WO2024070666A1 - 光学系および撮像装置 - Google Patents

光学系および撮像装置 Download PDF

Info

Publication number
WO2024070666A1
WO2024070666A1 PCT/JP2023/033224 JP2023033224W WO2024070666A1 WO 2024070666 A1 WO2024070666 A1 WO 2024070666A1 JP 2023033224 W JP2023033224 W JP 2023033224W WO 2024070666 A1 WO2024070666 A1 WO 2024070666A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
optical system
lens
optical axis
lens surface
Prior art date
Application number
PCT/JP2023/033224
Other languages
English (en)
French (fr)
Inventor
領子 富岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024070666A1 publication Critical patent/WO2024070666A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the technology disclosed herein relates to optical systems and imaging devices.
  • JP-A-07-209571 describes an optical system that has a flare stopper in a focusing lens group that moves during focusing, separate from the aperture diaphragm that determines the F-number, and is configured so that the aperture diameter of the flare stopper changes during focusing.
  • JP-A-07-209570 describes an optical system that has a flare stopper in a focusing lens group that moves during focusing, and is configured so that the flare stopper moves during focusing independently of the movement of the focusing lens group.
  • JP2011-107312A describes a zoom lens having, in order from the object side to the image side, a first lens group, a second lens group, and a third lens group, with a secondary aperture disposed on the image side of the second lens group.
  • JP2016-191766A describes a zoom lens having, from the object side, a first lens group, a second lens group, a third lens group, and a subsequent lens group, with a flare cut aperture and an Fno aperture between the second and third groups.
  • JP 2002-023050 A describes a configuration in which, in a photographing lens consisting of, in order from the object side, a first lens and a second lens, the aperture position is set on the image plane side of the second lens, and a flare stopper that limits the optical path of off-axis light rays is provided between the first lens and the second lens.
  • JP 2019-049645 A describes a zoom lens that includes an aperture diaphragm that determines (limits) the light flux of the maximum open F-number, and a flare cutter.
  • the present disclosure provides an optical system that is compact and capable of improving imaging performance at intermediate image heights while suppressing light loss at the periphery of the image, and an imaging device equipped with this optical system.
  • An optical system includes a first aperture having a variable aperture diameter, three or more lenses including a positive lens and a negative lens arranged closer to the object side than the first aperture diameter, and a second aperture having a fixed aperture diameter, where Dst is the distance on the optical axis from the first aperture diameter to the second aperture diameter and f is the focal length of the optical system.
  • Dst and f are values in a variable magnification state in which the height of an axial marginal ray from the optical axis at the position of the second aperture diameter is maximized, 0.005 ⁇
  • the conditional expression (1) expressed by the following formula is satisfied.
  • the aperture diameter of the first aperture in the fully open state is ⁇ F
  • the aperture diameter of the second aperture is ⁇ S
  • ⁇ F and ⁇ S are values in a variable magnification state where the height from the optical axis of the axial marginal ray is maximum at the position of the second aperture
  • the optical system of the above aspect is expressed as follows: 0.3 ⁇ S/ ⁇ F ⁇ 2.5 (2) It is preferable to satisfy the conditional expression (2) expressed as follows:
  • the distance on the optical axis from the intersection point of the lens surface and the optical axis to the second diaphragm whose lens surface is located within the opening is denoted as Dp, and for Dp, the sign of the distance on the image side based on the intersection point is positive and the sign of the distance on the object side is negative.
  • the paraxial radius of curvature of the lens surface is Rp, then the optical system of the above aspect is as follows: 0 ⁇ Dp/Rp ⁇ 0.4 (3) It is preferable to satisfy the conditional expression (3) expressed as follows:
  • the optical system of the above aspect is as follows: 0.7 ⁇ Rp-Rp ⁇ (1-( ⁇ Ep/2) 2 /Rp 2 ) 1/2 ⁇ /Dp ⁇ 1.5 (4) It is preferable to satisfy conditional expression (4) expressed as follows:
  • the distance on the optical axis from the intersection of the lens surface and the optical axis to the second aperture is Dn, and for Dn, the sign of the distance on the image side based on the intersection is positive and the sign of the distance on the object side is negative, and Rn is the paraxial radius of curvature of the lens surface.
  • the optical system is a variable magnification optical system
  • Dn is the value in the variable magnification state in which the height from the optical axis of the axial marginal ray at the position of the second aperture is maximum
  • conditional expression (5) expressed as follows:
  • the distance on the optical axis from the intersection of the lens surface and the optical axis to the second aperture is Dn, and for Dn, the sign of the distance on the image side based on the intersection is positive and the sign of the distance on the object side is negative, the paraxial radius of curvature of the lens surface is Rn, and the effective diameter of the lens surface is ⁇ En.
  • Dn is the value in a variable magnification state in which the height from the optical axis of an axial marginal ray at the position of the second aperture is maximum.
  • the optical system of the above aspect is as follows: 0.5 ⁇ Rn-Rn ⁇ (1-( ⁇ En/2) 2 / Rn2 ) 1/2 ⁇ /Dn ⁇ 1.2 (6) It is preferable to satisfy conditional expression (6) expressed as follows:
  • hp be the height from the optical axis of the chief ray of the maximum image height at the position of the second aperture
  • hm be the height from the optical axis of the on-axis marginal ray at the position of the second aperture.
  • the optical system of the above aspect is as follows: 0 ⁇
  • TL be the sum of the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the optical system and the back focus in the air equivalent distance of the optical system
  • hp be the height from the optical axis of the chief ray of the maximum image height at the position of the second aperture
  • hm be the height from the optical axis of the on-axis marginal ray at the position of the second aperture.
  • the optical system is a variable magnification optical system
  • Dst, TL, hp, and hm are values in a variable magnification state where the height from the optical axis of the on-axis marginal ray at the position of the second aperture is maximum
  • the optical system of the above aspect is as follows: 0.05 ⁇ (
  • the optical system of the above aspect is as follows: ⁇ 5 ⁇ f/fs ⁇ 5 (9) It is preferable to satisfy conditional expression (9) expressed as follows:
  • the second aperture moves integrally with at least one lens of the optical system during focusing, or that the second aperture is fixed relative to the image plane integrally with at least one lens of the optical system during focusing.
  • the optical system is a variable magnification optical system, it is preferable that the second aperture moves integrally with at least one lens of the optical system during magnification, or that the second aperture is fixed relative to the image plane integrally with at least one lens of the optical system during magnification.
  • the first aperture may be configured to be the aperture that determines the F-number.
  • An imaging device includes an optical system according to the above aspect of the present disclosure.
  • a single lens refers to a single lens that is not cemented.
  • a compound aspheric lens a lens that is integrally constructed with a spherical lens and an aspheric film formed on the spherical lens, and functions as a single aspheric lens overall
  • the sign of the refractive power and the surface shape of lenses that include aspheric surfaces are those in the paraxial region.
  • the "focal length” used in the conditional formula is the paraxial focal length.
  • the “distance on the optical axis” used in the conditional formula is the geometric distance unless otherwise specified.
  • the values used in the conditional formula are values based on the d-line when focused on an object at infinity unless otherwise specified.
  • the "d-line,” “C-line,” “F-line,” and “g-line” described in this specification are emission lines, and the wavelength of the d-line is treated as 587.56 nm (nanometers), the wavelength of the C-line as 656.27 nm (nanometers), the wavelength of the F-line as 486.13 nm (nanometers), and the wavelength of the g-line as 435.84 nm (nanometers).
  • the present disclosure makes it possible to provide an optical system that is compact and capable of improving imaging performance at intermediate image heights while suppressing light loss at the periphery of the image, and an imaging device equipped with this optical system.
  • FIG. 2 is a cross-sectional view showing the configuration of an optical system according to one embodiment, which corresponds to the optical system of Example 1.
  • FIG. 2 is a cross-sectional view showing the configuration of the optical system and a light beam in FIG. 1 .
  • FIG. 13 is a diagram for explaining symbols in a conditional expression.
  • 3A to 3C are diagrams showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the optical system of Example 1.
  • 4A to 4C are lateral aberration diagrams of the optical system of Example 1.
  • 3 is a cross-sectional view showing a configuration and a light beam when the secondary aperture St1 is removed from the optical system of FIG. 2.
  • FIG. 7 is a lateral aberration diagram of the optical system of FIG. 6 .
  • 11 is a cross-sectional view showing the configuration of an optical system and a light beam according to a second embodiment.
  • 11A to 11C are diagrams showing various aberrations in the optical system of Example 2.
  • 11 is a cross-sectional view showing the configuration of an optical system and a light beam according to a third embodiment.
  • 11A to 11C are diagrams showing various aberrations in the optical system of Example 3.
  • 11 is a cross-sectional view showing the configuration of an optical system and a light beam according to a fourth embodiment.
  • 13A to 13C are diagrams showing various aberrations in the optical system of Example 4.
  • 13 is a cross-sectional view showing the configuration of an optical system and a light beam according to a fifth embodiment.
  • 13A to 13C are diagrams showing various aberrations in the optical system of Example 5.
  • FIG. 13 is a cross-sectional view showing the configuration of an optical system and a light beam according to a sixth embodiment.
  • 13A to 13C are diagrams showing various aberrations in the optical system of Example 6.
  • 1 is a perspective view of the front side of an imaging device according to an embodiment.
  • FIG. 2 is a perspective view of the rear side of the imaging device according to the embodiment.
  • FIG. 1 shows a cross-sectional view of the configuration of an optical system according to one embodiment of the present disclosure.
  • the left side is the object side
  • the right side is the image side.
  • the example shown in FIG. 1 corresponds to the optical system of Example 1 described below.
  • the optical system in FIG. 1 has 13 lenses, lenses L1 to L13, in order from the object side to the image side.
  • a parallel plate-shaped optical member PP is arranged between the lens closest to the image side and the image surface Sim, assuming application to an imaging device.
  • the optical member PP is a member assuming various filters and/or cover glass, etc.
  • the various filters are low-pass filters, infrared cut filters, and/or filters that cut out specific wavelength ranges, etc.
  • the optical member PP is a member that has no refractive power. It is also possible to configure an imaging device without the optical member PP.
  • the optical system in Figure 1 has a primary aperture FS with a variable aperture diameter, and four secondary apertures St1 to St4 with fixed aperture diameters.
  • the primary aperture FS corresponds to the "first aperture" of the technology disclosed herein.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed between lens L7 and lens L8.
  • Three or more lenses including a positive lens and a negative lens, are arranged on the object side of the main aperture FS.
  • a positive lens and a negative lens are arranged on the object side of the main aperture FS.
  • the secondary apertures St1 to St4 correspond to the "second aperture” of the technology of this disclosure.
  • the secondary apertures St1 to St4 are arranged as follows:
  • the secondary aperture St1 is arranged adjacent to the object side of the object side surface of lens L4.
  • the secondary aperture St2 is arranged so that it includes the image side surface of lens L6 within its opening.
  • the secondary aperture St3 is arranged adjacent to the image side of the image side surface of lens L9.
  • the secondary aperture St4 is arranged adjacent to the image side of the image side surface of lens L11. Note that "adjacent" in this specification does not necessarily mean in contact, but means next to each other.
  • sub-apertures St1 to St4 when there is no need to distinguish between the sub-apertures St1 to St4, they will simply be referred to as "sub-apertures.”
  • the optical system in FIG. 1 has four sub-apertures St1 to St4, but in the technology disclosed herein, the number of sub-apertures provided in the optical system can be set arbitrarily.
  • the opening diameter of the secondary aperture is fixed, not variable. By configuring the secondary aperture so that its opening diameter does not change, a mechanism for changing the opening diameter of the secondary aperture is not required, which contributes to miniaturization and also prevents the mechanical structure from becoming too complicated.
  • the secondary aperture is disposed so as to satisfy the following conditional expression (1).
  • Dst the distance on the optical axis from the primary aperture FS to the secondary aperture
  • f The focal length of the optical system
  • Dst and f are values in a variable magnification state in which the height from the optical axis Z of the axial marginal ray B0m (see FIG. 2) is maximum at the position of the secondary aperture.
  • FIG. 1 shows the distance Dst on the optical axis from the primary aperture FS to the secondary aperture St1. 0.005 ⁇
  • the secondary aperture is not too far from the primary aperture FS, making it easy to prevent the secondary aperture from blocking the light rays at the maximum image height. This makes it possible to block harmful light rays at intermediate image heights while suppressing a decrease in the amount of light at the periphery of the image.
  • the secondary aperture near the primary aperture FS so that the corresponding value of conditional formula (1) does not exceed the upper limit, the outer diameter of the lens near the primary aperture FS can be made small, which is advantageous for miniaturizing the optical system.
  • the outer diameter of the lens of this focusing group can be made small, making the focusing group lighter, which is advantageous for increasing the focusing speed.
  • the outer diameter of the lens of this moving group can be made small, making the moving group lighter, which is advantageous for reducing the load on the drive system that drives the moving group.
  • the secondary aperture does not come too close to the primary aperture FS, making it easier to position the secondary aperture so that there is no interference between the primary aperture unit, which includes a mechanism for changing the opening diameter of the primary aperture FS, and the secondary aperture.
  • the upper limit of 2 in condition (1) can be changed to 1.9, 1.8, It is preferable to set the lower limit of condition (1) to any one of 1.7, 1.6, 1.5, 1.4, and 1.3. It is also preferable to change the lower limit of condition (1) from 0.005 to 0.007 or 0.008.
  • FIG. 2 shows a cross-sectional view of the optical system configuration and light beams in FIG. 1.
  • the light beams are the axial light beam B0, the light beam B6 at 60% image height, and the light beam B10 at maximum image height, and the axial marginal ray B0m.
  • the secondary apertures St1 to St4 block the harmful light beams at 60% image height without blocking the axial light beam B0 and the light beam B10 at maximum image height.
  • the "60% image height” here indicates the image height as a percentage of the maximum image height, with the maximum image height being the 100% image height, and this notation is the same for other image heights in this specification. Note that FIG.
  • intermediate image height shows the light beam at 60% image height as an example of the light beam at intermediate image height, but the "intermediate image height" of the technology disclosed herein is not limited to the 60% image height.
  • An image height that is greater than 0 and less than the maximum image height can be called an "intermediate image height".
  • conditional expressions that are preferably satisfied by the optical system of the present disclosure.
  • the same symbols are used for elements with the same definitions, and some duplicate explanations of the symbols will be omitted.
  • the optical system of the present disclosure satisfies the following conditional expression (2).
  • the aperture diameter of the primary aperture FS in its fully open state is ⁇ F.
