WO2024070241A1 - Clearance measuring method, clearance measuring device, screw joint measuring method, screw joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality management method - Google Patents

Clearance measuring method, clearance measuring device, screw joint measuring method, screw joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality management method Download PDF

Info

Publication number
WO2024070241A1
WO2024070241A1 PCT/JP2023/028725 JP2023028725W WO2024070241A1 WO 2024070241 A1 WO2024070241 A1 WO 2024070241A1 JP 2023028725 W JP2023028725 W JP 2023028725W WO 2024070241 A1 WO2024070241 A1 WO 2024070241A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
clearance
thread
measurement
male
Prior art date
Application number
PCT/JP2023/028725
Other languages
French (fr)
Japanese (ja)
Inventor
雄登 大場
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024070241A1 publication Critical patent/WO2024070241A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • the present invention relates to a clearance measurement method, a clearance measurement device, a threaded joint measurement method, a threaded joint measurement system, a measurement terminal, a threaded joint manufacturing method, and a threaded joint quality control method in a pipe joint structure for joining pipes.
  • pipe structures used for the foundations of structures and to prevent landslides can require lengths of several tens of meters depending on the construction conditions. This tendency is particularly pronounced for steel pipes.
  • traffic restrictions mean that long pipes cannot be transported. For this reason, they are transported in transportable lengths of several meters at a time, and are joined at the construction site during construction (including pouring).
  • Threaded joints are used as a method for joining pipe structures at the construction site, and an example of such a threaded joint is disclosed in Patent Document 1.
  • the threaded joints are attached to the ends of the pipes to be joined, and are rotated at the construction site to join the pipes and construct the pipe structure.
  • threaded joints are shipped to the site with the male joint attached to one pipe and the female joint attached to the other pipe at the factory. There are several manufacturing procedures, but they are often manufactured as a set of male and female joints. After manufacturing, these sets of joints may be attached to the ends of long pipes depending on their intended use.
  • the joint Since the suitability of a threaded joint is determined by the corresponding thread shapes of the male and female joints that mate with each other, the joint is usually checked before use.
  • the threaded joint has a large diameter of 700 mm or more, when the pipe to which the threaded joint is connected is long (5 m or more), or when the threaded joint or the connected pipe is made of heavy metal such as steel, checking the joint is difficult. In this case, there are problems such as the significant effort required for checking the joint, the risk of damage to the joint itself, and concerns about ensuring safety.
  • the present invention has been made in consideration of the above, and its purpose is to provide a clearance measurement method, a clearance measurement device, a measurement method for a threaded joint, a measurement system for a threaded joint, a measurement terminal, a manufacturing method for a threaded joint, and a quality control method for a threaded joint, which allow for easier confirmation of the connection in a threaded joint regardless of the state of the threaded joint or the connected pipe.
  • a clearance measurement method for measuring the clearance between the threads of a male joint and the threads of a female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint, comprising: a joining completion state setting step for setting a joining completion state in which joining of the male joint and the female joint is completed based on data on the respective thread shapes of the male joint and the female joint; a clearance measurement step for measuring the clearance between the threads of the male joint and the threads of the female joint corresponding to the threads of the male joint in the joining completion state; and a rotation state setting step for setting a state in which the male joint and the female joint are rotated a predetermined angle in the direction of releasing the joint if the joint between the male joint and the female joint is not in a disengaged state after the clearance measurement step, and the steps from the clearance measurement step to the rotation state setting step are repeatedly executed until the joint is
  • the clearance measurement method according to the invention described in (1) above includes at least one of the steps of: determining whether the set of threaded joints is pass or fail based on the clearance measured in the clearance measurement step and a predetermined criterion; and, for a location determined to be an interference location based on the clearance measured in the clearance measurement step and the predetermined criterion, providing information about the interference location.
  • a method for measuring a threaded joint includes a shape measurement process for measuring the thread shape of a male joint and the thread shape of a female joint corresponding to the male joint for a set of threaded joints, and a clearance measurement process for measuring the clearance for each set of threaded joints using the clearance measurement method according to the above-described invention based on the data of the thread shape measured in the shape measurement process.
  • the method for manufacturing a threaded joint according to the present invention is a method for manufacturing a threaded joint set having a male joint and a female joint corresponding to the male joint, and includes a joint manufacturing process for manufacturing the threaded joint, and a joint measurement process for carrying out the threaded joint measurement method according to the invention described in (3) on the threaded joint set having a male joint and a female joint produced by the joint manufacturing process.
  • a quality control method for a threaded joint is a quality control method for a threaded joint that controls the quality of a set of threaded joints having a male joint and a female joint corresponding to the male joint, and includes a joint manufacturing process for manufacturing the threaded joint, a joint measurement process for measuring the thread shape of the set of threaded joints created by the joint manufacturing process using the threaded joint measurement method according to the invention described in (3), and a quality control process for controlling the quality of the created threaded joint using the results obtained from the joint measurement process.
  • a clearance measurement device is a clearance measurement device that measures the clearance between the threads of a male joint and the threads of a female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint, and is equipped with a control unit that repeatedly executes the following steps until the joint is released: a joining completion state setting process that sets a joining completion state in which the joining of the male joint and the female joint is completed based on data on the respective thread shapes of the male joint and the female joint; a clearance measurement process that measures the clearance between the threads of the male joint and the threads of the female joint corresponding to the threads of the male joint in the joining completion state; and a rotation state setting process that sets a state in which the male joint and the female joint are rotated a predetermined angle in the direction of releasing the joint if the joint between the male joint and the female joint is not released after the clearance measurement step.
  • the clearance measurement device is the invention described in (6), in which the control unit executes a clearance measurement process to measure the clearance between the threads of the male joint and the threads of the female joint that correspond to the threads of the male joint in the joining completion state before the rotation state setting process.
  • the clearance measurement device further includes a communication unit, and the communication unit executes, via the control unit, at least one of the following: acquisition of data on the thread shapes of the male joint and the female joint; and output of information regarding the clearance obtained by the clearance measurement process.
  • a threaded joint measurement system includes a measurement unit configured to be able to measure the thread shape of a male joint and the thread shape of a female joint corresponding to the male joint for a set of threaded joints, and a clearance measurement device according to the above invention that measures the clearance for each set of threaded joints based on data on the thread shape measured by the measurement unit.
  • a measurement terminal is configured to be capable of measuring the clearance between the threads of a male joint and a female joint corresponding to the male joint for a set of threaded joints, and is controlled by a control unit, and includes a measurement unit that measures the thread shape of the male joint and the thread shape of the female joint under the control of the control unit, a communication unit that executes at least one of an output process that outputs the measured thread shape as data to the clearance measurement device according to the above invention under the control of the control unit, and an acquisition process that acquires information regarding the clearance from the clearance measurement device for each set of joints, and an output unit that is capable of outputting the acquired information in a predetermined format under the control of the control unit.
  • control unit executes at least one of the following processes: a process for determining pass/fail for the set of threaded joints based on the acquired information on the clearance and a predetermined criterion; and an interference information assignment process for assigning information on an interference point to a point determined to be an interference point based on the acquired information on the clearance and a predetermined criterion.
  • a measurement system for threaded joints according to the present invention includes a measurement terminal according to the above invention and a clearance measurement device according to the above invention that measures the clearance for each pair of threaded joints based on data on the thread shape measured by the measurement terminal.
  • a quality control method for a threaded joint is a quality control method for a threaded joint that controls the quality of a threaded joint set having a male joint and a female joint corresponding to the male joint, and controls the quality of the threaded joint set using information regarding the clearance obtained from a clearance measurement process executed by a control unit of the clearance measurement device according to the above invention.
  • the clearance measurement method, clearance measurement device, threaded joint measurement method, threaded joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality control method of the present invention make it possible to more easily check the connection of a threaded joint regardless of the condition of the threaded joint or the connected pipe.
  • FIG. 1 is a diagram showing the start state of joining of a threaded joint that is to be measured in a threaded joint measurement system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a completed joining state of a threaded joint that is to be measured in the threaded joint measurement system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a threaded joint measurement system according to a first example of an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a threaded joint measurement system according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart for explaining the measurement method for a threaded joint according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing the start state of joining of a threaded joint that is to be measured in a threaded joint measurement system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a completed joining state of a threaded joint that is to be
  • FIG. 6 is a flowchart for explaining the clearance measurement process according to the first embodiment of the present invention.
  • FIG. 7A is a diagram for explaining coordinates of a threaded joint in a clearance measurement method according to an embodiment of the present invention.
  • FIG. 7B is a diagram for explaining coordinates of a threaded joint in the clearance measurement method according to an embodiment of the present invention.
  • FIG. 7C is a diagram for explaining coordinates of a threaded joint in the clearance measurement method according to an embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing a joining portion of a threaded joint in an embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view showing an interference portion at a joining portion of a threaded joint in an embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining a first modified example of the clearance measuring step in the clearance measuring method according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining a second modified example of the clearance measuring step in the clearance measuring method according to the first embodiment of the present invention.
