WO2024070308A1 - 活性エネルギー線硬化型インキ組成物 - Google Patents

活性エネルギー線硬化型インキ組成物 Download PDF

Info

Publication number
WO2024070308A1
WO2024070308A1 PCT/JP2023/029715 JP2023029715W WO2024070308A1 WO 2024070308 A1 WO2024070308 A1 WO 2024070308A1 JP 2023029715 W JP2023029715 W JP 2023029715W WO 2024070308 A1 WO2024070308 A1 WO 2024070308A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
ink composition
photopolymerization initiator
curable ink
Prior art date
Application number
PCT/JP2023/029715
Other languages
English (en)
French (fr)
Inventor
一綱 三好
千晶 片上
伸一郎 大橋
聡 井上
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Publication of WO2024070308A1 publication Critical patent/WO2024070308A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Definitions

  • the present invention relates to an active energy ray-curable ink composition.
  • the active energy ray curable ink composition contains a compound that is curable by active energy rays (hereinafter referred to as an active energy ray curable compound), such as an acrylic ester compound. Therefore, when the ink composition is irradiated with active energy rays, it instantly cures and forms a strong film due to the three-dimensional crosslinking of the active energy ray curable compound. In addition, since the ink composition cures instantly, post-processing can be performed immediately after printing. Due to these advantages, the active energy ray curable ink composition is preferably used in packaging printing, which requires a strong film to improve productivity and protect the design, and in form printing in the commercial field.
  • active energy ray-curable ink compositions are required to have printability, such as emulsification suitability, background scumming resistance, and initial concentration stability.
  • printability such as emulsification suitability, background scumming resistance, and initial concentration stability.
  • print film suitability such as curability, gloss, and adhesion
  • print film strength such as abrasion resistance and solvent resistance.
  • active energy ray-curable ink compositions contain binders and pigments as solid components, with the binder referring to a component that forms a film.
  • the binder contains a resin component (called a binder resin) that contains an active energy ray-curable compound such as a resin and an acrylic ester compound, a photopolymerization initiator, and various additives as necessary.
  • a binder resin a resin component that contains an active energy ray-curable compound such as a resin and an acrylic ester compound, a photopolymerization initiator, and various additives as necessary.
  • unsaturated polyester resins, epoxy acrylate resins, urethane acrylate resins, polyester acrylate resins, and the like have been considered as binder resins for active energy ray-curable ink compositions.
  • Patent Document 1 discloses a binder resin in which saturated polyester is modified with an isocyanate group-containing urethane acrylate.
  • an active energy ray-curable ink composition for example, an active energy ray-curable flatbed offset printing ink composition has been proposed that contains 30% of an acrylate-added disproportionated rosin alkyd resin obtained by reacting 133 parts of disproportionated rosin, 133 parts of benzoic acid, 130 parts of phthalic acid, and 173 parts of trimethylolpropane, 59.9% of dipentaerythritol hexaacrylate, and 0.1% of hydroquinone (see, for example, Patent Document 2 (Example 1)).
  • Such active energy ray-curable ink compositions are required to have improved misting resistance (scattering suppression) from the viewpoint of high-speed printing and large-volume printing.
  • the inventors' investigations have revealed that the above-mentioned active energy ray-curable ink compositions do not have sufficient misting resistance (scattering suppression).
  • the present invention aims to solve the new problem discovered by the inventors and provide an active energy ray-curable ink composition that has excellent misting resistance and drying properties.
  • an active energy ray-curable ink composition containing a pigment (A), an allyl polymer (B) obtained by polymerizing an allyl compound represented by general formula (I), an ethylenically unsaturated compound (C), and a specific amount of a photopolymerization initiator (D) has excellent misting resistance, and thus arrived at the present invention.
  • the present invention (1) is an active energy ray-curable ink composition
  • a pigment (A) an allyl polymer (B) obtained by polymerizing an allyl compound represented by general formula (I), an ethylenically unsaturated compound (C), and a photopolymerization initiator (D)
  • the present invention relates to an active energy ray-curable ink composition, characterized in that the content of a photopolymerization initiator (D) in the active energy ray-curable ink composition is 5.0 mass % or more.
  • R 1 and R 2 each represent H or CH 3
  • X is an a-valent alicyclic hydrocarbon group or an a-valent aromatic hydrocarbon group
  • a represents 2 or 3.
  • the present invention (2) relates to the active energy ray-curable ink composition according to the present invention (1), characterized in that the photopolymerization initiator (D) contains an intramolecular cleavage type photopolymerization initiator (d-1) and a hydrogen abstraction type photopolymerization initiator (d-2).
  • the photopolymerization initiator (D) contains an intramolecular cleavage type photopolymerization initiator (d-1) and a hydrogen abstraction type photopolymerization initiator (d-2).
  • the present invention (3) is directed to the method for producing a photopolymerization initiator (d-1) of intramolecular cleavage type, which is at least one selected from the group consisting of ⁇ -hydroxyalkylphenone-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, and acylphosphine oxide-based photopolymerization initiators; and the hydrogen abstraction type photopolymerization initiator (d-2) is at least one selected from the group consisting of benzophenone-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and ketosulfone-based photopolymerization initiators.
  • a photopolymerization initiator (d-1) of intramolecular cleavage type which is at least one selected from the group consisting of ⁇ -hydroxyalkylphenone-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization
  • the present invention (4) relates to an active energy ray-curable ink composition according to any one of the present inventions (1) to (3), which further contains a photoinitiator assistant (d-3).
  • the present invention (5) relates to an active energy ray-curable ink composition according to any one of the present inventions (1) to (4), wherein X in the general formula (I) has any one of the following cyclic skeletons:
  • the present invention (6) relates to an active energy ray-curable ink composition according to any one of the present inventions (1) to (4), in which X in the general formula (I) is an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the present invention (7) relates to the active energy ray-curable ink composition according to any one of the present inventions (1) to (4), wherein X in the general formula (I) has the following cyclic skeleton:
  • the active energy ray-curable ink composition of the present invention contains a pigment (A), an allyl polymer (B) obtained by polymerizing an allyl compound represented by general formula (I), an ethylenically unsaturated compound (C), and a photopolymerization initiator (D), and the content of the photopolymerization initiator (D) in the ink composition is adjusted to a predetermined range, so that the ink composition has excellent misting resistance and also has excellent drying properties.
  • the allyl polymer (B) obtained by polymerizing the allyl compound represented by general formula (I) has excellent misting resistance and drying properties, and by blending the allyl polymer (B) obtained by polymerizing the allyl compound represented by general formula (I) together with the pigment (A), the ethylenically unsaturated compound (C), and a specific amount of the photopolymerization initiator (D), even better misting resistance and drying properties can be obtained.
  • Pigment (A) The pigment used in the active energy ray-curable ink composition of the present invention is not particularly limited, and organic or inorganic pigments can be used alone or in combination of two or more kinds.
  • pigments pigments having high color development and high heat resistance are preferred, and organic pigments are usually used, but are not limited thereto.
  • pigments generally have basic polar functional groups and/or acidic polar functional groups, and pigments having basic polar functional groups and/or acidic polar functional groups are preferred.
  • the pigments that can be used in the present invention are not particularly limited, and examples thereof include soluble azo pigments, insoluble azo pigments, phthalocyanine pigments, halogenated phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, isoindoline pigments, perylene pigments, perinone pigments, dioxazine pigments, anthraquinone pigments, dianthraquinonyl pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, pyranthrone pigments, and diketopyrrolopyrrole pigments.
  • blue pigments such as Pigment Black 7, Pigment Blue 15, Pigment Blue 15:1, Pigment Blue 15:3, Pigment Blue 15:4, Pigment Blue 15:6, Pigment Blue 22, Pigment Blue 60, or Pigment Blue 64
  • green pigments such as Pigment Green 7, Pigment Green 36, or Pigment Green 58
  • pigment black 7 any carbon black, such as neutral, acidic, or basic, can be used, with acidic carbon black being preferred. Titanium oxide, zinc oxide, etc. can be used as white pigments.
  • dyes may be used in the active energy ray curable ink composition.
  • Food Red 3, 3:1, 7, 9, 17, 17:1, Food Blue 2, 2:1, Food Yellow 3, Food Black 1, 2, Food Brown 3, etc. are particularly preferred from the standpoint of safety.
  • the amount of pigment (A) added in the active energy ray-curable ink composition is preferably in the range of 5 to 65% by mass.
  • the lower limit is more preferably 10% by mass or more
  • the upper limit is more preferably 60% by mass or less, even more preferably 55% by mass or less, particularly preferably 40% by mass or less, and most preferably 30% by mass or less.
  • Allyl polymer (B) The active energy ray-curable ink composition of the present invention is characterized by containing an allyl polymer (B) obtained by polymerizing an allyl compound represented by general formula (I).
  • the allyl polymer (B) may be used alone or in combination of two or more kinds.
  • R 1 and R 2 each represent H or CH 3
  • X is an a-valent alicyclic hydrocarbon group or an a-valent aromatic hydrocarbon group
  • a represents 2 or 3.
  • X in formula (I) is either an a-valent alicyclic hydrocarbon group or an a-valent aromatic hydrocarbon group.
  • X in formula (I) is preferably an a-valent alicyclic hydrocarbon group because it has excellent compatibility with ethylenically unsaturated compounds.
  • a-valent alicyclic hydrocarbon group When X in formula (1) is an a-valent alicyclic hydrocarbon group, it preferably has 3 to 18 carbon atoms, more preferably 4 to 12 carbon atoms, and particularly preferably 4 to 8 carbon atoms.
  • the a-valent alicyclic hydrocarbon group may be a saturated a-valent alicyclic hydrocarbon group, and may have an unsaturated bond in a portion thereof.
  • the term "alicyclic” refers to a hydrocarbon group having a cyclic structure that does not have aromaticity.
  • a when X is an a-valent alicyclic chain hydrocarbon group, a is preferably 2 or 3, and more preferably 2.
  • the a-valent alicyclic hydrocarbon group may also have an alkyl group.
  • the alkyl group may be a straight or branched chain having 1 to 10 carbon atoms, preferably having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
  • One or more alkyl groups may be present at substitutable positions of the alicyclic hydrocarbon group.
  • the a-valent alicyclic hydrocarbon group does not necessarily have to have an alkyl group. It is preferable that the a-valent alicyclic hydrocarbon group does not have a substituent.
  • X in formula (I) is an a-valent alicyclic hydrocarbon group
  • X is an unsubstituted saturated or partially unsaturated 4- to 8-membered ring skeleton.
  • X in formula (I) is an a-valent alicyclic hydrocarbon group
  • preferred examples of X in the above general formula (I) include the following cyclic skeletons.
  • X in formula (I) is an a-valent alicyclic hydrocarbon group
  • more preferred examples of X in the above general formula (I) include the following cyclic skeletons.
  • X in formula (I) is an a-valent alicyclic hydrocarbon group
  • more preferred examples of X in the above general formula (I) include the following cyclic skeletons.
  • X can be various and may be a cyclic skeleton other than those mentioned above.
  • the cyclic skeleton is partially unsaturated, the number of double bonds in the cyclic skeleton is not limited to 1 and may be 2 or more.
  • X may be intramolecularly crosslinked, and examples of intramolecularly crosslinked X include adamantane, norbornene, and norbornane.
  • X is an a-valent group, and since a is 2 or 3, X is a divalent or trivalent group.
  • a number (2 or 3) of allyl ester groups [-CO-O-CH 2 -CR 2 ⁇ CHR 1 ] shown in general formula (I) are bonded to the cyclic skeleton of X.
  • R 1 of the allyl ester group shown in general formula (I) is H or CH 3