  • the aperture diameter of the secondary aperture is ⁇ S.
  • ⁇ F and ⁇ S are values in a variable magnification state in which the height of the axial marginal ray B0m from the optical axis Z is at its maximum at the position of the secondary aperture.
  • FIG. 1 shows the aperture diameter ⁇ F of the primary aperture FS in its fully open state and the aperture diameter ⁇ S of the secondary aperture St1. 0.3 ⁇ S/ ⁇ F ⁇ 2.5 (2)
  • the aperture diameter of the secondary aperture does not become too large, making it easy to block harmful rays.
  • the aperture diameter of the secondary aperture does not become too small, making it easy to configure the secondary aperture so that it does not block axial rays.
  • FIG. 3 shows a configuration in which the image side surface of the lens Lp is located in the opening of the secondary aperture St2.
  • the left side is the object side
  • the right side is the image side.
  • the image side surface of the lens Lp is a convex surface in contact with air.
  • Dp the distance on the optical axis from the intersection point of the lens surface and the optical axis Z to the secondary aperture where the lens surface is located in the opening.
  • the paraxial radius of curvature of the lens surface is Rp.
  • FIG. 3 shows the distance Dp.
  • the sign of Dp is positive for the distance on the image side based on the intersection point, and negative for the distance on the object side.
  • the sign of the paraxial radius of curvature is positive for the surface with a convex shape facing the object side, and negative for the surface with a convex shape facing the image side. 0 ⁇ Dp/Rp ⁇ 0.4 (3)
  • conditional expression (3) By making the corresponding value of conditional expression (3) not equal to or greater than the upper limit, the diameter of the optically effective surface of the lens and the effective diameter can be prevented from becoming close to each other, which is advantageous for improving workability and ease of assembly.
  • the lens having the lens surface and the secondary aperture in which the lens surface is located within the aperture are not too far apart, so that the secondary aperture can be disposed without increasing the overall length of the optical system, which is advantageous for miniaturization. If the lens having the lens surface and the secondary aperture in which the lens surface is located within the aperture are too far apart, a space is required to dispose the secondary aperture, which may increase the overall length of the optical system.
  • conditional expression (3) it is preferable to change the upper limit of conditional expression (3) from 0.4 to any of 0.35, 0.3, 0.25, 0.2, 0.19, and 0.18.
  • an "optically effective surface” is a surface that can be used as an optical surface.
  • an "effective diameter” refers to twice the distance from the intersection of the outermost ray and the lens surface, among the rays that enter the lens surface from the object side and emerge to the image side, to the optical axis Z.
  • the “outside” here refers to the radial outside centered on the optical axis Z, in other words, the side away from the optical axis Z.
  • the optical system is a variable magnification optical system, the "outsidemost ray” is determined taking into consideration the entire range of magnification.
  • the optical system of the present disclosure satisfies the following conditional expression (4).
  • the effective diameter of the lens surface is ⁇ Ep.
  • half the effective diameter ⁇ Ep is shown in FIG. 3. 0.7 ⁇ Rp-Rp ⁇ (1-( ⁇ Ep/2) 2 /Rp 2 ) 1/2 ⁇ /Dp ⁇ 1.5 (4)
  • the aperture diameter of the secondary aperture can be prevented from becoming too large, making it easier to effectively block harmful rays.
  • the corresponding value of conditional formula (4) is not less than the lower limit, it becomes easier to prevent blocking not only harmful rays but also necessary rays.
  • FIG. 3 shows a configuration in which the object side surface of the lens Ln is located adjacent to the secondary aperture St1.
  • the object side surface of the lens Ln is a concave surface in contact with air.
  • Dn the distance on the optical axis from the intersection point of the concave lens surface and the optical axis Z to the secondary aperture.
  • Rn The paraxial radius of curvature of the concave lens surface.
  • the distance Dn is shown in FIG. 3.
  • the sign of Dn is positive for the distance on the image side based on the intersection point, and negative for the distance on the object side.
  • the values of the lens surface having the diameter of the optically effective surface that is closer to the aperture diameter of the secondary aperture among these two lens surfaces are used for Dn and Rn.
  • Dn is the value in the variable magnification state where the height of the axial marginal ray B0m from the optical axis Z is maximum at the position of the secondary aperture. 0 ⁇ Dn/Rn ⁇ 0.4 (5)
  • condition (5) By making the value of condition (5) equal to or greater than the upper limit, the distance between the concave lens surface and the secondary aperture is not too great, so that the secondary aperture can be disposed without increasing the overall length of the optical system, which is advantageous for miniaturization.
  • value of condition (5) By making the value of condition (5) equal to or greater than the lower limit, harmful light rays can be effectively blocked.
  • conditional expression (5) it is preferable to change the upper limit of conditional expression (5) from 0.4 to any of 0.3, 0.25, 0.2, 0.15, 0.13, 0.1, and 0.05.
  • the optical system of the present disclosure satisfies the following conditional expression (6).
  • the effective diameter of the concave lens surface is ⁇ En.
  • half the effective diameter ⁇ En is shown in FIG. 3. 0.5 ⁇ Rn-Rn ⁇ (1-( ⁇ En/2) 2 / Rn2 ) 1/2 ⁇ /Dn ⁇ 1.2 (6)
  • the diameter of the optically effective surface of the lens and the effective diameter can be prevented from becoming too close to each other, which is advantageous for improving workability and ease of assembly.
  • the concave lens surface and the secondary aperture are not too far apart, so that the secondary aperture can be positioned without increasing the overall length of the optical system, which is advantageous for miniaturization.
  • the optical system of the present disclosure satisfies the following conditional expression (7).
  • the height from the optical axis Z of the chief ray B10p at the maximum image height at the position of the secondary aperture is hp.
  • the height from the optical axis Z of the axial marginal ray B0m at the position of the secondary aperture is hm.
  • hp and hm are values in a variable magnification state in which the height from the optical axis Z of the axial marginal ray B0m at the position of the secondary aperture is maximum.
  • FIG. 2 shows the chief ray B10p at the maximum image height and the axial marginal ray B0m, and hp and hm related to the secondary aperture St1. 0 ⁇
  • the secondary aperture can be positioned at a position where the height of the chief ray B10p at the maximum image height is lower than the height of the axial marginal ray B0m. This makes it easy to block only the harmful rays at intermediate image heights while ensuring the amount of peripheral light at the maximum image height.
  • the lower limit of conditional expression (7) is
  • conditional expression (7) it is preferable to change the upper limit of conditional expression (7) from 1 to any of 0.95, 0.9, and 0.85.
  • the optical system of the present disclosure satisfies the following conditional expression (8).
  • TL is the sum of the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side of the optical system and the back focus in the air equivalent distance of the optical system.
  • TL is the total length of the optical system.
  • Dst, TL, hp, and hm are values in a variable magnification state in which the height of the axial marginal ray B0m from the optical axis Z is maximum at the position of the secondary aperture. 0.05 ⁇ (
  • the position of the secondary aperture is not too far from the primary aperture FS, making it possible to prevent the secondary aperture from blocking even light rays at the maximum image height, thereby suppressing a decrease in the amount of light at the periphery of the image.
  • the secondary aperture is not too close to the primary aperture FS, making it easy to position the secondary aperture so that it does not interfere with the primary aperture unit, which includes a mechanism for changing the opening diameter of the primary aperture FS, etc.
  • the optical system of the present disclosure satisfies the following conditional expression (9).
  • the composite focal length of all lens components on the object side of the secondary aperture is fs.
  • one lens component means one single lens or one set of cemented lenses.
  • f and fs are values in a variable magnification state in which the height of the axial marginal ray B0m from the optical axis Z is maximum at the position of the secondary aperture. ⁇ 5 ⁇ f/fs ⁇ 5 (9)
  • conditional expression (9) does not exceed the upper limit in the range where f/fs>0, it becomes easy for the secondary aperture to effectively block harmful rays at intermediate image heights without blocking rays at the maximum image height.
  • the corresponding value of conditional expression (9) does not exceed the lower limit in the range where f/fs ⁇ 0, it becomes easy to effectively block harmful rays at intermediate image heights without blocking axial rays at the position of the secondary aperture, since it is possible to prevent the light beam from diverging significantly in the vicinity of the secondary aperture.
  • conditional expression (9) it is preferable to replace the upper limit of 5 in conditional expression (9) with any of the following: 4.5, 4, 3.5, 3, 2.5, 2.4, 2.3, 2.2, 2.1, 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, and 1.1. Also, it is preferable to replace the lower limit of -5 in conditional expression (9) with any of the following: -4.5, -4, -3.5, -3, -2.5, -2.4, -2.3, -2.2, -2.1, -2, -1.9, -1.8, -1.7, and -1.6.
  • lens L1 which is a single lens, is one lens component and is the first lens component from the object side in the optical system of FIG. 1.
  • a cemented lens in which lenses L2 and L3 are cemented together is also one lens component and is the second lens component from the object side in the optical system of FIG. 1.
  • a cemented lens in which lenses L4 and L5 are cemented together is also one lens component and is the third lens component from the object side in the optical system of FIG. 1.
  • Lens L6, which is a single lens is also one lens component and is the fourth lens component from the object side in the optical system of FIG. 1.
  • all lens components on the object side of the secondary aperture does not mean a lens component in which a part of the lens component is located on the object side of the secondary aperture, but a lens component in which the entire lens component is located on the object side of the secondary aperture. Therefore, when considering conditional expression (9) for the secondary aperture St2 in FIG. 1, a part of the lens surface of lens L6 is located within the opening of the secondary aperture St2, so lens L6 is not a lens component on the object side of the secondary aperture St2. In the optical system of FIG. 1, all lens components on the object side of the secondary aperture St2 refer only to the first, second, and third lens components from the object side.
  • the secondary aperture moves integrally with at least one lens of the optical system during focusing, or is fixed integrally with at least one lens of the optical system with respect to the image surface Sim during focusing.
  • the optical system is a variable magnification optical system
  • the secondary aperture moves integrally with at least one lens of the optical system during magnification, or is fixed integrally with at least one lens of the optical system with respect to the image surface Sim during magnification.
  • moving integrally means moving at the same amount in the same direction at the same time.
  • lenses L8 to L13 and secondary apertures St3 to St4 move together along the optical axis Z, while lenses L1 to L7, primary aperture FS, and secondary apertures St1 to St2 are fixed together with respect to the image plane Sim.
  • the parentheses and left-pointing arrows below lenses L8 to L13 and secondary apertures St3 to St4 in Figure 2 indicate that these are focusing groups that move towards the object when focusing from an object at infinity to a close object.
  • Example 1 The configuration of the optical system of Example 1 and cross-sectional views of the light beam are shown in Figures 1 and 2, and the method of illustration and the configuration are as described above, so some overlapping explanations will be omitted here.
  • the optical system of Example 1 includes, in order from the object side to the image side, lenses L1 to L13.
  • the optical system of Example 1 includes a main aperture FS with a variable aperture diameter and secondary apertures St1 to St4 with fixed aperture diameters.
  • the basic lens data is shown in Table 1, the specifications in Table 2, and the aspheric coefficients in Table 3.
  • the table of basic lens data is written as follows.
  • the Sn column shows the surface number of each surface, with the surface closest to the object side being the first surface, and the subsequent surfaces being numbered in increments of one.
  • the R column shows the radius of curvature of each surface. The sign of the radius of curvature is positive for surfaces with a convex shape facing the object side, and negative for surfaces with a convex shape facing the image side.
  • the D column shows the surface spacing on the optical axis between each surface and the next surface. The sign of the surface spacing is positive for the spacing in the image side direction, and negative for the spacing in the object side direction.
  • the value in the bottom row of the D column is the spacing between the surface closest to the image side in the table and the image surface Sim.
  • the Nd column shows the refractive index for the d-line of each component.
  • the ⁇ d column shows the Abbe number of each component based on the d-line.
  • the table of basic lens data also shows the optical member PP.
  • the surface number and "(FS)" are entered in the surface number column, and "primary aperture” is entered in the column to the right of the surface spacing.
  • "secondary aperture St1" is entered in the column to the right of the surface spacing, and the opening diameter is entered after " ⁇ ".
  • the surfaces that correspond to the secondary apertures St2 to St4 are entered in the same way as the surface that corresponds to the secondary aperture St1.
  • Table 2 shows the focal length f, the back focus Bf in air equivalent distance, the maximum F-number FNo., the maximum full angle of view 2 ⁇ , the aperture diameter ⁇ F when the primary aperture FS is fully open, and the total length TL of the optical system, based on the d-line, when focused on an object at infinity.
  • the [°] in the maximum full angle of view column indicates that the unit is degrees.
  • the surface numbers of aspheric surfaces are marked with *, and the numerical value of the paraxial radius of curvature is written in the column of the radius of curvature of the aspheric surface.
  • Table 3 the row Sn shows the surface numbers of the aspheric surfaces, and the rows KA and Am show the numerical values of the aspheric coefficients for each aspheric surface.
  • KA and Am are aspheric coefficients in the aspheric formula expressed by the following formula.
  • Zd C x h2 / ⁇ 1 + (1 - KA x C2 x h2 ) 1/2 ⁇ + ⁇ Am x hm however,
  • Zd Aspheric depth (the length of a perpendicular line drawn from a point on the aspheric surface at height h to a plane perpendicular to the optical axis Z where the apex of the aspheric surface is in contact)
  • h Height (distance from optical axis Z to lens surface)
  • C reciprocal of paraxial radius of curvature KA
  • Am aspheric coefficients, and ⁇ in the aspheric formula represents the summation with respect to m.
  • the angle unit is degrees and the length unit is mm (millimeters), but since the optical system can be used with proportional enlargement or reduction, other appropriate units can also be used. Also, in each table below, values are listed rounded to a predetermined number of decimal places.
  • Figures 4 and 5 show aberration diagrams of the optical system of Example 1 when focused on an object at infinity. From the left, Figure 4 shows spherical aberration, astigmatism, distortion, and lateral chromatic aberration.
  • the aberrations at the d-line, C-line, and F-line are shown by solid lines, long dashed lines, and short dashed lines, respectively.
  • the aberration at the d-line in the sagittal direction is shown by solid lines
  • the aberration at the d-line in the tangential direction is shown by short dashed lines.
  • the aberration at the d-line is shown by solid lines.
  • the aberration at the C-line and F-line are shown by long dashed lines and short dashed lines, respectively.
  • the lateral aberrations are shown on-axis (i.e., image height 0), at 20% image height, 40% image height, 60% image height, 80% image height, and maximum image height.
  • the aberrations at the d-line, C-line, F-line, and g-line are shown by a solid line, long dashed line, short dashed line, and dashed dotted line, respectively.
  • the vertical axis in Figure 5 is in ⁇ m (micrometers).
  • FIG. 6 shows a cross-sectional view of the configuration and light beams in the case where the secondary aperture St1 is removed from the optical system of Example 1.
