WO2023199744A1 - Lid member, package, and glass substrate - Google Patents

Lid member, package, and glass substrate Download PDF

Info

Publication number
WO2023199744A1
WO2023199744A1 PCT/JP2023/012546 JP2023012546W WO2023199744A1 WO 2023199744 A1 WO2023199744 A1 WO 2023199744A1 JP 2023012546 W JP2023012546 W JP 2023012546W WO 2023199744 A1 WO2023199744 A1 WO 2023199744A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
lid member
frame
curved surface
base
Prior art date
Application number
PCT/JP2023/012546
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 間嶌
隆史 西宮
景 寺田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022156490A external-priority patent/JP2023155873A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023199744A1 publication Critical patent/WO2023199744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a lid member for a package, a package having the lid member, and a glass substrate for forming the lid member.
  • Patent Document 1 describes a base (substrate) on which a light emitting element (LED element) is mounted, a dome-shaped lid member (transparent cover) fixed to the base so as to cover the light emitting element, and a base and a lid.
  • a package is disclosed that includes an adhesive for joining the components. In this package, by configuring the lid member in a dome shape, a space for accommodating the light emitting element is secured between the lid member and the base body.
  • a technical problem of the present invention is to improve the light extraction efficiency in a lid member used for a package including a light emitting element.
  • the present invention is intended to solve the above-mentioned problems, and is a glass lid member used for a package containing a light emitting element, which comprises a plate-shaped frame and a dome-shaped protrusion that protrudes from the frame.
  • the protrusion has an inner surface and an outer surface, and an antireflection film is formed on at least one of the inner surface and the outer surface of the protrusion.
  • the antireflection film on the inner surface of the protrusion in the lid member, the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the lid member used in the package as much as possible.
  • the frame has a first main surface connected to the inner surface of the protrusion, and a second main surface connected to the outer surface of the protrusion, and the frame has a second main surface connected to the outer surface of the protrusion.
  • the antireflection film may be formed on one main surface.
  • the antireflection film formed on the first main surface of the frame has a function of relieving stress acting on the bonded portion when the frame is bonded to the base. Thereby, the lid member can be joined to the base without damaging it.
  • a metal layer may be formed on a side opposite to the first main surface side of the antireflection film formed on the first main surface of the frame portion.
  • the bonding material is well adapted to the metal layer, and as a result, the lid member and the base can be bonded appropriately. can.
  • the antireflection film is formed on the inner surface of the protrusion, and the protrusion includes a top and a base integrally formed with the frame;
  • the thickness of the anti-reflection film formed on the top portion may be thicker than the thickness of the anti-reflection film formed on the base portion.
  • the antireflection film may include a hafnium oxide film.
  • the thickness of the top of the protrusion may be thinner than the thickness of the base of the protrusion.
  • the thickness of the top of the protrusion of the lid member thinner than the thickness of the base, it is possible to increase the transmittance of this protrusion.
  • the thickness of the base of the protrusion is greater than the thickness of the top, the strength at this base can be made higher than at the top. Therefore, it is possible to both improve the light extraction efficiency of the lid member and ensure its strength.
  • a second antireflection film may be formed on the outer surface of the protrusion.
  • the thickness of the second anti-reflection film formed on the top portion may be thicker than the thickness of the second anti-reflection film formed on the base portion.
  • the protruding portion may protrude from the frame portion at a predetermined protruding angle, and the protruding angle of the protruding portion may be 40° or more and 90° or less. Thereby, the light extraction efficiency in the protrusion can be increased.
  • the protrusion includes a top and a base integrally formed with the frame, the protrusion has an opening formed on the inner surface, and an opening length L of the opening;
  • the ratio L/H of the protrusion to the protrusion height H may be 1.6 or more and 5.0 or less. Thereby, the light extraction efficiency in the protrusion can be increased.
  • the opening may have a rectangular shape.
  • the inner surface may have a first curved surface, a second curved surface, and an inflection point located between the first curved surface and the second curved surface.
  • the present invention is intended to solve the above-mentioned problems, and is a glass lid member used for a package containing a light emitting element, which comprises a plate-shaped frame and a dome-shaped protrusion that protrudes from the frame.
  • the protrusion has an inner surface and an outer surface
  • the frame has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion.
  • the inner surface includes a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, a second curved surface that is convex toward the outside of the protrusion, and an inflection point located between the first curved surface and the second curved surface, and the protrusion is formed at the protrusion angle formed by the tangent at the inflection point and the first principal surface of the frame.
  • the protrusion protrudes from the frame, and the protrusion angle of the protrusion is 40° or more and 90° or less.
  • the protrusion angle tends to be low, so that the light emitted from the light emitting element is scattered inside the protrusion and the light is Although the extraction efficiency tends to decrease, by increasing the protrusion angle, scattering of light inside the protrusion can be prevented and the light extraction efficiency in the lid member can be increased.
  • the present invention is intended to solve the above problems, and is characterized by a package including a light emitting element, a base supporting the light emitting element, and the lid member described above.
  • the antireflection film on the inner surface of the protrusion in the lid member, the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the package as much as possible.
  • the present invention is intended to solve the above-mentioned problems, and provides a glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising a plate-shaped frame portion and a plurality of glass substrates protruding from the frame portion. a dome-shaped protrusion, the protrusion has an inner surface and an outer surface, and an antireflection film is formed on the inner surface of the protrusion.
  • the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the lid member manufactured from the glass substrate as much as possible.
  • the present invention is intended to solve the above-mentioned problems, and provides a glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising a plate-shaped frame portion and a plurality of glass substrates protruding from the frame portion.
  • a dome-shaped protrusion the protrusion has an inner surface and an outer surface
  • the frame has a first main surface connected to the inner surface of the protrusion, and a first main surface connected to the outer surface of the protrusion.
  • a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, and a first curved surface that is convex toward the outside of the protrusion.
  • the protruding portion protrudes from the frame portion at a protruding angle formed by the protruding portion, and the protruding angle of the protruding portion is 40° or more and 90° or less.
  • the protrusion angle tends to be low, so that the light emitted from the light emitting element is scattered inside the protrusion and the light is
  • the extraction efficiency tends to decrease, but by increasing the protrusion angle, light scattering inside the protrusion can be prevented and the light extraction efficiency of the lid member manufactured from the glass substrate can be increased as much as possible. It becomes possible.
  • the present invention it is possible to improve the light extraction efficiency in a lid member used for a package including a light emitting element.
  • FIG. 3 is a perspective view of the package.
  • FIG. 3 is a cross-sectional view of the package.
  • FIG. 3 is a cross-sectional view of the base.
  • FIG. 3 is a plan view of the base. It is a sectional view of a lid member. It is a bottom view of a lid member.
  • FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method.
  • FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method.
  • FIG. 3 is a cross-sectional view showing a film forming process in the package manufacturing method.
  • FIG. 3 is a cross-sectional view showing a bonding step in the package manufacturing method.
  • FIG. 3 is a cross-sectional view showing a bonding step in the package manufacturing method. It is a sectional view showing a glass substrate for manufacturing a lid member for a package. It is a sectional view showing other examples of a lid member. It is a sectional view showing other examples of a lid member.
  • FIG. 7 is a plan view showing another example of the lid member.
  • FIG. 7 is a plan view showing another example of the lid member.
  • FIG. 7 is a bottom view showing another example of the lid member.
  • FIG. 7 is a cross-sectional view showing another example of the preparation process of the package manufacturing method.
  • FIG. 7 is a sectional view showing another example of the package. It is a sectional view showing other examples of a lid member.
  • FIG. 7 is a sectional view showing another example of the package. It is a sectional view of a lid member. It is a sectional view of a lid member.
  • FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method.
  • FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method.
  • FIG. 1 to 19 show an embodiment of a lid member, a package, and a glass substrate according to the present invention.
  • the package 1 includes a base 2, a light emitting element 3 supported by the base 2, a lid member 4 covering the base 2 and the light emitting element 3, and a base 2 and the lid member 4.
  • a sealing part 5 that is airtightly joined is provided.
  • the base body 2 has a first main surface 2a that supports the light emitting element 3, a second main surface 2b located on the opposite side of the first main surface 2a, and a metal layer 6 formed on the first main surface 2a. .
  • Examples of the material of the base body 2 include ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride, glass ceramics obtained by mixing and sintering these ceramics and glass powder, Fe-Ni-Co alloy, and Cu-W alloy. , Kovar (registered trademark), and the like.
  • the metal layer 6 has a frame shape surrounding the light emitting element 3.
  • the metal layer 6 has a rectangular shape, it is not limited to this shape.
  • the metal layer 6 may be configured to have a circular shape, for example, so as to surround the light emitting element 3.
  • the metal layer 6 includes three layers: a base layer, an intermediate layer, and a surface layer in order from the first principal surface 2a side.
  • metals used for the underlayer include Cr, Ta, W, Ti, Mo, Ni, and Pt.
  • the metal used for the intermediate layer include Ni, Pt, and Pd.
  • metals used for the surface layer include Au, Sn, Ag, Ni, and Pt.
  • the metal used for the metal layer 6 may be a single substance or an alloy.
  • Examples of the method for forming the metal layer 6 on the first main surface 2a of the base 2 include a sputtering method, a vacuum evaporation method, a vacuum evaporation method using ion assist or ion plating, and a CVD method. Can be mentioned.
  • the light emitting element 3 is fixed to the first main surface 2a of the base 2.
  • a package 1 using an ultraviolet irradiation LED as the light emitting element 3 is illustrated, but the light emitting element 3 according to the present invention is not limited to this embodiment, and may employ an infrared LED or a visible light LED. can do.
  • the lid member 4 is manufactured by molding a part of plate glass.
  • the glass used for the lid member 4 is preferably alkali-free glass, borosilicate glass, aluminosilicate glass, quartz glass, or crystallized glass. If alkali-free glass, borosilicate glass, or aluminosilicate glass is used, it is possible to achieve both high transmittance and high processability during molding.
  • quartz glass can have significantly high transmittance in the ultraviolet region while maintaining workability during molding. Further, if it is a crystallized glass, it is possible to achieve both high transmittance and high breaking strength.
  • the glass is borosilicate glass, aluminosilicate glass, or alkali-free glass
  • the glass composition in mass %, is SiO 2 : 50 to 75%, Al 2 O 3 : 1 to 25%, B 2 O 3 : 1. It is preferable to contain up to 30%, Li 2 O+Na 2 O+K 2 O: 0 to 20%, and MgO+CaO+SrO+BaO: 0 to 20%. If the composition of the glass is within the above composition range, it falls under these glass types.
  • the glass composition in mass % is SiO 2 : 60-80%, Al 2 O 3 : 3-30%, Li 2 O+Na 2 O+K 2 O: 1-20%, MgO+CaO+SrO+BaO: 5-20. % and in which ⁇ -quartz solid solution or ⁇ -spodumene is precipitated as crystals from inside the glass.
  • low thermal expansion refers to a thermal expansion coefficient of -10 ⁇ 10 -7 to 20 ⁇ 10 -7 /°C in a temperature range of 30 to 300°C.
  • the lid member 4 includes a plate-shaped frame 7, a dome-shaped protrusion 8 that protrudes from the frame 7, and a connecting portion that connects the frame 7 and the protrusion 8. 9, a first antireflection film 10a, and a second antireflection film 10b.
  • the frame portion 7 has, for example, a constant thickness, but is not limited to this aspect.
  • the thickness of the frame portion 7 is, for example, 0.2 mm or more and 2 mm or less.
  • the frame portion 7 has a first main surface 7a and a second main surface 7b located on the opposite side of the first main surface 7a.
  • the surface roughness (arithmetic mean roughness) Ra of the first main surface 7a is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the surface roughness Ra of the second main surface 7b is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the protrusion 8 is for forming a housing space for the light emitting element 3 together with the first main surface 2a of the base 2.
  • the protrusion 8 has an inner surface 8a configured as a concave curved surface, an outer surface 8b configured as a convex curved surface, and an opening 8c formed on the inner surface 8a side.
  • the protruding portion 8 includes a base portion 11, a midway portion 12, and a top portion 13.
  • the base portion 11 is configured integrally with the connecting portion 9.
  • the middle part 12 is located between the base part 11 and the top part 13.
  • the base 11 is defined by drawing a normal line (hereinafter referred to as "first line”) L1 to the top 13, and drawing along this first line L1 and the second main surface 7b of the frame 7.
  • first line a normal line
  • second line straight line
  • this third line L3 This is the part that intersects with the protrusion 8.
  • first base portion 11a the portion where the third line L3 intersects with the inner surface 8a of the protrusion 8 is referred to as a first base portion 11a
  • second base portion 11b the portion where the third line L3 intersects with the outer surface 8b of the protrusion portion 8 is referred to as a second base portion 11b.
  • the midway portion 12 is obtained by drawing a straight line L7 (hereinafter referred to as the "seventh line") that makes an angle of 60 degrees with the second line L2 from the intersection P1 of the first line L1 and the second line L2. , this is the portion where this seventh line L7 intersects with the protrusion 8.
  • the distance from the intersection P2 of the first line L1 and the inner surface 8a of the protrusion 8 to the above-mentioned intersection P1 is referred to as the protrusion height of the protrusion 8, and is indicated by the symbol H.
  • the protrusion height H of the protrusion 8 is, for example, 0.5 mm or more and 80 mm or less.
  • the outer diameter D of the protruding portion 8 is the diameter of a collective circle of points located at the position of the second base portion 11b, and is, for example, 2 mm or more and 150 mm or less. As shown in FIG. 5, the thickness of the protrusion 8 gradually decreases from the base 11 toward the top 13. Therefore, the thickness Tmin of the top portion 13 is thinner than the thickness Tmax of the base portion 11.
  • the thickness Tmax of the base portion 11 is, for example, 0.19 mm or more and 1.9 mm or less.
  • the thickness Tmin of the top portion 13 is, for example, 0.15 mm or more and 1.0 mm or less.
  • the ratio Tmin/Tmax of the thickness Tmax of the base portion 11 and the thickness Tmin of the top portion 13 is preferably 0.08 or more and 0.9 or less, more preferably 0.1 or more and 0.8 or less, and even more preferably 0.2. 0.5 or less.
  • the protrusion 8 protrudes from the frame 7 at a predetermined protrusion angle ⁇ .
  • the protrusion angle ⁇ is defined as follows.
  • the intersection of the second line L2 and the inner surface 8a of the protrusion 8 is defined as the first reference point RP1.
  • first line L1 draw a straight line (hereinafter referred to as "fourth line") L4 parallel to the second line L2 from a point P3 located at a height of half (H/2) of the protrusion height H, and draw a straight line L4 parallel to the second line L2.
  • second reference point RP2 The intersection of the line L4 and the inner surface 8a of the protrusion 8 is defined as a second reference point RP2.
  • the angle (acute angle) formed by the sixth line L6 is defined as the protrusion angle ⁇ .
  • the protrusion angle ⁇ is preferably 40° or more, 45° or more, 50° or more, 60° or more, preferably 90° or less, 85° or less, or 80° or less.
  • the inner surface 8a and outer surface 8b of the protrusion 8 are configured as continuous curved surfaces from the base 11 to the top 13.
  • the surface roughness Ra of the inner surface 8a is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the surface roughness Ra of the outer surface 8b is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the opening 8c of the protrusion 8 is for inserting the light emitting element 3 provided on the base 2 into the inside of the protrusion 8 when fixing the lid member 4 to the base 2.
  • the opening 8c of the protrusion 8 has a circular shape, but is not limited to this shape.
  • the opening length L of the opening 8c (in this embodiment, the diameter of the opening 8c) is, for example, 1.5 mm or more and 80 mm or less.
  • the ratio L/H between the opening length L of the opening 8c and the protrusion height H of the protrusion 8 is preferably 1.6 or more and 2.1 or more, and preferably 5.0 or less and 3.0. It is as follows.
  • the connecting portion 9 has a curved shape in order to connect the base portion 11 and the frame portion 7.
  • the connecting portion 9 includes a first curved surface 9a that connects the first main surface 7a of the frame 7 and the inner surface 8a of the protrusion 8, and a second curved surface 9a that connects the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7. It has two curved surfaces 9b.
  • the radius of curvature of the first curved surface 9a is larger than the radius of curvature of the second curved surface 9b.
  • the radius of curvature of the first curved surface 9a is preferably 0.5 mm or more and 1.0 mm or more, and preferably 5.0 mm or less and 4.0 mm or less.
  • the radius of curvature of the second curved surface 9b is preferably 0.5 mm or more and 1.0 mm or more, and preferably 5.0 mm or less and 4.0 mm or less.
  • the surface roughness Ra of the first curved surface 9a is preferably 1.0 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the surface roughness Ra of the second curved surface 9b is preferably 1.0 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
  • the first antireflection film 10a is formed on the inner surface 8a of the protrusion 8 and the first main surface 7a of the frame 7.
  • the first antireflection film 10a has a multilayer film structure that alternately includes, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film.
  • a portion 10a1 formed on the inner surface 8a of the protrusion 8 (hereinafter referred to as "antireflection portion”) has a film thickness that gradually decreases from the top 13 of the protrusion 8 toward the base 11. It is configured so that That is, in the antireflection portion 10a1, the portion formed on the top portion 13 is the thickest, and the portion formed on the base portion 11 is the thinnest.
  • the thickness of the first antireflection film 10a at the position of the base 11 of the protrusion 8 is preferably 0.12 ⁇ m or more and 0.64 ⁇ m or less.
  • the thickness of the first antireflection film 10a at the midway portion 12 of the protrusion 8 is preferably 0.14 ⁇ m or more and 0.72 ⁇ m or less.
  • the thickness of the first antireflection film 10a at the position of the top 13 of the protrusion 8 is preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less.
  • a portion 10a2 (hereinafter referred to as "buffer portion") formed on the first main surface 7a of the frame portion 7 has a constant film thickness.
  • the buffer portion 10a2 has a function of not only preventing reflection of ultraviolet rays but also relieving stress acting on the frame portion 7 when the lid member 4 is joined to the base body 2.
  • the second antireflection film 10b is formed on the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7.
  • the second antireflection film 10b has a multilayer film structure that alternately includes, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film.
  • a portion 10b1 formed on the outer surface 8b of the protruding portion 8 (hereinafter referred to as “anti-reflection portion”) is configured such that the film thickness gradually decreases from the top portion 13 toward the base portion 11. be done. That is, in the antireflection portion 10b1, the portion formed on the top portion 13 is the thickest, and the portion formed on the base portion 11 is the thinnest.
  • the thickness of the second antireflection film 10b at the position of the base 11 of the protrusion 8 is preferably 0.12 ⁇ m or more and 0.64 ⁇ m or less.
  • the thickness of the second antireflection film 10b at the midway portion 12 of the protrusion 8 is preferably 0.14 ⁇ m or more and 0.72 ⁇ m or less.
  • the thickness of the second antireflection film 10b at the position of the top 13 of the protrusion 8 is preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less.
  • the second antireflection film 10b is formed on the lid member 4, it is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film. Furthermore, it is also possible to form a weather-resistant film such as an SiO 2 film or an Al 2 O 3 film to be laminated on the second antireflection film 10b.
  • a metal layer 14 and a bonding portion 15 are formed in the buffer portion 10a2 of the first antireflection film 10a.
  • the Young's modulus of the buffer portion 10a2 is preferably 250 GPa or less, more preferably 200 GPa or less, still more preferably 150 GPa or less, particularly preferably 100 GPa or less.
  • the buffering performance of the buffer section 10a2 can be improved, and the effect of relieving stress caused by the difference in coefficient of thermal expansion between the joint section 15 and the lid member 4 (frame section 7) can be obtained.
  • the thermal expansion coefficient of the frame portion 7 is smaller than that of the joint portion 15. Further, the thermal expansion coefficient of the frame portion 7 is smaller than that of the base body 2.
  • the thickness of the buffer portion 10a2 is preferably 0.1 ⁇ m or more and 0.2 ⁇ m or more, and preferably 1.0 ⁇ m or less and 0.8 ⁇ m or less.
  • the buffering properties of the buffer section 10a2 can be further enhanced, and the effect of relieving stress caused by the difference in thermal expansion coefficient between the joint section 15 and the lid member 4 (frame section 7) can be obtained. It will be done. Further, by defining the upper limit in this way, the manufacturing cost of the buffer portion 10a2 can be reduced.
  • the metal layer 14 is formed to overlap the buffer portion 10a2.
  • the metal layer 14 is formed on the surface of the buffer section 10a2 opposite to the surface of the buffer section 10a2 that contacts the first main surface 7a of the frame section 7.
  • the metal layer 14 has a rectangular frame shape corresponding to the shape of the metal layer 6 of the base 2.
  • the shape of the metal layer 14 is not limited to this embodiment.
  • the metal layer 14 may have a circular shape or other various frame shapes.
  • the metal layer 14 includes three layers, a base layer, an intermediate layer, and a surface layer, in order from the buffer portion 10a2 side.
  • metals used for the underlayer include Cr, Ta, W, Ti, Mo, Ni, and Pt.
  • the Young's modulus of the base layer is preferably 279 GPa or less.
  • the metal used for the intermediate layer include Ni, Pt, and Pd.
  • metals used for the surface layer include Au, Sn, Ag, Ni, and Pt.
  • the metal used for the metal layer 14 may be a single substance or an alloy.
  • the joint portion 15 is configured in a layered manner so as to overlap the metal layer 14. As shown in FIG. 5, the joint portion 15 is in contact with a portion of the metal layer 14 that is opposite to the portion that is in contact with the buffer portion 10a2. As shown in FIG. 6, the joint portion 15 has a rectangular frame shape corresponding to the shapes of the buffer portion 10a2 and the metal layer 14. The shape of the joint portion 15 is not limited to this embodiment, and may be circular or other various frame shapes.
  • the joint portion 15 is made of a metal-based joint material.
  • the metal bonding material those commercially available as solder materials and brazing materials can be used.
  • the metal bonding material include Au--Sn alloy, Pb--Sn alloy, Au--Ge alloy, Sn--Ni alloy, and the like. Note that by making the width of the joint portion 15 narrower than the width of the buffer portion 10a2, the influence of stress due to the difference in coefficient of thermal expansion between the joint portion 15 and the lid member 4 can be reduced. In this embodiment, a case will be described in which an Au--Sn alloy is used as the metal-based bonding material.
  • the sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at a joint portion 15.
  • This method includes a preparation step of preparing the base body 2 and the lid member 4, and a joining step of joining the base body 2 and the lid member 4.
  • the light emitting element 3 is mounted on the first main surface 2a.
  • the first antireflection film 10a is formed on the lid member 4. Thereafter, a metal layer 14 and a bonding portion 15 are formed on the buffer portion 10a2 of the first antireflection film 10a. Note that by forming the second antireflection film 10b on the lid member 4, it is also possible to further improve the light extraction efficiency.
  • This process includes a molding process and a film forming process.
  • FIG. 7 shows a molding device used in the molding process.
  • the molding device 16 includes a support stand 17 that supports the glass plate GS, a mask member 18 placed over the glass plate GS supported by the support stand 17, and a molding device 16 for forming the protrusion 8 of the lid member 4 on the glass plate GS.
  • a heating source 19 that thermally deforms a portion is provided.
  • the molding device 16 includes a pressing member 20 that presses the support base 17 and the mask member 18 in a direction to make them approach each other, and an external force generating device 21 that applies an external force to a part of the plate glass GS.
  • the support stand 17 has a support part 17a that supports the glass plate GS, and a space part 17b that has an opening surrounded by the support part 17a and allows thermal deformation of a part of the glass plate GS.