  • R 2 is H or CH 3 .
  • substitution positions of the allyl ester groups [-CO-O-CH 2 -CR 2 ⁇ CHR 1 ] on the ring of X may be in any combination, and the allyl-based compound may be a mixture of substances having different combinations of substitution positions.
  • the two allyl ester groups when two allyl ester groups are bonded to X of a six-membered ring, the two allyl ester groups may be ortho-, meta- or para-oriented, but are preferably ortho- or para-oriented, and more preferably ortho-oriented.
  • allyl compounds represented by the above general formula (I) include 1,2-cyclohexanedicarboxylate, diallyl 1,3-cyclohexanedicarboxylate, diallyl 1,4-cyclohexanedicarboxylate, diallyl 4-cyclohexene-1,2-dicarboxylate, and diallyl 2-cyclohexene-1,2-dicarboxylate.
  • diallyl 1,2-cyclohexanedicarboxylate, diallyl 4-cyclohexene-1,2-dicarboxylate, and diallyl 1,4-cyclohexanedicarboxylate are preferred, and diallyl 1,2-cyclohexanedicarboxylate is more preferred.
  • X in formula (I) is an a-valent aromatic hydrocarbon group, it is preferably any aromatic hydrocarbon group having 6 to 20 carbon atoms, and more preferably any aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • a is preferably 2 or 3, and more preferably 2.
  • the a-valent aromatic hydrocarbon group may also have an alkyl group.
  • the alkyl group may be a straight or branched chain having 1 to 10 carbon atoms, preferably having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
  • One or more alkyl groups may be present at substitutable positions of the aromatic hydrocarbon group.
  • the a-valent aromatic hydrocarbon group does not necessarily have to have an alkyl group. It is preferable that the a-valent aromatic hydrocarbon group does not have a substituent.
  • X in formula (I) is an a-valent aromatic hydrocarbon group
  • X is preferably an unsubstituted aromatic 6- to 8-membered ring skeleton.
  • X in formula (I) is an a-valent aromatic hydrocarbon group
  • preferred examples of X in the above general formula (I) include the following cyclic skeletons.
  • allyl compounds in which X in formula (I) is an a-valent aromatic hydrocarbon group include diallyl phthalate and diallyl isophthalate.
  • An allyl polymer (B) obtained by polymerizing at least one selected from the group consisting of the allyl compounds described above can be used in an active energy ray-curable ink composition.
  • a copolymer of the allyl compound represented by the general formula (I) above with another polymerizable compound can also be used in an active energy ray-curable ink composition.
  • Examples of the method for obtaining the compounds given as specific examples of the allyl-based compound represented by the above general formula (I) include a method for subjecting cyclohexanedicarboxylic acid or cyclohexanedicarboxylic anhydride to an esterification reaction with allyl alcohol or allyl chloride, and a method for subjecting cyclohexenedicarboxylic acid or cyclohexenedicarboxylic anhydride to an esterification reaction with allyl alcohol or allyl chloride.
  • commercially available products of the compounds given as specific examples of the allyl-based compound represented by the above general formula (I) may also be used.
  • the allyl compound represented by the above general formula (I) may be produced according to the method described in, for example, JP-A-2019-19291.
  • the polymerization method for the allyl compound represented by the above general formula (I) is not particularly limited, and a normal polymerization reaction can be used.
  • a polymerization initiator may be added to the above polymerization reaction as necessary. By using a polymerization initiator, a polymer with a higher molecular weight can be obtained in a short time.
  • Polymerization initiators used in the polymerization reaction of allyl compounds include azo initiators such as azobisisobutyronitrile and dimethyl 2,2'-azobisisobutyrate, and peroxide initiators such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, and benzoyl peroxide.
  • azo initiators such as azobisisobutyronitrile and dimethyl 2,2'-azobisisobutyrate
  • peroxide initiators such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, and benzoyl peroxide.
  • the amount of the polymerization initiator is preferably 5.0 parts by mass or less, and more preferably 3.0 parts by mass or less, relative to 100 parts by mass of the monomer of the allyl compound represented by general formula (I). It is particularly preferable that the amount is 0.001 to 3.0 parts by mass.
  • the reaction temperature during polymerization is preferably 60 to 240°C, for example 80 to 220°C.
  • the reaction time is preferably 0.1 to 100 hours, for example 1 to 30 hours.
  • an allyl polymer (A) having monomer units based on the allyl compound represented by the general formula (I) can be prepared.
  • the allyl polymer (A) may be produced according to the method described in JP-A-2019-19291, for example.
  • the content of the monomer units based on the allyl compound represented by the above general formula (I) is preferably 20% by mass or more, more preferably 50% by mass or more, even more preferably 80% by mass or more, and particularly preferably 98% by mass or more, in 100% by mass of the allyl polymer (B), and may be 100% by mass.
  • the weight average molecular weight of the allyl polymer (B) is preferably 300,000 or less, more preferably 200,000 or less, further preferably 2,000 to 150,000, and particularly preferably 5,000 to 140,000.
  • the weight average molecular weight of the allyl polymer (B) is measured by the method described in the Examples.
  • the content of the allyl polymer (B) in the active energy ray-curable ink composition of the present invention is preferably 1 to 60 mass %, more preferably 1 to 55 mass %, and even more preferably 1 to 50 mass %, based on the total amount of the active energy ray-curable ink composition.
  • the lower limit is preferably 5 mass % or more, and the upper limit is particularly preferably 40 mass % or less, and most preferably 30 mass % or less. If the content of the allyl polymer (B) exceeds 60 mass %, the solubility in the ethylenically unsaturated compound (C) may decrease, and the viscosity may increase, resulting in poor handling. If the content of the allyl polymer (B) is less than 1 mass %, the resulting active energy ray-curable ink composition may not have sufficient drying properties.
  • the active energy ray-curable ink composition of the present invention preferably contains an ethylenically unsaturated compound (C) that is curable by irradiation with light.
  • the ethylenically unsaturated compound (C) preferably has 1 to 20 carbon-carbon double bonds, more preferably has 1 to 10 carbon-carbon double bonds, and even more preferably has 2 to 6 carbon-carbon double bonds.
  • Examples of the ethylenically unsaturated compound (C) include (meth)acrylic acid ester compounds, (meth)allyl compounds, and vinyl compounds.
  • the ethylenically unsaturated compound may be used alone, or a mixture of two or more compounds may be used.
  • (Meth)acrylic acid ester compounds include (meth)acrylic acid ester compounds of alcohols such as pentaerythritol, dipentaerythritol, trimethylolpropane, ditrimethylolpropane, neopentyl glycol, 1,6-hexanediol, glycerin, polyethylene glycol, and polypropylene glycol, and (meth)acrylic acid ester compounds obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to these compounds; (meth)acrylic acid ester compounds obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to bisphenols such as bisphenol A and bisphenol F; (meth)acrylic acid ester compounds such as epoxy (meth)acrylate, urethane (meth)acrylate, and alkyd (meth)acrylate; epoxidized soybean oil acrylate; Examples of (meth)acrylic acid ester compounds include (meth)acrylic acid ester
  • Examples of the (meth)allyl compound include di(meth)allyl phthalate and tri(meth)allyl isocyanurate.
  • Examples of the vinyl compound include styrene, divinylbenzene, N-vinylpyrrolidone, and vinyl acetate.
  • pentaerythritol tetraacrylate with an alkylene oxide added and glycerin triacrylate are preferred, with pentaerythritol tetraacrylate with an alkylene oxide added being more preferred.
  • the content of the ethylenically unsaturated compound (C) contained in the active energy ray-curable ink composition of the present invention is preferably 50 to 400 parts by mass, more preferably 50 to 300 parts by mass, and even more preferably 50 to 275 parts by mass, per 100 parts by mass of the allyl polymer (B) in the active energy ray-curable ink composition.
  • the active energy ray-curable ink composition of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator can be used alone or in combination of two or more kinds. There is no particular limitation on the photopolymerization initiator that can be used in the present invention, and any known photopolymerization initiator can be used. As a specific example, it is preferable to use an intramolecular cleavage type photopolymerization initiator (d-1) and a hydrogen abstraction type photopolymerization initiator (d-2). This tends to provide better misting resistance and drying properties.
  • the content of the photopolymerization initiator (D) contained in the active energy ray curable ink composition may be 5.0% by mass or more, preferably 5.4% by mass or more, more preferably 5.6% by mass or more, even more preferably 5.8% by mass or more, particularly preferably 6.0% by mass or more, most preferably 6.2% by mass or more, and even more preferably 6.5% by mass or more, based on the total amount of the active energy ray curable ink composition, in order to obtain better drying properties.
  • the upper limit of the photopolymerization initiator (D) in the active energy ray curable ink composition is not particularly limited, but may be, for example, 15% by mass or less, preferably 14% by mass or less, and more preferably 13% by mass or less. This tends to provide better misting resistance and drying properties.
  • Intramolecular cleavage type photopolymerization initiator (d-1) examples include an ⁇ -hydroxyalkylphenone-based photopolymerization initiator, an ⁇ -aminoalkylphenone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, etc.
  • the intramolecular cleavage type photopolymerization initiator (d-1) may be used alone or in combination of two or more kinds.
  • Examples of the ⁇ -hydroxyalkylphenone photopolymerization initiator include 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one (number average molecular weight: 340), oligo(2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone) (number average molecular weight: 424), and 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)phenoxy]phenyl ⁇ -2-methylpropanone (number average molecular weight: 342). Any one or more of these may be included, and a combination of two or more may be used.
  • 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)phenoxy]phenyl ⁇ -2-methylpropanone and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide are preferred, and 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)phenoxy]phenyl ⁇ -2-methylpropanone is more preferred.
  • the ⁇ -hydroxyalkylphenone-based photopolymerization initiator one having a number average molecular weight of 300 or more is preferred in terms of misting resistance and low migration. Also, the number average molecular weight may be 1500 or less. In this specification, the number average molecular weight of the photopolymerization initiator is measured by gel permeation chromatography (GPC).
  • ⁇ -Aminoalkylphenone photopolymerization initiators include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (number average molecular weight: 279), 1-([1,1'-biphenyl]-4-yl)-2-methyl-2-morpholinopropan-1-one (number average molecular weight: 309), 2-benzyl-2-dimethylamino-1-(4-piperidinophenyl)-butan-1-one (number average molecular weight: 364), 2-(dimethylamino)-1-(4-mo
  • Examples of the ⁇ -aminoalkylphenone photopolymerization initiator include 2-(dimethylamino)-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (number average molecular weight: 366), 2-(dimethylamino)-2-(4-methyl-benzyl
  • ⁇ -aminoalkylphenone photopolymerization initiator one having a number average molecular weight of 300 or more is preferable in terms of misting resistance and low migration. Also, the number average molecular weight may be 1500 or less.
  • Acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, etc., and any one or more of these may be used, or a combination of two or more may be used. Among these, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide is preferred.
  • Acylphosphine oxide photopolymerization initiators with a number average molecular weight of 300 or more are preferred in terms of misting resistance and low migration. The number average molecular weight may be 1500 or less.
  • an ⁇ -hydroxyalkylphenone-based photopolymerization initiator is preferred from the viewpoint of the drying property, misting resistance, low migration, etc. of the coating film
  • an acylphosphine oxide-based photopolymerization initiator is preferred from the viewpoint of the internal curing property of the coating film, and it is more preferable to use an ⁇ -hydroxyalkylphenone-based photopolymerization initiator in combination with an acylphosphine oxide-based photopolymerization initiator.
  • the ratio of ⁇ -hydroxyalkylphenone-based photopolymerization initiator:acylphosphine oxide-based photopolymerization initiator may be 10:90 to 90:10 (by mass), and a ratio of 20:80 to 80:20 is preferred.