  • FIG. 12 is a flowchart for explaining a threaded joint measurement method according to the second embodiment of the present invention.
  • FIG. 13 is a flowchart for explaining a threaded joint measurement method according to the third embodiment of the present invention.
  • Figures 1 and 2 are diagrams showing the joining start state and the joining completion state, respectively, of the threaded joint that is the object of measurement (measurement target) in the clearance measurement system of this embodiment.
  • a threaded joint 10 is configured to have a male joint 11 as an inner joint and a female joint 12 as an outer joint.
  • a male thread 13 is formed on the tip side, which is the side where the male joint 11 is inserted and fitted.
  • a female thread 14 is formed on the tip side, which is the side where the female joint 12 is inserted and fitted.
  • the female thread 14 formed on the female joint 12 is formed in a thread shape corresponding to the male thread 13 formed on the male joint 11.
  • the male joint 11 and the female joint 12 correspond to each other, and are configured so that the male joint 11 can be inserted into the female joint 12 by screwing.
  • the thread shape may be known or unknown.
  • the thread shape may be single-thread or multiple-thread, and in this embodiment, for example, multiple-thread.
  • the thread shape may be a tapered thread or a parallel thread, and in this embodiment, for example, a parallel thread.
  • the material is not particularly limited. Examples include steel, metal materials other than steel, concrete, resin, and a combination of multiple materials.
  • the material of the threaded joint is selected according to the purpose of use and the conditions of the pipes, etc., which will be described later.
  • the present invention is particularly effective in the case of threaded joints that are large in diameter or heavy (long) and therefore difficult to check the joining before shipping from the factory.
  • the pipes 15 and 16 each constitute a structure.
  • the pipe 15 constitutes an upper structure.
  • the pipe 16 constitutes a lower structure.
  • Various structures can be used as the structure, such as those that have a specific function when buried in the ground, those that are used as part of a structure on the ground, and those that transport gas or liquid by utilizing the internal space of the pipes 15 and 16.
  • Examples of those that have a specific function when buried in the ground include piles, retaining piles, landslide prevention piles, pipe sheet piles, sheet pile walls, and tunnels.
  • Examples of those that are used as part of a structure on the ground include columns and beams.
  • Examples of those that transport gas or liquid by utilizing the internal space of the pipes 15 and 16 include oil well pipes, water pipes, and gas pipes.
  • examples of the pipes 15 and 16 include steel pipes, concrete pipes, resin pipes, and pipes made of a combination of multiple materials.
  • the pipes 15 and 16 are particularly effective in the case of steel pipes with threaded joints, in which it is difficult to confirm the joint before shipping from the factory because the pipes are large in diameter, long, or heavy.
  • a male fitting 11 having a male thread 13 is fixed to the upper pipe 15.
  • a female fitting 12 having a female thread 14 is fixed to the lower pipe 16.
  • the male fitting 11 may be fixed to the lower pipe 16 and the female fitting 12 may be fixed to the upper pipe 15, in the opposite manner to the above.
  • the male fitting 11 and female fitting 12 may be used as the measurement subject without connecting the pipes 15 and 16.
  • FIG. 3 is a block diagram showing the threaded joint measurement system according to the first embodiment.
  • the threaded joint measurement system 1 is configured to have a clearance measurement device 20 and a measurement unit 35. Furthermore, the clearance measurement device 20 is connected to a thread processing device 40.
  • the threaded joint measurement system 1 may adopt a configuration having the clearance measurement device 20, the measurement unit 35, and the thread processing device 40.
  • the threaded joint measurement system 1 according to the first embodiment is designed for use with the clearance measurement device 20 fixed in place, but the measurement unit 35 and the clearance measurement device 20 can be located close to each other or at a large distance.
  • Clearance measurement device 20 includes a control unit 21, a storage unit 22, and an input/output unit 23. It is possible not to provide input/output unit 23. Clearance measurement device 20 can use a known computer, server, notebook computer, mobile terminal, tablet, smartphone, or a virtual device on a network such as the cloud.
  • the control unit 31 as a control means specifically includes a processor having hardware such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), and a main memory unit such as a RAM (Random Access Memory) or a ROM (Read Only Memory) (none of which are shown).
  • a processor having hardware such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), and a main memory unit such as a RAM (Random Access Memory) or a ROM (Read Only Memory) (none of which are shown).
  • the storage unit 22 is physically composed of a storage medium selected from a volatile memory such as a RAM, a non-volatile memory such as a ROM, an erasable programmable ROM (EPROM), a hard disk drive (HDD), a solid state drive (SSD), and a removable medium.
  • the removable medium is, for example, a universal serial bus (USB) memory, or a disk recording medium such as a compact disc (CD), a digital versatile disc (DVD), or a Blu-ray (registered trademark) disc (BD).
  • the storage unit 22 may also be configured using a computer-readable recording medium such as an externally mountable memory card.
  • the storage unit 22 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operation of the clearance measurement device 20.
  • the various programs include learning models and neural networks. These various programs can also be recorded on computer-readable recording media such as hard disks, flash memory, CD-ROMs, DVD-ROMs, and flexible disks, and widely distributed.
  • the storage unit 22 stores a clearance database 221 and a pipe type database 222.
  • various information pipe type information regarding the male joint 11 and the female joint 12 that constitute the threaded joint 10 is stored in a searchable manner as basic information.
  • the pipe type information includes the identification ID of the threaded joint 10, the dimensions (diameter, thread dimension, thread pitch, thread height, length, etc.) and specifications of the male joint 11 and the female joint 12.
  • the clearance database 221 stores searchable information regarding the clearance between the male thread 13 and the female thread 14 based on the pipe type information, and information on the measurement results regarding the clearance between the male thread 13 and the female thread 14 measured by the measurement unit 35 described later (hereinafter, clearance information).
  • the clearance information includes various information related to the clearance, such as flag information as information on the interference location that specifies the interference location, and pass/fail (pass/fail) information for the set of threaded joints 10.
  • the clearance calculation unit 211 of the control unit 21 is configured to be able to store the thread shapes of the male thread 13 and the female thread 14 measured by the measurement unit 35 as digital data in the clearance database 221 of the memory unit 22.
  • the memory unit 22 may be provided in a housing different from that of the control unit 21, and may use an external storage device or a virtual storage device such as a cloud on a network.
  • control unit 21 loads a program stored in the memory unit 22 into the working area of the main memory unit, executes it, and controls each component through the execution of the program, thereby realizing a function that meets a predetermined purpose.
  • control unit 21 can realize the functions of the clearance calculation unit 211 and the determination unit 212 by executing the program.
  • the input/output unit 23 is composed of, for example, a touch panel display, a speaker microphone, buttons, switches, a jog dial, etc. As an output unit, the input/output unit 23 is configured to notify the outside of specified information by displaying characters, figures, etc. on the screen of a display such as a liquid crystal display, an organic EL display, or a plasma display, or by outputting sound from a speaker, under the control of the control unit 21.
  • the input/output unit 23 includes a printer that outputs specified information by printing it on printing paper, etc.
  • the various information stored in the memory unit 22 can be viewed on a display of the input/output unit 23 installed in, for example, a specified office, etc.
  • the input/output unit 23 as an input unit is configured to be selected from, for example, a keyboard, a touch panel keyboard incorporated inside the input/output unit 23 to detect touch operations on a display panel, a voice input device that enables calls to and from the outside, a switch, or a jog dial.
  • the input/output unit 23 can input the clearance measurement value from the input/output unit 23.
  • the measurement unit 35 is composed of at least one device, such as a handheld 3D scanner.
  • a handheld 3D scanner for example, a laser irradiation device or an infrared irradiation device can be adopted. Since the handheld 3D scanner needs to be operated while maintaining a focal length (for example, 20 cm to 40 cm) according to the model, it is desirable to secure a space of 50 cm or more around the scanning target.
  • the measurement accuracy is set in various ways depending on the size of the screw joint 10 and the thread shapes of the male thread 13 and the female thread 14, and is not limited to these numerical values.
  • a handy measuring device such as a handy 3D scanner, is desirable from the viewpoint of operability.
  • the sensor constituting the measuring unit 35 can measure the distance from an installation position to an object, for example, the thread surface of the male thread 13 or female thread 14, by irradiating and reflecting a specific light, such as laser light.
  • the measuring unit 35 can perform so-called sensing, which measures the distance from the measurement position to the surface of the object in association with two-dimensional position information. Sensing includes various measurements performed by the measuring unit 35.
  • the two-dimensional position information coordinates (x, y) on the xy plane, coordinates (r, ⁇ ) at distance r and rotation angle ⁇ , etc. can be used. Based on the distance information corresponding to the two-dimensional position information, it becomes possible to measure the thread shape on the surface of the male thread 13 or female thread 14 in three dimensions.
  • the resolution should be sufficient to accurately reproduce the shape of the thread that affects the clearance used to determine whether the male joint 11 and the female joint 12 can be joined.
  • the resolution should be approximately 1 mm or less, but is not limited to this value.
