WO2024070674A1 - 光学装置および光トランシーバ - Google Patents

光学装置および光トランシーバ Download PDF

Info

Publication number
WO2024070674A1
WO2024070674A1 PCT/JP2023/033251 JP2023033251W WO2024070674A1 WO 2024070674 A1 WO2024070674 A1 WO 2024070674A1 JP 2023033251 W JP2023033251 W JP 2023033251W WO 2024070674 A1 WO2024070674 A1 WO 2024070674A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical transceiver
optical
opening
conductors
Prior art date
Application number
PCT/JP2023/033251
Other languages
English (en)
French (fr)
Inventor
悠太 石毛
和哉 長島
秀行 那須
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2024070674A1 publication Critical patent/WO2024070674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical device and an optical transceiver.
  • Patent Document 1 a small optical transceiver described in Patent Document 1 is known as an optical transceiver used in a network switch device (for example, Patent Document 1).
  • a switch ASIC application specific integrated circuit
  • multiple optical transceivers are mounted on a board.
  • one of the objectives of the present invention is to provide a new and improved optical device and optical transceiver that can more reliably ensure electrical connection between, for example, the substrate of the optical device and the optical transceiver.
  • the optical device of the present invention for example, comprises a first substrate having a first surface facing a first direction and intersecting the first direction, an optical transceiver disposed offset in the first direction relative to the first substrate, a socket located between the first substrate and the optical transceiver, the socket having a plurality of connection conductors electrically connecting the conductors of the first substrate and the conductors of the optical transceiver, and an insulator supporting the plurality of connection conductors, and a positioning pin extending in the first direction between the first substrate and the optical transceiver and penetrating the socket, and positioning the first substrate, the optical transceiver, and the socket in a direction intersecting the first direction.
  • the optical transceiver may have a second substrate having a plurality of conductors and an insulator, and a first member provided between the first substrate and the second substrate and having a first opening through which the positioning pin is inserted.
  • the first opening may pass through the first member
  • the positioning pin may pass through the first opening
  • the second substrate may be provided with a second opening into which the positioning pin is inserted
  • the optical transceiver may be positioned with the positioning pin in the second opening.
  • the optical transceiver may have a second member that covers the second substrate on the opposite side of the second substrate from the first member.
  • the second member may be provided with a third opening aligned with the second opening in the first direction.
  • the optical transceiver may have a coupling that integrates the first member and the second member.
  • the optical transceiver may have a heating element provided on the second substrate, and a thermally conductive member interposed between the heating element and the first member or the second member.
  • the heat conductive member may be flexible.
  • the second substrate may have a second surface facing the socket in a direction opposite to the first direction, and the multiple conductors of the second substrate may form a land grid array on the second surface.
  • the multiple conductors of the second substrate may be arranged in a diagonal lattice pattern on the second surface.
  • the multiple conductors of the second substrate may be arranged at intervals of 0.6 mm or less on the second surface.
  • the optical device may include a plurality of optical transceivers as the optical transceiver.
  • the multiple optical transceivers may be arranged along an edge of the first substrate.
  • the multiple optical transceivers may be arranged along the four sides of the first substrate, and a semiconductor integrated circuit may be mounted on the first surface at a position farther away from each of the sides than the optical transceivers.
  • the multiple connection conductors may be located closer to the semiconductor integrated circuit than the center of the optical transceiver when viewed in the first direction.
  • the optical device may include an optical fiber extending from the optical transceiver in the first direction.
  • the optical transceiver of the present invention is, for example, an optical transceiver that is applied to an optical device and includes a first substrate having a first surface facing a first direction and intersecting the first direction, an optical transceiver that is offset in the first direction relative to the first substrate, a socket that is located between the first substrate and the optical transceiver and has a plurality of connection conductors that electrically connect the conductors of the first substrate and the conductors of the optical transceiver, and an insulator that supports the plurality of connection conductors, and a positioning pin that extends in the first direction between the first substrate and the optical transceiver and penetrates the socket, and positions the first substrate, the optical transceiver, and the socket in a direction intersecting the first direction, and the optical transceiver is provided with a positioning opening in which the positioning pin is positioned.
  • the optical transceiver may have a second substrate having a plurality of conductors and an insulator, and a first member provided between the first substrate and the second substrate and having a first opening through which the positioning pin is inserted.
  • the first opening may pass through the first member
  • the positioning pin may pass through the first opening
  • a second opening may be provided in the second substrate as the positioning opening.
  • the optical transceiver may have a second member covering the second substrate on the opposite side of the second substrate from the first member, and the first member, the second member, and the second substrate may form a portion of the outer surface of the optical transceiver.
  • the present invention provides an improved and novel optical device and optical transceiver that can, for example, more reliably ensure electrical connection between the substrate of the optical device and the optical transceiver.
  • FIG. 1 is an exemplary schematic perspective view of a switch device according to an embodiment.
  • FIG. 2 is an exemplary schematic plan view of the switch device according to the embodiment.
  • FIG. 3 is an exemplary schematic side view of a portion of the switch device according to the embodiment.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 5A to 5C are exemplary schematic plan views of a part of a switch device according to an embodiment, showing a state before an optical transceiver is placed, a state after the optical transceiver is placed, and a state after the optical transceiver is attached.
  • FIG. 6 is an exemplary schematic perspective view of an optical transceiver according to the embodiment.
  • FIG. 1 is an exemplary schematic perspective view of a switch device according to an embodiment.
  • FIG. 2 is an exemplary schematic plan view of the switch device according to the embodiment.
  • FIG. 3 is an exemplary schematic side view of a portion of the switch device according to the embodiment.
  • FIG. 4 is a
  • FIG. 7 is an exemplary schematic exploded perspective view of the optical transceiver according to the embodiment.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG.
  • FIG. 9 is an exemplary schematic plan view of the bottom surface of the optical transceiver according to the embodiment.
  • arrow X indicates the X direction
  • arrow Y indicates the Y direction
  • arrow Z indicates the Z direction.
  • the X direction, Y direction, and Z direction intersect with each other and are perpendicular to each other.
  • Fig. 1 is a perspective view of a switch device 100 according to an embodiment.
  • Fig. 2 is a plan view of the switch device 100.
  • Fig. 3 is a side view of a portion of the switch device 100 as viewed in the Y direction as indicated by the arrow III in Fig. 1.
  • Fig. 4 is a cross-sectional view taken along the line IV-IV in Fig. 2.
  • the switch device 100 is mounted on a motherboard 200. Note that in this embodiment, only one switch device 100 is mounted on the motherboard 200, but multiple switch devices 100 may be mounted on the motherboard 200.
  • the motherboard 200 may also be referred to as an integrated board.
  • the switch device 100 is an example of an optical device.
  • the switch device 100 includes a substrate 10, a switch ASIC 20, a plurality of optical transceivers 30, a heat sink 21 for the switch ASIC 20, a fixing mechanism 40 for fixing the optical transceivers 30 to the substrate 10, and a heat dissipation mechanism 50 for the optical transceivers 30.
  • the substrate 10, the fixing mechanism 40, and the heat dissipation mechanism 50 are referred to as a substrate assembly.
  • the substrate assembly can be mounted on a motherboard 200.
  • the substrate 10 has four sides 10c extending in the X-direction or Y-direction. Also, as shown in FIG. 4, the substrate 10 intersects with the Z-direction and spreads perpendicularly, has a plate-like shape, and has a surface 10a facing the Z-direction and a surface 10b facing the opposite direction of the Z-direction on the opposite side to the surface 10a. Surfaces 10a and 10b intersect with the Z-direction and spread perpendicularly.
  • the substrate 10 is, for example, a printed wiring board.
  • the Z-direction is an example of a first direction of the substrate 10, and may also be referred to as the thickness direction of the substrate 10.
  • the substrate 10 is an example of a first substrate, and surface 10a is an example of a first surface.
  • the optical transceivers 30 are arranged along the four sides 10c of the substrate 10.
  • Each optical transceiver 30 has a photodiode array as a light receiving unit that receives an optical signal.
  • Each light receiving unit receives an optical signal transmitted through an optical fiber 32 and outputs an electrical signal corresponding to the optical signal.
  • the electrical signal is input to the switch ASIC 20 via a socket 43 (see FIG. 4) and a conductor provided on the substrate 10.
  • the optical transceiver 30 also has electronic components that operate when an electrical signal corresponding to the received optical signal is output.
  • each optical transceiver 30 has, for example, a VCSEL array (VCSEL: vertical cavity surface emitting laser) as a light emitting unit that outputs an optical signal.
  • VCSEL vertical cavity surface emitting laser
  • Each light emitting unit receives an electrical signal from the switch ASIC 20 via conductors provided in the board 10 and socket 43, and outputs an optical signal corresponding to the electrical signal.
  • the optical signal is coupled to the optical fiber 32 and transmitted by the optical fiber 32.
  • the optical transceiver 30 also has electronic components that operate when outputting an optical signal corresponding to the received electrical signal.
  • the optical transceivers 30 are fixed to the substrate 10 by fixing mechanisms 40 provided on each side 10c of the substrate 10.