  • the light beams are an axial light beam B0, a light beam B6 at 60% image height, and a light beam B10 at maximum image height.
  • the axial light beam B0 and the light beam B10 at maximum image height are the same, but the heights of the lower light beams of the light beam B6 at 60% image height from the optical axis Z are different. More specifically, in the lens on the object side of the main aperture FS, there are some locations where the absolute value of the height of the lower light beams of the light beam B6 from the optical axis Z is smaller in FIG.
  • the secondary aperture St1 blocks only the light beams at 60% image height among the axial light beams, the light beams at 60% image height, and the light beams at maximum image height, without blocking the axial light beams and the light beams at maximum image height.
  • FIG. 7 shows the lateral aberration diagram of the optical system shown in FIG. 6.
  • the method of illustration and the unit of the vertical axis in FIG. 7 are the same as in FIG. 5, and FIG. 7 also shows the lateral aberration at the axis (i.e., image height 0), 20% image height, 40% image height, 60% image height, 80% image height, and maximum image height, from the top.
  • the diagrams at the axis and maximum image height are the same, but differences can be seen in the diagrams at intermediate image heights. A particularly notable difference is that in the diagrams at 40% image height and 60% image height, the area surrounded by the dashed rectangle in FIG. 7, which has a relatively large amount of aberration, is not seen in FIG. 5.
  • the secondary aperture St1 does not block the axial light beam B0 and the light beam B10 at the maximum image height, but effectively blocks the lower light beam at the 40% image height and 60% image height, which generate coma flare, etc.
  • the secondary aperture St1 improves the imaging performance at intermediate image heights without reducing the amount of light in the peripheral parts of the image.
  • FIG. 8 shows a cross-sectional view of the configuration of the optical system of the second embodiment and the light beam.
  • the optical system of the second embodiment includes, in order from the object side to the image side, lenses L1 to L12.
  • the optical system of the second embodiment includes a primary aperture FS with a variable aperture diameter and a secondary aperture St1 with a fixed aperture diameter.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed between lenses L4 and L5.
  • the secondary aperture St1 is disposed so that the object-side surface of the lens L5 is included in its aperture.
  • the lenses L5 to L9 and the secondary aperture St1 move integrally toward the object side along the optical axis Z, and the lenses L1 to L4, lenses L10 to L12, and the primary aperture FS are fixed with respect to the image surface Sim.
  • the basic lens data is shown in Table 4, the specifications in Table 5, the aspheric coefficients in Table 6, and Figure 9 showing each aberration diagram when focused on an object at infinity.
  • the illustration method in Figure 9 is the same as Figure 4 for Example 1.
  • the symbols, meanings, description methods, and illustration methods for each other data in Example 2 are also the same as those in Example 1.
  • the symbols, meanings, description methods, and illustration methods for each data in Examples 3 and onwards are basically the same unless otherwise noted, so duplicate explanations will be omitted below.
  • FIG. 10 shows a cross-sectional view of the configuration of the optical system of Example 3 and the light beam.
  • the optical system of Example 3 includes, in order from the object side to the image side, lenses L1 to L13.
  • the optical system of Example 3 includes a primary aperture FS with a variable aperture diameter and secondary apertures St1 to St3 with fixed aperture diameters.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed between the lenses L6 and L7.
  • the secondary aperture St1 is disposed so as to include the image side surface of the lens L4 within its aperture.
  • the secondary aperture St2 is disposed adjacent to the image side of the image side surface of the lens L6.
  • the secondary aperture St3 is disposed adjacent to the image side of the image side surface of the lens L8.
  • the lenses L5 to L9, the primary aperture FS, and the secondary apertures St2 to St3 move integrally toward the object side along the optical axis Z, and the lenses L1 to L4, the lenses L10 to L13, and the secondary aperture St1 are fixed with respect to the image surface Sim.
  • the basic lens data is shown in Table 7, the specifications in Table 8, the aspheric coefficients in Table 9, and the aberration diagrams when focused on an object at infinity in Figure 11.
  • FIG. 12 shows a cross-sectional view of the configuration of the optical system of Example 4 and the light beam.
  • the optical system of Example 4 includes, in order from the object side to the image side, lenses L1 to L13.
  • the optical system of Example 4 includes a primary aperture FS with a variable aperture diameter and secondary apertures St1 to St2 with fixed aperture diameters.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed between the lenses L5 and L6.
  • the secondary aperture St1 is disposed so as to include the image-side surface of the lens L8 within its aperture.
  • the secondary aperture St2 is disposed so as to include the image-side surface of the lens L10 within its aperture.
  • the lenses L3 to L10, the primary aperture FS, and the secondary apertures St1 to St2 move integrally toward the object side along the optical axis Z, and the lenses L1 to L2 and the lenses L11 to L13 are fixed with respect to the image surface Sim.
  • the basic lens data is shown in Table 10, the specifications in Table 11, the aspheric coefficients in Table 12, and the aberration diagrams when focused on an object at infinity in Figure 13.
  • FIG. 14 shows a cross-sectional view of the optical system of Example 5 and the light beam.
  • the optical system of Example 5 is a zoom lens.
  • the upper row labeled "wide-angle end” shows the wide-angle end state
  • the lower row labeled "telephoto end” shows the telephoto end state.
  • the optical system of Example 5 is composed of a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5, in order from the object side to the image side.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis Z while changing the interval between the adjacent lens groups, and the first lens group G1 and the fifth lens group G5 are fixed with respect to the image surface Sim.
  • the lens groups that move during magnification change are shown with arrows showing the approximate movement locus during magnification change from the wide-angle end to the telephoto end, and the lens groups that are fixed during magnification change are shown with ground symbols.
  • the optical system of Example 5 includes a primary aperture FS with a variable aperture diameter and secondary apertures St1 and St2 with fixed aperture diameters.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed on the most object side of the fifth lens group G5.
  • the secondary aperture St1 is disposed so that its aperture includes the object side surface of the lens in the third lens group G3 that is most object side.
  • the secondary aperture St2 is disposed so that its aperture includes the object side surface of the fifth lens from the image side of the fifth lens group G5.
  • the secondary apertures St1 and St2 block harmful light rays at intermediate image heights at the wide-angle end.
  • the secondary aperture St1 moves integrally with the lenses of the third lens group G3 along the optical axis Z, while the primary aperture FS and secondary aperture St2 are fixed integrally with the lenses of the fifth lens group G5 with respect to the image surface Sim.
  • the focusing group consists of the fourth lens group G4.
  • the parentheses and left-pointing arrow above the fourth lens group G4 in Figure 14 indicate that the fourth lens group G4 is the focusing group that moves toward the object when focusing from an object at infinity to a close object.
  • the lenses of the lens groups other than the fourth lens group G4, the primary aperture FS, and the secondary apertures St1-St2 are fixed integrally with respect to the image surface Sim.
  • the basic lens data of the optical system of Example 5 is shown in Table 13.
  • the symbol DD[ ] is used for the variable surface spacing during magnification change, and the surface number on the object side of this spacing is entered in the [ ] in the surface spacing column.
  • Table 14 shows the specifications and variable surface spacing of the optical system of Example 5.
  • the column labeled "Wide-angle end” shows each value in the wide-angle end state
  • the column labeled "Telephoto end” shows each value in the telephoto end state.
  • Table 14 also shows the zoom magnification.
  • Figure 15 shows each aberration diagram of the optical system of Example 5 when focused on an object at infinity.
  • the upper row labeled "Wide-angle end” shows the aberration in the wide-angle end state
  • the lower row labeled "Telephoto end” shows the aberration in the telephoto end state.
  • FIG. 16 shows a cross-sectional view of the configuration and light beam of the optical system of Example 6.
  • the optical system of Example 6 is a zoom lens.
  • the method of describing and illustrating the data of the optical system of Example 6 is basically the same as that of Example 5, so some of the overlapping explanations will be omitted here.
  • the optical system of Example 6 is composed of, in order from the object side to the image side, a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis Z
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image surface Sim.
  • the optical system of Example 6 includes a primary aperture FS with a variable aperture diameter, and secondary apertures St1 and St2 with fixed aperture diameters.
  • the primary aperture FS functions as an aperture that determines the F-number.
  • the primary aperture FS is disposed closest to the object side of the third lens group G3.
  • the secondary aperture St1 is disposed so that its aperture includes the image-side surface of the lens closest to the image side of the second lens group G2.
  • the secondary aperture St2 is disposed so that its aperture includes the image-side surface of the lens closest to the image side of the third lens group G3.
  • the secondary apertures St1 and St2 block harmful light rays at intermediate image heights at the telephoto end.
  • the secondary aperture St1 moves integrally with the lenses of the second lens group G2 along the optical axis Z, while the primary aperture FS and secondary aperture St2 are fixed integrally with the lenses of the third lens group G3 with respect to the image surface Sim.
  • the focusing group consists of the fourth lens group G4.
  • the parentheses and right-pointing arrow above the fourth lens group G4 in Figure 16 indicate that the fourth lens group G4 is the focusing group that moves toward the image side when focusing from an object at infinity to a close object.
  • the lenses of the lens groups other than the fourth lens group G4, the primary aperture FS, and the secondary apertures St1 to St2 are fixed integrally with respect to the image surface Sim.
  • the basic lens data is shown in Table 15, the specifications and variable surface spacing in Table 16, the aspheric coefficients in Table 17, and the aberration diagrams when focused on an object at infinity in Figure 17.
  • Table 18 shows values related to conditional expressions (1) and (2) for the optical systems of Examples 1 to 6.
  • the example number and the corresponding code of the secondary aperture are entered, and for the examples of the variable magnification optical system, the variable magnification state of the value used in the calculation is shown after the code of the secondary aperture.
  • "Wide” indicates the wide-angle end
  • "Tele” indicates the telephoto end.
  • the display method of this leftmost column is the same for Tables 19 to 22 described later.
  • the code of Dst is positive for the distance on the image side and negative for the distance on the object side with respect to the primary aperture FS.
  • the columns of the corresponding values of conditional expressions (1) and (2) are surrounded by a thick line, and (1) and (2) are entered above them, respectively.
  • Table 19 shows values related to conditional expressions (3) and (4) for the optical systems of Examples 1 to 6.
  • dhp ⁇ Rp - Rp ⁇ (1 - ( ⁇ Ep/2) 2 /Rp 2 ) 1/2 ⁇ .
  • the columns of values corresponding to conditional expressions (3) and (4) are surrounded by a bold line, and (3) and (4) are written above them, respectively.
  • Table 20 shows values related to conditional expressions (5) and (6) for the optical systems of Examples 1 to 6.
  • dhn ⁇ Rn-Rn ⁇ (1-( ⁇ En/2) 2 /Rn 2 ) 1/2 ⁇ .
  • the columns of values corresponding to conditional expressions (5) and (6) are surrounded by a bold line, and (5) and (6) are written above them, respectively.
  • Table 21 shows the values for conditional expressions (7) and (8) for the optical systems of Examples 1 to 6.
  • the definition of the Dst symbol is the same as in Table 18.
  • the hp symbol indicates that the height of the light ray above the optical axis Z in each cross-sectional view is positive, and the height of the light ray below is negative.
  • the columns of values corresponding to conditional expressions (7) and (8) are surrounded by a bold line, with (7) and (8) written above them, respectively.
  • Table 22 shows the values related to conditional formula (9) for the optical systems of Examples 1 to 6.
  • the column of values corresponding to conditional formula (9) is surrounded by a bold line and has (9) written above it.
  • FIGs. 18 and 19 show external views of a camera 30, which is an imaging device according to an embodiment of the present disclosure.
  • Fig. 18 shows a perspective view of the camera 30 seen from the front side
  • Fig. 19 shows a perspective view of the camera 30 seen from the rear side.
  • the camera 30 is a so-called mirrorless type digital camera, to which an interchangeable lens 20 can be removably attached.
  • the interchangeable lens 20 is configured to include an optical system 1 according to an embodiment of the present disclosure housed within a lens barrel.
  • Camera 30 has a camera body 31, and a shutter button 32 and a power button 33 are provided on the top surface of camera body 31.
  • operation units 34, 35, and a display unit 36 are provided on the back surface of camera body 31.
  • Display unit 36 is capable of displaying a captured image and an image within the angle of view before capture.
  • a shooting aperture through which light from the subject is incident is provided in the center of the front of the camera body 31, and a mount 37 is provided at a position corresponding to the shooting aperture, and the interchangeable lens 20 is attached to the camera body 31 via the mount 37.
  • the camera body 31 contains an imaging element such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) that outputs an imaging signal corresponding to the subject image formed by the interchangeable lens 20, a signal processing circuit that processes the imaging signal output from the imaging element to generate an image, and a recording medium for recording the generated image.
  • an imaging element such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) that outputs an imaging signal corresponding to the subject image formed by the interchangeable lens 20, a signal processing circuit that processes the imaging signal output from the imaging element to generate an image, and a recording medium for recording the generated image.
  • CMOS Complementary Metal Oxide Semiconductor
  • the technology of the present disclosure has been described above by giving embodiments and examples, the technology of the present disclosure is not limited to the above embodiments and examples, and various modifications are possible.
  • the variable magnification optical system is not limited to a zoom lens, and may be a varifocal lens.
  • the secondary aperture may be disposed closer to the object side than the primary aperture FS, or may be disposed closer to the image side than the primary aperture FS.
  • the number of secondary apertures that satisfy each conditional expression disposed in one optical system can be set arbitrarily.
  • the radius of curvature, surface spacing, refractive index, Abbe number, aspheric coefficient, etc. of each lens are not limited to the values shown in the above examples, and may take other values.
  • the imaging device is not limited to the above example, and can take various forms, such as cameras other than mirrorless type, film cameras, video cameras, cinema cameras, and surveillance cameras.
  • An optical system comprising: a first aperture having a variable aperture diameter; three or more lenses including a positive lens and a negative lens, the three or more lenses being disposed closer to the object side than the first aperture; a second aperture having a fixed aperture diameter; A distance on the optical axis from the first aperture to the second aperture is defined as Dst, The focal length of the optical system is f, In the case where the optical system is a variable magnification optical system, Dst and f are values in a variable magnification state in which the height from the optical axis of the axial marginal ray is maximized at the position of the second aperture, 0.005 ⁇
  • the paraxial radius of curvature of the lens surface is Rp, When the effective diameter of the lens surface is ⁇ Ep, 0.7 ⁇ Rp-Rp ⁇ (1-( ⁇ Ep/2) 2 /Rp 2 ) 1/2 ⁇ /Dp ⁇ 1.5 (4)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