  • Hydrogen abstraction type photopolymerization initiator (d-2) examples include benzophenone-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, ketosulfone-based photopolymerization initiators, etc.
  • the hydrogen abstraction type photopolymerization initiator (d-2) may be used alone or in combination of two or more.
  • the benzophenone-based photopolymerization initiator may be benzophenone, o-benzoylbenzoic acid methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, acrylated benzophenone, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, or other benzophenone-based compounds; or aminobenzophenone-based compounds such as 4,4'-bisdimethylaminobenzophenone and 4,4'-bisdiethylaminobenzophenone.
  • polymeric benzophenone derivatives may also be a polymeric benzophenone derivative.
  • polymeric benzophenone derivatives include GENOPOL BP-2 (manufactured by RAHN AG). Any one or more of these may be included, and a combination of multiple compounds may be used. Among these, polymeric benzophenone derivatives are preferred.
  • Thioxanthone-based photopolymerization initiators include thioxanthone, 2-isopropylthioxanthone, 2-dodecylthioxanthone, 2-cyclohexylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1-phenoxythioxanthone, 1-methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3-(2-methoxyethoxycarbonyl)-thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 3,4-di-[2-(2-methoxyethoxy)-ethoxycarbonyl]-thioxanthone, 2-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, and 1-ethoxycarbonyl-3-ch
  • thioxanthone 1-chloro-4-n-propoxythioxanthone, 2-methyl-6-dimethoxymethyl-thioxanthone, 2-methyl-6-(1,1-dimethoxybenzyl)-thioxanthone, 6-ethoxycarbonyl-2-methoxy-thioxanthone, 6-ethoxycarbonyl-2-methylthioxanthone, 1-ethoxycarbonyl-3-(1-methyl-1-morpholinoethyl)-thioxanthone, 2-morpholinomethylthioxanthone, 2-methyl-6-morpholinomethylthioxanthone, thioxanthone-2-carboxylic acid polyethylene glycol ester, polybutylethylene glycol bis(9-oxo-9H-thioxanthinyloxy)acetate, and the like may be included, and may be used in combination of more than one of these.
  • Ketosulfone-based photopolymerization initiators include 1-[4-(4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one. Any one or more of these may be included, and multiple combinations may also be used. Among these, 1-[4-(4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one is preferred.
  • benzophenone-based photopolymerization initiators and ketosulfone-based photopolymerization initiators are preferred, and it is more preferred to use a benzophenone-based photopolymerization initiator and a ketosulfone-based photopolymerization initiator in combination.
  • the ratio of benzophenone-based photopolymerization initiator:ketosulfone-based photopolymerization initiator may be 10:90 to 90:10 (by mass), and a ratio of 20:80 to 80:20 is preferred.
  • the number average molecular weight of the hydrogen abstraction type photopolymerization initiator (d-2) is preferably 300 or more, and more preferably 500 or more.
  • the number average molecular weight may be 1500 or less.
  • hydrogen abstraction type photopolymerization initiators (d-2) having the above characteristics include polybutylethylene glycol bis(9-oxo-9H-thioxanthinyloxy)acetate, polymeric benzophenone derivatives, and 1-[4-(4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one.
  • the photopolymerization initiator in the active energy curable ink composition preferably contains an intramolecular cleavage type photopolymerization initiator (d-1) and a hydrogen abstraction type photopolymerization initiator (d-2).
  • the amount of each photopolymerization initiator in the photopolymerization initiator is not particularly limited, but for example, the ratio (by mass) of intramolecular cleavage type photopolymerization initiator (d-1):hydrogen abstraction type photopolymerization initiator (d-2) may be 10:90 to 90:10, and a ratio of 20:80 to 60:40 is preferred. Within the above range, the effects of the present invention can be more fully obtained.
  • the photopolymerization initiator in the active energy curable ink composition it is not excluded to use a photopolymerization initiator other than those mentioned above.
  • the amount added may be, for example, 10 mass % or less, and preferably 5 mass % or less, based on the total content of the photopolymerization initiator used in the active energy curable ink composition.
  • Photoinitiator Coagent (d-3) In the active energy curable ink composition of the present invention, a photoinitiator assistant (d-3) may be further added to the photopolymerization initiator (D).
  • the photoinitiator assistant include thioxanthone-based photoinitiator assistants and amine-based photoinitiator assistants. Any one or more of these may be contained, and a combination of two or more may be used. Among them, amine-based photoinitiator assistants are preferred.
  • Thioxanthone-based photoinitiator assistants include thioxanthone, 2-isopropylthioxanthone, 2-dodecylthioxanthone, 2-cyclohexylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1-phenoxythioxanthone, 1-methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3-(2-methoxyethoxycarbonyl)-thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 3,4-di-[2-(2-methoxyethoxy)-ethoxycarbonyl]-thioxanthone, 2-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-eth
  • Amine-based photoinitiator assistants are preferably tertiary amines, such as aliphatic amines such as triethanolamine, methyldiethanolamine, and triisopropanolamine, and aromatic amines such as 4,4'-diethylaminobenzophenone, ethyl 2-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and dimethylaminobenzoate esters with branched polyols.
  • aromatic amines are preferred, and dimethylaminobenzoate esters with branched polyols are more preferred.
  • the thioxanthone-based photoinitiator assistant polybutylethylene glycol bis(9-oxo-9H-thioxanthinyloxy)acetate, 4,4'-diethylaminobenzophenone, and dimethylaminobenzoate esters with branched polyols are preferred.
  • the content of the photoinitiator assistant (d-3) in the photopolymerization initiator can be in the range of 0.01 to 50% by mass, preferably in the range of 0.1 to 40% by mass.
  • the lower limit is more preferably 1% by mass or more, and particularly preferably 10% by mass or more.
  • the photopolymerization initiator (D) it is more preferable to use an ⁇ -hydroxyalkylphenone-based photopolymerization initiator and an acylphosphine oxide-based photopolymerization initiator in combination as the intramolecular cleavage-type photopolymerization initiator (d-1), and to use a benzophenone-based photopolymerization initiator and a ketosulfone-based photopolymerization initiator in combination as the hydrogen abstraction-type photopolymerization initiator (d-2). Furthermore, it is preferable to include an amine-based photopolymerization initiator as the photoinitiator assistant (d-3).
  • the total content of the intramolecular cleavage type photopolymerization initiator (d-1), the hydrogen abstraction type photopolymerization initiator (d-2), and the photoinitiator coagent (d-3) in 100% by mass of the photopolymerization initiator (D) is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, particularly preferably 98% by mass or more, and may be 100% by mass.
  • the total content of the intramolecular cleavage type photopolymerization initiator (d-1) and the hydrogen abstraction type photopolymerization initiator (d-2) in 100 mass% of the photopolymerization initiator (D) is preferably 1 to 99 mass%, more preferably 10 to 90 mass%, even more preferably 20 to 90 mass%, and particularly preferably 55 to 75 mass%.
  • the active energy ray-curable ink composition of the present invention may contain various additives, for example, stabilizers (for example, polymerization inhibitors such as hydroquinone, methoquinone, methylhydroquinone, etc.), fillers, viscosity modifiers, extender pigments, waxes, dispersants, etc., depending on the purpose. These may be used alone or in combination of two or more.
  • the amount of stabilizer contained in the active energy ray-curable ink composition is preferably in the range of 0.01 to 2 mass%, more preferably in the range of 0.05 to 1 mass%, based on the total amount of the active energy ray-curable ink composition.
  • An extender pigment can be added to the active energy ray curable ink composition of the present invention.
  • the extender pigment is a component for imparting suitable printability, viscoelasticity, and other properties to the active energy ray curable ink composition, and various pigments that are typically used in the preparation of active energy ray curable ink compositions can be used.
  • examples of such extender pigments include clay, kaolinite (kaolin), barium sulfate, magnesium sulfate, calcium carbonate, silicon oxide (silica), bentonite, talc, mica, and titanium oxide.
  • silica and talc are most preferable.
  • the amount of such extender pigment to be added is, for example, about 0.1 to 10 mass% based on the total amount of the active energy ray curable ink composition, but is not particularly limited.
  • Wax can be added to the active energy ray curable ink composition of the present invention for the purpose of improving abrasion resistance, blocking resistance, etc.
  • the wax include paraffin wax, carnauba wax, beeswax, microcrystalline wax, polyethylene wax, oxidized polyethylene wax, polytetrafluoroethylene wax, amide wax, and other waxes, as well as fatty acids having an atomic carbon number of about 8 to 18, such as coconut oil fatty acid and soybean oil fatty acid.
  • polyethylene wax is the most preferable.
  • the amount of such wax to be added is, for example, about 0.1 to 10 mass% based on the total amount of the active energy ray curable ink composition, but is not particularly limited.
  • dispersants there are many types of dispersants, including polymeric and low molecular weight dispersants, and they can be selected based on dispersibility. Pigment derivatives can be used as dispersion aids.
  • the active energy ray-curable ink composition of the present invention can be produced by mixing the allyl polymer (B) with the pigment (A), the ethylenically unsaturated compound (C), the photopolymerization initiator (D), and, if necessary, with a stabilizer (e.g., a polymerization inhibitor such as hydroquinone, methoquinone, or methylhydroquinone), a filler, a viscosity modifier, an extender pigment, a wax, and a dispersant.
  • a stabilizer e.g., a polymerization inhibitor such as hydroquinone, methoquinone, or methylhydroquinone
  • the active energy ray-curable ink composition of the present invention is cured by exposure to light.
  • the light used for curing is generally ultraviolet light.
  • the curing device and curing conditions used in the curing reaction of the active energy ray-curable ink composition are not particularly limited, and may be any method used in a normal photocuring reaction.
  • the uses of the active energy ray-curable ink composition of the present invention are not particularly limited. Examples include printing inks such as photocurable lithographic printing inks, silk screen inks, and gravure inks.
  • the ink composition can be used in technical fields such as paints for paper, plastics, metals, and woodworking, for example overprint varnishes), adhesives, and photoresists.
  • the ink composition can be widely used in a wide range of applications, including toys and various food packaging materials where safety and hygiene are important, as well as packaging and filling applications for sanitary products, cosmetics, pharmaceuticals, etc.
  • a typical method for producing an active energy ray-curable ink composition is as follows: Allyl polymer (B) and stabilizers are dissolved in ethylenically unsaturated compound (C) while stirring at a temperature of 60°C to 100°C to produce a varnish. Pigment (A), photopolymerization initiator (D) and other additives are added to this varnish and stirred and mixed in a butterfly mixer, and then kneaded with a three-roll mill or the like to obtain the ink composition.
  • compositions A to C having the respective compositions shown in Table 1 were prepared.
  • a photopolymerization initiator mixture (mixture 1) shown in Table 2 was prepared by heating and stirring.
  • Omnirad 819 bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide; number average molecular weight: 418) manufactured by IGM Resins B.V.
  • GENOPOL BP-2 polymeric benzophenone derivative; number average molecular weight: 980
  • RAHN AG *3 GENOPOL AB-2 (dimethylaminobenzoate ester with branched polyol; number average molecular weight: 900) manufactured by RAHN AG *4: ESACURE 1001M (1-[4-(4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one; number average molecular weight: 515) manufactured by IGM Resins B.V.
  • composition A prepared in 1) *2: Polyester acrylate oligomer EBECRYL LEO 10801 (manufactured by Daicel Allnex Corporation) *3: PPTTA: Pentaerythritol alkoxytetraacrylate EBECRYL40 (manufactured by Daicel Allnex Corporation) *4: Solsperse 39000 (manufactured by Lubrizol Japan, Inc.) *5; Mixture of photopolymerization initiators prepared in 2) 1 *6: Ink pigment RAVEN 1060 ULTRA POWDER (manufactured by Birla Carbon) *7: Indigo pigment FASTOGEN BLUE FA5375 (manufactured by Sun Chemical Co.) *8: Red pigment SYMULAR BRILLIANT CARMINE 6B350K (manufactured by Sun Chemical Co.) *9: Talc: NICRON 674 (manufactured by Imerys) *10: Silica; CAB-O-SIL M