  • a fixing mechanism 40 is provided on each of the four sides 10c, i.e., four fixing mechanisms 40 in total, and are shared by the optical transceivers 30 (eight in this embodiment, as an example) arranged along each side 10c.
  • the fixing mechanism 40 is shared by the optical transceivers 30, which has the advantage that the attachment structure of the fixing mechanism 40 to the substrate 10 can be simplified and the number of parts can be reduced compared to when the optical transceivers 30 are fixed to the substrate 10 by their own fixing mechanisms, thereby reducing the effort and cost required to manufacture the switch device 100.
  • the switch ASIC 20 is mounted on the substrate 10 at a position farther away from each side 10c of the substrate 10 than the optical transceivers 30 (approximately the center of the substrate 10 in this embodiment). As shown in Figure 4, the switch ASIC 20 is mounted, for example, by flip-chip mounting on the surface 10a. The switch ASIC 20 controls the operation of each optical transceiver 30.
  • the switch ASIC 20 is an example of a semiconductor integrated circuit.
  • the heat sink 21 is provided so as to contact the side opposite the substrate 10 with respect to the switch ASIC 20.
  • the heat sink 21 is in contact with the top surface of the switch ASIC 20, and has a base 21a and a plurality of arrayed, pin-shaped fins 21b protruding from the base 21a in the Z direction.
  • the heat sink 21 is also made of a material with relatively high thermal conductivity, such as an aluminum-based metal material. With this configuration, the heat generated in the switch ASIC 20 is transferred in the Z direction in the heat sink 21, and is transferred to the surrounding gas by heat exchange between the fins 21b and the gas surrounding the fins 21b, i.e., released.
  • the fixing mechanism 40 has an upper member 41, an intermediate member 42, and a socket 43. These components of the fixing mechanism 40 are integrated by fasteners 46 such as screws. Among the components of the fixing mechanism 40, the intermediate member 42 and the socket 43 are shared by all the optical transceivers 30 in the group of multiple optical transceivers 30 along each side 10c of the board 10. As shown in Figure 4, the fixing mechanism 40 fixes the optical transceivers 30 located near the side 10c of the board 10 to the board 10 in a state in which they are sandwiched in the thickness direction of the board 10.
  • the fixing mechanism 40 removably fixes the optical transceiver 30 to the board 10.
  • the components of the fixing mechanism 40 include components that are fixed to the board 10 and components that are detachable from the board 10.
  • the intermediate member 42 and the socket 43 are fixed to the board 10, and the upper member 41 is configured to be detachable from the intermediate member 42, i.e., the board 10.
  • the upper member 41 is attached to the intermediate member 42 by a fastener 46 configured as a removable screw.
  • the upper member 41 is not shared by all of the multiple optical transceivers 30 along the side 10c, but is shared only by two optical transceivers 30 adjacent to each other along the side 10c. This has the advantage that, for example, it is possible to simultaneously facilitate removal of the optical transceivers 30 individually and share parts, and that the positioning accuracy can be improved by reducing the effects of bending of the fixing mechanism 40 and manufacturing variations in the components of the fixing mechanism 40 and the optical transceivers 30.
  • this configuration is just one example, and the upper member 41 may be shared by all of the multiple optical transceivers 30 along the side 10c.
  • the socket 43, the intermediate member 42, and the upper member 41 are placed on the substrate 10 in this order.
  • the optical transceiver 30 is offset in the Z direction relative to the substrate 10.
  • the upper member 41 presses the body 31 of the optical transceiver 30 in the opposite direction to the Z direction, toward the board 10 and the socket 43. As shown in Figures 4 and 5, the upper member 41 has an opening 41a as a notch that penetrates the upper member 41 in the Z direction. A part of the body 31 is housed in the opening 41a.
  • the intermediate member 42 has an opening 42a that is a through hole extending in the Z direction.
  • the side of the opening 42a has the function of roughly guiding the body 31 of the optical transceiver 30 in the X and Y directions when it is attached.
  • the socket 43 is placed on the surface 10a of the substrate 10 and supports the body 31 of the optical transceiver 30.
  • the socket 43 is provided with an electrical interface 43a and an opening 43b. Of the socket 43, at least the electrical interface 43a is located between the substrate 10 and the optical transceiver 30.
  • the conductors of the electrical interface 43a are electrically connected to the conductors of the electrical interface provided on the substrate 33 of the optical transceiver 30.
  • the opening 43b exposes the bottom surface 31a4 of the body 31 of the optical transceiver 30 in the opposite direction to the Z direction.
  • the opening 43b is provided, for example, as a through hole or a notch that penetrates the socket 43 in the Z direction.
  • the heat dissipation mechanism 50 dissipates heat generated in the optical transceiver 30.
  • the heat dissipation mechanism 50 has a thermally conductive member 51 and a heat sink 52.
  • the thermally conductive member 51 may be configured to function as part of the fixing mechanism 40.
  • the heat conducting member 51 is aligned with the optical transceiver 30 in the Z direction.
  • the heat conducting member 51 has a portion 51a accommodated in the opening 43b of the socket 43 and the opening 10d of the board 10, and a portion 51b located on the opposite side of the portion 51a from the optical transceiver 30.
  • the heat conducting member 51 is thermally connected to the lower surface 31a4 of the optical transceiver 30, and transfers heat generated in the optical transceiver 30.
  • the heat conducting member 51 is made of a material with a relatively high thermal conductivity, such as an aluminum-based metal material.
  • the heat conducting member 51 is fixed to the board 10 or the fixing mechanism 40 by a fastener such as a screw, adhesive, or the like.
  • the portion 51a is adjacent to the lower surface 31a4 via a flexible heat dissipation material 47, and is thermally connected to the lower surface 31a4.
  • the heat dissipation material 47 is made of a synthetic resin material that has a relatively high thermal conductivity and is flexible and malleable, for example, a thermosetting synthetic resin material with high heat dissipation properties.
  • the provision of the heat dissipation material 47 has the advantage of preventing a decrease in the efficiency of heat conduction from the lower surface 31a4 to the portion 51a due to a gap between the lower surface 31a4 and the portion 51a caused by manufacturing variations or differences in the thermal expansion coefficient between parts, and preventing excessive pressure from being generated between the lower surface 31a4 and the portion 51a.
  • Part 51b is provided integrally with part 51a and is thermally connected to part 51a. Part 51b also extends from part 51a in the opposite direction to the Z direction, i.e., in the thickness direction of the substrate 10, and also extends in a direction intersecting the Z direction on the opposite side of the substrate 10 from the optical transceiver 30.
  • the heat conductive member 51 contacts the heat sink 52 on the side opposite the bottom surface 31a4 of the substrate 10, and is thermally connected to the heat sink 52.
  • the heat sink 52 has a base 52a and a plurality of arrayed, pin-shaped fins 52b protruding from the base 52a in the opposite Z direction.
  • the heat sink 52 is made of a material with a relatively high thermal conductivity, such as an aluminum-based metal material.
  • the heat sink 52 is fixed to the heat conductive member 51 by a fastener such as a screw, soldering, adhesive, or the like.
  • the heat conductive member 51 and the heat sink 52 may be integrated into a single member.
  • the heat sink 52 may also be called a heat dissipation member.
  • the switch device 100 may also be provided with an electric fan, and configured so that the airflow generated by the operation of the electric fan acts on the heat sink 52.
  • the bottom surface 31a4 and the portion 51a are located on the opposite side of the electrical interface 43a from the switch ASIC 20.
  • the electrical interface 43a is located closer to the switch ASIC 20 than the center line C extending in the Z direction of the body 31 of the optical transceiver 30.
  • This arrangement has the advantages of, for example, making it easier to ensure the required transmission characteristics of the electrical signal by shortening the length of the conductor between the electrical interface 43a and the switch ASIC 20, and making it easier to obtain the required heat dissipation performance from the optical transceiver 30 by avoiding interference between the heat conductive member 51 and the conductor.
  • Fig. 6 is a perspective view of the optical transceiver 30.
  • Fig. 7 is an exploded perspective view of the optical transceiver 30.
  • Fig. 8 is a cross-sectional view taken along line VIII-VIII in Fig. 5.
  • Figs. 6 to 8 show directions (X direction to Z direction) in which the optical transceiver 30 (S2) shown in Fig. 5 is installed.
  • the optical transceiver 30 comprises a body 31, a board 33, a connector 34, a positioning pin 35, and a fastener 36.
  • the optical fiber 32 extends in the Z direction from the optical transceiver 30.
  • the first member 31A, the board 33, and the second member 31B that constitute the body 31 are arranged in this order in the Z direction and are integrated by a fastener 36.
  • the fastener 36 is, for example, a screw.
  • the fastener 36 is an example of a coupling.
  • the body 31 can also be referred to as a housing.
  • the peripheral portion 33e of the substrate 33 is exposed between the first member 31A and the second member 31B that constitute the body 31, and together with the first member 31A and the second member 31B, constitutes part of the outer surface of the optical transceiver 30. With this configuration, it may be possible to make the size of the optical transceiver 30 smaller than if the substrate 33 were housed within the body 31.
  • the lens assemblies 37 are attached to the connector 34 adjacent to each other in the opposite direction of the Z direction.
  • the lens assembly 37 has a holder 37a and a lens array, such as a collimator lens array or a focusing lens array, attached to the holder 37a.
  • the positioning pin 35 positions the connector 34 and the lens assembly 37 in a direction intersecting the Z direction.
  • the second member 31B has a generally rectangular parallelepiped shape.
  • An opening 31b3 is provided in the middle of the second member 31B in the X direction.
  • the opening 31b3 penetrates the second member 31B in the Z direction.
  • the opening 31b3 of the second member 31B houses the connector 34 and at least a part of the lens assembly 37.
  • the second member 31B has through holes 31b1 that penetrate in the Z direction at multiple locations.
