WO2024070412A1 - 作業機械の制御システム、作業機械、及び作業機械の制御方法 - Google Patents

作業機械の制御システム、作業機械、及び作業機械の制御方法 Download PDF

Info

Publication number
WO2024070412A1
WO2024070412A1 PCT/JP2023/031182 JP2023031182W WO2024070412A1 WO 2024070412 A1 WO2024070412 A1 WO 2024070412A1 JP 2023031182 W JP2023031182 W JP 2023031182W WO 2024070412 A1 WO2024070412 A1 WO 2024070412A1
Authority
WO
WIPO (PCT)
Prior art keywords
design surface
design
work machine
offset
control unit
Prior art date
Application number
PCT/JP2023/031182
Other languages
English (en)
French (fr)
Inventor
柾 山脇
安曇 市川
貴史 横尾
祥人 熊倉
康史 上原
角田 賢一
大毅 有松
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024070412A1 publication Critical patent/WO2024070412A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • This disclosure relates to a work machine control system, a work machine, and a work machine control method.
  • a technique for constructing a work target based on a target construction surface In the technical field related to work machines, there is known a technique for constructing a work target based on a target construction surface.
  • Known techniques for constructing a work target based on a target construction surface include a machine guidance technique that presents a guidance image showing the relative position between the target construction surface and the bucket of the work machine to the operator of the work machine, and a machine control technique that assists and controls the operation of the operator so that the bucket of the work machine moves according to the target construction surface.
  • An example of the machine guidance technique is disclosed in Patent Document 1.
  • a target construction surface is defined by multiple design surfaces with mutually different gradients.
  • it is desired to generate a new target construction surface by offsetting each of the multiple design surfaces in the vertical direction (normal direction) of the design surfaces.
  • the design surfaces may intersect or separate from each other, and the target construction surface may not be generated properly.
  • offsetting the entire target construction surface in the vertical direction results in a huge computational load.
  • the present disclosure aims to easily offset each of multiple design surfaces vertically.
  • a work machine control system includes a construction data storage unit that stores multiple design surfaces that are set as construction targets for the work machine, a selection unit that selects at least two design surfaces from the multiple design surfaces to be offset in the vertical direction of the design surfaces, and an offset control unit that processes the selected design surfaces to offset them in the vertical direction.
  • FIG. 1 is a perspective view showing a work machine according to an embodiment.
  • FIG. 2 is a schematic diagram showing a work machine according to an embodiment.
  • FIG. 3 is a diagram showing a cab of a work machine according to an embodiment.
  • FIG. 4 is a block diagram showing a control system for a work machine according to the embodiment.
  • FIG. 5 is a diagram showing a schematic diagram of a target construction surface.
  • FIG. 6 is a diagram for explaining a problem associated with the embodiment.
  • FIG. 7 is a flowchart showing a control method for a work machine according to the embodiment.
  • FIG. 8 is a perspective view that illustrates a design surface selected by the selection unit according to the embodiment.
  • FIG. 9 is a perspective view that illustrates a design surface before and after being offset by the offset control unit according to the embodiment.
  • FIG. 10 is a side view showing a schematic diagram of a design surface before and after being offset by the offset control unit according to the embodiment.
  • FIG. 11 is a side view that shows a schematic of the design surface after machining and offsetting.
  • FIG. 12 is a plan view that shows a schematic diagram of the design surface after machining and offsetting.
  • FIG. 13 is a diagram illustrating an example of a processing method when two design surfaces intersect.
  • FIG. 14 is a block diagram illustrating a computer system according to an embodiment.
  • FIG. 1 is a perspective view showing a work machine 1 according to an embodiment.
  • Fig. 2 is a schematic diagram showing the work machine 1 according to an embodiment.
  • Fig. 3 is a diagram showing a cab 2 of the work machine 1 according to an embodiment.
  • the work machine 1 operates at a work site.
  • the work machine 1 is a hydraulic excavator.
  • the work machine 1 will be referred to as the hydraulic excavator 1 as appropriate.
  • the hydraulic excavator 1 includes a running body 3, a rotating body 4, a work machine 5, a hydraulic cylinder 6, an operating device 7, an on-board monitor 8, a position sensor 9, an inclination sensor 10, an attitude sensor 11, and a control device 12.
  • a three-dimensional site coordinate system (Xg, Yg, Zg) is defined at the work site.
  • a three-dimensional vehicle body coordinate system (Xm, Ym, Zm) is defined on the rotating body 4.
  • the site coordinate system is composed of the Xg axis, which extends north-south from the site reference point Og defined at the work site, the Yg axis, which extends east-west from the site reference point Og, and the Zg axis, which extends vertically from the site reference point Og.
  • the vehicle body coordinate system is composed of the Xm axis extending in the fore-and-aft direction of the rotating body 4 from the representative point Om defined on the rotating body 4, the Ym axis extending in the left-right direction of the rotating body 4 from the representative point Om, and the Zm axis extending in the up-and-down direction of the rotating body 4 from the representative point Om.
  • the +Xm direction is the front of the rotating body 4
  • the -Xm direction is the rear of the rotating body 4
  • the +Ym direction is the left of the rotating body 4
  • the -Ym direction is the right of the rotating body 4
  • the +Zm direction is above the rotating body 4
  • the -Zm direction is below the rotating body 4.
  • the running body 3 runs while supporting the rotating body 4.
  • the running body 3 has a pair of tracks 3A.
  • the running body 3 runs due to the rotation of the tracks 3A.
  • the running motion of the running body 3 includes forward motion and reverse motion.
  • the hydraulic excavator 1 can move around the work site using the running body 3.
  • the rotating body 4 is supported by the running body 3.
  • the rotating body 4 is positioned above the running body 3.
  • the rotating body 4 rotates around the rotation axis RX while supported by the running body 3.
  • the rotation axis RX is parallel to the Zm axis.
  • the rotation of the rotating body 4 includes left rotation and right rotation.
  • the driver's cab 2 is provided on the rotating body 4.
  • the work machine 5 is supported by the rotating body 4.
  • the work machine 5 performs work.
  • the work performed by the work machine 5 includes an excavation work for excavating a construction target and a loading work for loading the excavated material onto a loading target.
  • the work machine 5 includes a boom 5A, an arm 5B, and a bucket 5C.
  • the base end of the boom 5A is rotatably connected to the front of the rotating body 4.
  • the base end of the arm 5B is rotatably connected to the tip of the boom 5A.
  • the base end of the bucket 5C is rotatably connected to the tip of the arm 5B.
  • the hydraulic cylinder 6 operates the work machine 5.
  • the hydraulic cylinder 6 includes a boom cylinder 6A, an arm cylinder 6B, and a bucket cylinder 6C.
  • the boom cylinder 6A raises and lowers the boom 5A.
  • the arm cylinder 6B performs digging and dumping operations on the arm 5B.
  • the bucket cylinder 6C performs digging and dumping operations on the bucket 5C.
  • the base end of the boom cylinder 6A is connected to the rotating body 4.
  • the tip end of the boom cylinder 6A is connected to the boom 5A.
  • the base end of the arm cylinder 6B is connected to the boom 5A.
  • the tip end of the arm cylinder 6B is connected to the arm 5B.
  • the base end of the bucket cylinder 6C is connected to the arm 5B.
  • the tip end of the bucket cylinder 6C is connected to the bucket 5C.
  • the operating device 7 is disposed in the cab 2.
  • the operating device 7 is operated to operate at least one of the traveling body 3, the rotating body 4, and the work machine 5.
  • the operating device 7 is operated by an operator seated in the cab 2.
  • the operator can operate the operating device 7 while seated in the operator's seat 14 disposed in the cab 2.
  • the operating device 7 includes a left working lever 7A and a right working lever 7B that are operated to operate the rotating body 4 and the working machine 5, a left traveling lever 7C and a right traveling lever 7D that are operated to operate the traveling body 3, and a left foot pedal 7E and a right foot pedal 7F.
  • the arm 5B When the left working lever 7A is operated in the forward/backward direction, the arm 5B performs a dumping operation or an excavation operation.
  • the rotating body 4 When the left working lever 7A is operated in the left/right direction, the rotating body 4 performs a left swinging operation or a right swinging operation.
  • the bucket 5C When the right working lever 7B is operated in the left/right direction, the bucket 5C performs an excavation operation or a dumping operation.
  • the boom 5A When the right working lever 7B is operated in the forward/backward direction, the boom 5A performs a lowering operation or a raising operation.
  • the rotating body 4 performs a right swinging operation or a left swinging operation
  • the arm 5B performs a dumping operation or an excavation operation.
  • the left foot pedal 7E is linked to the left travel lever 7C.
  • the right foot pedal 7F is linked to the right travel lever 7D.
  • the in-vehicle monitor 8 is disposed in the driver's cab 2.
  • the in-vehicle monitor 8 is disposed to the right front of the driver's seat 14.
  • the in-vehicle monitor 8 has a display device 8A, an input device 8B, and an alarm device 8C.
  • the display device 8A displays the specified display data.
  • Examples of the display device 8A include a flat panel display such as a liquid crystal display (LCD) or an organic electroluminescence display (OELD).
  • LCD liquid crystal display
  • OELD organic electroluminescence display
  • the input device 8B generates input data when operated by an operator.
  • Examples of the input device 8B include a button switch, a computer keyboard, and a touch panel.
  • the alarm device 8C outputs a specified alarm.
  • the alarm device 8C is an audio output device that outputs an alarm sound.
  • the alarm device 8C may also be a light-emitting device that outputs an alarm light.
  • the position sensor 9 detects the position of the rotating unit 4 in the site coordinate system.
  • the position sensor 9 detects the position of the rotating unit 4 in the site coordinate system using a Global Navigation Satellite System (GNSS).
  • the Global Navigation Satellite System includes a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the Global Navigation Satellite System detects a position defined by coordinate data of latitude, longitude, and altitude.
  • the position sensor 9 includes a GNSS receiver that receives GNSS radio waves from a GNSS satellite.
  • the position sensor 9 is disposed on the rotating unit 4. In an embodiment, the position sensor 9 is disposed on a counterweight of the rotating unit 4.
  • the position sensor 9 includes a first position sensor 9A and a second position sensor 9B.
  • the first position sensor 9A and the second position sensor 9B are arranged at different positions on the rotating body 4. In the embodiment, the first position sensor 9A and the second position sensor 9B are arranged at a distance in the left-right direction on the rotating body 4.
  • the first position sensor 9A detects a first positioning position indicating the position where the first position sensor 9A is located.
  • the second position sensor 9B detects a second positioning position indicating the position where the second position sensor 9B is located.
  • the tilt sensor 10 detects the acceleration and angular velocity of the rotating body 4.
  • the tilt sensor 10 includes an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the tilt sensor 10 is disposed on the rotating body 4. In the embodiment, the tilt sensor 10 is installed below the cab 2.