  • the male and female joints 11 and 12 are combined on the scanned data to determine whether they can be joined, in the case of an object whose direction is not fixed, it is desirable to ensure directionality by providing a marker or a mark with a shape that can be recognized by scanning.
  • the measurement unit 35 executes an output process to output the measurement values of the thread shape measured by sensing to the clearance measurement device 20.
  • the clearance calculation unit 211 in the control unit 21 of the clearance measurement device 20 stores the acquired measurement values in the clearance database 221 of the storage unit 22.
  • the thread machining device 40 is a device for an adjustment process for the male threads 13 and the female threads 14 of the threaded joint 10.
  • the thread machining device 40 includes a control unit 41, a memory unit 42, an input/output unit 43, and a thread machining unit 45.
  • the control unit 41, the memory unit 42, and the input/output unit 43 are functionally and physically configured in the same manner as the control unit 21, the memory unit 22, and the input/output unit 23, respectively.
  • the thread machining device 40 is connected to the clearance measurement device 20.
  • the control unit 41 loads a program stored in the memory unit 42 into the working area of the main memory unit, executes it, and controls each component unit through the execution of the program, thereby realizing a function that meets a predetermined purpose.
  • the control unit 41 can realize the function of the machining control unit 411 by executing the program.
  • the machining control unit 411 is configured to be able to control the thread machining unit 45.
  • the clearance calculation unit 211 of the clearance measurement device 20 reads out the clearance information from the clearance database 221 stored in the memory unit 22 and outputs it to the thread processing device 40.
  • the thread processing device 40 which has acquired the clearance information, stores the acquired clearance information at least temporarily in the memory unit 42.
  • the processing control unit 411 of the control unit 41 controls the thread processing unit 45 to execute a processing process to correct the interference part based on the acquired clearance information.
  • the thread processing device 40 may be configured integrally with the clearance measurement device 20. Furthermore, the thread processing device 40 can also manufacture the threaded joint 10. The above constitutes the threaded joint measurement system 1 according to the first example of the embodiment.
  • Fig. 4 is a block diagram showing the threaded joint measurement system according to the second embodiment.
  • the threaded joint measurement system 1A is configured to include a clearance measurement device 20 and a measurement terminal 30A that are capable of communicating with each other via a network 2.
  • Network 2 is, for example, a public communications network such as the Internet, and is composed of one or more combinations of, for example, a LAN (Local Area Network), a WAN (Wide Area Network), a telephone communications network such as a mobile phone, a public line, a VPN (Virtual Private Network), and a dedicated line.
  • Network 2 is an appropriate combination of wired communications and wireless communications.
  • the threaded joint measurement system 1A may further be connected to a thread processing device 40 that can communicate with at least the clearance measurement device 20 via the network 2.
  • the threaded joint measurement system 1A may also adopt a configuration that includes the clearance measurement device 20, the measurement terminal 30A, and the thread processing device 40.
  • the clearance measurement device 20A includes a control unit 21, a storage unit 22, an input/output unit 23, and a communication unit 24.
  • the communication unit 24 serving as a communication means is, for example, a LAN (Local Area Network) interface board or a wireless communication circuit for wireless communication.
  • the LAN interface board and the wireless communication circuit are connected to a network 2.
  • the communication unit 24 is connected to the network 2 and communicates with the measurement terminal 30A and the thread machining device 40A.
  • the other configurations are similar to those of the clearance measurement device 20 in the first embodiment.
  • the measurement terminal 30A includes a control unit 31, a storage unit 32, an input/output unit 33, a communication unit 34, and a measurement unit 35.
  • the control unit 31, the storage unit 32, the input/output unit 33, and the communication unit 34 have the same physical and functional configurations as the control unit 21, the storage unit 22, the input/output unit 23, and the communication unit 24 described above, respectively.
  • the measurement unit 35 in the measurement terminal 30A according to the second embodiment is configured similarly to the measurement unit 35 in the first embodiment.
  • the control unit 31 can realize functions that meet a predetermined purpose by loading a program stored in the memory unit 32 into the working area of the main memory unit and executing the program. Specifically, the control unit 31 can realize the functions of the measurement control unit 311 by executing the program.
  • the measurement control unit 311 is configured to be able to control the measurement unit 35.
  • the thread machining device 40A includes a control unit 41, a memory unit 42, an input/output unit 43, a communication unit 44, and a thread machining unit 45.
  • the communication unit 44 which serves as communication means, is physically and functionally configured in the same manner as the communication unit 24 described above, and is connected to the network 2.
  • the communication unit 44 is connected to the network 2 and communicates with at least the clearance measurement device 20A.
  • the other configurations are the same as those of the thread machining device 40 in the first embodiment.
  • Fig. 5 is a flowchart showing the method for measuring a threaded joint 10 according to the first embodiment.
  • step ST1 a joint manufacturing process is performed by a thread processing device 40.
  • step ST1 a forged ring is manufactured by heat treatment.
  • step ST2 while rotating a cast ring by rotary cutting, a cutting blade is brought into contact with the cast ring and cut to process it into a joint.
  • the movement of the cutting blade can be automatically controlled by the control of the processing control unit 411 according to a predetermined program.
  • the thread shape of the joint is a multiple thread, one part, that is, the same place is cut little by little until one thread is completed. When one thread is completed, the cutting blade is moved to the next thread.
  • step ST2 the pipe connection process is performed.
  • step ST2 first, the joining of the threaded joint performed in step ST1 is released.
  • one of the male joint 11 and the female joint 12, here for example the female joint 12 is attached to a horizontally placed steel pipe.
  • the male joint 11 alone is trial joined to the horizontally placed steel pipe with the female joint. After confirming whether or not the arrival line is reached by this trial joining, the joining is released.
  • the other of the male joint 11 and the female joint 12, here for example the male joint 11, is attached to the horizontally placed steel pipe.
  • this trial joint is used to confirm whether the joint can be completed to the joining position while allowing for the effects of thermal deformation caused by welding.
  • the steel connecting joint that connects the steel pipes horizontally is welded, and then the threaded joint is welded to the steel pipe. Note that it is also possible not to perform this step ST2.
  • the method includes a shape measurement step of measuring the shape of the threaded joint after processing, and a clearance measurement step for a set of threaded joints based on the measured shape of the threaded joint. These shape measurement step and clearance measurement step are performed before the threaded joint 10 is actually used.
  • step ST3 shape measurement process
  • the process proceeds to step ST3 to perform a shape measurement process.
  • the shape measurement process first, the thread shapes of the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 are measured by the measurement unit 35 for one set of threaded joint 10 manufactured in step ST1.
  • the measurement unit 35 outputs or transmits (hereinafter referred to as transmission) measurement data of the measured thread shapes to the clearance measurement device 20.
  • the measurement of the thread shape using the measurement unit 35 is performed by, for example, measuring the distance from the measurement unit 35 to the surfaces of the threaded joints (male joint 11, female joint 12).
  • the thread shape can be measured by photographing the threaded joint (male joint 11, female joint 12) from multiple viewpoints to obtain multiple image data, and then using the multiple images obtained to perform photogrammetry.
  • the obtained point cloud data is converted into polygons (STL conversion, mesh conversion), and shape measurement and virtual placement are performed using CAD software that performs three-dimensional measurement of the threaded joint 10, which is the target object.
  • the apex of the screw is included in the data points of the point cloud data, and more specifically, it is preferable that the apex of the screw is equal to or smaller than the radius of curvature of the apex of the screw, for example, a resolution of about 0.5 mm or less.
  • the resolution may be about 1 mm.
  • the accuracy of the data points can be set to less than half the clearance, specifically, for example, if the clearance is 0.75 mm, the accuracy of the data points can be set to less than 0.375 mm, allowing for a judgment with sufficient accuracy for practical use.
  • the male joint 11 and female joint 12 are considered to be rigid bodies and the joining judgment is performed, so there is no problem with the pass judgment when there is clearance.
  • the judgment standard value does not necessarily have to be based on 0; for example, it is possible to judge whether or not the fit can be performed using a digital clearance of -0.2 mm (virtual interference amount of 0.2 mm) as the standard. Also, depending on the measurement accuracy, interference may occur even when the clearance is a positive value, so it is desirable to set an appropriate judgment standard. Note that positive and negative clearances depend on the method of sorting, so a negative value may be used to indicate that a clearance exists.
  • the measurement unit 35 measures the outer surface side of the male joint 11 and the inner surface side of the female joint 12. In this case, it is possible to shorten the measurement time and reduce the amount of measurement data. Furthermore, when converting the acquired point cloud data into polygons (STL conversion, mesh conversion), points within a specified surface error range (for example, 0.01 mm) can be omitted to reduce the data volume.
  • Fig. 6 is a flowchart showing the clearance measurement method according to the first embodiment. The flowchart shown in Fig. 6 is executed by clearance measurement device 20.
  • step ST411 as an acquisition step for performing acquisition processing
  • control unit 21 of clearance measurement device 20 acquires measurement data from measurement unit 35.
  • the measurement data is measurement data relating to the thread shape of male thread 13 of male joint 11 and the thread shape of female thread 14 of female joint 12 measured by measurement unit 35 in step ST3.