  • the substrate 33 has through holes 33c1 that penetrate in the Z direction and are aligned with the through holes 31b1 in the Z direction, and the first member 31A has a female screw hole 31a1.
  • the fixing device 36 penetrates through the through holes 31b1 and 33c1 and is fixed to the female screw hole 31a1.
  • the substrate 33 is, for example, a printed wiring board.
  • the substrate 33 has a substantially constant thickness in the Z direction, and intersects with and is perpendicular to the Z direction.
  • the substrate 33 has a surface 33a and a surface 33b.
  • Surface 33a faces the Z direction and intersects with and is perpendicular to the Z direction.
  • An optical element 301, electronic components 302, etc. are mounted on surface 33a.
  • the optical element 301 is, for example, a light receiving unit such as a photodiode array, or a light emitting unit such as a VCSEL array.
  • the electronic component 302 is, for example, an IC that operates in response to the light receiving unit or light emitting unit.
  • Surface 33b faces in the opposite direction to the Z direction, intersecting and perpendicular to the Z direction.
  • Surface 33b faces electrical interface 43a of socket 43.
  • Board 33 is an example of a second board, and surface 33b is an example of a second surface.
  • a recess recessed in the Z direction is provided on the end of the second member 31B on the opposite side in the Z direction, in a portion facing the mounting area of the optical element 301 and the electronic component 302.
  • a storage chamber R for components such as the optical element 301 and the electronic component 302 is provided between the substrate 33 and the second member 31B.
  • a recess may also be provided in the portion of the substrate 33 facing the second member 31B.
  • the electronic component 302 generates heat in response to operation.
  • the electronic component 302 is an example of a heat generating body.
  • two heat dissipation paths are provided to dissipate the heat generated by the electronic component 302.
  • One of the heat dissipation paths is a path that dissipates heat from the first member 31A described above to the heat conduction member 51 of the heat dissipation mechanism 50.
  • the heat generated in the electronic component 302 is transferred from the surface 33b of the substrate 33 to the first member 31A.
  • a heat conduction member such as a via or inlay at ground potential, that transfers the heat generated in the electronic component 302 mounted on the surface 33a to the surface 33b may be provided in the substrate 33.
  • the heat conduction member is made of a material having a higher thermal conductivity than the insulator of the substrate 33, such as a copper-based metal material.
  • the first member 31A is made of a material having a relatively high thermal conductivity, such as an aluminum-based metal material, that has a higher thermal conductivity than the insulator of the substrate 33.
  • the other heat dissipation path is a path for dissipating heat from electronic component 302 to second member 31B via heat dissipation material 303 provided between electronic component 302 and second member 31B.
  • Heat dissipation material 303 is made of a heat conductive sheet (e.g., a graphite sheet) that has a relatively high thermal conductivity and is flexible and malleable, or a synthetic material whose main component is silicone.
  • Heat dissipation material 303 is an example of a heat conductive member.
  • Second member 31B is also made of a material that has a relatively high thermal conductivity, such as an aluminum-based metal material, and has a higher thermal conductivity than the insulator of substrate 33.
  • the heat transferred to the first member 31A or the second member 31B via these heat dissipation paths is dissipated outside the switch device 100 via the heat dissipation mechanism 50, the fixing mechanism 40, etc.
  • the first member 31A has a substantially constant thickness in the Z direction, and intersects with and is perpendicular to the Z direction.
  • the first member 31A has an opening 31a3 that penetrates in the Z direction at the middle part in the X direction.
  • connection conductors 43d each penetrate the socket 43 in the Z direction at the electrical interface 43a, and electrically connect the conductors of the board 33 and the board 10.
  • the connection conductors 43d can be configured, for example, as contact terminals having elastically expandable pins extending in the Z direction.
  • the conductors of the electronic component 302 are electrically connected to the conductors of the switch ASIC 20 via the conductors of the board 33 of the optical transceiver 30, the connection conductors 43d, and the conductors of the board 10.
  • the socket 43 With the electrical interface 43a, it is possible to more easily construct a configuration that ensures the required positioning accuracy between the conductors of the board 33 of the detachable optical transceiver 30 and the conductors of the board 10, compared to, for example, providing an electrical interface directly on the board 10.
  • connection conductor 43d as a contact terminal with an expandable pin, it is easier to ensure the required surface pressure and required contact area between the conductors of the board 33 and the connection conductor 43d, and between the conductors of the board 10 and the connection conductor 43d, and it is possible to suppress an increase in contact resistance.
  • Figure 9 is a plan view of the underside 31a4 of the optical transceiver 30, which is located in the opposite direction to the Z direction. Figure 9 also shows the directions (X direction to Z direction) when the optical transceiver 30 (S2) shown in Figure 5 is installed.
  • the electrical interface 33d has a number of lands 33d1 and an insulator 33d2.
  • the lands 33d1 each come into contact with the connection conductors 43d of the socket 43 in the Z direction and are electrically connected.
  • the lands 33d1 are an example of a conductor.
  • the lands 33d1 form a land grid array.
  • the rows of the lands 33d1, in which the lands 33d1 are arranged at regular intervals in the Y direction, are arranged at approximately regular intervals in the X direction.
  • the positions of two rows of lands 33d1 adjacent to each other in the X direction are shifted by, for example, approximately half the interval between the lands 33d1 in the Y direction. That is, in the land grid array, the lands 33d1 are arranged in a diagonal lattice pattern.
  • This arrangement allows more lands 33d1 to be arranged more densely, and therefore the optical transceiver 30 can be made smaller.
  • arranging the lands 33d1 as a land grid array is preferable when the interval between the lands 33d1 is 0.6 mm or less, and more preferable when the interval between the lands 33d1 is 0.3 mm or less.
  • the multiple connection conductors 43d that are in contact with and electrically connected to the multiple lands 33d1 also form a land grid array, similar to the multiple lands 33d1.
  • the substrate 10, socket 43, and substrate 33 are positioned in a direction intersecting the Z direction by a positioning pin 11 extending in the Z direction.
  • the substrate 10 has a through hole 10e penetrating in the Z direction.
  • the socket 43 has a through hole 43e penetrating in the Z direction.
  • the substrate 33 has a through hole 33c2 penetrating in the Z direction.
  • the through holes 10e, 43e, and 33c2 are aligned in the Z direction and extend in the Z direction with approximately the same diameter.
  • the first member 31A also has a through hole 31a2 penetrating in the Z direction, which is aligned in the Z direction with the through holes 10e, 43e, and 33c2.
  • the positioning pin 11 passes through the through hole 43e and the through hole 31a2 and extends between the through hole 10e and the through hole 33c2.
  • the fit between the positioning pin 11 and the through holes 10e, 43e, 31a2, and 33c2 is set to be, for example, an intermediate fit or a clearance fit.
  • the substrate 10, the socket 43, the first member 31A, and the substrate 33 are positioned in a direction intersecting the Z direction by the positioning pin 11.
  • the through hole 31a2 of the first member 31A does not necessarily need to be positioned with the positioning pin 11.
  • the through hole 31a2 may be a through hole that has a larger clearance with the positioning pin 11, in other words, a notch that is not positioned with the positioning pin 11.
  • the through hole 31a2 is an example of a first opening
  • the through hole 33c2 is an example of a second opening.
  • the through holes 10e, 43e, 31a2, and 33c2 are also examples of positioning openings.
  • the second member 31B has a bottomed hole 31b2 extending in the Z direction from a position where the second member 31B contacts the substrate 33.
  • the bottomed hole 31b2 is aligned with the through holes 31a2 and 33c2 in the Z direction and extends in the Z direction with approximately the same diameter as the through holes 31a2 and 33c2.
  • the first member 31A, the substrate 33, and the second member 31B can be positioned in a direction intersecting the Z direction by using a positioning pin that passes through the through holes 31a2 and 33c2 and is inserted into the bottomed hole 31b2.
  • the bottomed hole 31b2 is an example of a third opening. Note that the third opening is not limited to the bottomed hole 31b2 and may be a through hole.
  • the positioning pin 11 and the through holes 10e, 43e, 31a2, and 33c2 through which the positioning pin 11 passes are provided at multiple locations spaced apart from each other in a direction intersecting the Z direction. Then, in a plan view seen in the Z direction, the electrical interfaces 43a and 33d, i.e., the multiple connection conductors 43d and the multiple lands 33d1, are provided at positions between the multiple locations. This allows the multiple connection conductors 43d and the multiple lands 33d1 to be positioned with even greater precision.
  • the optical transceiver and the positioning pin may be positioned in a portion of the optical transceiver other than the second substrate, for example, in the first opening.
  • the peripheral portion of the second substrate of the optical transceiver is exposed as part of the outer surface of the optical transceiver, but this is not limited thereto, and the second substrate may be housed within the body (housing) of the optical transceiver, and the peripheral portion may not be exposed to the outer surface.
  • the present invention can be used in optical devices and optical transceivers.
  • 10 ...Substrate (first substrate) 10a... surface (first surface) 10b: surface 10c: side 10d: opening 10e: through hole (positioning opening) 11: Positioning pin 20: Switch ASIC (semiconductor integrated circuit) 21...heat sink 21a...base 21b...fins 30...optical transceiver 31...body 31A...first member 31B...second member 31a1...female thread hole 31a2...through hole (first opening, positioning opening) 31a3: Opening 31a4: Lower surface 31b1: Through hole 31b2: Bottomed hole (third opening) 31b3...opening 32...optical fiber 33...substrate (second substrate) 33a... surface 33b...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光学装置は、例えば、第一方向を向いた第一面を有し第一方向と交差した第一基板と、第一基板に対して第一方向にずれて設けられた光トランシーバと、第一基板と光トランシーバとの間に位置し、第一基板の導体と光トランシーバの導体とを電気的に接続する複数の接続導体と、当該複数の接続導体を支持する絶縁体と、を有したソケットと、第一基板と光トランシーバとの間で第一方向に延びてソケットを貫通し、第一基板、光トランシーバ、およびソケットを第一方向と交差した方向に位置決めする位置決めピンと、を備える。