  • the attitude sensor 11 detects the attitude of the work machine 5.
  • the attitude of the work machine 5 includes the angle of the work machine 5.
  • the attitude sensor 11 includes a first attitude sensor 11A that detects the angle of the boom 5A relative to the rotating body 4, a second attitude sensor 11B that detects the angle of the arm 5B relative to the boom 5A, and a third attitude sensor 11C that detects the angle of the bucket 5C relative to the arm 5B.
  • the attitude sensor 11 may be a stroke sensor that detects the stroke of the hydraulic cylinder 6, or a potentiometer that detects the angle of the work machine 5.
  • Control System 4 is a block diagram showing a control system 30 of the work machine 1 according to the embodiment.
  • the hydraulic excavator 1 is equipped with the control system 30.
  • the control system 30 has an on-board monitor 8, a position sensor 9, an inclination sensor 10, an attitude sensor 11, and a control device 12.
  • the control device 12 controls the hydraulic excavator 1.
  • the control device 12 includes a computer system.
  • the control device 12 has a construction data storage unit 15, a vehicle body data storage unit 16, an operation data acquisition unit 17, an input data acquisition unit 18, a sensor data acquisition unit 19, a position and orientation calculation unit 20, a tilt angle calculation unit 21, a work machine position calculation unit 22, a selection unit 23, an offset control unit 24, a display control unit 25, a travel control unit 26, a rotation control unit 27, and a work machine control unit 28.
  • the construction data storage unit 15 stores multiple design surfaces that are set at the work site.
  • the multiple design surfaces are set as the construction target of the hydraulic excavator 1 at the work site.
  • the design surfaces are created by a computer system that exists outside the hydraulic excavator 1.
  • the design surfaces are created in a facility external to the hydraulic excavator 1, such as a design room.
  • the design surfaces are surfaces that are defined in the site coordinate system.
  • the multiple design surfaces define a target construction surface that indicates the target shape of the construction target.
  • the hydraulic excavator 1 excavates the construction target based on the target construction surface.
  • the vehicle body data storage unit 16 stores vehicle body data of the hydraulic excavator 1.
  • the vehicle body data of the hydraulic excavator 1 includes the dimensions of the working equipment 5.
  • the dimensions of the working equipment 5 include the length of the boom 5A, the length of the arm 5B, and the length of the bucket 5C.
  • the vehicle body data of the hydraulic excavator 1 also includes the dimensions of the running body 3 and the dimensions of the rotating body 4.
  • the operation data acquisition unit 17 acquires operation data generated by operating the operation device 7.
  • the input data acquisition unit 18 acquires input data generated by operating the input device 8B.
  • the sensor data acquisition unit 19 acquires detection data from the position sensor 9, the tilt sensor 10, and the attitude sensor 11.
  • the position and orientation calculation unit 20 calculates the position and azimuth of the rotating body 4 in the on-site coordinate system based on the detection data of the position sensor 9.
  • the position sensor 9 includes a GNSS receiver that receives GNSS radio waves.
  • the position and orientation calculation unit 20 calculates the position and azimuth of the rotating body 4 based on the GNSS radio waves.
  • the azimuth of the rotating body 4 is, for example, the azimuth of the rotating body 4 based on the Xg axis.
  • the position and orientation calculation unit 20 calculates the position of the rotating body 4 based on at least one of the first positioning position detected by the first position sensor 9A and the second positioning position detected by the second position sensor 9B.
  • the position and orientation calculation unit 20 calculates the azimuth angle of the rotating body 4 based on the relative position between the first positioning position detected by the first position sensor 9A and the second positioning position detected by the second position sensor 9B.
  • the inclination angle calculation unit 21 calculates the inclination angle of the rotating body 4 based on the detection data of the inclination sensor 10.
  • the inclination angle of the rotating body 4 includes the roll angle and pitch angle of the rotating body 4.
  • the roll angle refers to the inclination angle of the rotating body 4 in the inclination direction centered on the Xg axis.
  • the pitch angle refers to the inclination angle of the rotating body 4 in the inclination direction centered on the Yg axis.
  • the inclination angle calculation unit 21 calculates the roll angle and pitch angle of the rotating body 4 based on the detection data of the inclination sensor 10.
  • the work implement position calculation unit 22 calculates the position of the work implement 5 based on the position of the work machine 1 calculated by the position and orientation calculation unit 20.
  • the work implement position calculation unit 22 calculates the position of the work implement 5 in the site coordinate system based on the vehicle body data of the hydraulic excavator 1 stored in the vehicle body data storage unit 16, the position and azimuth of the rotating body 4 calculated by the position and orientation calculation unit 20, the inclination angle of the rotating body 4 calculated by the inclination angle calculation unit 21, and the detection data of the attitude sensor 11.
  • the position of the work implement 5 includes the position of the bucket 5C.
  • the position of the bucket 5C includes the position of the cutting edge provided at the tip of the bucket 5C.
  • the selection unit 23 selects at least two design surfaces to be offset in the vertical direction of the design surface from among the multiple design surfaces stored in the construction data storage unit 15.
  • the design surfaces to be offset are specified by the operator.
  • the operator operates the input device 8B to specify the design surfaces to be offset.
  • the input data from the input device 8B is acquired by the input data acquisition unit 18.
  • the selection unit 23 selects at least two design surfaces to be offset in the vertical direction of the design surface from among the multiple design surfaces stored in the construction data storage unit 15 based on the input data acquired by the input data acquisition unit 18.
  • the offset control unit 24 processes at least two design surfaces selected by the selection unit 23 to offset them in the vertical direction.
  • the display control unit 25 controls the display device 8A of the in-vehicle monitor 8.
  • the display control unit 25 causes the display device 8A to display specified display data.
  • the display control unit 25 can cause the display device 8A to display both the design surface before offsetting and the design surface after offsetting.
  • the driving control unit 26 controls the running body 3 based on the operation data of the operation device 7 acquired by the operation data acquisition unit 17.
  • the rotation control unit 27 controls the rotating body 4 based on the operation data of the operation device 7 acquired by the operation data acquisition unit 17.
  • the work machine control unit 28 controls the work machine 5. Controlling the work machine 5 includes controlling the hydraulic cylinder 6. The work machine control unit 28 controls the work machine 5 based on the design surface after processing and offsetting by the offset control unit 24. The work machine control unit 28 controls the work machine 5 based on the operation data of the operation device 7 acquired by the operation data acquisition unit 17. The work machine control unit 28 also assists in controlling the operator's operation so that the bucket 5C of the work machine 5 moves according to the design surface. The work machine control unit 28 assists in controlling the work machine 5 so that the cutting edge of the bucket 5C calculated by the work machine position calculation unit 22 follows the design surface offset by the offset control unit 24, for example.
  • FIG. 5 is a diagram showing a schematic diagram of a target construction surface 50.
  • a target construction surface 50 showing a target shape of a construction target is defined by a plurality of design surfaces 51, 52, and 53.
  • Each of the plurality of design surfaces 51, 52, and 53 is a flat surface.
  • the design surface 52 is adjacent to the design surface 51.
  • the design surface 53 is adjacent to at least one of the design surfaces 51 and 52. In the example shown in Fig. 5, the design surface 53 is adjacent to the design surface 52.
  • the target construction surface 50 is defined by a plurality of design surfaces 51, 52, and 53 having different gradients from each other.
  • FIG. 6 is a diagram for explaining the problem associated with the embodiment.
  • a design surface 510 is generated.
  • a design surface 520 is generated.
  • a design surface 530 is generated.
  • the offset design surface 510 and the design surface 520 may cross each other, or the offset design surface 520 and the design surface 530 may be separated from each other.
  • the target construction surface 50 may not be generated properly.
  • the design surfaces 510, 520, and 530 it is possible to enlarge or reduce each of the design surfaces 510, 520, and 530.
  • the design surfaces 510, 520, and 530 are polygonal surfaces composed of multiple triangles, and it is not possible to eliminate the intersection or separation by simply enlarging or reducing the surfaces.
  • the offset control unit 24 processes the design surfaces 51, 52, and 53 to offset them in the vertical direction.
  • the processing of the design surfaces 51, 52, and 53 by the offset control unit 24 includes changing the offset design surfaces 510, 520, and 530 into quadrilaterals based on the vertices of the design surfaces 51, 52, and 53 before the offset.
  • Control method 7 is a flowchart showing a method for controlling the hydraulic excavator 1 according to the embodiment.
  • a plurality of design surfaces are stored in the construction data storage unit 15.
  • the display control unit 25 causes the display device 8A to display the plurality of design surfaces stored in the construction data storage unit 15 (step S1).
  • the operator of the hydraulic excavator 1 operates the input device 8B to select at least two design surfaces to be offset vertically from among the multiple design surfaces displayed on the display device 8A.
  • the input data from the input device 8B is acquired by the input data acquisition unit 18.
  • the selection unit 23 selects at least two design surfaces to be offset vertically from among the multiple design surfaces stored in the construction data storage unit 15 (step S2).
  • FIG. 8 is a perspective view that shows a schematic diagram of design surfaces 51, 52, and 53 selected by the selection unit 23 according to the embodiment.
  • the selection unit 23 selects design surface 51, design surface 52 adjacent to design surface 51, and design surface 53 adjacent to at least one of design surface 51 and design surface 52.
  • design surface 53 is adjacent to design surface 52.
  • Design surface 51 is composed of six triangles adjacent to each other. The six triangles that make up design surface 51 are arranged in the same plane.
  • Design surface 52 is composed of five triangles adjacent to each other. The five triangles that make up design surface 52 are arranged in the same plane.
  • Design surface 53 is composed of four triangles adjacent to each other. The four triangles that make up design surface 53 are arranged in the same plane.
  • each of design surfaces 51, 52, and 53 is a polygon.
  • Each of design surfaces 51, 52, and 53 has at least five vertices. That is, design surfaces 51, 52, and 53 are pentagonal or more.
  • the outer shape of design surface 51 is a heptagon.
  • the outer shape of design surface 52 is a hexagon.
  • the outer shape of design surface 53 is a hexagon.
  • Design surface 51 and design surface 52 are adjacent to each other such that one side of design surface 51 coincides with one side of design surface 52.
  • Design surface 52 and design surface 53 are adjacent to each other such that one side of design surface 52 coincides with one side of design surface 53.