  • step ST412 is a joining completion state setting step in which a joining completion state setting process is executed, and the clearance calculation unit 211 of the control unit 21 sets a joining completion state in which the male joint 11 is joined to the inside of the female joint 12 based on the acquired measurement data of the thread shapes of the male thread 13 and the female thread 14.
  • the "joining completed state” refers to a state in which the entire length of the threaded portion of the male fitting 11 in the axial direction of the pipe is almost entirely housed inside the female fitting 12, and joining is complete, as shown in Figure 2. In other words, it is a state in which the male fitting 11 is screwed into the female fitting 12 and can no longer rotate in the direction in which the thread advances. As shown in Figure 2, ideally, the unthreaded portion of the male fitting 11 comes into contact with the tip of the female fitting 12 (this is called shoulder touch).
  • This joining completion state is set as the initial position, and the clearance measurement starts from the joining completion state.
  • the position where the male and female threads join (which is also the start position of the threads in the circumferential direction of the joint) is identified while moving.
  • the position where the male and female threads join (which is also the start position of the threads in the circumferential direction of the joint) is identified while moving.
  • identifying this position can be very difficult.
  • identifying this position is also difficult if it is intended to be used at a specific start position.
  • the joining completion position where the male and female threads have been joined can be easily set in any environment, including virtual ones. Therefore, in the present invention, the joining completion position is set as the initial position, and the clearance is measured while the joining is released, simplifying the clearance measurement process and making it easier to measure the clearance regardless of the state of the threaded joint or the connected pipe.
  • step ST413 a clearance measurement step
  • the clearance calculation unit 211 of the control unit 21 derives the clearance between the male thread 13 and the female thread 14 based on the measurement data of the male thread 13 and the female thread 14 in the joining completed state.
  • the clearance calculation unit 211 derives the clearance at a preset location.
  • the clearance is also referred to as a gap or play.
  • Figures 7A, 7B, and 7C show how to create a coordinate system for the measurement position. That is, as shown in Figure 7A, a plane is created to create a cross section of the male thread 13 of the male joint 11 and a cross section along the radial direction of the female thread 14 of the female joint 12, and a section line L shown in Figure 7B is created. Next, two straight lines 1 are created from the section line, and an intersection point C is created. Next, as shown in Figure 7C, a circle (hereinafter referred to as a fit circle) that minimizes the error with the point (specified point) where the curve is specified is created. A coordinate system is created using the center point of this fit circle and multiple intersection points C. Note that the method of creating a coordinate system explained using Figures 7A to 7C is merely one example, and the creation and setting of a coordinate system can be performed by any method.
  • pre-set locations for example, shifted by 90° on a circumference with respect to the center of the circle in the cross section (plane perpendicular to the up-down direction in FIG. 1 and FIG. 2) of the male joint 11 or female joint 12.
  • locations and number of locations are not necessarily limited to a predetermined number.
  • the clearance calculation unit 211 In step ST413, the clearance calculation unit 211 generates a cross-sectional view of the thread from the data on the thread shape at four or eight positions that have been set in advance, as described above, and derives the clearance c between the male thread 13 and the female thread 14. In this way, by setting the method for determining the measurement points as shown in Figures 7A to 7C, the clearance calculation unit 211 can automatically calculate the specified locations using a predetermined method. Note that the cross-sectional view of the thread generated by the clearance calculation unit 211 may be output to the input/output unit 23 of the clearance measurement device 20, and an operator may visually determine whether or not there is a clearance and input the presence or absence of a clearance from the input/output unit 23.
  • FIGS. 8 and 9 show an example of a cross section of the digitized threaded joint 10 generated by the clearance calculation unit 211 of the clearance measurement device 20 according to the first embodiment.
  • FIG. 8 is a cross section showing an enlarged portion of the digitized threaded joint 10 in a state in which the male thread 13 and female thread 14 are joined without interfering with each other.
  • FIG. 9 is a cross section showing an enlarged portion of the digitized threaded joint 10 in a state in which the male thread 13 and female thread 14 are partially interfering with each other and are not joined properly.
  • the male joint 11 and the female joint 12 are joined.
  • the height h of the threads 13a of the male thread 13 that is properly joined is, for example, 5.0 mm.
  • the center of the threads 13a, 14a is the closest point that is half the distance between the corners of the male thread 13.
  • the white points p are measurement points that ensure sufficient resolution for the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12. The more white points p there are, the more accurate the determination of the center positions of the male thread 13 and the female thread 14 can be.
  • the height h of the threads 13a, 14a is the distance between the center of the threads 13a, 14a and the bottom of the stabbing side.
  • the radial clearance c between the threads 13a of the male thread 13 and the thread bottom 14b of the female thread 14 is, for example, 0.75 mm.
  • the clearance c is the radial component of the line connecting the center of the threads 13a and the center of the thread bottom 14b of the male joint 11.
  • Clearance c is not necessarily limited to the above definition, and various definitions can be set according to whether or not the threaded joint 10 can be joined.
  • the distance may be measured in the normal direction for each point on the male joint 11, or for the line connecting the points, i.e., for each mesh, and the distance when it comes into contact with the female joint 12 in the joined state, i.e., the shortest distance, may be set as clearance c. Conversely, the distance may be measured in the direction from the female joint 12 toward the male joint 11.
  • interference interference part E
  • the male joint 11 and the female joint 12 will not be joined.
  • the height h of the threads 13a of the male thread 13 in an improperly joined state is, for example, 5.0 mm.
  • the radial clearance c between the thread root 14b of the female thread 14 is, for example, -1 mm, meaning that there is interference of 1 mm in the radial direction.
  • the thread pitch P is, for example, 12.5 mm, but is not limited thereto.
  • the thread pitch P is the axial distance from the end of the thread root 13b of a male thread 13 in a certain thread to the beginning of the thread root 13b of the next male thread 13 in a certain thread.
  • the thread pitch P is the axial distance from the end of the thread 14a of a certain female thread 14 in a certain thread to the beginning of the thread 14a of the next single thread.
  • the thread pitch P means the distance the thread advances when it rotates once.
  • the thread pitch P differs in the distance the thread advances when it rotates once depending on the number of threads of the thread, so it is difficult to define the thread pitch P as a constant distance. Therefore, although the thread pitch P is defined as above in this specification, it is not necessarily limited to the above definition.
  • the clearance calculation unit 211 stores the clearance c results derived at multiple locations, for example, four or eight locations, as clearance information in the clearance database 221.
  • the clearance c is derived for all threads 13a, 14a and thread roots 13b, 14b of the joined portions at multiple locations, which are preset, in the male joint 11 and the female joint 12.
  • the minimum clearance c along the radial direction with respect to the rotation axis is then derived.
  • the clearance calculation unit 211 uses a predetermined measurement software to extract the value at which the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is minimum in the rotation radial direction in each longitudinal section (see FIG. 7B).
  • the derived clearance c information may be stored in the storage unit 22 in association with the thread joint identification ID of the pipe type information stored in the pipe type database 222.
  • step ST414 a clearance determination step, where the determination unit 212 of the control unit 21 reads out clearance information from the clearance database 221 of the storage unit 22 and determines whether or not joining is possible according to a predetermined criterion. That is, the determination unit 212 makes a determination based on, for example, the predetermined criterion, that is, whether or not the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or smaller than a predetermined value.
  • the predetermined value can be set to any value, and in this embodiment, the predetermined value is set to 0, for example.
  • step ST414 determines in step ST414 that the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or less than a predetermined value, specifically, for example, equal to or less than 0 (c ⁇ 0) (step ST414: Yes)
  • the process proceeds to step ST418.
  • step ST4108 the determination unit 212 outputs information that the threaded joint 10 being measured has failed, and stores this failure information in the clearance database 221 as clearance information. This completes the clearance measurement process.
  • step ST414 judges in step ST414 that the clearance c between the male thread 13 of the male fitting 11 and the female thread 14 of the female fitting 12 is greater than a predetermined value, specifically, for example, greater than 0 (c>0) (step ST414: No), it proceeds to step ST415.
  • a predetermined value specifically, for example, greater than 0 (c>0)
  • interference E may occur not only in the radial direction of the threaded portion, but also in the axial direction of the threaded portion and in other locations besides the threaded portion, so it may be judged in the same way.
  • the judgment unit 212 can judge that joining is possible if the radial clearance of the threaded portion satisfies the above-mentioned condition (c > predetermined value).
  • step ST415 as a joining determination step, the determination unit 212 determines whether or not the male joint 11 and the female joint 12 are not screwed together and the joining is disengaged in the threaded joint 10. If the determination unit 212 determines that the male joint 11 and the female joint 12 are not screwed together and the joining is disengaged (step ST415: Yes), the process proceeds to step ST417.
  • step ST417 the determination unit 212 outputs information that the threaded joint 10 being measured has passed, and stores this pass information in the clearance database 221 as clearance information.
  • the clearance calculation unit 211 can derive the clearance c for the entire circumference of the male thread 13 and female thread 14 up to the state where the male joint 11 and female joint 12 are virtually disconnected. This completes the clearance measurement process.