  • the support portion 17a of the support stand 17 has a support surface that supports the main surface of the glass plate GS.
  • the opening of the support base 17 has a circular opening edge E1, but may have an opening edge in a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape. .
  • the space 17b of the support base 17 may be formed by a through hole, or may be formed by a recessed portion having an inner bottom.
  • the space 17b of the support base 17 is configured to mold the entire protrusion 8 of the lid member 4 in a non-contact manner.
  • materials constituting the support base 17 include metals, ceramics, and the like.
  • a lower receiving jig for receiving the plate glass GS may be provided in the space 17b.
  • the lower support jig is made of metal or ceramics. As mentioned above, it is preferable to mold the entire protruding part 8 of the lid member 4 in a non-contact state. By making the size smaller), even if a lower receiving jig is used, the lid member 4 can be formed with high precision.
  • the mask member 18 has a through hole 18a.
  • the through hole 18a of the mask member 18 of this embodiment has a circular inner peripheral edge E2, but may have an inner peripheral edge in a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape. It's okay.
  • the support stand 17 and the mask member 18 are configured such that at least a portion of the inner peripheral edge E2 of the through hole 18a in the mask member 18 is located inside the opening edge E1 of the support stand 17. Specifically, the support stand 17 and the mask member 18 are configured such that the entire inner peripheral edge E2 of the through hole 18a of the mask member 18 is disposed inside the opening edge E1 of the support stand 17.
  • the cross-sectional area of the through hole 18a of the mask member 18 is preferably 95% or less, more preferably 80% or less. At least a part of the inner circumferential edge E2 of the through hole 18a in the mask member 18 is preferably arranged so as to be 1 mm or more inward than the opening edge E1 of the support base 17, and is arranged so as to be 3 mm or more inward. It is more preferable.
  • the mask member 18 is made of a material having a thermal conductivity of 1 [W/(m ⁇ K)] or less at 600°C.
  • ceramics is suitable as a material constituting the mask member 18.
  • the thickness of the mask member 18 is preferably 1 mm or more.
  • the mask member 18 of this embodiment has an outer shape that covers the entire outer peripheral edge of the glass plate GS.
  • the heat source 19 is arranged to heat the glass plate GS from the mask member 18 side.
  • the heat source 19 of this embodiment is a burner that injects flame FL toward the glass plate GS. By using a burner, the plate glass GS can be softened relatively quickly.
  • the heating method of the heat source 19 may be, for example, resistance heating or laser heating. Further, the heat source 19 may be configured by combining heat sources of different heating methods.
  • the pressing member 20 presses the mask member 18 toward the support base 17, for example.
  • Examples of the pressing mechanism that presses the pressing member 20 include a fluid cylinder, a linear actuator, and the like. Note that the pressing member 20 can also be configured to press the support base 17 against the fixed mask member 18.
  • an exhaust device can be used as the external force generating device 21, for example.
  • the exhaust device makes the inside of the space 17b of the support stand 17 a negative pressure by exhausting the gas existing in the space 17b of the support stand 17. Thereby, a part of the glass plate GS is sucked into the space 17b of the support stand 17, so that thermal deformation of a part of the glass plate GS can be promoted.
  • a pump using a venturi mechanism is suitable.
  • the external force generating device 21 is not limited to an exhaust device, but may be a high-pressure gas generating device that injects high-pressure gas from the mask member 18 side toward a part of the glass plate GS. Thereby, a part of the plate glass GS is pressurized toward the space 17b of the support stand 17, so that thermal deformation of a part of the plate glass GS can be promoted.
  • a pump and a high-pressure gas generator may be used in combination to promote thermal deformation of a portion of the glass plate GS.
  • the mask member 18 is placed over the glass plate GS supported on the support stand 17.
  • at least a portion of the inner peripheral edge E2 of the through hole 18a of the mask member 18 is arranged inside the opening edge E1 of the support base 17.
  • the pressing member 20 presses the support base 17 and the mask member 18 in a direction that causes them to approach each other. Thereby, the positional shift of the plate glass GS sandwiched between the support stand 17 and the mask member 18 can be suppressed.
  • the glass plate GS is heated from the mask member 18 side by the heat source 19. As a result, a portion of the plate glass GS is thermally deformed, thereby forming the protrusion 8.
  • the opening edge E1 of the support base 17 can be covered with the mask member 18.
  • the connecting portion 9 in the lid member 4 can be formed by thermal deformation of the plate glass GS along the inner peripheral edge E2 of the through hole 18a of the mask member 18. That is, the connecting portion 9 of the lid member 4 is formed without contacting the support base 17.
  • a lid member 4 having a frame portion 7, a protruding portion 8, and a connecting portion 9 is formed.
  • a method for forming the protrusion 8 on the lid member 4 (method for manufacturing the lid member 4) is also available, in addition to the method described above, by placing the plate glass GS on a mold made of metal or ceramics having a recess and fitting it into the recess. It is possible to adopt a method of hot pressing the plate glass GS using a mold made of metal or ceramics having convex portions that fit together.
  • the heating temperature in this hot press is preferably higher than the yielding point of the plate glass GS, more preferably higher than the softening point of the plate glass GS.
  • FIG. 9 shows a film forming apparatus used in the film forming process.
  • a sputtering apparatus such as a magnetron sputtering apparatus is exemplified as a film forming apparatus, but the present invention is not limited to this configuration, and a film forming apparatus that performs other physical vapor deposition methods such as a vacuum evaporation method may be used. You may.
  • the film forming apparatus 22 includes a vacuum chamber 23 and targets 24a and 24b that scatter particles that become the film forming material for the antireflection films 10a and 10b.
  • the vacuum chamber 23 accommodates targets 24a and 24b therein.
  • the internal space of the vacuum chamber 23 is set to a predetermined degree of vacuum by a vacuum pump.
  • An inert gas such as argon gas may be supplied into the vacuum chamber 23 .
  • the targets 24a and 24b include a first target 24a for forming the first antireflection film 10a on the lid member 4, and a second target 24b for forming the second antireflection film 10b on the lid member 4. .
  • a target (not shown) for forming the metal layer 14 is arranged in the vacuum chamber 23.
  • the first target 24a and the second target 24b are a plurality of targets in order to form the first film (SiO 2 ) and second film (HfO 2 ) in the first antireflection film 10a and the second antireflection film 10b. including.
  • the lid member 4 is housed in the vacuum chamber 23. Thereafter, particles scattered from the first target 24a are attached to the inner surface 8a of the protrusion 8 of the lid member 4 and the first main surface 7a of the frame 7, thereby forming the first antireflection film 10a. Similarly, particles scattered from the second target 24b are attached to the outer surface 8b of the protruding portion 8 of the lid member 4 and the second main surface 7b of the frame portion 7, thereby forming the second antireflection film 10b.
  • the amount of particles adhering to the protrusion 8 of the lid member 4 is greatest at the top 13 and least at the base 11.
  • the difference in the amount of particles adhering to the protrusion 8 as described above is due to the effect of the protrusion angle ⁇ of the protrusion 8.
  • the metal layer 14 is formed so as to overlap the buffer portion 10a2 of the first antireflection film 10a.
  • the metal layer 14 is formed by causing particles scattered from a target (not shown) for forming the metal layer 14 to adhere to the buffer portion 10a2 using the film forming apparatus 22 described above.
  • the metal layer 14 is formed into a frame shape by attaching particles to the buffer portion 10a2 through a mask member.
  • a bonding portion 15 is formed so as to overlap the metal layer 14.
  • the joint portion 15 is formed, for example, by a process (coating process) of applying a paste-like metal-based bonding material so as to overlap the metal layer 14 .
  • the coating process include a printing method using a mask (screen printing method), a coating method using a dispenser, and the like.
  • the method for forming the bonding portion 15 is not limited to the above method, and for example, a molded body of a metal bonding material formed in advance into a predetermined frame shape is arranged so as to overlap the metal layer 14 on the first main surface 7a of the frame portion 7. It may also be formed by
  • a heat treatment step is performed to fix the metal-based bonding material to the metal layer 14 on the first main surface 7a.
  • Ru The heat treatment process includes a heating process and a cooling process.
  • the metal bonding material can be melted by heating the lid member 4 using a heating device such as a reflow oven.
  • the heating step may be performed, for example, with the furnace filled with nitrogen.
  • the lid member 4 is heated to a temperature of 300° C. or higher.
  • the metal-based bonding material melted on the first main surface 7a of the frame portion 7 is solidified by being cooled.
  • stress is generated in the lid member 4 due to the difference in thermal expansion coefficient between the frame portion 7 and the joint portion 15, but the buffer portion 10a2 of the first antireflection film 10a can relieve this stress. .
  • the lid member 4 manufactured through the preparation process is stacked on the base body 2. Specifically, the first main surface 7a of the frame 7 of the lid member 4 is made to face the base 2, and the joint portion 15 is brought into contact with the metal layer 6 formed on the first main surface 2a of the base 2.
  • the pressing member 25 is placed on the frame portion 7 of the lid member 4.
  • the pressing member 25 includes a weight 25a and a support member 25b that supports the weight 25a.
  • the weight 25a and the support member 25b are made of metal or ceramic, for example.
  • the support member 25b has a first support part 25b1 that supports the weight 25a, and a second support part 25b2 that supports the first support part 25b1.
  • the first support portion 25b1 has a support surface (upper surface) on which the weight 25a is placed.
  • the second support portion 25b2 includes a plurality of rod-shaped members. The second support portion 25b2 protrudes downward from the lower surface of the first support portion 25b1.
  • the second support portion 25b2 has a contact portion 25b3 that contacts the frame portion 7 of the lid member 4.
  • the contact portion 25b3 has a pointed shape.
  • the contact portion 25b3 contacts the second main surface 7b of the frame portion 7 via the second antireflection film 10b.
  • the pressing member 25 presses the lid member 4 in a state where it is independent on the lid member 4 because each contact portion 25b3 of the plurality of second support portions 25b2 contacts the frame portion 7.
  • the joint portion 15 formed on the frame portion 7 of the lid member 4 and the metal layer 6 formed on the first main surface 2a of the base body 2 are brought into close contact. be able to.
  • the metal layer 6 and the bonding portion 15 are heated while being in pressure contact with each other (heating step).
  • the metal-based bonding material of the bonding portion 15 is in a molten state. Note that in this heating step, since the pointed contact portion 25b3 of the second support portion 25b2 contacts the frame portion 7 of the lid member 4, the contact area between the contact portion 25b3 and the frame portion 7 is made as small as possible. can do. Thereby, heat transfer from the frame portion 7 to the second support portion 25b2 of the pressing member 25 can be minimized.
  • the molten metal-based bonding material is solidified by cooling (cooling step).
  • cooling step stress is generated in the frame part 7 due to the difference in thermal expansion coefficient between the base body 2 and the frame part 7 of the lid member 4.
  • the buffer portion 10a2 of the first antireflection film 10a deforms to relieve this stress. Thereby, damage to the frame portion 7 can be reduced.
  • the sealing part 5 is formed by joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 together at the joint part 15.
  • FIG. 12 shows an example of a glass substrate for manufacturing the lid member 4.
  • the glass substrate G includes a frame 7, a plurality of protrusions 8 protruding from the frame 7, and antireflection films 10a and 10b.
  • Each protrusion 8 has the same configuration as the protrusion 8 of the lid member 4 described above.
  • Each of the protrusions 8 is formed by thermally deforming a plurality of locations of the large plate glass GS using the above-mentioned forming device 16. By cutting this glass substrate G along the cutting line CL, it is possible to efficiently manufacture a plurality of lid members each having the protruding portion 8, the frame portion 7, and the antireflection films 10a and 10b. Note that a metal layer 14 and a bonding portion 15 may be formed on the first antireflection film 10a.
  • FIG. 13 shows another example of the lid member.
  • the lid member 4 includes a frame 7, a plurality of protrusions 8 protruding from the frame 7, antireflection films 10a and 10b, a metal layer 14, and a joint 15.
  • Each component of this lid member 4 has the same configuration as the lid member 4 described above (FIG. 5).
  • this lid member 4 can individually seal each light emitting element 3 with a plurality of protrusions 8.
  • FIG. 14 shows another example of the lid member.
  • the inner surface 8a of the lid member 4 has a first curved surface 8a1 and a second curved surface 8a2 having different radii of curvature, and a boundary portion 8a3 located between the first curved surface 8a1 and the second curved surface 8a2.
  • the radius of curvature of the first curved surface 8a1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8a2 formed on the top 13 side of the protrusion 8.
  • the outer surface 8b of the lid member 4 has a first curved surface 8b1 and a second curved surface 8b2 having different radii of curvature, and a boundary portion 8b3 located between the first curved surface 8b1 and the second curved surface 8b2.
  • the radius of curvature of the first curved surface 8b1 formed on the side of the base 11 of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8b2 formed on the side of the top 13 of the protrusion 8.
  • the lid member 4 includes a plurality of protrusions 8 arranged in double rows and double rows, antireflection films 10a and 10b (the first antireflection film 10a is not shown), and a metal layer 14 (not shown). (omitted) and a joint portion 15 (not shown).
  • the lid member 4 shown in FIG. 15 has a plurality of protrusions 8 that are circular in plan view.
  • the lid member 4 shown in FIG. 16 has a plurality of protrusions 8 having a rectangular shape in plan view.
  • a scribe line is inserted into the smooth surface between adjacent protrusions 8, and the lid member 4 is inserted along this scribe line.
  • FIG. 17 is a bottom view showing another example of the lid member.
  • the lid member 4 has a protrusion 8 having a rectangular shape in plan view, similar to the example shown in FIG.
  • the opening 8c of the protrusion 8 is configured to have a rectangular shape (for example, a square shape).
  • the opening length L corresponds to the length of one side of the square.
  • the opening length L corresponds to the length of the long side of the rectangle.
  • FIG. 18 shows another example of the lid member manufacturing method (preparation step in the package manufacturing method).
  • This example shows a step of forming a bonding portion 15 on a glass substrate G on which antireflection films 10a, 10b and a metal layer 14 are formed.
  • the glass substrate G is fixed to the support device 26 when forming the joint portion 15 by screen printing.
  • the support device 26 includes a support plate 27 that supports the glass substrate G, and a suction stand 29 that supports the support plate 27.
  • the support plate 27 is configured to be detachable from the suction table 29.
  • the support plate 27 has an opening 28 into which the protruding part 8 and the connecting part 9 of the glass substrate G can be inserted.
  • the support plate 27 can be inserted into the opening 28 with the protrusion 8 of the glass substrate G facing downward, without coming into contact with the protrusion 8 and the coupling part 9. Only the frame portion 7 of the glass substrate G can be supported.
  • the suction table 29 includes a support part 30 that supports the support plate 27 and a suction port 31 for fixing the glass substrate G to the support plate 27.
  • the support portion 30 has a support surface 30a that supports the peripheral edge of the support plate 27.
  • the suction stand 29 has a space 29a between the support plate 27 supported by the support part 30 and the suction port 31.
  • the suction port 31 is connected to a suction device (exhaust device) such as a pump (not shown).
  • the suction stand 29 makes the inside of the space 29a negative by discharging the gas present in the space 29a from the suction port 31 while the support plate 27 on which the glass substrate G is placed is supported by the support part 30. Pressure. Thereby, the glass substrate G is fixed to the support plate 27 by being sucked toward the space 29a through the opening 28 of the support plate 27. Thereafter, a paste-like metal-based bonding material for the bonding portion 15 is applied by screen printing so as to overlap the metal layer 14 of the glass substrate G.
  • FIG. 19 shows another example of the package.
  • the package 1 in this example includes a base 2 on which a plurality of light emitting elements 3 are mounted, and a lid member 4 illustrated in FIG. 13. This lid member 4 individually seals each light emitting element 3 mounted on the base 2 with a plurality of protrusions 8 and a sealing part 5.
  • the antireflection films 10a and 10b are formed on the inner surface 8a and the outer surface 8b of the protrusion 8 in the lid member 4, and the light emitting element 3
  • the light emitted from the projection 8 can be efficiently transmitted through the projection 8. This makes it possible to increase the light extraction efficiency in the package 1 in which the lid member 4 is used as much as possible.
  • the thickness of the top portion 13 of the protruding portion 8 of the lid member 4 is thinner than the thickness of the base portion 11, whereas the thickness of the antireflection coatings 10a, 10b is smaller than that of the top portion 13. It is thicker at the base 11 and thinner at the base 11. Due to the above structure of the protrusion 8, the light emitted from the light emitting element 3 is relatively easy to pass through the top 13 of the protrusion 8, and relatively difficult to pass through the base 11. That is, in this embodiment, the thickness of the anti-reflection films 10a, 10b is increased in areas where light is relatively easy to transmit, and the thickness of the anti-reflection films 10a, 10b is increased in areas where light is relatively difficult to transmit. It's thin.
  • the antireflection films 10a and 10b absorb a small amount of transmitted light. As the anti-reflection films 10a and 10b become thicker, the amount of light absorbed increases. Therefore, as mentioned above, the thickness of the anti-reflection films 10a and 10b at the base 11 of the protrusion 8 where it is difficult for light to pass through is reduced. By doing so, it becomes possible to transmit light relatively evenly between the base portion 11 and the top portion 13.
  • the present invention is not limited to this configuration.
  • the lid member 4 and the glass substrate G according to the present invention may have only the first antireflection film 10a or only the second antireflection film 10b.
  • the lid member 4 having the protruding portion 8 in which the thickness of the top portion 13 is thinner than the thickness of the base portion 11 is illustrated, but the present invention is not limited to this configuration.
  • the present invention is also applicable to a lid member 4 including a protrusion 8 having a constant thickness from the base 11 to the top 13.
  • FIG. 20 shows another example of the lid member.
  • the inner surface 8a of the lid member 4 includes a first curved surface 8a1 that is convex toward the inside of the protrusion 8, a second curved surface 8a2 that is convex toward the outside of the protrusion 8, and a first curved surface 8a1. and an inflection point 8a3 located between the second curved surface 8a2 and the second curved surface 8a2.
  • the first curved surface 8a1 is formed at a position closer to the base 11 of the protrusion 8 than the second curved surface 8a2.
  • the center of curvature of the first curved surface 8a1 is located on the outside of the protrusion 8.
  • the second curved surface 8a2 is formed at a position closer to the top 13 than the first curved surface 8a1.
  • the center of curvature of the second curved surface 8a2 is located inside the protrusion 8.
  • the outer surface 8b of the lid member 4 has a first curved surface 8b1 that is convex toward the inside of the protrusion 8, a second curved surface 8b2 that is convex toward the outside of the protrusion 8, and the first curved surface 8b1 and the second curved surface. 8b3, and an inflection point 8b3 located between 8b2 and 8b2.
  • the first curved surface 8b1 is formed at a position closer to the base 11 of the protrusion 8 than the second curved surface 8b2.
  • the center of curvature of the first curved surface 8b1 is located on the outside of the protrusion 8.
  • the second curved surface 8b2 is formed at a position closer to the top 13 of the protrusion 8 than the first curved surface 8b1.
  • the center of curvature of the second curved surface 8b2 is located inside the protrusion 8.
  • the inflection point 8a3 and the inflection point 8b3 are provided above the second main surface 7b of the frame portion 7 (on
  • the inflection points 8a3 and 8b3 on the inner surface 8a and the outer surface 8b can be formed on the lid member 4 by the molding apparatus and molding method shown in FIGS. 7 to 9.
  • the protrusion angle ⁇ of the protrusion 8 becomes small in the molding process, and there is a possibility that the light extraction efficiency decreases.
  • the protrusion angle ⁇ is set to 40° or more and 90° or less, so that the light in the lid member 4 is It becomes possible to increase the extraction efficiency.
  • the protrusion angle ⁇ is preferably 45° or more, 50° or more, 55° or more, 60° or more, 65° or more, and 70° or more in this order.
  • the protrusion angle ⁇ is preferably less than 90°, more preferably 85° or less. In this example, the definition of the protrusion angle ⁇ is different from the embodiment of FIG. 5 .
  • the protrusion angle ⁇ is the angle (acute angle) formed by the tangent L8 at the inflection point 8a3 and the first principal surface 7a of the frame portion 7.
  • the angle (acute angle) formed by the tangent L8 at the inflection point 8a3 and the sixth line L6 drawn along the first principal surface 7a of the frame portion 7 is defined as the protrusion angle ⁇ .
  • the opening length L and protrusion height H of the opening 8c are the same as those in the embodiment shown in FIG.
  • the anti-reflection films (10a, 10b) are not necessarily required, it is preferable to provide the anti-reflection films (10a, 10b), and the material and thickness of the anti-reflection films (10a, 10b) are The preferred form is similar to the embodiment shown in FIG. In this example, preferred embodiments regarding the thickness (thickness of the base 11, thickness of the top 13) and outer diameter of the protrusion 8 are the same as those of the embodiment shown in FIG.
  • the shape of the lid member is different from the above embodiment.
  • the top portion 13 of the lid member 4 in this example has a flat plate shape.
  • antireflection films 10a and 10b having a uniform thickness can be formed on the inner surface 8a and outer surface 8b of the lid member 4 related to the top portion 13. .
  • the flat top portion 13 on the lid member 4 it becomes possible to make the distance D1 between the top portion 13 and the light emitting element 3 as small as possible.
  • the light emitted from the light emitting element 3 is more likely to be perpendicularly incident on the flat top portion 13. Therefore, the light extraction efficiency in the lid member 4 can be significantly improved.
  • the molding device 16 includes a support stand 17, a mask member 18, a heat source 19, a pressing member 20, an external force generator 21, and a mold (lower receiving jig) 32. Be prepared.
  • the configurations of the support base 17, mask member 18, heat source 19, pressing member 20, and external force generating device 21 are the same as those illustrated in FIG.
  • the mold 32 is placed within the space 17b of the support stand 17.
  • the mold 32 has a molding surface 32a that molds a part of the plate glass GS that is softened by heating.
  • the molding surface 32a is configured into a flat surface.
  • the surface roughness (arithmetic mean roughness) Ra of the molding surface 32 is, for example, 0.1 nm or more and 10 nm or less.
  • the mask member 18 is placed over the plate glass GS supported on the support stand 17.
  • at least a portion of the inner peripheral edge E2 of the through hole 18a of the mask member 18 is arranged inside the opening edge E1 of the support base 17.
  • the pressing member 20 presses the support base 17 and the mask member 18 in a direction that causes them to approach each other.
  • the plate glass GS is heated from the mask member 18 side using the heat source 19. As a result, a portion of the plate glass GS is thermally deformed. At this time, a part of the deformed plate glass G comes into contact with the molding surface 32a of the mold 32. As a result, a part of the plate glass G is formed into a flat plate shape.
  • a lid member 4 having a frame portion 7, a protruding portion 8 including a flat top portion 13, and a connecting portion 9 is formed.
  • the package 1 can be manufactured by performing the film forming process and bonding process illustrated in FIGS. 9 to 11 on this lid member 4.
  • the inventor conducted a test to measure the light extraction efficiency of the lid member.
  • lid members equipped with an anti-reflection film (samples 1, 3, 5, 7, 9) and lid members without an anti-reflection film (samples 2, 4, 6, 8, 10) were prepared.
  • the light extraction efficiency was measured for each example.
  • a lid member having the shape shown in FIG. 20 was used for each sample.
  • the light extraction efficiency is determined by measuring the energy EN1 of the light (wavelength 265 nm, 280 nm) emitted from the light emitting element without passing through the lid member, and measuring the energy EN1 of the light (wavelength 265 nm, 280 nm) emitted from the light emitting element transmitted through the lid member.
  • the energy EN2 was measured when the temperature was increased, and the energy EN2 was calculated from the ratio of these energies (EN2/EN1).
  • the lid member on which the antireflection film is formed is higher than that of a lid member on which no antireflection film is formed. Furthermore, when the conditions of whether or not an antireflection film is formed are the same, as the protrusion angle ⁇ increases, the light extraction efficiency increases, and the ratio L/H of the aperture length L and the protrusion height H The smaller the value, the higher the light extraction efficiency. In other words, even if no antireflection film was formed, the light extraction efficiency could be increased by increasing the protrusion angle ⁇ .