  • Design surface 51 and design surface 52 share an edge 61.
  • Design surface 52 and design surface 53 share an edge 62.
  • Edge 61 connects two vertices of design surface 51 and two vertices of design surface 52.
  • Edge 62 connects two vertices of design surface 52 and two vertices of design surface 53.
  • the offset control unit 24 processes the design surfaces 51, 52, and 53 selected in step S2 to offset them in the vertical direction (step S3).
  • FIG. 9 is a perspective view showing the design surfaces 51, 52, 53 before being offset by the offset control unit 24 according to the embodiment, and the design surfaces 510, 520, 530 after being offset.
  • FIG. 10 is a side view showing the design surfaces 51, 52, 53 before being offset by the offset control unit 24 according to the embodiment, and the design surfaces 510, 520, 530 after being offset.
  • the processing of the design surfaces 51, 52, and 53 by the offset control unit 24 includes forming the offset design surfaces 510, 520, and 530 into quadrilaterals based on the vertices of the design surfaces 51, 52, and 53 before the offset.
  • the external shape of the design surface 510 is a rectangle.
  • the design surface 510 has a first side 610, a second side 612 opposite the first side 610, a third side 613 connecting one end of the first side 610 and one end of the second side 612, and a fourth side 614 connecting the other end of the first side 610 and the other end of the second side 612.
  • the size and orientation of the first side 610 of the design surface 510 are equal to the size and orientation of the side 61 of the design surface 51.
  • the first side 610 of the design surface 510 and the side 61 of the design surface 51 are parallel.
  • the first side 610 and the second side 612 are parallel.
  • the size of the first side 610 and the size of the second side 612 are equal.
  • the first side 610 and the third side 613 are perpendicular to each other.
  • the first side 610 and the fourth side 614 are perpendicular to each other.
  • the third side 613 and the fourth side 614 are parallel.
  • the dimension of the third side 613 of the design surface 510 and the dimension of the fourth side 614 of the design surface 510 are equal to the distance L1 shown in FIG. 8.
  • the distance L1 is the distance between the side 61 and the vertex 51F of the design surface 51 in a direction parallel to the design surface 51 and perpendicular to the side 61.
  • the vertex 51F is the vertex that is the farthest from the side 61 of the seven vertices of the design surface 51 in a direction parallel to the design surface 51 and perpendicular to the side 61.
  • the external shape of the design surface 530 is a rectangle.
  • the design surface 530 has a fifth side 620, a sixth side 632 opposite the fifth side 620, a seventh side 633 connecting one end of the fifth side 620 to one end of the sixth side 632, and an eighth side 634 connecting the other end of the fifth side 620 to the other end of the sixth side 632.
  • the size and orientation of the fifth side 620 of the design surface 530 are equal to the size and orientation of the side 62 of the design surface 53.
  • the fifth side 620 of the design surface 530 and the side 62 of the design surface 53 are parallel.
  • the fifth side 620 and the sixth side 632 are parallel.
  • the size of the fifth side 620 and the size of the sixth side 632 are equal.
  • the fifth side 620 and the seventh side 633 are perpendicular to each other.
  • the fifth side 620 and the eighth side 634 are perpendicular to each other.
  • the seventh side 633 and the eighth side 634 are parallel.
  • the dimension of the seventh side 633 of the design surface 530 and the dimension of the eighth side 634 of the design surface 530 are equal to the distance L2 shown in FIG. 8.
  • the distance L2 is the distance between the side 62 and the vertex 53F of the design surface 53 in a direction parallel to the design surface 53 and perpendicular to the side 62.
  • the vertex 53F is the vertex that is the farthest from the side 62 of the six vertices of the design surface 53 in a direction parallel to the design surface 53 and perpendicular to the side 62.
  • the external shape of the design surface 520 is a rectangle.
  • the design surface 520 has a first side 610, a fifth side 620 opposite the first side 610, a ninth side 623 connecting one end of the first side 610 to one end of the fifth side 620, and a tenth side 624 connecting the other end of the first side 610 to the other end of the fifth side 620.
  • Design surface 510 is a plane offset by a predetermined offset amount in the vertical direction (normal direction) of design surface 51.
  • Design surface 510 and design surface 51 are parallel.
  • Design surface 520 is a plane offset by a predetermined offset amount in the vertical direction (normal direction) of design surface 52.
  • Design surface 520 and design surface 52 are parallel.
  • Design surface 530 is a plane offset by a predetermined offset amount in the vertical direction (normal direction) of design surface 53.
  • Design surface 530 and design surface 53 are parallel.
  • Design surface 510 and design surface 520 share a first side 610.
  • Design surface 520 and design surface 530 share a fifth side 620.
  • the offset vector from side 61 to first side 610 corresponds to the resultant vector V12 of normal vector V1 and normal vector V2.
  • the resultant vector V12 is calculated based on the following formula (1) from the offset amount D1 of design surface 51, the offset amount D2 of design surface 52, and the angle ⁇ 12 between normal vector V1 and normal vector V2.
  • the offset direction from side 61 to the first side 610 relative to the horizontal plane corresponds to the direction of the sum (V1 + V2) of the normal vector V1 to the horizontal plane and the normal vector V2 to the horizontal plane.
  • the offset vector from side 62 to the fifth side 620 corresponds to the resultant vector V23 of the normal vector V2 and normal vector V3.
  • the resultant vector V23 is calculated based on the following formula (2) from the offset amount D2 of design surface 52, the offset amount D3 of design surface 53, and the angle ⁇ 23 between the normal vector V2 and normal vector V3.
  • the offset direction from side 62 to the fifth side 620 relative to the horizontal plane corresponds to the direction of the sum of the vectors (V2 + V3) of the normal vector V2 to the horizontal plane and the normal vector V3 to the horizontal plane.
  • each of the multiple design surfaces 51, 52, and 53 is processed based on a predetermined rule, and each of the multiple design surfaces 51, 52, and 53 is easily offset in the vertical direction.
  • An appropriate target construction surface is generated by the multiple design surfaces 510, 520, and 530.
  • the work machine control unit 28 controls the work machine 5 based on the machined and offset design surfaces 510, 520, and 530.
  • the work machine control unit 28 assists and controls the work machine 5 so that the cutting edge of the bucket 5C follows the design surfaces 510, 520, and 530.
  • FIG. 11 is a side view showing the design surfaces 510, 520, and 530 after processing and offsetting.
  • Fig. 12 is a plan view showing the design surfaces 510 and 530 after processing and offsetting. As shown in Figs. 11 and 12, depending on the relative angle and offset amount of the design surfaces 510, 520, and 530, the design surface 510 and the design surface 530 after processing and offsetting may intersect with each other. If the design surface 510 and the design surface 530 after processing and offsetting intersect with each other, the design surface 520 does not have an appropriate shape, so that an appropriate target construction surface cannot be generated.
  • FIG. 13 is a diagram showing a schematic example of a processing method when two design surfaces 510 and 530 intersect.
  • the offset control unit 24 when the design surface 510 and the design surface 530 intersect with each other after processing and offsetting, the offset control unit 24 further processes the design surface 510, the design surface 520, and the design surface 530 after processing and offsetting.
  • the offset control unit 24 processes the design surface 520 after processing and offsetting into a triangular shape that fills the blank space between the first edge 610 and the fifth edge 620 shown in FIG. 12. This triangular shape is the design surface 540.
  • the offset control unit 24 reduces the edge 610, which is one side of the design surface 510 after processing and offsetting, so that it matches one side of the design surface 540 that is on the design surface 510.
  • the offset control unit 24 reduces the edge 620, which is one side of the design surface 530 after processing and offsetting, so that it matches one side of the design surface 540 that is on the design surface 530.
  • FIG. 14 is a block diagram showing a computer system 1000 according to an embodiment.
  • the above-mentioned control device 12 includes the computer system 1000.
  • the computer system 1000 has a processor 1001 such as a CPU (Central Processing Unit), a main memory 1002 including a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory), a storage 1003, and an interface 1004 including an input/output circuit.
  • the functions of the above-mentioned control device 12 are stored in the storage 1003 as a computer program.
  • the processor 1001 reads the computer program from the storage 1003, expands it in the main memory 1002, and executes the above-mentioned processing according to the program.
  • the computer program may be distributed to the computer system 1000 via a network.
  • the computer program or computer system 1000 can execute the following operations according to the above-described embodiment: storing a plurality of design surfaces to be set for the construction target of the hydraulic excavator 1; selecting at least two design surfaces 51, 52, 53 to be offset in the vertical direction of the design surfaces from among the plurality of design surfaces; and machining the selected design surfaces 51, 52, 53 to offset them in the vertical direction.
  • the control system 30 of the hydraulic excavator 1 comprises a construction data memory unit 15 that stores a plurality of design surfaces that are set as the construction target of the hydraulic excavator 1, a selection unit 23 that selects at least two design surfaces 51, 52, 53 to be offset in the vertical direction of the design surfaces from the plurality of design surfaces, an offset control unit 24 that processes the selected design surfaces 51, 52, 53 and offsets them in the vertical direction, and a work machine control unit 28 that controls the work machine 5 of the hydraulic excavator 1 based on the design surfaces 510, 520, 530 after they have been processed and offset.
  • each of the multiple design surfaces 51, 52, 53 is simply offset in the vertical direction while suppressing the calculation load. Furthermore, the design surfaces 51, 52, 53 are processed and offset in the vertical direction based on a predetermined rule, thereby generating design surfaces 510, 520, 530 that do not intersect or separate from each other. Since the design surfaces 510, 520, 530 do not intersect or separate from each other, the target construction surface is generated appropriately.
  • each of the construction data memory unit 15, vehicle body data memory unit 16, operation data acquisition unit 17, input data acquisition unit 18, sensor data acquisition unit 19, position and orientation calculation unit 20, inclination angle calculation unit 21, work machine position calculation unit 22, selection unit 23, offset control unit 24, display control unit 25, driving control unit 26, turning control unit 27, and work machine control unit 28 may be configured as separate hardware.
  • the work machine 1 is a hydraulic excavator having a running body 3 and a rotating body 4.
  • the work machine 1 does not have to have the running body 3 and the rotating body 4.
  • the work machine 1 only needs to have a working implement, and may be, for example, a bulldozer or a wheel loader.
  • inclination sensor 11... attitude sensor, 11A... first attitude sensor, 11B... second attitude sensor, 11C... third attitude sensor, 12... control device, 14... driver's seat, 15... construction data storage unit, 16... vehicle body data storage unit, 17... operation data acquisition unit, 18... input data acquisition unit, 19...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

