 7.
  • the radius of curvature of the first curved surface 9a is larger than the radius of curvature of the second curved surface 9b.
  • the radius of curvature of the first curved surface 9a is preferably 0.5 mm or more, 1 mm or more, and preferably 5 mm or less, 4 mm or less.
  • the radius of curvature of the second curved surface 9b is preferably 0.5 mm or more, 1.0 mm or more, and preferably 5 mm or less, 4 mm or less.
  • the surface roughness Ra of the first curved surface 9a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the surface roughness Ra of the second curved surface 9b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
  • the first antireflection film 10a is formed on the inner surface 8a of the protrusion 8 and the first main surface 7a of the frame portion 7.
  • the first antireflection film 10a preferably has a multilayer film structure including, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film alternately.
  • the portion 10a1 formed on the inner surface 8a of the protrusion 8 (hereinafter referred to as the "anti-reflection portion") is configured so that its thickness gradually decreases from the top 13 of the protrusion 8 toward the base 11.
  • the anti-reflection portion 10a1 is thickest at the portion formed at the top 13 and thinnest at the portion formed at the base 11.
  • the thickness of the first anti-reflection film 10a at the base 11 of the protrusion 8 is preferably 0.12 ⁇ m or more and 0.64 ⁇ m or less.
  • the thickness of the first anti-reflection film 10a at the midpoint 12 of the protrusion 8 is preferably 0.14 ⁇ m or more and 0.72 ⁇ m or less.
  • the thickness of the first anti-reflection film 10a at the top 13 of the protrusion 8 is preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less.
  • the portion (hereinafter referred to as the "buffer portion") 10a2 formed on the first main surface 7a of the frame portion 7 has a constant film thickness.
  • the buffer portion 10a2 also has the function of mitigating the stress acting on the frame portion 7 when the lid member 4 is bonded to the base body 2.
  • the second anti-reflection film 10b is formed on the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7.
  • the second anti-reflection film 10b preferably has a multilayer structure including, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film alternately.
  • the portion 10b1 formed on the outer surface 8b of the protrusion 8 (hereinafter referred to as the "anti-reflection portion") is configured so that its thickness gradually decreases from the top 13 toward the base 11.
  • the anti-reflection portion 10b1 is thickest at the portion formed at the top 13 and thinnest at the portion formed at the base 11.
  • the thickness of the second anti-reflection film 10b at the base 11 of the protrusion 8 is preferably 0.12 ⁇ m or more and 0.64 ⁇ m or less.
  • the thickness of the second anti-reflection film 10b at the midpoint 12 of the protrusion 8 is preferably 0.14 ⁇ m or more and 0.72 ⁇ m or less.
  • the thickness of the second anti-reflection film 10b at the top 13 of the protrusion 8 is preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less.
  • the lid member 4 may deteriorate due to the external environment, resulting in a decrease in the light extraction efficiency.
  • a SiO 2 film or an Al 2 O 3 film instead of forming the second antireflection film 10b on the lid member 4, it is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film. It is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film by laminating it on the second antireflection film 10b.
  • the buffer section 10a2 of the first anti-reflection film 10a has a metal layer 14 and a joint section 15 formed therein.
  • the Young's modulus of the buffer section 10a2 is preferably 250 GPa or less, more preferably 200 GPa or less, even more preferably 150 GPa or less, and particularly preferably 100 GPa or less.
  • the thermal expansion coefficient of the frame section 7 is smaller than that of the joint section 15.
  • the thermal expansion coefficient of the frame section 7 is also smaller than that of the base 2.
  • the thickness of the buffer section 10a2 is preferably 0.1 ⁇ m or more, 0.2 ⁇ m or more, and preferably 1.0 ⁇ m or less, 0.8 ⁇ m or less.
  • the metal layer 14 is formed so as to overlap the buffer section 10a2.
  • the metal layer 14 is formed on the surface of the buffer section 10a2 opposite to the surface of the buffer section 10a2 that contacts the first main surface 7a of the frame section 7.
  • the metal layer 14 has a rectangular frame shape so as to correspond to the shape of the metal layer 6 of the base body 2.
  • the shape of the metal layer 14 is not limited to this embodiment.
  • the metal layer 14 may have a circular shape or various other frame shapes.
  • the metal layer 14 includes three layers, which are, in order from the buffer section 10a2 side, a base layer, an intermediate layer, and a surface layer.
  • Metals used in the underlayer include, for example, Cr, Ta, W, Ti, Mo, Ni, Pt, etc. When Cr is used in the underlayer, the Young's modulus of the underlayer is preferably 279 GPa or less.
  • Metals used in the intermediate layer include, for example, Ni, Pt, Pd, etc.
  • Metals used in the surface layer include, for example, Au, Sn, Ag, Ni, Pt, etc.
  • the metal used in the metal layer 14 may be a single metal or an alloy.
  • the joint 15 is configured in a layered manner so as to overlap the metal layer 14. As shown in Figure 5, the joint 15 contacts a portion of the metal layer 14 opposite the portion in contact with the buffer section 10a2. As shown in Figure 6, the joint 15 has a rectangular frame shape so as to correspond to the shapes of the buffer section 10a2 and the metal layer 14. The shape of the joint 15 is not limited to this embodiment, and may be a circle or any other frame shape.
  • the joint 15 is made of a metal-based joint material.
  • Commercially available solder materials and brazing materials can be used as the metal-based joint material.
  • metal-based joint materials include Au-Sn alloys, Pb-Sn alloys, Au-Ge alloys, and Sn-Ni alloys.
  • the sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at the joint 15.
  • This method includes a preparation step for preparing the base body 2 and the lid member 4, and a joining step for joining the base body 2 and the lid member 4.
  • a metal layer 6 is formed on the first main surface 2a of the base 2, and then a light-emitting element 3 is mounted on this first main surface 2a.
  • the cover member 4 is formed by forming the protrusions 8 on the glass plate, and then the first anti-reflection film 10a is formed on the cover member 4. After that, the metal layer 14 and the bonding portion 15 are formed on the buffer portion 10a2 of the first anti-reflection film 10a. It is also possible to further increase the light extraction efficiency by forming a second anti-reflection film 10b on the cover member 4.
  • This process includes a molding process using heat and a film formation process using physical vapor deposition.
  • FIG. 7 shows the forming device used in the forming process.
  • the forming device 16 includes a support table 17 that supports the glass sheet GS, a heating source 18 that thermally deforms a part of the glass sheet GS to form the protrusion 8 of the cover member 4, and an external force generating device 19 that applies an external force to a part of the glass sheet GS.
  • the support base 17 has a fixing portion 20 that fixes the glass sheet GS, and a space portion 21 that allows thermal deformation of a portion of the glass sheet GS.
  • the support base 17 has an opening portion 17a surrounded by the fixing portion 20, and a suction portion 17b that sucks in a portion of the glass sheet GS.
  • materials that constitute the support base 17 include metals, ceramics, etc.
  • the fixed part 20 of the support base 17 has a support surface 20a that supports the glass sheet GS, and a suction part 20b that sucks the main surface of the glass sheet GS.
  • the support surface 20a is composed of a flat surface.
  • the suction part 20b of the fixed part 20 is formed so as to be exposed to a part of the support surface 20a.
  • the suction part 20b is connected to the external force generating device 19.
  • the space 21 of the support base 17 is formed inside a recess having a bottom.
  • the space 21 of the support base 17 is configured to mold the entire protrusion 8 of the lid member 4 in a non-contact state.
  • the opening 17a of the support base 17 has a circular opening edge in a plan view, but is not limited to this and may have an opening edge of a polygonal shape such as a triangle or a rectangle, or an elliptical shape.
  • the suction portion 17b of the support base 17 is formed at the bottom of the recess and communicates with the space 21.
  • This suction portion 17b is connected to the external force generating device 19 together with the suction portion 20b of the fixed portion 20.
  • the external force generating device 19 can perform suction by this suction portion 17b and suction by the suction portion 20b of the fixed portion 20 using a common suction device.
  • a lower support jig for supporting the glass sheet GS may be provided in the space 21.
  • the lower support jig is made of metal or ceramics.
  • the heating source 18 is disposed above the support stand 17.
  • the heating source 18 is a burner that sprays a flame FL toward the glass sheet GS.
  • the heating method of the heating source 18 may be, for example, resistance heating, laser heating, or heating using superheated steam.
  • superheated steam means high-temperature steam obtained by further heating saturated steam generated by boiling water.
  • the heating source 18 may also be configured by combining heating sources of different heating methods.
  • a suction device exhaust device
  • the suction device creates a negative pressure in the space 21 of the support base 17 by discharging the gas present in the space 21 of the support base 17. This causes a part of the glass sheet GS to be sucked into the space 21 of the support base 17, thereby promoting thermal deformation of a part of the glass sheet GS.
  • a pump using a Venturi mechanism is suitable as the suction device.
  • the sheet glass GS is placed on the fixed portion 20 of the support table 17 with the external force generating device 19 stopped.
  • the external force generating device 19 is started and the sheet glass GS is fixed to the fixed portion 20.
  • suction by the suction portion 17b of the support table 17 and suction by the suction portion 20b of the fixed portion 20 can be performed simultaneously.
  • the suction direction D1 of the sheet glass GS by the suction portion 17b and the suction direction D2 of the sheet glass GS by the suction portion 20b of the fixed portion 20 can be the same direction.
  • the plate glass GS is heated from above the support base 17 by the heating source 18. As shown in FIG. 8, a part of the plate glass GS is thermally deformed by suction from the suction part 17b, forming the protrusion 8. Furthermore, a part of the plate glass GS that was fixed to the fixing part 20 becomes the frame part 7 and constitutes the cover member 4. Note that, in the forming process, it is preferable to also heat this frame part 7 in order to suppress warping of the frame part 7.
  • the film-forming process includes a first film-forming process in which anti-reflective films 10a, 10b are formed on the lid member 4, and a second film-forming process in which a metal layer 14 is formed on the frame portion 7 of the lid member 4 after the first film-forming process.
  • FIGS. 9 and 10 show a film formation apparatus used in the film formation process.
  • a sputtering apparatus such as a magnetron sputtering apparatus is shown as an example of the film formation apparatus, but the present invention is not limited to this configuration, and a film formation apparatus that performs other physical vapor deposition methods such as vacuum deposition may also be used.
  • the film forming apparatus 22 includes a vacuum chamber 23 and targets 24a to 24c that scatter particles that will become the film forming material for the anti-reflection films 10a and 10b.
  • the vacuum chamber 23 contains the targets 24a to 24c inside.
  • the internal space of the vacuum chamber 23 is set to a predetermined degree of vacuum by a vacuum pump.
  • An inert gas such as argon gas can be supplied into the vacuum chamber 23.
  • Target 24a-24c includes a first target 24a that forms a first anti-reflection coating 10a on the lid member 4, a second target 24b that forms a second anti-reflection coating 10b on the lid member 4, and a third target 24c that forms a metal layer 14 on the frame portion 7 of the lid member 4.
  • the first target 24a and the second target 24b include a plurality of targets for forming the first film (SiO 2 ) and the second film (HfO 2 ) in the first antireflection coating 10a and the second antireflection coating 10b.
  • the lid member 4 is housed in a vacuum chamber 23. Then, particles scattered from the first target 24a are caused to adhere to the inner surface 8a of the protruding portion 8 of the lid member 4 and the first main surface 7a of the frame portion 7, thereby forming a first anti-reflection film 10a. Similarly, particles scattered from the second target 24b are caused to adhere to the outer surface 8b of the protruding portion 8 of the lid member 4 and the second main surface 7b of the frame portion 7, thereby forming a second anti-reflection film 10b.
  • the amount of particles adhering to the protruding portion 8 of the lid member 4 is greatest at the top 13 and least at the base 11.
  • the difference in the amount of particles adhering to the protruding portion 8 is due to the effect of the protruding angle ⁇ of the protruding portion 8.
  • a masking member 25 is attached to the glass plate GS in order to form a metal layer 14 at a predetermined position on the frame 7.
  • the masking member 25 has an opening 25a that allows particles scattered from the third target 24c to pass through and adhere to the frame 7.
  • a metal layer 14 is formed so as to overlap the buffer portion 10a2 of the first anti-reflection film 10a. Specifically, as shown in FIG. 10, particles scattered from the third target 24c are allowed to adhere to the first main surface 7a via the buffer portion 10a2 of the frame portion 7 through the opening 25a. This forms a frame-shaped metal layer 14 with a certain thickness.
  • Figures 11 and 12 are intended to compare the state in which the masking member 25 is attached to the lid member 4.
  • Figure 11 shows a lid member 4 as an example in which the glass sheet GS is molded while fixed to the fixing portion 20 of the support base 17 during the molding process.
  • Figure 12 shows a lid member 4a as a comparative example in which the glass sheet GS is molded without being fixed to the fixing portion 20.
  • the opening 25a of the masking member 25 is entirely blocked by the first main surface 7a of the frame 7. This allows a metal layer 14 of uniform thickness to be stably formed on the first main surface 7a of the frame 7.
  • the joint 15 is formed so as to overlap the metal layer 14.
  • the joint 15 is formed by a process (application process) in which, for example, a paste-like metal-based bonding material is applied so as to overlap the metal layer 14.
  • a process application process
  • Specific examples of the application process include a printing method using a mask (screen printing method) and an application method using a dispenser.
  • the bonding portion 15 may be formed by any method other than the above, for example by arranging a molded body of a metal-based bonding material formed in advance into a predetermined frame shape so that it overlaps the metal layer 14 on the first main surface 7a of the frame portion 7.
  • the heat treatment process includes a heating process and a cooling process.
  • the lid member 4 is heated using a heating device such as a reflow furnace, thereby melting the metal-based bonding material.
  • the heating process may be carried out, for example, with the furnace filled with nitrogen.
  • the lid member 4 is heated to a temperature of 300°C or higher.
  • the metal-based bonding material melted on the first main surface 7a of the frame 7 is solidified by cooling.
  • the cooling process is preferably performed slowly at a cooling rate of 50°C/min.
  • stress is generated in the cover member 4 due to the difference in thermal expansion coefficient between the frame 7 and the bonding portion 15, but the buffer portion 10a2 of the first anti-reflection film 10a can relieve this stress.
  • the lid member 4 manufactured through the preparation process is laid on the base body 2. Specifically, the first main surface 7a of the frame portion 7 of the lid member 4 is placed opposite the base body 2, and the joining portion 15 is brought into contact with the metal layer 6 formed on the first main surface 2a of the base body 2.
  • the pressing member 26 is placed on the frame portion 7 of the cover member 4.
  • the pressing member 26 has a weight 26a and a support member 26b that supports the weight 26a.
  • the weight 26a and the support member 26b are made of, for example, metal or ceramic.
  • the support member 26b has a first support portion 26b1 that supports the weight 26a, and a second support portion 26b2 that supports the first support portion 26b1.
  • the first support portion 26b1 has a support surface (upper surface) on which the weight 26a is placed.
  • the second support portion 26b2 includes a plurality of rod-shaped members. The second support portion 26b2 protrudes downward from the lower surface of the first support portion 26b1.
  • the second support portion 26b2 has a contact portion 26b3 that contacts the frame portion 7 of the cover member 4.
  • the contact portion 26b3 is configured in a pointed shape.
  • the contact portion 26b3 contacts the second main surface 7b of the frame portion 7 via the second anti-reflection film 10b.
  • the pressing member 26 presses the lid member 4 while standing on its own on the lid member 4, as each contact portion 26b3 of the multiple second support portions 26b2 comes into contact with the frame portion 7. Pressing the lid member 4 with the pressing member 26 allows the joint portion 15 formed on the frame portion 7 of the lid member 4 to be tightly attached to the metal layer 6 formed on the first main surface 2a of the base 2.
  • the metal layer 6 and the joint 15 are heated while being pressed against each other (heating process). This causes the metal-based joint material of the joint 15 to melt.
  • the pointed contact portion 26b3 of the second support portion 26b2 comes into contact with the frame portion 7 of the cover member 4, so that the contact area between the contact portion 26b3 and the frame portion 7 can be made as small as possible. This makes it possible to minimize the transfer of heat from the frame portion 7 to the second support portion 26b2 of the pressing member 26.
  • the molten metal-based bonding material is cooled and solidified (cooling process).
  • stress is generated in the frame portion 7 due to the difference in thermal expansion coefficient between the base 2 and the frame portion 7 of the lid member 4.
  • the buffer portion 10a2 of the first anti-reflection film 10a deforms to relieve this stress. This makes it possible to reduce damage to the frame portion 7.
  • the sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at the joint 15. This completes the airtight package 1.
  • the frame portion 7 of the lid member 4 is sucked by the fixing portion 20 of the support base 17, thereby preventing warping of the frame portion 7.
  • the masking member 25 it is possible to prevent metal particles scattered from the third target 24c from adhering to the inner surface 8a of the protrusion 8.
  • the protrusion 8 of the lid member 4 has a thickness at the top 13 that is thinner than the base 11, while the anti-reflection films 10a, 10b are thicker at the top 13 and thinner at the base 11. Due to the above configuration of the protrusion 8, the light emitted from the light-emitting element 3 is relatively easy to transmit at the top 13 of the protrusion 8 and relatively difficult to transmit at the base 11. That is, in this embodiment, the anti-reflection films 10a, 10b are thicker in the areas where light is relatively easy to transmit, and thinner in the areas where light is relatively difficult to transmit.
  • the anti-reflective films 10a and 10b absorb a small amount of light that passes through them.
  • FIG. 15 shows an example of a glass substrate for manufacturing the lid member 4.
  • the glass substrate G includes a frame portion 7 and multiple protrusions 8 protruding from the frame portion 7.
  • the glass substrate G can also include anti-reflection films 10a, 10b.
  • Each protrusion 8 has the same configuration as the protrusion 8 of the lid member 4 described above.
  • Each protrusion 8 is formed by thermally deforming multiple locations of a large glass sheet GS using the molding device 16 described above. By cutting this glass substrate G along the cutting line CL, multiple lid members having the protrusions 8, frame portion 7, and anti-reflection films 10a, 10b can be efficiently manufactured.
  • a metal layer 14 and a bonding portion 15 may be formed on the first anti-reflection film 10a.
  • FIG 16 shows another example of a lid member.
  • the lid member 4 comprises a frame portion 7 and multiple protrusions 8 protruding from the frame portion 7.
  • the lid member 4 can also comprise anti-reflection films 10a, 10b, a metal layer 14, and a bonding portion 15.
  • Each component of this lid member 4 has the same configuration as the lid member 4 described above ( Figure 5).
  • this lid member 4 can individually seal each light-emitting element 3 with the multiple protrusions 8.
  • Figure 17 shows another example of a lid member.
  • the inner surface 8a of the lid member 4 has a first curved surface 8a1 and a second curved surface 8a2 with different radii of curvature, and a boundary portion 8a3 located between the first curved surface 8a1 and the second curved surface 8a2.
  • the radius of curvature of the first curved surface 8a1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8a2 formed on the top 13 side of the protrusion 8.