Description

光学装置および光トランシーバ
 本発明は、光学装置および光トランシーバに関する。
 従来、ネットワークスイッチ装置に用いられる光トランシーバとして、特許文献1に記載された小型光トランシーバが、知られている(例えば、特許文献1)。
特開2020-27147号公報
 CPO(co-packaged optics)を実現するネットワークスイッチ装置では、スイッチASIC(application specific integrated circuit)と、複数の光トランシーバとが、基板上に実装される。
 データセンタトラフィックの急増に伴い、ネットワークスイッチ装置の大容量化および低消費電力化が急務となっている。既存のプラガブルトランシーバを用いたアーキテクチャでは、スイッチ装置のフロントパネルのトランシーバ接続数が律速となり、大容量化の限界が見えている。そこで、LSIの極近傍に配置する超小型のCPO(Co-Packaged Optics)光トランシーバのような小型の光トランシーバが求められている。光トランシーバの更なる小型化が進むと、基板と光トランシーバとの間で電気信号を伝送する複数の導体の間隔が狭くなる。これに伴い、基板に設けられる複数の導体と光トランシーバに設けられる複数の導体との間での電気的な接続を確保するため、基板と光トランシーバとの間での位置決め精度の向上が求められることになる。
 そこで、本発明の課題の一つは、例えば、光学装置の基板と光トランシーバとの間での電気的な接続をより確実に確保することが可能となるような、改善された新規な光学装置および光トランシーバを得ること、である。
 本発明の光学装置は、例えば、第一方向を向いた第一面を有し前記第一方向と交差した第一基板と、前記第一基板に対して前記第一方向にずれて設けられた光トランシーバと、前記第一基板と前記光トランシーバとの間に位置し、前記第一基板の導体と前記光トランシーバの導体とを電気的に接続する複数の接続導体と、当該複数の接続導体を支持する絶縁体と、を有したソケットと、前記第一基板と前記光トランシーバとの間で前記第一方向に延びて前記ソケットを貫通し、前記第一基板、前記光トランシーバ、および前記ソケットを前記第一方向と交差した方向に位置決めする位置決めピンと、を備える。
 前記光学装置では、前記光トランシーバは、複数の導体と、絶縁体と、を有した第二基板と、前記第一基板と前記第二基板との間に設けられ、前記位置決めピンが挿入される第一開口が設けられた、第一部材と、を有してもよい。
 前記光学装置では、前記第一開口は、前記第一部材を貫通し、前記位置決めピンは、前記第一開口を貫通し、前記第二基板に、前記位置決めピンが挿入される第二開口が設けられ、前記光トランシーバは、前記第二開口において前記位置決めピンと位置決めされてもよい。
 前記光学装置では、前記光トランシーバは、前記第二基板に対して前記第一部材とは反対側で前記第二基板を覆う第二部材を有してもよい。
 前記光学装置では、前記第二部材に、前記第二開口と前記第一方向に並んだ第三開口が設けられてもよい。
 前記光学装置では、前記光トランシーバは、前記第一部材と前記第二部材とを一体化する結合具を有してもよい。
 前記光学装置では、前記光トランシーバは、前記第二基板に設けられた発熱体と、前記発熱体と前記第一部材または前記第二部材との間に介在した熱伝導部材と、を有してもよい。
 前記光学装置では、前記熱伝導部材は、可撓性を有してもよい。
 前記光学装置では、前記第二基板は、前記第一方向の反対方向を向き前記ソケットと面した第二面を有し、前記第二面において、前記第二基板の複数の導体は、ランドグリッドアレイを構成してもよい。
 前記光学装置では、前記第二面において、前記第二基板の複数の導体は、斜方格子状に配置されてもよい。
 前記光学装置では、前記第二面において、前記第二基板の複数の導体は、0.6[mm]以下の間隔で配置されてもよい。
 前記光学装置は、前記光トランシーバとして複数の光トランシーバを備えてもよい。
 前記光学装置では、前記複数の光トランシーバは、前記第一基板の辺に沿って配置されてもよい。
 前記光学装置では、前記複数の光トランシーバは、前記第一基板の四つの辺に沿って配置され、前記第一面の、前記光トランシーバより前記辺のそれぞれから離れた位置に、半導体集積回路が実装されてもよい。
 前記光学装置では、前記複数の接続導体は、前記第一方向に見た場合に、前記光トランシーバの中心より前記半導体集積回路に近い位置に設けられてもよい。
 前記光学装置は、前記光トランシーバから前記第一方向に延びた光ファイバを備えてもよい。
 本発明の光トランシーバは、例えば、第一方向を向いた第一面を有し前記第一方向と交差した第一基板と、前記第一基板に対して前記第一方向にずれて設けられた光トランシーバと、前記第一基板と前記光トランシーバとの間に位置し、前記第一基板の導体と前記光トランシーバの導体とを電気的に接続する複数の接続導体と、当該複数の接続導体を支持する絶縁体と、を有したソケットと、前記第一基板と前記光トランシーバとの間で前記第一方向に延びて前記ソケットを貫通し、前記第一基板、前記光トランシーバ、および前記ソケットを前記第一方向と交差した方向に位置決めする位置決めピンと、を備えた、光学装置に適用される、前記光トランシーバであって、前記位置決めピンが位置決めされる位置決め開口が設けられる。
 前記光トランシーバは、複数の導体と、絶縁体と、を有した第二基板と、前記第一基板と前記第二基板との間に設けられ、前記位置決めピンが挿入される第一開口が設けられた、第一部材と、を有してもよい。
 前記光トランシーバでは、前記第一開口は、前記第一部材を貫通し、前記位置決めピンは、前記第一開口を貫通し、前記第二基板に、前記位置決め開口として第二開口が設けられてもよい。
 前記光トランシーバは、前記第二基板に対して前記第一部材とは反対側で前記第二基板を覆う第二部材を有し、前記第一部材、前記第二部材、および前記第二基板によって、前記光トランシーバの外面の一部が構成されてもよい。
 本発明によれば、例えば、光学装置の基板と光トランシーバとの間での電気的な接続をより確実に確保することが可能となるような、改善された新規な光学装置および光トランシーバを得ることができる。
図1は、実施形態のスイッチ装置の例示的かつ模式的な斜視図である。 図2は、実施形態のスイッチ装置の例示的かつ模式的な平面図である。 図3は、実施形態のスイッチ装置の一部の例示的かつ模式的な側面図である。 図4は、図2のIV-IV断面図である。 図5は、実施形態のスイッチ装置の一部の例示的かつ模式的な平面図であって、光トランシーバを載せる前の状態、光トランシーバを載せた状態、および光トランシーバを装着した状態を示す図である。 図6は、実施形態の光トランシーバの例示的かつ模式的な斜視図である。 図7は、実施形態の光トランシーバの例示的かつ模式的な分解斜視図である。 図8は、図5のVIII-VIII断面図である。 図9は、実施形態の光トランシーバの底面の例示的かつ模式的な平面図である。
 以下、本発明の例示的な複数の実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 以下に示される複数の実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
 本明細書において、序数は、部品や、部材、部位、方向等を区別するために便宜上付与されており、優先順位や順番を示すものではないし、個数等を限定するものでもない。
 また、各図において、矢印Xは、X方向を示し、矢印Yは、Y方向を示し、矢印Zは、Z方向を示している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。
[実施形態]
[スイッチ装置]
 図1は、実施形態のスイッチ装置100の斜視図である。図2は、スイッチ装置100の平面図である。図3は、図1の矢印IIIにおいてY方向に見た場合の、スイッチ装置100の一部の側面図である。また、図4は、図2のIV-IV断面図である。
 スイッチ装置100は、図1に示されるように、マザーボード200上に実装されている。なお、本実施形態では、マザーボード200上には、一つのスイッチ装置100のみが実装されているが、マザーボード200上には、複数のスイッチ装置100が実装されてもよい。マザーボード200は、統合基板とも称されうる。スイッチ装置100は、光学装置の一例である。