作業機械の制御システムは、作業機械の施工対象に設定される複数の設計面を記憶する施工データ記憶部と、複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択する選択部と、選択された設計面を加工して、垂直方向にオフセットさせるオフセット制御部と、を備える。

Description

作業機械の制御システム、作業機械、及び作業機械の制御方法
 本開示は、作業機械の制御システム、作業機械、及び作業機械の制御方法に関する。
 作業機械に係る技術分野において、目標施工面に基づいて施工対象を施工する技術が知られている。目標施工面に基づいて施工対象を施工する技術として、目標施工面と作業機のバケットとの相対位置を示すガイダンス画像を作業機械のオペレータに提示するマシンガイダンス技術と、目標施工面に従って作業機のバケットが移動するようにオペレータの操作をアシスト制御するマシンコントロール技術とが知られている。特許文献1には、マシンガイダンス技術の一例が開示されている。
特開2014-074318号公報
 相互に異なる勾配の複数の設計面によって目標施工面が規定される場合がある。また、複数の設計面のそれぞれを設計面の垂直方向(法線方向)にオフセットして新たな目標施工面を生成したい場合がある。複数の設計面を一度に垂直方向にオフセットすると、設計面が相互に交差したり離隔したりして、目標施工面が適正に生成されない可能性がある。しかし、無数の設計面同士の交差又は離隔を解消するように目標施工面の形状を変更する簡便な方法は確立されていない。さらに、目標施工面が多くの設計面から構成される場合、目標施工面全体を垂直方向にオフセットすることは多大な計算負荷がもたらされる。
 本開示は、複数の設計面のそれぞれを垂直方向に簡便にオフセットすることを目的とする。
 本開示に従えば、作業機械の施工対象に設定される複数の設計面を記憶する施工データ記憶部と、複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択する選択部と、選択された設計面を加工して、垂直方向にオフセットさせるオフセット制御部と、を備える、作業機械の制御システムが提供される。
 本開示によれば、複数の設計面を垂直方向にオフセットした新たな目標施工面を簡便に生成できる。
図1は、実施形態に係る作業機械を示す斜視図である。 図2は、実施形態に係る作業機械を示す模式図である。 図3は、実施形態に係る作業機械の運転室を示す図である。 図4は、実施形態に係る作業機械の制御システムを示すブロック図である。 図5は、目標施工面を模式的に示す図である。 図6は、実施形態に係る課題を説明するための図である。 図7は、実施形態に係る作業機械の制御方法を示すフローチャートである。 図8は、実施形態に係る選択部により選択された設計面を模式的に示す斜視図である。 図9は、実施形態に係るオフセット制御部によりオフセットされる前の設計面及びオフセットされた後の設計面を模式的に示す斜視図である。 図10は、実施形態に係るオフセット制御部によりオフセットされる前の設計面及びオフセットされた後の設計面を模式的に示す側面図である。 図11は、加工及びオフセットされた後の設計面を模式的に示す側面図である。 図12は、加工及びオフセットされた後の設計面を模式的に示す平面図である。 図13は、2つの設計面が交差する場合の処理方法の一例を模式的に示す図である。 図14は、実施形態に係るコンピュータシステムを示すブロック図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[作業機械]
 図1は、実施形態に係る作業機械1を示す斜視図である。図2は、実施形態に係る作業機械1を示す模式図である。図3は、実施形態に係る作業機械1の運転室2を示す図である。
 作業機械1は、作業現場において稼働する。実施形態において、作業機械1は、油圧ショベルである。以下の説明において、作業機械1を適宜、油圧ショベル1、と称する。
 油圧ショベル1は、走行体3と、旋回体4と、作業機5と、油圧シリンダ6と、操作装置7と、車載モニタ8と、位置センサ9と、傾斜センサ10と、姿勢センサ11と、制御装置12とを備える。
 図2に示すように、作業現場に3次元の現場座標系(Xg,Yg,Zg)が規定される。旋回体4に3次元の車体座標系(Xm,Ym,Zm)が規定される。
 現場座標系は、作業現場に規定された現場基準点Ogから南北に伸びるXg軸、現場基準点Ogから東西に伸びるYg軸、及び現場基準点Ogから鉛直に伸びるZg軸により構成される。
 車体座標系は、旋回体4に規定された代表点Omから旋回体4の前後方向に伸びるXm軸、代表点Omから旋回体4の左右方向に伸びるYm軸、及び代表点Omから旋回体4の上下方向に伸びるZm軸により構成される。旋回体4の代表点Omを基準として、+Xm方向は旋回体4の前方であり、-Xm方向は旋回体4の後方であり、+Ym方向は旋回体4の左方であり、-Ym方向は旋回体4の右方であり、+Zm方向は旋回体4の上方であり、-Zm方向は旋回体4の下方である。
 走行体3は、旋回体4を支持した状態で走行する。走行体3は、一対の履帯3Aを有する。履帯3Aの回転により、走行体3は、走行動作する。走行体3の走行動作は、前進動作及び後進動作を含む。油圧ショベル1は、走行体3により作業現場を移動することができる。
 旋回体4は、走行体3に支持される。旋回体4は、走行体3よりも上方に配置される。旋回体4は、走行体3に支持された状態で旋回軸RXを中心に旋回動作する。旋回軸RXは、Zm軸に平行である。旋回体4の旋回動作は、左旋回動作及び右旋回動作を含む。運転室2は、旋回体4に設けられる。
 作業機5は、旋回体4に支持される。作業機5は、作業を実施する。実施形態において、作業機5により実施される作業は、施工対象を掘削する掘削作業及び掘削物を積込対象に積み込む積込作業を含む。
 作業機5は、ブーム5Aと、アーム5Bと、バケット5Cとを含む。ブーム5Aの基端部は、旋回体4の前部に回動可能に連結される。アーム5Bの基端部は、ブーム5Aの先端部に回動可能に連結される。バケット5Cの基端部は、アーム5Bの先端部に回動可能に連結される。
 油圧シリンダ6は、作業機5を動作させる。油圧シリンダ6は、ブームシリンダ6Aと、アームシリンダ6Bと、バケットシリンダ6Cとを含む。ブームシリンダ6Aは、ブーム5Aを上げ動作及び下げ動作させる。アームシリンダ6Bは、アーム5Bを掘削動作及びダンプ動作させる。バケットシリンダ6Cは、バケット5Cを掘削動作及びダンプ動作させる。ブームシリンダ6Aの基端部は、旋回体4に連結される。ブームシリンダ6Aの先端部は、ブーム5Aに連結される。アームシリンダ6Bの基端部は、ブーム5Aに連結される。アームシリンダ6Bの先端部は、アーム5Bに連結される。バケットシリンダ6Cの基端部は、アーム5Bに連結される。バケットシリンダ6Cの先端部は、バケット5Cに連結される。
 図3に示すように、操作装置7は、運転室2に配置される。操作装置7は、走行体3、旋回体4、及び作業機5の少なくとも一つを動作させるために操作される。操作装置7は、運転室2に搭乗したオペレータに操作される。オペレータは、運転室2に配置された運転シート14に着座した状態で、操作装置7を操作することができる。
 操作装置7は、旋回体4及び作業機5の動作のために操作される左作業レバー7A及び右作業レバー7Bと、走行体3の動作のために操作される左走行レバー7C及び右走行レバー7Dと、左フットペダル7E及び右フットペダル7Fとを含む。
 左作業レバー7Aが前後方向に操作されることにより、アーム5Bがダンプ動作又は掘削動作する。左作業レバー7Aが左右方向に操作されることにより、旋回体4が左旋回動作又は右旋回操作する。右作業レバー7Bが左右方向に操作されることにより、バケット5Cが掘削動作又はダンプ動作する。右作業レバー7Bが前後方向に操作されることにより、ブーム5Aが下げ動作又は上げ動作する。なお、左作業レバー7Aが前後方向に操作されたときに旋回体4が右旋回動作又は左旋回動作し、左作業レバー7Aが左右方向に操作されたときにアーム5Bがダンプ動作又は掘削動作してもよい。
 左走行レバー7Cが前後方向に操作されることにより、走行体3の左側の履帯3Aが前進動作又は後進動作する。右走行レバー7Dが前後方向に操作されることにより、走行体3の右側の履帯3Aが前進動作又は後進動作する。
 左フットペダル7Eは、左走行レバー7Cと連動する。右フットペダル7Fは、右走行レバー7D連動する。左フットペダル7E及び右フットペダル7Fが操作されることにより、走行体3が前進動作又は後進動作されてもよい。
 車載モニタ8は、運転室2に配置される。車載モニタ8は、運転シート14の右前方に配置される。車載モニタ8は、表示装置8Aと、入力装置8Bと、警報装置8Cとを有する。