  • step ST415 determines in step ST415 that the male joint 11 and the female joint 12 are not separated and the connection is not disconnected (step ST415: No), the process proceeds to step ST416.
  • step ST416 as a rotational state setting step for performing a rotational state setting process, the clearance calculation unit 211 sets a state in which the joined male joint 11 and female joint 12 are rotated in the disengagement direction by a predetermined rotation angle, specifically, for example, 90° or 45°.
  • a predetermined rotation angle specifically, for example, 90° or 45°.
  • the initial positions of the male joint 11 and the female joint 12 are determined to be one position, so the search for the rotation start position can be omitted.
  • the joining confirmation is performed on the actual threaded joint 10 rather than on a digitalized one, it is possible to identify the initial position for starting the joining while moving it.
  • Specific steps executed by the clearance calculation unit 211 in step ST416 are as follows: first, the digitized male joint 11 and female joint 12 are virtually placed at the joining completion position as shown in FIG. 2.
  • the rotation axes of the male joint 11 and female joint 12 are extracted. Specifically, for example, multiple points are selected, for example, four or eight points, for the outer diameter of the tip of the male joint 11 and the inner diameter of the tip of the female joint 12.
  • a fitting circle that minimizes the deviation from the selected points is created, and the center of the fitting circle is set as the rotation axis.
  • the rotation axes of the male joint 11 and female joint 12 are aligned to derive a state of shoulder touch.
  • the position of the eye mark is set as the joining completion position. Note that any method can be used to set the rotation axis and the joining completion position, and various methods other than the above-mentioned method can be used.
  • the minimum clearance along the radial direction of the rotation axis is derived for all threads 13a, 14a in vertical sections (see Figures 7A to 7C) at an angle interval of less than a predetermined angle, such as 45° or 90°.
  • a predetermined angle such as 45° or 90°.
  • the part where the clearance is negative is also measured.
  • the value at which the clearance of the threaded part of the male joint 11 and the female joint 12 in the rotation radius direction is minimum in each vertical section is extracted using measurement software. More specifically, the overall minimum value is derived, or the minimum value is derived for each of the multiple threads of the threads 13a, 14a.
  • the distance may be measured in the normal direction of the line connecting each point on the male joint 11, i.e., for each mesh, and the distance when it comes into contact with the female joint 12 in the joined state, i.e., the shortest distance, may be set as the clearance c. Conversely, the distance may be measured in the direction from the female joint 12 to the male joint 11.
  • the joint is rotated in the opposite direction to the joining direction by a preset rotation angle.
  • the rotation angle can be, for example, 45° or 90° intervals, but is not limited to this.
  • the amount of axial movement corresponding to the angle of reverse rotation is determined by the thread pitch P of the male thread 13 and female thread 14.
  • the cross section from which the clearance is derived and the intervals of reverse rotation are set to 45° or less or 90° or less because the threaded joint 10 is continuous in the circumferential direction, making it difficult for local deformation to occur, and the presence or absence of interference can be sufficiently detected even when checking at intervals of about 45° to 90°.
  • the rotating shaft of the male joint 11 is moved to the side with the larger clearance along the direction of the rotation radius, and the presence or absence of interference is confirmed at that stage. If further interference occurs, the rotating shafts of the male joint 11 and female joint 12 are moved along the axial direction to search for a position where no interference occurs. When a position where no interference occurs is identified, reverse rotation is started again from that position. Note that the presence or absence of interference may also be determined without moving the rotating shaft.
  • step ST416 After the rotation state setting step in step ST416 is completed, the process proceeds to step ST413, where the clearance c of the joint at the preset location is derived.
  • the control unit 21 repeats steps ST413 to ST416 until the clearance c becomes equal to or less than a predetermined value (step ST414: Yes) or the joint between the male joint 11 and the female joint 12 is released (step ST415: Yes).
  • the determination unit 212 then stores pass or fail information on the threaded joint 10 being measured as clearance information in the clearance database 221. This completes the clearance measurement process.
  • the time required to determine whether the threaded joint 10 is a failed product can be shortened by determining that the threaded joint 10 is a failed product when the clearance c becomes equal to or less than a predetermined value.
  • step ST5 shown in FIG. 5, where the control unit 21 outputs information on whether the threaded joint 10 being measured is pass or fail to the input/output unit 23.
  • a mark may be put on the actual threaded joint 10.
  • threaded joints 10 that are judged to be failing it is possible to appropriately select whether to carry out the adjustment process described below or to discard the threaded joint. With the above, the measurement process for the threaded joint is completed.
  • the quality of the threaded joint 10 can be controlled based on the above-described method for measuring a threaded joint. That is, in the quality control method for the threaded joint 10, first, the threaded joint 10 is manufactured in a joint manufacturing process in step ST1. Next, the thread shapes of the male threads 13 and female threads 14 of the threaded joint 10 are measured in a joint measurement process in step ST3. After that, in step ST4, the measurement results obtained in the joint measurement process are used to measure the clearance for each pair of the male threads 13 and female threads 14, thereby making it possible to control the quality of the threaded joint 10 as a quality control process.
  • Fig. 10 is a flow chart for explaining the clearance measurement process according to the first modified example.
  • the clearance measurement process is completed at the stage where a portion where the clearance is equal to or less than a predetermined value is found.
  • the clearance measurement process according to the first modified example is different from the clearance measurement process according to the first embodiment in that it is assumed that the entire circumference of the male joint 11 and the female joint 12 of the threaded joint 10 is measured regardless of whether the clearance measurement is pass or fail.
  • steps ST421 to ST423 are respectively similar to steps ST411 to ST413 in the first embodiment described above.
  • the process proceeds to step ST424.
  • the clearance calculation unit 211 stores the result of the clearance c derived at multiple locations set in advance, for example, four or eight locations, in the clearance database 221 as clearance information.
  • the process proceeds to step ST425.
  • Steps ST425 and ST426 are respectively similar to steps ST415 and ST416 in the first embodiment.
  • the process of determining whether the clearance is equal to or less than a predetermined value is not executed. The other processes are similar to those in the first embodiment, and therefore will not be described.
  • Fig. 11 is a flow chart for explaining the clearance measurement process according to the second modified example.
  • the clearance measurement process is completed at the stage where a portion where the clearance is equal to or less than a predetermined value is found.
  • the clearance measurement process according to the second modified example is different from the clearance measurement process according to the first embodiment in that the clearance is measured over the entire circumference of the male joint 11 and the female joint 12 of the threaded joint 10, regardless of whether the clearance is equal to or less than the predetermined value, and then a judgment is made based on a comparison with the predetermined value.
  • steps ST431 to ST434 are respectively similar to steps ST421 to ST424 in the first modified example described above.
  • the process proceeds to step ST435 after step ST434 is executed.
  • step ST435 the clearance calculation unit 211 executes step ST435, which is a rotation state setting step similar to step ST416 in the first embodiment.
  • the process proceeds to step ST436.
  • step ST436 the determination unit 212 determines whether the connection has come apart in the same manner as in step ST415. If the determination unit 212 determines in step ST436 that the connection of the threaded joint 10 has not come apart (step ST436: No), the process proceeds to step ST433, and steps ST433 to ST436 are repeatedly executed. If the determination unit 212 determines in step ST436 that the connection of the threaded joint 10 has come apart (step ST436: Yes), the process proceeds to step ST437.
  • step ST437 the determination unit 212 determines whether the clearance c between the male joint 11 and the female joint 12 is equal to or less than a predetermined value, in the same manner as in step ST414 in the first embodiment. If the determination unit 212 determines in step ST437 that there is no part where the clearance c between the male joint 11 and the female joint 12 is equal to or less than the predetermined value (step ST437: No), the clearance measurement process is terminated. If the determination unit 212 determines in step ST437 that the clearance c between the male joint 11 and the female joint 12 is equal to or less than a predetermined value (step ST437: Yes), the process proceeds to step ST438, which is an interference information assignment step.
  • step ST438 which is an interference information assignment step in which an interference information assignment process is performed
  • the determination unit 212 sets a flag as an interference location at a location where the clearance c is equal to or less than the predetermined value.
  • the determination unit 212 stores the flag related to the interference location as clearance information in the clearance database 221 of the storage unit 22. This completes the clearance measurement process.
  • the clearance measurement process according to the first and second modified examples can be used when it is desired to set the clearance at the manufacturing site or when there is little need to obtain the clearance determination results in real time or in a short time.
  • the clearance measurement process according to the second modified example makes it possible to provide a third party with clearance information such as positions where the clearance is below a predetermined value or the absence of any parts where the clearance is below a predetermined value. This makes it easier to handle cases where the clearance measurement process is performed at a location other than the manufacturing site.
  • the threaded joint 10 measurement method can check whether or not the threaded joint 10 can be joined after the manufacture of the threaded joint 10 is completed or before the operation.
  • the male joint 11 and the female joint 12 were judged based on whether they could rotate, but the interference between the threads 13a and 14a can be confirmed as the clearance between the threads based on information from the measurement results, ensuring accuracy.