 図1,2に示されるように、スイッチ装置100は、基板10と、スイッチASIC20と、複数の光トランシーバ30と、スイッチASIC20用のヒートシンク21と、光トランシーバ30を基板10に固定する固定機構40と、光トランシーバ30用の放熱機構50と、を備えている。スイッチ装置100のうち、基板10、固定機構40、および放熱機構50を、基板アセンブリと称する。基板アセンブリは、マザーボード200に実装可能である。
 基板10は、図2に示されるように、X方向またはY方向に延びた四つの辺10cを有している。また、図4に示されるように、基板10は、Z方向と交差するとともに直交して広がるとともに、板状の形状を有し、Z方向を向く面10aと、当該面10aとは反対側でZ方向の反対方向を向く面10bと、を有している。面10a,10bは、Z方向と交差するとともに直交して広がっている。基板10は、例えば、プリント配線基板である。Z方向は、基板10の第一方向の一例であり、基板10の厚さ方向とも称されうる。基板10は、第一基板の一例であり、面10aは、第一面の一例である。
 複数の光トランシーバ30は、図2に示されるように、基板10の四つの辺10cに沿って配置されている。光トランシーバ30は、それぞれ、光信号を受光する受光部として、フォトダイオードアレイを有している。受光部は、それぞれ、光ファイバ32において伝送された光信号を受光し、当該光信号に応じた電気信号を出力する。当該電気信号は、ソケット43(図4参照)および基板10に設けられた導体を介して、スイッチASIC20へ入力される。光トランシーバ30は、受光した光信号に対応した電気信号の出力の際に作動する電子部品も有している。
 また、光トランシーバ30は、それぞれ、光信号を出力する発光部として、例えば、VCSELアレイ(VCSEL:vertical cavity surface emitting laser)を有している。発光部は、それぞれ、スイッチASIC20から基板10およびソケット43に設けられた導体を介して電気信号を受信し、当該電気信号に応じた光信号を出力する。当該光信号は、光ファイバ32に結合され、当該光ファイバ32で伝送される。光トランシーバ30は、受信した電気信号に対応した光信号の出力の際に作動する電子部品も有している。
 図1,2に示されるように、複数の光トランシーバ30は、基板10の辺10c毎に設けられた固定機構40によって、基板10と固定されている。固定機構40は、四つの辺10c毎に、すなわち合計4個、設けられており、各辺10cに沿って配置される複数(本実施形態では一例として8個)の光トランシーバ30について、共用されている。このように、複数の光トランシーバ30について固定機構40が共用されることにより、例えば、光トランシーバ30がそれぞれの固定機構によって基板10に固定された場合に比べて、固定機構40の基板10への取付構造をより簡素化したり、部品点数をより少なくしたりすることができ、ひいてはスイッチ装置100の製造の手間やコストを抑制できるという利点が得られる。
 スイッチASIC20は、図1,2に示されるように、光トランシーバ30よりも基板10の各辺10cから離れた位置(本実施形態では一例として基板10の略中央部)で、基板10に実装されている。また、図4に示されるように、スイッチASIC20は、面10a上に、例えばフリップチップ実装されている。スイッチASIC20は、各光トランシーバ30の作動を制御する。スイッチASIC20は、半導体集積回路の一例である。
 ヒートシンク21は、図4に示されるように、スイッチASIC20に対して基板10とは反対側に接するように設けられている。ヒートシンク21は、スイッチASIC20の頂面と接しており、ベース21aと、当該ベース21aからZ方向に突出したアレイ状かつピン状の複数のフィン21bと、を有している。また、ヒートシンク21は、アルミニウム系金属材料のような、比較的熱伝導率が高い材料で作られている。このような構成により、スイッチASIC20で生じた熱は、ヒートシンク21においてZ方向に伝わり、フィン21bと当該フィン21bの周辺の気体との熱交換により、当該周辺の気体に伝達される、すなわち放出される。
 図3,4に示されるように、本実施形態では、一例として、固定機構40は、上側部材41、中間部材42、およびソケット43を有している。これら固定機構40の構成要素は、ねじのような固定具46等によって一体化されている。また、固定機構40の構成要素のうち、中間部材42、およびソケット43は、基板10の各辺10cに沿った複数の光トランシーバ30の群のうち全ての光トランシーバ30について共用されている。図4に示されるように、固定機構40は、基板10の辺10cの近傍に位置した光トランシーバ30を、基板10の厚さ方向に挟むような状態で、当該基板10に固定している。
 また、光トランシーバ30の装着後の交換を可能とするため、固定機構40は、光トランシーバ30を、基板10に着脱可能に固定している。これを実現するため、本実施形態では、固定機構40の構成要素は、基板10と固定される構成要素と、基板10に対して着脱可能な構成要素とを含んでいる。本実施形態では、中間部材42およびソケット43は、基板10に対して固定され、上側部材41は、中間部材42すなわち基板10に対して着脱可能に構成されている。具体的には、図4に示されるように、上側部材41は、中間部材42に、取り外し可能なねじとして構成された固定具46によって、取り付けられている。
 図5は、光トランシーバ30を載せる前の状態S1、光トランシーバ30を載せた状態S2、および光トランシーバ30を装着した状態S3を示す平面図である。図5の状態S3に示されるように、本実施形態では、上側部材41は、辺10cに沿った複数の光トランシーバ30のうち全てに共用するのではなく、辺10cに沿って隣り合った二つの光トランシーバ30についてのみ共用している。これにより、例えば、光トランシーバ30の個々の取り外しの容易化と部品の共用化とを両立することができたり、固定機構40の撓みや、固定機構40の構成要素、光トランシーバ30等の製造ばらつきの影響を減らして位置決め精度をより向上できたり、といった利点が得られる。ただし、このような構成は一例であって、上側部材41は、辺10cに沿った複数の光トランシーバ30のうち全てに共用されてもよい。
 図4に示されるように、基板10上には、ソケット43、中間部材42、および上側部材41がこの順に載せられている。また、光トランシーバ30は、基板10に対してZ方向にずれて設けられている。
 上側部材41は、光トランシーバ30のボディ31を、基板10や、ソケット43に向けて、Z方向の反対方向に押圧している。また、図4,5に示されるように、上側部材41には、当該上側部材41をZ方向に貫通する切欠としての開口41aが設けられている。当該開口41aには、ボディ31の一部が収容されている。
 中間部材42には、Z方向に延びた貫通孔としての開口42aが設けられている。開口42aの側面は、光トランシーバ30のボディ31を装着する際にX方向およびY方向に大まかにガイドする機能を有している。
 ソケット43は、基板10の面10a上に載せられるとともに、光トランシーバ30のボディ31を支持している。ソケット43には、電気インタフェース43aと、開口43bと、が設けられている。ソケット43のうち、少なくとも電気インタフェース43aは、基板10と光トランシーバ30との間に位置している。
 電気インタフェース43aの導体は、光トランシーバ30の基板33に設けられた電気インタフェースの導体と電気的に接続される。
 開口43bは、光トランシーバ30のボディ31に設けられた下面31a4を、Z方向の反対方向に露出する。開口43bは、例えば、ソケット43をZ方向に貫通した貫通孔あるいは切欠として設けられる。
 放熱機構50は、光トランシーバ30で生じた熱を放出する。放熱機構50は、熱伝導部材51と、ヒートシンク52と、を有している。なお、放熱機構50のうち、少なくとも熱伝導部材51は、固定機構40の一部として機能するよう構成されてもよい。
 熱伝導部材51は、光トランシーバ30とZ方向に並んでいる。熱伝導部材51は、ソケット43の開口43bおよび基板10の開口10d内に収容された部位51aと、当該部位51aに対して光トランシーバ30とは反対側に位置した部位51bと、を有している。熱伝導部材51は、光トランシーバ30の下面31a4と熱的に接続され、当該光トランシーバ30で生じた熱を伝達する。熱伝導部材51は、例えば、アルミニウム系金属材料のような、比較的熱伝導率が高い材料により作られている。また、熱伝導部材51は、ねじのような固定具や、接着等により、基板10または固定機構40と固定される。