  • the outer surface 8b of the cover member 4 has a first curved surface 8b1 and a second curved surface 8b2 with different radii of curvature, and a boundary portion 8b3 located between the first curved surface 8b1 and the second curved surface 8b2.
  • the radius of curvature of the first curved surface 8b1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8b2 formed on the top 13 side of the protrusion 8.
  • FIG. 18 is a plan view showing another example of a lid member.
  • the lid member 4 has a plurality of protrusions 8 arranged in multiple rows and columns and having a circular shape in a plan view.
  • the lid member 4 can also have anti-reflection films 10a, 10b (first anti-reflection film 10a is not shown), a metal layer 14 (not shown), and a joint 15 (not shown).
  • Figure 19 shows a support table of a forming device for manufacturing the lid member 4 shown in Figure 18.
  • the support table 17 can form multiple protrusions 8 on the glass sheet GS.
  • the support table 17 has multiple spaces 21, and openings 17a and suction sections 17b corresponding to each space 21.
  • the spaces 21, openings 17a and suction sections 17b are formed in multiple rows and columns in a plan view.
  • the fixing section 20 of the support table 17 has one support surface 20a and multiple suction sections 20b configured to surround each opening 17a.
  • the suction sections 20b of the fixing section 20 are formed in multiple rows and columns to correspond to the spaces 21.
  • the suction sections 20b are configured in a circular ring shape, but are not limited to this and may be configured in other shapes.
  • FIG. 20 is a plan view showing another example of a lid member.
  • the lid member 4 has a plurality of protrusions 8 configured in a rectangular shape when viewed from above.
  • a scribe line is made on the smooth surface between adjacent protrusions 8, and the lid member 4 is broken along the scribe line, or diced by a blade dicing method or a laser ablation method, thereby obtaining a plurality of lid members, and a lid member of any shape can be obtained.
  • FIG. 21 is a bottom view showing another example of a lid member.
  • the lid member 4 has a protrusion 8 configured in a rectangular shape in a plan view, similar to the example shown in FIG. 20.
  • the opening 8c of the protrusion 8 is configured in a rectangular shape (e.g., a square shape).
  • the opening length L corresponds to the length of one side of the square.
  • the opening length L corresponds to the length of the long side of the rectangle.
  • Fig. 22 shows another example of a package.
  • the package 1 comprises a base 2 on which multiple light-emitting elements 3 are mounted, and the lid member 4 illustrated in Fig. 16.
  • This lid member 4 individually seals each light-emitting element 3 mounted on the base 2 with multiple protrusions 8 and sealing portions 5.
  • Figure 23 shows another example of a lid member.
  • the inner surface 8a of the lid member 4 has a first curved surface 8a1 that is convex toward the inside of the protruding portion 8, a second curved surface 8a2 that is convex toward the outside of the protruding portion 8, and an inflection point 8a3 located between the first curved surface 8a1 and the second curved surface 8a2.
  • the first curved surface 8a1 is formed at a position closer to the base 11 of the protruding portion 8 than the second curved surface 8a2.
  • the center of curvature of the first curved surface 8a1 is located on the outside of the protruding portion 8.
  • the second curved surface 8a2 is formed at a position closer to the apex 13 than the first curved surface 8a1.
  • the center of curvature of the second curved surface 8a2 is located on the inside of the protruding portion 8.
  • the outer surface 8b of the cover member 4 has a first curved surface 8b1 that is convex toward the inside of the protruding portion 8, a second curved surface 8b2 that is convex toward the outside of the protruding portion 8, and an inflection point 8b3 located between the first curved surface 8b1 and the second curved surface 8b2.
  • the first curved surface 8b1 is formed at a position closer to the base 11 of the protruding portion 8 than the second curved surface 8b2.
  • the center of curvature of the first curved surface 8b1 is located outside the protruding portion 8.
  • the second curved surface 8b2 is formed at a position closer to the top 13 of the protruding portion 8 than the first curved surface 8b1.
  • the center of curvature of the second curved surface 8b2 is located inside the protruding portion 8.
  • the inflection points 8a3 and 8b3 are provided above (towards the top 13) the second main surface 7b of the frame portion
  • the inflection points 8a3, 8b3 on the inner surface 8a and the outer surface 8b can be formed in the cover member 4 by the molding device and molding method shown in Figures 7 and 8. If the inflection points 8a3, 8b3 are formed in the protrusion 8, the protrusion angle ⁇ of the protrusion 8 may become small in the molding process, and the light extraction efficiency may decrease. In the present invention, it is desirable to sufficiently heat the glass sheet GS by the heating source 18 of the molding device 16 (see Figure 7) so that the protrusion angle ⁇ of the protrusion 8 can be ensured to be large.
  • the light extraction efficiency of the cover member 4 can be improved by setting the protrusion angle ⁇ to 40° or more and 90° or less.
  • the protrusion angle ⁇ is preferably 45° or more, 50° or more, 55° or more, 60° or more, 65° or more, and 70° or more, in that order.
  • the protrusion angle ⁇ is preferably less than 90°, and more preferably 85° or less.
  • the definition of the protrusion angle ⁇ differs from that of the embodiment in FIG. 5.
  • the protrusion angle ⁇ is the angle (acute angle) between the tangent L8 at the inflection point 8a3 and the first main surface 7a of the frame portion 7.
  • the protrusion angle ⁇ is the angle (acute angle) between the tangent L8 at the inflection point 8a3 and a sixth line L6 drawn along the first main surface 7a of the frame portion 7.
  • the opening length L and protrusion height H of the opening 8c are the same as those in the embodiment shown in FIG. 5.
  • the anti-reflection films (10a, 10b) are not necessarily required, but it is preferable to provide the anti-reflection films (10a, 10b), and the preferred material and thickness of the anti-reflection films (10a, 10b) are the same as in the embodiment shown in FIG. 5.
  • the preferred thickness of the protrusion 8 thickness of the base 11, thickness of the top 13
  • outer diameter are the same as in the embodiment shown in FIG. 5.
  • the shape of the lid member is different from that of the above embodiment.
  • the top 13 of the lid member 4 is configured in a flat plate shape.
  • the flat top 13 on the lid member 4 it is possible to form anti-reflection films 10a, 10b of uniform thickness on the inner surface 8a and the outer surface 8b of the lid member 4 related to the top 13.
  • the flat top 13 on the lid member 4 it is possible to make the distance Da between the top 13 and the light-emitting element 3 as small as possible. In addition, it becomes easier for the light emitted from the light-emitting element 3 to be perpendicularly incident on the flat top 13.
  • the light extraction efficiency of the lid member 4 can be significantly improved.
  • the light extraction efficiency can be calculated by measuring the energy EN1 of the light emitted from the light-emitting element 3 without passing through the lid member 4, measuring the energy EN2 when the light emitted from the light-emitting element 3 is transmitted through the lid member 4, and calculating the ratio of these energies (EN2/EN1).
  • the molding device 16 includes a support stand 17, a heating source 18, and an external force generating device 19.
  • the configurations of the heating source 18 and the external force generating device 19 are the same as those illustrated in Figure 7.
  • the support base 17 has a forming surface 27 that forms a portion of the sheet glass GS that is softened by heating.
  • the forming surface 27 is formed within the space 21 and is configured as a flat surface.
  • the other configurations of the support base 17 are the same as those shown in Figures 7 and 8.
  • the glass sheet GS is placed on the fixed portion 20 of the support base 17.
  • the external force generating device 19 is activated to fix the glass sheet GS to the fixed portion 20.
  • the glass sheet GS is heated by the heating source 18. This causes a part of the glass sheet GS to thermally deform.
  • a part of the deformed glass sheet GS comes into contact with the forming surface 27. This causes a part of the glass sheet GS to be formed into a flat plate shape.
  • This forming process forms a cover member 4 having a frame portion 7, a protruding portion 8 including a flat top portion 13, and a connecting portion 9.
  • the package can be manufactured by carrying out the film forming process and bonding process illustrated in Figures 9 to 11, 13, and 14 on this cover member 4.
  • this forming device 16 includes a support table 17, a first heating source 18a, and a second heating source 18b.
  • the first heating source 18a has the same configuration as the heating source 18 shown in FIG. 27.
  • the second heating source 18b is disposed inside the support table 17.
  • the support table 17 has a recess capable of accommodating the second heating source 18b. A portion of the second heating source 18b is exposed to the space 21 of the support table 17.
  • the second heating source 18b can locally apply high-temperature air to the glass sheet GS fixed to the support table 17. This allows the glass sheet GS supported by the support table 17 to be heated from the underside.
  • the second heating source 18b can promote the shaping of the protruding portion 8 (base portion 11 and mid-way portion 12) of the cover member 4 in the shaping process. This can effectively prevent warping of the frame portion 7 of the cover member 4 by increasing the protruding angle ⁇ of the protruding portion 8.
  • the second heating source 18b may be disposed above the support base 17.
  • the protruding portion 8 (base portion 11 and mid-way portion 12) of the glass sheet GS may be locally heated from above by the second heating source 18b.
  • the space 21 of the support base 17 includes a first space 21a formed above the molding surface 27, and a second space 21b formed between the molding surface 27 and the fixed part 20.
  • the first space 21a has the same configuration as the example shown in Figure 27.
  • the second space 21b is connected to a suction part 17c.
  • the suction part 17c is formed on the bottom surface of the support base 17, which separates the second space 21b, between the molding surface 27 and the fixed part 20.
  • the support base 17 is provided with four suction parts 17c, but the number of suction parts 17c is not limited to this embodiment.
  • the fixed part 20 of the support base 17 has a support surface 20a, a suction part 20b, and a recess 20c connected to the suction part 20b.
  • the recess 20c is configured as a groove formed to surround the space 21 of the support base 17 in a plan view. This groove has a rectangular frame shape.
  • the shape of the groove of the recess 20c in a plan view is not limited to this embodiment, and may be configured to be annular or other shapes.
  • the end (suction port) of the suction part 20b is connected to the bottom surface of the corner of the rectangular recess 20c.
  • the fixed part 20 of the support base 17 is provided with four suction parts 20b, but the number of suction parts 20b is not limited to this embodiment.
  • the recess 20c has a function of assisting the suction part 20b in sucking the glass sheet GS (auxiliary suction part).
  • the recess 20c may be omitted from the fixed portion 20 of the support base 17.
  • the position of the suction portion 20b formed on the fixed portion 20 may be changed.
  • the suction portions 20b may be provided at the midpoint of each side of the fixed portion 20 that is configured to have a rectangular shape in a plan view.
  • Figures 33 to 36 show another example of a method for manufacturing a lid member.
  • the support table 17 of the molding device 16 shown in Figure 33 does not have the suction portion 20b of the fixing portion 20 shown in Figure 7.
  • the other configuration of the support table 17 is the same as that shown in Figure 7.
  • the method for manufacturing the lid member 4 in this example includes a molding process, a processing process for processing the frame portion 7 of the lid member 4 after the molding process, and a film forming process that is performed after the processing process.
  • the plate glass GS placed on the fixed portion 20 of the support stand 17 is heated by the heating source 18 while a part (center portion) of the plate glass GS is sucked by the external force generator 19 and the suction portion 17b of the support stand 17.
  • the frame portion 7 of the cover member 4 formed in this way is not sucked by the suction portion 20b of the fixed portion 20 as in the example shown in FIG. 7, and therefore is warped away from the support surface 20a of the fixed portion 20 as shown in FIG. 33. If the film forming process is performed in this state, the first main surface 7a of the frame portion 7 cannot completely block the opening 25a of the masking member 25 as shown in FIG. 12.
  • a processing treatment is performed to flatten at least a part of the first main surface 7a so that the first main surface 7a of the frame portion 7 can close the opening 25a of the masking member 25.
  • a processing step in which a physical polishing treatment is performed on the first main surface 7a of the frame portion 7 is described.
  • Figures 34 and 35 show a polishing device used in the processing step.
  • the polishing device includes a polishing tool 28 and a pressing member 29 for pressing the cover member 4 against the polishing tool 28.
  • the polishing tool 28 for example, a polishing pad is used, but the form of the polishing tool 28 is not limited to this example.
  • the pressing member 29 includes a frame body 30 that houses the protruding portion 8 of the lid member 4, a buffer member 31 that is interposed between the frame portion 7 of the lid member 4 and the frame body 30, and a weight 32 that is placed on the frame body 30.
  • the frame body 30 is, for example, formed in a plate shape and has a hole 30a that penetrates in the thickness direction. A space (accommodation section) that accommodates the protrusion 8 of the lid member 4 is formed inside this hole 30a.
  • the hole 30a is configured to be larger than the protrusion 8. Therefore, the frame body 30 can accommodate the protrusion 8 inside without coming into contact with the protrusion 8.
  • the frame body 30 can press against the frame section 7 of the lid member 4 via the buffer member 31.
  • the cushioning member 31 is in contact with the second main surface 7b of the frame portion 7.
  • the cushioning member 31 is made of, for example, a contractible sponge-like resin, but the configuration of the cushioning member 31 is not limited to this example.
  • the weight 32 is placed on the top of the frame body 30. Multiple weights 32 may be placed on the top of the frame body 30.
  • the frame portion 7 of the cover member 4 is pressed toward the polishing tool 28 by a pressing member 29 while the first main surface 7a of the frame portion 7 of the cover member 4 is in contact with the polishing tool 28.
  • the polishing tool 28 is moved relative to the cover member 4, whereby the first main surface 7a of the frame portion 7 can be polished.
  • the polishing tool 28 forms a polished surface 7a1 on at least a portion of the first main surface 7a of the frame portion 7.
  • the surface roughness Ra of the polished surface 7a1 is preferably 0.1 nm or more and 1 nm or less.
  • the polished surface 7a1 can completely block the opening 25a of the masking member 25 used in the film formation process (second film formation process). This prevents the metal particles used to form the metal layer 14 from penetrating into the inside of the protruding portion 8 during the film formation process, and allows the metal layer 14 to be formed with a uniform thickness on the first main surface 7a of the frame portion 7.
  • the processing step can make the thickness of the frame 7 of the cover member 4 thinner than the thickness Tmax (see FIG. 5) of the base 11 of the protrusion 8. This makes it possible to heat the joint 15 effectively through the thin frame 7, for example, when the joint 15 is heated with a laser in the joining step.
  • the present invention is not limited to the configuration of the above embodiment, nor is it limited to the above-mentioned effects. Various modifications of the present invention are possible without departing from the gist of the present invention.
  • cover member 4 and the glass substrate G on which the first anti-reflection film 10a and the second anti-reflection film 10b are formed are shown, but the present invention is not limited to this configuration.
  • the cover member 4 and the glass substrate G according to the present invention may have only the first anti-reflection film 10a or only the second anti-reflection film 10b.
  • a cover member 4 having a protrusion 8 configured such that the thickness of the top 13 is thinner than the thickness of the base 11 is exemplified, but the present invention is not limited to this configuration. The present invention is also applicable to a cover member 4 having a protrusion 8 whose thickness is constant from the base 11 to the top 13.
  • the first main surface 7a of the frame portion 7 of the cover member 4 is processed by physical polishing, but the present invention is not limited to this configuration.
  • the first main surface 7a of the frame portion 7 may also be processed by a chemical polishing process using etching.

Abstract

This method for manufacturing a lid member comprises a forming step for forming a projecting part 8 of a lid member 4 by suctioning a portion of a plate glass GS in a state with the plate glass GS secured to a support stand 17. The support stand 17 comprises a fixing part 20 that secures a frame part 7 of the lid member 4. In the forming step, the fixing part 20 suctions the frame part 7 in the same direction as the direction the portion of the plate glass GS is suctioned.

Description

蓋部材及びその製造方法Lid member and manufacturing method thereof
 本発明は、パッケージ用の蓋部材及びこの蓋部材の製造方法に関する。 The present invention relates to a lid member for a package and a method for manufacturing the lid member.
 例えば特許文献1には、発光素子(LED素子)が実装される基体(基板)と、発光素子を覆うように基体に固定される蓋部材(透明体)とを備える気密パッケージが開示されている。 For example, Patent Document 1 discloses an airtight package that includes a base (substrate) on which a light-emitting element (LED element) is mounted, and a lid member (transparent body) that is fixed to the base so as to cover the light-emitting element.
 このパッケージにおける蓋部材は、板状の枠部(つば部)と枠部から突出するドーム状の突出部(凸条蓋部)とを備えている。 The lid member in this package has a plate-shaped frame portion (brim portion) and a dome-shaped protrusion portion (convex lid portion) that protrudes from the frame portion.
 基体には、金属層からなる第1の接合パターンが形成されている。蓋部材の枠部には、金属層からなる第2の接合パターンが形成されている。蓋部材は、第1の接合パターンと第2の接合パターンとの間をはんだで接合することで、基体に接合されている。これにより、基体と蓋部材の突出部との間に形成される発光素子の収容空間が気密に封止されている(同文献の請求項1参照)。 A first bonding pattern made of a metal layer is formed on the base. A second bonding pattern made of a metal layer is formed on the frame of the lid member. The lid member is joined to the base by joining the first bonding pattern and the second bonding pattern with solder. This hermetically seals the space for accommodating the light-emitting element formed between the base and the protruding portion of the lid member (see claim 1 in the same document).
 蓋部材の枠部に第2の接合パターンとしての金属層を形成する方法としては、例えば物理蒸着法による成膜処理が挙げられる。この方法では、成膜時に突出部の内部に金属粒子が浸入することを防止し、枠部のみに金属粒子が付着するように、マスキング部材を蓋部材に装着することが望ましい。 One method for forming a metal layer as the second bonding pattern on the frame of the lid member is, for example, a film formation process using physical vapor deposition. In this method, it is desirable to attach a masking member to the lid member so that metal particles are prevented from penetrating into the protrusion during film formation and so that the metal particles adhere only to the frame.
国際公開第2021/251102号International Publication No. 2021/251102
 蓋部材は、例えば平板状の板ガラスを加熱することにより成形される(成形工程)。成形工程では、板ガラスの一部を加熱して軟化させることで突出部を成形するとともに、突出部の周囲を囲むように残る板状の部分を枠部とする。 The cover member is formed, for example, by heating a flat glass plate (forming process). In the forming process, a portion of the glass plate is heated and softened to form a protrusion, and the remaining plate-like portion that surrounds the periphery of the protrusion becomes the frame.
 上記のように成形した蓋部材に金属層を形成すると、金属粒子が突出部の内部に浸入し、突出部の内面に付着する場合があった。金属粒子が突出部の内面に付着した状態では、蓋部材における光取り出し効率が低下してしまうため、好ましくない。 When a metal layer is formed on the lid member molded as described above, metal particles may penetrate into the inside of the protrusion and adhere to the inner surface of the protrusion. When metal particles adhere to the inner surface of the protrusion, the light extraction efficiency of the lid member decreases, which is undesirable.
 本発明は上記の事情に鑑みてなされたものであり、蓋部材に物理蒸着法によって金属層を形成する場合に、蓋部材の突出部の内面への金属粒子の付着を防止することを技術的課題とする。 The present invention was made in consideration of the above circumstances, and its technical objective is to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member when a metal layer is formed on the lid member by physical vapor deposition.