 表示装置8Aは、規定の表示データを表示する。表示装置8Aとして、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイが例示される。
 入力装置8Bは、オペレータに操作されることにより入力データを生成する。入力装置8Bとして、ボタンスイッチ、コンピュータ用キーボード、及びタッチパネルが例示される。
 警報装置8Cは、規定の警報を出力する。実施形態において、警報装置8Cは、警報音を出力する音声出力装置である。なお、警報装置8Cは、警報光を出力する発光装置でもよい。
 位置センサ9は、現場座標系における旋回体4の位置を検出する。位置センサ9は、全球測位衛星システム(GNSS:Global Navigation Satellite System)を利用して現場座標系における旋回体4の位置を検出する。全地球航法衛星システムは、全地球測位システム(GPS:Global Positioning System)を含む。全地球航法衛星システムは、緯度、経度、及び高度の座標データで規定される位置を検出する。位置センサ9は、GNSS衛星からGNSS電波を受信するGNSS受信機を含む。位置センサ9は、旋回体4に配置される。実施形態において、位置センサ9は、旋回体4のカウンタウエイトに配置される。
 位置センサ9は、第1位置センサ9Aと、第2位置センサ9Bとを含む。第1位置センサ9Aと第2位置センサ9Bとは、旋回体4の異なる位置に配置される。実施形態において、第1位置センサ9Aと第2位置センサ9Bとは、旋回体4において左右方向に間隔をあけて配置される。第1位置センサ9Aは、第1位置センサ9Aが配置されている位置を示す第1測位位置を検出する。第2位置センサ9Bは、第2位置センサ9Bが配置されている位置を示す第2測位位置を検出する。
 傾斜センサ10は、旋回体4の加速度及び角速度を検出する。傾斜センサ10は、慣性計測装置(IMU:Inertial Measurement Unit)を含む。傾斜センサ10は、旋回体4に配置される。実施形態において、傾斜センサ10は、運転室2の下方に設置される。
 姿勢センサ11は、作業機5の姿勢を検出する。作業機5の姿勢は、作業機5の角度を含む。姿勢センサ11は、旋回体4に対するブーム5Aの角度を検出する第1姿勢センサ11Aと、ブーム5Aに対するアーム5Bの角度を検出する第2姿勢センサ11Bと、アーム5Bに対するバケット5Cの角度を検出する第3姿勢センサ11Cとを含む。姿勢センサ11は、油圧シリンダ6のストロークを検出するストロークセンサでもよいし、作業機5の角度を検出するポテンショメータでもよい。
[制御システム]
 図4は、実施形態に係る作業機械1の制御システム30を示すブロック図である。油圧ショベル1は、制御システム30を備える。制御システム30は、車載モニタ8と、位置センサ9と、傾斜センサ10と、姿勢センサ11と、制御装置12とを有する。制御装置12は、油圧ショベル1を制御する。制御装置12は、コンピュータシステムを含む。
 制御装置12は、施工データ記憶部15と、車体データ記憶部16と、操作データ取得部17と、入力データ取得部18と、センサデータ取得部19と、位置方位算出部20と、傾斜角算出部21と、作業機位置算出部22と、選択部23と、オフセット制御部24と、表示制御部25と、走行制御部26と、旋回制御部27と、作業機制御部28とを有する。
 施工データ記憶部15は、作業現場に設定される複数の設計面を記憶する。複数の設計面は、作業現場において油圧ショベル1の施工対象に設定される。設計面は、油圧ショベル1の外部に存在するコンピュータシステムにより作成される。設計面は、例えば設計室のような油圧ショベル1の外部施設において作成される。設計面は、現場座標系において規定される面である。複数の設計面により、施工対象の目標形状を示す目標施工面が規定される。油圧ショベル1は、目標施工面に基づいて、施工対象を掘削する。
 車体データ記憶部16は、油圧ショベル1の車体データを記憶する。油圧ショベル1の車体データは、作業機5の寸法を含む。作業機5の寸法は、ブーム5Aの長さ、アーム5Bの長さ、及びバケット5Cの長さを含む。また、油圧ショベル1の車体データは、走行体3の寸法及び旋回体4の寸法を含む。
 操作データ取得部17は、操作装置7が操作されることにより生成された操作データを取得する。
 入力データ取得部18は、入力装置8Bが操作されることにより生成された入力データを取得する。
 センサデータ取得部19は、位置センサ9の検出データ、傾斜センサ10の検出データ、及び姿勢センサ11の検出データを取得する。
 位置方位算出部20は、位置センサ9の検出データに基づいて、現場座標系における旋回体4の位置及び方位角を算出する。上述のように、位置センサ9は、GNSS電波を受信するGNSS受信機を含む。位置方位算出部20は、GNSS電波に基づいて、旋回体4の位置及び方位角を算出する。旋回体4の方位角は、例えばXg軸を基準とする旋回体4の方位角である。
 位置方位算出部20は、第1位置センサ9Aにより検出される第1測位位置及び第2位置センサ9Bにより検出される第2測位位置の少なくとも一方に基づいて、旋回体4の位置を算出する。位置方位算出部20は、第1位置センサ9Aにより検出される第1測位位置と第2位置センサ9Bにより検出される第2測位位置との相対位置に基づいて、旋回体4の方位角を算出する。
 傾斜角算出部21は、傾斜センサ10の検出データに基づいて、旋回体4の傾斜角を算出する。旋回体4の傾斜角は、旋回体4のロール角及びピッチ角を含む。ロール角とは、Xg軸を中心とする傾斜方向における旋回体4の傾斜角をいう。ピッチ角とは、Yg軸を中心とする傾斜方向における旋回体4の傾斜角をいう。傾斜角算出部21は、傾斜センサ10の検出データに基づいて、旋回体4のロール角及びピッチ角を算出する。
 作業機位置算出部22は、位置方位算出部20により算出された作業機械1の位置に基づいて、作業機5の位置を算出する。実施形態において、作業機位置算出部22は、車体データ記憶部16に記憶されている油圧ショベル1の車体データと、位置方位算出部20により算出された旋回体4の位置及び方位角と、傾斜角算出部21により算出された旋回体4の傾斜角と、姿勢センサ11の検出データとに基づいて、現場座標系における作業機5の位置を算出する。作業機5の位置は、バケット5Cの位置を含む。バケット5Cの位置は、バケット5Cの先端部に設けられている刃先の位置を含む。
 選択部23は、施工データ記憶部15に記憶されている複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択する。オフセットさせる設計面は、オペレータによって指定される。オペレータは、入力装置8Bを操作して、オフセットさせる設計面を指定する。入力装置8Bからの入力データは、入力データ取得部18に取得される。選択部23は、入力データ取得部18により取得された入力データに基づいて、施工データ記憶部15に記憶されている複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択する。
 オフセット制御部24は、選択部23により選択された少なくとも2つの設計面を加工して、垂直方向にオフセットさせる。
 表示制御部25は、車載モニタ8の表示装置8Aを制御する。表示制御部25は、規定の表示データを表示装置8Aに表示させる。表示制御部25は、オフセットされる前の設計面及びオフセットされた後の設計面のそれぞれを表示装置8Aに表示させることができる。
 走行制御部26は、操作データ取得部17により取得された操作装置7の操作データに基づいて、走行体3を制御する。
 旋回制御部27は、操作データ取得部17により取得された操作装置7の操作データに基づいて、旋回体4を制御する。
 作業機制御部28は、作業機5を制御する。作業機5を制御することは、油圧シリンダ6を制御することを含む。作業機制御部28は、オフセット制御部24により加工及びオフセットされた後の設計面に基づいて、作業機5を制御する。作業機制御部28は、操作データ取得部17により取得された操作装置7の操作データに基づいて、作業機5を制御する。また、作業機制御部28は、設計面に従って作業機5のバケット5Cが移動するようにオペレータの操作をアシスト制御する。作業機制御部28は、作業機位置算出部22により算出されたバケット5Cの刃先が例えばオフセット制御部24によりオフセットされた設計面に追従するように、作業機5をアシスト制御する。
[設計面のオフセット]
 図5は、目標施工面50を模式的に示す図である。図5に示すように、複数の設計面51,52,53により、施工対象の目標形状を示す目標施工面50が規定される。複数の設計面51,52,53のそれぞれは、平面である。設計面52は、設計面51に隣接する。設計面53は、設計面51及び設計面52の少なくとも一方に隣接する。図5に示す例において、設計面53は、設計面52に隣接する。目標施工面50は、相互に異なる勾配の複数の設計面51,52,53によって規定される。