Abstract

A glass lid member 4 comprises: a panel-shaped frame 7; and a dome-shaped protrusion 8 that protrudes from the frame 7. The protrusion 8 includes an inner surface 8a and an outer surface 8b. An antireflection film 10a is formed on the inner surface 8a of the protrusion 8.

Description

蓋部材、パッケージ及びガラス基板Lid members, packages and glass substrates
 本発明は、パッケージ用の蓋部材、及び蓋部材を有するパッケージ並びに蓋部材を形成するためのガラス基板に関する。 The present invention relates to a lid member for a package, a package having the lid member, and a glass substrate for forming the lid member.
 例えば特許文献1には、発光素子(LED素子)が実装される基体(基板)と、発光素子を覆うように基体に固定されるドーム状の蓋部材(透光性カバー)と、基体と蓋部材とを接合する接着材とを備えるパッケージが開示されている。このパッケージでは、蓋部材をドーム状に構成することで、蓋部材と基体との間に発光素子を収容する空間を確保している。 For example, Patent Document 1 describes a base (substrate) on which a light emitting element (LED element) is mounted, a dome-shaped lid member (transparent cover) fixed to the base so as to cover the light emitting element, and a base and a lid. A package is disclosed that includes an adhesive for joining the components. In this package, by configuring the lid member in a dome shape, a space for accommodating the light emitting element is secured between the lid member and the base body.
特開2011-66169号公報Japanese Patent Application Publication No. 2011-66169
 上記のようなドーム状の蓋部材が使用されたパッケージについて、更なる性能向上のための研究開発が推進されている。 Research and development is being promoted to further improve the performance of packages using dome-shaped lid members as described above.
 本発明は、発光素子を含むパッケージに使用される蓋部材における光の取り出し効率を向上させることを技術的課題とする。 A technical problem of the present invention is to improve the light extraction efficiency in a lid member used for a package including a light emitting element.
 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材であって、板状の枠部と、前記枠部から突出するドーム状の突出部とを備え、前記突出部は、内面及び外面を有し、前記突出部の前記内面及び前記外面の少なくとも一方には、反射防止膜が形成されている、ことを特徴とする。 The present invention is intended to solve the above-mentioned problems, and is a glass lid member used for a package containing a light emitting element, which comprises a plate-shaped frame and a dome-shaped protrusion that protrudes from the frame. The protrusion has an inner surface and an outer surface, and an antireflection film is formed on at least one of the inner surface and the outer surface of the protrusion.
 かかる構成によれば、蓋部材における突出部の内面に反射防止膜を形成することで、発光素子から放出された光を突出部によって効率良く透過させることができる。これにより、パッケージに使用される蓋部材の光の取り出し効率を可及的に高めることが可能となる。 According to this configuration, by forming the antireflection film on the inner surface of the protrusion in the lid member, the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the lid member used in the package as much as possible.
 本発明に係る蓋部材において、前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、前記枠部の前記第一主面には、前記反射防止膜が形成されていてもよい。 In the lid member according to the present invention, the frame has a first main surface connected to the inner surface of the protrusion, and a second main surface connected to the outer surface of the protrusion, and the frame has a second main surface connected to the outer surface of the protrusion. The antireflection film may be formed on one main surface.
 枠部の第一主面に形成された反射防止膜は、枠部を基体に接合する際に、接合部分に作用する応力を緩和する機能を有する。これにより、蓋部材を破損させることなく基体に接合することができる。 The antireflection film formed on the first main surface of the frame has a function of relieving stress acting on the bonded portion when the frame is bonded to the base. Thereby, the lid member can be joined to the base without damaging it.
 本発明に係る蓋部材において、前記枠部の前記第一主面に形成されている前記反射防止膜の前記第一主面側とは反対側に金属層が形成されていてもよい。 In the lid member according to the present invention, a metal layer may be formed on a side opposite to the first main surface side of the antireflection film formed on the first main surface of the frame portion.
 かかる構成によれば、蓋部材に接合材を形成する際に、この金属層を使用することで、接合材が金属層に良好になじみ、結果として、蓋部材と基体を好適に接合することができる。 According to this configuration, by using this metal layer when forming the bonding material on the lid member, the bonding material is well adapted to the metal layer, and as a result, the lid member and the base can be bonded appropriately. can.
 本発明に係る蓋部材において、前記突出部の前記内面には、前記反射防止膜が形成されており、前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、前記頂部に形成されている前記反射防止膜の厚さは、前記基部に形成されている前記反射防止膜の厚さよりも厚くてもよい。 In the lid member according to the present invention, the antireflection film is formed on the inner surface of the protrusion, and the protrusion includes a top and a base integrally formed with the frame; The thickness of the anti-reflection film formed on the top portion may be thicker than the thickness of the anti-reflection film formed on the base portion.
 本発明に係る蓋部材において、前記反射防止膜は、酸化ハフニウム膜を含んでもよい。  In the lid member according to the present invention, the antireflection film may include a hafnium oxide film. 
 本発明に係る蓋部材において、前記突出部の前記頂部の厚さは、前記突出部の前記基部の厚さよりも薄くてもよい。 In the lid member according to the present invention, the thickness of the top of the protrusion may be thinner than the thickness of the base of the protrusion.
 かかる構成によれば、蓋部材の突出部における頂部の厚さを基部の厚さよりも薄くすることで、この突出部の透過率を高めることが可能となる。加えて、突出部の基部の厚さは、頂部の厚さよりも厚くなることから、この基部における強度を頂部よりも高めることができる。したがって、蓋部材の光の取り出し効率の向上と強度の確保とを両立させることが可能となる。 According to this configuration, by making the thickness of the top of the protrusion of the lid member thinner than the thickness of the base, it is possible to increase the transmittance of this protrusion. In addition, since the thickness of the base of the protrusion is greater than the thickness of the top, the strength at this base can be made higher than at the top. Therefore, it is possible to both improve the light extraction efficiency of the lid member and ensure its strength.
 本発明に係る蓋部材において、前記突出部の前記外面には、第二の反射防止膜が形成されていてもよい。これにより、蓋部材における光の取り出し効率をさらに高めることができる。 In the lid member according to the present invention, a second antireflection film may be formed on the outer surface of the protrusion. Thereby, the light extraction efficiency in the lid member can be further improved.
 前記頂部に形成されている前記第二の反射防止膜の厚さは、前記基部に形成されている前記第二の反射防止膜の厚さよりも厚くてもよい。 The thickness of the second anti-reflection film formed on the top portion may be thicker than the thickness of the second anti-reflection film formed on the base portion.
 前記突出部は、所定の突出角度で前記枠部から突出しており、前記突出部の前記突出角度は、40°以上90°以下であってもよい。これにより、突出部における光の取り出し効率を高めることができる。 The protruding portion may protrude from the frame portion at a predetermined protruding angle, and the protruding angle of the protruding portion may be 40° or more and 90° or less. Thereby, the light extraction efficiency in the protrusion can be increased.
 前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、前記突出部は、前記内面側に形成される開口部を有し、前記開口部の開口長さLと、前記突出部の突出高さHとの比L/Hは、1.6以上5.0以下であってもよい。これにより、突出部における光の取り出し効率を高めることができる。 The protrusion includes a top and a base integrally formed with the frame, the protrusion has an opening formed on the inner surface, and an opening length L of the opening; The ratio L/H of the protrusion to the protrusion height H may be 1.6 or more and 5.0 or less. Thereby, the light extraction efficiency in the protrusion can be increased.
 本発明に係る蓋部材において、前記開口部は、四角形状に構成されてもよい。 In the lid member according to the present invention, the opening may have a rectangular shape.
 本発明に係る蓋部材において、前記内面は、第一曲面と、第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有してもよい。これにより、蓋部材の形状が滑らかになり、外的な衝撃に対する耐性を持たせることができる。なお、この変曲点を有する蓋部材の場合、突出部における光の取り出し効率が低下する虞があるため、前述の突出角度や開口部の開口長さLと突出部の突出高さHとの比L/Hを規定することで、突出部における光の取り出し効率を高めることができる。 In the lid member according to the present invention, the inner surface may have a first curved surface, a second curved surface, and an inflection point located between the first curved surface and the second curved surface. Thereby, the shape of the lid member becomes smooth and can be made resistant to external impacts. In the case of a lid member having this inflection point, there is a risk that the light extraction efficiency at the protrusion may be reduced, so the above-mentioned protrusion angle, opening length L of the opening, and protrusion height H of the protrusion may be changed. By defining the ratio L/H, the light extraction efficiency in the protrusion can be increased.
 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられるガラス製の蓋部材であって、板状の枠部と、前記枠部から突出するドーム状の突出部とを備え、前記突出部は、内面及び外面を有し、前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、前記内面は、前記枠部の前記第一主面と繋がり前記突出部の内側に向かって凸となる第一曲面と、前記突出部の外側に向かって凸となる第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有し、前記突出部は、前記変曲点における接線と前記枠部の第一主面とが成す突出角度で前記枠部から突出しており、前記突出部の前記突出角度は、40°以上90°以下である、ことを特徴とする。 The present invention is intended to solve the above-mentioned problems, and is a glass lid member used for a package containing a light emitting element, which comprises a plate-shaped frame and a dome-shaped protrusion that protrudes from the frame. The protrusion has an inner surface and an outer surface, and the frame has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion. The inner surface includes a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, a second curved surface that is convex toward the outside of the protrusion, and an inflection point located between the first curved surface and the second curved surface, and the protrusion is formed at the protrusion angle formed by the tangent at the inflection point and the first principal surface of the frame. The protrusion protrudes from the frame, and the protrusion angle of the protrusion is 40° or more and 90° or less.
 かかる構成によれば、第一曲面と第二曲面を有する蓋部材の突出部の形状の場合、突出角度が低くなる傾向にあるため、発光素子から発光する光が突出部内部で散乱して光取り出し効率が低下しがちであるところ、突出角度を高くすることで突出部内部での光の散乱を防止し、蓋部材における光の取り出し効率を高めることができる。 According to this configuration, in the case of the shape of the protrusion of the lid member having the first curved surface and the second curved surface, the protrusion angle tends to be low, so that the light emitted from the light emitting element is scattered inside the protrusion and the light is Although the extraction efficiency tends to decrease, by increasing the protrusion angle, scattering of light inside the protrusion can be prevented and the light extraction efficiency in the lid member can be increased.
 本発明は上記の課題を解決するためのものであり、発光素子と、前記発光素子を支持する基体と、上記の蓋部材と、を備えるパッケージであることを特徴とする。 The present invention is intended to solve the above problems, and is characterized by a package including a light emitting element, a base supporting the light emitting element, and the lid member described above.
 かかる構成によれば、蓋部材における突出部の内面に反射防止膜を形成することで、発光素子から放出された光を突出部によって効率良く透過させることができる。これにより、パッケージの光の取り出し効率を可及的に高めることが可能となる。 According to this configuration, by forming the antireflection film on the inner surface of the protrusion in the lid member, the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the package as much as possible.
 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられる蓋部材を製造するためのガラス基板であって、板状の枠部と、前記枠部から突出する複数のドーム状の突出部と、を備え、前記突出部は、内面及び外面を有し、前記突出部の前記内面には、反射防止膜が形成されている、ことを特徴とする。 The present invention is intended to solve the above-mentioned problems, and provides a glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising a plate-shaped frame portion and a plurality of glass substrates protruding from the frame portion. a dome-shaped protrusion, the protrusion has an inner surface and an outer surface, and an antireflection film is formed on the inner surface of the protrusion.
 かかる構成によれば、ガラス基板における突出部の内面に反射防止膜を形成することで、発光素子から放出された光を突出部によって効率良く透過させることができる。これにより、ガラス基板から製造された蓋部材の光の取り出し効率を可及的に高めることが可能となる。 According to this configuration, by forming an antireflection film on the inner surface of the protrusion in the glass substrate, the light emitted from the light emitting element can be efficiently transmitted through the protrusion. This makes it possible to increase the light extraction efficiency of the lid member manufactured from the glass substrate as much as possible.
 本発明は上記の課題を解決するためのものであり、発光素子を含むパッケージに用いられる蓋部材を製造するためのガラス基板であって、板状の枠部と、前記枠部から突出する複数のドーム状の突出部とを備え、前記突出部は、内面及び外面を有し、前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、前記内面は、前記枠部の前記第一主面と繋がり前記突出部の内側に向かって凸となる第一曲面と、前記突出部の外側に向かって凸となる第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有し、前記突出部は、前記変曲点における接線と前記枠部の前記第一主面とが成す突出角度で前記枠部から突出しており、前記突出部の前記突出角度は、40°以上90°以下である、ことを特徴とする。 The present invention is intended to solve the above-mentioned problems, and provides a glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising a plate-shaped frame portion and a plurality of glass substrates protruding from the frame portion. a dome-shaped protrusion, the protrusion has an inner surface and an outer surface, and the frame has a first main surface connected to the inner surface of the protrusion, and a first main surface connected to the outer surface of the protrusion. and a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, and a first curved surface that is convex toward the outside of the protrusion. a second curved surface; and an inflection point located between the first curved surface and the second curved surface, and the protrusion includes a tangent at the inflection point and the first main surface of the frame. The protruding portion protrudes from the frame portion at a protruding angle formed by the protruding portion, and the protruding angle of the protruding portion is 40° or more and 90° or less.
 かかる構成によれば、第一曲面と第二曲面を有する蓋部材の突出部の形状の場合、突出角度が低くなる傾向にあるため、発光素子から発光する光が突出部内部で散乱して光取り出し効率が低下しがちであるところ、突出角度を高くすることで突出部内部での光の散乱を防止し、ガラス基板から製造された蓋部材の光の取り出し効率を可及的に高めることが可能となる。 According to this configuration, in the case of the shape of the protrusion of the lid member having the first curved surface and the second curved surface, the protrusion angle tends to be low, so that the light emitted from the light emitting element is scattered inside the protrusion and the light is The extraction efficiency tends to decrease, but by increasing the protrusion angle, light scattering inside the protrusion can be prevented and the light extraction efficiency of the lid member manufactured from the glass substrate can be increased as much as possible. It becomes possible.
 本発明によれば、発光素子を含むパッケージに使用される蓋部材における光の取り出し効率を向上させることができる。 According to the present invention, it is possible to improve the light extraction efficiency in a lid member used for a package including a light emitting element.
パッケージの斜視図である。FIG. 3 is a perspective view of the package. パッケージの断面図である。FIG. 3 is a cross-sectional view of the package. 基体の断面図である。FIG. 3 is a cross-sectional view of the base. 基体の平面図である。FIG. 3 is a plan view of the base. 蓋部材の断面図であるIt is a sectional view of a lid member. 蓋部材の底面図である。It is a bottom view of a lid member. パッケージの製造方法の準備工程を示す断面図である。FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method. パッケージの製造方法の準備工程を示す断面図である。FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method. パッケージの製造方法の成膜工程を示す断面図である。FIG. 3 is a cross-sectional view showing a film forming process in the package manufacturing method. パッケージの製造方法の接合工程を示す断面図である。FIG. 3 is a cross-sectional view showing a bonding step in the package manufacturing method. パッケージの製造方法の接合工程を示す断面図である。FIG. 3 is a cross-sectional view showing a bonding step in the package manufacturing method. パッケージ用の蓋部材を製造するためのガラス基板を示す断面図である。It is a sectional view showing a glass substrate for manufacturing a lid member for a package. 蓋部材の他の例を示す断面図である。It is a sectional view showing other examples of a lid member. 蓋部材の他の例を示す断面図である。It is a sectional view showing other examples of a lid member. 蓋部材の他の例を示す平面図である。FIG. 7 is a plan view showing another example of the lid member. 蓋部材の他の例を示す平面図である。FIG. 7 is a plan view showing another example of the lid member. 蓋部材の他の例を示す底面図である。FIG. 7 is a bottom view showing another example of the lid member. パッケージの製造方法の準備工程における他の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the preparation process of the package manufacturing method. パッケージの他の例を示す断面図である。FIG. 7 is a sectional view showing another example of the package. 蓋部材の他の例を示す断面図である。It is a sectional view showing other examples of a lid member. パッケージの他の例を示す断面図である。FIG. 7 is a sectional view showing another example of the package. 蓋部材の断面図である。It is a sectional view of a lid member. 蓋部材の断面図である。It is a sectional view of a lid member. パッケージの製造方法の準備工程を示す断面図である。FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method. パッケージの製造方法の準備工程を示す断面図である。FIG. 3 is a cross-sectional view showing a preparation process of the package manufacturing method.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図19は、本発明に係る蓋部材、パッケージ及びガラス基板の一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 19 show an embodiment of a lid member, a package, and a glass substrate according to the present invention.
 図1及び図2に示すように、パッケージ1は、基体2と、基体2に支持される発光素子3と、基体2及び発光素子3を覆う蓋部材4と、基体2と蓋部材4とを気密に接合する封止部5と、を備える。 As shown in FIGS. 1 and 2, the package 1 includes a base 2, a light emitting element 3 supported by the base 2, a lid member 4 covering the base 2 and the light emitting element 3, and a base 2 and the lid member 4. A sealing part 5 that is airtightly joined is provided.
 図3及び図4は、蓋部材4が接合される前の基体2を示す。基体2は、発光素子3を支持する第一主面2aと、第一主面2aの反対側に位置する第二主面2bと、第一主面2aに形成される金属層6とを有する。 3 and 4 show the base 2 before the lid member 4 is joined. The base body 2 has a first main surface 2a that supports the light emitting element 3, a second main surface 2b located on the opposite side of the first main surface 2a, and a metal layer 6 formed on the first main surface 2a. .
 基体2の材質としては、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素等のセラミックス、これらセラミックスとガラス粉末が混合焼結されて成るガラスセラミックス、Fe-Ni-Co合金、Cu-W合金、Kovar(登録商標)等の合金等が挙げられる。 Examples of the material of the base body 2 include ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride, glass ceramics obtained by mixing and sintering these ceramics and glass powder, Fe-Ni-Co alloy, and Cu-W alloy. , Kovar (registered trademark), and the like.
 図4に示すように、金属層6は、発光素子3を囲む枠形状を有する。金属層6は、四角形状とされているが、この形状に限定されるものではない。金属層6は、例えば発光素子3を囲むように、円形状に構成されてもよい。 As shown in FIG. 4, the metal layer 6 has a frame shape surrounding the light emitting element 3. Although the metal layer 6 has a rectangular shape, it is not limited to this shape. The metal layer 6 may be configured to have a circular shape, for example, so as to surround the light emitting element 3.
 金属層6は、第一主面2a側から順に下地層、中間層、及び表層の三層を含む。下地層に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。中間層に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層6に用いられる金属は、単体であってもよいし、合金であってもよい。 The metal layer 6 includes three layers: a base layer, an intermediate layer, and a surface layer in order from the first principal surface 2a side. Examples of metals used for the underlayer include Cr, Ta, W, Ti, Mo, Ni, and Pt. Examples of the metal used for the intermediate layer include Ni, Pt, and Pd. Examples of metals used for the surface layer include Au, Sn, Ag, Ni, and Pt. The metal used for the metal layer 6 may be a single substance or an alloy.
 金属層6を基体2の第一主面2aに形成する方法としては、例えば、スパッタリング法、真空蒸着法、イオンアシスト又はイオンプレーティングを用いた真空蒸着法、及びCVD法等の成膜法が挙げられる。 Examples of the method for forming the metal layer 6 on the first main surface 2a of the base 2 include a sputtering method, a vacuum evaporation method, a vacuum evaporation method using ion assist or ion plating, and a CVD method. Can be mentioned.
 発光素子3は、基体2の第一主面2aに固定されている。本実施形態において、発光素子3として紫外線照射用LEDを用いたパッケージ1を例示するが、本発明に係る発光素子3は本実施形態に限定されるものではなく、赤外線LEDや可視光LEDを採用することができる。 The light emitting element 3 is fixed to the first main surface 2a of the base 2. In this embodiment, a package 1 using an ultraviolet irradiation LED as the light emitting element 3 is illustrated, but the light emitting element 3 according to the present invention is not limited to this embodiment, and may employ an infrared LED or a visible light LED. can do.
 図5及び図6は、基体2に接合される前の蓋部材4を示す。蓋部材4は、板ガラスの一部を成形することによって製造される。蓋部材4に使用されるガラスは、無アルカリガラス、ホウケイ酸ガラス、アルミノシリケートガラス、石英ガラス、結晶化ガラスが好ましい。無アルカリガラス、ホウケイ酸ガラス、アルミノシリケートガラスであれば、高い透過率と、成型時における高い加工性の両立が可能になる。また、石英ガラスであれば、成型時の加工性を維持しつつ、紫外域において、顕著に高い透過率を有することが可能になる。また、結晶化ガラスであれば、高い透過率と高い破壊強度の両立が可能になる。 5 and 6 show the lid member 4 before being joined to the base 2. The lid member 4 is manufactured by molding a part of plate glass. The glass used for the lid member 4 is preferably alkali-free glass, borosilicate glass, aluminosilicate glass, quartz glass, or crystallized glass. If alkali-free glass, borosilicate glass, or aluminosilicate glass is used, it is possible to achieve both high transmittance and high processability during molding. In addition, quartz glass can have significantly high transmittance in the ultraviolet region while maintaining workability during molding. Further, if it is a crystallized glass, it is possible to achieve both high transmittance and high breaking strength.
 ガラスが、ホウケイ酸ガラス、アルミノシリケートガラス、又は無アルカリガラスの場合、ガラス組成として、質量%で、SiO2:50~75%、Al23:1~25%、B23:1~30%、Li2O+Na2O+K2O:0~20%、MgO+CaO+SrO+BaO:0~20%を含有することが好ましい。ガラスの組成が上記の組成範囲内であれば、これらのガラス系に該当する。 When the glass is borosilicate glass, aluminosilicate glass, or alkali-free glass, the glass composition, in mass %, is SiO 2 : 50 to 75%, Al 2 O 3 : 1 to 25%, B 2 O 3 : 1. It is preferable to contain up to 30%, Li 2 O+Na 2 O+K 2 O: 0 to 20%, and MgO+CaO+SrO+BaO: 0 to 20%. If the composition of the glass is within the above composition range, it falls under these glass types.
 結晶化ガラスの場合、ガラス組成として、質量%で、SiO2:60~80%、Al23:3~30%、Li2O+Na2O+K2O:1~20%、MgO+CaO+SrO+BaO:5~20%を含有し、β石英固溶体又はβスポジュメンがガラス内部から結晶として析出している低熱膨張結晶化ガラスであることが好ましい。ここで、低熱膨張とは、30~300℃の温度範囲において、熱膨張係数の値が、-10×10-7~20×10-7/℃であることを指す。 In the case of crystallized glass, the glass composition in mass % is SiO 2 : 60-80%, Al 2 O 3 : 3-30%, Li 2 O+Na 2 O+K 2 O: 1-20%, MgO+CaO+SrO+BaO: 5-20. % and in which β-quartz solid solution or β-spodumene is precipitated as crystals from inside the glass. Here, low thermal expansion refers to a thermal expansion coefficient of -10×10 -7 to 20×10 -7 /°C in a temperature range of 30 to 300°C.
 図2及び図5に示すように、蓋部材4は、板状の枠部7と、枠部7から突出するドーム状の突出部8と、枠部7と突出部8とを連結する連結部9と、第一反射防止膜10a及び第二反射防止膜10bと、を備える。 As shown in FIGS. 2 and 5, the lid member 4 includes a plate-shaped frame 7, a dome-shaped protrusion 8 that protrudes from the frame 7, and a connecting portion that connects the frame 7 and the protrusion 8. 9, a first antireflection film 10a, and a second antireflection film 10b.
 枠部7は、例えば一定の厚さを有するが、この態様に限定されない。枠部7の厚さは、例えば0.2mm以上2mm以下である。枠部7は、第一主面7aと、第一主面7aの反対側に位置する第二主面7bとを有する。第一主面7aの表面粗さ(算術平均粗さ)Raは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。第二主面7bの表面粗さRaは、好ましくは1nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The frame portion 7 has, for example, a constant thickness, but is not limited to this aspect. The thickness of the frame portion 7 is, for example, 0.2 mm or more and 2 mm or less. The frame portion 7 has a first main surface 7a and a second main surface 7b located on the opposite side of the first main surface 7a. The surface roughness (arithmetic mean roughness) Ra of the first main surface 7a is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less. The surface roughness Ra of the second main surface 7b is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