 部位51aは、下面31a4と可撓性を有した放熱材47を介して隣り合い、下面31a4と熱的に接続されている。放熱材47は、熱伝導率が比較的高く、かつ可撓性および柔軟性を有した合成樹脂材料、例えば、放熱性の高い熱硬化性の合成樹脂材料で作られる。放熱材47を設けることにより、製造ばらつきや部品間の熱膨張係数の差等によって下面31a4と部位51aとの間に隙間が生じて下面31a4から部位51aへの熱伝導効率が低下するのを抑制できたり、下面31a4と部位51aとの間に過度な押圧力が生じるのを抑制できたり、といった利点が得られる。
 部位51bは、部位51aと一体に設けられ、当該部位51aと熱的に接続されている。また、部位51bは、部位51aから、Z方向の反対方向、すなわち基板10の厚さ方向に延びるとともに、基板10に対して光トランシーバ30とは反対側で、Z方向と交差した方向に延びている。
 また、熱伝導部材51は、基板10に対して下面31a4とは反対側で、ヒートシンク52と接し、当該ヒートシンク52と熱的に接続されている。ヒートシンク52は、ベース52aと、当該ベース52aからZ方向の反対方向に突出したアレイ状かつピン状の複数のフィン52bと、を有している。また、ヒートシンク52は、アルミニウム系金属材料のような、比較的熱伝導率が高い材料で作られている。また、ヒートシンク52は、ねじのような固定具や、はんだ付け、接着等により、熱伝導部材51と固定される。なお、熱伝導部材51およびヒートシンク52は、一つの部材として一体化されてもよい。ヒートシンク52は、放熱部材とも称されうる。
 このような構成の熱伝導部材51およびヒートシンク52により、光トランシーバ30で生じた熱は、下面31a4から、熱伝導部材51およびヒートシンク52においてZ方向の反対方向に伝わり、フィン52bと当該フィン52bの周辺の気体との熱交換により、当該周辺の気体に伝達される、すなわち放出される。なお、スイッチ装置100は、電動ファンを備え、当該電動ファンの作動によって生じた空気流がヒートシンク52に作用するよう構成されてもよい。
 また、図4から明らかとなるように、下面31a4および部位51aは、電気インタフェース43aに対して、スイッチASIC20とは反対側に位置している。また、電気インタフェース43aは、光トランシーバ30のボディ31のZ方向に延びた中心線Cより、スイッチASIC20に近い位置に設けられている。このような配置により、例えば、電気インタフェース43aとスイッチASIC20との間の導体の長さをより短くできる分、電気信号の所要の伝送特性を確保しやすくなったり、熱伝導部材51と当該導体との干渉を避けることができる分、光トランシーバ30からの所要の放熱性能が得られやすくなったり、といった利点が得られる。
[光トランシーバ]
 図6は、光トランシーバ30の斜視図である。図7は、光トランシーバ30の分解斜視図である。また、図8は、図5のVIII-VIII断面図である。図6~8には、図5に示される光トランシーバ30(S2)が装着された状態における方向(X方向~Z方向)が示されている。
 図6,7に示されるように、光トランシーバ30は、ボディ31と、基板33と、コネクタ34と、位置決めピン35と、固定具36と、を備えている。光ファイバ32は、光トランシーバ30から、Z方向に延びている。ボディ31を構成する第一部材31A、基板33、およびボディ31を構成する第二部材31Bは、Z方向にこの順に並び、固定具36によって一体化されている。固定具36は、例えば、ねじである。固定具36は、結合具の一例である。ボディ31は、筐体とも称されうる。
 基板33の周縁部33eは、ボディ31を構成する第一部材31Aと第二部材31Bとの間で露出しており、これら第一部材31Aおよび第二部材31Bとともに、光トランシーバ30の外面の一部を構成している。このような構成により、基板33をボディ31内に収容した場合に比べて、光トランシーバ30のサイズをより小さく構成できる場合がある。
 図7,8に示されるように、コネクタ34にはZ方向の反対方向に隣り合ってレンズアセンブリ37が取り付けられている。レンズアセンブリ37は、ホルダ37aと、当該ホルダ37aに取り付けられた例えばコリメートレンズアレイや集光レンズアレイのようなレンズアレイと、を有している。位置決めピン35は、コネクタ34とレンズアセンブリ37とをZ方向と交差した方向に位置決めする。
 第二部材31Bは、略直方体状の形状を有している。第二部材31Bには、X方向の中間部分において、開口31b3が設けられている。当該開口31b3は、第二部材31BをZ方向に貫通している。第二部材31Bの開口31b3には、コネクタ34およびレンズアセンブリ37の少なくとも一部が収容されている。
 また、第二部材31Bには、複数箇所において、Z方向に貫通する貫通孔31b1が設けられている。貫通孔31b1とZ方向に並ぶように、基板33には、Z方向に貫通する貫通孔33c1が設けられ、第一部材31Aには、雌ねじ孔31a1が設けられている。固定具36は、貫通孔31b1および貫通孔33c1を貫通し、雌ねじ孔31a1に固定される。
 基板33は、例えば、プリント配線基板である。基板33は、Z方向に略一定の厚さを有し、Z方向と交差するとともに直交している。基板33は、面33aと、面33bと、を有している。
 面33aは、Z方向を向きZ方向と交差するとともに直交している。面33a上には、光学素子301や、電子部品302等が実装されている。光学素子301は、例えば、フォトダイオードアレイのような受光部や、VCSELアレイのような発光部である。また、電子部品302は、例えば、受光部や発光部に対応して作動するICである。
 面33bは、Z方向の反対方向を向きZ方向と交差するとともに直交している。面33bは、ソケット43の電気インタフェース43aと面している。基板33は、第二基板の一例であり、面33bは、第二面の一例である。
 また、図8に示されるように、第二部材31BのZ方向の反対方向の端部のうち、光学素子301や電子部品302の実装領域と面する部分には、Z方向に凹む凹部が設けられている。このような構成により、基板33と第二部材31Bとの間には、光学素子301や電子部品302のような部品の収容室Rが設けられている。なお、基板33の第二部材31Bと面する部分に凹部が設けられてもよい。
 電子部品302は、作動に応じて発熱する。電子部品302は、発熱体の一例である。電子部品302で生じた熱を放熱するため、本実施形態では、二つの放熱経路が設けられている。
 放熱経路のうちの一つは、上述した第一部材31Aから放熱機構50の熱伝導部材51へ熱を逃がす経路である。この場合、電子部品302で生じた熱は、基板33の面33bから、第一部材31Aへ伝わる。基板33内には、例えば、グラウンド電位のビアやインレイのような、面33a上に実装された電子部品302で生じた熱を面33bへ伝える熱伝導部材が設けられてもよい。当該熱伝導部材は、例えば、銅系金属材料のような、基板33の絶縁体より熱伝導率が高い材料で作られる。また、第一部材31Aは、例えば、アルミニウム系金属材料のような、熱伝導率が比較的高い材料であって、基板33の絶縁体より熱伝導率が高い材料で、作られている。
 放熱経路のうちのもう一つは、電子部品302から、当該電子部品302と第二部材31Bとの間に設けられた放熱材303を介して、当該第二部材31Bへ熱を逃がす経路である。放熱材303は、熱伝導率が比較的高く、かつ可撓性および柔軟性を有した熱伝導シート(例えばグラファイトシート)、またはシリコーンを主成分とする合成材料で、作られる。放熱材303は、熱伝導部材の一例である。また、第二部材31Bも、例えば、アルミニウム系金属材料のような、熱伝導率が比較的高い材料であって、基板33の絶縁体より熱伝導率が高い材料で、作られている。
 これら放熱経路を介して、第一部材31Aまたは第二部材31Bへ伝わった熱は、放熱機構50や、固定機構40等を介して、スイッチ装置100外へ、放熱される。
 また、図7,8に示されるように、第一部材31Aは、Z方向に略一定の厚さを有し、Z方向と交差するとともに直交している。第一部材31Aには、X方向の中間部分において、Z方向に貫通する開口31a3が設けられている。