 (1) 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材を製造する方法であって、前記蓋部材は、板状の枠部と、前記枠部から突出する突出部とを備え、板ガラスを支持台に固定した状態で、前記板ガラスの一部を吸引することにより前記突出部を形成する成形工程を備え、前記支持台は、前記枠部を固定する固定部を備え、前記成形工程では、前記固定部は、前記板ガラスの前記一部を吸引する方向と同じ方向に前記枠部を吸引することを特徴とする。 (1) The present invention is intended to solve the above problems, and is a method for manufacturing a glass lid member used in a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, and a molding process for forming the protrusion by sucking a part of the glass plate while the glass plate is fixed to a support base, the support base having a fixing part for fixing the frame, and the fixing part sucking the frame in the same direction as the part of the glass plate in the molding process.
 本発明者の鋭意研究によれば、成形工程によって蓋部材の枠部に反りが発生し、枠部とマスキング部材との間に隙間が生じることにより、金属層を形成するための金属粒子が突出部に侵入していたことが判明した。本発明によれば、成形工程において、支持台の固定部によって枠部を吸引することで、枠部の反りを防止することができる。これにより、マスキング部材を枠部に好適に接触させることができる。したがって、蓋部材に物理蒸着法によって金属層を形成する場合に、蓋部材の突出部の内面への金属粒子の付着を防止することが可能となる。 The inventors' intensive research has revealed that the molding process causes warping of the frame of the lid member, which creates a gap between the frame and the masking member, allowing metal particles for forming the metal layer to penetrate into the protruding portion. According to the present invention, warping of the frame can be prevented by sucking the frame with the fixed portion of the support stand during the molding process. This allows the masking member to be in good contact with the frame. Therefore, when a metal layer is formed on the lid member by physical vapor deposition, it is possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member.
 (2) 上記(1)に記載の方法において、前記成形工程では、前記板ガラスの前記一部の吸引と、前記固定部による前記枠部の吸引とを、共通の吸引装置により行ってもよい。これにより、本方法を実施するための装置構成を簡素なものとすることができる。 (2) In the method according to (1) above, in the forming step, the suction of the portion of the glass sheet and the suction of the frame portion by the fixing portion may be performed by a common suction device. This can simplify the device configuration for carrying out this method.
 (3) 上記(1)又は(2)に記載の方法において、前記成形工程では、前記板ガラスの前記一部の吸引と、前記固定部による前記枠部の吸引とを同時に行ってもよい。これにより、成形工程を効率良く行うことができる。 (3) In the method according to (1) or (2) above, in the forming step, the suction of the portion of the glass sheet and the suction of the frame by the fixing part may be performed simultaneously. This allows the forming step to be performed efficiently.
 (4) 上記(1)から(3)のいずれかに記載の方法において、前記成形工程では、前記板ガラスを加熱することにより前記突出部と前記枠部とを成形してもよい。 (4) In the method according to any one of (1) to (3) above, in the forming step, the protrusion and the frame may be formed by heating the glass plate.
 (5) 上記(1)から(4)のいずれかに記載の方法において、前記支持台は、前記板ガラスに複数の前記突出部を形成するための複数の空間部を備え、前記複数の空間部は、複行複列に形成されており、前記固定部は、前記板ガラスを吸引する複数の吸引部を備え、前記複数の吸引部は、前記複数の空間部に対応するように、複行複列に形成されてもよい。 (5) In the method according to any one of (1) to (4) above, the support base may have a plurality of spaces for forming a plurality of the protrusions on the glass sheet, the plurality of spaces being arranged in multiple rows and columns, the fixing portion may have a plurality of suction portions for sucking the glass sheet, and the plurality of suction portions may be arranged in multiple rows and columns to correspond to the plurality of spaces.
 かかる構成によれば、板ガラスに対して複数の突出部を効率良く形成することができる。 This configuration allows multiple protrusions to be efficiently formed on the glass sheet.
 (6) 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材を製造する方法であって、前記蓋部材は、板状の枠部と、前記枠部から突出する突出部と、を備え、前記突出部は、内面及び外面を有し、前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、板ガラスを支持台に固定した状態で、前記板ガラスの一部を吸引することにより前記突出部を形成する成形工程と、前記成形工程後に前記枠部を加工する加工工程と、前記加工工程後に、物理蒸着法によって前記枠部に金属層を形成する成膜工程と、を備え、前記加工工程では、前記枠部の前記第一主面を平坦化する加工処理を行うことを特徴とする。 (6) The present invention is directed to solving the above problems, and is a method for manufacturing a glass lid member used in a package including a light-emitting element, the lid member comprising a plate-shaped frame portion and a protrusion portion protruding from the frame portion, the protrusion portion having an inner surface and an outer surface, the frame portion having a first main surface connected to the inner surface of the protrusion portion and a second main surface connected to the outer surface of the protrusion portion, the method comprising: a forming step of forming the protrusion portion by sucking a part of the glass plate while the glass plate is fixed to a support; a processing step of processing the frame portion after the forming step; and a film-forming step of forming a metal layer on the frame portion by physical vapor deposition after the processing step, the processing step being characterized in that a processing treatment is performed to flatten the first main surface of the frame portion.
 かかる構成によれば、成形工程によって枠部に反りが生じた場合であっても、加工工程によって枠部の第一主面を平坦化することで、第一主面との間に隙間が形成されることなく、マスキング部材をこの第一主面に接触させることが可能となる。 With this configuration, even if warping occurs in the frame portion due to the molding process, the first main surface of the frame portion can be flattened in the processing process, making it possible to bring the masking member into contact with this first main surface without forming a gap between the first main surface and the masking member.
 (7) 上記(6)の方法において、前記加工工程では、前記枠部の前記第一主面に対して物理的な研磨を施してもよい。 (7) In the method of (6) above, the processing step may involve physical polishing of the first main surface of the frame.
 (8) 上記(6)又は(7)に記載の方法において、前記加工工程は、押圧部材によって前記枠部を研磨具に押し付けるように構成され、前記押圧部材は、前記突出部を収容する収容部を備えていてもよい。かかる構成によれば、加工工程において、押圧部材が突出部に接触することを防止できる。 (8) In the method according to (6) or (7) above, the processing step may be configured to press the frame against the grinding tool with a pressing member, and the pressing member may have a housing portion for housing the protruding portion. With this configuration, it is possible to prevent the pressing member from coming into contact with the protruding portion during the processing step.
 (9) 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材であって、前記蓋部材は、板状の枠部と、前記枠部から突出する突出部とを備え、前記突出部は、内面及び外面を有し、前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面と、を有し、前記第一主面は、研磨面を有することを特徴とする。 (9) The present invention is directed to solving the above problems, and is a glass lid member used for a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, the protrusion having an inner surface and an outer surface, the frame having a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion, and the first main surface having a polished surface.
 かかる構成によれば、蓋部材の枠部の第一主面に研磨面を形成することで、研磨面に金属層を形成する際に、研磨面に対してマスキング部材を隙間なく接触させることができる。これにより、蓋部材に物理蒸着法によって金属層を形成する場合に、蓋部材の突出部の内面への金属粒子の付着を防止することができる。 With this configuration, by forming a polished surface on the first main surface of the frame of the lid member, when forming a metal layer on the polished surface, the masking member can be brought into contact with the polished surface without any gaps. This makes it possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member when forming a metal layer on the lid member by physical vapor deposition.
 (10) 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材であって、板状の枠部と、前記枠部から突出する突出部とを備え、前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、前記枠部は、前記基部よりも薄いことを特徴とする。 (10) The present invention is directed to solving the above problems, and is a glass lid member used for a package including a light-emitting element, the lid member having a plate-shaped frame and a protrusion protruding from the frame, the protrusion having a top and a base integrally formed with the frame, and the frame being thinner than the base.
 (11) 上記(10)に記載の蓋部材において、前記突出部は、頂部を有し、前記突出部の前記頂部は、前記枠部よりも薄くてもよい。これにより、パッケージに使用される蓋部材の光取り出し効率を向上させることができる。 (11) In the lid member described in (10) above, the protrusion may have a top, and the top of the protrusion may be thinner than the frame. This can improve the light extraction efficiency of the lid member used in the package.
 (12) 上記(10)に記載の蓋部材において、前記枠部は、前記突出部の前記頂部よりも厚くてもよい。 (12) In the cover member described in (10) above, the frame portion may be thicker than the top of the protrusion.
 本発明によれば、蓋部材に物理蒸着法によって金属層を形成する場合に、蓋部材の突出部の内面への金属粒子の付着を防止することができる。 According to the present invention, when a metal layer is formed on a lid member by physical vapor deposition, it is possible to prevent metal particles from adhering to the inner surface of the protruding portion of the lid member.
パッケージの斜視図である。FIG. パッケージの断面図である。FIG. 基体の断面図である。FIG. 基体の平面図である。FIG. 蓋部材の断面図である。FIG. 蓋部材の底面図である。FIG. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. パッケージの製造方法の成膜工程を示す断面図である。4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package. パッケージの製造方法の成膜工程を示す断面図である。4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package. パッケージの製造方法の成膜工程を示す断面図である。4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package. 蓋部材とマスキング部材との接触不良の状態を示す断面図である。11 is a cross-sectional view showing a state in which contact between the cover member and the masking member is poor. FIG. パッケージの製造方法の接合工程を示す断面図である。4A to 4C are cross-sectional views showing a bonding step in the method of manufacturing the package. パッケージの製造方法の接合工程を示す断面図である。4A to 4C are cross-sectional views showing a bonding step in the method of manufacturing the package. パッケージ用の蓋部材を製造するためのガラス基板を示す断面図である。1 is a cross-sectional view showing a glass substrate for manufacturing a lid member for a package. 蓋部材の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the cover member. 蓋部材の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the cover member. 蓋部材の他の例を示す平面図である。FIG. 11 is a plan view showing another example of the cover member. 図18に係る蓋部材を成形するための成形装置を示す平面図である。FIG. 19 is a plan view showing a molding device for molding the lid member shown in FIG. 18 . 蓋部材の他の例を示す平面図である。FIG. 11 is a plan view showing another example of the cover member. 蓋部材の他の例を示す底面図である。FIG. 11 is a bottom view showing another example of the lid member. パッケージの他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of a package. 蓋部材の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of the cover member. パッケージの他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of a package. 蓋部材の断面図である。FIG. 蓋部材の断面図である。FIG. パッケージの製造方法の準備工程に係る他の例を示す断面図である。11A and 11B are cross-sectional views showing another example of a preparation step in the method of manufacturing a package. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. 成形装置の平面図である。FIG. 成形装置の平面図である。FIG. パッケージの製造方法の準備工程に係る他の例を示す断面図である。11A and 11B are cross-sectional views showing another example of a preparation step in the method of manufacturing a package. パッケージの製造方法の準備工程を示す断面図である。4A to 4C are cross-sectional views showing a preparation step in the method of manufacturing the package. パッケージの製造方法の準備工程における加工工程を示す断面図である。1A to 1C are cross-sectional views showing a processing step in a preparation step of a method of manufacturing a package. パッケージの製造方法の成膜工程を示す断面図である。4A to 4C are cross-sectional views showing a film forming step in the method of manufacturing the package.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図15は、本発明に係る蓋部材を備えるパッケージ及びその製造方法の一実施形態を示す。 Below, an embodiment of the present invention will be described with reference to the drawings. Figures 1 to 15 show one embodiment of a package with a lid member according to the present invention and a method for manufacturing the package.
 図1及び図2に示すように、パッケージ1は、基体2と、基体2に支持される発光素子3と、基体2及び発光素子3を覆う蓋部材4と、基体2と蓋部材4とを気密に接合する封止部5と、を備える。 As shown in Figures 1 and 2, the package 1 includes a base 2, a light-emitting element 3 supported by the base 2, a lid member 4 that covers the base 2 and the light-emitting element 3, and a sealing portion 5 that hermetically bonds the base 2 and the lid member 4.
 図3及び図4は、蓋部材4が接合される前の基体2を示す。基体2は、発光素子3を支持する第一主面2aと、第一主面2aの反対側に位置する第二主面2bと、第一主面2aに形成される金属層6とを有する。 Figures 3 and 4 show the base 2 before the lid member 4 is bonded. The base 2 has a first main surface 2a that supports the light-emitting element 3, a second main surface 2b located on the opposite side of the first main surface 2a, and a metal layer 6 formed on the first main surface 2a.
 基体2の材質としては、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素等のセラミックス、これらセラミックスとガラス粉末が混合焼結されて成るガラスセラミックス、Fe-Ni-Co合金、Cu-W合金、Kovar(登録商標)等の合金等が挙げられる。 Examples of materials for the substrate 2 include ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride, glass ceramics made by mixing and sintering these ceramics with glass powder, and alloys such as Fe-Ni-Co alloys, Cu-W alloys, and Kovar (registered trademark).
 図4に示すように、金属層6は、発光素子3を囲む枠形状を有する。金属層6は、四角形状とされているが、この形状に限定されるものではない。金属層6は、例えば発光素子3を囲むように、円形状に構成されてもよい。 As shown in FIG. 4, the metal layer 6 has a frame shape that surrounds the light-emitting element 3. The metal layer 6 is rectangular in shape, but is not limited to this shape. The metal layer 6 may be configured, for example, in a circular shape so as to surround the light-emitting element 3.
 金属層6は、第一主面2a側から順に下地層、中間層、及び表層の三層を含む。下地層に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。中間層に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層6に用いられる金属は、単体であってもよいし、合金であってもよい。 The metal layer 6 includes three layers, which are, in order from the first principal surface 2a side, a base layer, an intermediate layer, and a surface layer. Examples of metals used in the base layer include Cr, Ta, W, Ti, Mo, Ni, Pt, etc. Examples of metals used in the intermediate layer include Ni, Pt, Pd, etc. Examples of metals used in the surface layer include Au, Sn, Ag, Ni, Pt, etc. The metal used in the metal layer 6 may be a single metal or an alloy.
 金属層6を基体2の第一主面2aに形成する方法としては、例えば、スパッタリング法、真空蒸着法、イオンアシスト又はイオンプレーティングを用いた真空蒸着法、及びCVD法等の成膜法が挙げられる。 Methods for forming the metal layer 6 on the first main surface 2a of the substrate 2 include, for example, film formation methods such as sputtering, vacuum deposition, ion-assisted or ion-plating vacuum deposition, and CVD.
 発光素子3は、基体2の第一主面2aに固定されている。本実施形態において、発光素子3として紫外線照射用LEDを用いたパッケージ1を例示するが、本発明に係る発光素子3は本実施形態に限定されるものではなく、赤外線LEDや可視光LEDを採用することができる。 The light-emitting element 3 is fixed to the first main surface 2a of the base 2. In this embodiment, the package 1 uses an ultraviolet irradiating LED as the light-emitting element 3, but the light-emitting element 3 according to the present invention is not limited to this embodiment, and an infrared LED or a visible light LED can also be used.
 図5及び図6は、基体2に接合される前の蓋部材4を示す。蓋部材4は、板ガラスの一部を成形することによって製造される。蓋部材4に使用されるガラスは、無アルカリガラス、ホウケイ酸ガラス、アルミノシリケートガラス、石英ガラス、結晶化ガラスが好ましい。無アルカリガラス、ホウケイ酸ガラス、アルミノシリケートガラスであれば、高い透過率と、成型時における高い加工性の両立が可能になる。また、石英ガラスであれば、成型時の加工性を維持しつつ、紫外域において、顕著に高い透過率を有することが可能になる。また、結晶化ガラスであれば、高い透過率と高い破壊強度の両立が可能になる。 Figures 5 and 6 show the lid member 4 before it is bonded to the base 2. The lid member 4 is manufactured by molding a portion of a plate glass. The glass used for the lid member 4 is preferably non-alkali glass, borosilicate glass, aluminosilicate glass, quartz glass, or crystallized glass. Non-alkali glass, borosilicate glass, or aluminosilicate glass can achieve both high transmittance and high workability during molding. Quartz glass can have a significantly high transmittance in the ultraviolet range while maintaining workability during molding. Crystallized glass can achieve both high transmittance and high breaking strength.
 ガラスが、ホウケイ酸ガラス、アルミノシリケートガラス、又は無アルカリガラスの場合、ガラス組成として、質量%で、SiO2:50~75%、Al23:1~25%、B23:1~30%、Li2O+Na2O+K2O:0~20%、MgO+CaO+SrO+BaO:0~20%を含有することが好ましい。ガラスの組成が上記の組成範囲内であれば、これらのガラス系に該当する。 When the glass is borosilicate glass, aluminosilicate glass, or alkali-free glass, the glass composition preferably contains, in mass %, SiO2 : 50-75%, Al2O3 : 1-25%, B2O3 : 1-30%, Li2O + Na2O + K2O : 0-20%, and MgO+CaO+SrO+BaO: 0-20%. Glasses whose composition falls within the above composition ranges fall under these glass types.
 結晶化ガラスの場合、ガラス組成として、質量%で、SiO2:60~80%、Al23:3~30%、Li2O+Na2O+K2O:1~20%、MgO+CaO+SrO+BaO:5~20%を含有し、β石英固溶体又はβスポジュメンがガラス内部から結晶として析出している低熱膨張結晶化ガラスであることが好ましい。ここで、低熱膨張とは、30~300℃の温度範囲において、熱膨張係数の値が、-10×10-7~20×10-7/℃であることを指す。 In the case of crystallized glass, the glass composition preferably contains, in mass %, SiO2 : 60-80 % , Al2O3 : 3-30%, Li2O + Na2O + K2O : 1-20%, MgO+CaO+SrO+BaO: 5-20%, and is a low-thermal expansion crystallized glass in which β-quartz solid solution or β-spodumene precipitates as crystals from inside the glass. Here, low thermal expansion refers to a thermal expansion coefficient value of -10× 10-7 to 20× 10-7 /°C in the temperature range of 30 to 300°C.
 図2及び図5に示すように、蓋部材4は、板状の枠部7と、枠部7から突出するドーム状の突出部8と、枠部7と突出部8とを連結する連結部9と、を備える。また、蓋部材4は、第一反射防止膜10a及び第二反射防止膜10bを備えることができる。 As shown in Figures 2 and 5, the cover member 4 includes a plate-shaped frame portion 7, a dome-shaped protrusion portion 8 protruding from the frame portion 7, and a connecting portion 9 connecting the frame portion 7 and the protrusion portion 8. The cover member 4 can also include a first anti-reflection film 10a and a second anti-reflection film 10b.