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本発明は、耐ミスチング性(飛散抑制性)に優れ、さらに、乾燥性にも優れる活性エネルギー線硬化型インキ組成物を提供する。 本発明は、顔料(A)と、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)と、エチレン性不飽和化合物(C)と、光重合開始剤(D)とを含有することを特徴とする活性エネルギー線硬化型インキ組成物であって、 活性エネルギー線硬化型インキ組成物中における光重合開始剤(D)の含有量が、5.0質量%以上であることを特徴とするものである。

Description

活性エネルギー線硬化型インキ組成物
 本発明は、活性エネルギー線硬化型インキ組成物に関する。
 従来、光(例えば、紫外線)により硬化させる種々の樹脂組成物は、インキ、塗料、接着剤、フォトレジスト等に使用されている。例えば、活性エネルギー線硬化型インキ組成物は、硬化速度が速く短時間で硬化できること、溶剤を使わないので環境に適合していること、省資源・省エネルギーであること等の点が高く評価され実用化が広がっている。
 このような状況下、活性エネルギー線硬化型インキ組成物は、アクリルエステル化合物のような、活性エネルギー線に対して硬化性を有する化合物(以下、活性エネルギー線硬化型化合物という)を含んでいる。そのため、上記インキ組成物は、活性エネルギー線が照射されると、瞬時に硬化し、上記活性エネルギー線硬化型化合物の3次元架橋による強靭な皮膜を形成する。また、上記インキ組成物は、瞬時に硬化することから、印刷直後に後加工を行うことができる。これらの利点から、生産性向上及び意匠の保護のために強い皮膜が要求される包装用パッケージ印刷、及び商業分野におけるフォーム印刷等において、活性エネルギー線硬化型インキ組成物が好適に使用されている。
 一般的に、活性エネルギー線硬化型インキ組成物(以下、単に「インキ」ともいう)には、乳化適性、地汚れ耐性、及び初期濃度安定性といった印刷適性が要求される。また、上記インキには、上記印刷適性に加えて、硬化性、光沢性、及び密着性といった印刷皮膜適性に加えて、耐摩擦性、及び耐溶剤性といった印刷皮膜強度も要求される。
 代表的に、活性エネルギー線硬化型インキ組成物は、固形成分として、バインダー及び顔料を含み、上記バインダーは皮膜を形成する成分を意味する。バインダーは、樹脂及びアクリルエステル化合物のような活性エネルギー線硬化型化合物を含む樹脂成分(バインダー樹脂という)と、光重合開始剤と、必要に応じて各種添加剤とを含む。そして、上記要求に応えるために、これまで、活性エネルギー線硬化型インキ組成物用のバインダー樹脂として、不飽和ポリエステル樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステルアクリレート樹脂等が検討されてきた。
 例えば、特許文献1は、飽和ポリエステルをイソシアネート基含有ウレタンアクリレートで変性したバインダー樹脂を開示している。
 また、活性エネルギー線硬化型インキ組成物としては、例えば、不均化ロジン133部、安息香酸133部、フタル酸130部及びトリメチロールプロパン173部を反応させて得られるアクリレート付加不均化ロジンアルキッド樹脂30%と、ジペンタエリスリトールヘキサアクリレート59.9%と、ハイドロキノン0.1%とを含む活性エネルギー線硬化型平板オフセット印刷インキ組成物が、提案されている(例えば、特許文献2(実施例1)参照。)。
特開2001-348516号公報 特開2007-231220号公報
 このような活性エネルギー線硬化型インキ組成物としては、高速印刷及び大量印刷の観点から、耐ミスチング性(飛散抑制性)の向上が要求されている。しかし、上記の活性エネルギー線硬化型インキ組成物は、耐ミスチング性(飛散抑制性)が十分ではないということが本発明者らの検討の結果明らかとなった。
 本発明は、本発明者らが見出した新たな課題を解決し、耐ミスチング性に優れ、さらに、乾燥性にも優れる活性エネルギー線硬化型インキ組成物を提供することを目的とする。
 本発明者は、鋭意研究の結果、顔料(A)と、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)と、エチレン性不飽和化合物(C)と、特定量の光重合開始剤(D)とを含有することを特徴とする活性エネルギー線硬化型インキ組成物が、耐ミスチング性に優れることを見出し、本発明に想到した。
 すなわち、本発明(1)は、顔料(A)と、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)と、エチレン性不飽和化合物(C)と、光重合開始剤(D)とを含有することを特徴とする活性エネルギー線硬化型インキ組成物であって、
活性エネルギー線硬化型インキ組成物中における光重合開始剤(D)の含有量が、5.0質量%以上であることを特徴とする活性エネルギー線硬化型インキ組成物に関する。
Figure JPOXMLDOC01-appb-C000004
[R及びRは、それぞれ、H又はCHを表し、
Xはa価の脂環式炭化水素基、又はa価の芳香族式炭化水素基である。aは2又は3を表す。]
 本発明(2)は、前記光重合開始剤(D)として、分子内開裂型光重合開始剤(d-1)及び水素引き抜き型光重合開始剤(d-2)を含むことを特徴とする、本発明(1)に記載の活性エネルギー線硬化型インキ組成物に関する。
 本発明(3)は、前記分子内開裂型光重合開始剤(d-1)が、α-ヒドロキシアルキルフェノン系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及びアシルフォスフィンオキサイド系光重合開始剤からなる群より選択される少なくとも1種であり、
且つ前記水素引き抜き型光重合開始剤(d-2)が、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、及びケトスルフォン系光重合開始剤からなる群より選択される少なくとも1種である、本発明(2)に記載の活性エネルギー線硬化型インキ組成物に関する。
 本発明(4)は、さらに、光開始助剤(d-3)を含有する本発明(1)~(3)のいずれかに記載の活性エネルギー線硬化型インキ組成物に関する。
 本発明(5)は、前記一般式(I)中のXが下記のいずれかの環状骨格を有する本発明(1)~(4)のいずれかに記載の活性エネルギー線硬化型インキ組成物に関する。
Figure JPOXMLDOC01-appb-C000005
 本発明(6)は、前記一般式(I)中のXが、炭素数6~20の芳香族炭化水素基である本発明(1)~(4)のいずれかに記載の活性エネルギー線硬化型インキ組成物に関する。
 本発明(7)は、前記一般式(I)中のXが下記の環状骨格を有する本発明(1)~(4)のいずれかに記載の活性エネルギー線硬化型インキ組成物に関する。
Figure JPOXMLDOC01-appb-C000006
 本発明の活性エネルギー線硬化型インキ組成物は、顔料(A)と、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)と、エチレン性不飽和化合物(C)と、光重合開始剤(D)とを含有しつつ、インキ組成物中における光重合開始剤(D)の含有量が所定範囲に調整されているため、耐ミスチング性に優れ、さらに、乾燥性にも優れる。
 以下、本発明を詳細に説明する。
 上記活性エネルギー線硬化型インキ組成物で前述の効果が得られる理由は、以下のように推察される。
 一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)は、耐ミスチング性、乾燥性に優れるが、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)を、顔料(A)と、エチレン性不飽和化合物(C)と、特定量の光重合開始剤(D)と共に配合することにより、より良好な耐ミスチング性、乾燥性が得られる。
顔料(A)
 本発明の活性エネルギー線硬化型インキ組成物に用いる顔料としては特に制限されないが、有機又は無機の顔料を、単独で又は2種類以上混合して用いることができる。顔料のなかでは、発色性が高く、且つ耐熱性の高い顔料が好ましく、通常は有機顔料が用いられるがこれに限定されるものではない。中でも、上記の通り、顔料には一般的に塩基性の極性官能基及び/又は酸性の極性官能基が存在するが、塩基性の極性官能基及び/又は酸性の極性官能基を有する顔料であることが好ましい。
 本発明で使用することのできる顔料は、特に制限されないが、例えば、溶性アゾ顔料、不溶性アゾ顔料、フタロシアニン顔料、ハロゲン化フタロシアニン顔料、キナクリドン顔料、イソインドリノン顔料、イソインドリン顔料、ペリレン顔料、ペリノン顔料、ジオキサジン顔料、アントラキノン顔料、ジアンスラキノニル顔料、アンスラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ピランスロン顔料、又はジケトピロロピロール顔料等があり、
さらに具体的な例をカラーインデックスのジェネリックネームで示すと、
ピグメントブラック7、ピグメントブルー15、ピグメントブルー15:1、ピグメントブルー15:3、ピグメントブルー15:4、ピグメントブルー15:6、ピグメントブルー22、ピグメントブルー60、又はピグメントブルー64等の青色顔料;
ピグメントグリーン7、ピグメントグリーン36、又はピグメントグリーン58等の緑色顔料;
ピグメントレッド9、ピグメントレッド48、ピグメントレッド49、ピグメントレッド52、ピグメントレッド53、ピグメントレッド57、ピグメントレッド97、ピグメントレッド122、ピグメントレッド123、ピグメントレッド144、ピグメントレッド146、ピグメントレッド149、ピグメントレッド166、ピグメントレッド168、ピグメントレッド177、ピグメントレッド178、ピグメントレッド179、ピグメントレッド180、ピグメントレッド185、ピグメントレッド192、ピグメントレッド202、ピグメントレッド206、ピグメントレッド207、ピグメントレッド209、ピグメントレッド215、ピグメントレッド216、ピグメントレッド217、ピグメントレッド220、ピグメントレッド221、ピグメントレッド223、ピグメントレッド224、ピグメントレッド226、ピグメントレッド227、ピグメントレッド228、ピグメントレッド238、ピグメントレッド240、ピグメントレッド242、ピグメントレッド254、又はピグメントレッド255等の赤色顔料;
ピグメントバイオレット19、ピグメントバイオレット23、ピグメントバイオレット29、ピグメントバイオレット30、ピグメントバイオレット37、ピグメントバイオレット40、又はピグメントバイオレット50等の紫色顔料;
ピグメントイエロー12、ピグメントイエロー13、ピグメントイエロー14、ピグメントイエロー17、ピグメントイエロー20、ピグメントイエロー24、ピグメントイエロー74、ピグメントイエロー83、ピグメントイエロー86、ピグメントイエロー93、ピグメントイエロー94、ピグメントイエロー95、ピグメントイエロー109、ピグメントイエロー110、ピグメントイエロー117、ピグメントイエロー120、ピグメントイエロー125、ピグメントイエロー128、ピグメントイエロー137、ピグメント、イエロー138、ピグメントイエロー139、ピグメントイエロー147、ピグメントイエロー148、ピグメントイエロー150、ピグメントイエロー151、ピグメントイエロー153、ピグメントイエロー154、ピグメントイエロー155、ピグメントイエロー166、ピグメントイエロー168、ピグメントイエロー180、ピグメントイエロー185、又はピグメントイエロー213等の黄色顔料;
ピグメントオレンジ13、ピグメントオレンジ36、ピグメントオレンジ37、ピグメントオレンジ38、ピグメントオレンジ43、ピグメントオレンジ51、ピグメントオレンジ55、ピグメントオレンジ59、ピグメントオレンジ61、ピグメントオレンジ64、ピグメントオレンジ71、又はピグメントオレンジ74等の橙色顔料;あるいは、
ピグメントブラウン23、ピグメントブラウン25、又はピグメントブラウン26等の茶色顔料が挙げられる。
 また、ピグメントブラック7については中性、酸性、又は塩基性等のあらゆるカーボンブラックを使用することができ、中でも、酸性のものが好ましい。白色顔料としては、酸化チタン、酸化亜鉛等を使用することができる。
 活性エネルギー線硬化型インキ組成物は、顔料のほかに染料を用いても良く、特にFood Red 3、3:1、7、9、17、17:1、Food Blue 2、2:1、Food Yellow 3、Food Black 1、2、Food Blown 3等は安全性の面から好ましい。