光学系は、開口径が可変の第1の絞りと、第1の絞りより物体側に配置された、正レンズおよび負レンズを含む3枚以上のレンズと、開口径が固定の第2の絞りとを含み、第1の絞りから第2の絞りまでの光軸上の距離をDst、光学系の焦点距離をfとした場合、0.005<|Dst|/f<2で表される条件式を満足する。

Description

光学系および撮像装置
 本開示の技術は、光学系および撮像装置に関する。
 従来、Fナンバーを決定するための絞りとは別に、ストッパー又は絞り等を設けた光学系が知られている。例えば、特開平07-209571号公報には、Fナンバーを決定する開口絞りとは別に、合焦動作時に移動する合焦用レンズ群中にフレアーストッパーを備え、フレアーストッパーの開口径は、合焦に際して変化するように構成された光学系が記載されている。特開平07-209570号公報には、合焦動作時に移動する合焦用レンズ群中にフレアーストッパーを備え、フレアーストッパーは、合焦時に、合焦用レンズ群の移動とは独立して移動するように構成された光学系が記載されている。
 特開2011-107312号公報には、物体側より像側へ順に、第1レンズ群、第2レンズ群、第3レンズ群を有するズームレンズにおいて、第2レンズ群の像側に副絞りが配置された構成が記載されている。特開2016-191766号公報には、物体側より第1レンズ群、第2レンズ群、第3レンズ群、後続レンズ群を有するズームレンズであって、第2群と第3群の間にフレアカット絞りとFno絞りを有するズームレンズが記載されている。
 特開2002-023050号公報には、物体側から順に、第1レンズと、第2レンズとからなる撮影レンズにおいて、絞り位置を第2レンズの像面側にするとともに、第1レンズと第2レンズとの間に軸外光線の光路を制限するフレアーストッパーを設けた構成が記載されている。特開2019-049645号公報には、開放Fナンバーの光束を決定(制限)する開口絞りと、フレアカッターとを含むズームレンズが記載されている。
 本開示は、小型化が図られ、像の周辺部の光量低下を抑制しながら、中間像高での結像性能を向上可能な光学系、およびこの光学系を備えた撮像装置を提供する。
 本開示の一態様に係る光学系は、開口径が可変の第1の絞りと、第1の絞りより物体側に配置された、正レンズおよび負レンズを含む3枚以上のレンズと、開口径が固定の第2の絞りとを含み、第1の絞りから第2の絞りまでの光軸上の距離をDstとし、光学系の焦点距離をfとし、光学系が変倍光学系の場合は、Dstおよびfは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0.005<|Dst|/f<2  (1)
で表される条件式(1)を満足する。
 第1の絞りの開放状態での開口径をφFとし、第2の絞りの開口径をφSとし、光学系が変倍光学系の場合は、φFおよびφSは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  0.3<φS/φF<2.5  (2)
で表される条件式(2)を満足することが好ましい。
 第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置する構成において、レンズ面と光軸との交点から開口内にレンズ面が位置する第2の絞りまでの光軸上の距離をDpとし、Dpについて、交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、レンズ面の近軸曲率半径をRpとした場合、上記態様の光学系は、
  0<Dp/Rp<0.4  (3)
で表される条件式(3)を満足することが好ましい。
 第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置する構成において、レンズ面と光軸との交点から開口内にレンズ面が位置する第2の絞りまでの光軸上の距離をDpとし、Dpについて、交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、レンズ面の近軸曲率半径をRpとし、レンズ面の有効直径をφEpとした場合、上記態様の光学系は、
  0.7<{Rp-Rp×(1-(φEp/2)/Rp1/2}/Dp<1.5
  (4)
で表される条件式(4)を満足することが好ましい。
 第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置する構成において、レンズ面と光軸との交点から第2の絞りまでの光軸上の距離をDnとし、Dnについて、交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、レンズ面の近軸曲率半径をRnとし、第2の絞りに隣接して位置する空気に接触する凹形状のレンズ面が2つある場合は、2つのレンズ面のうち、第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDnおよびRnに用い、光学系が変倍光学系の場合は、Dnは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  0<Dn/Rn<0.4  (5)
で表される条件式(5)を満足することが好ましい。
 第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置する構成において、レンズ面と光軸との交点から第2の絞りまでの光軸上の距離をDnとし、Dnについて、交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、レンズ面の近軸曲率半径をRnとし、レンズ面の有効直径をφEnとし、第2の絞りに隣接して位置する空気に接触する凹形状のレンズ面が2つある場合は、2つのレンズ面のうち、第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDn、RnおよびφEnに用い、光学系が変倍光学系の場合は、Dnは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  0.5<{Rn-Rn×(1-(φEn/2)/Rn1/2}/Dn<1.2
  (6)
で表される条件式(6)を満足することが好ましい。
 第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、光学系が変倍光学系の場合は、hpおよびhmは、第2の絞りの位置において軸上マージナル光線の光軸からの
高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  0<|hp|/hm<1  (7)
で表される条件式(7)を満足することが好ましい。
 光学系の最も物体側のレンズ面から光学系の最も像側のレンズ面までの光軸上の距離と、光学系の空気換算距離でのバックフォーカスとの和をTLとし、第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、光学系が変倍光学系の場合は、Dst、TL、hpおよびhmは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  0.05<(|Dst|/TL)/(|hp|/hm)<1.8  (8)
で表される条件式(8)を満足することが好ましい。
 1つのレンズ成分を1枚の単レンズ又は1組の接合レンズとし、第2の絞りより物体側の全てのレンズ成分の合成焦点距離をfsとし、光学系が変倍光学系の場合は、fおよびfsは、第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、上記態様の光学系は、
  -5<f/fs<5  (9)
で表される条件式(9)を満足することが好ましい。
 合焦の際に第2の絞りは光学系の少なくとも1つのレンズと一体的に移動する、もしくは、合焦の際に第2の絞りは光学系の少なくとも1つのレンズと一体的に像面に対して固定されていることが好ましい。光学系が変倍光学系の場合は、変倍の際に第2の絞りは光学系の少なくとも1つのレンズと一体的に移動する、もしくは、変倍の際に第2の絞りは光学系の少なくとも1つのレンズと一体的に像面に対して固定されていることが好ましい。
 第1の絞りはFナンバーを決定する絞りであるように構成してもよい。
 本開示の別の態様に係る撮像装置は、本開示の上記態様に係る光学系を備えている。
 本明細書の「単レンズ」は、接合されていない1枚のレンズを意味する。但し、複合非球面レンズ(球面レンズと、その球面レンズ上に形成された非球面形状の膜とが一体的に構成されて、全体として1つの非球面レンズとして機能するレンズ)は、接合レンズとは見なさず、1枚のレンズとして扱う。非球面を含むレンズに関する屈折力の符号および面形状は、特に断りが無い限り、近軸領域のものを用いる。
 条件式で用いている「焦点距離」は、近軸焦点距離である。条件式で用いている「光軸上の距離」は、特に断りが無い限り、幾何学的距離である。条件式で用いている値は特に断りがない限り、無限遠物体に合焦した状態においてd線を基準とした場合の値である。本明細書に記載の「d線」、「C線」、「F線」、および「g線」は輝線であり、d線の波長は587.56nm(ナノメートル)、C線の波長は656.27nm(ナノメートル)、F線の波長は486.13nm(ナノメートル)、g線の波長は435.84nm(ナノメートル)として扱う。
 本開示によれば、小型化が図られ、像の周辺部の光量低下を抑制しながら、中間像高での結像性能を向上可能な光学系、およびこの光学系を備えた撮像装置を提供することができる。
実施例1の光学系に対応し、一実施形態に係る光学系の構成を示す断面図である。 図1の光学系の構成と光束を示す断面図である。 条件式の記号を説明するための図である。 実施例1の光学系の球面収差図、非点収差図、歪曲収差図、倍率色収差図である。 実施例1の光学系の横収差図である。 図2の光学系から副絞りSt1を除いた場合の構成と光束を示す断面図である。 図6の光学系の横収差図である。 実施例2の光学系の構成と光束を示す断面図である。 実施例2の光学系の各収差図である。 実施例3の光学系の構成と光束を示す断面図である。 実施例3の光学系の各収差図である。 実施例4の光学系の構成と光束を示す断面図である。 実施例4の光学系の各収差図である。 実施例5の光学系の構成と光束を示す断面図である。 実施例5の光学系の各収差図である。 実施例6の光学系の構成と光束を示す断面図である。 実施例6の光学系の各収差図である。 一実施形態に係る撮像装置の正面側の斜視図である。 一実施形態に係る撮像装置の背面側の斜視図である。
 以下、図面を参照しながら本開示の実施形態について説明する。
 図1に、本開示の一実施形態に係る光学系の構成の断面図を示す。図1では、左側が物体側であり、右側が像側である。図1に示す例は後述の実施例1の光学系に対応している。
 一例として、図1の光学系は、物体側から像側へ順に、レンズL1~L13の13枚のレンズを備える。
 図1の例では、撮像装置に適用されることを想定して、最も像側のレンズと像面Simとの間に平行平板状の光学部材PPが配置された例を示している。光学部材PPは、各種フィルタ、および/又はカバーガラス等を想定した部材である。各種フィルタは、ローパスフィルタ、赤外線カットフィルタ、および/又は特定の波長域をカットするフィルタ等である。光学部材PPは屈折力を有しない部材である。光学部材PPを省略して撮像装置を構成することも可能である。
 図1の光学系は、開口径が可変の主絞りFSと、開口径が固定の4つの副絞りSt1~St4とを備える。
 主絞りFSは、本開示の技術の「第1の絞り」に対応する。図1の例では、主絞りFSは、Fナンバーを決定する絞りとして機能する。一例として、図1の光学系では、主絞りFSは、レンズL7とレンズL8との間に配置されている。
 主絞りFSより物体側には、正レンズおよび負レンズを含む3枚以上のレンズが配置される。このように構成することによって、主絞りFSより物体側で発生する諸収差、特に
球面収差および軸上色収差を良好に補正することが可能となる。
 副絞りSt1~St4は、本開示の技術の「第2の絞り」に対応する。一例として、図1の光学系では、副絞りSt1~St4は以下のように配置されている。副絞りSt1は、レンズL4の物体側の面の物体側に隣接して配置されている。副絞りSt2は、その開口内にレンズL6の像側の面を含むように配置されている。副絞りSt3は、レンズL9の像側の面の像側に隣接するように配置されている。副絞りSt4は、レンズL11の像側の面の像側に隣接して配置されている。なお、本明細書における「隣接」は、必ずしも接していることを意味するのではなく、隣り合っていることを意味する。
 以下の説明では、各々の副絞りSt1~St4を区別する必要が無い場合は、単に「副絞り」と称する。図1の光学系は4つの副絞りSt1~St4を備えるが、本開示の技術においては、光学系が備える副絞りの数は任意に設定可能である。
 副絞りの開口径は、可変ではなく、不変である。副絞りの開口径が変わらないように構成することによって、副絞りの開口径を変化させる機構が不要となるため、小型化に寄与でき、また、メカ機構の複雑化も抑制できる。
 Fナンバーを決定する主絞りFSとは別に副絞りを設けることによって、中間像高のコマフレア等を発生させて結像性能を低下させる有害な光線を遮光することができる。これによって、中間像高のコマフレア等を抑制できるため、中間像高での結像性能を向上させることができる。従来、中間像高の有害な光線を遮光するために、Fナンバーを決定する絞りとは別に絞り又はストッパーを設けた光学系では、最大像高の光線も遮光してしまうことがあり、その場合、像の周辺部の光量が低下するという不具合が生じていた。このような不具合を回避するためには、主絞りFSの近傍に副絞りを配置することが好ましい。
 そこで、本開示の光学系は下記条件式(1)を満足するように副絞りを配置している。ここでは、主絞りFSから副絞りまでの光軸上の距離をDstとしている。光学系の焦点距離をfとしている。但し、光学系が変倍光学系の場合は、Dstおよびfは、副絞りの位置において軸上マージナル光線B0m(図2参照)の光軸Zからの高さが最大となる変倍状態における値とする。一例として、図1に、主絞りFSから副絞りSt1までの光軸上の距離Dstを示す。
  0.005<|Dst|/f<2  (1)
 条件式(1)の対応値が上限以上とならないようにすることによって、副絞りの位置が主絞りFSから離れ過ぎないため、副絞りが最大像高の光線を遮光することを防止することが容易となる。これによって、中間像高の有害な光線を遮光しながら、像の周辺部での光量低下を抑制できる。また、条件式(1)の対応値が上限以上とならないように主絞りFSの近傍に副絞りを配置することによって、主絞りFSの近傍のレンズの外径を小さくできるため、光学系の小型化に有利となる。例えば、合焦の際に移動する合焦群が主絞りFSに近接配置され、この合焦群の内部に副絞りが配置されている場合、この合焦群のレンズの外径を小さくできるため、合焦群を軽量化でき、これによって合焦の高速化に有利となる。また、例えば、変倍の際に移動する移動群の内部に副絞りが配置されている場合、この移動群のレンズの外径を小さくできるため、移動群を軽量化でき、これによって移動群を駆動する駆動系の負荷の軽減に有利となる。条件式(1)の対応値が下限以下とならないようにすることによって、主絞りFSに副絞りが近づき過ぎないため、主絞りFSの開口径を変化させるための機構等を含む主絞りユニットと副絞りとが干渉しないように、副絞りを配置することが容易となる。
 より良好な特性を得るためには、条件式(1)の上限の2に代えて、1.9、1.8、
1.7、1.6、1.5、1.4、および1.3のいずれかにすることが好ましい。また、条件式(1)の下限の0.005に代えて、0.007又は0.008とすることが好ましい。
 図2に、図1の光学系の構成と光束の断面図を示す。図2では、光束として、軸上光束B0、6割像高の光束B6、最大像高の光束B10を示し、軸上マージナル光線B0mも示す。副絞りSt1~St4は、軸上光束B0および最大像高の光束B10を遮光することなく、6割像高の有害な光線を遮光している。ここでいう「6割像高」は、最大像高を10割像高として最大像高に対する割合で像高を示したものであり、この表記法は本明細書における他の像高についても同様である。なお、図2では、中間像高の光束の一例として6割像高の光束を示すが、本開示の技術の「中間像高」は6割像高に限定されない。0より大きく、かつ最大像高未満の像高を「中間像高」と呼ぶことができる。
 以下に、本開示の光学系がさらに満足することが好ましい条件式について述べる。以下の条件式に関する説明では、冗長な説明を避けるため、定義が同じものには同じ記号を用いて記号の重複説明を一部省略する。
 本開示の光学系は下記条件式(2)を満足することが好ましい。ここでは、主絞りFSの開放状態での開口径をφFとしている。副絞りの開口径をφSとしている。但し、光学系が変倍光学系の場合は、φFおよびφSは、副絞りの位置において軸上マージナル光線B0mの光軸Zからの高さが最大となる変倍状態における値とする。一例として、図1に、主絞りFSの開放状態での開口径φF、および副絞りSt1の開口径φSを示す。
  0.3<φS/φF<2.5  (2)
 条件式(2)の対応値が上限以上とならないようにすることによって、副絞りの開口径が大きくなり過ぎないため、有害な光線を遮光することが容易となる。条件式(2)の対応値が下限以下とならないようにすることによって、副絞りの開口径が小さくなり過ぎないため、副絞りが軸上光線を遮光しないように構成することが容易となる。
 より良好な特性を得るためには、条件式(2)の上限の2.5に代えて、2.3、2.2、2.1、2、および1.9のいずれかにすることが好ましい。また、条件式(2)の下限の0.3に代えて、0.4、0.45、0.5、0.55、0.6、および0.65のいずれかにすることが好ましい。
 副絞りの開口内に空気に接触する凸形状のレンズ面が位置している場合、本開示の光学系は下記条件式(3)を満足することが好ましい。一例として、図3に、副絞りSt2の開口内にレンズLpの像側の面が位置している構成を示す。図3では、左側が物体側、右側が像側である。レンズLpの像側の面は、空気に接触する凸形状の面である。ここでは、上記レンズ面と光軸Zとの交点から、開口内に上記レンズ面が位置する副絞りまでの光軸上の距離をDpとしている。上記レンズ面の近軸曲率半径をRpとしている。一例として、図3に上記距離Dpを示す。Dpの符号は、上記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とする。本明細書における近軸曲率半径の符号は、物体側に凸形状を向けた面の近軸曲率半径の符号を正、像側に凸形状を向けた面の近軸曲率半径の符号を負とする。