  • the measurement starts from the joining completion position of the threaded joint 10, there is no need to search for the joining start position, and it is also possible to find the interference point early, so that the measurement of the clearance of the threaded joint 10 can be started efficiently.
  • the place where the threaded joint 10 measurement method according to this embodiment can be used is not limited to a factory, but can also be used in a storage area at the construction site. Specifically, for example, if there is concern that the threaded joint 10 may be deformed due to damage caused by welding additional components, transportation, or excessive exposure to direct sunlight at the construction site, the shape of the male joint 11 and female joint 12 can be measured by the measuring unit 35 at the construction site and a joint determination can be made before the actual joining, minimizing the stoppage of on-site work due to problems.
  • Fig. 12 is a flow chart for describing a method for measuring a threaded joint 10 according to the second embodiment.
  • the clearance c is determined over the entire circumference of the threads 13a, 14a in the male joint 11 and the female joint 12, and then a pass/fail determination is performed for each threaded joint 10.
  • step ST414 as a clearance determination step is separated from the clearance measurement step (step ST4) as a pass/fail determination step.
  • steps ST1 to ST4 are executed as in the first embodiment. Then, instead of step ST5 according to the first embodiment, a pass/fail determination process is executed in step ST6. Also, in the second embodiment, it is preferable to adopt the clearance measurement process according to the first or second modified example as the clearance measurement process in step ST4.
  • the judgment unit 212 judges whether the joining of the threaded joint 10 is pass/fail based on the clearance information of the entire circumference of the male thread 13 and the female thread 14 derived by the clearance calculation unit 211 in step ST4, for example, by executing steps ST423 and ST433. That is, the judgment unit 212 reads and acquires the clearance information from the clearance database 221 in the storage unit 22, and judges whether the joining of the threaded joint 10 is pass/fail based on the acquired clearance information. Various criteria can be adopted as the criteria for the pass/fail judgment by the judgment unit 212. A method similar to that of step ST414 (see FIG. 6) as the clearance judgment step described above can be used.
  • the clearance c is equal to or less than a predetermined value.
  • the predetermined value is, for example, 0.
  • the parts that are equal to or less than the predetermined value i.e., the parts that are equal to or less than 0
  • a judgment can be adopted in which if there is even one location with a clearance below 0 or a location flagged as an interference location, it is a failure, and if there are no such locations, it is a pass.
  • any location where the clearance c is equal to or less than a preset value may be flagged as an interference location.
  • step ST6 If the threaded joint 10 is judged to be passed in the pass/fail judgment process (step ST6: Yes), the process proceeds to step ST61, where the fact that the threaded joint 10 is passed can be output to the input/output unit 23, etc., or transmitted to the outside via the communication unit 24 and the network 2. Accordingly, the threaded joint 10 judged to be passed can be shipped. On the other hand, the threaded joint 10 judged to be unsuccessful can be discarded or readjusted. In this case, if necessary, the clearance information of the target threaded joint 10 can be associated with the identification ID of the threaded joint and transmitted to the thread processing device 40, 40A.
  • the same effect as in the first embodiment can be obtained. Furthermore, according to the second embodiment, it is possible to use the clearance information to perform pass/fail judgments by an external processing device via the network 2, and to share information on the inspection results of the threaded joint 10.
  • Fig. 13 is a flowchart for explaining a method for measuring a threaded joint 10 according to the third embodiment.
  • the method for measuring a threaded joint 10 according to the third embodiment differs from the first embodiment in that an adjustment step is carried out after a clearance measurement step is carried out in step ST4.
  • steps ST1 to ST4 are performed in the same manner as in the first embodiment. Then, instead of step ST5 according to the first embodiment, an adjustment process is performed in step ST7. Also, in the third embodiment, the clearance measurement process in step ST4 can be the clearance measurement process according to the first embodiment, the first modified example, or the second modified example.
  • step ST7 the adjustment process in step ST7 will be described.
  • an adjustment process is performed after the clearance measurement process.
  • the adjustment process includes adjustment steps described below. Note that, if no pass or fail information is output in the clearance measurement process performed in the preceding stage, step ST6 (pass/fail determination process) according to the second embodiment may be performed before each adjustment step described below in step ST7.
  • step ST7 the adjustment process for the threaded joint 10, the shape measurement process, the clearance measurement process, and the adjustment process can be repeatedly performed until a set of threaded joints 10 that require adjustment is determined to be acceptable. Furthermore, within the adjustment process, a pass/fail determination process can be performed before the adjustment step.
  • an appropriate method can be appropriately selected from, for example, four methods depending on the specifications and purpose of the threaded joint 10 and used.
  • the first method in the adjustment step is to virtually change the joining start position when there are multiple joining start positions for the threaded joint 10, for example when it is composed of a multiple thread, and to perform a pass/fail judgment process by the judgment unit 212 to judge whether it is pass or fail.
  • the pass/fail judgment process is passed, the completion and start positions are marked at the positions corresponding to the actual one.
  • the second method in the adjustment step is to virtually cut a part of the threaded joint 10 within a range that satisfies the strength required for the male joint 11 and the female joint 12, and then perform the pass/fail judgment process again on the threaded joint 10 whose thread shape has been modified to make a pass/fail judgment. If the interference is small, it is possible to cut the actual part with a grinder or the like once it has virtually passed, taking into account cutting within a safety factor of, for example, about 1.2.
  • the first and second methods described above do not require another 3D scan operation by the measurement unit 35.
  • the third method in the adjustment step is to correct a part of the actual threaded joint by correcting it with thermal deformation, measure it again with the measuring unit 35, and perform the pass/fail judgment process again to make a pass/fail judgment. Note that correction by thermal deformation is performed by welding heat or burner heating, and, if necessary, compression or tension using a jack.
  • the fourth method in the adjustment process is to manufacture a new threaded joint 10, measure it again using the measuring unit 35, and then perform the pass/fail judgment process again to make a pass/fail judgment.
  • manufacturing a new threaded joint 10 does not only mean manufacturing a new threaded joint, but also includes removing the threaded joint 10 from the pipes 15, 16 and reattaching it in the case of steel pipes with joints. Note that if there are multiple identical threaded joints 10, it is possible to make threaded joints that pass the pass/fail judgment process by changing the combination of the corresponding male and female joints.
  • the same effect as in the first embodiment can be obtained. Furthermore, according to the third embodiment, since it has an adjustment process, it is possible to adjust the threaded joint 10 to an acceptable product through a new adjustment process.
  • a threaded joint measurement system 1A according to the second example of the embodiment is adopted as a threaded joint measurement system, and the clearance measurement process according to the first embodiment is adopted.
  • the clearance measurement device 20A can be configured from a fixed information processing device, or from a server capable of communicating with the measurement terminal 30A via the network 2.
  • the measurement terminal 30A is configured as a terminal having a communication unit 34 and an independent measurement unit 35 capable of communicating with the clearance measurement device 20A via the network 2.
  • the control unit 31 of the measurement terminal 30A can output the clearance information transmitted from the clearance measurement device 20A, for example by displaying it on the input/output unit 33.
  • the clearance information displayed on the input/output unit 33 can output a variety of information, such as the pass/fail result of the threaded joint 10, and an enlarged cross-sectional view of the interference point of the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12.
  • the control unit 31 can also select various information received from the clearance measurement device 20A via the network 2 and output it from the input/output unit 33. For example, even if clearance information including both pass and fail information is sent from the clearance measurement device 20A to the measurement terminal 30A, the control unit 31 can control the input/output unit 33 to output a failure only when a failure has been sent. Furthermore, since the measurement terminal 30A can communicate with the thread machining device 40A via the communication unit 34 and the network 2, the thread machining device 40A can supply clearance information from the measurement terminal 30A to the thread machining device 40A via the clearance measurement device 20A to correct the interference area.
  • a threaded joint measurement system 1A according to the second example of the embodiment is adopted as a threaded joint measurement system.
  • a threaded joint measurement method according to the second embodiment shown in FIG. 12 is adopted as a method for measuring a threaded joint 10.
  • the clearance measurement device 20 can be configured from a fixed information processing device, or can be configured from a server capable of communicating with the measurement terminal via the network 2.
  • the measurement terminal 30A is configured from an independent terminal capable of communicating with the clearance measurement device 20 via the communication unit 34 and the network 2.
  • control unit 31 of the measurement terminal 30A has the same function as the determination unit 212 in the control unit 21 of the clearance measurement device 20A.
  • control unit 31 may be configured to be able to execute processing similar to that of the determination unit 212 of the clearance measurement device 20A by communicating with the clearance measurement device 20A.
  • the control unit 31 of the measurement terminal 30A can execute the bonding determination process in step ST6 shown in FIG. 12 based on the clearance information received from the clearance measurement device 20A.
  • the measurement terminal 30A can be used independently, making it possible to measure the threaded joint 10 and perform pass/fail judgments at various sites.
  • the determination unit 212 makes a determination based on whether the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or less than a predetermined value as the predetermined criterion, but this is not limited thereto, and the determination may be made based on whether the clearance c is less than a predetermined value as the predetermined criterion.