 図8に示されるように、開口31a3を、ソケット43の電気インタフェース43aが貫通している。ソケット43は、絶縁体43cと、複数の接続導体43dと、を有している。絶縁体43cは、複数の接続導体43dを支持している。接続導体43dは、それぞれ、電気インタフェース43aにおいて、ソケット43をZ方向に貫通し、基板33の導体と基板10の導体とを電気的に接続している。接続導体43dは、例えば、Z方向に延びた弾性的に伸縮可能なピンを有した接触端子として構成することができる。このような構成において、電子部品302の導体は、光トランシーバ30の基板33の導体、接続導体43d、および基板10の導体を介して、スイッチASIC20の導体と、電気的に接続されている。電気インタフェース43aを有したソケット43を備えることにより、例えば、基板10に直接電気インタフェースを設けた場合に比べて、着脱可能な光トランシーバ30の基板33の導体と、基板10の導体との間で、所要の位置決め精度を確保できる構成を、より容易に構築できるという利点が得られる。また、接続導体43dを、伸縮可能なピンを有した接触端子として構成することにより、基板33の導体と接続導体43dとの間、および基板10の導体と接続導体43dとの間で、所要の面圧および所要の接触面積を確保しやすくなり、接触抵抗の増大を抑制できるという利点が得られる。
 図9は、光トランシーバ30のZ方向の反対方向に位置する下面31a4を見た平面図である。図9にも、図5に示される光トランシーバ30(S2)が装着された状態における方向(X方向~Z方向)が示されている。
 図9に示されるように、光トランシーバ30のZ方向の反対方向の端部では、第一部材31Aに設けられた開口31a3を介して、基板33の面33bのうち、電気インタフェース33dが設けられた領域が、露出している。電気インタフェース33dは、複数のランド33d1と、絶縁体33d2と、を有している。ランド33d1は、それぞれ、ソケット43の接続導体43dとZ方向に接触し、電気的に接続される。ランド33d1は、導体の一例である。
 ここで、図9に示されるように、複数のランド33d1は、ランドグリッドアレイを構成している。図9に例示されるランドグリッドアレイでは、複数のランド33d1がY方向に一定の間隔で並んだ当該ランド33d1の行が、X方向に略一定の間隔で並んでいる。また、X方向に隣り合う二つのランド33d1の行の位置は、例えば、Y方向におけるランド33d1の間隔の略半分だけずれている。すなわち、ランドグリッドアレイは、複数のランド33d1が、斜方格子状に配置されている。このような配置により、より多くのランド33d1を、より密に配置することができるため、光トランシーバ30をより小型に構成することができる。このように、複数のランド33d1をランドグリッドアレイとして配置するのは、ランド33d1の間隔が0.6[mm]以下の場合に好ましく、0.3[mm]以下の場合にさらに好ましい。
 また、図5のソケット43(S1)に示されるように、複数のランド33d1と接して電気的に接続される複数の接続導体43dも、当該複数のランド33d1と同様に、ランドグリッドアレイを構成している。
 このような、狭い間隔で配置された基板10の複数の導体と基板33の複数の導体としてのランド33d1との電気的な接続を確保するためには、基板10、ソケット43、および基板33を、Z方向と交差した方向において精度良く位置決めする必要がある。
 そこで、本実施形態では、図8に示されるように、Z方向に延びた位置決めピン11によって、基板10、ソケット43、および基板33が、Z方向と交差した方向に、位置決めされている。
 具体的に、基板10には、Z方向に貫通する貫通孔10eが設けられている。ソケット43には、Z方向に貫通する貫通孔43eが設けられている。基板33には、Z方向に貫通する貫通孔33c2が設けられている。貫通孔10e、貫通孔43e、および貫通孔33c2は、Z方向に並んでおり、略同じ直径でZ方向に延びている。また、第一部材31Aには、Z方向に貫通する貫通孔31a2が設けられており、貫通孔10e,43e,33c2とZ方向に並んでいる。そして、位置決めピン11は、貫通孔43eおよび貫通孔31a2を貫通し、貫通孔10eと貫通孔33c2との間で延びている。位置決めピン11と、貫通孔10e,43e,31a2,33c2とのはめあいは、例えば、中間ばめや、すきまばめとなるよう設定される。このような構成により、基板10、ソケット43、第一部材31A、および基板33が、位置決めピン11により、Z方向と交差した方向に位置決めされている。なお、光トランシーバ30が、位置決めピン11によって、基板33に設けられた貫通孔33c2で位置決めされる場合、第一部材31Aの貫通孔31a2は、位置決めピン11と位置決めされることは必須ではない。この場合、貫通孔31a2は、位置決めピン11とのクリアランスがより大きな、言い換えると位置決めピン11と位置決めされない貫通孔や、切欠等であってもよい。貫通孔31a2は、第一開口の一例であり、貫通孔33c2は、第二開口の一例である。また、貫通孔10e,43e,31a2,33c2は、位置決め開口の一例である。
 さらに、本実施形態では、図8に示されるように、第二部材31Bに、基板33と接する位置からZ方向に延びた有底孔31b2が設けられている。有底孔31b2は、貫通孔31a2,33c2とZ方向に並ぶとともに、当該貫通孔31a2,33c2と略同じ直径でZ方向に延びている。この場合、光トランシーバ30の組み立ての際に、貫通孔31a2,33c2を貫通して有底孔31b2に挿入される位置決めピンを利用して、第一部材31A、基板33、および第二部材31Bを、Z方向と交差した方向に位置決めすることができる。有底孔31b2は、第三開口の一例である。なお、第三開口は、有底孔31b2には限定されず、貫通孔であってもよい。
 また、図5,9に示されるように、本実施形態では、位置決めピン11、および当該位置決めピン11を通す貫通孔10e,43e,31a2,33c2は、Z方向と交差した方向に互いに離れた複数箇所に設けられている。そして、Z方向に見た平面視で、電気インタフェース43a,33d、すなわち複数の接続導体43dおよび複数のランド33d1は、当該複数箇所の間となる位置に設けられている。これにより、複数の接続導体43dと複数のランド33d1とをより一層精度良く位置決めすることができる。
 以上、説明したように、本実施形態によれば、スイッチ装置100(光学装置)の基板10と光トランシーバ30との間での電気的な接続をより確実に確保することが可能となるような、改善された新規なスイッチ装置100および光トランシーバ30を得ることができる。
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 例えば、光トランシーバと位置決めピンとは、光トランシーバの第二基板以外の部分、例えば、第一開口で位置決めされてもよい。
 また、上記実施形態では、光トランシーバの第二基板の周縁部が、光トランシーバの外面の一部として露出したが、これには限定されず、第二基板は、光トランシーバのボディ(筐体)内に収容され、当該周縁部は外面に露出しなくてもよい。
 本発明は、光学装置および光トランシーバに利用することができる。
10…基板(第一基板)
10a…面(第一面)
10b…面
10c…辺
10d…開口
10e…貫通孔(位置決め開口)
11…位置決めピン
20…スイッチASIC(半導体集積回路)
21…ヒートシンク
21a…ベース
21b…フィン
30…光トランシーバ
31…ボディ
31A…第一部材
31B…第二部材
31a1…雌ねじ孔
31a2…貫通孔(第一開口、位置決め開口)
31a3…開口
31a4…下面
31b1…貫通孔
31b2…有底孔(第三開口)
31b3…開口
32…光ファイバ
33…基板(第二基板)
33a…面
33b…面(第二面)
33c1…貫通孔
33c2…貫通孔(第二開口、位置決め開口)
33d…電気インタフェース
33d1…ランド(導体)
33d2…絶縁体
33e…周縁部
34…コネクタ
35…位置決めピン
36…固定具(結合具)
37…レンズアセンブリ
37a…ホルダ
40…固定機構
41…上側部材
41a…開口
42…中間部材
42a…開口
43…ソケット
43a…電気インタフェース
43b…開口
43c…絶縁体
43d…接続導体
43e…貫通孔(位置決め開口)
46…固定具
47…放熱材
50…放熱機構
51…熱伝導部材
51a…部位
51b…部位
52…ヒートシンク
52a…ベース
52b…フィン
100…スイッチ装置(光学装置)
200…マザーボード
301…光学素子
302…電子部品(発熱体)
303…放熱材(熱伝導部材)
C…中心線
R…収容室
X…方向
Y…方向
Z…方向(第一方向)