 枠部7は、例えば一定の厚さを有するが、この態様に限定されない。枠部7の厚さは、例えば0.2mm以上2mm以下である。枠部7は、第一主面7aと、第一主面7aの反対側に位置する第二主面7bとを有する。第一主面7aの表面粗さ(算術平均粗さ)Raは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。第二主面7bの表面粗さRaは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The frame portion 7 has, for example, a certain thickness, but is not limited to this embodiment. The thickness of the frame portion 7 is, for example, 0.2 mm or more and 2 mm or less. The frame portion 7 has a first main surface 7a and a second main surface 7b located opposite the first main surface 7a. The surface roughness (arithmetic mean roughness) Ra of the first main surface 7a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less. The surface roughness Ra of the second main surface 7b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
 突出部8は、基体2の第一主面2aとともに発光素子3の収容空間を形成するためのものである。突出部8は、枠部7の中央位置に形成されているが、この態様に限定されない。突出部8は、凹状の曲面として構成される内面8aと、凸状の曲面として構成される外面8bと、内面8a側に形成される開口部8cと、を有する。また、突出部8は、基部11と、中途部12と、頂部13と、を備える。基部11は、連結部9と一体に構成されている。中途部12は、基部11と頂部13との間に位置する。 The protrusion 8 is for forming a storage space for the light-emitting element 3 together with the first main surface 2a of the base 2. The protrusion 8 is formed at the center of the frame 7, but is not limited to this form. The protrusion 8 has an inner surface 8a configured as a concave curved surface, an outer surface 8b configured as a convex curved surface, and an opening 8c formed on the inner surface 8a side. The protrusion 8 also has a base 11, a midway portion 12, and a top 13. The base 11 is configured integrally with the connecting portion 9. The midway portion 12 is located between the base 11 and the top 13.
 なお、基部11とは、頂部13に対して法線(以下「第一線」という)L1を描き、この第一線L1と、枠部7の第二主面7bに沿うように描かれた直線(以下「第二線」という)L2との交点P1から、第二線L2に対して5°の角度を為す直線(以下「第三線」という)L3を描いたとき、この第三線L3が突出部8と交わる部分である。なお、第三線L3が、突出部8の内面8aと交わる部分を第一基部11aとし、突出部8の外面8bと交わる部分を第二基部11bとする。
The base 11 is defined as a portion where a normal line (hereinafter referred to as a "first line") L1 to the top 13 is drawn, and a straight line (hereinafter referred to as a "second line") L2 drawn along the second main surface 7b of the frame 7 is drawn from an intersection P1 between the first line L1 and a straight line (hereinafter referred to as a "second line") L2 that forms an angle of 5° with the second line L2, and where this third line L3 intersects with the protrusion 8. The portion where the third line L3 intersects with the inner surface 8a of the protrusion 8 is defined as a first base 11a, and the portion where the third line L3 intersects with the outer surface 8b of the protrusion 8 is defined as a second base 11b.
 また、中途部12は、第一線L1と第二線L2との交点P1から、第二線L2に対して60°の角度を為す直線(以下「第七線」という)L7を描いたとき、この第七線L7が突出部8と交わる部分である。 Furthermore, the midsection 12 is the portion where a straight line L7 (hereinafter referred to as the "seventh line") L7 that forms an angle of 60° with the second line L2 intersects with the protruding portion 8 when the seventh line L7 is drawn from the intersection P1 between the first line L1 and the second line L2.
 以下、第一線L1と突出部8の内面8aとの交点P2から上記の交点P1までの距離を突出部8の突出高さといい、符号Hで示す。突出部8の突出高さHは、例えば0.5mm以上80mm以下である。 Hereinafter, the distance from the intersection point P2 between the first line L1 and the inner surface 8a of the protrusion 8 to the intersection point P1 is referred to as the protrusion height of the protrusion 8 and is indicated by the symbol H. The protrusion height H of the protrusion 8 is, for example, 0.5 mm or more and 80 mm or less.
 突出部8の外径Dは、第二基部11bの位置にある点の集合円の直径であり、例えば2mm以上150mm以下である。図5に示すように、突出部8の厚さは、基部11から頂部13に向かうにつれて徐々に薄くなっている。このため、頂部13の厚さTminは、基部11の厚さTmaxよりも薄い。また、頂部13の厚さTmaxは、枠部7の厚さよりも薄い。 The outer diameter D of the protrusion 8 is the diameter of a circle made up of points at the position of the second base 11b, and is, for example, 2 mm or more and 150 mm or less. As shown in FIG. 5, the thickness of the protrusion 8 gradually decreases from the base 11 toward the top 13. Therefore, the thickness Tmin of the top 13 is thinner than the thickness Tmax of the base 11. Furthermore, the thickness Tmax of the top 13 is thinner than the thickness of the frame 7.
 基部11の厚さTmaxは、例えば0.19mm以上1.9mm以下である。頂部13の厚さTminは、例えば0.15mm以上1mm以下である。基部11の厚さTmaxと頂部13の厚さTminとの比Tmin/Tmaxは、好ましくは0.08以上0.9以下、より好ましくは0.1以上0.8以下、更に好ましくは0.2以上0.5以下である。 The thickness Tmax of the base 11 is, for example, 0.19 mm or more and 1.9 mm or less. The thickness Tmin of the top 13 is, for example, 0.15 mm or more and 1 mm or less. The ratio Tmin/Tmax of the thickness Tmax of the base 11 to the thickness Tmin of the top 13 is preferably 0.08 or more and 0.9 or less, more preferably 0.1 or more and 0.8 or less, and even more preferably 0.2 or more and 0.5 or less.
 図5に示すように、突出部8は、所定の突出角度θで枠部7から突出している。突出角度θは、以下のように定義される。 As shown in FIG. 5, the protrusion 8 protrudes from the frame 7 at a predetermined protrusion angle θ. The protrusion angle θ is defined as follows:
 第二線L2と突出部8の内面8aとの交点を第一基準点RP1とする。第一線L1において、突出高さHの半分(H/2)の高さ位置にある点P3から第二線L2に平行な直線(以下「第四線」という)L4を描き、この第四線L4と突出部8の内面8aとの交点を第二基準点RP2とする。第一基準点RP1と第二基準点RP2とを通る直線(以下「第五線」という)L5を描き、この第五線L5と、枠部7の第一主面7aに沿うように描かれた第六線L6とが為す角度(鋭角)を突出角度θとする。 The intersection of the second line L2 and the inner surface 8a of the protrusion 8 is defined as the first reference point RP1. On the first line L1, a straight line (hereinafter referred to as the "fourth line") L4 parallel to the second line L2 is drawn from point P3, which is at a height position half (H/2) of the protrusion height H, and the intersection of this fourth line L4 and the inner surface 8a of the protrusion 8 is defined as the second reference point RP2. A straight line (hereinafter referred to as the "fifth line") L5 passing through the first reference point RP1 and the second reference point RP2 is drawn, and the angle (acute angle) made by this fifth line L5 and a sixth line L6 drawn along the first main surface 7a of the frame portion 7 is defined as the protrusion angle θ.
 本実施形態において、突出角度θは、好ましくは40°以上、45°以上、50°以上、60°以上、好ましくは90°以下、85°以下、80°以下である。 In this embodiment, the protrusion angle θ is preferably 40° or more, 45° or more, 50° or more, 60° or more, and preferably 90° or less, 85° or less, 80° or less.
 突出部8の内面8a及び外面8bは、基部11から頂部13にわたって連続的な曲面として構成される。内面8aの表面粗さRaは、1nm以下であることが好ましく、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。外面8bの表面粗さRaは、1nm以下であることが好ましく、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The inner surface 8a and outer surface 8b of the protrusion 8 are configured as continuous curved surfaces from the base 11 to the top 13. The surface roughness Ra of the inner surface 8a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less. The surface roughness Ra of the outer surface 8b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
 突出部8の開口部8cは、蓋部材4を基体2に固定する際に、基体2上に設けられた発光素子3を突出部8の内側に入れるためのものである。図6に示すように、突出部8の開口部8cは円形状に構成されるが、この形状に限定されない。 The opening 8c of the protrusion 8 is for inserting the light-emitting element 3 provided on the base 2 into the inside of the protrusion 8 when the cover member 4 is fixed to the base 2. As shown in FIG. 6, the opening 8c of the protrusion 8 is configured in a circular shape, but is not limited to this shape.
 開口部8cの開口長さL(本実施形態では開口部8cの直径)は、例えば1.5mm以上80mm以下である。開口部8cの開口長さLと、突出部8の突出高さHとの比L/Hは、好ましくは1.6以上、2.1以上であり、好ましくは5以下、3以下である。 The opening length L of the opening 8c (the diameter of the opening 8c in this embodiment) is, for example, 1.5 mm or more and 80 mm or less. The ratio L/H of the opening length L of the opening 8c to the protruding height H of the protruding portion 8 is preferably 1.6 or more, 2.1 or more, and preferably 5 or less, 3 or less.
 図2及び図5に示すように、連結部9は、基部11と枠部7とを連結するために、湾曲形状を有する。連結部9は、枠部7の第一主面7aと突出部8の内面8aとを繋ぐ第一曲面9aと、突出部8の外面8bと枠部7の第二主面7bとを繋ぐ第二曲面9bとを有する。 As shown in Figures 2 and 5, the connecting portion 9 has a curved shape in order to connect the base 11 and the frame portion 7. The connecting portion 9 has a first curved surface 9a that connects the first main surface 7a of the frame portion 7 and the inner surface 8a of the protruding portion 8, and a second curved surface 9b that connects the outer surface 8b of the protruding portion 8 and the second main surface 7b of the frame portion 7.
 第一曲面9aの曲率半径は、第二曲面9bの曲率半径よりも大きい。第一曲面9aの曲率半径は、好ましくは0.5mm以上、1mm以上であり、好ましくは5mm以下、4mm以下である。第二曲面9bの曲率半径は、好ましくは0.5mm以上、1.0mm以上であり、好ましくは5mm以下、4mm以下である。第一曲面9aの表面粗さRaは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。第二曲面9bの表面粗さRaは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The radius of curvature of the first curved surface 9a is larger than the radius of curvature of the second curved surface 9b. The radius of curvature of the first curved surface 9a is preferably 0.5 mm or more, 1 mm or more, and preferably 5 mm or less, 4 mm or less. The radius of curvature of the second curved surface 9b is preferably 0.5 mm or more, 1.0 mm or more, and preferably 5 mm or less, 4 mm or less. The surface roughness Ra of the first curved surface 9a is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less. The surface roughness Ra of the second curved surface 9b is preferably 1 nm or less, more preferably 0.5 nm or less, and even more preferably 0.3 nm or less.
 第一反射防止膜10aは、突出部8の内面8a及び枠部7の第一主面7aに形成されている。第一反射防止膜10aは、例えば第一の膜としての酸化シリコン膜(SiO2)と、第二の膜としての酸化ハフニウム膜(HfO2)とを交互に含む多層膜構造を有することが好ましい。 The first antireflection film 10a is formed on the inner surface 8a of the protrusion 8 and the first main surface 7a of the frame portion 7. The first antireflection film 10a preferably has a multilayer film structure including, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film alternately.
 第一反射防止膜10aにおいて、突出部8の内面8aに形成される部分(以下「反射防止部」という)10a1は、突出部8の頂部13から基部11に向かうにつれて、膜厚が徐々に薄くなるように構成される。すなわち、反射防止部10a1は、頂部13に形成されている部分の厚さが最も厚く、基部11に形成されている部分の厚さが最も薄い。 In the first anti-reflection film 10a, the portion 10a1 formed on the inner surface 8a of the protrusion 8 (hereinafter referred to as the "anti-reflection portion") is configured so that its thickness gradually decreases from the top 13 of the protrusion 8 toward the base 11. In other words, the anti-reflection portion 10a1 is thickest at the portion formed at the top 13 and thinnest at the portion formed at the base 11.
 突出部8の基部11の位置における第一反射防止膜10aの厚さは、0.12μm以上0.64μm以下であることが好ましい。突出部8の中途部12の位置における第一反射防止膜10aの厚さは、0.14μm以上0.72μm以下であることが好ましい。突出部8の頂部13の位置における第一反射防止膜10aの厚さは、0.15μm以上0.8μm以下であることが好ましい。 The thickness of the first anti-reflection film 10a at the base 11 of the protrusion 8 is preferably 0.12 μm or more and 0.64 μm or less. The thickness of the first anti-reflection film 10a at the midpoint 12 of the protrusion 8 is preferably 0.14 μm or more and 0.72 μm or less. The thickness of the first anti-reflection film 10a at the top 13 of the protrusion 8 is preferably 0.15 μm or more and 0.8 μm or less.
 第一反射防止膜10aにおいて、枠部7の第一主面7aに形成される部分(以下「緩衝部」という)10a2は、一定の膜厚を有する。緩衝部10a2は、紫外線の反射を防止する機能の他、蓋部材4を基体2に接合する際に、枠部7に作用する応力を緩和する機能を有する。 In the first anti-reflection film 10a, the portion (hereinafter referred to as the "buffer portion") 10a2 formed on the first main surface 7a of the frame portion 7 has a constant film thickness. In addition to preventing reflection of ultraviolet rays, the buffer portion 10a2 also has the function of mitigating the stress acting on the frame portion 7 when the lid member 4 is bonded to the base body 2.
 第二反射防止膜10bは、突出部8の外面8b及び枠部7の第二主面7bに形成されている。第二反射防止膜10bは、例えば第一の膜としての酸化シリコン膜(SiO2)と、第二の膜としての酸化ハフニウム膜(HfO2)とを交互に含む多層膜構造を有することが好ましい。 The second anti-reflection film 10b is formed on the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7. The second anti-reflection film 10b preferably has a multilayer structure including, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film alternately.
 第二反射防止膜10bにおいて、突出部8の外面8bに形成される部分(以下「反射防止部」という)10b1は、頂部13から基部11に向かうにつれて、膜厚が徐々に薄くなるように構成される。すなわち、反射防止部10b1は、頂部13に形成されている部分の厚さが最も厚く、基部11に形成されている部分の厚さが最も薄い。 In the second anti-reflection film 10b, the portion 10b1 formed on the outer surface 8b of the protrusion 8 (hereinafter referred to as the "anti-reflection portion") is configured so that its thickness gradually decreases from the top 13 toward the base 11. In other words, the anti-reflection portion 10b1 is thickest at the portion formed at the top 13 and thinnest at the portion formed at the base 11.
 突出部8の基部11の位置における第二反射防止膜10bの厚さは、0.12μm以上0.64μm以下であることが好ましい。突出部8の中途部12の位置における第二反射防止膜10bの厚さは、0.14μm以上0.72μm以下であることが好ましい。突出部8の頂部13の位置における第二反射防止膜10bの厚さは、0.15μm以上0.8μm以下であることが好ましい。 The thickness of the second anti-reflection film 10b at the base 11 of the protrusion 8 is preferably 0.12 μm or more and 0.64 μm or less. The thickness of the second anti-reflection film 10b at the midpoint 12 of the protrusion 8 is preferably 0.14 μm or more and 0.72 μm or less. The thickness of the second anti-reflection film 10b at the top 13 of the protrusion 8 is preferably 0.15 μm or more and 0.8 μm or less.
 なお、光取り出し効率が十分である場合、第二反射防止膜10bを形成する必要はない。但し、ホウケイ酸ガラスなどの耐候性が弱いガラスを蓋部材に用いる場合、外部環境により蓋部材4が劣化し、結果として光取り出し効率が低下する虞がある。この場合、蓋部材4に第二反射防止膜10bを形成することに替え、耐候性を有する膜としてSiO2膜やAl23膜を形成することも可能である。また、第二反射防止膜10bに積層する形で、耐候性を有する膜であるSiO2膜やAl23膜を形成することも可能である。 In addition, if the light extraction efficiency is sufficient, there is no need to form the second antireflection film 10b. However, if a glass with poor weather resistance such as borosilicate glass is used for the lid member, the lid member 4 may deteriorate due to the external environment, resulting in a decrease in the light extraction efficiency. In this case, instead of forming the second antireflection film 10b on the lid member 4, it is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film. It is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film by laminating it on the second antireflection film 10b.
 図2、図5及び図6に示すように、第一反射防止膜10aの緩衝部10a2には、金属層14と、接合部15とが形成されている。緩衝部10a2のヤング率は、好ましくは250GPa以下、より好ましくは200GPa以下、更に好ましくは150GPa以下、特に好ましくは100GPa以下である。このように上限を規定すれば、緩衝部10a2の緩衝性を高めることができ、接合部15と蓋部材4(枠部7)の熱膨張係数の違いに起因する応力を緩和する効果を得られる。なお、枠部7の熱膨張係数は、接合部15の熱膨張係数よりも小さい。また、枠部7の熱膨張係数は、基体2の熱膨張係数よりも小さい。 As shown in Figures 2, 5 and 6, the buffer section 10a2 of the first anti-reflection film 10a has a metal layer 14 and a joint section 15 formed therein. The Young's modulus of the buffer section 10a2 is preferably 250 GPa or less, more preferably 200 GPa or less, even more preferably 150 GPa or less, and particularly preferably 100 GPa or less. By specifying the upper limit in this way, the buffering properties of the buffer section 10a2 can be improved, and the effect of alleviating stress caused by the difference in thermal expansion coefficient between the joint section 15 and the cover member 4 (frame section 7) can be obtained. The thermal expansion coefficient of the frame section 7 is smaller than that of the joint section 15. The thermal expansion coefficient of the frame section 7 is also smaller than that of the base 2.
 緩衝部10a2の厚さは、好ましくは0.1μm以上、0.2μm以上であり、好ましくは1.0μm以下、0.8μm以下である。このように下限を規定すれば、緩衝部10a2の緩衝性を更に高めることができ、接合部15と蓋部材4(枠部7)の熱膨張係数の違いに起因する応力を緩和する効果を得られる。また、このように上限を規定すれば、緩衝部10a2の製造コストを下げることができる。 The thickness of the buffer section 10a2 is preferably 0.1 μm or more, 0.2 μm or more, and preferably 1.0 μm or less, 0.8 μm or less. By specifying the lower limit in this way, the buffering properties of the buffer section 10a2 can be further improved, and the effect of alleviating the stress caused by the difference in the thermal expansion coefficient between the joint section 15 and the cover member 4 (frame section 7) can be obtained. Furthermore, by specifying the upper limit in this way, the manufacturing cost of the buffer section 10a2 can be reduced.
 図5及び図6に示すように、金属層14は、緩衝部10a2に重なるように形成されている。金属層14は、枠部7の第一主面7aに接触する緩衝部10a2の面とは反対側の緩衝部10a2の面に形成されている。図6に示すように、金属層14は、基体2の金属層6の形状に対応するように、四角形の枠形状を有する。金属層14の形状は本実施形態に限定されない。金属層14は、円形状その他の各種枠形状を有してもよい。金属層14は、緩衝部10a2側から順に、下地層、中間層、及び表層の三層を含む。 As shown in Figures 5 and 6, the metal layer 14 is formed so as to overlap the buffer section 10a2. The metal layer 14 is formed on the surface of the buffer section 10a2 opposite to the surface of the buffer section 10a2 that contacts the first main surface 7a of the frame section 7. As shown in Figure 6, the metal layer 14 has a rectangular frame shape so as to correspond to the shape of the metal layer 6 of the base body 2. The shape of the metal layer 14 is not limited to this embodiment. The metal layer 14 may have a circular shape or various other frame shapes. The metal layer 14 includes three layers, which are, in order from the buffer section 10a2 side, a base layer, an intermediate layer, and a surface layer.