 突出部8は、基体2の第一主面2aとともに発光素子3の収容空間を形成するためのものである。突出部8は、枠部7の中央位置に形成されているが、この態様に限定されない。突出部8は、凹状の曲面として構成される内面8aと、凸状に曲面として構成される外面8bと、内面8a側に形成される開口部8cと、を有する。また、突出部8は、基部11と、中途部12と、頂部13と、を備える。基部11は、連結部9と一体に構成されている。中途部12は、基部11と頂部13との間に位置する。 The protrusion 8 is for forming a housing space for the light emitting element 3 together with the first main surface 2a of the base 2. Although the protruding portion 8 is formed at the center position of the frame portion 7, the present invention is not limited to this aspect. The protrusion 8 has an inner surface 8a configured as a concave curved surface, an outer surface 8b configured as a convex curved surface, and an opening 8c formed on the inner surface 8a side. Further, the protruding portion 8 includes a base portion 11, a midway portion 12, and a top portion 13. The base portion 11 is configured integrally with the connecting portion 9. The middle part 12 is located between the base part 11 and the top part 13.
 なお、基部11とは、頂部13に対して法線(以下「第一線」という)L1を描き、この第一線L1と、枠部7の第二主面7bに沿うように描かれた直線(以下「第二線」という)L2との交点P1から、第二線L2に対して5°の角度を為す直線(以下「第三線」という)L3を描いたとき、この第三線L3が突出部8と交わる部分である。なお、第三線L3が、突出部8の内面8aと交わる部分を第一基部11aとし、突出部8の外面8bと交わる部分を第二基部11bとする。 The base 11 is defined by drawing a normal line (hereinafter referred to as "first line") L1 to the top 13, and drawing along this first line L1 and the second main surface 7b of the frame 7. When a straight line (hereinafter referred to as "third line") L3 is drawn from the intersection point P1 with straight line (hereinafter referred to as "second line") L2 and makes an angle of 5 degrees with respect to second line L2, this third line L3 This is the part that intersects with the protrusion 8. Note that the portion where the third line L3 intersects with the inner surface 8a of the protrusion 8 is referred to as a first base portion 11a, and the portion where the third line L3 intersects with the outer surface 8b of the protrusion portion 8 is referred to as a second base portion 11b.
 また、中途部12は、第一線L1と第二線L2との交点P1から、第二線L2に対して60°の角度を為す直線(以下「第七線」という)L7を描いたとき、この第七線L7が突出部8と交わる部分である。 In addition, the midway portion 12 is obtained by drawing a straight line L7 (hereinafter referred to as the "seventh line") that makes an angle of 60 degrees with the second line L2 from the intersection P1 of the first line L1 and the second line L2. , this is the portion where this seventh line L7 intersects with the protrusion 8.
 以下、第一線L1と突出部8の内面8aとの交点P2から上記の交点P1までの距離を突出部8の突出高さといい、符号Hで示す。突出部8の突出高さHは、例えば0.5mm以上80mm以下である。 Hereinafter, the distance from the intersection P2 of the first line L1 and the inner surface 8a of the protrusion 8 to the above-mentioned intersection P1 is referred to as the protrusion height of the protrusion 8, and is indicated by the symbol H. The protrusion height H of the protrusion 8 is, for example, 0.5 mm or more and 80 mm or less.
 突出部8の外径Dは、第二基部11bの位置にある点の集合円の直径であり、例えば2mm以上150mm以下である。図5に示すように、突出部8の厚さは、基部11から頂部13に向かうにつれて徐々に薄くなっている。このため、頂部13の厚さTminは、基部11の厚さTmaxよりも薄い。 The outer diameter D of the protruding portion 8 is the diameter of a collective circle of points located at the position of the second base portion 11b, and is, for example, 2 mm or more and 150 mm or less. As shown in FIG. 5, the thickness of the protrusion 8 gradually decreases from the base 11 toward the top 13. Therefore, the thickness Tmin of the top portion 13 is thinner than the thickness Tmax of the base portion 11.
 基部11の厚さTmaxは、例えば0.19mm以上1.9mm以下である。頂部13の厚さTminは、例えば0.15mm以上1.0mm以下である。基部11の厚さTmaxと頂部13の厚さTminとの比Tmin/Tmaxは、好ましくは0.08以上0.9以下、より好ましくは0.1以上0.8以下、更に好ましくは0.2以上0.5以下である。 The thickness Tmax of the base portion 11 is, for example, 0.19 mm or more and 1.9 mm or less. The thickness Tmin of the top portion 13 is, for example, 0.15 mm or more and 1.0 mm or less. The ratio Tmin/Tmax of the thickness Tmax of the base portion 11 and the thickness Tmin of the top portion 13 is preferably 0.08 or more and 0.9 or less, more preferably 0.1 or more and 0.8 or less, and even more preferably 0.2. 0.5 or less.
 図5に示すように、突出部8は、所定の突出角度θで枠部7から突出している。突出角度θは、以下のように定義される。 As shown in FIG. 5, the protrusion 8 protrudes from the frame 7 at a predetermined protrusion angle θ. The protrusion angle θ is defined as follows.
 第二線L2と突出部8の内面8aとの交点を第一基準点RP1とする。第一線L1において、突出高さHの半分(H/2)の高さ位置にある点P3から第二線L2に平行な直線(以下「第四線」という)L4を描き、この第四線L4と突出部8の内面8aとの交点を第二基準点RP2とする。第一基準点RP1と第二基準点RP2とを通る直線(以下「第五線」という)L5を描き、この第五線L5と、枠部7の第一主面7aに沿うように描かれた第六線L6とが為す角度(鋭角)を突出角度θとする。 The intersection of the second line L2 and the inner surface 8a of the protrusion 8 is defined as the first reference point RP1. On the first line L1, draw a straight line (hereinafter referred to as "fourth line") L4 parallel to the second line L2 from a point P3 located at a height of half (H/2) of the protrusion height H, and draw a straight line L4 parallel to the second line L2. The intersection of the line L4 and the inner surface 8a of the protrusion 8 is defined as a second reference point RP2. A straight line (hereinafter referred to as the "fifth line") L5 passing through the first reference point RP1 and the second reference point RP2 is drawn, and the line is drawn along this fifth line L5 and the first principal surface 7a of the frame 7. The angle (acute angle) formed by the sixth line L6 is defined as the protrusion angle θ.
 本実施形態において、突出角度θは、好ましくは40°以上、45°以上、50°以上、60°以上、好ましくは90°以下、85°以下、80°以下である。 In this embodiment, the protrusion angle θ is preferably 40° or more, 45° or more, 50° or more, 60° or more, preferably 90° or less, 85° or less, or 80° or less.
 突出部8の内面8a及び外面8bは、基部11から頂部13にわたって連続的な曲面として構成される。内面8aの表面粗さRaは、1nm以下であることが好ましく、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。外面8bの表面粗さRaは、1nm以下であることが好ましく、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The inner surface 8a and outer surface 8b of the protrusion 8 are configured as continuous curved surfaces from the base 11 to the top 13. The surface roughness Ra of the inner surface 8a is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less. The surface roughness Ra of the outer surface 8b is preferably 1 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
 突出部8の開口部8cは、蓋部材4を基体2に固定する際に、基体2上に設けられた発光素子3を突出部8の内側に入れるためのものである。図6に示すように、突出部8の開口部8cは円形状に構成されるが、この形状に限定されない。 The opening 8c of the protrusion 8 is for inserting the light emitting element 3 provided on the base 2 into the inside of the protrusion 8 when fixing the lid member 4 to the base 2. As shown in FIG. 6, the opening 8c of the protrusion 8 has a circular shape, but is not limited to this shape.
 開口部8cの開口長さL(本実施形態では開口部8cの直径)は、例えば1.5mm以上80mm以下である。開口部8cの開口長さLと、突出部8の突出高さHとの比L/Hは、好ましくは1.6以上、2.1以上であり、好ましくは5.0以下、3.0以下である。 The opening length L of the opening 8c (in this embodiment, the diameter of the opening 8c) is, for example, 1.5 mm or more and 80 mm or less. The ratio L/H between the opening length L of the opening 8c and the protrusion height H of the protrusion 8 is preferably 1.6 or more and 2.1 or more, and preferably 5.0 or less and 3.0. It is as follows.
 図2及び図5に示すように、連結部9は、基部11と枠部7とを連結するために、湾曲形状を有する。連結部9は、枠部7の第一主面7aと突出部8の内面8aとを繋ぐ第一曲面9aと、突出部8の外面8bと枠部7の第二主面7bとを繋ぐ第二曲面9bとを有する。 As shown in FIGS. 2 and 5, the connecting portion 9 has a curved shape in order to connect the base portion 11 and the frame portion 7. The connecting portion 9 includes a first curved surface 9a that connects the first main surface 7a of the frame 7 and the inner surface 8a of the protrusion 8, and a second curved surface 9a that connects the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7. It has two curved surfaces 9b.
 第一曲面9aの曲率半径は、第二曲面9bの曲率半径よりも大きい。第一曲面9aの曲率半径は、好ましくは0.5mm以上、1.0mm以上であり、好ましくは5.0mm以下、4.0mm以下である。第二曲面9bの曲率半径は、好ましくは0.5mm以上、1.0mm以上であり、好ましくは5.0mm以下、4.0mm以下である。第一曲面9aの表面粗さRaは、好ましくは1.0nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。第二曲面9bの表面粗さRaは、好ましくは1.0nm以下、より好ましくは0.5nm以下、更に好ましくは0.3nm以下である。 The radius of curvature of the first curved surface 9a is larger than the radius of curvature of the second curved surface 9b. The radius of curvature of the first curved surface 9a is preferably 0.5 mm or more and 1.0 mm or more, and preferably 5.0 mm or less and 4.0 mm or less. The radius of curvature of the second curved surface 9b is preferably 0.5 mm or more and 1.0 mm or more, and preferably 5.0 mm or less and 4.0 mm or less. The surface roughness Ra of the first curved surface 9a is preferably 1.0 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less. The surface roughness Ra of the second curved surface 9b is preferably 1.0 nm or less, more preferably 0.5 nm or less, still more preferably 0.3 nm or less.
 第一反射防止膜10aは、突出部8の内面8a及び枠部7の第一主面7aに形成されている。第一反射防止膜10aは、例えば第一の膜としての酸化シリコン膜(SiO2)と、第二の膜としての酸化ハフニウム膜(HfO2)とを交互に含む多層膜構造を有する。 The first antireflection film 10a is formed on the inner surface 8a of the protrusion 8 and the first main surface 7a of the frame 7. The first antireflection film 10a has a multilayer film structure that alternately includes, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film.
 第一反射防止膜10aにおいて、突出部8の内面8aに形成される部分(以下「反射防止部」という)10a1は、突出部8の頂部13から基部11に向かうにつれて、膜厚が徐々に薄くなるように構成される。すなわち、反射防止部10a1は、頂部13に形成されている部分の厚さが最も厚く、基部11に形成されている部分の厚さが最も薄い。 In the first antireflection film 10a, a portion 10a1 formed on the inner surface 8a of the protrusion 8 (hereinafter referred to as "antireflection portion") has a film thickness that gradually decreases from the top 13 of the protrusion 8 toward the base 11. It is configured so that That is, in the antireflection portion 10a1, the portion formed on the top portion 13 is the thickest, and the portion formed on the base portion 11 is the thinnest.
 突出部8の基部11の位置における第一反射防止膜10aの厚さは、0.12μm以上0.64μm以下であることが好ましい。突出部8の中途部12の位置における第一反射防止膜10aの厚さは、0.14μm以上0.72μm以下であることが好ましい。突出部8の頂部13の位置における第一反射防止膜10aの厚さは、0.15μm以上0.8μm以下であることが好ましい。 The thickness of the first antireflection film 10a at the position of the base 11 of the protrusion 8 is preferably 0.12 μm or more and 0.64 μm or less. The thickness of the first antireflection film 10a at the midway portion 12 of the protrusion 8 is preferably 0.14 μm or more and 0.72 μm or less. The thickness of the first antireflection film 10a at the position of the top 13 of the protrusion 8 is preferably 0.15 μm or more and 0.8 μm or less.
 第一反射防止膜10aにおいて、枠部7の第一主面7aに形成される部分(以下「緩衝部」という)10a2は、一定の膜厚を有する。緩衝部10a2は、紫外線の反射を防止する機能の他、蓋部材4を基体2に接合する際に、枠部7に作用する応力を緩和する機能を有する。 In the first antireflection film 10a, a portion 10a2 (hereinafter referred to as "buffer portion") formed on the first main surface 7a of the frame portion 7 has a constant film thickness. The buffer portion 10a2 has a function of not only preventing reflection of ultraviolet rays but also relieving stress acting on the frame portion 7 when the lid member 4 is joined to the base body 2.
 第二反射防止膜10bは、突出部8の外面8b及び枠部7の第二主面7bに形成されている。第二反射防止膜10bは、例えば第一の膜としての酸化シリコン膜(SiO2)と、第二の膜としての酸化ハフニウム膜(HfO2)とを交互に含む多層膜構造を有する。 The second antireflection film 10b is formed on the outer surface 8b of the protrusion 8 and the second main surface 7b of the frame 7. The second antireflection film 10b has a multilayer film structure that alternately includes, for example, a silicon oxide film (SiO 2 ) as a first film and a hafnium oxide film (HfO 2 ) as a second film.
 第二反射防止膜10bにおいて、突出部8の外面8bに形成される部分(以下「反射防止部」という)10b1は、頂部13から基部11に向かうにつれて、膜厚が徐々に薄くなるように構成される。すなわち、反射防止部10b1は、頂部13に形成されている部分の厚さが最も厚く、基部11に形成されている部分の厚さが最も薄い。 In the second anti-reflection film 10b, a portion 10b1 formed on the outer surface 8b of the protruding portion 8 (hereinafter referred to as “anti-reflection portion”) is configured such that the film thickness gradually decreases from the top portion 13 toward the base portion 11. be done. That is, in the antireflection portion 10b1, the portion formed on the top portion 13 is the thickest, and the portion formed on the base portion 11 is the thinnest.
 突出部8の基部11の位置における第二反射防止膜10bの厚さは、0.12μm以上0.64μm以下であることが好ましい。突出部8の中途部12の位置における第二反射防止膜10bの厚さは、0.14μm以上0.72μm以下であることが好ましい。突出部8の頂部13の位置における第二反射防止膜10bの厚さは、0.15μm以上0.8μm以下であることが好ましい。 The thickness of the second antireflection film 10b at the position of the base 11 of the protrusion 8 is preferably 0.12 μm or more and 0.64 μm or less. The thickness of the second antireflection film 10b at the midway portion 12 of the protrusion 8 is preferably 0.14 μm or more and 0.72 μm or less. The thickness of the second antireflection film 10b at the position of the top 13 of the protrusion 8 is preferably 0.15 μm or more and 0.8 μm or less.
 なお、光取り出し効率が十分である場合、第二反射防止膜10bを形成する必要はない。但し、ホウケイ酸ガラスなどの耐候性が弱いガラスを蓋部材に用いる場合、外部環境により蓋部材4が劣化し、結果として光取り出し効率が低下する虞がある。この場合、蓋部材4に第二反射防止膜10bを形成することに替え、耐候性を有する膜としてSiO2膜やAl23膜を形成することも可能である。また、第二反射防止膜10bに積層する形で、耐候性を有する膜であるSiO2膜やAl23膜を形成することも可能である。 Note that if the light extraction efficiency is sufficient, there is no need to form the second antireflection film 10b. However, when glass with low weather resistance, such as borosilicate glass, is used for the lid member, there is a possibility that the lid member 4 will deteriorate due to the external environment, resulting in a decrease in light extraction efficiency. In this case, instead of forming the second antireflection film 10b on the lid member 4, it is also possible to form a SiO 2 film or an Al 2 O 3 film as a weather-resistant film. Furthermore, it is also possible to form a weather-resistant film such as an SiO 2 film or an Al 2 O 3 film to be laminated on the second antireflection film 10b.
 図2、図5及び図6に示すように、第一反射防止膜10aの緩衝部10a2には、金属層14と、接合部15とが形成されている。緩衝部10a2のヤング率は、好ましくは250GPa以下、より好ましくは200GPa以下、更に好ましくは150GPa以下、特に好ましくは100GPa以下である。このように上限を規定すれば、緩衝部10a2の緩衝性を高めることができ、接合部15と蓋部材4(枠部7)の熱膨張係数の違いに起因する応力を緩和する効果を得られる。なお、枠部7の熱膨張係数は、接合部15の熱膨張係数よりも小さい。また、枠部7の熱膨張係数は、基体2の熱膨張係数よりも小さい。 As shown in FIGS. 2, 5, and 6, a metal layer 14 and a bonding portion 15 are formed in the buffer portion 10a2 of the first antireflection film 10a. The Young's modulus of the buffer portion 10a2 is preferably 250 GPa or less, more preferably 200 GPa or less, still more preferably 150 GPa or less, particularly preferably 100 GPa or less. By specifying the upper limit in this way, the buffering performance of the buffer section 10a2 can be improved, and the effect of relieving stress caused by the difference in coefficient of thermal expansion between the joint section 15 and the lid member 4 (frame section 7) can be obtained. . Note that the thermal expansion coefficient of the frame portion 7 is smaller than that of the joint portion 15. Further, the thermal expansion coefficient of the frame portion 7 is smaller than that of the base body 2.
 緩衝部10a2の厚さは、好ましくは0.1μm以上、0.2μm以上であり、好ましくは1.0μm以下、0.8μm以下である。このように下限を規定すれば、緩衝部10a2の緩衝性を更に高めることができ、接合部15と蓋部材4(枠部7)の熱膨張係数の違いに起因する応力を緩和する効果を得られる。また、このように上限を規定すれば、緩衝部10a2の製造コストを下げることができる。 The thickness of the buffer portion 10a2 is preferably 0.1 μm or more and 0.2 μm or more, and preferably 1.0 μm or less and 0.8 μm or less. By defining the lower limit in this way, the buffering properties of the buffer section 10a2 can be further enhanced, and the effect of relieving stress caused by the difference in thermal expansion coefficient between the joint section 15 and the lid member 4 (frame section 7) can be obtained. It will be done. Further, by defining the upper limit in this way, the manufacturing cost of the buffer portion 10a2 can be reduced.
 図5及び図6に示すように、金属層14は、緩衝部10a2に重なるように形成されている。金属層14は、枠部7の第一主面7aに接触する緩衝部10a2の面とは反対側の緩衝部10a2の面に形成されている。図6に示すように、金属層14は、基体2の金属層6の形状に対応するように、四角形の枠形状を有する。金属層14の形状は本実施形態に限定されない。金属層14は、円形状その他の各種枠形状を有してもよい。金属層14は、緩衝部10a2側から順に、下地層、中間層、及び表層の三層を含む。 As shown in FIGS. 5 and 6, the metal layer 14 is formed to overlap the buffer portion 10a2. The metal layer 14 is formed on the surface of the buffer section 10a2 opposite to the surface of the buffer section 10a2 that contacts the first main surface 7a of the frame section 7. As shown in FIG. 6, the metal layer 14 has a rectangular frame shape corresponding to the shape of the metal layer 6 of the base 2. As shown in FIG. The shape of the metal layer 14 is not limited to this embodiment. The metal layer 14 may have a circular shape or other various frame shapes. The metal layer 14 includes three layers, a base layer, an intermediate layer, and a surface layer, in order from the buffer portion 10a2 side.
 下地層に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。下地層にCrが用いられる場合、下地層のヤング率は、279GPa以下が好ましい。中間層に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層14に用いられる金属は、単体であってもよいし、合金であってもよい。 Examples of metals used for the underlayer include Cr, Ta, W, Ti, Mo, Ni, and Pt. When Cr is used for the base layer, the Young's modulus of the base layer is preferably 279 GPa or less. Examples of the metal used for the intermediate layer include Ni, Pt, and Pd. Examples of metals used for the surface layer include Au, Sn, Ag, Ni, and Pt. The metal used for the metal layer 14 may be a single substance or an alloy.
 図5及び図6に示すように、接合部15は、金属層14に重なるように層状に構成される。図5に示すように、接合部15は、金属層14において緩衝部10a2と接触している部位とは反対側の部位に接触している。図6に示すように、接合部15は、緩衝部10a2及び金属層14の形状に対応するように、四角形の枠形状を有する。接合部15の形状は本実施形態に限定されず、円形その他の各種枠形状であってもよい。 As shown in FIGS. 5 and 6, the joint portion 15 is configured in a layered manner so as to overlap the metal layer 14. As shown in FIG. 5, the joint portion 15 is in contact with a portion of the metal layer 14 that is opposite to the portion that is in contact with the buffer portion 10a2. As shown in FIG. 6, the joint portion 15 has a rectangular frame shape corresponding to the shapes of the buffer portion 10a2 and the metal layer 14. The shape of the joint portion 15 is not limited to this embodiment, and may be circular or other various frame shapes.
 接合部15は、金属系接合材により構成される。金属系接合材としては、半田材やろう材として市販されるものを用いることができる。金属系接合材としては、例えば、Au-Sn合金、Pb-Sn合金、Au-Ge合金、Sn-Ni合金等が挙げられる。なお、接合部15の幅を緩衝部10a2の幅より狭くすることで、接合部15と蓋部材4の熱膨張係数の差による応力の影響を低減できる。本実施形態では、金属系接合材としてAu-Sn合金が使用される場合について説明する。 The joint portion 15 is made of a metal-based joint material. As the metal bonding material, those commercially available as solder materials and brazing materials can be used. Examples of the metal bonding material include Au--Sn alloy, Pb--Sn alloy, Au--Ge alloy, Sn--Ni alloy, and the like. Note that by making the width of the joint portion 15 narrower than the width of the buffer portion 10a2, the influence of stress due to the difference in coefficient of thermal expansion between the joint portion 15 and the lid member 4 can be reduced. In this embodiment, a case will be described in which an Au--Sn alloy is used as the metal-based bonding material.
 封止部5は、基体2の金属層6と蓋部材4の金属層14とを接合部15で一体に接合することにより形成される。 The sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 at a joint portion 15.
 次に、パッケージ1の製造方法について説明する。本方法は、基体2及び蓋部材4を用意する準備工程と、基体2と蓋部材4とを接合する接合工程と、を備える。 Next, a method for manufacturing the package 1 will be explained. This method includes a preparation step of preparing the base body 2 and the lid member 4, and a joining step of joining the base body 2 and the lid member 4.
 準備工程では、基体2の第一主面2aに金属層6を形成した後に、この第一主面2aに発光素子3を搭載する。 In the preparation step, after forming the metal layer 6 on the first main surface 2a of the base 2, the light emitting element 3 is mounted on the first main surface 2a.
 また、準備工程では、板ガラスに突出部8を成形することによって蓋部材4を形成した後に、蓋部材4に第一反射防止膜10aを形成する。その後、第一反射防止膜10aの緩衝部10a2に金属層14及び接合部15を形成する。なお、蓋部材4に第二反射防止膜10bを形成することで、さらに光の取り出し効率を高めることも可能である。 In addition, in the preparation step, after the lid member 4 is formed by molding the protrusion 8 on a plate glass, the first antireflection film 10a is formed on the lid member 4. Thereafter, a metal layer 14 and a bonding portion 15 are formed on the buffer portion 10a2 of the first antireflection film 10a. Note that by forming the second antireflection film 10b on the lid member 4, it is also possible to further improve the light extraction efficiency.
 以下、蓋部材4を製造する工程について、図7乃至図9を参照しながら説明する。この工程は、成形工程と、成膜工程とを備える。 Hereinafter, the process of manufacturing the lid member 4 will be explained with reference to FIGS. 7 to 9. This process includes a molding process and a film forming process.
 図7は、成形工程に使用される成形装置を示す。成形装置16は、板ガラスGSを支持する支持台17と、支持台17によって支持された板ガラスGSに重ねて配置されるマスク部材18と、蓋部材4の突出部8を成形するために板ガラスGSの一部を熱変形させる加熱源19と、を備える。さらに、成形装置16は、支持台17とマスク部材18とを互いに接近させる方向に押圧する押圧部材20と、板ガラスGSの一部に外力を加えるための外力発生装置21と、を備える。 FIG. 7 shows a molding device used in the molding process. The molding device 16 includes a support stand 17 that supports the glass plate GS, a mask member 18 placed over the glass plate GS supported by the support stand 17, and a molding device 16 for forming the protrusion 8 of the lid member 4 on the glass plate GS. A heating source 19 that thermally deforms a portion is provided. Further, the molding device 16 includes a pressing member 20 that presses the support base 17 and the mask member 18 in a direction to make them approach each other, and an external force generating device 21 that applies an external force to a part of the plate glass GS.
 支持台17は、板ガラスGSを支持する支持部17aと、支持部17aに囲まれる開口部を有するとともに板ガラスGSの一部の熱変形を許容する空間部17bと、を有する。支持台17の支持部17aは、板ガラスGSの主面を支持する支持面を有する。本実施形態において、支持台17の開口部は、円形状の開口縁E1を有するが、例えば、三角形状、四角形状等の多角形状、楕円形状等の形状の開口縁を有していてもよい。 The support stand 17 has a support part 17a that supports the glass plate GS, and a space part 17b that has an opening surrounded by the support part 17a and allows thermal deformation of a part of the glass plate GS. The support portion 17a of the support stand 17 has a support surface that supports the main surface of the glass plate GS. In this embodiment, the opening of the support base 17 has a circular opening edge E1, but may have an opening edge in a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape. .
 なお、支持台17の空間部17bは、貫通孔により形成されてもよいし、内底部を有する凹部により形成されてもよい。支持台17の空間部17bは、蓋部材4の突出部8の全体を非接触の状態で成形するように構成されている。支持台17を構成する材料としては、例えば、金属、セラミックス等が挙げられる。 Note that the space 17b of the support base 17 may be formed by a through hole, or may be formed by a recessed portion having an inner bottom. The space 17b of the support base 17 is configured to mold the entire protrusion 8 of the lid member 4 in a non-contact manner. Examples of materials constituting the support base 17 include metals, ceramics, and the like.