  0<Dp/Rp<0.4  (3)
 条件式(3)の対応値が上限以上とならないようにすることによって、レンズの光学有効面の直径と有効直径とが近い値になることを抑制できるため、加工性および組立性の向上に有利となる。条件式(3)の対応値が下限以下とならないようにすることによって、上記レンズ面を有するレンズと、開口内に上記レンズ面が位置する副絞りとが離れ過ぎな
いため、光学系全長を長大化することなく副絞りを配置することができ、これによって小型化に有利となる。仮に、上記レンズ面を有するレンズと、開口内に上記レンズ面が位置する副絞りとが離れ過ぎると、この副絞りを配置するためのスペースが必要になり、光学系全長が長大化する虞がある。
 より良好な特性を得るためには、条件式(3)の上限の0.4に代えて、0.35、0.3、0.25、0.2、0.19、および0.18のいずれかにすることが好ましい。
 なお、本明細書における「光学有効面」とは、光学面として利用可能な面である。また、本明細書における「有効直径」とは、レンズ面に物体側から入射して像側に射出される光線のうち、最も外側を通る光線とそのレンズ面との交点から光軸Zまでの距離の2倍をいう。ここでいう「外側」とは、光軸Zを中心にした径方向外側、すなわち、光軸Zから離れる側である。また、光学系が変倍光学系の場合は、「最も外側を通る光線」は、変倍全域を考慮して決定される。
 副絞りの開口内に空気に接触する凸形状のレンズ面が位置している場合、本開示の光学系は下記条件式(4)を満足することが好ましい。ここでは、上記レンズ面の有効直径をφEpとしている。一例として、図3に上記有効直径φEpの半値を示す。
  0.7<{Rp-Rp×(1-(φEp/2)/Rp1/2}/Dp<1.5
  (4)
 条件式(4)の対応値が上限以上とならないようにすることによって、副絞りの開口径の大径化を抑制できるため、有害な光線を効果的に遮光することが容易となる。条件式(4)の対応値が下限以下とならないようにすることによって、有害な光線だけではなく、必要な光線も遮光してしまうことを防止することが容易となる。
 より良好な特性を得るためには、条件式(4)の上限の1.5に代えて、1.4、1.35、1.3、1.25、1.2、および1.15のいずれかにすることが好ましい。また、条件式(4)の下限の0.7に代えて、0.75、0.8、0.85、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、および0.99のいずれかにすることが好ましい。
 また、副絞りに隣接して空気に接触する凹形状のレンズ面が位置している場合、本開示の光学系は下記条件式(5)を満足することが好ましい。一例として、図3に、副絞りSt1に隣接してレンズLnの物体側の面が位置している構成を示す。レンズLnの物体側の面は、空気に接触する凹形状の面である。ここでは、凹形状の上記レンズ面と光軸Zとの交点から副絞りまでの光軸上の距離をDnとしている。凹形状の上記レンズ面の近軸曲率半径をRnとしている。一例として、図3に、上記距離Dnを示す。Dnの符号は、上記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とする。なお、1つの副絞りについて、副絞りに隣接して位置する空気に接触する凹形状のレンズ面が2つある場合、すなわち、副絞りの物体側および像側に隣接して空気に接触する凹形状のレンズ面が位置している場合は、これら2つのレンズ面のうち、副絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDnおよびRnに用いることにする。また、光学系が変倍光学系の場合は、Dnは、副絞りの位置において軸上マージナル光線B0mの光軸Zからの高さが最大となる変倍状態における値とする。
  0<Dn/Rn<0.4  (5)
 条件式(5)の対応値が上限以上とならないようにすることによって、凹形状の上記レンズ面と副絞りとが離れ過ぎないため、光学系全長を長大化することなく副絞りを配置することができ、これによって小型化に有利となる。条件式(5)の対応値が下限以下とな
らないようにすることによって、効果的に有害な光線を遮光することができる。
 より良好な特性を得るためには、条件式(5)の上限の0.4に代えて、0.3、0.25、0.2、0.15、0.13、0.1、および0.05のいずれかにすることが好ましい。
 副絞りに隣接して空気に接触する凹形状のレンズ面が位置している場合、本開示の光学系は下記条件式(6)を満足することが好ましい。ここでは、凹形状の上記レンズ面の有効直径をφEnとしている。一例として、図3に、上記有効直径φEnの半値を示す。
  0.5<{Rn-Rn×(1-(φEn/2)/Rn1/2}/Dn<1.2
  (6)
 条件式(6)の対応値が上限以上とならないようにすることによって、レンズの光学有効面の直径と有効直径とが近い値になることを抑制できるため、加工性および組立性の向上に有利となる。条件式(6)の対応値が下限以下とならないようにすることによって、凹形状の上記レンズ面と副絞りとが離れ過ぎないため、光学系全長を長大化することなく副絞りを配置することができ、これによって小型化に有利となる。
 より良好な特性を得るためには、条件式(6)の上限の1.2に代えて、1.1、1.08、1.06、1.05、1.04、1.03、1.02、および1.01のいずれかにすることが好ましい。また、条件式(6)の下限の0.5に代えて、0.55、0.6、0.65、0.7、0.75、および0.8のいずれかにすることが好ましい。
 光線高に関して、本開示の光学系は下記条件式(7)を満足することが好ましい。ここでは、副絞りの位置における最大像高の主光線B10pの光軸Zからの高さをhpとしている。副絞りの位置における軸上マージナル光線B0mの光軸Zからの高さをhmとしている。但し、光学系が変倍光学系の場合は、hpおよびhmは、副絞りの位置において軸上マージナル光線B0mの光軸Zからの高さが最大となる変倍状態における値とする。一例として、図2に、最大像高の主光線B10pおよび軸上マージナル光線B0mを示し、副絞りSt1に関するhpおよびhmを示す。
  0<|hp|/hm<1  (7)
 条件式(7)の対応値が上限以上とならないようにすることによって、軸上マージナル光線B0mの高さより最大像高の主光線B10pの高さが低い位置に副絞りを配置することができる。これによって、最大像高での周辺光量を確保しながら、中間像高の有害な光線のみを遮光することが容易となる。条件式(7)の下限については、|hp|>0かつhm>0であるから、|hp|/hm>0となる。
 より良好な特性を得るためには、条件式(7)の上限の1に代えて、0.95、0.9、および0.85のいずれかにすることが好ましい。
 また、本開示の光学系は下記条件式(8)を満足することが好ましい。ここでは、光学系の最も物体側のレンズ面から光学系の最も像側のレンズ面までの光軸上の距離と、光学系の空気換算距離でのバックフォーカスとの和をTLとしている。TLは光学系全長である。光学系が変倍光学系の場合は、Dst、TL、hpおよびhmは、副絞りの位置において軸上マージナル光線B0mの光軸Zからの高さが最大となる変倍状態における値とする。
  0.05<(|Dst|/TL)/(|hp|/hm)<1.8  (8)
 条件式(8)の対応値が上限以上とならないようにすることによって、副絞りの位置が
主絞りFSから離れ過ぎないため、副絞りが最大像高の光線まで遮光することを防止できるので、像の周辺部での光量低下を抑制できる。条件式(8)の対応値が下限以下とならないようにすることによって、主絞りFSに副絞りが近づき過ぎないため、主絞りFSの開口径を変化させるための機構等を含む主絞りユニットと副絞りが干渉しないように、副絞りを配置することが容易となる。
 より良好な特性を得るためには、条件式(8)の上限の1.8に代えて、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1、および0.9のいずれかにすることが好ましい。また、条件式(8)の下限の0.05に代えて、0.06、0.07、0.08、0.09、0.1、0.11、および0.12のいずれかにすることが好ましい。
 本開示の光学系は下記条件式(9)を満足することが好ましい。ここでは、副絞りより物体側の全てのレンズ成分の合成焦点距離をfsとしている。なお、1つのレンズ成分とは、1枚の単レンズ又は1組の接合レンズを意味する。光学系が変倍光学系の場合は、fおよびfsは、副絞りの位置において軸上マージナル光線B0mの光軸Zからの高さが最大となる変倍状態における値とする。
  -5<f/fs<5  (9)
 f/fs>0となる範囲において条件式(9)の対応値が上限以上とならないようにすることによって、副絞りが最大像高の光線まで遮光することなく中間像高の有害な光線を効果的に遮光することが容易となる。f/fs<0となる範囲において条件式(9)の対応値が下限以下とならないようにすることによって、副絞りの近傍で光束が大きく発散されることを防止できるため、副絞りの位置において軸上光線を遮光することなく中間像高の有害な光線を効果的に遮光することが容易となる。
 より良好な特性を得るためには、条件式(9)の上限の5に代えて、4.5、4、3.5、3、2.5、2.4、2.3、2.2、2.1、2、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、および1.1のいずれかにすることが好ましい。また、条件式(9)の下限の-5に代えて、-4.5、-4、-3.5、-3、-2.5、-2.4、-2.3、-2.2、-2.1、-2、-1.9、-1.8、-1.7、および-1.6のいずれかにすることが好ましい。
 例えば、図1の光学系では、単レンズであるレンズL1は1つのレンズ成分であり、図1の光学系において物体側から1番目のレンズ成分である。レンズL2とレンズL3とが接合された接合レンズも1つのレンズ成分であり、図1の光学系において物体側から2番目のレンズ成分である。レンズL4とレンズL5とが接合された接合レンズも1つのレンズ成分であり、図1の光学系において物体側から3番目のレンズ成分である。単レンズであるレンズL6も1つのレンズ成分であり、図1の光学系において物体側から4番目のレンズ成分である。上記の「副絞りより物体側の全てのレンズ成分」は、レンズ成分の一部が副絞りより物体側に位置するレンズ成分ではなく、レンズ成分全体が副絞りより物体側に位置するレンズ成分を意味する。よって、図1の副絞りSt2について条件式(9)を考えた場合、レンズL6のレンズ面の一部は副絞りSt2の開口内に位置しているため、レンズL6は副絞りSt2より物体側のレンズ成分ではない。図1の光学系において副絞りSt2より物体側の全てのレンズ成分は、物体側から1番目、2番目および3番目の3つのレンズ成分のみを指す。
 副絞りは、合焦の際に光学系の少なくとも1つのレンズと一体的に移動するか、もしくは、合焦の際に光学系の少なくとも1つのレンズと一体的に像面Simに対して固定されていることが好ましい。また、光学系が変倍光学系の場合は、副絞りは、変倍の際に光学系の少なくとも1つのレンズと一体的に移動するか、もしくは、変倍の際に光学系の少な
くとも1つのレンズと一体的に像面Simに対して固定されていることが好ましい。このようにした場合は、レンズを移動させる機構とは別に副絞りを移動させる機構を設ける必要がないため、小型化に寄与でき、また、メカ機構の複雑化も抑制できる。なお、本明細書において「一体的に移動」とは、同時に同量同方向に移動することを意味する。
 例えば、図2の光学系では、合焦の際、レンズL8~L13、および副絞りSt3~St4が光軸Zに沿って一体的に移動し、レンズL1~L7、主絞りFS、および副絞りSt1~St2は一体的に像面Simに対して固定されている。図2のレンズL8~L13、および副絞りSt3~St4の下の括弧と左向きの矢印は、無限遠物体から近距離物体への合焦の際、これらが物体側へ移動する合焦群であることを示す。
 上述した好ましい構成および可能な構成は、任意の組合せが可能であり、要求される仕様に応じて適宜選択的に採用されることが好ましい。
 次に、本開示の光学系の実施例について図面を参照して説明する。なお、各実施例の断面図のレンズ又はレンズ群に付された参照符号は、参照符号の桁数の増大に伴う説明および図面の煩雑化を避けるため、実施例ごとに独立して用いている。したがって、異なる実施例の図面において共通の参照符号が付されていても、必ずしも共通の構成ではない。
[実施例1]
 実施例1の光学系の構成と光束の断面図は図1および図2に示しており、その図示方法と構成は上述したとおりであるので、ここでは重複説明を一部省略する。実施例1の光学系は、物体側から像側へ順に、レンズL1~L13を備える。実施例1の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1~St4とを備える。
 実施例1の光学系について、基本レンズデータを表1に、諸元を表2に、非球面係数を表3に示す。基本レンズデータの表は以下のように記載されている。Snの列には最も物体側の面を第1面とし、次の面は1つずつ番号を増加するように番号を付した場合の各面の面番号を示す。Rの列には各面の曲率半径を示す。曲率半径の符号は、物体側に凸形状を向けた面のものを正、像側に凸形状を向けた面のものを負としている。Dの列には各面とその次の面との光軸上の面間隔を示す。面間隔の符号は、像側方向の間隔を正、物体側方向の間隔を負としている。Dの列の最下欄の値は表中の最も像側の面と像面Simとの間隔である。Ndの列には各構成要素のd線に対する屈折率を示す。νdの列には各構成要素のd線基準のアッベ数を示す。基本レンズデータの表には光学部材PPも示している。
 基本レンズデータの表では、主絞りFSに対応する面では、面番号の欄に面番号および「(FS)」を記入し、面間隔の右の欄に「主絞り」を記入している。副絞りSt1に対応する面では、面間隔の右の欄に「副絞り St1」を記入し、「φ」の後にその開口径を記入している。副絞りSt2~St4に対応する面についても副絞りSt1に対応する面と同様に記入している。
 表2に、無限遠物体に合焦した状態における、焦点距離f、空気換算距離でのバックフォーカスBf、開放FナンバーFNo.、最大全画角2ω、主絞りFSの開放状態での開口径φF、および光学系全長TLをd線基準で示す。最大全画角の欄の[°]は単位が度であることを示す。
 基本レンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径の欄には近軸曲率半径の数値を記載している。表3において、Snの行には非球面の面番号を示し、KAおよびAmの行には各非球面についての非球面係数の数値を示す。なお、Amの
mは3以上の整数であり、面により異なる。例えば実施例1の第1面ではm=3、4、5、...、16である。表3の非球面係数の数値の「E±n」(n:整数)は「×10±n」を意味する。KAおよびAmは下式で表される非球面式における非球面係数である。
  Zd=C×h/{1+(1-KA×C×h1/2}+ΣAm×h
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸Zに垂直な平面に下ろした垂線の長さ)
h:高さ(光軸Zからレンズ面までの距離)
C:近軸曲率半径の逆数
KA、Am:非球面係数
であり、非球面式のΣはmに関する総和を意味する。
 各表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmm(ミリメートル)を用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることもできる。また、以下に示す各表では予め定められた桁でまるめた数値を記載している。
 図4および図5に、無限遠物体に合焦した状態における実施例1の光学系の各収差図を示す。図4では左から順に、球面収差、非点収差、歪曲収差、および倍率色収差を示す。球面収差図では、d線、C線、およびF線における収差をそれぞれ実線、長破線、および短破線で示す。非点収差図では、サジタル方向のd線における収差を実線で示し、タンジェンシャル方向のd線における収差を短破線で示す。歪曲収差図ではd線における収差を実線で示す。倍率色収差図では、C線、およびF線における収差をそれぞれ長破線、および短破線で示す。球面収差図では「FNo.=」の後に開放Fナンバーの値を示す。その他の収差図では「ω=」の後に最大半画角の値を示す。
 図5では、上から順に、軸上(すなわち像高0)、2割像高、4割像高、6割像高、8割像高、最大像高での横収差を示す。図5では、d線、C線、F線、およびg線における収差をそれぞれ実線、長破線、短破線、および一点鎖線で示す。図5の縦軸の単位はμm(マイクロメートル)である。
 比較のために、図6に、実施例1の光学系から副絞りSt1を除いた場合の構成と光束の断面図を示す。図6では、光束として、軸上光束B0、6割像高の光束B6、最大像高の光束B10を示す。図2と図6とを比較すると、軸上光束B0および最大像高の光束B10は同じであるが、6割像高の光束B6の下側光線の光軸Zからの高さが異なる。より詳しくは、主絞りFSより物体側のレンズにおいて、光束B6の下側光線の光軸Zからの高さの絶対値が、図6のものより図2のものの方が小さい箇所が見られる。すなわち、副
絞りSt1は、軸上光線、6割像高の光線、および最大像高の光線のうち、軸上光線および最大像高の光線は遮光することなく、6割像高の光線のみを遮光している。
 図7に、図6に示す光学系の横収差図を示す。図7の図示方法および縦軸の単位は図5と同様であり、図7においても上から順に、軸上(すなわち像高0)、2割像高、4割像高、6割像高、8割像高、最大像高での横収差を示す。図5と図7とを比較すると、軸上および最大像高の図は同じであるが、中間像高の図で違いが見られる。特に顕著な相違点は、4割像高および6割像高の図において、図7の破線の長方形で囲った領域の比較的収差量が多い部分が、図5では見られない点である。これらのことから、副絞りSt1は、軸上光束B0および最大像高の光束B10は遮光することなく、コマフレア等を発生させる4割像高および6割像高の下側光線を効果的に遮光していることがわかる。すなわち、副絞りSt1によって、像の周辺部の光量を低下させることなく、中間像高での結像性能が向上していることがわかる。
[実施例2]