 顔料(A)の添加量は、十分な印刷物の色域を確保するためには、活性エネルギー線硬化型インキ組成物中に、5~65質量%の範囲で含まれることが好ましい。下限は、より好ましくは10質量%以上であり、上限は、より好ましくは60質量%以下、さらに好ましくは55質量%以下、特に好ましくは40質量%以下、最も好ましくは30質量%以下である。
アリル系重合体(B)
 本発明の活性エネルギー線硬化型インキ組成物は、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)を含有することを特徴とする。アリル系重合体(B)は単独で又は2種類以上混合して用いることができる。
Figure JPOXMLDOC01-appb-C000007
[R及びRは、それぞれ、H又はCHを表し、
Xはa価の脂環式炭化水素基、又はa価の芳香族式炭化水素基である。aは2又は3を表す。]
 式(I)中のXは、a価の脂環式炭化水素基、又はa価の芳香族式炭化水素基のいずれかである。エチレン性不飽和化合物との相溶性に優れるという理由から、式(I)中のXは、a価の脂環式炭化水素基であることが好ましい。
(i)a価の脂環式炭化水素基
  式(1)中のXが、a価の脂環式炭化水素基である場合、炭素数は3~18であることが好ましく、4~12であることがより好ましく、4~8であることが特に好ましい。
  a価の脂環式炭化水素基は、飽和のa価の脂環式炭化水素基であってもよく、一部において不飽和結合を有していてもよい。なお、本発明において、脂環式とは、芳香性を有しない環状構造を有する炭化水素基を意味する。
  式(I)中のXが、a価の脂環式鎖状炭化水素基において、aは2又は3であることが好ましく、2であることがより好ましい。
  また、a価の脂環式炭化水素基はアルキル基を有していてもよい。アルキル基は炭素数1~10の直鎖又は分岐鎖であればよく、炭素数1~5であることが好ましく、メチル基又はエチル基がより好ましい。アルキル基は、脂環式炭化水素基の置換可能位置に1個又は2個以上存在していてもよい。なお、a価の脂環式炭化水素基は、必ずしもアルキル基を有していなくともよい。a価の脂環式炭化水素基は置換基を有しないことが好ましい。
 式(I)中のXが、a価の脂環式炭化水素基である場合、Xは置換基を有しない飽和又は一部不飽和の4~8員環の環状骨格であることが好ましい。
 式(I)中のXが、a価の脂環式炭化水素基である場合、上記一般式(I)におけるXの好ましい例として、以下の環状骨格を例示できる。
Figure JPOXMLDOC01-appb-C000008
 式(I)中のXが、a価の脂環式炭化水素基である場合、上記一般式(I)におけるXのより好ましい例として、以下の環状骨格を例示できる。
Figure JPOXMLDOC01-appb-C000009
 式(I)中のXが、a価の脂環式炭化水素基である場合、上記一般式(I)におけるXのさらに好ましい例として、以下の環状骨格を例示できる。
Figure JPOXMLDOC01-appb-C000010
 Xは種々のものであり得て、上記以外の環状骨格であってもよい。環状骨格が一部不飽和である場合において、環状骨格が有する二重結合の数は、1に限定されず、2以上であってもよい。
 Xは、分子内で架橋されていても良く、分子内で架橋されたXの例としては、アダマンタン、ノルボルネン、ノルボルナン等が挙げられる。
 Xはa価の基であり、aは2又は3であるので、Xは2価又は3価の基である。Xの環状骨格には、一般式(I)中に示されるアリルエステル基[-CO-O-CH-CR=CHR]がa個(2個又は3個)結合している。一般式(I)中に示されるアリルエステル基のRは、H又はCHであり、Rは、H又はCHである。
 Xの環上におけるアリルエステル基[-CO-O-CH-CR=CHR]の置換位置はいずれの組み合わせであっても良く、アリル系化合物は異なる置換位置の組み合わせを有する物質の混合物でも良い。特に、2つのアリルエステル基が6員環のXに結合するときに、2つのアリルエステル基は、オルト配向、メタ配向又はパラ配向のいずれでもよいが、オルト配向又はパラ配向であることが好ましく、オルト配向であることがより好ましい。
 上記一般式(I)で表されるアリル系化合物の具体例としては、1,2-シクロヘキサンジカルボン酸ジアリル、1,3-シクロヘキサンジカルボン酸ジアリル、1,4-シクロヘキサンジカルボン酸ジアリル、4-シクロヘキセン-1,2-ジカルボン酸ジアリル、2-シクロヘキセン-1,2-ジカルボン酸ジアリル等を例示することができる。中でも、1,2-シクロヘキサンジカルボン酸ジアリル、4-シクロヘキセン-1,2-ジカルボン酸ジアリル、1,4-シクロヘキサンジカルボン酸ジアリルが好ましく、1,2-シクロヘキサンジカルボン酸ジアリルがより好ましい。
(ii)a価の芳香族式炭化水素基
  式(I)中のXが、a価の芳香族式炭化水素基である場合、炭素数6~20の芳香族炭化水素基のいずれかであることが好ましく、炭素数6~12の芳香族炭化水素基のいずれかであることがより好ましい。
  式(1)中のXが、a価の芳香族炭化水素基において、aは2又は3であることが好ましく、2であることがより好ましい。
  また、a価の芳香族式炭化水素基はアルキル基を有していてもよい。アルキル基は炭素数1~10の直鎖又は分岐鎖であればよく、炭素数1~5であることが好ましく、メチル基又はエチル基がより好ましい。アルキル基は、芳香族炭化水素基の置換可能位置に1個又は2個以上存在していてもよい。なお、a価の芳香族炭化水素基は、必ずしもアルキル基を有していなくともよい。a価の芳香族炭化水素基は置換基を有しないことが好ましい。
 式(I)中のXが、a価の芳香族式炭化水素基である場合、Xは置換基を有しない芳香族式6~8員環の環状骨格であることが好ましい。
 式(I)中のXが、a価の芳香族式炭化水素基である場合、上記一般式(I)におけるXの好ましい例として、以下の環状骨格を例示できる。
Figure JPOXMLDOC01-appb-C000011
  式(I)中のXが、a価の芳香族式炭化水素基である場合、環上におけるアリルエステル(COOCHCH=CH)基の置換位置はいずれの組み合わせであっても良く、それらの混合物でも良い。特に、2つのCOOCHCH=CH基が6員環に結合するときに、2つのCOOCHCH=CH基は、オルト配向又はメタ配向又はパラ配向のいずれでもよいが、オルト配向又はメタ配向であることが好ましい。
  式(I)中のXが、a価の芳香族炭化水素基である場合の具体的なアリル化合物としては、フタル酸ジアリル、イソフタル酸ジアリルが挙げられる。
 上記アリル系化合物からなる群より選択される少なくとも1種以上を重合することで得られるアリル系重合体(B)を活性エネルギー線硬化型インキ組成物に用いることができる。さらには、上記一般式(I)で表されるアリル系化合物と他の重合可能な化合物を共重合したものを活性エネルギー線硬化型インキ組成物に用いることも可能である。
 上記一般式(I)で表されるアリル系化合物の具体例として挙げた化合物を得る方法の例としては、シクロヘキサンジカルボン酸又はシクロヘキサンジカルボン酸無水物とアリルアルコール又はアリルクロライドをエステル化反応させる方法、及び、シクロヘキセンジカルボン酸又はシクロヘキセンジカルボン酸無水物とアリルアルコール又はアリルクロライドをエステル化反応させる方法が挙げられる。
 また、上記一般式(I)で表されるアリル系化合物の具体例として挙げた化合物の市販品を用いてもよい。
 また、例えば、特開2019-19291号公報に記載の方法に従って上記一般式(I)で表されるアリル系化合物を製造してもよい。
 上記一般式(I)で表されるアリル系化合物の重合方法は、特に限定されず、通常の重合反応を用いることができる。上記重合反応には、必要に応じて、適宜重合開始剤を添加してもよい。重合開始剤を用いることで、より高分子量の重合体を短時間に得ることができる。
 アリル系化合物の重合反応に用いる重合開始剤としては、アゾビスイソブチロニトリル、2,2’-アゾビスイソ酪酸ジメチル等のアゾ開始剤、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、ベンゾイルパーオキサイド等の過酸化物開始剤が挙げられる。
 重合開始剤の量は、一般式(I)で表されるアリル系化合物の単量体100質量部に対して、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましい。また、0.001~3.0質量部であることが特に好ましい。
 重合時の反応温度は60~240℃、例えば80~220℃であることが好ましい。反応時間は、0.1~100時間、例えば1~30時間であることが好ましい。
 上記一般式(I)で表されるアリル系化合物を上述の方法等により重合することにより、上記一般式(I)で表されるアリル系化合物に基づく単量体単位を有するアリル系重合体(A)を調製できる。
 また、例えば、特開2019-19291号公報に記載の方法に従ってアリル系重合体(A)を製造してもよい。
 上記一般式(I)で表されるアリル系化合物に基づく単量体単位の含有量は、アリル系重合体(B)100質量%中、20質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%であってもよい。
 アリル系重合体(B)の重量平均分子量は300,000以下であることが好ましく、200,000以下であることがより好ましい。また、2,000~150,000であることがさらに好ましく、5,000~140,000であることが特に好ましい。
 アリル系重合体(B)の重量平均分子量は実施例に記載の方法により測定される。
 本発明の活性エネルギー線硬化型インキ組成物中におけるアリル系重合体(B)の含有量は、活性エネルギー線硬化型インキ組成物全量に対して、1~60質量%であることが好ましく、1~55質量%であることがより好ましく、1~50質量%であることがさらに好ましい。下限は、5質量%以上であることが好ましく、上限は、40質量%以下であることが特に好ましく、30質量%以下であることが最も好ましい。アリル系重合体(B)の含有量が60質量%を超えると、エチレン性不飽和化合物(C)への溶解性が悪くなり、粘度も高くなり取扱い性が悪くなることがある。アリル系重合体(B)の含有量が1質量%未満であると、得られる活性エネルギー線硬化型インキ組成物に充分な乾燥性が得られないことがある。
エチレン性不飽和化合物(C)
 本発明の活性エネルギー線硬化型インキ組成物は、光照射により硬化可能であるエチレン性不飽和化合物(C)を含有することが好ましい。エチレン性不飽和化合物(C)は、炭素-炭素二重結合を1~20個有することが好ましく、1~10個有することがより好ましく、2~6個有することがさらに好ましい。エチレン性不飽和化合物(C)としては、(メタ)アクリル酸エステル化合物、(メタ)アリル化合物及びビニル化合物等が挙げられる。また、エチレン性不飽和化合物は単独で用いてもよく、2種以上の化合物の混合物を用いることも可能である。
 (メタ)アクリル酸エステル化合物としては、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、1,6-ヘキサンジオール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類の(メタ)アクリル酸エステル化合物、及びそれらにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加した(メタ)アクリル酸エステル化合物;ビスフェノールA、ビスフェノールF等のビスフェノール類にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加したものの(メタ)アクリル酸エステル化合物;エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、アルキッド(メタ)アクリレート等の(メタ)アクリル酸エステル化合物;エポキシ化大豆油アクリレート等の(メタ)アクリル酸エステル化合物を例示することができ、好ましくはペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、1,6-ヘキサンジオール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類の(メタ)アクリル酸エステル化合物、及びそれらにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加した(メタ)アクリル酸エステル化合物であり、より好ましくはペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパン、ジトリメチロールプロパン等のアルコール類の(メタ)アクリル酸エステル化合物、及びそれらにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加した(メタ)アクリル酸エステル化合物である。