 上記の構成に限らず、蓋部材4の形状を精度良く成形するために、空間部17bに、板ガラスGSを受ける下受け治具を設けてもよい。下受け治具は、金属やセラミックスから構成される。前述のように、蓋部材4の突出部8の全体を非接触の状態で成形することが好ましいが、板ガラスGSと接触する下受け治具の面の品位を高める(表面粗さ、面うねりを小さくする)ことで、下受け治具を使用した場合であっても、蓋部材4を精度良く成形することができる。 Not limited to the above configuration, in order to form the shape of the lid member 4 with high precision, a lower receiving jig for receiving the plate glass GS may be provided in the space 17b. The lower support jig is made of metal or ceramics. As mentioned above, it is preferable to mold the entire protruding part 8 of the lid member 4 in a non-contact state. By making the size smaller), even if a lower receiving jig is used, the lid member 4 can be formed with high precision.
 図7に示すように、マスク部材18は、貫通孔18aを有する。本実施形態のマスク部材18の貫通孔18aは、円形状の内周縁E2を有しているが、例えば、三角形状、四角形状等の多角形状、楕円形状等の形状の内周縁を有していてもよい。 As shown in FIG. 7, the mask member 18 has a through hole 18a. The through hole 18a of the mask member 18 of this embodiment has a circular inner peripheral edge E2, but may have an inner peripheral edge in a polygonal shape such as a triangular shape or a quadrangular shape, or an elliptical shape. It's okay.
 支持台17及びマスク部材18は、支持台17の開口縁E1よりも内側に、マスク部材18における貫通孔18aの内周縁E2の少なくとも一部が配置されるように構成されている。具体的には、支持台17及びマスク部材18は、支持台17の開口縁E1よりも内側に、マスク部材18の貫通孔18aにおける内周縁E2の全体が配置されるように構成されている。 The support stand 17 and the mask member 18 are configured such that at least a portion of the inner peripheral edge E2 of the through hole 18a in the mask member 18 is located inside the opening edge E1 of the support stand 17. Specifically, the support stand 17 and the mask member 18 are configured such that the entire inner peripheral edge E2 of the through hole 18a of the mask member 18 is disposed inside the opening edge E1 of the support stand 17.
 支持台17の開口部の開口面積を100%とした場合、マスク部材18の貫通孔18aの断面積は、95%以下であることが好ましく、より好ましくは80%以下である。マスク部材18における貫通孔18aの内周縁E2の少なくとも一部は、支持台17の開口縁E1よりも1mm以上内側となるように配置されることが好ましく、3mm以上内側となるように配置されることがより好ましい。 When the opening area of the support base 17 is taken as 100%, the cross-sectional area of the through hole 18a of the mask member 18 is preferably 95% or less, more preferably 80% or less. At least a part of the inner circumferential edge E2 of the through hole 18a in the mask member 18 is preferably arranged so as to be 1 mm or more inward than the opening edge E1 of the support base 17, and is arranged so as to be 3 mm or more inward. It is more preferable.
 マスク部材18は、600℃において1[W/(m・K)]以下の熱伝導率を有する材料から構成されることが好ましい。マスク部材18を構成する材料としては、例えば、セラミックスが好適である。マスク部材18の厚さは、1mm以上であることが好ましい。本実施形態のマスク部材18は、板ガラスGSの外周縁の全体を覆う外形を有している。  It is preferable that the mask member 18 is made of a material having a thermal conductivity of 1 [W/(m·K)] or less at 600°C. For example, ceramics is suitable as a material constituting the mask member 18. The thickness of the mask member 18 is preferably 1 mm or more. The mask member 18 of this embodiment has an outer shape that covers the entire outer peripheral edge of the glass plate GS. 
 加熱源19は、マスク部材18側から板ガラスGSを加熱するように配置されている。本実施形態の加熱源19は、板ガラスGSに向けて火炎FLを噴射するバーナーである。バーナーを用いることで、板ガラスGSを比較的速やかに軟化させることができる。なお、加熱源19の加熱方式は、例えば、抵抗加熱であってもよいし、レーザー加熱であってもよい。また、加熱源19は、異なる加熱方式の加熱源を組み合わせて構成してもよい。 The heat source 19 is arranged to heat the glass plate GS from the mask member 18 side. The heat source 19 of this embodiment is a burner that injects flame FL toward the glass plate GS. By using a burner, the plate glass GS can be softened relatively quickly. Note that the heating method of the heat source 19 may be, for example, resistance heating or laser heating. Further, the heat source 19 may be configured by combining heat sources of different heating methods.
 押圧部材20は、例えば、マスク部材18を支持台17に向けて押圧する。押圧部材20を押圧する押圧機構としては、例えば、流体シリンダ、直動アクチュエータ等が挙げられる。なお、押圧部材20は、固定されたマスク部材18に対して支持台17を押圧するように構成することもできる。 The pressing member 20 presses the mask member 18 toward the support base 17, for example. Examples of the pressing mechanism that presses the pressing member 20 include a fluid cylinder, a linear actuator, and the like. Note that the pressing member 20 can also be configured to press the support base 17 against the fixed mask member 18.
 外力発生装置21としては、例えば、排気装置を用いることができる。排気装置は、支持台17の空間部17b内に存在する気体を排出することで、支持台17の空間部17b内を負圧にする。これにより、板ガラスGSの一部が支持台17の空間部17b内に吸引されることで、板ガラスGSの一部の熱変形を促進することができる。排気装置としては、例えば、ベンチュリー機構を用いたポンプが好適である。 As the external force generating device 21, for example, an exhaust device can be used. The exhaust device makes the inside of the space 17b of the support stand 17 a negative pressure by exhausting the gas existing in the space 17b of the support stand 17. Thereby, a part of the glass plate GS is sucked into the space 17b of the support stand 17, so that thermal deformation of a part of the glass plate GS can be promoted. As the exhaust device, for example, a pump using a venturi mechanism is suitable.
 なお、外力発生装置21は、排気装置に限らず、マスク部材18側から板ガラスGSの一部に向けて高圧ガスを噴射する高圧ガス発生装置であってもよい。これにより、板ガラスGSの一部が支持台17の空間部17bに向けて加圧されることで、板ガラスGSの一部の熱変形を促進することができる。また、ポンプと高圧ガス発生装置とを併用して、板ガラスGSの一部の熱変形を促進してもよい。 Note that the external force generating device 21 is not limited to an exhaust device, but may be a high-pressure gas generating device that injects high-pressure gas from the mask member 18 side toward a part of the glass plate GS. Thereby, a part of the plate glass GS is pressurized toward the space 17b of the support stand 17, so that thermal deformation of a part of the plate glass GS can be promoted. Alternatively, a pump and a high-pressure gas generator may be used in combination to promote thermal deformation of a portion of the glass plate GS.
 図7及び図8に示すように、成形工程では、まず支持台17に支持した板ガラスGSにマスク部材18を重ねて配置する。この場合において、支持台17の開口縁E1よりも内側に、マスク部材18の貫通孔18aにおける内周縁E2の少なくとも一部が配置される。その後、押圧部材20は、支持台17とマスク部材18とを互いに接近させる方向に押圧する。これにより、支持台17とマスク部材18との間で挟まれた板ガラスGSの位置ずれを抑えることができる。 As shown in FIGS. 7 and 8, in the forming process, first, the mask member 18 is placed over the glass plate GS supported on the support stand 17. In this case, at least a portion of the inner peripheral edge E2 of the through hole 18a of the mask member 18 is arranged inside the opening edge E1 of the support base 17. Thereafter, the pressing member 20 presses the support base 17 and the mask member 18 in a direction that causes them to approach each other. Thereby, the positional shift of the plate glass GS sandwiched between the support stand 17 and the mask member 18 can be suppressed.
 次に、成形工程では、加熱源19によりマスク部材18側から板ガラスGSを加熱する。これにより、板ガラスGSの一部が熱変形することで、突出部8が成形される。 Next, in the forming process, the glass plate GS is heated from the mask member 18 side by the heat source 19. As a result, a portion of the plate glass GS is thermally deformed, thereby forming the protrusion 8.
 上記の成形工程では、支持台17の開口縁E1を、マスク部材18で覆うことができる。これにより、蓋部材4における連結部9を、マスク部材18の貫通孔18aの内周縁E2に沿った板ガラスGSの熱変形により形成することができる。すなわち、蓋部材4の連結部9は、支持台17に接触することなく成形される。この成形工程により、枠部7、突出部8及び連結部9を有する蓋部材4が形成される。 In the above molding process, the opening edge E1 of the support base 17 can be covered with the mask member 18. Thereby, the connecting portion 9 in the lid member 4 can be formed by thermal deformation of the plate glass GS along the inner peripheral edge E2 of the through hole 18a of the mask member 18. That is, the connecting portion 9 of the lid member 4 is formed without contacting the support base 17. Through this molding process, a lid member 4 having a frame portion 7, a protruding portion 8, and a connecting portion 9 is formed.
 なお、蓋部材4に突出部8を形成する方法(蓋部材4の製造方法)は、上記以外にも、凹部を有する金属製やセラミックス製の型の上に板ガラスGSを載せ、前記凹部と嵌合する凸部を有する金属製やセラミックス製の型を用いて、板ガラスGSを加熱プレスする方法を採用することができる。この加熱プレスにおける加熱温度は、好ましくは板ガラスGSの屈伏点以上であり、より好ましくは板ガラスGSの軟化点以上である。 In addition, a method for forming the protrusion 8 on the lid member 4 (method for manufacturing the lid member 4) is also available, in addition to the method described above, by placing the plate glass GS on a mold made of metal or ceramics having a recess and fitting it into the recess. It is possible to adopt a method of hot pressing the plate glass GS using a mold made of metal or ceramics having convex portions that fit together. The heating temperature in this hot press is preferably higher than the yielding point of the plate glass GS, more preferably higher than the softening point of the plate glass GS.
 成形工程が終了すると、成膜工程が実行される。図9は、成膜工程に使用される成膜装置を示す。本実施形態では、成膜装置として、例えばマグネトロンスパッタ装置等のスパッタ装置を例示するが、本発明はこの構成に限定されず、真空蒸着法等の他の物理蒸着法を行う成膜装置を使用してもよい。 After the molding process is completed, a film forming process is performed. FIG. 9 shows a film forming apparatus used in the film forming process. In this embodiment, a sputtering apparatus such as a magnetron sputtering apparatus is exemplified as a film forming apparatus, but the present invention is not limited to this configuration, and a film forming apparatus that performs other physical vapor deposition methods such as a vacuum evaporation method may be used. You may.
 成膜装置22は、真空チャンバ23と、反射防止膜10a,10bの成膜材料となる粒子を飛散させるターゲット24a,24bと、を備える。 The film forming apparatus 22 includes a vacuum chamber 23 and targets 24a and 24b that scatter particles that become the film forming material for the antireflection films 10a and 10b.
 真空チャンバ23は、ターゲット24a,24bをその内部に収容する。真空チャンバ23の内部空間は、真空ポンプにより所定の真空度に設定される。真空チャンバ23内には、アルゴンガス等の不活性ガスが供給され得る。 The vacuum chamber 23 accommodates targets 24a and 24b therein. The internal space of the vacuum chamber 23 is set to a predetermined degree of vacuum by a vacuum pump. An inert gas such as argon gas may be supplied into the vacuum chamber 23 .
 ターゲット24a,24bは、蓋部材4に第一反射防止膜10aを形成するための第一ターゲット24aと、蓋部材4に第二反射防止膜10bを形成するための第二ターゲット24bと、を含む。これらのターゲット24a,24bの他、真空チャンバ23には、金属層14を形成するためのターゲット(図示省略)が配置される。 The targets 24a and 24b include a first target 24a for forming the first antireflection film 10a on the lid member 4, and a second target 24b for forming the second antireflection film 10b on the lid member 4. . In addition to these targets 24a and 24b, a target (not shown) for forming the metal layer 14 is arranged in the vacuum chamber 23.
 第一ターゲット24a及び第二ターゲット24bは、第一反射防止膜10a及び第二反射防止膜10bにおける第一の膜(SiO2)及び第二膜(HfO2)を形成するために、複数のターゲットを含む。 The first target 24a and the second target 24b are a plurality of targets in order to form the first film (SiO 2 ) and second film (HfO 2 ) in the first antireflection film 10a and the second antireflection film 10b. including.
 図9に示すように、成膜工程では、蓋部材4を真空チャンバ23に収容する。その後、第一ターゲット24aから飛散した粒子を、蓋部材4の突出部8の内面8a及び枠部7の第一主面7aに付着させることで、第一反射防止膜10aを形成する。同様に、第二ターゲット24bから飛散した粒子を、蓋部材4の突出部8の外面8b及び枠部7の第二主面7bに付着させることで、第二反射防止膜10bを形成する。 As shown in FIG. 9, in the film forming process, the lid member 4 is housed in the vacuum chamber 23. Thereafter, particles scattered from the first target 24a are attached to the inner surface 8a of the protrusion 8 of the lid member 4 and the first main surface 7a of the frame 7, thereby forming the first antireflection film 10a. Similarly, particles scattered from the second target 24b are attached to the outer surface 8b of the protruding portion 8 of the lid member 4 and the second main surface 7b of the frame portion 7, thereby forming the second antireflection film 10b.
 蓋部材4の突出部8に付着する粒子の量は、頂部13の位置で最も多くなり、基部11の位置で最も少なくなる。このように、突出部8に付着する粒子の量が異なるのは、突出部8の突出角度θの影響によるものである。 The amount of particles adhering to the protrusion 8 of the lid member 4 is greatest at the top 13 and least at the base 11. The difference in the amount of particles adhering to the protrusion 8 as described above is due to the effect of the protrusion angle θ of the protrusion 8.
 蓋部材4に反射防止膜10a,10bを形成した後に、第一反射防止膜10aの緩衝部10a2に重なるように、金属層14を形成する。金属層14は、上記の成膜装置22によって、金属層14を形成するためのターゲット(図示省略)から飛散した粒子を緩衝部10a2に付着させることによって形成する。金属層14は、マスク部材を通じて粒子を緩衝部10a2に付着させることで、枠形状に形成される。 After forming the antireflection films 10a and 10b on the lid member 4, the metal layer 14 is formed so as to overlap the buffer portion 10a2 of the first antireflection film 10a. The metal layer 14 is formed by causing particles scattered from a target (not shown) for forming the metal layer 14 to adhere to the buffer portion 10a2 using the film forming apparatus 22 described above. The metal layer 14 is formed into a frame shape by attaching particles to the buffer portion 10a2 through a mask member.
 その後、金属層14に重なるように、接合部15を形成する。接合部15は、例えばペースト状の金属系接合材を金属層14に重ねるように塗布する工程(塗布工程)によって形成される。塗布工程の具体例としては、マスクを用いた印刷法(スクリーン印刷法)、ディスペンサを用いた塗布法等が挙げられる。 Thereafter, a bonding portion 15 is formed so as to overlap the metal layer 14. The joint portion 15 is formed, for example, by a process (coating process) of applying a paste-like metal-based bonding material so as to overlap the metal layer 14 . Specific examples of the coating process include a printing method using a mask (screen printing method), a coating method using a dispenser, and the like.
 接合部15は、上記の方法に限らず、例えば、予め所定の枠形状に形成した金属系接合材の成形体を、枠部7の第一主面7aの金属層14に重なるように配置することによって形成してもよい。 The method for forming the bonding portion 15 is not limited to the above method, and for example, a molded body of a metal bonding material formed in advance into a predetermined frame shape is arranged so as to overlap the metal layer 14 on the first main surface 7a of the frame portion 7. It may also be formed by
 接合部15に係る金属系接合材が枠部7の第一主面7aに塗布されると、この金属系接合材を第一主面7aの金属層14に固定するための熱処理工程が実行される。熱処理工程は、加熱工程と、冷却工程とを備える。 When the metal-based bonding material for the joint portion 15 is applied to the first main surface 7a of the frame portion 7, a heat treatment step is performed to fix the metal-based bonding material to the metal layer 14 on the first main surface 7a. Ru. The heat treatment process includes a heating process and a cooling process.
 加熱工程では、蓋部材4をリフロー炉等の加熱装置を用いて加熱することで、金属系接合材を溶融させることができる。加熱工程は、例えば、炉内に窒素を充填した状態で実施してもよい。加熱工程において、蓋部材4は、300℃以上の温度に加熱される。 In the heating step, the metal bonding material can be melted by heating the lid member 4 using a heating device such as a reflow oven. The heating step may be performed, for example, with the furnace filled with nitrogen. In the heating step, the lid member 4 is heated to a temperature of 300° C. or higher.
 冷却工程において、枠部7の第一主面7a上で溶融した金属系接合材は、冷却されることで固化する。冷却工程は、冷却速度50℃/分で徐冷することが好ましい。冷却工程において、枠部7と接合部15との熱膨張係数の差により、蓋部材4に応力が発生するが、第一反射防止膜10aの緩衝部10a2は、この応力を緩和することができる。 In the cooling process, the metal-based bonding material melted on the first main surface 7a of the frame portion 7 is solidified by being cooled. In the cooling step, it is preferable to perform slow cooling at a cooling rate of 50° C./min. In the cooling process, stress is generated in the lid member 4 due to the difference in thermal expansion coefficient between the frame portion 7 and the joint portion 15, but the buffer portion 10a2 of the first antireflection film 10a can relieve this stress. .
 図10に示すように、接合工程では、準備工程を経て製造された蓋部材4が基体2に重ねられる。具体的には、蓋部材4の枠部7の第一主面7aを基体2に対向させ、接合部15を基体2の第一主面2aに形成されている金属層6に接触させる。 As shown in FIG. 10, in the bonding process, the lid member 4 manufactured through the preparation process is stacked on the base body 2. Specifically, the first main surface 7a of the frame 7 of the lid member 4 is made to face the base 2, and the joint portion 15 is brought into contact with the metal layer 6 formed on the first main surface 2a of the base 2.
 次に、図11に示すように、蓋部材4の枠部7に押圧部材25を載置する。押圧部材25は、錘25aと、錘25aを支持する支持部材25bとを有する。錘25a及び支持部材25bとしては、例えば金属製又はセラミック製のものが使用される。 Next, as shown in FIG. 11, the pressing member 25 is placed on the frame portion 7 of the lid member 4. The pressing member 25 includes a weight 25a and a support member 25b that supports the weight 25a. The weight 25a and the support member 25b are made of metal or ceramic, for example.
 支持部材25bは、錘25aを支持する第一支持部25b1と、第一支持部25b1を支持する第二支持部25b2とを有する。 The support member 25b has a first support part 25b1 that supports the weight 25a, and a second support part 25b2 that supports the first support part 25b1.
 第一支持部25b1は、錘25aが載置される支持面(上面)を有する。第二支持部25b2は、複数の棒状部材を含む。第二支持部25b2は、第一支持部25b1の下面から下方に突出している。 The first support portion 25b1 has a support surface (upper surface) on which the weight 25a is placed. The second support portion 25b2 includes a plurality of rod-shaped members. The second support portion 25b2 protrudes downward from the lower surface of the first support portion 25b1.
 第二支持部25b2は、蓋部材4の枠部7に接触する接触部25b3を有する。接触部25b3は、尖端状に構成される。接触部25b3は、第二反射防止膜10bを介して枠部7の第二主面7bに接触する。 The second support portion 25b2 has a contact portion 25b3 that contacts the frame portion 7 of the lid member 4. The contact portion 25b3 has a pointed shape. The contact portion 25b3 contacts the second main surface 7b of the frame portion 7 via the second antireflection film 10b.
 押圧部材25は、複数の第二支持部25b2の各接触部25b3が枠部7に接触することで、蓋部材4上で自立した状態でこの蓋部材4を押圧する。押圧部材25によって蓋部材4を押圧することで、蓋部材4の枠部7に形成されている接合部15と、基体2の第一主面2aに形成されている金属層6とを密着させることができる。 The pressing member 25 presses the lid member 4 in a state where it is independent on the lid member 4 because each contact portion 25b3 of the plurality of second support portions 25b2 contacts the frame portion 7. By pressing the lid member 4 with the pressing member 25, the joint portion 15 formed on the frame portion 7 of the lid member 4 and the metal layer 6 formed on the first main surface 2a of the base body 2 are brought into close contact. be able to.
 その後、金属層6と接合部15とを圧接させた状態で加熱する(加熱工程)。これにより、接合部15の金属系接合材が溶融した状態となる。なお、この加熱工程において、第二支持部25b2の尖端状の接触部25b3が蓋部材4の枠部7に接触することから、接触部25b3と枠部7との接触面積を可及的に小さくすることができる。これにより、枠部7から押圧部材25の第二支持部25b2への熱伝達を最小限に抑えることができる。  Thereafter, the metal layer 6 and the bonding portion 15 are heated while being in pressure contact with each other (heating step). As a result, the metal-based bonding material of the bonding portion 15 is in a molten state. Note that in this heating step, since the pointed contact portion 25b3 of the second support portion 25b2 contacts the frame portion 7 of the lid member 4, the contact area between the contact portion 25b3 and the frame portion 7 is made as small as possible. can do. Thereby, heat transfer from the frame portion 7 to the second support portion 25b2 of the pressing member 25 can be minimized. 
 その後、溶融した金属系接合材を冷却することにより固化させる(冷却工程)。冷却工程において、基体2と蓋部材4の枠部7との熱膨張係数の差に起因して、枠部7に応力が発生することとなる。この場合において、第一反射防止膜10aの緩衝部10a2は、この応力を緩和するように変形する。これにより、枠部7の破損を低減することができる。 Thereafter, the molten metal-based bonding material is solidified by cooling (cooling step). In the cooling process, stress is generated in the frame part 7 due to the difference in thermal expansion coefficient between the base body 2 and the frame part 7 of the lid member 4. In this case, the buffer portion 10a2 of the first antireflection film 10a deforms to relieve this stress. Thereby, damage to the frame portion 7 can be reduced.
 冷却工程が終了すると、接合部15が基体2の金属層6と蓋部材4の金属層14とを一体に接合してなる封止部5が形成される。以上により、気密性が保たれたパッケージ1が完成する。 When the cooling process is completed, the sealing part 5 is formed by joining the metal layer 6 of the base 2 and the metal layer 14 of the lid member 4 together at the joint part 15. Through the above steps, the package 1 whose airtightness is maintained is completed.
 図12は、蓋部材4を製造するためのガラス基板の例を示す。ガラス基板Gは、枠部7と、枠部7から突出する複数の突出部8と、反射防止膜10a,10bと、を備える。各突出部8は、上記の蓋部材4の突出部8と同じ構成を有する。各突出部8は、上記の成形装置16によって大型の板ガラスGSの複数箇所を熱変形させることによって形成される。このガラス基板Gを切断線CLに沿って切断すれば、突出部8及び枠部7、反射防止膜10a,10bを有する複数の蓋部材を効率よく製造できる。なお、第一反射防止膜10aには、金属層14及び接合部15が形成されていてもよい。 FIG. 12 shows an example of a glass substrate for manufacturing the lid member 4. The glass substrate G includes a frame 7, a plurality of protrusions 8 protruding from the frame 7, and antireflection films 10a and 10b. Each protrusion 8 has the same configuration as the protrusion 8 of the lid member 4 described above. Each of the protrusions 8 is formed by thermally deforming a plurality of locations of the large plate glass GS using the above-mentioned forming device 16. By cutting this glass substrate G along the cutting line CL, it is possible to efficiently manufacture a plurality of lid members each having the protruding portion 8, the frame portion 7, and the antireflection films 10a and 10b. Note that a metal layer 14 and a bonding portion 15 may be formed on the first antireflection film 10a.
 図13は、蓋部材の他の例を示す。この例において、蓋部材4は、枠部7と、枠部7から突出する複数の突出部8と、反射防止膜10a,10bと、金属層14及び接合部15と、を備える。この蓋部材4の各構成要素は、上記(図5)の蓋部材4と同じ構成を有する。この蓋部材4は、基体2に複数の発光素子3が搭載される場合に、各発光素子3を複数の突出部8によって個別に封止することができる。 FIG. 13 shows another example of the lid member. In this example, the lid member 4 includes a frame 7, a plurality of protrusions 8 protruding from the frame 7, antireflection films 10a and 10b, a metal layer 14, and a joint 15. Each component of this lid member 4 has the same configuration as the lid member 4 described above (FIG. 5). When a plurality of light emitting elements 3 are mounted on the base 2, this lid member 4 can individually seal each light emitting element 3 with a plurality of protrusions 8.
 図14は、蓋部材の他の例を示す。この例において、蓋部材4の内面8aは、曲率半径の異なる第一曲面8a1及び第二曲面8a2と、第一曲面8a1と第二曲面8a2との間に位置する境界部8a3とを、有する。突出部8の基部11側に形成される第一曲面8a1の曲率半径は、突出部8の頂部13側に形成される第二曲面8a2の曲率半径よりも小さい。 FIG. 14 shows another example of the lid member. In this example, the inner surface 8a of the lid member 4 has a first curved surface 8a1 and a second curved surface 8a2 having different radii of curvature, and a boundary portion 8a3 located between the first curved surface 8a1 and the second curved surface 8a2. The radius of curvature of the first curved surface 8a1 formed on the base 11 side of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8a2 formed on the top 13 side of the protrusion 8.
 蓋部材4の外面8bは、曲率半径の異なる第一曲面8b1及び第二曲面8b2と、第一曲面8b1と第二曲面8b2との間に位置する境界部8b3とを、有する。突出部8の基部11側に形成される第一曲面8b1の曲率半径は、突出部8の頂部13側に形成される第二曲面8b2の曲率半径よりも小さい。 The outer surface 8b of the lid member 4 has a first curved surface 8b1 and a second curved surface 8b2 having different radii of curvature, and a boundary portion 8b3 located between the first curved surface 8b1 and the second curved surface 8b2. The radius of curvature of the first curved surface 8b1 formed on the side of the base 11 of the protrusion 8 is smaller than the radius of curvature of the second curved surface 8b2 formed on the side of the top 13 of the protrusion 8.
 図15及び図16は、蓋部材の他の例を示す平面図である。この例において、蓋部材4は、複行複列に配された複数の突出部8と、反射防止膜10a,10b(第一反射防止膜10aについては図示を省略)と、金属層14(図示省略)及び接合部15(図示省略)と、を有する。図15に示す蓋部材4は、平面視円形状に構成される複数の突出部8を有する。一方、図16に示す蓋部材4は、平面視四角形状に構成される複数の突出部8を有する。なお、複行複列に配された複数の突出部8を有する蓋部材4については、隣り合う突出部8同士の間の平滑面に、スクライブ線を入れ、このスクライブ線に沿って蓋部材4を割断し、或いは、ブレードダイシング方式やレーザアブレーション方式でダイシングすることで、複数の蓋部材を得ることができ、また、任意の形状の蓋部材を得ることができる。 15 and 16 are plan views showing other examples of the lid member. In this example, the lid member 4 includes a plurality of protrusions 8 arranged in double rows and double rows, antireflection films 10a and 10b (the first antireflection film 10a is not shown), and a metal layer 14 (not shown). (omitted) and a joint portion 15 (not shown). The lid member 4 shown in FIG. 15 has a plurality of protrusions 8 that are circular in plan view. On the other hand, the lid member 4 shown in FIG. 16 has a plurality of protrusions 8 having a rectangular shape in plan view. Note that for the lid member 4 having a plurality of protrusions 8 arranged in double rows and double rows, a scribe line is inserted into the smooth surface between adjacent protrusions 8, and the lid member 4 is inserted along this scribe line. By cutting or dicing using a blade dicing method or a laser ablation method, a plurality of lid members can be obtained, and a lid member of an arbitrary shape can be obtained.