 下地層に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。下地層にCrが用いられる場合、下地層のヤング率は、279GPa以下が好ましい。中間層に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層14に用いられる金属は、単体であってもよいし、合金であってもよい。 Metals used in the underlayer include, for example, Cr, Ta, W, Ti, Mo, Ni, Pt, etc. When Cr is used in the underlayer, the Young's modulus of the underlayer is preferably 279 GPa or less. Metals used in the intermediate layer include, for example, Ni, Pt, Pd, etc. Metals used in the surface layer include, for example, Au, Sn, Ag, Ni, Pt, etc. The metal used in the metal layer 14 may be a single metal or an alloy.
 図5及び図6に示すように、接合部15は、金属層14に重なるように層状に構成される。図5に示すように、接合部15は、金属層14において緩衝部10a2と接触している部位とは反対側の部位に接触している。図6に示すように、接合部15は、緩衝部10a2及び金属層14の形状に対応するように、四角形の枠形状を有する。接合部15の形状は本実施形態に限定されず、円形その他の各種枠形状であってもよい。 As shown in Figures 5 and 6, the joint 15 is configured in a layered manner so as to overlap the metal layer 14. As shown in Figure 5, the joint 15 contacts a portion of the metal layer 14 opposite the portion in contact with the buffer section 10a2. As shown in Figure 6, the joint 15 has a rectangular frame shape so as to correspond to the shapes of the buffer section 10a2 and the metal layer 14. The shape of the joint 15 is not limited to this embodiment, and may be a circle or any other frame shape.
 接合部15は、金属系接合材により構成される。金属系接合材としては、半田材やろう材として市販されるものを用いることができる。金属系接合材としては、例えば、Au-Sn合金、Pb-Sn合金、Au-Ge合金、Sn-Ni合金等が挙げられる。なお、接合部15の幅を緩衝部10a2の幅より狭くすることで、接合部15と蓋部材4の熱膨張係数の差による応力の影響を低減できる。本実施形態では、金属系接合材としてAu-Sn合金が使用される場合について説明する。 The joint 15 is made of a metal-based joint material. Commercially available solder materials and brazing materials can be used as the metal-based joint material. Examples of metal-based joint materials include Au-Sn alloys, Pb-Sn alloys, Au-Ge alloys, and Sn-Ni alloys. By making the width of the joint 15 narrower than the width of the buffer portion 10a2, the effect of stress due to the difference in thermal expansion coefficient between the joint 15 and the cover member 4 can be reduced. In this embodiment, a case where an Au-Sn alloy is used as the metal-based joint material will be described.
 封止部5は、基体2の金属層6と蓋部材4の金属層14とを接合部15で一体に接合することにより形成される。 The sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at the joint 15.
 次に、パッケージ1の製造方法について説明する。本方法は、基体2及び蓋部材4を用意する準備工程と、基体2と蓋部材4とを接合する接合工程と、を備える。 Next, we will explain the method for manufacturing the package 1. This method includes a preparation step for preparing the base body 2 and the lid member 4, and a joining step for joining the base body 2 and the lid member 4.
 準備工程では、基体2の第一主面2aに金属層6を形成した後に、この第一主面2aに発光素子3を搭載する。 In the preparation process, a metal layer 6 is formed on the first main surface 2a of the base 2, and then a light-emitting element 3 is mounted on this first main surface 2a.
 また、準備工程では、板ガラスに突出部8を成形することによって蓋部材4を形成した後に、蓋部材4に第一反射防止膜10aを形成する。その後、第一反射防止膜10aの緩衝部10a2に金属層14及び接合部15を形成する。なお、蓋部材4に第二反射防止膜10bを形成することで、さらに光取り出し効率を高めることも可能である。 In the preparation process, the cover member 4 is formed by forming the protrusions 8 on the glass plate, and then the first anti-reflection film 10a is formed on the cover member 4. After that, the metal layer 14 and the bonding portion 15 are formed on the buffer portion 10a2 of the first anti-reflection film 10a. It is also possible to further increase the light extraction efficiency by forming a second anti-reflection film 10b on the cover member 4.
 以下、蓋部材4を製造する工程について、図7乃至図12を参照しながら説明する。この工程は、加熱による成形工程と、物理蒸着法による成膜工程とを備える。 The process for manufacturing the cover member 4 will be described below with reference to Figures 7 to 12. This process includes a molding process using heat and a film formation process using physical vapor deposition.
 図7は、成形工程に使用される成形装置を示す。成形装置16は、板ガラスGSを支持する支持台17と、蓋部材4の突出部8を成形するために板ガラスGSの一部を熱変形させる加熱源18と、板ガラスGSの一部に外力を加えるための外力発生装置19と、を備える。 Figure 7 shows the forming device used in the forming process. The forming device 16 includes a support table 17 that supports the glass sheet GS, a heating source 18 that thermally deforms a part of the glass sheet GS to form the protrusion 8 of the cover member 4, and an external force generating device 19 that applies an external force to a part of the glass sheet GS.
 支持台17は、板ガラスGSを固定する固定部20と、板ガラスGSの一部の熱変形を許容する空間部21とを有する。この他、支持台17は、固定部20によって囲まれる開口部17aと、板ガラスGSの一部を吸引する吸引部17bとを有する。支持台17を構成する材料としては、例えば、金属、セラミックス等が挙げられる。 The support base 17 has a fixing portion 20 that fixes the glass sheet GS, and a space portion 21 that allows thermal deformation of a portion of the glass sheet GS. In addition, the support base 17 has an opening portion 17a surrounded by the fixing portion 20, and a suction portion 17b that sucks in a portion of the glass sheet GS. Examples of materials that constitute the support base 17 include metals, ceramics, etc.
 支持台17の固定部20は、板ガラスGSを支持する支持面20aと、板ガラスGSの主面を吸引する吸引部20bとを有する。支持面20aは、平坦面により構成される。固定部20の吸引部20bは、支持面20aの一部に露出するように形成されている。吸引部20bは、外力発生装置19に接続されている。 The fixed part 20 of the support base 17 has a support surface 20a that supports the glass sheet GS, and a suction part 20b that sucks the main surface of the glass sheet GS. The support surface 20a is composed of a flat surface. The suction part 20b of the fixed part 20 is formed so as to be exposed to a part of the support surface 20a. The suction part 20b is connected to the external force generating device 19.
 支持台17の空間部21は、底部を有する凹部の内側に形成されている。支持台17の空間部21は、蓋部材4の突出部8の全体を非接触の状態で成形するように構成されている。 The space 21 of the support base 17 is formed inside a recess having a bottom. The space 21 of the support base 17 is configured to mold the entire protrusion 8 of the lid member 4 in a non-contact state.
 支持台17の開口部17aは、平面視において円形状の開口縁を有するが、これに限らず、三角形状、四角形状等の多角形状、楕円形状等の形状の開口縁を有していてもよい。支持台17の吸引部17bは、凹部の底部に形成されるとともに、空間部21と連通している。この吸引部17bは、固定部20の吸引部20bとともに外力発生装置19に接続されている。すなわち、外力発生装置19は、この吸引部17bによる吸引と固定部20の吸引部20bによる吸引とを共通の吸引装置によって行うことができる。 The opening 17a of the support base 17 has a circular opening edge in a plan view, but is not limited to this and may have an opening edge of a polygonal shape such as a triangle or a rectangle, or an elliptical shape. The suction portion 17b of the support base 17 is formed at the bottom of the recess and communicates with the space 21. This suction portion 17b is connected to the external force generating device 19 together with the suction portion 20b of the fixed portion 20. In other words, the external force generating device 19 can perform suction by this suction portion 17b and suction by the suction portion 20b of the fixed portion 20 using a common suction device.
 上記の構成に限らず、蓋部材4の形状を精度良く成形するために、空間部21に、板ガラスGSを受ける下受け治具を設けてもよい。下受け治具は、金属やセラミックスから構成される。前述のように、蓋部材4の突出部8の全体を非接触の状態で成形することが好ましいが、板ガラスGSと接触する下受け治具の面の品位を高める(表面粗さ、面うねりを小さくする)ことで、下受け治具を使用した場合であっても、蓋部材4を精度良く成形することができる。 In addition to the above configuration, in order to precisely shape the cover member 4, a lower support jig for supporting the glass sheet GS may be provided in the space 21. The lower support jig is made of metal or ceramics. As mentioned above, it is preferable to form the entire protrusion 8 of the cover member 4 in a non-contact state, but by improving the quality of the surface of the lower support jig that comes into contact with the glass sheet GS (reducing surface roughness and surface waviness), the cover member 4 can be precisely formed even when a lower support jig is used.
 加熱源18は、支持台17の上方に配置される。本実施形態の加熱源18は、板ガラスGSに向けて火炎FLを噴射するバーナーである。バーナーを用いることで、板ガラスGSを比較的速やかに軟化させることができる。なお、加熱源18の加熱方式は、例えば、抵抗加熱、レーザ加熱、又は過熱蒸気を用いた加熱であってもよい。ここで、過熱蒸気とは、水を沸騰させて生成した飽和蒸気を更に加熱した高温の蒸気を意味する。また、加熱源18は、異なる加熱方式の加熱源を組み合わせて構成してもよい。 The heating source 18 is disposed above the support stand 17. In this embodiment, the heating source 18 is a burner that sprays a flame FL toward the glass sheet GS. By using a burner, the glass sheet GS can be softened relatively quickly. The heating method of the heating source 18 may be, for example, resistance heating, laser heating, or heating using superheated steam. Here, superheated steam means high-temperature steam obtained by further heating saturated steam generated by boiling water. The heating source 18 may also be configured by combining heating sources of different heating methods.
 外力発生装置19としては、例えば、吸引装置(排気装置)を用いることができる。吸引装置は、支持台17の空間部21内に存在する気体を排出することで、支持台17の空間部21内を負圧にする。これにより、板ガラスGSの一部が支持台17の空間部21内に吸引されることで、板ガラスGSの一部の熱変形を促進することができる。吸引装置としては、例えば、ベンチュリー機構を用いたポンプが好適である。 As the external force generating device 19, for example, a suction device (exhaust device) can be used. The suction device creates a negative pressure in the space 21 of the support base 17 by discharging the gas present in the space 21 of the support base 17. This causes a part of the glass sheet GS to be sucked into the space 21 of the support base 17, thereby promoting thermal deformation of a part of the glass sheet GS. As the suction device, for example, a pump using a Venturi mechanism is suitable.
 図7に示すように、成形工程では、外力発生装置19を停止した状態で、支持台17の固定部20に板ガラスGSを載置する。次に、外力発生装置19を起動し、固定部20に板ガラスGSを固定する。この成形工程では、支持台17の吸引部17bによる吸引と、固定部20の吸引部20bによる吸引とを同時に行うことができる。この場合において、吸引部17bによる板ガラスGSの吸引方向D1と、固定部20の吸引部20bによる板ガラスGSの吸引方向D2とを同じ方向とすることができる。 As shown in FIG. 7, in the forming process, the sheet glass GS is placed on the fixed portion 20 of the support table 17 with the external force generating device 19 stopped. Next, the external force generating device 19 is started and the sheet glass GS is fixed to the fixed portion 20. In this forming process, suction by the suction portion 17b of the support table 17 and suction by the suction portion 20b of the fixed portion 20 can be performed simultaneously. In this case, the suction direction D1 of the sheet glass GS by the suction portion 17b and the suction direction D2 of the sheet glass GS by the suction portion 20b of the fixed portion 20 can be the same direction.
 その後、加熱源18により支持台17の上方から板ガラスGSを加熱する。吸引部17bによる吸引によって、図8に示すように板ガラスGSの一部が熱変形することで、突出部8が成形される。また、固定部20に固定されていた板ガラスGSの一部は、枠部7となって蓋部材4を構成する。なお、成形工程では、枠部7の反りを抑制するために、この枠部7についても加熱することが好ましい。 Then, the plate glass GS is heated from above the support base 17 by the heating source 18. As shown in FIG. 8, a part of the plate glass GS is thermally deformed by suction from the suction part 17b, forming the protrusion 8. Furthermore, a part of the plate glass GS that was fixed to the fixing part 20 becomes the frame part 7 and constitutes the cover member 4. Note that, in the forming process, it is preferable to also heat this frame part 7 in order to suppress warping of the frame part 7.
 成形工程が終了すると、成膜工程が実行される。成膜工程は、蓋部材4に反射防止膜10a、10bを形成する第一成膜工程と、第一成膜工程後に、蓋部材4の枠部7に金属層14を形成する第二成膜工程と、を含む。 After the molding process is completed, the film-forming process is carried out. The film-forming process includes a first film-forming process in which anti-reflective films 10a, 10b are formed on the lid member 4, and a second film-forming process in which a metal layer 14 is formed on the frame portion 7 of the lid member 4 after the first film-forming process.
 図9及び図10は、成膜工程に使用される成膜装置を示す。本実施形態では、成膜装置として、例えばマグネトロンスパッタ装置等のスパッタ装置を例示するが、本発明はこの構成に限定されず、真空蒸着法等の他の物理蒸着法を行う成膜装置を使用してもよい。 FIGS. 9 and 10 show a film formation apparatus used in the film formation process. In this embodiment, a sputtering apparatus such as a magnetron sputtering apparatus is shown as an example of the film formation apparatus, but the present invention is not limited to this configuration, and a film formation apparatus that performs other physical vapor deposition methods such as vacuum deposition may also be used.
 図9及び図10に示すように、成膜装置22は、真空チャンバ23と、反射防止膜10a、10bの成膜材料となる粒子を飛散させるターゲット24a~24cと、を備える。 As shown in Figures 9 and 10, the film forming apparatus 22 includes a vacuum chamber 23 and targets 24a to 24c that scatter particles that will become the film forming material for the anti-reflection films 10a and 10b.
 真空チャンバ23は、ターゲット24a~24cをその内部に収容する。真空チャンバ23の内部空間は、真空ポンプにより所定の真空度に設定される。真空チャンバ23内には、アルゴンガス等の不活性ガスが供給され得る。 The vacuum chamber 23 contains the targets 24a to 24c inside. The internal space of the vacuum chamber 23 is set to a predetermined degree of vacuum by a vacuum pump. An inert gas such as argon gas can be supplied into the vacuum chamber 23.
 ターゲット24a~24cは、蓋部材4に第一反射防止膜10aを形成する第一ターゲット24aと、蓋部材4に第二反射防止膜10bを形成する第二ターゲット24bと、蓋部材4の枠部7に、金属層14を形成する第三ターゲット24cと、を含む。 Target 24a-24c includes a first target 24a that forms a first anti-reflection coating 10a on the lid member 4, a second target 24b that forms a second anti-reflection coating 10b on the lid member 4, and a third target 24c that forms a metal layer 14 on the frame portion 7 of the lid member 4.
 第一ターゲット24a及び第二ターゲット24bは、第一反射防止膜10a及び第二反射防止膜10bにおける第一の膜(SiO2)及び第二膜(HfO2)を形成するために、複数のターゲットを含む。 The first target 24a and the second target 24b include a plurality of targets for forming the first film (SiO 2 ) and the second film (HfO 2 ) in the first antireflection coating 10a and the second antireflection coating 10b.
 図9に示すように、第一成膜工程では、蓋部材4を真空チャンバ23に収容する。その後、第一ターゲット24aから飛散した粒子を、蓋部材4の突出部8の内面8a及び枠部7の第一主面7aに付着させることで、第一反射防止膜10aを形成する。同様に、第二ターゲット24bから飛散した粒子を、蓋部材4の突出部8の外面8b及び枠部7の第二主面7bに付着させることで、第二反射防止膜10bを形成する。 As shown in FIG. 9, in the first film formation process, the lid member 4 is housed in a vacuum chamber 23. Then, particles scattered from the first target 24a are caused to adhere to the inner surface 8a of the protruding portion 8 of the lid member 4 and the first main surface 7a of the frame portion 7, thereby forming a first anti-reflection film 10a. Similarly, particles scattered from the second target 24b are caused to adhere to the outer surface 8b of the protruding portion 8 of the lid member 4 and the second main surface 7b of the frame portion 7, thereby forming a second anti-reflection film 10b.
 蓋部材4の突出部8に付着する粒子の量は、頂部13の位置で最も多くなり、基部11の位置で最も少なくなる。このように、突出部8に付着する粒子の量が異なるのは、突出部8の突出角度θの影響によるものである。 The amount of particles adhering to the protruding portion 8 of the lid member 4 is greatest at the top 13 and least at the base 11. The difference in the amount of particles adhering to the protruding portion 8 is due to the effect of the protruding angle θ of the protruding portion 8.
 第二成膜工程において、枠部7の所定の位置に金属層14を形成するために、板ガラスGSにマスキング部材25を装着する。マスキング部材25は、第三ターゲット24cから飛散した粒子を通過させ、枠部7に付着させるための開口部25aを有する。 In the second deposition process, a masking member 25 is attached to the glass plate GS in order to form a metal layer 14 at a predetermined position on the frame 7. The masking member 25 has an opening 25a that allows particles scattered from the third target 24c to pass through and adhere to the frame 7.
 第二成膜工程では、第一成膜工程後に、第一反射防止膜10aの緩衝部10a2に重なるように、金属層14を形成する。具体的には、図10に示すように、第三ターゲット24cから飛散した粒子を、開口部25aを通じて枠部7の緩衝部10a2を介して第一主面7aに付着させる。これにより、一定の厚さを有する枠形状の金属層14が形成される。 In the second film formation process, after the first film formation process, a metal layer 14 is formed so as to overlap the buffer portion 10a2 of the first anti-reflection film 10a. Specifically, as shown in FIG. 10, particles scattered from the third target 24c are allowed to adhere to the first main surface 7a via the buffer portion 10a2 of the frame portion 7 through the opening 25a. This forms a frame-shaped metal layer 14 with a certain thickness.
 図11及び図12は、蓋部材4に対するマスキング部材25の装着状態を比較するためのものである。図11は、成形工程において板ガラスGSを支持台17の固定部20に固定した状態で成形した実施例としての蓋部材4を示す。図12は、板ガラスGSを固定部20に固定することなく成形した比較例としての蓋部材4aを示す。 Figures 11 and 12 are intended to compare the state in which the masking member 25 is attached to the lid member 4. Figure 11 shows a lid member 4 as an example in which the glass sheet GS is molded while fixed to the fixing portion 20 of the support base 17 during the molding process. Figure 12 shows a lid member 4a as a comparative example in which the glass sheet GS is molded without being fixed to the fixing portion 20.
 図11に示すように、本実施形態に係る成形工程を経た蓋部材4では、枠部7の第一主面7aによってマスキング部材25の開口部25aがその全範囲にわたって閉塞されている。これにより、枠部7の第一主面7aに、均一な厚さの金属層14を安定的に形成することができる。 As shown in FIG. 11, in the lid member 4 that has undergone the molding process according to this embodiment, the opening 25a of the masking member 25 is entirely blocked by the first main surface 7a of the frame 7. This allows a metal layer 14 of uniform thickness to be stably formed on the first main surface 7a of the frame 7.