  • the "Yes" and “No” in step ST414 and step ST437 may be interchanged based on whether the clearance c is equal to or greater than a predetermined value or exceeds a predetermined value as the predetermined criterion. Even in these cases, the predetermined value can be set to a value greater than or equal to 0.
  • the method for measuring a threaded joint can be performed manually or automatically using shape measurement software applied to a handheld 3D scanner, high-end CAD, or the like.
  • the repeated processes of steps ST413 to ST416 and steps ST423 to ST426 described above can be performed using a software program by the control unit 21 of the clearance measurement device 20. This makes it possible to achieve even greater efficiency in the method for measuring a threaded joint.
  • the clearance measurement method, clearance measurement device, threaded joint measurement method, threaded joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality control method according to the present invention are suitable for application to steel pipe joint structures that join steel pipes.
  • Threaded joint measurement system 2 Network 10 Threaded joint 11 Male joint 12
  • Female joint 13 Male thread 13a, 14a Thread 13b, 14b Thread bottom 14
  • Female thread 15 Pipe 20, 20A Clearance measurement device 21, 31, 41 Control unit 22, 32, 42 Memory unit 23, 33, 43 Input/output unit 24, 34, 44
  • Thread processing unit 211 Clearance calculation unit 212 Determination unit 221 Clearance database 222 Pipe type database 311 Measurement control unit 411 Processing control unit

Abstract

In order to efficiently confirm joining of threaded joints on pipes, the present invention provides a clearance measuring method, for a pair of threaded joints having a male joint and a female joint corresponding to the male joint, for measuring the clearance between the thread of the male joint and the thread of the female joint. The clearance measuring method includes: a joining completed state setting step for setting a joining completed state in which joining of the male joint and the female joint is completed, on the basis of data on thread shapes of the male joint and the female joint; a clearance measuring step for measuring, in the joining completed state, the clearance between the thread of the male joint and the thread of the female joint corresponding to the thread of the male joint; and a rotated state setting step for setting a state in which rotation is made by a predetermined angle in such a direction as to enjoining the joining, if the joining of the male joint and the female joint is not an unjoined state after the clearance measuring step. The steps from the clearance measuring step to the rotated state setting step are repeatedly executed until the joining is unjoined.

Description

クリアランス測定方法、クリアランス測定装置、ねじ継手の測定方法、ねじ継手の計測システム、計測端末、ねじ継手の製造方法、ねじ継手の品質管理方法CLEARANCE MEASURING METHOD, CLEARANCE MEASURING DEVICE, MEASURING METHOD FOR THREADED JOINT, MEASURING SYSTEM FOR THREADED JOINT, MEASURING TERMINAL, MANUFACTURING METHOD FOR THREADED JOINT, AND QUALITY CONTROL METHOD FOR THREADED JOINT
 本発明は、管を接合する管の継手構造における、クリアランス測定方法、クリアランス測定装置、ねじ継手の測定方法、ねじ継手の計測システム、計測端末、ねじ継手の製造方法、ねじ継手の品質管理方法に関する。 The present invention relates to a clearance measurement method, a clearance measurement device, a threaded joint measurement method, a threaded joint measurement system, a measurement terminal, a threaded joint manufacturing method, and a threaded joint quality control method in a pipe joint structure for joining pipes.
 従来、構造物の基礎や地滑りの抑止などに利用される管による構造体は、施工の条件により必要な長さが数十mに及ぶ場合がある。特に、鋼材で作られた鋼管はその傾向が顕著である。これら管による構造体を施工現場まで搬送する際は、交通制限により長尺のものを搬送できない。そのため、搬送可能な長さである数mごとに運び、施工現場において施工(打設を含む)途中で接合される。  Traditionally, pipe structures used for the foundations of structures and to prevent landslides can require lengths of several tens of meters depending on the construction conditions. This tendency is particularly pronounced for steel pipes. When transporting these pipe structures to the construction site, traffic restrictions mean that long pipes cannot be transported. For this reason, they are transported in transportable lengths of several meters at a time, and are joined at the construction site during construction (including pouring).
 管による構造体を施工現場で接合する方法として、ねじ継手が用いられ、例として特許文献1に開示されたようなねじ継手が利用される。ねじ継手は接合対象となる管のそれぞれの端部に取り付けられ、施工現場で回転させて接合させることによって管を接合して管による構造体を施工する。 Threaded joints are used as a method for joining pipe structures at the construction site, and an example of such a threaded joint is disclosed in Patent Document 1. The threaded joints are attached to the ends of the pipes to be joined, and are rotated at the construction site to join the pipes and construct the pipe structure.
 一般的にねじ継手はあらかじめ工場にて、雄継手を一方の管に、雌継手をもう一方の別の管に取り付けし、現場へと出荷する。製造手順としてはいくつかの方法があるが、雄継手と雌継手がセットとなるように製造されることが多い。製造後には、これら継手の組の使用用途により、長尺な管の先端に取り付けられる場合もある。  Generally, threaded joints are shipped to the site with the male joint attached to one pipe and the female joint attached to the other pipe at the factory. There are several manufacturing procedures, but they are often manufactured as a set of male and female joints. After manufacturing, these sets of joints may be attached to the ends of long pipes depending on their intended use.
特開平10-311028号公報Japanese Patent Application Laid-Open No. 10-311028
 ねじ継手は、雄継手と組になる雌継手の互いに対応するねじ形状により接合可否が決定されるため、通常は使用前に接合確認が行われる。しかしながら、ねじ継手の条件、特に、ねじ継手が700mm以上の径の大径であったり、ねじ継手が接続されている管の長さが5m以上で長尺であったり、ねじ継手または接続されている管の材質が鋼などの金属材料からなる重量物であったりすると、接合確認は困難になる。この場合、接合確認に大幅な手間や、継手自体の破損や、安全の確保に関する懸念などが生じるという問題がある。 Since the suitability of a threaded joint is determined by the corresponding thread shapes of the male and female joints that mate with each other, the joint is usually checked before use. However, when the threaded joint has a large diameter of 700 mm or more, when the pipe to which the threaded joint is connected is long (5 m or more), or when the threaded joint or the connected pipe is made of heavy metal such as steel, checking the joint is difficult. In this case, there are problems such as the significant effort required for checking the joint, the risk of damage to the joint itself, and concerns about ensuring safety.
 特に、ねじ継手の場合、雄継手と雌継手とが外れた状態(雄継手を雌継手にねじ込む直前の状態を含む)の接合開始位置から、雄継手と雌継手との接合が完了している状態の接合完了位置までの間に、雄継手のねじと雌継手のねじとの間のクリアランス(遊びまたは隙間とも称する)が不十分な箇所が存在する可能性がある。雄継手のねじと雌継手のねじとの間のクラアランスが不十分になると、継手の接続工程が中断する可能性が生じる。そのため、ねじ継手において、接合可能なねじ形状であるか否かを現場での使用前に、ねじ継手または接続されている管の状態にかかわらずより簡便に把握可能な技術が求められていた。 In particular, in the case of threaded joints, there may be points where the clearance (also called play or gap) between the threads of the male joint and the threads of the female joint is insufficient between the joining start position when the male joint and the female joint are separated (including the state immediately before the male joint is screwed into the female joint) and the joining completion position when the joining of the male joint and the female joint is complete. If the clearance between the threads of the male joint and the threads of the female joint becomes insufficient, there is a possibility that the joining process of the joint will be interrupted. For this reason, there has been a demand for technology that makes it easier to determine whether a thread shape of a threaded joint is suitable for joining before use in the field, regardless of the state of the threaded joint or the connected pipe.
 本発明は、上記に鑑みてなされたものであって、その目的は、ねじ継手における接合確認を、ねじ継手または接続されている管の状態にかかわらずより簡便に行うことができる、クリアランス測定方法、クリアランス測定装置、ねじ継手の測定方法、ねじ継手の計測システム、計測端末、ねじ継手の製造方法、ねじ継手の品質管理方法を提供することにある。 The present invention has been made in consideration of the above, and its purpose is to provide a clearance measurement method, a clearance measurement device, a measurement method for a threaded joint, a measurement system for a threaded joint, a measurement terminal, a manufacturing method for a threaded joint, and a quality control method for a threaded joint, which allow for easier confirmation of the connection in a threaded joint regardless of the state of the threaded joint or the connected pipe.