 図17は、蓋部材の他の例を示す底面図である。この例において、蓋部材4は、図16に示す例と同様に、平面視四角形状に構成される突出部8を有する。この構成により、突出部8の開口部8cは、四角形状(例えば正方形状)に構成されている。開口部8cが正方形状に構成されている場合には、その開口長さLは、正方形の一辺の長さに相当する。開口部8cが長方形状に構成されている場合には、その開口長さLは、長方形の長辺の長さに相当する。 FIG. 17 is a bottom view showing another example of the lid member. In this example, the lid member 4 has a protrusion 8 having a rectangular shape in plan view, similar to the example shown in FIG. With this configuration, the opening 8c of the protrusion 8 is configured to have a rectangular shape (for example, a square shape). When the opening 8c is configured in a square shape, the opening length L corresponds to the length of one side of the square. When the opening 8c has a rectangular shape, the opening length L corresponds to the length of the long side of the rectangle.
 図18は、蓋部材の製造方法(パッケージの製造方法における準備工程)における他の例を示す。この例では、反射防止膜10a,10b及び金属層14が形成されたガラス基板Gに接合部15を形成する工程を示す。具体的には、スクリーン印刷法により接合部15を形成する際に、ガラス基板Gを支持装置26に固定する場合について説明する。 FIG. 18 shows another example of the lid member manufacturing method (preparation step in the package manufacturing method). This example shows a step of forming a bonding portion 15 on a glass substrate G on which antireflection films 10a, 10b and a metal layer 14 are formed. Specifically, a case will be described in which the glass substrate G is fixed to the support device 26 when forming the joint portion 15 by screen printing.
 支持装置26は、ガラス基板Gを支持する支持板27と、支持板27を支持する吸引台29とを備える。 The support device 26 includes a support plate 27 that supports the glass substrate G, and a suction stand 29 that supports the support plate 27.
 支持板27は、吸引台29に対して着脱自在に構成される。支持板27は、ガラス基板Gの突出部8及び連結部9を挿入することが可能な開口部28を有する。支持板27は、ガラス基板Gの突出部8を下方に向けた状態で、突出部8及び連結部9を開口部28に挿入することで、突出部8及び連結部9に接触することなく、ガラス基板Gの枠部7のみを支持することができる。 The support plate 27 is configured to be detachable from the suction table 29. The support plate 27 has an opening 28 into which the protruding part 8 and the connecting part 9 of the glass substrate G can be inserted. The support plate 27 can be inserted into the opening 28 with the protrusion 8 of the glass substrate G facing downward, without coming into contact with the protrusion 8 and the coupling part 9. Only the frame portion 7 of the glass substrate G can be supported.
 吸引台29は、支持板27を支持する支持部30と、ガラス基板Gを支持板27に固定するための吸引口31とを備える。支持部30は、支持板27の周縁部を支持する支持面30aを有する。 The suction table 29 includes a support part 30 that supports the support plate 27 and a suction port 31 for fixing the glass substrate G to the support plate 27. The support portion 30 has a support surface 30a that supports the peripheral edge of the support plate 27.
 吸引台29は、支持部30に支持された支持板27と吸引口31との間に、空間部29aを有する。吸引口31は、図示しないポンプ等の吸引装置(排気装置)に接続されている。 The suction stand 29 has a space 29a between the support plate 27 supported by the support part 30 and the suction port 31. The suction port 31 is connected to a suction device (exhaust device) such as a pump (not shown).
 吸引台29は、ガラス基板Gが載置された支持板27を支持部30によって支持した状態で、空間部29a内に存在する気体を吸引口31から排出することで、空間部29a内を負圧にする。これにより、ガラス基板Gは、支持板27の開口部28を介して空間部29a側に吸引されることで、支持板27に固定される。その後、スクリーン印刷法により、ガラス基板Gの金属層14に重なるように、接合部15に係るペースト状の金属系接合材が塗布される。 The suction stand 29 makes the inside of the space 29a negative by discharging the gas present in the space 29a from the suction port 31 while the support plate 27 on which the glass substrate G is placed is supported by the support part 30. Pressure. Thereby, the glass substrate G is fixed to the support plate 27 by being sucked toward the space 29a through the opening 28 of the support plate 27. Thereafter, a paste-like metal-based bonding material for the bonding portion 15 is applied by screen printing so as to overlap the metal layer 14 of the glass substrate G.
 上記のように支持装置26によってガラス基板Gを支持することで、接合部15を精度良く形成することが可能となる。 By supporting the glass substrate G with the support device 26 as described above, it becomes possible to form the bonding portion 15 with high precision.
 図19は、パッケージの他の例を示す。この例におけるパッケージ1は、複数の発光素子3が搭載された基体2と、図13に例示した蓋部材4とを備える。この蓋部材4は、基体2に搭載された各発光素子3を、複数の突出部8及び封止部5によって個別に封止している。 FIG. 19 shows another example of the package. The package 1 in this example includes a base 2 on which a plurality of light emitting elements 3 are mounted, and a lid member 4 illustrated in FIG. 13. This lid member 4 individually seals each light emitting element 3 mounted on the base 2 with a plurality of protrusions 8 and a sealing part 5.
 以上説明した本実施形態に係るパッケージ1(蓋部材4)及びガラス基板Gによれば、蓋部材4における突出部8の内面8a及び外面8bに反射防止膜10a,10bを形成で、発光素子3から放出された光を突出部8によって効率良く透過させることができる。これにより、蓋部材4が使用されたパッケージ1における光の取り出し効率を可及的に高めることが可能となる。 According to the package 1 (lid member 4) and the glass substrate G according to the present embodiment described above, the antireflection films 10a and 10b are formed on the inner surface 8a and the outer surface 8b of the protrusion 8 in the lid member 4, and the light emitting element 3 The light emitted from the projection 8 can be efficiently transmitted through the projection 8. This makes it possible to increase the light extraction efficiency in the package 1 in which the lid member 4 is used as much as possible.
 上記の実施形態において、蓋部材4の突出部8は、頂部13の厚さが基部11の厚さよりも薄くなっているのに対して、反射防止膜10a,10bの厚さは、頂部13の位置で厚く、基部11の位置で薄くなっている。突出部8の上記構成から、発光素子3から放出された光は、突出部8の頂部13において相対的に透過し易く、基部11において相対的に透過し難くなっている。すなわち、本実施形態では、光が相対的に透過し易い部位において反射防止膜10a,10bの厚さを厚くし、光が相対的に透過し難い部位において反射防止膜10a,10bの厚さを薄くしている。 In the above embodiment, the thickness of the top portion 13 of the protruding portion 8 of the lid member 4 is thinner than the thickness of the base portion 11, whereas the thickness of the antireflection coatings 10a, 10b is smaller than that of the top portion 13. It is thicker at the base 11 and thinner at the base 11. Due to the above structure of the protrusion 8, the light emitted from the light emitting element 3 is relatively easy to pass through the top 13 of the protrusion 8, and relatively difficult to pass through the base 11. That is, in this embodiment, the thickness of the anti-reflection films 10a, 10b is increased in areas where light is relatively easy to transmit, and the thickness of the anti-reflection films 10a, 10b is increased in areas where light is relatively difficult to transmit. It's thin.
 反射防止膜10a,10bは、透過する光を若干ながら吸収する。反射防止膜10a,10bは、厚くなるほどこの光の吸収量が増加するため、上記のように、光が透過し難い突出部8の基部11の位置における反射防止膜10a,10bの厚さを薄くすることで、基部11と頂部13とで光を比較的均等に透過させることが可能となる。 The antireflection films 10a and 10b absorb a small amount of transmitted light. As the anti-reflection films 10a and 10b become thicker, the amount of light absorbed increases. Therefore, as mentioned above, the thickness of the anti-reflection films 10a and 10b at the base 11 of the protrusion 8 where it is difficult for light to pass through is reduced. By doing so, it becomes possible to transmit light relatively evenly between the base portion 11 and the top portion 13.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Note that the present invention is not limited to the configuration of the embodiments described above, nor is it limited to the effects described above. The present invention can be modified in various ways without departing from the gist of the invention.
 上記の実施形態では、第一反射防止膜10a及び第二反射防止膜10bが形成された蓋部材4及びガラス基板Gを示したが、本発明はこの構成に限定されない。本発明に係る蓋部材4及びガラス基板Gは、第一反射防止膜10aのみ又は第二反射防止膜10bのみを有するものであってもよい。 Although the above embodiment shows the lid member 4 and the glass substrate G on which the first antireflection film 10a and the second antireflection film 10b are formed, the present invention is not limited to this configuration. The lid member 4 and the glass substrate G according to the present invention may have only the first antireflection film 10a or only the second antireflection film 10b.
 上記の実施形態では、頂部13の厚さが基部11の厚さよりも薄く構成された突出部8を有する蓋部材4を例示したが、本発明はこの構成に限定されない。本発明は、基部11から頂部13まで厚さが一定である突出部8を備える蓋部材4にも適用可能である。 In the above embodiment, the lid member 4 having the protruding portion 8 in which the thickness of the top portion 13 is thinner than the thickness of the base portion 11 is illustrated, but the present invention is not limited to this configuration. The present invention is also applicable to a lid member 4 including a protrusion 8 having a constant thickness from the base 11 to the top 13.
 図20は、蓋部材の他の例を示す。この例において、蓋部材4の内面8aは、突出部8の内側に向かって凸となる第一曲面8a1と、突出部8の外側に向かって凸となる第二曲面8a2と、第一曲面8a1と第二曲面8a2との間に位置する変曲点8a3と、を有する。第一曲面8a1は、第二曲面8a2よりも突出部8の基部11寄りの位置に形成されている。第一曲面8a1の曲率中心は、突出部8の外側に位置する。第二曲面8a2は、第一曲面8a1よりも頂部13寄りの位置に形成されている。第二曲面8a2の曲率中心は、突出部8の内側に位置する。 FIG. 20 shows another example of the lid member. In this example, the inner surface 8a of the lid member 4 includes a first curved surface 8a1 that is convex toward the inside of the protrusion 8, a second curved surface 8a2 that is convex toward the outside of the protrusion 8, and a first curved surface 8a1. and an inflection point 8a3 located between the second curved surface 8a2 and the second curved surface 8a2. The first curved surface 8a1 is formed at a position closer to the base 11 of the protrusion 8 than the second curved surface 8a2. The center of curvature of the first curved surface 8a1 is located on the outside of the protrusion 8. The second curved surface 8a2 is formed at a position closer to the top 13 than the first curved surface 8a1. The center of curvature of the second curved surface 8a2 is located inside the protrusion 8.
 蓋部材4の外面8bは、突出部8の内側に向かって凸となる第一曲面8b1と、突出部8の外側に向かって凸となる第二曲面8b2と、第一曲面8b1と第二曲面8b2との間に位置する変曲点8b3と、を有する。第一曲面8b1は、第二曲面8b2よりも突出部8の基部11寄りの位置に形成されている。第一曲面8b1の曲率中心は、突出部8の外側に位置する。第二曲面8b2は、第一曲面8b1よりも突出部8の頂部13寄りの位置に形成されている。第二曲面8b2の曲率中心は、突出部8の内側に位置する。変曲点8a3と変曲点8b3は、枠部7の第二主面7bよりも上方(頂部13側)に設けられている。 The outer surface 8b of the lid member 4 has a first curved surface 8b1 that is convex toward the inside of the protrusion 8, a second curved surface 8b2 that is convex toward the outside of the protrusion 8, and the first curved surface 8b1 and the second curved surface. 8b3, and an inflection point 8b3 located between 8b2 and 8b2. The first curved surface 8b1 is formed at a position closer to the base 11 of the protrusion 8 than the second curved surface 8b2. The center of curvature of the first curved surface 8b1 is located on the outside of the protrusion 8. The second curved surface 8b2 is formed at a position closer to the top 13 of the protrusion 8 than the first curved surface 8b1. The center of curvature of the second curved surface 8b2 is located inside the protrusion 8. The inflection point 8a3 and the inflection point 8b3 are provided above the second main surface 7b of the frame portion 7 (on the top 13 side).
 内面8a及び外面8bの各変曲点8a3,8b3は、図7乃至図9に示す成形装置及び成形方法によって蓋部材4に形成され得る。突出部8に変曲点8a3,8b3が形成される場合には、成形工程において、突出部8の突出角度θが小さくなり、光の取り出し効率が低下するおそれがある。本発明では、突出部8の突出角度θを大きく確保できるように、成形装置16(図7参照)の加熱源19によって、板ガラスGSを十分に加熱することが望ましい。本例に係る蓋部材4のように、変曲点8a3,8b3が形成された突出部8を有する場合には、突出角度θを40°以上90°以下とすることで、蓋部材4における光の取り出し効率を高めることが可能となる。突出角度θは、45°以上、50°以上、55°以上、60°以上、65°以上、70°以上がこの順で好ましい。一方、突出角度θは、90°未満であることが好ましく、85°以下であることがより好ましい。この例においては、突出角度θの規定が、図5の実施形態とは異なる。この例において、突出角度θは、変曲点8a3における接線L8と枠部7の第一主面7aとの成す角(鋭角)である。具体的には、変曲点8a3における接線L8と枠部7の第一主面7aに沿うように描かれた第六線L6とが為す角度(鋭角)を突出角度θとする。この例において、開口部8cの開口長さLと突出高さHについては、図5に示す実施形態と同様である。この例において、反射防止膜(10a,10b)については必ずしも必須の構成ではないが、反射防止膜(10a,10b)を設けることが好ましく、反射防止膜(10a,10b)の材質、厚さについての好ましい形態は、図5に示す実施形態と同様である。この例において、突出部8の厚さ(基部11の厚さ、頂部13の厚さ)、外径についての好ましい形態は、図5に示す実施形態と同様である。 The inflection points 8a3 and 8b3 on the inner surface 8a and the outer surface 8b can be formed on the lid member 4 by the molding apparatus and molding method shown in FIGS. 7 to 9. When the inflection points 8a3 and 8b3 are formed in the protrusion 8, the protrusion angle θ of the protrusion 8 becomes small in the molding process, and there is a possibility that the light extraction efficiency decreases. In the present invention, it is desirable that the plate glass GS be sufficiently heated by the heat source 19 of the forming device 16 (see FIG. 7) so that the protrusion angle θ of the protrusion 8 can be ensured to be large. When the lid member 4 according to this example has the protrusion 8 in which the inflection points 8a3 and 8b3 are formed, the protrusion angle θ is set to 40° or more and 90° or less, so that the light in the lid member 4 is It becomes possible to increase the extraction efficiency. The protrusion angle θ is preferably 45° or more, 50° or more, 55° or more, 60° or more, 65° or more, and 70° or more in this order. On the other hand, the protrusion angle θ is preferably less than 90°, more preferably 85° or less. In this example, the definition of the protrusion angle θ is different from the embodiment of FIG. 5 . In this example, the protrusion angle θ is the angle (acute angle) formed by the tangent L8 at the inflection point 8a3 and the first principal surface 7a of the frame portion 7. Specifically, the angle (acute angle) formed by the tangent L8 at the inflection point 8a3 and the sixth line L6 drawn along the first principal surface 7a of the frame portion 7 is defined as the protrusion angle θ. In this example, the opening length L and protrusion height H of the opening 8c are the same as those in the embodiment shown in FIG. In this example, although the anti-reflection films (10a, 10b) are not necessarily required, it is preferable to provide the anti-reflection films (10a, 10b), and the material and thickness of the anti-reflection films (10a, 10b) are The preferred form is similar to the embodiment shown in FIG. In this example, preferred embodiments regarding the thickness (thickness of the base 11, thickness of the top 13) and outer diameter of the protrusion 8 are the same as those of the embodiment shown in FIG.
 図21乃至図25は、パッケージ及び蓋部材の他の例を示す。この例では、蓋部材の形状が上記の実施形態と異なる。図21乃至図23に示すように、この例における蓋部材4の頂部13は、平板状に構成されている。このように蓋部材4に平板状の頂部13を形成することにより、頂部13に係る蓋部材4のその内面8a及び外面8bに均一な厚さの反射防止膜10a,10bを形成することができる。また、蓋部材4に平板状の頂部13を形成することにより、頂部13と、発光素子3との距離D1を可及的に小さくすることが可能となる。加えて、発光素子3から放出された光が平板状の頂部13に対して垂直に入射し易くなる。したがって、蓋部材4における光の取り出し効率を大幅に向上させることができる。 21 to 25 show other examples of the package and the lid member. In this example, the shape of the lid member is different from the above embodiment. As shown in FIGS. 21 to 23, the top portion 13 of the lid member 4 in this example has a flat plate shape. By forming the flat plate-like top portion 13 on the lid member 4 in this manner, antireflection films 10a and 10b having a uniform thickness can be formed on the inner surface 8a and outer surface 8b of the lid member 4 related to the top portion 13. . Further, by forming the flat top portion 13 on the lid member 4, it becomes possible to make the distance D1 between the top portion 13 and the light emitting element 3 as small as possible. In addition, the light emitted from the light emitting element 3 is more likely to be perpendicularly incident on the flat top portion 13. Therefore, the light extraction efficiency in the lid member 4 can be significantly improved.
 次に、この例におけるパッケージ1の製造方法(蓋部材4の製造方法)について説明する。この方法では、パッケージ1の製造方法における準備工程が図7及び図8で示した例と異なる。図24に示すように、成形装置16は、支持台17と、マスク部材18と、加熱源19と、押圧部材20と、外力発生装置21と、成形型(下受け治具)32と、を備える。支持台17、マスク部材18、加熱源19、押圧部材20及び外力発生装置21の構成は、図7に例示したものと同じである。 Next, a method for manufacturing the package 1 (method for manufacturing the lid member 4) in this example will be described. In this method, the preparation steps in the method for manufacturing the package 1 are different from the examples shown in FIGS. 7 and 8. As shown in FIG. 24, the molding device 16 includes a support stand 17, a mask member 18, a heat source 19, a pressing member 20, an external force generator 21, and a mold (lower receiving jig) 32. Be prepared. The configurations of the support base 17, mask member 18, heat source 19, pressing member 20, and external force generating device 21 are the same as those illustrated in FIG.
 成形型32は、支持台17の空間部17b内に配置されている。成形型32は、加熱によって軟化する板ガラスGSの一部を成形する成形面32aを有する。成形面32aは、平坦面状に構成される。成形面32の表面粗さ(算術平均粗さ)Raは、例えば0.1nm以上10nm以下である。 The mold 32 is placed within the space 17b of the support stand 17. The mold 32 has a molding surface 32a that molds a part of the plate glass GS that is softened by heating. The molding surface 32a is configured into a flat surface. The surface roughness (arithmetic mean roughness) Ra of the molding surface 32 is, for example, 0.1 nm or more and 10 nm or less.
 図25に示すように、成形工程では、支持台17に支持した板ガラスGSにマスク部材18を重ねて配置する。この場合において、支持台17の開口縁E1よりも内側に、マスク部材18の貫通孔18aにおける内周縁E2の少なくとも一部が配置される。その後、押圧部材20は、支持台17とマスク部材18とを互いに接近させる方向に押圧する。 As shown in FIG. 25, in the molding process, the mask member 18 is placed over the plate glass GS supported on the support stand 17. In this case, at least a portion of the inner peripheral edge E2 of the through hole 18a of the mask member 18 is arranged inside the opening edge E1 of the support base 17. Thereafter, the pressing member 20 presses the support base 17 and the mask member 18 in a direction that causes them to approach each other.
 次に、加熱源19によりマスク部材18側から板ガラスGSを加熱する。これにより、板ガラスGSの一部が熱変形する。このとき、変形した板ガラスGの一部は、成形型32の成形面32aに接触する。これにより、板ガラスGの一部は、平板状に成形される。この成形工程により、枠部7と、平板状の頂部13を含む突出部8と、連結部9とを有する蓋部材4が形成される。 Next, the plate glass GS is heated from the mask member 18 side using the heat source 19. As a result, a portion of the plate glass GS is thermally deformed. At this time, a part of the deformed plate glass G comes into contact with the molding surface 32a of the mold 32. As a result, a part of the plate glass G is formed into a flat plate shape. Through this molding process, a lid member 4 having a frame portion 7, a protruding portion 8 including a flat top portion 13, and a connecting portion 9 is formed.
 この蓋部材4に対して図9乃至図11で例示した成膜工程及び接合工程を実施することにより、パッケージ1を製造することができる。 The package 1 can be manufactured by performing the film forming process and bonding process illustrated in FIGS. 9 to 11 on this lid member 4.
 以下、本発明に係る実施例について説明するが、本発明はこの実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
 本発明者は、本発明の効果を確認するために、蓋部材による光の取り出し効率を測定する試験を行った。この試験では、反射防止膜を備える蓋部材(サンプル1、3、5、7、9)と、反射防止膜を備えていない蓋部材(サンプル2、4、6、8、10)を用意し、各例について光の取り出し効率を測定した。各サンプルについては、図20に示す形状を呈する蓋部材とした。 In order to confirm the effects of the present invention, the inventor conducted a test to measure the light extraction efficiency of the lid member. In this test, lid members equipped with an anti-reflection film ( samples 1, 3, 5, 7, 9) and lid members without an anti-reflection film ( samples 2, 4, 6, 8, 10) were prepared. The light extraction efficiency was measured for each example. For each sample, a lid member having the shape shown in FIG. 20 was used.
 光の取り出し効率は、蓋部材を介さずに発光素子から放出された光(波長265nm、280nm)のエネルギEN1を測定し、発光素子から放出された光(波長265nm、280nm)を蓋部材に透過させた場合のエネルギEN2を測定し、これらのエネルギの比(EN2/EN1)により算出した。 The light extraction efficiency is determined by measuring the energy EN1 of the light (wavelength 265 nm, 280 nm) emitted from the light emitting element without passing through the lid member, and measuring the energy EN1 of the light (wavelength 265 nm, 280 nm) emitted from the light emitting element transmitted through the lid member. The energy EN2 was measured when the temperature was increased, and the energy EN2 was calculated from the ratio of these energies (EN2/EN1).
 試験結果を表1に示す。表1において、サンプル1とサンプル2とは、蓋部材における突出角度θ、突出部の突出高さH、突出部における開口部の開口長さLとを同一条件とした。同様に、サンプル3とサンプル4、サンプル5とサンプル6、サンプル7とサンプル8、サンプル9とサンプル10についても、それぞれ突出部と開口部の条件を同一とした。
Figure JPOXMLDOC01-appb-T000001
The test results are shown in Table 1. In Table 1, Sample 1 and Sample 2 were made under the same conditions for the protrusion angle θ in the lid member, the protrusion height H of the protrusion, and the opening length L of the opening in the protrusion. Similarly, the conditions for the protrusions and openings were the same for Samples 3 and 4, Samples 5 and 6, Samples 7 and 8, and Samples 9 and 10, respectively.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、突出角度θ、突出部の突出高さH、及び突出部における開口部の開口長さLの各条件が同一である場合において、反射防止膜が形成される蓋部材は、反射防止膜が形成されない蓋部材と比較して、光の取り出し効率が高くなることが明らかとなった。また、反射防止膜が形成の有無の条件が同一である場合、突出角度θが大きくなるに従い、光の取り出し効率が高くなり、また、開口長さLと突出高さHとの比L/Hが小さくなるに従い、光の取り出し効率が高くなった。つまり、反射防止膜が形成されていない場合であったとしても、突出角度θを大きくすることによって、光の取り出し効率を高くすることができた。 As shown in Table 1, when the protrusion angle θ, the protrusion height H of the protrusion, and the opening length L of the opening in the protrusion are the same, the lid member on which the antireflection film is formed is It has become clear that the light extraction efficiency is higher than that of a lid member on which no antireflection film is formed. Furthermore, when the conditions of whether or not an antireflection film is formed are the same, as the protrusion angle θ increases, the light extraction efficiency increases, and the ratio L/H of the aperture length L and the protrusion height H The smaller the value, the higher the light extraction efficiency. In other words, even if no antireflection film was formed, the light extraction efficiency could be increased by increasing the protrusion angle θ.
 1      パッケージ
 2      基体
 3      発光素子
 4      蓋部材
 7      枠部
 7a     枠部の第一主面
 7b     枠部の第二主面
 8      突出部
 8a     突出部の内面
 8a1    突出部における内面の第一曲面
 8a2    突出部における内面の第二曲面
 8a3    突出部における内面の変曲点
 8b     突出部の外面
 8c     突出部の開口部
10a     第一反射防止膜
10b     第二反射防止膜
11      基部
13      頂部
14      金属層
 G      ガラス基板
 L8     変曲点における接線
 Tmin   突出部の頂部の厚さ
 Tmax   突出部の基部の厚さ
 θ      突出角度
1 Package 2 Base 3 Light emitting element 4 Lid member 7 Frame 7a First main surface of the frame 7b Second main surface of the frame 8 Projection 8a Inner surface of the projection 8a1 First curved surface of the inner surface in the projection 8a2 In the projection Second curved surface of the inner surface 8a3 Inflection point of the inner surface of the protrusion 8b Outer surface of the protrusion 8c Opening of the protrusion 10a First antireflection film 10b Second antireflection film 11 Base 13 Top 14 Metal layer G Glass substrate L8 Inflection Tangent line at the point Tmin Thickness at the top of the protrusion Tmax Thickness at the base of the protrusion θ Protrusion angle