 (メタ)アリル化合物としては、ジ(メタ)アリルフタレート、トリ(メタ)アリルイソシアヌレート等を例示することができる。
 ビニル化合物としては、スチレン、ジビニルベンゼン、N-ビニルピロリドン、酢酸ビニル等を例示することができる。
 中でも、アリル系重合体(B)との相溶性、光硬化した際の硬化性の点で、アルキレンオキサイドを付加したペンタエリスリトールテトラアクリレート、グリセリントリアクリレートが好ましく、アルキレンオキサイドを付加したペンタエリスリトールテトラアクリレートがより好ましい。
 本発明の活性エネルギー線硬化型インキ組成物に含有されるエチレン性不飽和化合物(C)の含有量は、活性エネルギー線硬化型インキ組成物中におけるアリル系重合体(B)100質量部に対して、50~400質量部であることが好ましく、50~300質量部であることがより好ましく、50~275質量部であることがさらに好ましい。
光重合開始剤(D)
 本発明の活性エネルギー線硬化型インキ組成物は、光重合開始剤を含むものである。光重合開始剤は単独で又は2種類以上混合して用いることができる。本発明に用いることができる光重合開始剤としては、特に制限はなく、公知の光重合開始剤を用いることができるが、具体例としては、分子内開裂型光重合開始剤(d-1)と、水素引き抜き型光重合開始剤(d-2)とを用いることが好ましい。これにより、より良好な耐ミスチング性、乾燥性が得られる傾向がある。
 活性エネルギー線硬化型インキ組成物に含有される光重合開始剤(D)の含有量は、より良好な乾燥性を得るために、活性エネルギー線硬化型インキ組成物全量に対して、5.0質量%以上であればよく、5.4質量%以上が好ましく、5.6質量%以上がより好ましく、5.8質量%以上がさらに好ましく、6.0質量%以上が特に好ましく、6.2質量%以上が最も好ましく、6.5質量%以上がより最も好ましい。活性エネルギー線硬化型インキ組成物における光重合開始剤(D)の上限値は特に限定されないが、例えば、15質量%以下であればよく、14質量%以下であることが好ましく、13質量%以下であることがより好ましい。これにより、より良好な耐ミスチング性、乾燥性が得られる傾向がある。
分子内開裂型光重合開始剤(d-1)
 分子内開裂型光重合開始剤(d-1)として、α-ヒドロキシアルキルフェノン系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤等を例示することができる。分子内開裂型光重合開始剤(d-1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 α-ヒドロキシアルキルフェノン系光重合開始剤としては、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(数平均分子量:340)、オリゴ(2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン)(数平均分子量:424)、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ〕フェニル}-2-メチルプロパノン(数平均分子量:342)等があげられ、これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。中でも、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ〕フェニル}-2-メチルプロパノン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましく、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ〕フェニル}-2-メチルプロパノンがより好ましい。α-ヒドロキシアルキルフェノン系光重合開始剤としては、耐ミスチング、並びに低マイグレーションの点で、数平均分子量が300以上のものが好ましい。また、数平均分子量は、1500以下のものであればよい。
 本明細書において、光重合開始剤の数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される。
 α-アミノアルキルフェノン系光重合開始剤としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(数平均分子量:279)、1-([1,1’-ビフェニル]-4-イル)-2-メチル-2-モルフォリノプロパン-1-オン(数平均分子量:309)、2-ベンジル-2-ジメチルアミノ-1-(4-ピペリジノフェニル)-ブタン-1-オン(数平均分子量 364)、2-(ジメチルアミノ)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン(数平均分子量:366)、2-(ジメチルアミノ)-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン(数平均分子量:380)、「1-(9,9-ジブチル-9H-フルオレン-2-イル)-2-メチル-2-モルフォリノプロパン-1-オン」(平均分子量:434)が挙げられ、これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。α-アミノアルキルフェノン系光重合開始剤としては、耐ミスチング、並びに低マイグレーションの点で、数平均分子量が300以上のものが好ましい。また、数平均分子量は、1500以下のものであればよい。
 アシルフォスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられ、これらはどれか1つ以上用いればよく、複数組み合わせて用いてもよい。中でも、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましい。アシルフォスフィンオキサイド系光重合開始剤としては、耐ミスチング、並びに低マイグレーションの点で、数平均分子量が300以上のものが好ましい。また、数平均分子量は、1500以下のものであればよい。
 中でも、分子内開裂型光重合開始剤(d-1)として、塗膜の乾燥性、耐ミスチング、低マイグレーション等の観点で、α-ヒドロキシアルキルフェノン系光重合開始剤が好ましく、塗膜の内部硬化性の点で、アシルフォスフィンオキサイド系光重合開始剤が好ましく、α-ヒドロキシアルキルフェノン系光重合開始剤とアシルフォスフィンオキサイド系光重合開始剤を併用することがより好ましい。α-ヒドロキシアルキルフェノン系光重合開始剤とアシルフォスフィンオキサイド系光重合開始剤を併用する場合、α-ヒドロキシアルキルフェノン系光重合開始剤:アシルフォスフィンオキサイド系光重合開始剤として、10:90~90:10の比率(質量基準)であればよく、20:80~80:20の比率が好ましい。
水素引き抜き型光重合開始剤(d-2)
 水素引き抜き型光重合開始剤(d-2)として、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、ケトスルフォン系光重合開始剤等を例示することができる。水素引き抜き型光重合開始剤(d-2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ベンゾフェノン系光重合開始剤としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;4,4’-ビスジメチルアミノベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物が挙げられる。また、高分子ベンゾフェノン誘導体であってもよい。高分子ベンゾフェノン誘導体として、具体的には、GENOPOL BP-2(RAHN AG社製)等を例示することができる。これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。中でも、高分子ベンゾフェノン誘導体が好ましい。
 チオキサントン系光重合開始剤としては、チオキサントン、2-イソプロピルチオキサントン、2-ドデシルチオキサントン、2-シクロヘキシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-フェノキシチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)-チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、3,4-ジ-[2-(2-メトキシエトキシ)-エトキシカルボニル]-チオキサントン、2-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-クロロ-4-n-プロポキシチオキサントン、2-メチル-6-ジメトキシメチル-チオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)-チオキサントン、6-エトキシカルボニル-2-メトキシ-チオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)-チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、チオキサントン-2-カルボン酸ポリエチレングリコールエステル、ポリブチルエチレングリコールビス(9-オキソー9H-チオキサンチニルオキシ)アセテート等が挙げられ、これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。
 ケトスルフォン系光重合開始剤としては、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルホニル)プロパン-1-オン等が挙げられる。これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。中でも、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルホニル)プロパン-1-オンが好ましい。
 中でも、水素引き抜き型光重合開始剤(d-2)としては、ベンゾフェノン系光重合開始剤、ケトスルフォン系光重合開始剤が好ましく、ベンゾフェノン系光重合開始剤とケトスルフォン系光重合開始剤を併用することがより好ましい。ベンゾフェノン系光重合開始剤とケトスルフォン系光重合開始剤を併用する場合、ベンゾフェノン系光重合開始剤:ケトスルフォン系光重合開始剤として、10:90~90:10の比率(質量基準)であればよく、20:80~80:20の比率が好ましい。
 また、水素引き抜き型光重合開始剤(d-2)は、耐ミスチング及び低マイグレーションの点で、数平均分子量が300以上であることが好ましく、500以上であることがより好ましい。また、数平均分子量は、1500以下のものであればよい。上記特徴と有する水素引き抜き型光重合開始剤(d-2)としては、ポリブチルエチレングリコールビス(9-オキソー9H-チオキサンチニルオキシ)アセテートや高分子ベンゾフェノン誘導体、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルホニル)プロパン-1-オンを例示することができる。
 活性エネルギー硬化型インキ組成物における光重合開始剤中には、分子内開裂型光重合開始剤(d-1)と、水素引き抜き型光重合開始剤(d-2)とを含んでいることが好ましく、光重合開始剤中における各光重合開始剤の配合量は特に限定されないが、例えば、分子内開裂型光重合開始剤(d-1):水素引き抜き型光重合開始剤(d-2)として、10:90~90:10の比率(質量基準)であればよく、20:80~60:40の比率が好ましい。上記範囲内であれば、本発明の効果をより十分に得ることができる。
 活性エネルギー硬化型インキ組成物における光重合開始剤としては、上述した以外の光重合開始剤を用いることを排除するものではない。上述した光重合開始剤以外の光重合開始剤を用いる場合の添加量は、活性エネルギー硬化型インキ組成物に用いる光重合開始剤の全含有量に対して、例えば、10質量%以下であればよく、5質量%以下が好ましい。
光開始助剤(d-3)
 本発明の活性エネルギー硬化型インキ組成物において、光重合開始剤(D)には、さらに光開始助剤(d-3)を添加してもよい。光開始助剤として、チオキサントン系光開始助剤、アミン系光開始助剤などが挙げられる。これらはどれか1つ以上含まれればよく、複数組み合わせて用いてもよい。中でも、アミン系光開始助剤が好ましい。