 図5に示すように、複数の設計面51,52,53のそれぞれを設計面51,52,53の垂直方向(法線方向)にオフセットして、新たな目標施工面を生成したい場合がある。すなわち、設計面51を設計面51の垂直方向(法線方向)にオフセットし、設計面52を設計面52の垂直方向(法線方向)にオフセットし、設計面53を設計面53の垂直方向(法線方向)にオフセットしたい場合がある。
 図6は、実施形態に係る課題を説明するための図である。図6に示すように、設計面51の大きさ及び形状を維持したまま、設計面51を設計面51の垂直方向にオフセット量Dだけオフセットした場合、設計面510が生成される。設計面52の大きさ及び形状を維持したまま、設計面52を設計面52の垂直方向にオフセット量Dだけオフセットした場合、設計面520が生成される。設計面53の大きさ及び形状を維持したまま、設計面53を設計面53の垂直方向にオフセット量Dだけオフセットした場合、設計面530が生成される。複数の設計面51,52,53の大きさ及び形状を維持したまま、複数の設計面51,52,53を一度に垂直方向にオフセットすると、図6に示すように、オフセットされた後の設計面510と設計面520とが相互に交差したり、オフセットされた後の設計面520と設計面530とが離隔したりする可能性がある。オフセットされた後の設計面510,520,530が相互に交差したり離隔したりすると、目標施工面50が適正に生成されない可能性がある。設計面510,520,530の交差又は離隔を解消するために、設計面510,520,530のそれぞれを拡大したり縮小したりする対応が考えられる。しかしながら、設計面510,520,530は複数の三角形により構成される多角形面であり、単純に面を拡大・縮小することにより交差または離隔を解消することはできない。また、交差または離隔を解消するために設計面の形状を部分的に変更するには、変更後の形状を実現する三角形の構成を計算する必要があり、複雑な設計面形状においては多大な計算負荷がもたらされる可能性がある。
 そのため、オフセット制御部24は、設計面51,52,53を加工して、垂直方向にオフセットさせる。オフセット制御部24による設計面51,52,53の加工は、オフセットされる前の設計面51,52,53の頂点に基づいて、オフセットされた後の設計面510,520,530を4角形に変更することを含む。
[制御方法]
 図7は、実施形態に係る油圧ショベル1の制御方法を示すフローチャートである。施工データ記憶部15には、複数の設計面が記憶されている。表示制御部25は、施工データ記憶部15に記憶されている複数の設計面を表示装置8Aに表示させる(ステップS1)。
 油圧ショベル1のオペレータは、入力装置8Bを操作して、表示装置8Aに表示された複数の設計面の中から垂直方向にオフセットさせる少なくとも2つの設計面を選択する。入力装置8Bからの入力データは、入力データ取得部18に取得される。選択部23は、入力データ取得部18により取得された入力データに基づいて、施工データ記憶部15に記憶されている複数の設計面の中から垂直方向にオフセットさせる少なくとも2つの設計面を選択する(ステップS2)。
 図8は、実施形態に係る選択部23により選択された設計面51,52,53を模式的に示す斜視図である。実施形態において、選択部23は、設計面51と、設計面51に隣接する設計面52と、設計面51及び設計面52の少なくとも一方に隣接する設計面53とを選択する。図8に示す例において、設計面53は、設計面52に隣接する。
 設計面51、設計面52、及び設計面53のそれぞれは、平面である。なお、設計面51は、相互に隣接する6つの三角形により構成される。設計面51を構成する6つの三角形は、同一平面内に配置される。設計面52は、相互に隣接する5つの三角形により構成される。設計面52を構成する5つの三角形は、同一平面内に配置される。設計面53は、相互に隣接する4つの三角形により構成される。設計面53を構成する4つの三角形は、同一平面内に配置される。
 設計面51、設計面52、及び設計面53のそれぞれの外形は、多角形である。設計面51、設計面52、及び設計面53のそれぞれの頂点は、少なくとも5つである。すなわち、設計面51、設計面52、及び設計面53は、5角形以上である。実施形態において、設計面51の外形は、7角形である。設計面52の外形は、6角形である。設計面53の外形は、6角形である。設計面51の一辺と設計面52の一辺とが一致するように、設計面51と設計面52とが隣接する。設計面52の一辺と設計面53の一辺とが一致するように、設計面52と設計面53とが隣接する。設計面51と設計面52とは、辺61を共有する。設計面52と設計面53とは、辺62を共有する。辺61は、設計面51の2つの頂点及び設計面52の2つの頂点を結ぶ。辺62は、設計面52の2つの頂点及び設計面53の2つの頂点を結ぶ。
 オフセット制御部24は、ステップS2において選択された設計面51,52,53を加工して、垂直方向にオフセットさせる(ステップS3)。
 図9は、実施形態に係るオフセット制御部24によりオフセットされる前の設計面51,52,53及びオフセットされた後の設計面510,520,530を模式的に示す斜視図である。図10は、実施形態に係るオフセット制御部24によりオフセットされる前の設計面51,52,53及びオフセットされた後の設計面510,520,530を模式的に示す側面図である。
 オフセット制御部24による設計面51,52,53の加工は、オフセットされる前の設計面51,52,53の頂点に基づいて、オフセットされた後の設計面510,520,530を4角形にすることを含む。
 設計面510の外形は、4角形である。設計面510は、第1辺610と、第1辺610に対向する第2辺612と、第1辺610の一端部と第2辺612の一端部とを結ぶ第3辺613と、第1辺610の他端部と第2辺612の他端部とを結ぶ第4辺614とを有する。設計面510の第1辺610の寸法及び向きは、設計面51の辺61の寸法及び向きに等しい。設計面510の第1辺610と設計面51の辺61とは、平行である。第1辺610と第2辺612とは、平行である。第1辺610の寸法と第2辺612の寸法とは、等しい。第1辺610と第3辺613とは、直交する。第1辺610と第4辺614とは、直交する。第3辺613と第4辺614とは、平行である。設計面510の第3辺613の寸法及び設計面510の第4辺614の寸法は、図8に示す距離L1に等しい。距離L1は、設計面51に平行且つ辺61に直交する方向において辺61と設計面51の頂点51Fとの距離である。頂点51Fは、設計面51の7つの頂点のうち、設計面51に平行且つ辺61に直交する方向において辺61から最も遠い頂点である。
 設計面530の外形は、4角形である。設計面530は、第5辺620と、第5辺620に対向する第6辺632と、第5辺620の一端部と第6辺632の一端部とを結ぶ第7辺633と、第5辺620の他端部と第6辺632の他端部とを結ぶ第8辺634とを有する。設計面530の第5辺620の寸法及び向きは、設計面53の辺62の寸法及び向きに等しい。設計面530の第5辺620と設計面53の辺62とは、平行である。第5辺620と第6辺632とは、平行である。第5辺620の寸法と第6辺632の寸法とは、等しい。第5辺620と第7辺633とは、直交する。第5辺620と第8辺634とは、直交する。第7辺633と第8辺634とは、平行である。設計面530の第7辺633の寸法及び設計面530の第8辺634の寸法は、図8に示す距離L2に等しい。距離L2は、設計面53に平行且つ辺62に直交する方向において辺62と設計面53の頂点53Fとの距離である。頂点53Fは、設計面53の6つの頂点のうち、設計面53に平行且つ辺62に直交する方向において辺62から最も遠い頂点である。
 設計面520の外形は、4角形である。設計面520は、第1辺610と、第1辺610に対向する第5辺620と、第1辺610の一端部と第5辺620の一端部とを結ぶ第9辺623と、第1辺610の他端部と第5辺620の他端部とを結ぶ第10辺624とを有する。
 設計面510は、設計面51の垂直方向(法線方向)に所定のオフセット量だけオフセットさせた平面である。設計面510と設計面51とは、平行である。設計面520は、設計面52の垂直方向(法線方向)に所定のオフセット量だけオフセットさせた平面である。設計面520と設計面52とは、平行である。設計面530は、設計面53の垂直方向(法線方向)に所定のオフセット量だけオフセットさせた平面である。設計面530と設計面53とは、平行である。設計面510と設計面520とは、第1辺610を共有する。設計面520と設計面530とは、第5辺620を共有する。