Claims (16)

  1.  発光素子を含むパッケージに用いられるガラス製の蓋部材であって、
     板状の枠部と、前記枠部から突出するドーム状の突出部とを備え、
     前記突出部は、内面及び外面を有し、
     前記突出部の前記内面及び前記外面の少なくとも一方には、反射防止膜が形成されている、
    ことを特徴とする蓋部材。
    A glass lid member used for a package including a light emitting element,
    comprising a plate-shaped frame and a dome-shaped protrusion protruding from the frame,
    The protrusion has an inner surface and an outer surface,
    an antireflection film is formed on at least one of the inner surface and the outer surface of the protrusion;
    A lid member characterized by:
  2.  前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、
     前記枠部の前記第一主面には、前記反射防止膜が形成されている、
    ことを特徴とする請求項1に記載の蓋部材。
    The frame has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion,
    The anti-reflection film is formed on the first main surface of the frame.
    The lid member according to claim 1, characterized in that:
  3.  前記枠部の前記第一主面に形成されている前記反射防止膜の前記第一主面側とは反対側に金属層が形成されている、
    ことを特徴とする請求項2に記載の蓋部材。
    A metal layer is formed on a side opposite to the first main surface side of the antireflection film formed on the first main surface of the frame portion,
    The lid member according to claim 2, characterized in that:
  4.  前記突出部の前記内面には、前記反射防止膜が形成されており、
     前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、
     前記頂部に形成されている前記反射防止膜の厚さは、前記基部に形成されている前記反射防止膜の厚さよりも厚い、
    ことを特徴とする請求項1から3のいずれか一項に記載の蓋部材。
    The anti-reflection film is formed on the inner surface of the protrusion,
    The protruding portion includes a top portion and a base portion integrally formed with the frame portion,
    The thickness of the anti-reflection film formed on the top part is thicker than the thickness of the anti-reflection film formed on the base part.
    The lid member according to any one of claims 1 to 3, characterized in that:
  5.  前記反射防止膜は、酸化ハフニウム膜を含む、
    ことを特徴とする請求項1から3のいずれか一項に記載の蓋部材。
    The antireflection film includes a hafnium oxide film.
    The lid member according to any one of claims 1 to 3, characterized in that:
  6.  前記突出部の前記頂部の厚さは、前記突出部の前記基部の厚さよりも薄い、
    ことを特徴とする請求項4に記載の蓋部材。
    the thickness of the top of the protrusion is thinner than the thickness of the base of the protrusion;
    The lid member according to claim 4, characterized in that:
  7.  前記突出部の前記外面には、第二の反射防止膜が形成されている、
    ことを特徴とする請求項4に記載の蓋部材。
    a second antireflection film is formed on the outer surface of the protrusion;
    The lid member according to claim 4, characterized in that:
  8.  前記頂部に形成されている前記第二の反射防止膜の厚さは、前記基部に形成されている前記第二の反射防止膜の厚さよりも厚い、
    ことを特徴とする請求項7に記載の蓋部材。
    The thickness of the second anti-reflection film formed on the top part is thicker than the thickness of the second anti-reflection film formed on the base part.
    The lid member according to claim 7, characterized in that:
  9.  前記突出部は、所定の突出角度で前記枠部から突出しており、
     前記突出部の前記突出角度は、40°以上90°以下である、
    ことを特徴とする請求項1から3のいずれか一項に記載の蓋部材。
    The protrusion protrudes from the frame at a predetermined protrusion angle,
    The protrusion angle of the protrusion is 40° or more and 90° or less,
    The lid member according to any one of claims 1 to 3, characterized in that:
  10.  前記突出部は、頂部と、前記枠部と一体に構成される基部とを備え、
     前記突出部は、前記内面側に形成される開口部を有し、
     前記開口部の開口長さLと、前記突出部の突出高さHとの比L/Hは、1.6以上5.0以下である、
    ことを特徴とする請求項1から3のいずれか一項に記載の蓋部材。
    The protruding portion includes a top portion and a base portion integrally formed with the frame portion,
    The protrusion has an opening formed on the inner surface,
    The ratio L/H of the opening length L of the opening and the protrusion height H of the protrusion is 1.6 or more and 5.0 or less,
    The lid member according to any one of claims 1 to 3, characterized in that:
  11.  前記開口部は、四角形状に構成される、
    ことを特徴とする請求項10に記載の蓋部材。
    The opening has a rectangular shape.
    The lid member according to claim 10.
  12.  前記内面は、第一曲面と、第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有する、
    ことを特徴とする請求項1から3のいずれか一項に記載の蓋部材。
    The inner surface has a first curved surface, a second curved surface, and an inflection point located between the first curved surface and the second curved surface,
    The lid member according to any one of claims 1 to 3, characterized in that:
  13.  発光素子を含むパッケージに用いられるガラス製の蓋部材であって、
     板状の枠部と、前記枠部から突出するドーム状の突出部とを備え、
     前記突出部は、内面及び外面を有し、
     前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、
     前記内面は、前記枠部の前記第一主面と繋がり前記突出部の内側に向かって凸となる第一曲面と、前記突出部の外側に向かって凸となる第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有し、
     前記突出部は、前記変曲点における接線と前記枠部の第一主面とが成す突出角度で前記枠部から突出しており、
     前記突出部の前記突出角度は、40°以上90°以下である、
    ことを特徴とする蓋部材。
    A glass lid member used for a package including a light emitting element,
    comprising a plate-shaped frame and a dome-shaped protrusion protruding from the frame,
    The protrusion has an inner surface and an outer surface,
    The frame has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion,
    The inner surface includes a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, a second curved surface that is convex toward the outside of the protrusion, and the first curved surface that is convex toward the outside of the protrusion. an inflection point located between the curved surface and the second curved surface,
    The protrusion protrudes from the frame at a protrusion angle formed by a tangent at the inflection point and the first main surface of the frame,
    The protrusion angle of the protrusion is 40° or more and 90° or less,
    A lid member characterized by:
  14.  発光素子と、前記発光素子を支持する基体と、請求項1又は13に記載の蓋部材と、を備える、
    ことを特徴とするパッケージ。
    comprising a light emitting element, a base supporting the light emitting element, and the lid member according to claim 1 or 13;
    A package characterized by:
  15.  発光素子を含むパッケージに用いられる蓋部材を製造するためのガラス基板であって、 板状の枠部と、前記枠部から突出する複数のドーム状の突出部と、を備え、
     前記突出部は、内面及び外面を有し、
     前記突出部の前記内面には、反射防止膜が形成されている、
    ことを特徴とするガラス基板。
    A glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising: a plate-shaped frame; and a plurality of dome-shaped protrusions protruding from the frame;
    The protrusion has an inner surface and an outer surface,
    an anti-reflection film is formed on the inner surface of the protrusion;
    A glass substrate characterized by:
  16.  発光素子を含むパッケージに用いられる蓋部材を製造するためのガラス基板であって、 板状の枠部と、前記枠部から突出する複数のドーム状の突出部とを備え、
     前記突出部は、内面及び外面を有し、
     前記枠部は、前記突出部の前記内面に繋がる第一主面と、前記突出部の前記外面に繋がる第二主面とを有し、
     前記内面は、前記枠部の前記第一主面と繋がり前記突出部の内側に向かって凸となる第一曲面と、前記突出部の外側に向かって凸となる第二曲面と、前記第一曲面と前記第二曲面との間に位置する変曲点と、を有し、
     前記突出部は、前記変曲点における接線と前記枠部の前記第一主面とが成す突出角度で前記枠部から突出しており、
     前記突出部の前記突出角度は、40°以上90°以下である、
    ことを特徴とするガラス基板。
    A glass substrate for manufacturing a lid member used for a package including a light emitting element, comprising a plate-shaped frame and a plurality of dome-shaped protrusions protruding from the frame,
    The protrusion has an inner surface and an outer surface,
    The frame has a first main surface connected to the inner surface of the protrusion and a second main surface connected to the outer surface of the protrusion,
    The inner surface includes a first curved surface that is connected to the first main surface of the frame and is convex toward the inside of the protrusion, a second curved surface that is convex toward the outside of the protrusion, and the first curved surface that is convex toward the outside of the protrusion. an inflection point located between the curved surface and the second curved surface,
    The protrusion protrudes from the frame at a protrusion angle formed by a tangent at the inflection point and the first main surface of the frame,
    The protrusion angle of the protrusion is 40° or more and 90° or less,
    A glass substrate characterized by:
PCT/JP2023/012546 2022-04-11 2023-03-28 Lid member, package, and glass substrate WO2023199744A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-065109 2022-04-11
JP2022065109 2022-04-11
JP2022-095572 2022-06-14
JP2022095572 2022-06-14
JP2022156490A JP2023155873A (en) 2022-04-11 2022-09-29 Lid member, package and glass substrate
JP2022-156490 2022-09-29