 実施例2の光学系の構成と光束の断面図を図8に示す。実施例2の光学系は、物体側から像側へ順に、レンズL1~L12を備える。実施例2の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1とを備える。主絞りFSは、Fナンバーを決定する絞りとして機能する。主絞りFSは、レンズL4とレンズL5との間に配置されている。副絞りSt1は、その開口内にレンズL5の物体側の面を含むように配置されている。無限遠物体から近距離物体への合焦の際、レンズL5~レンズL9、および副絞りSt1は光軸Zに沿って物体側へ一体的に移動し、レンズL1~L4、レンズL10~L12、および主絞りFSは像面Simに対して固定されている。
 実施例2の光学系について、基本レンズデータを表4に、諸元を表5に、非球面係数を表6に、無限遠物体に合焦した状態における各収差図を図9に示す。図9の図示方法は、実施例1の図4と同様である。その他の実施例2の各データの記号、意味、記載方法、および図示方法も実施例1のものと同様である。実施例3以降の各データの記号、意味、記載方法、および図示方法も特に断りが無い限り基本的に同様であるので、以下では重複説明を省略する。
[実施例3]
 実施例3の光学系の構成と光束の断面図を図10に示す。実施例3の光学系は、物体側から像側へ順に、レンズL1~L13を備える。実施例3の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1~St3とを備える。主絞りFSは、Fナンバーを決定する絞りとして機能する。主絞りFSは、レンズL6とレンズL7との間に配置されている。副絞りSt1は、その開口内にレンズL4の像側の面を含むように配置されている。副絞りSt2は、レンズL6の像側の面の像側に隣接して配置されている。副絞りSt3は、レンズL8の像側の面の像側に隣接して配置されている。無限遠物体から近距離物体への合焦の際、レンズL5~レンズL9、主絞りFS、および副絞りSt2~St3は光軸Zに沿って物体側へ一体的に移動し、レンズL1~L4、レンズL10~L13、および副絞りSt1は像面Simに対して固定されている。
 実施例3の光学系について、基本レンズデータを表7に、諸元を表8に、非球面係数を表9に、無限遠物体に合焦した状態における各収差図を図11に示す。
[実施例4]
 実施例4の光学系の構成と光束の断面図を図12に示す。実施例4の光学系は、物体側から像側へ順に、レンズL1~L13を備える。実施例4の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1~St2とを備える。主絞りFSは、Fナンバーを決定する絞りとして機能する。主絞りFSは、レンズL5とレンズL6との間に配置されている。副絞りSt1は、その開口内にレンズL8の像側の面を含むように配置されている。副絞りSt2は、その開口内にレンズL10の像側の面を含むように配置されている。合焦の際、レンズL3~レンズL10、主絞りFS、および副絞りSt1~St2は光軸Zに沿って物体側へ一体的に移動し、レンズL1~L2、およびレンズL11~L13は像面Simに対して固定されている。
 実施例4の光学系について、基本レンズデータを表10に、諸元を表11に、非球面係数を表12に、無限遠物体に合焦した状態における各収差図を図13に示す。
[実施例5]
 実施例5の光学系の構成と光束の断面図を図14に示す。実施例5の光学系は、ズームレンズである。図14では、「広角端」と付した上段に広角端状態を示し、「望遠端」と付した下段に望遠端状態を示す。実施例5の光学系は、物体側から像側へ順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とからなる。変倍の際、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とは隣り合うレンズ群との間隔を変化させて光軸Zに沿って移動し、第1レンズ群G1と、第5レンズ群G5とは像面Simに対して固定されている。図14の上段と下段の間に、変倍の際に移動するレンズ群については広角端から望遠端への変倍の際の概略的な移動軌跡を矢印で示し、変倍の際に固定されているレンズ群については接地記号を示す。
 実施例5の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1~St2とを備える。主絞りFSは、Fナンバーを決定する絞りとして機能する。主絞りFSは、第5レンズ群G5の最も物体側に配置されている。副絞りSt1は、その開口内に第3レンズ群G3の最も物体側のレンズの物体側の面を含むように配置されている。副絞りSt2は、その開口内に第5レンズ群G5の像側から5番目のレンズの物体側の面を含むように配置されている。副絞りSt1および副絞りSt2は、広角端での中間像高の有害な光線を遮光する。
 変倍の際、副絞りSt1は第3レンズ群G3のレンズと光軸Zに沿って一体的に移動し、主絞りFSおよび副絞りSt2は第5レンズ群G5のレンズと一体的に像面Simに対して固定されている。合焦群は第4レンズ群G4からなる。図14の第4レンズ群G4の上の括弧と左向きの矢印は、無限遠物体から近距離物体への合焦の際、第4レンズ群G4が物体側へ移動する合焦群であることを示す。合焦の際、第4レンズ群G4以外のレンズ群のレンズ、主絞りFS、および副絞りSt1~St2は一体的に像面Simに対して固定されている。
 実施例5の光学系の基本レンズデータを表13に示す。基本レンズデータの表では、変倍の際の可変面間隔についてはDD[ ]という記号を用い、[ ]の中にこの間隔の物体側の面番号を付して面間隔の列に記入している。表14には、実施例5の光学系の諸元および可変面間隔を示す。表14では、「広角端」と付した列に広角端状態の各値を示し、「望遠端」と付した列に望遠端状態の各値を示す。表14には、ズーム倍率も示す。図15に、実施例5の光学系の無限遠物体に合焦した状態における各収差図を示す。図15では、「広角端」と付した上段に広角端状態の収差を示し、「望遠端」と付した下段に望遠端状態の収差を示す。
[実施例6]
 実施例6の光学系の構成と光束の断面図を図16に示す。実施例6の光学系は、ズームレンズである。実施例6の光学系のデータの記載方法および図示方法は基本的に実施例5のものと同様であるので、ここでは重複説明を一部省略する。実施例6の光学系は、物体側から像側へ順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とからなる。変倍の際、第2レンズ群G2と、第4レンズ群G4とは光軸Zに沿って移動し、第1レンズ群G1と、第3レンズ群G3と、第5レンズ群G5とは像面Simに対して固定されている。
 実施例6の光学系は、開口径が可変の主絞りFSと、開口径が固定の副絞りSt1~St2とを備える。主絞りFSは、Fナンバーを決定する絞りとして機能する。主絞りFSは、第3レンズ群G3の最も物体側に配置されている。副絞りSt1は、その開口内に第2レンズ群G2の最も像側のレンズの像側の面を含むように配置されている。副絞りSt2は、その開口内に第3レンズ群G3の最も像側のレンズの像側の面を含むように配置されている。副絞りSt1および副絞りSt2は、望遠端での中間像高の有害な光線を遮光する。
 変倍の際、副絞りSt1は第2レンズ群G2のレンズと光軸Zに沿って一体的に移動し、主絞りFSおよび副絞りSt2は第3レンズ群G3のレンズと一体的に像面Simに対して固定されている。合焦群は第4レンズ群G4からなる。図16の第4レンズ群G4の上の括弧と右向きの矢印は、無限遠物体から近距離物体への合焦の際、第4レンズ群G4が像側へ移動する合焦群であることを示す。合焦の際、第4レンズ群G4以外のレンズ群のレンズ、主絞りFS、および副絞りSt1~St2は一体的に像面Simに対して固定されている。
 実施例6の光学系について、基本レンズデータを表15に、諸元と可変面間隔を表16に、非球面係数を表17に、無限遠物体に合焦した状態における各収差図を図17に示す。
 表18に、実施例1~6の光学系について、条件式(1)および(2)に関する値を示す。表18の最も左の列には、実施例番号および対応する副絞りの符号を記入し、変倍光
学系の実施例については計算に用いた値の変倍状態を副絞りの符号の後に示している。このうち、「Wide」は広角端を示し、「Tele」は望遠端を示す。この最も左の列の表示方法は後述の表19~22についても同様である。Dstの符号は、主絞りFSを基準として像側の距離の符号を正、物体側の距離の符号を負としている。表18では、条件式(1)および(2)の対応値の列を太線で囲み、その上にそれぞれ(1)および(2)と記入している。
 表19に、実施例1~6の光学系について、条件式(3)および(4)に関する値を示す。ここでは、dhp={Rp-Rp×(1-(φEp/2)/Rp1/2}としている。表19では、条件式(3)および(4)の対応値の列を太線で囲み、その上にそれぞれ(3)および(4)と記入している。
 表20に、実施例1~6の光学系について、条件式(5)および(6)に関する値を示す。ここでは、dhn={Rn-Rn×(1-(φEn/2)/Rn1/2}とし
ている。表20では、条件式(5)および(6)の対応値の列を太線で囲み、その上にそれぞれ(5)および(6)と記入している。
 表21に、実施例1~6の光学系について、条件式(7)および(8)に関する値を示す。Dstの符号の定義は表18のものと同様である。hpの符号は、各断面図において光軸Zより上側の光線の高さを正、下側の光線の高さの符号を負としている。表21では、条件式(7)および(8)の対応値の列を太線で囲み、その上にそれぞれ(7)および(8)と記入している。
 表22に、実施例1~6の光学系について、条件式(9)に関する値を示す。表22では、条件式(9)の対応値の列を太線で囲み、その上に(9)と記入している。
 次に、本開示の実施形態に係る撮像装置について説明する。図18および図19に本開示の一実施形態に係る撮像装置であるカメラ30の外観図を示す。図18はカメラ30を正面側から見た斜視図を示し、図19はカメラ30を背面側から見た斜視図を示す。カメラ30は、いわゆるミラーレスタイプのデジタルカメラであり、交換レンズ20を取り外し自在に装着可能である。交換レンズ20は、鏡筒内に収納された本開示の一実施形態に係る光学系1を含んで構成されている。
 カメラ30はカメラボディ31を備え、カメラボディ31の上面にはシャッターボタン32、および電源ボタン33が設けられている。また、カメラボディ31の背面には、操作部34、操作部35、および表示部36が設けられている。表示部36は、撮像された画像および撮像される前の画角内にある画像を表示可能である。
 カメラボディ31の前面中央部には、撮影対象からの光が入射する撮影開口が設けられ、その撮影開口に対応する位置にマウント37が設けられ、マウント37を介して交換レンズ20がカメラボディ31に装着される。
 カメラボディ31内には、交換レンズ20によって形成された被写体像に応じた撮像信号を出力するCCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子、その撮像素子から出力された撮像信号を処理して画像を生成する信号処理回路、およびその生成された画像を記録するための記録媒体等が設けられている。カメラ30では、シャッターボタン32を押すことにより静止画又は動画の撮影が可能であり、この撮影で得られた画像データが上記記録媒体に記録される。
 以上、実施形態および実施例を挙げて本開示の技術を説明したが、本開示の技術は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、光学系を構成するレンズの枚数、およびレンズ群の数は、上記実施例のものに限定されない。変倍光学系は、ズームレンズに限定されず、バリフォーカルレンズでもよい。副絞りは、主絞りFSより物体側に配置されていてもよく、主絞りFSより像側に配置されていてもよい。1つの光学系に配置される各条件式を満足する副絞りの数は任意に設定可能である。各レンズ
の曲率半径、面間隔、屈折率、アッベ数、および非球面係数等は、上記各実施例で示した値に限定されず、他の値をとり得る。
 また、本開示の実施形態に係る撮像装置についても、上記例に限定されず、例えば、ミラーレスタイプ以外のカメラ、フィルムカメラ、ビデオカメラ、映画撮影用カメラ、および監視カメラ等、種々の態様とすることができる。
 以上の実施形態および実施例に関し、さらに以下の付記項を開示する。
[付記項1]
 光学系であって、
 開口径が可変の第1の絞りと、
 前記第1の絞りより物体側に配置された、正レンズおよび負レンズを含む3枚以上のレンズと、
 開口径が固定の第2の絞りとを含み、
 前記第1の絞りから前記第2の絞りまでの光軸上の距離をDstとし、
 前記光学系の焦点距離をfとし、
 前記光学系が変倍光学系の場合は、Dstおよびfは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0.005<|Dst|/f<2  (1)
で表される条件式(1)を満足する光学系。
[付記項2]
 前記第1の絞りの開放状態での開口径をφFとし、
 前記第2の絞りの開口径をφSとし、
 前記光学系が変倍光学系の場合は、φFおよびφSは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0.3<φS/φF<2.5  (2)
で表される条件式(2)を満足する付記項1に記載の光学系。
[付記項3]
 前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
 前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
 Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
 前記レンズ面の近軸曲率半径をRpとした場合、
  0<Dp/Rp<0.4  (3)
で表される条件式(3)を満足する付記項1又は2に記載の光学系。
[付記項4]
 前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
 前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
 Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
 前記レンズ面の近軸曲率半径をRpとし、
 前記レンズ面の有効直径をφEpとした場合、
  0.7<{Rp-Rp×(1-(φEp/2)/Rp1/2}/Dp<1.5
  (4)
で表される条件式(4)を満足する付記項1から3のいずれか1項に記載の光学系。
[付記項5]
 前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
 前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
 Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
 前記レンズ面の近軸曲率半径をRnとし、
 前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDnおよびRnに用い、
 前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0<Dn/Rn<0.4  (5)
で表される条件式(5)を満足する付記項1から4のいずれか1項に記載の光学系。
[付記項6]
 前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
 前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
 Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
 前記レンズ面の近軸曲率半径をRnとし、
 前記レンズ面の有効直径をφEnとし、
 前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDn、RnおよびφEnに用い、
 前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0.5<{Rn-Rn×(1-(φEn/2)/Rn1/2}/Dn<1.2
  (6)
で表される条件式(6)を満足する付記項1から5のいずれか1項に記載の光学系。
[付記項7]
 前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
 前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
 前記光学系が変倍光学系の場合は、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0<|hp|/hm<1  (7)
で表される条件式(7)を満足する付記項1から6のいずれか1項に記載の光学系。
[付記項8]
 前記光学系の最も物体側のレンズ面から前記光学系の最も像側のレンズ面までの光軸上の距離と、前記光学系の空気換算距離でのバックフォーカスとの和をTLとし、
 前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
 前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
 前記光学系が変倍光学系の場合は、Dst、TL、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  0.05<(|Dst|/TL)/(|hp|/hm)<1.8  (8)
で表される条件式(8)を満足する付記項1から7のいずれか1項に記載の光学系。
[付記項9]
 1つのレンズ成分を1枚の単レンズ又は1組の接合レンズとし、
 前記第2の絞りより物体側の全てのレンズ成分の合成焦点距離をfsとし、
 前記光学系が変倍光学系の場合は、fおよびfsは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
  -5<f/fs<5  (9)
で表される条件式(9)を満足する付記項1から8のいずれか1項に記載の光学系。
[付記項10]
 合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定され、
 前記光学系が変倍光学系の場合は、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定されている付記項1から9のいずれか1項に記載の光学系。
[付記項11]
 前記第1の絞りはFナンバーを決定する絞りである付記項1から10のいずれか1項に記載の光学系。
[付記項12]
 付記項1から11のいずれか1項に記載の光学系を備えた撮像装置。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (20)