 これに対し、支持台17の固定部20による吸引を利用することなく蓋部材4aを成形すると、枠部7に反りが発生する。枠部7に反りが生じると、図12に示すように、枠部7とマスキング部材25との間に隙間が生じ、マスキング部材25の開口部25aは、枠部7の第一主面7aによって閉塞されなくなる。このような状態で成膜工程を実施すると、第三ターゲット24cから飛散した金属粒子は、マスキング部材25の開口部25aを通過し、枠部7とマスキング部材25との間の隙間を通じて突出部8の内側に浸入する。この場合には、突出部8の内面8aに付着した金属粒子が蓋部材4における光取り出し効率を低下させる結果となる。 In contrast, when the lid member 4a is formed without using suction by the fixed portion 20 of the support base 17, warping occurs in the frame portion 7. When warping occurs in the frame portion 7, as shown in FIG. 12, a gap is formed between the frame portion 7 and the masking member 25, and the opening 25a of the masking member 25 is no longer blocked by the first main surface 7a of the frame portion 7. When the film formation process is performed in this state, metal particles scattered from the third target 24c pass through the opening 25a of the masking member 25 and penetrate into the inside of the protrusion 8 through the gap between the frame portion 7 and the masking member 25. In this case, the metal particles attached to the inner surface 8a of the protrusion 8 result in a decrease in the light extraction efficiency of the lid member 4.
 成膜工程が終了すると、金属層14に重なるように、接合部15を形成する。接合部15は、例えばペースト状の金属系接合材を金属層14に重ねるように塗布する工程(塗布工程)によって形成される。塗布工程の具体例としては、マスクを用いた印刷法(スクリーン印刷法)、ディスペンサを用いた塗布法等が挙げられる。 After the film formation process is completed, the joint 15 is formed so as to overlap the metal layer 14. The joint 15 is formed by a process (application process) in which, for example, a paste-like metal-based bonding material is applied so as to overlap the metal layer 14. Specific examples of the application process include a printing method using a mask (screen printing method) and an application method using a dispenser.
 接合部15は、上記の方法に限らず、例えば、予め所定の枠形状に形成した金属系接合材の成形体を、枠部7の第一主面7aの金属層14に重なるように配置することによって形成してもよい。 The bonding portion 15 may be formed by any method other than the above, for example by arranging a molded body of a metal-based bonding material formed in advance into a predetermined frame shape so that it overlaps the metal layer 14 on the first main surface 7a of the frame portion 7.
 接合部15に係る金属系接合材が枠部7の第一主面7aに塗布されると、この金属系接合材を第一主面7aの金属層14に固定するための熱処理工程が実行される。熱処理工程は、加熱工程と、冷却工程とを備える。 Once the metal-based bonding material for the joint 15 has been applied to the first main surface 7a of the frame 7, a heat treatment process is carried out to fix the metal-based bonding material to the metal layer 14 on the first main surface 7a. The heat treatment process includes a heating process and a cooling process.
 加熱工程では、蓋部材4をリフロー炉等の加熱装置を用いて加熱することで、金属系接合材を溶融させることができる。加熱工程は、例えば、炉内に窒素を充填した状態で実施してもよい。加熱工程において、蓋部材4は、300℃以上の温度に加熱される。 In the heating process, the lid member 4 is heated using a heating device such as a reflow furnace, thereby melting the metal-based bonding material. The heating process may be carried out, for example, with the furnace filled with nitrogen. In the heating process, the lid member 4 is heated to a temperature of 300°C or higher.
 冷却工程において、枠部7の第一主面7a上で溶融した金属系接合材は、冷却されることで固化する。冷却工程は、冷却速度50℃/分で徐冷することが好ましい。冷却工程において、枠部7と接合部15との熱膨張係数の差により、蓋部材4に応力が発生するが、第一反射防止膜10aの緩衝部10a2は、この応力を緩和することができる。 In the cooling process, the metal-based bonding material melted on the first main surface 7a of the frame 7 is solidified by cooling. The cooling process is preferably performed slowly at a cooling rate of 50°C/min. In the cooling process, stress is generated in the cover member 4 due to the difference in thermal expansion coefficient between the frame 7 and the bonding portion 15, but the buffer portion 10a2 of the first anti-reflection film 10a can relieve this stress.
 図13に示すように、接合工程では、準備工程を経て製造された蓋部材4が基体2に重ねられる。具体的には、蓋部材4の枠部7の第一主面7aを基体2に対向させ、接合部15を基体2の第一主面2aに形成されている金属層6に接触させる。 As shown in FIG. 13, in the joining process, the lid member 4 manufactured through the preparation process is laid on the base body 2. Specifically, the first main surface 7a of the frame portion 7 of the lid member 4 is placed opposite the base body 2, and the joining portion 15 is brought into contact with the metal layer 6 formed on the first main surface 2a of the base body 2.
 次に、図14に示すように、蓋部材4の枠部7に押圧部材26を載置する。押圧部材26は、錘26aと、錘26aを支持する支持部材26bとを有する。錘26a及び支持部材26bとしては、例えば金属製又はセラミック製のものが使用される。 Next, as shown in FIG. 14, the pressing member 26 is placed on the frame portion 7 of the cover member 4. The pressing member 26 has a weight 26a and a support member 26b that supports the weight 26a. The weight 26a and the support member 26b are made of, for example, metal or ceramic.
 支持部材26bは、錘26aを支持する第一支持部26b1と、第一支持部26b1を支持する第二支持部26b2とを有する。 The support member 26b has a first support portion 26b1 that supports the weight 26a, and a second support portion 26b2 that supports the first support portion 26b1.
 第一支持部26b1は、錘26aが載置される支持面(上面)を有する。第二支持部26b2は、複数の棒状部材を含む。第二支持部26b2は、第一支持部26b1の下面から下方に突出している。 The first support portion 26b1 has a support surface (upper surface) on which the weight 26a is placed. The second support portion 26b2 includes a plurality of rod-shaped members. The second support portion 26b2 protrudes downward from the lower surface of the first support portion 26b1.
 第二支持部26b2は、蓋部材4の枠部7に接触する接触部26b3を有する。接触部26b3は、尖端状に構成される。接触部26b3は、第二反射防止膜10bを介して枠部7の第二主面7bに接触する。 The second support portion 26b2 has a contact portion 26b3 that contacts the frame portion 7 of the cover member 4. The contact portion 26b3 is configured in a pointed shape. The contact portion 26b3 contacts the second main surface 7b of the frame portion 7 via the second anti-reflection film 10b.
 押圧部材26は、複数の第二支持部26b2の各接触部26b3が枠部7に接触することで、蓋部材4上で自立した状態でこの蓋部材4を押圧する。押圧部材26によって蓋部材4を押圧することで、蓋部材4の枠部7に形成されている接合部15と、基体2の第一主面2aに形成されている金属層6とを密着させることができる。 The pressing member 26 presses the lid member 4 while standing on its own on the lid member 4, as each contact portion 26b3 of the multiple second support portions 26b2 comes into contact with the frame portion 7. Pressing the lid member 4 with the pressing member 26 allows the joint portion 15 formed on the frame portion 7 of the lid member 4 to be tightly attached to the metal layer 6 formed on the first main surface 2a of the base 2.
 その後、金属層6と接合部15とを圧接させた状態で加熱する(加熱工程)。これにより、接合部15の金属系接合材が溶融した状態となる。なお、この加熱工程において、第二支持部26b2の尖端状の接触部26b3が蓋部材4の枠部7に接触することから、接触部26b3と枠部7との接触面積を可及的に小さくすることができる。これにより、枠部7から押圧部材26の第二支持部26b2への熱伝達を最小限に抑えることができる。 Then, the metal layer 6 and the joint 15 are heated while being pressed against each other (heating process). This causes the metal-based joint material of the joint 15 to melt. In this heating process, the pointed contact portion 26b3 of the second support portion 26b2 comes into contact with the frame portion 7 of the cover member 4, so that the contact area between the contact portion 26b3 and the frame portion 7 can be made as small as possible. This makes it possible to minimize the transfer of heat from the frame portion 7 to the second support portion 26b2 of the pressing member 26.
 その後、溶融した金属系接合材を冷却することにより固化させる(冷却工程)。冷却工程において、基体2と蓋部材4の枠部7との熱膨張係数の差に起因して、枠部7に応力が発生することとなる。この場合において、第一反射防止膜10aの緩衝部10a2は、この応力を緩和するように変形する。これにより、枠部7の破損を低減することができる。 Then, the molten metal-based bonding material is cooled and solidified (cooling process). In the cooling process, stress is generated in the frame portion 7 due to the difference in thermal expansion coefficient between the base 2 and the frame portion 7 of the lid member 4. In this case, the buffer portion 10a2 of the first anti-reflection film 10a deforms to relieve this stress. This makes it possible to reduce damage to the frame portion 7.
 冷却工程が終了すると、接合部15が基体2の金属層6と蓋部材4の金属層14とを一体に接合してなる封止部5が形成される。以上により、気密性が保たれたパッケージ1が完成する。 When the cooling process is complete, the sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at the joint 15. This completes the airtight package 1.
 以上説明した本実施形態によれば、成形工程において、支持台17の固定部20によって蓋部材4の枠部7を吸引することで、枠部7の反りを防止することができる。これにより、マスキング部材25によって枠部7を閉塞することで、第三ターゲット24cから飛散した金属粒子が突出部8の内面8aに付着することを防止することが可能となる。 According to the present embodiment described above, in the molding process, the frame portion 7 of the lid member 4 is sucked by the fixing portion 20 of the support base 17, thereby preventing warping of the frame portion 7. As a result, by blocking the frame portion 7 with the masking member 25, it is possible to prevent metal particles scattered from the third target 24c from adhering to the inner surface 8a of the protrusion 8.
 なお、上記の実施形態において、蓋部材4の突出部8は、頂部13の厚さが基部11の厚さよりも薄くなっているのに対して、反射防止膜10a、10bの厚さは、頂部13の位置で厚く、基部11の位置で薄くなっている。突出部8の上記構成から、発光素子3から放出された光は、突出部8の頂部13において相対的に透過し易く、基部11において相対的に透過し難くなっている。すなわち、本実施形態では、光が相対的に透過し易い部位において反射防止膜10a、10bの厚さを厚くし、光が相対的に透過し難い部位において反射防止膜10a、10bの厚さを薄くしている。 In the above embodiment, the protrusion 8 of the lid member 4 has a thickness at the top 13 that is thinner than the base 11, while the anti-reflection films 10a, 10b are thicker at the top 13 and thinner at the base 11. Due to the above configuration of the protrusion 8, the light emitted from the light-emitting element 3 is relatively easy to transmit at the top 13 of the protrusion 8 and relatively difficult to transmit at the base 11. That is, in this embodiment, the anti-reflection films 10a, 10b are thicker in the areas where light is relatively easy to transmit, and thinner in the areas where light is relatively difficult to transmit.
 反射防止膜10a、10bは、透過する光を若干ながら吸収する。反射防止膜10a、10bは、厚くなるほどこの光の吸収量が増加するため、上記のように、光が透過し難い突出部8の基部11の位置における反射防止膜10a、10bの厚さを薄くすることで、基部11と頂部13とで光を比較的均等に透過させることが可能となる。 The anti-reflective films 10a and 10b absorb a small amount of light that passes through them. The thicker the anti-reflective films 10a and 10b are, the more light they absorb. Therefore, by reducing the thickness of the anti-reflective films 10a and 10b at the base 11 of the protrusion 8, where light is less likely to pass through, as described above, it is possible to transmit light relatively evenly between the base 11 and the top 13.
 図15は、蓋部材4を製造するためのガラス基板の例を示す。ガラス基板Gは、枠部7と、枠部7から突出する複数の突出部8と、を備える。また、ガラス基板Gは、反射防止膜10a、10bと、を備えることができる。各突出部8は、上記の蓋部材4の突出部8と同じ構成を有する。各突出部8は、上記の成形装置16によって大型の板ガラスGSの複数箇所を熱変形させることによって形成される。このガラス基板Gを切断線CLに沿って切断すれば、突出部8及び枠部7、反射防止膜10a、10bを有する複数の蓋部材を効率よく製造できる。なお、第一反射防止膜10aには、金属層14及び接合部15が形成されていてもよい。 FIG. 15 shows an example of a glass substrate for manufacturing the lid member 4. The glass substrate G includes a frame portion 7 and multiple protrusions 8 protruding from the frame portion 7. The glass substrate G can also include anti-reflection films 10a, 10b. Each protrusion 8 has the same configuration as the protrusion 8 of the lid member 4 described above. Each protrusion 8 is formed by thermally deforming multiple locations of a large glass sheet GS using the molding device 16 described above. By cutting this glass substrate G along the cutting line CL, multiple lid members having the protrusions 8, frame portion 7, and anti-reflection films 10a, 10b can be efficiently manufactured. Note that a metal layer 14 and a bonding portion 15 may be formed on the first anti-reflection film 10a.
 図16は、蓋部材の他の例を示す。この例において、蓋部材4は、枠部7と、枠部7から突出する複数の突出部8と、を備える。また、蓋部材4は、反射防止膜10a、10bと、金属層14及び接合部15と、を備えることができる。この蓋部材4の各構成要素は、上記(図5)の蓋部材4と同じ構成を有する。この蓋部材4は、基体2に複数の発光素子3が搭載される場合に、各発光素子3を複数の突出部8によって個別に封止することができる。 Figure 16 shows another example of a lid member. In this example, the lid member 4 comprises a frame portion 7 and multiple protrusions 8 protruding from the frame portion 7. The lid member 4 can also comprise anti-reflection films 10a, 10b, a metal layer 14, and a bonding portion 15. Each component of this lid member 4 has the same configuration as the lid member 4 described above (Figure 5). When multiple light-emitting elements 3 are mounted on the base 2, this lid member 4 can individually seal each light-emitting element 3 with the multiple protrusions 8.
 図17は、蓋部材の他の例を示す。この例において、蓋部材4の内面8aは、曲率半径の異なる第一曲面8a1及び第二曲面8a2と、第一曲面8a1と第二曲面8a2との間に位置する境界部8a3とを、有する。突出部8の基部11側に形成される第一曲面8a1の曲率半径は、突出部8の頂部13側に形成される第二曲面8a2の曲率半径よりも小さい。 Figure 17 shows another example of a lid member. In this example, the inner surface 8a of the lid member 4 has a first curved surface 8a1 and a second curved surface 8a2 with different radii of curvature, and a boundary portion 8a3 located between the first curved surface 8a1 and the second curved surface 8a2. The radius of curvature of the first curved surface 8a1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8a2 formed on the top 13 side of the protrusion 8.
 蓋部材4の外面8bは、曲率半径の異なる第一曲面8b1及び第二曲面8b2と、第一曲面8b1と第二曲面8b2との間に位置する境界部8b3とを、有する。突出部8の基部11側に形成される第一曲面8b1の曲率半径は、突出部8の頂部13側に形成される第二曲面8b2の曲率半径よりも小さい。 The outer surface 8b of the cover member 4 has a first curved surface 8b1 and a second curved surface 8b2 with different radii of curvature, and a boundary portion 8b3 located between the first curved surface 8b1 and the second curved surface 8b2. The radius of curvature of the first curved surface 8b1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8b2 formed on the top 13 side of the protrusion 8.
 図18は、蓋部材の他の例を示す平面図である。この例において、蓋部材4は、複行複列に配された平面視円形状の複数の突出部8を有する。また、蓋部材4は、反射防止膜10a、10b(第一反射防止膜10aについては図示を省略)と、金属層14(図示省略)及び接合部15(図示省略)と、を有することができる。 FIG. 18 is a plan view showing another example of a lid member. In this example, the lid member 4 has a plurality of protrusions 8 arranged in multiple rows and columns and having a circular shape in a plan view. The lid member 4 can also have anti-reflection films 10a, 10b (first anti-reflection film 10a is not shown), a metal layer 14 (not shown), and a joint 15 (not shown).
 図19は、図18に示す蓋部材4を製造するための成形装置の支持台を示す。支持台17は、板ガラスGSに対して複数の突出部8を形成することができる。支持台17は、複数の空間部21と、各空間部21に対応する開口部17a及び吸引部17bと、を有する。空間部21、開口部17a及び吸引部17bは、平面視において、複行複列に形成されている。支持台17の固定部20は、一つの支持面20aと、各開口部17aを囲むように構成される複数の吸引部20bとを有する。固定部20の吸引部20bは、空間部21に対応するように、複行複列に形成されている。吸引部20bは、円環状に構成されているが、これに限らず、その他の形状により構成されてもよい。 Figure 19 shows a support table of a forming device for manufacturing the lid member 4 shown in Figure 18. The support table 17 can form multiple protrusions 8 on the glass sheet GS. The support table 17 has multiple spaces 21, and openings 17a and suction sections 17b corresponding to each space 21. The spaces 21, openings 17a and suction sections 17b are formed in multiple rows and columns in a plan view. The fixing section 20 of the support table 17 has one support surface 20a and multiple suction sections 20b configured to surround each opening 17a. The suction sections 20b of the fixing section 20 are formed in multiple rows and columns to correspond to the spaces 21. The suction sections 20b are configured in a circular ring shape, but are not limited to this and may be configured in other shapes.
 図20は、蓋部材の他の例を示す平面図である。この例において、蓋部材4は、平面視四角形状に構成される複数の突出部8を有する。なお、複行複列に配された複数の突出部8を有する蓋部材4については、隣り合う突出部8同士の間の平滑面に、スクライブ線を入れ、このスクライブ線に沿って蓋部材4を割断し、或いは、ブレードダイシング方式やレーザアブレーション方式でダイシングすることで、複数の蓋部材を得ることができ、また、任意の形状の蓋部材を得ることができる。 FIG. 20 is a plan view showing another example of a lid member. In this example, the lid member 4 has a plurality of protrusions 8 configured in a rectangular shape when viewed from above. For a lid member 4 having a plurality of protrusions 8 arranged in multiple rows and columns, a scribe line is made on the smooth surface between adjacent protrusions 8, and the lid member 4 is broken along the scribe line, or diced by a blade dicing method or a laser ablation method, thereby obtaining a plurality of lid members, and a lid member of any shape can be obtained.
 図21は、蓋部材の他の例を示す底面図である。この例において、蓋部材4は、図20に示す例と同様に、平面視四角形状に構成される突出部8を有する。この構成により、突出部8の開口部8cは、四角形状(例えば正方形状)に構成されている。開口部8cが正方形状に構成されている場合には、その開口長さLは、正方形の一辺の長さに相当する。開口部8cが長方形状に構成されている場合には、その開口長さLは、長方形の長辺の長さに相当する。 FIG. 21 is a bottom view showing another example of a lid member. In this example, the lid member 4 has a protrusion 8 configured in a rectangular shape in a plan view, similar to the example shown in FIG. 20. With this configuration, the opening 8c of the protrusion 8 is configured in a rectangular shape (e.g., a square shape). When the opening 8c is configured in a square shape, the opening length L corresponds to the length of one side of the square. When the opening 8c is configured in a rectangular shape, the opening length L corresponds to the length of the long side of the rectangle.