 チオキサントン系光開始助剤としては、チオキサントン、2-イソプロピルチオキサントン、2-ドデシルチオキサントン、2-シクロヘキシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-フェノキシチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)-チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、3,4-ジ-[2-(2-メトキシエトキシ)-エトキシカルボニル]-チオキサントン、2-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-クロロ-4-n-プロポキシチオキサントン、2-メチル-6-ジメトキシメチル-チオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)-チオキサントン、6-エトキシカルボニル-2-メトキシ-チオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)-チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、チオキサントン-2-カルボン酸ポリエチレングリコールエステル、ポリブチルエチレングリコールビス(9-オキソー9H-チオキサンチニルオキシ)アセテート等が挙げられる。
 アミン系光開始助剤としては、第3級アミンが好ましく、例えばトリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン等の脂肪族アミンや、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、分岐ポリオールとのジメチルアミノベンゾエートエステル等の芳香族アミンが挙げられる。中でも、芳香族アミンが好ましく、分岐ポリオールとのジメチルアミノベンゾエートエステルがより好ましい。
 光開始助剤(d-3)としては、耐ミスチングや低マイグレーションの点で、チオキサントン系光開始助剤のポリブチルエチレングリコールビス(9-オキソー9H-チオキサンチニルオキシ)アセテートや4,4’-ジエチルアミノベンゾフェノン、分岐ポリオールとのジメチルアミノベンゾエートエステルが好ましい。
 光開始助剤(d-3)の含有量は、光重合開始剤中に0.01~50質量%の範囲で用いることができ、0.1~40質量%の範囲が好ましい。下限は、さらに好ましくは1質量%以上、特に好ましくは10質量%以上である。
 光重合開始剤(D)としては、分子内開裂型光重合開始剤(d-1)として、α-ヒドロキシアルキルフェノン系光重合開始剤とアシルフォスフィンオキサイド系光重合開始剤を併用し、水素引き抜き型光重合開始剤(d-2)として、ベンゾフェノン系光重合開始剤とケトスルフォン系光重合開始剤を併用することがより好ましい。さらに、光開始助剤(d-3)として、アミン系光開始助剤を含むことが好ましい。
 光重合開始剤(D)100質量%中の、分子内開裂型光重合開始剤(d-1)、水素引き抜き型光重合開始剤(d-2)、及び光開始助剤(d-3)の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは98質量%以上であり、100質量%であってもよい。
 光重合開始剤(D)100質量%中の、分子内開裂型光重合開始剤(d-1)及び水素引き抜き型光重合開始剤(d-2)の合計含有量は、好ましくは1~99質量%、より好ましくは10~90質量%、さらに好ましくは20~90質量%、特に好ましくは55~75質量%である。
その他の添加物
 本発明の活性エネルギー線硬化型インキ組成物は、種々の添加剤、例示すれば、安定剤(例えば、ハイドロキノン、メトキノン、メチルハイドロキノン等の重合禁止剤)、充填剤、粘度調整剤、体質顔料、ワックス、分散剤等の各種添加剤を目的に応じて含有することができる。これらは単独で又は2種類以上混合して用いることができる。活性エネルギー線硬化型インキ組成物に含有される安定剤の量は、活性エネルギー線硬化型インキ組成物全量に対して、0.01~2質量%の範囲であることが好ましく、0.05~1質量%の範囲がより好ましい。
 本発明の活性エネルギー線硬化型インキ組成物には、体質顔料を添加することができる。体質顔料は、活性エネルギー線硬化型インキ組成物に適度な印刷適性や粘弾性等の特性を付与するための成分であり、活性エネルギー線硬化型インキ組成物の調製において通常用いられる各種のものを用いることができる。このような体質顔料としては、クレー、カオリナイト(カオリン)、硫酸バリウム、硫酸マグネシウム、炭酸カルシウム、酸化ケイ素(シリカ)、ベントナイト、タルク、マイカ、酸化チタン等が例示される。上述した体質顔料では、シリカ、タルクがもっとも好ましい。こうした体質顔料の添加量としては、活性エネルギー線硬化型インキ組成物全量に対して0.1~10質量%程度が例示されるが、特に限定されない。
 本発明の活性エネルギー線硬化型インキ組成物は、耐摩性や耐ブロッキング性等を向上させる目的でワックスを添加することができる。前記ワックスとしては、パラフィンワックス、カルナバワックス、みつろう、マイクロクリスタリンワックス、ポリエチレンワックス、酸化ポリエチレンワックス、ポリテトラフルオロエチレンワックス、アマイドワックスなどのワックス、ヤシ油脂肪酸や大豆油脂肪酸などの原子炭素数8~18程度の範囲にある脂肪酸等が例示される。上述したワックスでは、ポリエチレンワックスがもっとも好ましい。こうしたワックスの添加量としては、活性エネルギー線硬化型インキ組成物全量に対して0.1~10質量%程度が例示されるが、特に限定されない。
 高分子型分散剤、低分子型分散剤など多種の分散剤が存在するが、分散性に応じて選択することができる。分散補助剤として、顔料誘導体を用いることができる。
 本発明の活性エネルギー線硬化型インキ組成物は、アリル系重合体(B)に、顔料(A)、エチレン性不飽和化合物(C)、光重合開始剤(D)、さらには必要に応じて、安定剤(例えば、ハイドロキノン、メトキノン、メチルハイドロキノン等の重合禁止剤)、充填剤、粘度調整剤、体質顔料、ワックス、分散剤を混合することによって製造できる。本発明の活性エネルギー線硬化型インキ組成物は、光を照射することによって硬化する。硬化に用いる光は、一般に紫外線である。
 活性エネルギー線硬化型インキ組成物の硬化反応に用いる硬化装置、また、硬化条件は特に限定されず、通常の光硬化反応に用いられる方法であればよい。
 本発明の活性エネルギー線硬化型インキ組成物の用途は特に限定されない。例えば、光硬化性平版用印刷インキ、シルクスクリーンインキ、グラビアインキ等の印刷インキなどが挙げられる。又は例えば、紙用、プラスチック用、金属用、木工用等の塗料、例示すれば、オーバープリントワニス)、接着剤、フォトレジスト等の技術分野において使用できる。中でも、安全性、衛生性を重んじる玩具、各種食品包材に加え、サニタリー・コスメ・医薬品等の包装、充填用途に幅広く展開され得る。
 例えば、活性エネルギー線硬化型インキ組成物の一般的作製方法は次のとおりである。エチレン性不飽和化合物(C)にアリル系重合体(B)及び安定剤等を60℃~100℃の温度で攪拌しながら溶解させワニスを作製する。このワニスに、顔料(A)、光重合開始剤(D)、その他添加剤を、バタフライミキサーで撹拌混合後、3本ロール等で練肉することでインキ組成物が得られる。
(実施例)
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
アリル系重合体の重量平均分子量(Mw)、分子量分布(Mw/Mn)の測定
 重量平均分子量(Mw)、分子量分布(Mw/Mn)はGPCを用いて測定した。標準ポリスチレン換算の重量平均分子量の値である。
カラム:ShodexKF-806L、KF-804、KF-803、KF-802、KF-801を直列に接続
流速:1.0mL/min
温度:40℃
検出:RID-6A
試料:試料20mgをテトラヒドロフラン10mLに溶解させ測定用のサンプルとした。
製造例1 1,2-シクロヘキサンジカルボン酸ジアリル重合体の合成
 1,2-シクロヘキサンジカルボン酸ジアリルは、シクロヘキサンジカルボン酸無水物とアリルアルコールをエステル化反応させることによって製造した。
 3Lのセパラブルフラスコに1,2-シクロヘキサンジカルボン酸ジアリル2400gを加え、60gのベンゾイルパーオキサイドを加えて80℃で加熱攪拌した。2.5時間反応させた後、30℃まで冷却した。冷却後、フラスコにメタノールを加え、重合体を沈殿させた。得られた重合体を40℃で16時間減圧乾燥した(収量:408g、収率:17%、Mw=32,000、Mw/Mn=2.8)。得られた重合体を重合体1とし、以下で用いた。
実施例1~7、比較例1
 下記表3、4に記載の各組成の活性エネルギー線硬化型インキ組成物を調製し、活性エネルギー線硬化型インキ組成物の特性を評価した。
1)活性エネルギー線硬化型樹脂組成物の調製
 表1に記載の各組成の活性エネルギー線硬化型樹脂組成物(組成物A~C)を調製した。
Figure JPOXMLDOC01-appb-T000012
2)光重合開始剤混合物の調整
 表2に記載の光重合開始剤混合物(混合物1)を加熱撹拌することで調製した。
Figure JPOXMLDOC01-appb-T000013
※1;Omnirad 819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド;数平均分子量:418)IGM Resins B.V.社製
※2;GENOPOL BP‐2(高分子ベンゾフェノン誘導体;数平均分子量:980)RAHN AG社製
※3;GENOPOL AB‐2(分岐ポリオールとのジメチルアミノベンゾエートエステル;数平均分子量:900)RAHN AG社製
※4;ESACURE 1001M(1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルホニル)プロパン-1-オン;数平均分子量:515)IGM Resins B.V.社製
※5;ESACURE KIP 160(2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)フェノキシ〕フェニル}-2-メチルプロパノン;数平均分子量:342)IGM Resins B.V.社製
3)活性エネルギー線硬化型インキ組成物1~8の調製(実施例1~7、比較例1)
 1)で調製した組成物A~Cと表3、4に記載の各成分を3本ロールで練肉して活性エネルギー線硬化型インキ組成物1~8を調製し、インキの特性を評価した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
※1;1)で調製した組成物A
※2;ポリエステルアクリレートオリゴマー EBECRYL LEO 10801(ダイセル・オルネクス株式会社製)
※3;PPTTA:ペンタエリスリトールアルコキシテトラアクリレート EBECRYL40(ダイセル・オルネクス株式会社製)
※4;ソルスパース39000(日本ルーブリゾール株式会社製)
※5;2)で調整した光重合開始剤の混合物1
※6;墨顔料 RAVEN 1060 ULTRA POWDER(Birla Carbon社製)
※7;藍顔料 FASTOGEN BLUE FA5375 (SunChemical社製)
※8;紅顔料 SYMULER BRILLIANT CARMINE 6B350K(SunChemical社製)
※9;タルク:NICRON 674(Imerys社製)
※10;シリカ;CAB-O-SIL M7D(キャボットコーポレーション社製)
※11;ポリエチレンワックス:S-394-N1(Shamrock社製)
※12;重合禁止剤 FLORSTAB UV-1(KROMACHEM LTD社製)
※13;1)で調製した組成物B
※14;1)で調製した組成物C
4)乾燥性試験
 片アート紙(王子製紙社製)に、上記各組成物1~8をRIテスターを用いて、片アート紙表面に塗膜をコートした。各組成物をコートした片アート紙を出力120W/cmの高圧水銀ランプ(ランプ距離11cm)を用いて、コンベアスピード50m/minで塗膜がタックフリーになるまで、複数回ベルトコンベア上に載せて通過させて硬化させた。なお、UV硬化装置はアイグラフィックス株式会社製コンベア型紫外線硬化装置を用いた。通過させる回数が少ないほど乾燥性に優れていることを表す。評価結果を表5、6に示す。
5)耐ミスチング試験
 インコメーター(株式会社東洋精機製作所製)のゴムロール下部に片アート紙をセットし、ロールにインキを塗布した状態で、400rpm、1分間、1200rpm、2分間ロールを回転させ、片アート紙の紙面上に飛散したインキの汚れを目視で確認、下記基準で評価した。評価結果を表5、6に示す。
評価基準:紙面に汚れなし:〇、紙面に少しの汚れあり:△、紙面に多くの汚れあり:×
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表5、6の結果より、実施例1から実施例7において、乾燥性において、従来用いられている配合より優れるか同等の性能を有しつつ、耐ミスチング性において、優れていることが証明された。