  1.  光学系であって、
     開口径が可変の第1の絞りと、
     前記第1の絞りより物体側に配置された、正レンズおよび負レンズを含む3枚以上のレンズと、
     開口径が固定の第2の絞りとを含み、
     前記第1の絞りから前記第2の絞りまでの光軸上の距離をDstとし、
     前記光学系の焦点距離をfとし、
     前記光学系が変倍光学系の場合は、Dstおよびfは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.005<|Dst|/f<2  (1)
    で表される条件式(1)を満足する光学系。
  2.  前記第1の絞りの開放状態での開口径をφFとし、
     前記第2の絞りの開口径をφSとし、
     前記光学系が変倍光学系の場合は、φFおよびφSは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.3<φS/φF<2.5  (2)
    で表される条件式(2)を満足する請求項1に記載の光学系。
  3.  前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
     Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRpとした場合、
      0<Dp/Rp<0.4  (3)
    で表される条件式(3)を満足する請求項1に記載の光学系。
  4.  前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
     Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRpとし、
     前記レンズ面の有効直径をφEpとした場合、
      0.7<{Rp-Rp×(1-(φEp/2)/Rp1/2}/Dp<1.5
      (4)
    で表される条件式(4)を満足する請求項1に記載の光学系。
  5.  前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
     Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRnとし、
     前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDnおよびRnに用い、
     前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージ
    ナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0<Dn/Rn<0.4  (5)
    で表される条件式(5)を満足する請求項1に記載の光学系。
  6.  前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
     Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRnとし、
     前記レンズ面の有効直径をφEnとし、
     前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDn、RnおよびφEnに用い、
     前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.5<{Rn-Rn×(1-(φEn/2)/Rn1/2}/Dn<1.2
      (6)
    で表される条件式(6)を満足する請求項1に記載の光学系。
  7.  前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
     前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
     前記光学系が変倍光学系の場合は、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0<|hp|/hm<1  (7)
    で表される条件式(7)を満足する請求項1に記載の光学系。
  8.  前記光学系の最も物体側のレンズ面から前記光学系の最も像側のレンズ面までの光軸上の距離と、前記光学系の空気換算距離でのバックフォーカスとの和をTLとし、
     前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
     前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
     前記光学系が変倍光学系の場合は、Dst、TL、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.05<(|Dst|/TL)/(|hp|/hm)<1.8  (8)
    で表される条件式(8)を満足する請求項1に記載の光学系。
  9.  1つのレンズ成分を1枚の単レンズ又は1組の接合レンズとし、
     前記第2の絞りより物体側の全てのレンズ成分の合成焦点距離をfsとし、
     前記光学系が変倍光学系の場合は、fおよびfsは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      -5<f/fs<5  (9)
    で表される条件式(9)を満足する請求項1に記載の光学系。
  10.  合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定され、
     前記光学系が変倍光学系の場合は、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定されている請求項1に記載の光学系。
  11.  前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
     Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRpとした場合、
      0<Dp/Rp<0.4  (3)
    で表される条件式(3)を満足する請求項2に記載の光学系。
  12.  前記第2の絞りの開口内に空気に接触する凸形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から開口内に前記レンズ面が位置する前記第2の絞りまでの光軸上の距離をDpとし、
     Dpについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRpとし、
     前記レンズ面の有効直径をφEpとした場合、
      0.7<{Rp-Rp×(1-(φEp/2)/Rp1/2}/Dp<1.5
      (4)
    で表される条件式(4)を満足する請求項2に記載の光学系。
  13.  前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
     Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRnとし、
     前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDnおよびRnに用い、
     前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0<Dn/Rn<0.4  (5)
    で表される条件式(5)を満足する請求項2に記載の光学系。
  14.  前記第2の絞りに隣接して空気に接触する凹形状のレンズ面が位置し、
     前記レンズ面と光軸との交点から前記第2の絞りまでの光軸上の距離をDnとし、
     Dnについて、前記交点を基準として像側の距離の符号を正、物体側の距離の符号を負とし、
     前記レンズ面の近軸曲率半径をRnとし、
     前記レンズ面の有効直径をφEnとし、
     前記第2の絞りに隣接して位置する空気に接触する凹形状の前記レンズ面が2つある場合は、2つの前記レンズ面のうち、前記第2の絞りの開口径により近い値の光学有効面の直径を有するレンズ面の値をDn、RnおよびφEnに用い、
     前記光学系が変倍光学系の場合は、Dnは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.5<{Rn-Rn×(1-(φEn/2)/Rn1/2}/Dn<1.2
      (6)
    で表される条件式(6)を満足する請求項2に記載の光学系。
  15.  前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
     前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
     前記光学系が変倍光学系の場合は、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0<|hp|/hm<1  (7)
    で表される条件式(7)を満足する請求項2に記載の光学系。
  16.  前記光学系の最も物体側のレンズ面から前記光学系の最も像側のレンズ面までの光軸上の距離と、前記光学系の空気換算距離でのバックフォーカスとの和をTLとし、
     前記第2の絞りの位置における最大像高の主光線の光軸からの高さをhpとし、
     前記第2の絞りの位置における軸上マージナル光線の光軸からの高さをhmとし、
     前記光学系が変倍光学系の場合は、Dst、TL、hpおよびhmは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      0.05<(|Dst|/TL)/(|hp|/hm)<1.8  (8)
    で表される条件式(8)を満足する請求項2に記載の光学系。
  17.  1つのレンズ成分を1枚の単レンズ又は1組の接合レンズとし、
     前記第2の絞りより物体側の全てのレンズ成分の合成焦点距離をfsとし、
     前記光学系が変倍光学系の場合は、fおよびfsは、前記第2の絞りの位置において軸上マージナル光線の光軸からの高さが最大となる変倍状態における値とした場合、
      -5<f/fs<5  (9)
    で表される条件式(9)を満足する請求項2に記載の光学系。
  18.  合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、合焦の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定され、
     前記光学系が変倍光学系の場合は、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に移動する、もしくは、変倍の際に前記第2の絞りは前記光学系の少なくとも1つのレンズと一体的に像面に対して固定されている請求項2に記載の光学系。
  19.  前記第1の絞りはFナンバーを決定する絞りである請求項1に記載の光学系。
  20.  請求項1から19のいずれか1項に記載の光学系を備えた撮像装置。
PCT/JP2023/033224 2022-09-30 2023-09-12 光学系および撮像装置 WO2024070666A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-159104 2022-09-30
JP2022159104 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070666A1 true WO2024070666A1 (ja) 2024-04-04