 図22は、パッケージの他の例を示す。この例におけるパッケージ1は、複数の発光素子3が搭載された基体2と、図16に例示した蓋部材4とを備える。この蓋部材4は、基体2に搭載された各発光素子3を、複数の突出部8及び封止部5によって個別に封止している。 Fig. 22 shows another example of a package. In this example, the package 1 comprises a base 2 on which multiple light-emitting elements 3 are mounted, and the lid member 4 illustrated in Fig. 16. This lid member 4 individually seals each light-emitting element 3 mounted on the base 2 with multiple protrusions 8 and sealing portions 5.
 図23は、蓋部材の他の例を示す。この例において、蓋部材4の内面8aは、突出部8の内側に向かって凸となる第一曲面8a1と、突出部8の外側に向かって凸となる第二曲面8a2と、第一曲面8a1と第二曲面8a2との間に位置する変曲点8a3と、を有する。第一曲面8a1は、第二曲面8a2よりも突出部8の基部11寄りの位置に形成されている。第一曲面8a1の曲率中心は、突出部8の外側に位置する。第二曲面8a2は、第一曲面8a1よりも頂部13寄りの位置に形成されている。第二曲面8a2の曲率中心は、突出部8の内側に位置する。 Figure 23 shows another example of a lid member. In this example, the inner surface 8a of the lid member 4 has a first curved surface 8a1 that is convex toward the inside of the protruding portion 8, a second curved surface 8a2 that is convex toward the outside of the protruding portion 8, and an inflection point 8a3 located between the first curved surface 8a1 and the second curved surface 8a2. The first curved surface 8a1 is formed at a position closer to the base 11 of the protruding portion 8 than the second curved surface 8a2. The center of curvature of the first curved surface 8a1 is located on the outside of the protruding portion 8. The second curved surface 8a2 is formed at a position closer to the apex 13 than the first curved surface 8a1. The center of curvature of the second curved surface 8a2 is located on the inside of the protruding portion 8.
 蓋部材4の外面8bは、突出部8の内側に向かって凸となる第一曲面8b1と、突出部8の外側に向かって凸となる第二曲面8b2と、第一曲面8b1と第二曲面8b2との間に位置する変曲点8b3と、を有する。第一曲面8b1は、第二曲面8b2よりも突出部8の基部11寄りの位置に形成されている。第一曲面8b1の曲率中心は、突出部8の外側に位置する。第二曲面8b2は、第一曲面8b1よりも突出部8の頂部13寄りの位置に形成されている。第二曲面8b2の曲率中心は、突出部8の内側に位置する。変曲点8a3と変曲点8b3は、枠部7の第二主面7bよりも上方(頂部13側)に設けられている。 The outer surface 8b of the cover member 4 has a first curved surface 8b1 that is convex toward the inside of the protruding portion 8, a second curved surface 8b2 that is convex toward the outside of the protruding portion 8, and an inflection point 8b3 located between the first curved surface 8b1 and the second curved surface 8b2. The first curved surface 8b1 is formed at a position closer to the base 11 of the protruding portion 8 than the second curved surface 8b2. The center of curvature of the first curved surface 8b1 is located outside the protruding portion 8. The second curved surface 8b2 is formed at a position closer to the top 13 of the protruding portion 8 than the first curved surface 8b1. The center of curvature of the second curved surface 8b2 is located inside the protruding portion 8. The inflection points 8a3 and 8b3 are provided above (towards the top 13) the second main surface 7b of the frame portion 7.
 内面8a及び外面8bの各変曲点8a3、8b3は、図7及び図8に示す成形装置及び成形方法によって蓋部材4に形成され得る。突出部8に変曲点8a3、8b3が形成される場合には、成形工程において、突出部8の突出角度θが小さくなり、光取り出し効率が低下するおそれがある。本発明では、突出部8の突出角度θを大きく確保できるように、成形装置16(図7参照)の加熱源18によって、板ガラスGSを十分に加熱することが望ましい。 The inflection points 8a3, 8b3 on the inner surface 8a and the outer surface 8b can be formed in the cover member 4 by the molding device and molding method shown in Figures 7 and 8. If the inflection points 8a3, 8b3 are formed in the protrusion 8, the protrusion angle θ of the protrusion 8 may become small in the molding process, and the light extraction efficiency may decrease. In the present invention, it is desirable to sufficiently heat the glass sheet GS by the heating source 18 of the molding device 16 (see Figure 7) so that the protrusion angle θ of the protrusion 8 can be ensured to be large.
 本例に係る蓋部材4のように、変曲点8a3、8b3が形成された突出部8を有する場合には、突出角度θを40°以上90°以下とすることで、蓋部材4における光取り出し効率を高めることが可能となる。突出角度θは、45°以上、50°以上、55°以上、60°以上、65°以上、70°以上がこの順で好ましい。一方、突出角度θは、90°未満であることが好ましく、85°以下であることがより好ましい。この例においては、突出角度θの規定が、図5の実施形態とは異なる。 When the cover member 4 in this example has a protrusion 8 with inflection points 8a3 and 8b3, the light extraction efficiency of the cover member 4 can be improved by setting the protrusion angle θ to 40° or more and 90° or less. The protrusion angle θ is preferably 45° or more, 50° or more, 55° or more, 60° or more, 65° or more, and 70° or more, in that order. On the other hand, the protrusion angle θ is preferably less than 90°, and more preferably 85° or less. In this example, the definition of the protrusion angle θ differs from that of the embodiment in FIG. 5.
 この例において、突出角度θは、変曲点8a3における接線L8と枠部7の第一主面7aとの成す角(鋭角)である。具体的には、変曲点8a3における接線L8と枠部7の第一主面7aに沿うように描かれた第六線L6とが為す角度(鋭角)を突出角度θとする。この例において、開口部8cの開口長さLと突出高さHについては、図5に示す実施形態と同様である。 In this example, the protrusion angle θ is the angle (acute angle) between the tangent L8 at the inflection point 8a3 and the first main surface 7a of the frame portion 7. Specifically, the protrusion angle θ is the angle (acute angle) between the tangent L8 at the inflection point 8a3 and a sixth line L6 drawn along the first main surface 7a of the frame portion 7. In this example, the opening length L and protrusion height H of the opening 8c are the same as those in the embodiment shown in FIG. 5.
 この例において、反射防止膜(10a、10b)については必ずしも必須の構成ではないが、反射防止膜(10a、10b)を設けることが好ましく、反射防止膜(10a、10b)の材質、厚さについての好ましい形態は、図5に示す実施形態と同様である。この例において、突出部8の厚さ(基部11の厚さ、頂部13の厚さ)、外径についての好ましい形態は、図5に示す実施形態と同様である。 In this example, the anti-reflection films (10a, 10b) are not necessarily required, but it is preferable to provide the anti-reflection films (10a, 10b), and the preferred material and thickness of the anti-reflection films (10a, 10b) are the same as in the embodiment shown in FIG. 5. In this example, the preferred thickness of the protrusion 8 (thickness of the base 11, thickness of the top 13) and outer diameter are the same as in the embodiment shown in FIG. 5.
 図24乃至図26は、パッケージ及び蓋部材の他の例を示す。この例では、蓋部材の形状が上記の実施形態と異なる。この例における蓋部材4の頂部13は、平板状に構成されている。このように蓋部材4に平板状の頂部13を形成することにより、頂部13に係る蓋部材4のその内面8a及び外面8bに均一な厚さの反射防止膜10a、10bを形成することができる。また、蓋部材4に平板状の頂部13を形成することにより、頂部13と、発光素子3との距離Daを可及的に小さくすることが可能となる。加えて、発光素子3から放出された光が平板状の頂部13に対して垂直に入射し易くなる。蓋部材4における光取り出し効率を大幅に向上させることができる。なお、光取り出し効率は、蓋部材4を介さずに発光素子3から放出された光のエネルギEN1を測定し、発光素子3から放出された光を蓋部材4に透過させた場合のエネルギEN2を測定し、これらのエネルギの比(EN2/EN1)により算出することができる。 24 to 26 show other examples of the package and the lid member. In this example, the shape of the lid member is different from that of the above embodiment. In this example, the top 13 of the lid member 4 is configured in a flat plate shape. By forming the flat top 13 on the lid member 4 in this way, it is possible to form anti-reflection films 10a, 10b of uniform thickness on the inner surface 8a and the outer surface 8b of the lid member 4 related to the top 13. In addition, by forming the flat top 13 on the lid member 4, it is possible to make the distance Da between the top 13 and the light-emitting element 3 as small as possible. In addition, it becomes easier for the light emitted from the light-emitting element 3 to be perpendicularly incident on the flat top 13. The light extraction efficiency of the lid member 4 can be significantly improved. The light extraction efficiency can be calculated by measuring the energy EN1 of the light emitted from the light-emitting element 3 without passing through the lid member 4, measuring the energy EN2 when the light emitted from the light-emitting element 3 is transmitted through the lid member 4, and calculating the ratio of these energies (EN2/EN1).
 次に、この例における蓋部材4を製造する方法について説明する。この方法では、図7及び図8で示した例と同様に成形工程を実施する。図27に示すように、成形装置16は、支持台17と、加熱源18と、外力発生装置19とを備える。加熱源18及び外力発生装置19の構成は、図7に例示したものと同じである。 Next, a method for manufacturing the lid member 4 in this example will be described. In this method, a molding process is carried out in the same manner as in the example shown in Figures 7 and 8. As shown in Figure 27, the molding device 16 includes a support stand 17, a heating source 18, and an external force generating device 19. The configurations of the heating source 18 and the external force generating device 19 are the same as those illustrated in Figure 7.
 支持台17は、加熱によって軟化する板ガラスGSの一部を成形する成形面27を有する。成形面27は、空間部21内に形成され、平坦面状に構成される。支持台17におけるその他の構成は、図7及び図8で示したものと同じである。 The support base 17 has a forming surface 27 that forms a portion of the sheet glass GS that is softened by heating. The forming surface 27 is formed within the space 21 and is configured as a flat surface. The other configurations of the support base 17 are the same as those shown in Figures 7 and 8.
 図27に示すように、成形工程では、支持台17の固定部20に板ガラスGSを載置する。次に、成形工程では、外力発生装置19を起動させて板ガラスGSを固定部20に固定する。その後、加熱源18により板ガラスGSを加熱する。これにより、板ガラスGSの一部が熱変形する。このとき、図28に示すように、変形した板ガラスGSの一部は、成形面27に接触する。これにより、板ガラスGSの一部は、平板状に成形される。この成形工程により、枠部7と、平板状の頂部13を含む突出部8と、連結部9とを有する蓋部材4が形成される。 As shown in FIG. 27, in the forming process, the glass sheet GS is placed on the fixed portion 20 of the support base 17. Next, in the forming process, the external force generating device 19 is activated to fix the glass sheet GS to the fixed portion 20. After that, the glass sheet GS is heated by the heating source 18. This causes a part of the glass sheet GS to thermally deform. At this time, as shown in FIG. 28, a part of the deformed glass sheet GS comes into contact with the forming surface 27. This causes a part of the glass sheet GS to be formed into a flat plate shape. This forming process forms a cover member 4 having a frame portion 7, a protruding portion 8 including a flat top portion 13, and a connecting portion 9.
 この蓋部材4に対して図9乃至図11、図13、図14で例示した成膜工程及び接合工程を実施することにより、パッケージを製造することができる。 The package can be manufactured by carrying out the film forming process and bonding process illustrated in Figures 9 to 11, 13, and 14 on this cover member 4.
 図29乃至図32は、成形工程に使用される成形装置の他の例を示す。図29に示すように、この成形装置16は、支持台17と、第一加熱源18a及び第二加熱源18bとを備える。第一加熱源18aは、図27に示す加熱源18と同じ構成を有する。第二加熱源18bは、支持台17の内部に配置されている。支持台17は、第二加熱源18bを収容可能な凹部を有する。第二加熱源18bの一部は、支持台17の空間部21に露出している。第二加熱源18bは、支持台17に固定された板ガラスGSに対して、高温の空気を局所的に当てることができる。これにより、支持台17に支持された板ガラスGSを下面側から加熱することができる。 29 to 32 show another example of a forming device used in the forming process. As shown in FIG. 29, this forming device 16 includes a support table 17, a first heating source 18a, and a second heating source 18b. The first heating source 18a has the same configuration as the heating source 18 shown in FIG. 27. The second heating source 18b is disposed inside the support table 17. The support table 17 has a recess capable of accommodating the second heating source 18b. A portion of the second heating source 18b is exposed to the space 21 of the support table 17. The second heating source 18b can locally apply high-temperature air to the glass sheet GS fixed to the support table 17. This allows the glass sheet GS supported by the support table 17 to be heated from the underside.
 図30に示すように、第二加熱源18bは、成形工程において、蓋部材4の突出部8(基部11及び中途部12)の成形を促進させることができる。これにより、突出部8の突出角度θをより大きくすることで、蓋部材4の枠部7の反りを効果的に防止することができる。上記の構成に限らず、第二加熱源18bは、支持台17の上方に配置されてもよい。板ガラスGSの突出部8(基部11及び中途部12)を第二加熱源18bによって上方から局所的に加熱してもよい。 As shown in FIG. 30, the second heating source 18b can promote the shaping of the protruding portion 8 (base portion 11 and mid-way portion 12) of the cover member 4 in the shaping process. This can effectively prevent warping of the frame portion 7 of the cover member 4 by increasing the protruding angle θ of the protruding portion 8. Not limited to the above configuration, the second heating source 18b may be disposed above the support base 17. The protruding portion 8 (base portion 11 and mid-way portion 12) of the glass sheet GS may be locally heated from above by the second heating source 18b.
 図29及び図30に示すように、支持台17の空間部21は、成形面27の上方に形成される第一空間部21aと、成形面27と固定部20との間に形成される第二空間部21bと、を含む。第一空間部21aは、図27に示す例と同じ構成を有する。第二空間部21bには、吸引部17cが繋がっている。吸引部17cは、成形面27と固定部20との間において、第二空間部21bを区切る支持台17の底面に形成されている。図31に示すように、支持台17には四つの吸引部17cが設けられているが、吸引部17cの数は本実施形態に限定されない。 As shown in Figures 29 and 30, the space 21 of the support base 17 includes a first space 21a formed above the molding surface 27, and a second space 21b formed between the molding surface 27 and the fixed part 20. The first space 21a has the same configuration as the example shown in Figure 27. The second space 21b is connected to a suction part 17c. The suction part 17c is formed on the bottom surface of the support base 17, which separates the second space 21b, between the molding surface 27 and the fixed part 20. As shown in Figure 31, the support base 17 is provided with four suction parts 17c, but the number of suction parts 17c is not limited to this embodiment.
 この構成により、成形工程において、第二空間部21b及び吸引部17cによって板ガラスGSに形成される蓋部材4の突出部8の成形中に、基部11及び中途部12を吸引することができる。これにより、突出部8の突出角度θをより大きくすることで、枠部7の反りを効果的に防止することができる。 With this configuration, during the forming process, the base 11 and the middle portion 12 can be sucked while the protruding portion 8 of the cover member 4 is being formed on the glass sheet GS by the second space portion 21b and the suction portion 17c. This makes it possible to effectively prevent warping of the frame portion 7 by making the protruding angle θ of the protruding portion 8 larger.
 図29乃至図31に示すように、支持台17の固定部20は、支持面20a及び吸引部20bの他、吸引部20bに繋がる凹部20cを備える。図31に示すように、凹部20cは、平面視において、支持台17の空間部21を取り囲むように形成される溝部として構成される。この溝部は、四角形の枠形状を有する。平面視における凹部20cの溝部の形状は、本実施形態に限定されず、円環状その他の形状に構成されてもよい。吸引部20bの端部(吸引口)は、四角形状の凹部20cにおける角部の底面と繋がっている。図31に示すように、支持台17の固定部20には、四つの吸引部20bが設けられているが、吸引部20bの数は、本実施形態に限定されない。 As shown in Figures 29 to 31, the fixed part 20 of the support base 17 has a support surface 20a, a suction part 20b, and a recess 20c connected to the suction part 20b. As shown in Figure 31, the recess 20c is configured as a groove formed to surround the space 21 of the support base 17 in a plan view. This groove has a rectangular frame shape. The shape of the groove of the recess 20c in a plan view is not limited to this embodiment, and may be configured to be annular or other shapes. The end (suction port) of the suction part 20b is connected to the bottom surface of the corner of the rectangular recess 20c. As shown in Figure 31, the fixed part 20 of the support base 17 is provided with four suction parts 20b, but the number of suction parts 20b is not limited to this embodiment.
 この構成により、固定部20の支持面20aに載置された板ガラスGSは、凹部20cを介して吸引部20bに吸引される。すなわち、凹部20cは、板ガラスGSを吸引するために吸引部20bを補助する機能(補助吸引部)を有する。凹部20c及び吸引部20bによって板ガラスGSを吸引することで、蓋部材4の枠部7の反りを効果的に防止することができる。 With this configuration, the glass sheet GS placed on the support surface 20a of the fixing part 20 is sucked into the suction part 20b via the recess 20c. In other words, the recess 20c has a function of assisting the suction part 20b in sucking the glass sheet GS (auxiliary suction part). By sucking the glass sheet GS with the recess 20c and the suction part 20b, warping of the frame part 7 of the cover member 4 can be effectively prevented.
 上記の構成に限らず、図29乃至図31に示す例において、支持台17の固定部20から凹部20cを省略してもよい。また、固定部20に形成される吸引部20bの位置を変更してもよい。例えば図32に示すように、平面視において四角形状に構成される固定部20の各辺における中間位置に各吸引部20bを設けてもよい。 In the examples shown in Figs. 29 to 31, the recess 20c may be omitted from the fixed portion 20 of the support base 17. The position of the suction portion 20b formed on the fixed portion 20 may be changed. For example, as shown in Fig. 32, the suction portions 20b may be provided at the midpoint of each side of the fixed portion 20 that is configured to have a rectangular shape in a plan view.
 図33乃至図36は、蓋部材の製造方法における他の例を示す。図33に示す成形装置16の支持台17は、図7に示す固定部20の吸引部20bを備えていない。支持台17におけるその他の構成は、図7に示すものと同じである。 Figures 33 to 36 show another example of a method for manufacturing a lid member. The support table 17 of the molding device 16 shown in Figure 33 does not have the suction portion 20b of the fixing portion 20 shown in Figure 7. The other configuration of the support table 17 is the same as that shown in Figure 7.
 この例における蓋部材4の製造方法は、成形工程と、成形工程後に蓋部材4の枠部7を加工する加工工程と、加工工程後に行われる成膜工程と、を備える。 The method for manufacturing the lid member 4 in this example includes a molding process, a processing process for processing the frame portion 7 of the lid member 4 after the molding process, and a film forming process that is performed after the processing process.