Claims (7)

  1. 顔料(A)と、一般式(I)で表されるアリル系化合物を重合して得られるアリル系重合体(B)と、エチレン性不飽和化合物(C)と、光重合開始剤(D)とを含有することを特徴とする活性エネルギー線硬化型インキ組成物であって、
    活性エネルギー線硬化型インキ組成物中における光重合開始剤(D)の含有量が、5.0質量%以上であることを特徴とする活性エネルギー線硬化型インキ組成物。
    Figure JPOXMLDOC01-appb-C000001
    [R及びRは、それぞれ、H又はCHを表し、
    Xはa価の脂環式炭化水素基、又はa価の芳香族式炭化水素基である。aは2又は3を表す。]
  2. 前記光重合開始剤(D)として、分子内開裂型光重合開始剤(d-1)及び水素引き抜き型光重合開始剤(d-2)を含むことを特徴とする、請求項1に記載の活性エネルギー線硬化型インキ組成物。
  3. 前記分子内開裂型光重合開始剤(d-1)が、α-ヒドロキシアルキルフェノン系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及びアシルフォスフィンオキサイド系光重合開始剤からなる群より選択される少なくとも1種であり、
    且つ前記水素引き抜き型光重合開始剤(d-2)が、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、及びケトスルフォン系光重合開始剤からなる群より選択される少なくとも1種である、請求項2に記載の活性エネルギー線硬化型インキ組成物。
  4. さらに、光開始助剤(d-3)を含有する請求項1又は2に記載の活性エネルギー線硬化型インキ組成物。
  5. 前記一般式(I)中のXが下記のいずれかの環状骨格を有する請求項1又は2に記載の活性エネルギー線硬化型インキ組成物。
    Figure JPOXMLDOC01-appb-C000002
  6. 前記一般式(I)中のXが、炭素数6~20の芳香族炭化水素基である請求項1または2に記載の活性エネルギー線硬化型インキ組成物。
  7. 前記一般式(I)中のXが下記の環状骨格を有する請求項1又は2に記載の活性エネルギー線硬化型インキ組成物。
    Figure JPOXMLDOC01-appb-C000003

     
PCT/JP2023/029715 2022-09-30 2023-08-17 活性エネルギー線硬化型インキ組成物 WO2024070308A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157211 2022-09-30
JP2022-157211 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070308A1 true WO2024070308A1 (ja) 2024-04-04

Family

ID=90477308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029715 WO2024070308A1 (ja) 2022-09-30 2023-08-17 活性エネルギー線硬化型インキ組成物

Country Status (1)

Country Link
WO (1) WO2024070308A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116868A (ja) * 2010-11-29 2012-06-21 Daiso Co Ltd アリル系重合体およびジアリルフタレート樹脂を含む光硬化性樹脂組成物とその用途
WO2021199904A1 (ja) * 2020-03-30 2021-10-07 株式会社大阪ソーダ 活性エネルギー線硬化型インキ組成物
JP2022099393A (ja) * 2020-12-23 2022-07-05 東洋インキScホールディングス株式会社 活性エネルギー線硬化型インキ組成物及びその印刷物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116868A (ja) * 2010-11-29 2012-06-21 Daiso Co Ltd アリル系重合体およびジアリルフタレート樹脂を含む光硬化性樹脂組成物とその用途
WO2021199904A1 (ja) * 2020-03-30 2021-10-07 株式会社大阪ソーダ 活性エネルギー線硬化型インキ組成物
JP2022099393A (ja) * 2020-12-23 2022-07-05 東洋インキScホールディングス株式会社 活性エネルギー線硬化型インキ組成物及びその印刷物

Similar Documents

Publication Publication Date Title
CN106715498B (zh) 光固化性树脂组合物、油墨和涂料
CN107075042B (zh) 光固化性树脂组合物、油墨和涂料
EP3569664A1 (en) Active energy ray-curable ink composition for offset printing and method for producing printed material using same
CN108699314B (zh) 光固化性树脂组合物、油墨和涂料
WO2021199904A1 (ja) 活性エネルギー線硬化型インキ組成物
WO2024070308A1 (ja) 活性エネルギー線硬化型インキ組成物
JP2021024970A (ja) 活性エネルギー線硬化型平版インキ、それを用いた印刷物の製造方法、および活性エネルギー線硬化型平版インキ用ワニス
JP6880543B2 (ja) 光硬化性樹脂組成物、インキ及び塗料
CN109641985B (zh) 光固化性树脂组合物、油墨及涂料
WO2021044729A1 (ja) 光硬化性樹脂組成物、インキ及び塗料
WO2021215341A1 (ja) 光硬化型水性インクジェット印刷用インク組成物
JP6828853B2 (ja) 光硬化性樹脂組成物、インキ及び塗料
JP2021011557A (ja) 活性エネルギー線重合性組成物および重合性化合物
GB2593798A (en) Printing Ink
JP2021098772A (ja) 活性エネルギー線重合性組成物
JP2002161106A (ja) 光硬化性着色組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871550

Country of ref document: EP

Kind code of ref document: A1