Family

ID=90477506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033224 WO2024070666A1 (ja) 2022-09-30 2023-09-12 光学系および撮像装置

Country Status (1)

Country Link
WO (1) WO2024070666A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020341A (ja) * 2007-07-12 2009-01-29 Nikon Corp 広角レンズ、光学装置、広角レンズのフォーカシング方法
JP2016145862A (ja) * 2015-02-06 2016-08-12 キヤノン株式会社 光学系および光学機器
JP2017090610A (ja) * 2015-11-09 2017-05-25 キヤノン株式会社 レンズ装置及びそれを有する撮像装置
JP2020134803A (ja) * 2019-02-22 2020-08-31 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020341A (ja) * 2007-07-12 2009-01-29 Nikon Corp 広角レンズ、光学装置、広角レンズのフォーカシング方法
JP2016145862A (ja) * 2015-02-06 2016-08-12 キヤノン株式会社 光学系および光学機器
JP2017090610A (ja) * 2015-11-09 2017-05-25 キヤノン株式会社 レンズ装置及びそれを有する撮像装置
JP2020134803A (ja) * 2019-02-22 2020-08-31 株式会社ニコン 変倍光学系、光学機器、及び変倍光学系の製造方法

Similar Documents

Publication Publication Date Title
JP6546417B2 (ja) レンズシステムおよび撮像装置
JP7061980B2 (ja) ズームレンズおよび撮像装置
JP7113795B2 (ja) ズームレンズおよび撮像装置
JP7345608B2 (ja) ズームレンズ及び撮像装置
JP2018120152A (ja) ズームレンズおよび撮像装置
JP2019113586A (ja) ズームレンズ及び撮像装置
JP7366840B2 (ja) ズームレンズおよび撮像装置
JP6820878B2 (ja) ズームレンズ及び撮像装置
JP7376421B2 (ja) 撮像レンズおよび撮像装置
WO2017130478A1 (ja) ズームレンズおよび撮像装置
JP7399113B2 (ja) 撮像レンズおよび撮像装置
JP7254734B2 (ja) 撮像レンズおよび撮像装置
JP2020034671A (ja) 撮像レンズ及び撮像装置
JP5129520B2 (ja) ズームレンズ
JP2019113587A (ja) ズームレンズ及び撮像装置
JP2021117472A (ja) 撮像レンズ及び撮像装置
JP6559104B2 (ja) 撮像レンズおよび撮像装置
JP6559103B2 (ja) 撮像レンズおよび撮像装置
JP2020030283A (ja) ズームレンズ及び撮像装置
WO2024070666A1 (ja) 光学系および撮像装置
JP7026605B2 (ja) 撮像レンズ及び撮像装置
JP2018109711A (ja) ズームレンズおよび撮像装置
JP2018109712A (ja) ズームレンズおよび撮像装置
JP2021117492A (ja) 撮像レンズおよび撮像装置
JP2021028708A (ja) 撮像レンズおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871899

Country of ref document: EP

Kind code of ref document: A1