Publications (1)

Publication Number Publication Date
WO2023199744A1 true WO2023199744A1 (en) 2023-10-19

Family

ID=88329505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012546 WO2023199744A1 (en) 2022-04-11 2023-03-28 Lid member, package, and glass substrate

Country Status (1)

Country Link
WO (1) WO2023199744A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211467A1 (en) * 2013-01-28 2014-07-31 Intematix Corporation Solid-state lamps with omnidirectional emission patterns
US20160380169A1 (en) * 2015-06-26 2016-12-29 Samsung Electronics Co., Ltd. Optical device and light emitting device package including the same
JP2018029182A (en) * 2016-08-18 2018-02-22 ソウル セミコンダクター カンパニー リミテッド Light emission module and lens
JP2019199392A (en) * 2018-05-18 2019-11-21 日本電気硝子株式会社 Glass sheet with film and package
JP2020528582A (en) * 2017-07-28 2020-09-24 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. MEMS mirror mechanism and manufacturing method of MEMS mirror mechanism
JP2021163950A (en) * 2020-04-03 2021-10-11 Dowaエレクトロニクス株式会社 Method for manufacturing optical semiconductor package and optical semiconductor package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211467A1 (en) * 2013-01-28 2014-07-31 Intematix Corporation Solid-state lamps with omnidirectional emission patterns
US20160380169A1 (en) * 2015-06-26 2016-12-29 Samsung Electronics Co., Ltd. Optical device and light emitting device package including the same
JP2018029182A (en) * 2016-08-18 2018-02-22 ソウル セミコンダクター カンパニー リミテッド Light emission module and lens
JP2020528582A (en) * 2017-07-28 2020-09-24 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. MEMS mirror mechanism and manufacturing method of MEMS mirror mechanism
JP2019199392A (en) * 2018-05-18 2019-11-21 日本電気硝子株式会社 Glass sheet with film and package
JP2021163950A (en) * 2020-04-03 2021-10-11 Dowaエレクトロニクス株式会社 Method for manufacturing optical semiconductor package and optical semiconductor package

Similar Documents

Publication Publication Date Title
JP5500904B2 (en) Method for manufacturing light emitting device
JP2010177375A (en) Light-emitting device and manufacturing method of the same
JP5500927B2 (en) Method for manufacturing light emitting device
WO2023199744A1 (en) Lid member, package, and glass substrate
CN113248123A (en) Method for manufacturing glass wafer for packaging electronic component and electronic component manufactured thereby
US10580666B2 (en) Carrier substrates for semiconductor processing
JP2023155873A (en) Lid member, package and glass substrate
US20230265012A1 (en) Bonded body manufacturing method and bonded body manufacturing device
JP7351136B2 (en) Joined body manufacturing method and joined body manufacturing apparatus
TW202406029A (en) Lid components, packages and glass substrates
WO2024070699A1 (en) Lid member and method for manufacturing same
WO2024048669A1 (en) Package and lid member
JP5350970B2 (en) Method for manufacturing light emitting device
WO2022130799A1 (en) Lid member, package, and glass substrate
KR102587868B1 (en) Package, package manufacturing method, cover body with bonding material attached, and manufacturing method of cover body with bonding material attached
JP2019046826A (en) Silica member and manufacturing method thereof
WO2020071452A1 (en) Window material and optical package
WO2024070755A1 (en) Glass lid member production method, glass lid member, and package equipped with said lid member
CN109456076A (en) The joint method of silica glass component, its manufacturing method and ceramics and silica glass
TW201901866A (en) Method for manufacturing hermetic package and hermetic package
JP5144578B2 (en) Method for manufacturing light emitting device
JP7305264B2 (en) Hollow glass manufacturing method
JP2019043836A (en) Silica glass member, production method thereof and joint method of ceramic and silica glass
JP6510338B2 (en) Lid for optical device and optical device
WO2021014925A1 (en) Lid material for light-emitting device and method for manufacturing lid material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788164

Country of ref document: EP

Kind code of ref document: A1