 成形工程では、図33に示すように、支持台17の固定部20に載置された板ガラスGSを加熱源18によって加熱しつつ、外力発生装置19及び支持台17の吸引部17bによって板ガラスGSの一部(中央部)を吸引する。これにより成形された蓋部材4の枠部7は、図7に示した例のように固定部20の吸引部20bによって吸引されていないため、図33に示すように固定部20の支持面20aから離れるように反っている。この状態で成膜工程を行うと、図12において例示したように、枠部7の第一主面7aがマスキング部材25の開口部25aを完全に閉塞することができない。 In the forming process, as shown in FIG. 33, the plate glass GS placed on the fixed portion 20 of the support stand 17 is heated by the heating source 18 while a part (center portion) of the plate glass GS is sucked by the external force generator 19 and the suction portion 17b of the support stand 17. The frame portion 7 of the cover member 4 formed in this way is not sucked by the suction portion 20b of the fixed portion 20 as in the example shown in FIG. 7, and therefore is warped away from the support surface 20a of the fixed portion 20 as shown in FIG. 33. If the film forming process is performed in this state, the first main surface 7a of the frame portion 7 cannot completely block the opening 25a of the masking member 25 as shown in FIG. 12.
 このため、成形工程後の加工工程において、枠部7の第一主面7aがマスキング部材25の開口部25aを閉塞することができるように、第一主面7aの少なくとも一部を平坦化する加工処理が施される。本例では、加工工程として、枠部7の第一主面7aに対して物理的な研磨処理を施す例を説明する。 For this reason, in the processing step after the molding step, a processing treatment is performed to flatten at least a part of the first main surface 7a so that the first main surface 7a of the frame portion 7 can close the opening 25a of the masking member 25. In this example, a processing step in which a physical polishing treatment is performed on the first main surface 7a of the frame portion 7 is described.
 図34及び図35は、加工工程に使用される研磨装置を示す。図34に示すように、研磨装置は、研磨具28と、研磨具28に蓋部材4を押し付けるための押圧部材29と、を備える。研磨具28としては、例えば研磨パッドが使用されるが、研磨具28の態様は本例に限定されない。 Figures 34 and 35 show a polishing device used in the processing step. As shown in Figure 34, the polishing device includes a polishing tool 28 and a pressing member 29 for pressing the cover member 4 against the polishing tool 28. As the polishing tool 28, for example, a polishing pad is used, but the form of the polishing tool 28 is not limited to this example.
 押圧部材29は、蓋部材4の突出部8を収容する枠体30と、蓋部材4の枠部7と枠体30との間に介在する緩衝部材31と、枠体30に載置される錘32と、を備える。 The pressing member 29 includes a frame body 30 that houses the protruding portion 8 of the lid member 4, a buffer member 31 that is interposed between the frame portion 7 of the lid member 4 and the frame body 30, and a weight 32 that is placed on the frame body 30.
 枠体30は、例えば板状に構成されるとともに、厚さ方向に貫通する孔30aを有する。この孔30aの内側には、蓋部材4の突出部8を収容する空間(収容部)が形成されている。孔30aは、突出部8よりも大きく構成されている。このため、枠体30は、突出部8に接触することなく、この突出部8を内部に収容することができる。枠体30は、緩衝部材31を介して蓋部材4の枠部7を押圧することができる。 The frame body 30 is, for example, formed in a plate shape and has a hole 30a that penetrates in the thickness direction. A space (accommodation section) that accommodates the protrusion 8 of the lid member 4 is formed inside this hole 30a. The hole 30a is configured to be larger than the protrusion 8. Therefore, the frame body 30 can accommodate the protrusion 8 inside without coming into contact with the protrusion 8. The frame body 30 can press against the frame section 7 of the lid member 4 via the buffer member 31.
 緩衝部材31は、枠部7の第二主面7bに接触している。緩衝部材31は、例えば、収縮可能なスポンジ状の樹脂により構成されるが、緩衝部材31の構成は、本例に限定されない。 The cushioning member 31 is in contact with the second main surface 7b of the frame portion 7. The cushioning member 31 is made of, for example, a contractible sponge-like resin, but the configuration of the cushioning member 31 is not limited to this example.
 錘32は、枠体30の上部に載置されている。枠体30の上部には、複数の錘32が載置されてもよい。 The weight 32 is placed on the top of the frame body 30. Multiple weights 32 may be placed on the top of the frame body 30.
 図34に示すように、加工工程では、蓋部材4における枠部7の第一主面7aを研磨具28に接触させた状態で、押圧部材29によって蓋部材4の枠部7を研磨具28に向かって押圧する。この状態で、研磨具28を蓋部材4に対して相対的に移動させることで、枠部7の第一主面7aに研磨処理を施すことができる。 As shown in Figure 34, in the processing step, the frame portion 7 of the cover member 4 is pressed toward the polishing tool 28 by a pressing member 29 while the first main surface 7a of the frame portion 7 of the cover member 4 is in contact with the polishing tool 28. In this state, the polishing tool 28 is moved relative to the cover member 4, whereby the first main surface 7a of the frame portion 7 can be polished.
 これにより、図35に示すように、研磨具28によって枠部7の第一主面7aの少なくとも一部に研磨面7a1が形成される。研磨面7a1の表面粗さRaは、好ましくは0.1nm以上1nm以下である。 As a result, as shown in FIG. 35, the polishing tool 28 forms a polished surface 7a1 on at least a portion of the first main surface 7a of the frame portion 7. The surface roughness Ra of the polished surface 7a1 is preferably 0.1 nm or more and 1 nm or less.
 研磨面7a1は、図36に示すように、成膜工程(第二成膜工程)で用いられるマスキング部材25の開口部25aを全体的に閉塞することができる。これにより、成膜工程において、金属層14を形成するための金属粒子が突出部8の内側に浸入することを防止し、枠部7の第一主面7aに均一な厚さの金属層14を形成することができる。 As shown in FIG. 36, the polished surface 7a1 can completely block the opening 25a of the masking member 25 used in the film formation process (second film formation process). This prevents the metal particles used to form the metal layer 14 from penetrating into the inside of the protruding portion 8 during the film formation process, and allows the metal layer 14 to be formed with a uniform thickness on the first main surface 7a of the frame portion 7.
 この例では、加工工程によって、蓋部材4の枠部7の厚さを、突出部8の基部11の厚さTmax(図5参照)よりも薄くすることができる。これにより、例えば接合工程において接合部15をレーザで加熱する場合において、厚さの薄い枠部7を介して接合部15を好適に加熱することが可能となる。 In this example, the processing step can make the thickness of the frame 7 of the cover member 4 thinner than the thickness Tmax (see FIG. 5) of the base 11 of the protrusion 8. This makes it possible to heat the joint 15 effectively through the thin frame 7, for example, when the joint 15 is heated with a laser in the joining step.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, nor is it limited to the above-mentioned effects. Various modifications of the present invention are possible without departing from the gist of the present invention.
 上記の実施形態では、第一反射防止膜10a及び第二反射防止膜10bが形成された蓋部材4及びガラス基板Gを示したが、本発明はこの構成に限定されない。本発明に係る蓋部材4及びガラス基板Gは、第一反射防止膜10aのみ又は第二反射防止膜10bのみを有するものであってもよい。 In the above embodiment, the cover member 4 and the glass substrate G on which the first anti-reflection film 10a and the second anti-reflection film 10b are formed are shown, but the present invention is not limited to this configuration. The cover member 4 and the glass substrate G according to the present invention may have only the first anti-reflection film 10a or only the second anti-reflection film 10b.
 上記の実施形態では、頂部13の厚さが基部11の厚さよりも薄く構成された突出部8を有する蓋部材4を例示したが、本発明はこの構成に限定されない。本発明は、基部11から頂部13まで厚さが一定である突出部8を備える蓋部材4にも適用可能である。 In the above embodiment, a cover member 4 having a protrusion 8 configured such that the thickness of the top 13 is thinner than the thickness of the base 11 is exemplified, but the present invention is not limited to this configuration. The present invention is also applicable to a cover member 4 having a protrusion 8 whose thickness is constant from the base 11 to the top 13.
 上記の図33乃至図36に示した例では、蓋部材4の枠部7の第一主面7aを物理的な研磨により加工する例を示したが、本発明はこの構成に限定されない。枠部7の第一主面7aは、エッチングによる化学研磨処理によって加工されてもよい。 In the example shown in Figures 33 to 36 above, the first main surface 7a of the frame portion 7 of the cover member 4 is processed by physical polishing, but the present invention is not limited to this configuration. The first main surface 7a of the frame portion 7 may also be processed by a chemical polishing process using etching.
 1      パッケージ
 3      発光素子
 4      蓋部材
 7      枠部
 7a     枠部の第一主面
 7b     枠部の第二主面
 8      突出部
 8a     突出部の内面
 8b     突出部の外面
 9      連結部
11      基部
14      金属層
17      支持台
19      外力発生装置(吸引装置)
20      固定部
20b     固定部の吸引部
21      空間部
28      研磨具
29      押圧部材
 D1     板ガラスの一部を吸引する方向
 D2     枠部を吸引する方向
 GS     板ガラス
REFERENCE SIGNS LIST 1 Package 3 Light emitting element 4 Lid member 7 Frame 7a First main surface of frame 7b Second main surface of frame 8 Protruding portion 8a Inner surface of protruding portion 8b Outer surface of protruding portion 9 Connection portion 11 Base 14 Metal layer 17 Support stand 19 External force generating device (suction device)
20: fixed portion 20b: suction portion of fixed portion 21: space 28: polishing tool 29: pressing member D1: direction in which a part of the glass plate is sucked D2: direction in which the frame portion is sucked GS: glass plate

Claims (12)

  1.  発光素子を含むパッケージに用いられるガラス製の蓋部材を製造する方法であって、
     前記蓋部材は、板状の枠部と、前記枠部から突出する突出部とを備え、
     板ガラスを支持台に固定した状態で、前記板ガラスの一部を吸引することにより前記突出部を形成する成形工程を備え、
     前記支持台は、前記枠部を固定する固定部を備え、
     前記成形工程では、前記固定部は、前記板ガラスの前記一部を吸引する方向と同じ方向に前記枠部を吸引することを特徴とする、蓋部材の製造方法。
    A method for manufacturing a glass lid member used in a package including a light emitting device, comprising the steps of:
    The cover member includes a plate-shaped frame portion and a protrusion portion protruding from the frame portion,
    a forming step of forming the protrusion by sucking a part of the glass sheet in a state where the glass sheet is fixed to a support base,
    The support base includes a fixing portion that fixes the frame portion,
    A method for manufacturing a lid member, wherein in the forming step, the fixing portion sucks the frame portion in the same direction as a direction in which the fixing portion sucks the portion of the glass plate.
  2.  前記成形工程では、前記板ガラスの前記一部の吸引と、前記固定部による前記枠部の吸引とを、共通の吸引装置により行うことを特徴とする、請求項1に記載の蓋部材の製造方法。 The method for manufacturing a lid member according to claim 1, characterized in that in the forming process, the suction of the portion of the glass sheet and the suction of the frame portion by the fixing portion are performed by a common suction device.
  3.  前記成形工程では、前記板ガラスの前記一部の吸引と、前記固定部による前記枠部の吸引とを同時に行うことを特徴とする、請求項1又は2に記載の蓋部材の製造方法。 The method for manufacturing a lid member according to claim 1 or 2, characterized in that in the forming step, the suction of the portion of the glass sheet and the suction of the frame portion by the fixing portion are performed simultaneously.
  4.  前記成形工程では、前記板ガラスを加熱することにより前記突出部と前記枠部とを成形することを特徴とする、請求項1又は2に記載の蓋部材の製造方法。 The method for manufacturing a lid member according to claim 1 or 2, characterized in that in the forming step, the protrusion and the frame are formed by heating the glass plate.
  5.  前記支持台は、前記板ガラスに複数の前記突出部を形成するための複数の空間部を備え、
     前記複数の空間部は、複行複列に形成されており、
     前記固定部は、前記板ガラスを吸引する複数の吸引部を備え、
     前記複数の吸引部は、前記複数の空間部に対応するように、複行複列に形成されることを特徴とする、請求項1又は2に記載の蓋部材の製造方法。
    The support base includes a plurality of spaces for forming a plurality of the protrusions on the glass sheet,
    The plurality of spaces are formed in multiple rows and multiple columns,
    The fixing portion includes a plurality of suction portions that suck the glass plate,
    The method for manufacturing a cover member according to claim 1 or 2, wherein the plurality of suction portions are formed in multiple rows and multiple columns so as to correspond to the plurality of spaces.
  6.  発光素子を含むパッケージに用いられるガラス製の蓋部材を製造する方法であって、
     前記蓋部材は、板状の枠部と、前記枠部から突出する突出部と、を備え、
     前記突出部は、内面及び外面を有し、
     前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、
     板ガラスを支持台に固定した状態で、前記板ガラスの一部を吸引することにより前記突出部を形成する成形工程と、前記成形工程後に前記枠部を加工する加工工程と、前記加工工程後に、物理蒸着法によって前記枠部に金属層を形成する成膜工程と、を備え、
     前記加工工程では、前記枠部の前記第一主面を平坦化する加工処理を行うことを特徴とする、蓋部材の製造方法。
    A method for manufacturing a glass lid member used in a package including a light emitting device, comprising the steps of:
    The cover member includes a plate-shaped frame portion and a protrusion portion protruding from the frame portion,
    the protrusion has an inner surface and an outer surface;
    The frame portion has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion,
    a forming step of forming the protrusion by sucking a part of the glass sheet while the glass sheet is fixed to a support; a processing step of processing the frame after the forming step; and a film forming step of forming a metal layer on the frame by a physical vapor deposition method after the processing step,
    The method for manufacturing a cover member, wherein the processing step includes a processing treatment for flattening the first main surface of the frame portion.
  7.  前記加工工程では、前記枠部の前記第一主面に対して物理的な研磨を施すことを特徴とする、請求項6に記載の蓋部材の製造方法。 The method for manufacturing a lid member according to claim 6, characterized in that in the processing step, physical polishing is performed on the first main surface of the frame.
  8.  前記加工工程は、押圧部材によって前記枠部を研磨具に押し付けるように構成され、
     前記押圧部材は、前記突出部を収容する収容部を備えることを特徴とする、請求項6又は7に記載の蓋部材の製造方法。
    The processing step is configured to press the frame against a grinding tool by a pressing member,
    The method for manufacturing a cover member according to claim 6 or 7, wherein the pressing member has a receiving portion for receiving the protrusion.
  9.  発光素子を含むパッケージに用いられるガラス製の蓋部材であって、
     前記蓋部材は、板状の枠部と、前記枠部から突出する突出部とを備え、
     前記突出部は、内面及び外面を有し、
     前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面と、を有し、
     前記第一主面は、研磨面を有することを特徴とする蓋部材。
    A glass cover member used for a package including a light emitting element,
    The cover member includes a plate-shaped frame portion and a protrusion portion protruding from the frame portion,
    the protrusion has an inner surface and an outer surface;
    The frame portion has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion,
    The first main surface has a polished surface.
  10.  発光素子を含むパッケージに用いられるガラス製の蓋部材であって、
     板状の枠部と、前記枠部から突出する突出部とを備え、
     前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、
     前記枠部は、前記基部よりも薄いことを特徴とする、蓋部材。
    A glass cover member used for a package including a light emitting element,
    A plate-shaped frame portion and a protrusion portion protruding from the frame portion,
    The protrusion includes a top portion and a base portion integral with the frame portion,
    The lid member, wherein the frame portion is thinner than the base portion.
  11.  前記突出部の前記頂部は、前記枠部よりも薄いことを特徴とする、請求項10に記載の蓋部材。 The cover member according to claim 10, characterized in that the top of the protrusion is thinner than the frame.
  12.  前記枠部は、前記突出部の前記頂部よりも厚いことを特徴とする、請求項10に記載の蓋部材。 The cover member according to claim 10, characterized in that the frame portion is thicker than the top of the protrusion.
PCT/JP2023/033377 2022-09-30 2023-09-13 Lid member and method for manufacturing same WO2024070699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158246 2022-09-30
JP2022-158246 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070699A1 true WO2024070699A1 (en) 2024-04-04

Family

ID=90477590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033377 WO2024070699A1 (en) 2022-09-30 2023-09-13 Lid member and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024070699A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186887A (en) * 2009-02-12 2010-08-26 Sumita Optical Glass Inc Method of manufacturing light-emitting device
JP2013506251A (en) * 2009-09-25 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor lighting device
JP2016076306A (en) * 2014-10-02 2016-05-12 パナソニックIpマネジメント株式会社 Light source module, light source unit, and lighting equipment
JP2021116226A (en) * 2020-01-28 2021-08-10 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing glass wafer for packaging electronic component and electronic component manufactured by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186887A (en) * 2009-02-12 2010-08-26 Sumita Optical Glass Inc Method of manufacturing light-emitting device
JP2013506251A (en) * 2009-09-25 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor lighting device
JP2016076306A (en) * 2014-10-02 2016-05-12 パナソニックIpマネジメント株式会社 Light source module, light source unit, and lighting equipment
JP2021116226A (en) * 2020-01-28 2021-08-10 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing glass wafer for packaging electronic component and electronic component manufactured by the method

Similar Documents

Publication Publication Date Title
JP5500904B2 (en) Method for manufacturing light emitting device
JP6611079B2 (en) Glass plate
WO2016047210A1 (en) Supporting glass substrate and laminate using same
WO2016035674A1 (en) Supporting glass substrate and laminate using same
TW201810446A (en) Method for producing hermetic package, and hermetic package
KR20210097046A (en) Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method
JP5500927B2 (en) Method for manufacturing light emitting device
US10580666B2 (en) Carrier substrates for semiconductor processing
WO2024070699A1 (en) Lid member and method for manufacturing same
JP5350970B2 (en) Method for manufacturing light emitting device
US20230265012A1 (en) Bonded body manufacturing method and bonded body manufacturing device
KR102656315B1 (en) Window material, optical package
JP7351136B2 (en) Joined body manufacturing method and joined body manufacturing apparatus
WO2023199744A1 (en) Lid member, package, and glass substrate
WO2024048669A1 (en) Package and lid member
JP2016155735A (en) Support glass substrate and laminate using the same
WO2022130799A1 (en) Lid member, package, and glass substrate
JP2023155873A (en) Lid member, package and glass substrate
TW202406029A (en) Lid components, packages and glass substrates
TW201901866A (en) Method for manufacturing hermetic package and hermetic package
WO2024070755A1 (en) Glass lid member production method, glass lid member, and package equipped with said lid member
JPWO2020022278A1 (en) Optical package
WO2023249025A1 (en) Side window cap and semiconductor light emitting device
WO2021014925A1 (en) Lid material for light-emitting device and method for manufacturing lid material
WO2018110163A1 (en) Glass support substrate and laminate using same