 図10に示すように、設計面51に垂直な法線ベクトルを法線ベクトルV1とし、設計面52に垂直な法線ベクトルを法線ベクトルV2とし、設計面53に垂直な法線ベクトルを法線ベクトルV3とした場合、辺61から第1辺610へのオフセットベクトルは、法線ベクトルV1と法線ベクトルV2との合成ベクトルV12に相当する。合成ベクトルV12は、設計面51のオフセット量D1と、設計面52のオフセット量D2と、法線ベクトルV1と法線ベクトルV2とがなす角度θ12から、以下の(1)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000001
 設計面51から設計面510へのオフセット量と設計面52から設計面520へのオフセット量とが等しい場合、水平面に対する辺61から第1辺610へのオフセット方向(水平面に対する合成ベクトルV12の方向)は、水平面に対する法線ベクトルV1と水平面に対する法線ベクトルV2のベクトルの和(V1+V2)の方向に相当する。また、辺62から第5辺620へのオフセットベクトルは、法線ベクトルV2と法線ベクトルV3との合成ベクトルV23に相当する。合成ベクトルV23は、設計面52のオフセット量D2と、設計面53のオフセット量D3と、法線ベクトルV2と法線ベクトルV3とがなす角度θ23から、以下の(2)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000002
 設計面52から設計面520へのオフセット量と設計面53から設計面530へのオフセット量とが等しい場合、水平面に対する辺62から第5辺620へのオフセット方向(水平面に対する合成ベクトルV23の方向)は、水平面に対する法線ベクトルV2と水平面に対する法線ベクトルV3のベクトルの和(V2+V3)の方向に相当する。
 以上のように、実施形態によれば、複数の設計面51,52,53のそれぞれが所定のルールに基づいて加工されることにより、複数の設計面51,52,53のそれぞれが垂直方向に簡便にオフセットされる。複数の設計面510,520,530により、適正な目標施工面が生成される。
 設計面51,52,53のそれぞれが4角形に加工され、垂直方向にオフセットされた後、作業機制御部28は、加工及びオフセットされた後の設計面510,520,530に基づいて、作業機5を制御する。作業機制御部28は、バケット5Cの刃先が設計面510,520,530に追従するように、作業機5をアシスト制御する。
[加工及びオフセット後の2つの設計面が交差する場合の処理]
 図11は、加工及びオフセットされた後の設計面510,520,530を模式的に示す側面図である。図12は、加工及びオフセットされた後の設計面510,530を模式的に示す平面図である。図11及び図12に示すように、設計面510,520,530の相対角度及びオフセット量によっては、加工及びオフセットされた後の設計面510と設計面530とが相互に交差する場合がある。加工及びオフセットされた後の設計面510と設計面530とが交差すると、設計面520が適正な形状とならないため、適正な目標施工面を生成することができない。
 図13は、2つの設計面510,530が交差する場合の処理方法の一例を模式的に示す図である。図13に示すように、加工及びオフセットされた後の設計面510と設計面530とが相互に交差する場合、オフセット制御部24は、加工及びオフセットされた後の設計面510、設計面520、及び設計面530を更に加工する。例えば図13に示すように、オフセット制御部24は、加工及びオフセットされた後の設計面520を、図12に示した第1辺610と第5辺620との間に空白部分を埋めるような三角形状に加工する。この三角形状を設計面540とする。オフセット制御部24は、加工及びオフセットされた後の設計面510の1辺である辺610を、設計面540の1辺で設計面510上にあるものと一致するように縮小する。オフセット制御部24は、加工及びオフセットされた後の設計面530の1辺である辺620を、設計面540の1辺で設計面530上にあるものと一致するように縮小する。加工及びオフセットされた後の設計面510、設計面520、及び設計面530が更に加工されることにより、目標施工面が適正に生成される。
[コンピュータシステム]
 図14は、実施形態に係るコンピュータシステム1000を示すブロック図である。上述の制御装置12は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の制御装置12の機能は、コンピュータプログラムとしてストレージ1003に記憶されている。プロセッサ1001は、コンピュータプログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、コンピュータプログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
 コンピュータプログラム又はコンピュータシステム1000は、上述の実施形態に従って、油圧ショベル1の施工対象に設定される複数の設計面を記憶することと、複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面51,52,53を選択することと、選択された設計面51,52,53を加工して、垂直方向にオフセットさせることと、を実行することができる。
[効果]
 以上説明したように、実施形態に係る油圧ショベル1の制御システム30は、油圧ショベル1の施工対象に設定される複数の設計面を記憶する施工データ記憶部15と、複数の設計面の中から設計面の垂直方向にオフセットさせる少なくとも2つの設計面51,52,53を選択する選択部23と、選択された設計面51,52,53を加工して、垂直方向にオフセットさせるオフセット制御部24と、加工及びオフセットされた後の設計面510,520,530に基づいて、油圧ショベル1が有する作業機5を制御する作業機制御部28と、を備える。
 実施形態においては、計算負荷が抑制された状態で、複数の設計面51,52,53のそれぞれが垂直方向に簡便にオフセットされる。また、設計面51,52,53が所定のルールに基づいて加工及び垂直方向にオフセットされることにより、相互に交差又は離隔していない設計面510,520,530が生成される。設計面510,520,530が相互に交差又は離隔しないので、目標施工面が適正に生成される。
[その他の実施形態]
 上述の実施形態において、施工データ記憶部15、車体データ記憶部16、操作データ取得部17、入力データ取得部18、センサデータ取得部19、位置方位算出部20、傾斜角算出部21、作業機位置算出部22、選択部23、オフセット制御部24、表示制御部25、走行制御部26、旋回制御部27、及び作業機制御部28のそれぞれが、別々のハードウエアにより構成されてもよい。
 上述の実施形態において、作業機械1が走行体3及び旋回体4を有する油圧ショベルであることとした。作業機械1は走行体3及び旋回体4を有しなくてもよい。作業機械1は、作業機を有していればよく、例えばブルドーザでもよいしホイールローダでもよい。
 1…油圧ショベル(作業機械)、2…運転室、3…走行体、3A…履帯、4…旋回体、5…作業機、5A…ブーム、5B…アーム、5C…バケット、6…油圧シリンダ、6A…ブームシリンダ、6B…アームシリンダ、6C…バケットシリンダ、7…操作装置、7A…左作業レバー、7B…右作業レバー、7C…左走行レバー、7D…右走行レバー、7E…左フットペダル、7F…右フットペダル、8…車載モニタ、8A…表示装置、8B…入力装置、8C…警報装置、9…位置センサ、9A…第1位置センサ、9B…第2位置センサ、10…傾斜センサ、11…姿勢センサ、11A…第1姿勢センサ、11B…第2姿勢センサ、11C…第3姿勢センサ、12…制御装置、14…運転シート、15…施工データ記憶部、16…車体データ記憶部、17…操作データ取得部、18…入力データ取得部、19…センサデータ取得部、20…位置方位算出部、21…傾斜角算出部、22…作業機位置算出部、23…選択部、24…オフセット制御部、25…表示制御部、26…走行制御部、27…旋回制御部、28…作業機制御部、30…制御システム、50…目標施工面、51…設計面(第1設計面)、51F…頂点、52…設計面(第2設計面)、53…設計面(第3設計面)、53F…頂点、61…辺、62…辺、510…設計面、520…設計面、530…設計面、540…設計面、610…第1辺、612…第2辺、613…第3辺、614…第4辺、620…第5辺、623…第9辺、624…第10辺、632…第6辺、633…第7辺、634…第8辺、1000…コンピュータシステム、1001…プロセッサ、1002…メインメモリ、1003…ストレージ、1004…インターフェース、Og…現場基準点、Om…代表点、RX…旋回軸。