Claims (20)

  1.  第一方向を向いた第一面を有し前記第一方向と交差した第一基板と、
     前記第一基板に対して前記第一方向にずれて設けられた光トランシーバと、
     前記第一基板と前記光トランシーバとの間に位置し、前記第一基板の導体と前記光トランシーバの導体とを電気的に接続する複数の接続導体と、当該複数の接続導体を支持する絶縁体と、を有したソケットと、
     前記第一基板と前記光トランシーバとの間で前記第一方向に延びて前記ソケットを貫通し、前記第一基板、前記光トランシーバ、および前記ソケットを前記第一方向と交差した方向に位置決めする位置決めピンと、
     を備えた、光学装置。
  2.  前記光トランシーバは、
     複数の導体と、絶縁体と、を有した第二基板と、
     前記第一基板と前記第二基板との間に設けられ、前記位置決めピンが挿入される第一開口が設けられた、第一部材と、
     を有した、請求項1に記載の光学装置。
  3.  前記第一開口は、前記第一部材を貫通し、
     前記位置決めピンは、前記第一開口を貫通し、
     前記第二基板に、前記位置決めピンが挿入される第二開口が設けられ、
     前記光トランシーバは、前記第二開口において前記位置決めピンと位置決めされた、請求項2に記載の光学装置。
  4.  前記光トランシーバは、前記第二基板に対して前記第一部材とは反対側で前記第二基板を覆う第二部材を有した、請求項3に記載の光学装置。
  5.  前記第二部材に、前記第二開口と前記第一方向に並んだ第三開口が設けられた、請求項4に記載の光学装置。
  6.  前記光トランシーバは、前記第一部材と前記第二部材とを一体化する結合具を有した、請求項4または5に記載の光学装置。
  7.  前記光トランシーバは、
     前記第二基板に設けられた発熱体と、
     前記発熱体と前記第一部材または前記第二部材との間に介在した熱伝導部材と、を有した、請求項4に記載の光学装置。
  8.  前記熱伝導部材は、可撓性を有した、請求項7に記載の光学装置。
  9.  前記第二基板は、前記第一方向の反対方向を向き前記ソケットと面した第二面を有し、
     前記第二面において、前記第二基板の複数の導体は、ランドグリッドアレイを構成した、請求項2に記載の光学装置。
  10.  前記第二面において、前記第二基板の複数の導体は、斜方格子状に配置された、請求項9に記載の光学装置。
  11.  前記第二面において、前記第二基板の複数の導体は、0.6[mm]以下の間隔で配置された、請求項9または10に記載の光学装置。
  12.  前記光トランシーバとして複数の光トランシーバを備えた、請求項1または2に記載の光学装置。
  13.  前記複数の光トランシーバは、前記第一基板の辺に沿って配置された、請求項12に記載の光学装置。
  14.  前記複数の光トランシーバは、前記第一基板の四つの辺に沿って配置され、
     前記第一面の、前記光トランシーバよりも前記辺のそれぞれから離れた位置に、半導体集積回路が実装された、請求項13に記載の光学装置。
  15.  前記複数の接続導体は、前記第一方向に見た場合に、前記光トランシーバの中心より前記半導体集積回路に近い位置に設けられた、請求項14に記載の光学装置。
  16.  前記光トランシーバから前記第一方向に延びた光ファイバを備えた、請求項1~3のうちいずれか一つに記載の光学装置。
  17.  第一方向を向いた第一面を有し前記第一方向と交差した第一基板と、
     前記第一基板に対して前記第一方向にずれて設けられた光トランシーバと、
     前記第一基板と前記光トランシーバとの間に位置し、前記第一基板の導体と前記光トランシーバの導体とを電気的に接続する複数の接続導体と、当該複数の接続導体を支持する絶縁体と、を有したソケットと、
     前記第一基板と前記光トランシーバとの間で前記第一方向に延びて前記ソケットを貫通し、前記第一基板、前記光トランシーバ、および前記ソケットを前記第一方向と交差した方向に位置決めする位置決めピンと、
     を備えた、光学装置に適用される、前記光トランシーバであって、
     前記位置決めピンが位置決めされる位置決め開口が設けられた、光トランシーバ。
  18.  前記光トランシーバは、
     複数の導体と、絶縁体と、を有した第二基板と、
     前記第一基板と前記第二基板との間に設けられ、前記位置決めピンが挿入される第一開口が設けられた、第一部材と、
     を有した、請求項17に記載の光トランシーバ。
  19.  前記第一開口は、前記第一部材を貫通し、
     前記位置決めピンは、前記第一開口を貫通し、
     前記第二基板に、前記位置決め開口として第二開口が設けられた、請求項18に記載の光トランシーバ。
  20.  前記第二基板に対して前記第一部材とは反対側で前記第二基板を覆う第二部材を有し、
     前記第一部材、前記第二部材、および前記第二基板によって、前記光トランシーバの外面の一部が構成された、請求項18または19に記載の光トランシーバ。
PCT/JP2023/033251 2022-09-30 2023-09-12 光学装置および光トランシーバ WO2024070674A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158366 2022-09-30
JP2022-158366 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070674A1 true WO2024070674A1 (ja) 2024-04-04

Family

ID=90477583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033251 WO2024070674A1 (ja) 2022-09-30 2023-09-12 光学装置および光トランシーバ

Country Status (1)

Country Link
WO (1) WO2024070674A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128315A (ja) * 2004-10-27 2006-05-18 Sony Corp 半導体装置の放熱構造および放熱方法、並びにそれを利用した電子機器
JP2006201500A (ja) * 2005-01-20 2006-08-03 Sony Corp 半導体集積回路およびそれを用いた電子機器
JP2020027147A (ja) * 2018-08-10 2020-02-20 国立研究開発法人情報通信研究機構 小型光トランシーバ
JP2020511788A (ja) * 2017-03-03 2020-04-16 エイアー テスト システムズ 電子試験器
WO2022061160A1 (en) * 2020-09-18 2022-03-24 Nubis Communications Inc. Data processing systems including optical communication modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128315A (ja) * 2004-10-27 2006-05-18 Sony Corp 半導体装置の放熱構造および放熱方法、並びにそれを利用した電子機器
JP2006201500A (ja) * 2005-01-20 2006-08-03 Sony Corp 半導体集積回路およびそれを用いた電子機器
JP2020511788A (ja) * 2017-03-03 2020-04-16 エイアー テスト システムズ 電子試験器
JP2020027147A (ja) * 2018-08-10 2020-02-20 国立研究開発法人情報通信研究機構 小型光トランシーバ
WO2022061160A1 (en) * 2020-09-18 2022-03-24 Nubis Communications Inc. Data processing systems including optical communication modules

Similar Documents

Publication Publication Date Title
JP5714899B2 (ja) Led用の、無半田で一体化されたパッケージ・コネクタ及び放熱器
US9429726B2 (en) Optical module
US7267553B2 (en) Optical transceiver using optical sub-assembly having multiple lead pins connected to the substrate by a flexible printed circuit
JP5224416B2 (ja) 光モジュール取付ユニット及び光モジュール
US20120207427A1 (en) Optical module connection device
US9320170B2 (en) Communication module-cooling structure and communication device
US7350979B2 (en) Optical transceiver having an optical receptacle optionally fixed to a frame
EP3264870B1 (en) Optical module
US8396370B2 (en) Parallel optical transceiver module that utilizes a folded flex circuit that reduces the module footprint and improves heat dissipation
JP5075141B2 (ja) 光通信装置
TW201531759A (zh) 光電轉換模組
JP5323518B2 (ja) 並列光伝送装置
WO2024070674A1 (ja) 光学装置および光トランシーバ
JP6868781B2 (ja) 光コネクタ、電子機器および光インターコネクションシステム
JPH07230022A (ja) 光並列リンク及びその実装構造
WO2023189765A1 (ja) 基板アセンブリ
JP2010175995A (ja) 並列光伝送装置
JP2005093507A (ja) 光伝送モジュール
WO2023026963A1 (ja) 光モジュール及び光通信デバイス
US20240137125A1 (en) Electronic Module, Especially Optical Transceiver Module
JP2014052587A (ja) 通信モジュール及び通信装置
JP6548849B1 (ja) 光モジュール
JP5075139B2 (ja) 並列光伝送装置
US20160231516A1 (en) Communication Module and Signal Transmission Device Including the Same
JP2024015472A (ja) 基板アセンブリ、光通信装置、および光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871907

Country of ref document: EP

Kind code of ref document: A1