Claims (13)

  1.  作業機械の施工対象に設定される複数の設計面を記憶する施工データ記憶部と、
     複数の前記設計面の中から前記設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択する選択部と、
     選択された設計面を加工して、前記垂直方向にオフセットさせるオフセット制御部と、を備える、
     作業機械の制御システム。
  2.  前記加工及び前記オフセットされた後の前記設計面に基づいて、前記作業機械が有する作業機を制御する作業機制御部を備える、
     請求項1に記載の作業機械の制御システム。
  3.  前記設計面を表示装置に表示させる表示制御部を備える、
     請求項1に記載の作業機械の制御システム。
  4.  前記選択部は、第1設計面と、前記第1設計面に隣接する第2設計面と、前記第1設計面及び前記第2設計面の少なくとも一方に隣接する第3設計面とを選択する、
     請求項1に記載の作業機械の制御システム。
  5.  前記設計面の加工は、オフセットされる前の設計面の頂点に基づいて、オフセットされた後の設計面を4角形にすることを含む、
     請求項1に記載の作業機械の制御システム。
  6.  前記第3設計面は、前記第1設計面に隣接し、
     前記加工及び前記オフセットされた後の第2設計面と第3設計面とが相互に交差する場合、前記オフセット制御部は、前記加工及び前記オフセットされた後の前記第1設計面、前記第2設計面、及び前記第3設計面を更に加工する、
     請求項4に記載の作業機械の制御システム。
  7.  請求項1に記載の作業機械の制御システムを備える、
     作業機械。
  8.  作業機械の施工対象に設定される複数の設計面を記憶することと、
     複数の前記設計面の中から前記設計面の垂直方向にオフセットさせる少なくとも2つの設計面を選択することと、
     選択された設計面を加工して、前記垂直方向にオフセットさせることと、を含む、
     作業機械の制御方法。
  9.  前記加工及び前記オフセットされた後の前記設計面に基づいて、前記作業機械が有する作業機を制御することを含む、
     請求項8に記載の作業機械の制御方法。
  10.  前記設計面を表示装置に表示させることを含む、
     請求項8に記載の作業機械の制御方法。
  11.  第1設計面と、前記第1設計面に隣接する第2設計面と、前記第1設計面及び前記第2設計面の少なくとも一方に隣接する第3設計面とが選択される、
     請求項8に記載の作業機械の制御方法。
  12.  前記設計面の加工は、前記設計面の頂点に基づいて前記設計面を4角形にすることを含む、
     請求項8に記載の作業機械の制御方法。
  13.  前記第3設計面は、前記第1設計面に隣接し、
     前記加工及び前記オフセットされた後の第2設計面と第3設計面とが相互に交差する場合、前記加工及び前記オフセットされた後の前記第1設計面、前記第2設計面、及び前記第3設計面を更に加工する、
     請求項11に記載の作業機械の制御方法。
PCT/JP2023/031182 2022-09-26 2023-08-29 作業機械の制御システム、作業機械、及び作業機械の制御方法 WO2024070412A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-152594 2022-09-26
JP2022152594A JP2024047145A (ja) 2022-09-26 2022-09-26 作業機械の制御システム、作業機械、及び作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2024070412A1 true WO2024070412A1 (ja) 2024-04-04

Family

ID=90477145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031182 WO2024070412A1 (ja) 2022-09-26 2023-08-29 作業機械の制御システム、作業機械、及び作業機械の制御方法

Country Status (2)

Country Link
JP (1) JP2024047145A (ja)
WO (1) WO2024070412A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
WO2018179962A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2019049248A1 (ja) * 2017-09-06 2019-03-14 日立建機株式会社 作業機械
WO2019049309A1 (ja) * 2017-09-08 2019-03-14 株式会社小松製作所 作業機械の表示制御装置、作業機械、作業機械の表示制御方法
JP2020076278A (ja) * 2018-11-09 2020-05-21 株式会社小松製作所 足場設計装置および足場設計方法
WO2022085556A1 (ja) * 2020-10-19 2022-04-28 日立建機株式会社 作業機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
WO2018179962A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2019049248A1 (ja) * 2017-09-06 2019-03-14 日立建機株式会社 作業機械
WO2019049309A1 (ja) * 2017-09-08 2019-03-14 株式会社小松製作所 作業機械の表示制御装置、作業機械、作業機械の表示制御方法
JP2020076278A (ja) * 2018-11-09 2020-05-21 株式会社小松製作所 足場設計装置および足場設計方法
WO2022085556A1 (ja) * 2020-10-19 2022-04-28 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JP2024047145A (ja) 2024-04-05

Similar Documents

Publication Publication Date Title
JP6987186B2 (ja) 表示システム、建設機械、及び表示方法
KR101989332B1 (ko) 작업 기계의 표시 시스템 및 작업 기계
JP6058217B2 (ja) 作業車両、バケット装置及びチルト角度の取得方法
KR101678759B1 (ko) 굴삭 기계의 표시 시스템 및 굴삭 기계
CN104884713B (zh) 建设机械的显示系统及其控制方法
CN111226007B (zh) 施工管理装置、显示装置及施工管理方法
KR20220086671A (ko) 작업 기계의 제어 시스템, 작업 기계, 작업 기계의 제어 방법
JP2023041933A (ja) 旋回作業車
WO2020158331A1 (ja) 建設機械の制御システム、及び建設機械の制御方法
JP6823036B2 (ja) 建設機械の表示システムおよびその制御方法
CN110352280B (zh) 挖掘机械的显示系统、挖掘机械及挖掘机械的显示方法
DE112021000553T5 (de) Anzeigesystem, Programm und Verfahren zur Steuerung des Anzeigesystems
WO2024070412A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
JP2005061024A (ja) 作業機械の位置計測表示システム
JP7135056B2 (ja) 作業機械の表示システム及び作業機械
JP7168697B2 (ja) 建設機械の表示システムおよびその制御方法
WO2024070453A1 (ja) 作業機械の測定システム、作業機械、及び作業機械の測定方法
WO2024070357A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
US11549238B2 (en) System and method for work machine
JP2018021351A (ja) 施工管理システム、作業機械、及び施工管理方法
JP7065002B2 (ja) 作業機械
WO2024048711A1 (ja) 作業機械の表示システム、作業機械、及び作業機械の表示方法
US20210395980A1 (en) System and method for work machine
JP2024009353A (ja) 作業機械、方法およびシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871653

Country of ref document: EP

Kind code of ref document: A1