 (1)上述した課題を解決し、上記目的を達成するために、本発明の一態様に係るクリアランス測定方法は、雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定するクリアランス測定方法であって、前記雄継手と前記雌継手とのそれぞれのねじ形状のデータに基づいて、前記雄継手と前記雌継手との接合が完了した接合完了状態を設定する接合完了状態設定ステップと、前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスを測定するクリアランス測定ステップと、前記クリアランス測定ステップ後、前記雄継手と前記雌継手との接合が外れた状態でなかった場合には、前記接合を外す方向に予め定められた角度だけ回転させた状態を設定する回転状態設定ステップと、を備え、前記クリアランス測定ステップから前記回転状態設定ステップまでを、前記接合が外れた状態になるまで繰り返し実行する。 (1) In order to solve the above problems and achieve the above object, a clearance measurement method according to one aspect of the present invention is a clearance measurement method for measuring the clearance between the threads of a male joint and the threads of a female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint, comprising: a joining completion state setting step for setting a joining completion state in which joining of the male joint and the female joint is completed based on data on the respective thread shapes of the male joint and the female joint; a clearance measurement step for measuring the clearance between the threads of the male joint and the threads of the female joint corresponding to the threads of the male joint in the joining completion state; and a rotation state setting step for setting a state in which the male joint and the female joint are rotated a predetermined angle in the direction of releasing the joint if the joint between the male joint and the female joint is not in a disengaged state after the clearance measurement step, and the steps from the clearance measurement step to the rotation state setting step are repeatedly executed until the joint is in a disengaged state.
 (2)本発明の一態様に係るクリアランス測定方法は、上記の(1)に記載の発明において、前記クリアランス測定ステップにおいて測定されたクリアランスと所定の基準とに基づいて、前記ねじ継手の組に関して合否を判定するステップと、前記クリアランス測定ステップにおいて測定されたクリアランスと所定の基準とに基づいて干渉個所と判定された箇所に対して、前記干渉個所の情報を付与する干渉情報付与ステップと、の少なくとも一方のステップを備える。 (2) In one aspect of the present invention, the clearance measurement method according to the invention described in (1) above includes at least one of the steps of: determining whether the set of threaded joints is pass or fail based on the clearance measured in the clearance measurement step and a predetermined criterion; and, for a location determined to be an interference location based on the clearance measured in the clearance measurement step and the predetermined criterion, providing information about the interference location.
 (3)本発明の一態様に係るねじ継手の測定方法は、雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対し、前記雄継手のねじ形状と前記雌継手のねじ形状とをそれぞれ計測する形状計測工程と、前記形状計測工程において計測されたねじ形状のデータに基づいて、上記の発明によるクリアランス測定方法によって、前記ねじ継手の組ごとにクリアランスを測定するクリアランス測定工程と、を備える。 (3) A method for measuring a threaded joint according to one embodiment of the present invention includes a shape measurement process for measuring the thread shape of a male joint and the thread shape of a female joint corresponding to the male joint for a set of threaded joints, and a clearance measurement process for measuring the clearance for each set of threaded joints using the clearance measurement method according to the above-described invention based on the data of the thread shape measured in the shape measurement process.
 (4)本発明に係るねじ継手の製造方法は、雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組を製造するねじ継手の製造方法であって、ねじ継手を製造する継手製造工程と、前記継手製造工程によって作成された雄継手と雌継手とを有する前記ねじ継手の組に対し、(3)に記載の発明によるねじ継手の測定方法を実行する継手計測工程と、を備える。 (4) The method for manufacturing a threaded joint according to the present invention is a method for manufacturing a threaded joint set having a male joint and a female joint corresponding to the male joint, and includes a joint manufacturing process for manufacturing the threaded joint, and a joint measurement process for carrying out the threaded joint measurement method according to the invention described in (3) on the threaded joint set having a male joint and a female joint produced by the joint manufacturing process.
 (5)本発明の一態様に係るねじ継手の品質管理方法は、雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対する品質を管理するねじ継手の品質管理方法であって、前記ねじ継手を製造する継手製造工程と、前記継手製造工程によって作成された前記ねじ継手の組に対して、(3)に記載の発明によるねじ継手の測定方法により前記ねじ継手のねじ形状を計測する継手計測工程と、前記継手計測工程から得られた結果を用いて、前記作成されたねじ継手の品質を管理する、品質管理工程と、を備える。 (5) A quality control method for a threaded joint according to one aspect of the present invention is a quality control method for a threaded joint that controls the quality of a set of threaded joints having a male joint and a female joint corresponding to the male joint, and includes a joint manufacturing process for manufacturing the threaded joint, a joint measurement process for measuring the thread shape of the set of threaded joints created by the joint manufacturing process using the threaded joint measurement method according to the invention described in (3), and a quality control process for controlling the quality of the created threaded joint using the results obtained from the joint measurement process.
 (6)本発明の一態様に係るクリアランス測定装置は、雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定するクリアランス測定装置であって、前記雄継手および前記雌継手のそれぞれのねじ形状のデータに基づいて、前記雄継手と前記雌継手との接合が完了した接合完了状態を設定する接合完了状態設定処理と、前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスを測定するクリアランス測定処理と、前記クリアランス測定ステップ後、前記雄継手と前記雌継手との接合が外れた状態でなかった場合には、前記接合を外す方向に予め定められた角度だけ回転させた状態を設定する回転状態設定処理とを、前記接合が外れた状態になるまで繰り返し実行する制御部を備える。 (6) A clearance measurement device according to one aspect of the present invention is a clearance measurement device that measures the clearance between the threads of a male joint and the threads of a female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint, and is equipped with a control unit that repeatedly executes the following steps until the joint is released: a joining completion state setting process that sets a joining completion state in which the joining of the male joint and the female joint is completed based on data on the respective thread shapes of the male joint and the female joint; a clearance measurement process that measures the clearance between the threads of the male joint and the threads of the female joint corresponding to the threads of the male joint in the joining completion state; and a rotation state setting process that sets a state in which the male joint and the female joint are rotated a predetermined angle in the direction of releasing the joint if the joint between the male joint and the female joint is not released after the clearance measurement step.
 (7)本発明の一態様に係るクリアランス測定装置は、(6)に記載の発明において、前記制御部は、前記回転状態設定処理の前に、前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスを測定するクリアランス測定処理を実行する。 (7) In one aspect of the present invention, the clearance measurement device is the invention described in (6), in which the control unit executes a clearance measurement process to measure the clearance between the threads of the male joint and the threads of the female joint that correspond to the threads of the male joint in the joining completion state before the rotation state setting process.
 (8)本発明の一態様に係るクリアランス測定装置は、(6)に記載の発明において、さらに、通信部を備え、前記通信部は、前記制御部によって、前記雄継手および前記雌継手のそれぞれのねじ形状のデータの取得処理と、前記クリアランス測定処理によって得られたクリアランスに関する情報の出力処理との少なくとも一方を実行する。 (8) In one embodiment of the present invention, the clearance measurement device according to the invention described in (6) further includes a communication unit, and the communication unit executes, via the control unit, at least one of the following: acquisition of data on the thread shapes of the male joint and the female joint; and output of information regarding the clearance obtained by the clearance measurement process.
 (9)本発明の一態様に係るねじ継手の計測システムは、雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじ形状と前記雌継手のねじ形状とのそれぞれを計測可能に構成された計測部と、前記計測部によって計測された前記ねじ形状のデータに基づいて、前記ねじ継手の組ごとにクリアランスを測定する、上記の発明によるクリアランス測定装置と、を備える。 (9) A threaded joint measurement system according to one aspect of the present invention includes a measurement unit configured to be able to measure the thread shape of a male joint and the thread shape of a female joint corresponding to the male joint for a set of threaded joints, and a clearance measurement device according to the above invention that measures the clearance for each set of threaded joints based on data on the thread shape measured by the measurement unit.
 (10)本発明の一態様に係る計測端末は、雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定可能に構成され、制御部によって制御される計測端末であって、前記制御部の制御によって、前記雄継手のねじ形状と前記雌継手のねじ形状とをそれぞれ計測する計測部と、前記制御部の制御によって、計測された前記ねじ形状をデータとして上記の発明によるクリアランス測定装置に出力する出力処理、および前記クリアランス測定装置から、前記継手の組ごとに前記クリアランスに関する情報を取得する取得処理の少なくとも一方の処理を実行する、通信部と、前記制御部の制御によって、取得した前記情報を予め定められた形式によって出力可能な出力部と、を備える。 (10) A measurement terminal according to one aspect of the present invention is configured to be capable of measuring the clearance between the threads of a male joint and a female joint corresponding to the male joint for a set of threaded joints, and is controlled by a control unit, and includes a measurement unit that measures the thread shape of the male joint and the thread shape of the female joint under the control of the control unit, a communication unit that executes at least one of an output process that outputs the measured thread shape as data to the clearance measurement device according to the above invention under the control of the control unit, and an acquisition process that acquires information regarding the clearance from the clearance measurement device for each set of joints, and an output unit that is capable of outputting the acquired information in a predetermined format under the control of the control unit.
 (11)本発明の一態様に係る計測端末は、(10)に記載の発明において、前記制御部は、取得した前記クリアランスに関する前記情報と所定の基準とに基づいて、前記ねじ継手の組に関して合否を判定する処理と、取得した前記クリアランスに関する前記情報と所定の基準とに基づいて干渉個所と判定された箇所に対して、前記干渉個所の情報を付与する干渉情報付与処理と、の少なくとも一方の処理を実行する。 (11) In one embodiment of the measuring terminal of the present invention described in (10), the control unit executes at least one of the following processes: a process for determining pass/fail for the set of threaded joints based on the acquired information on the clearance and a predetermined criterion; and an interference information assignment process for assigning information on an interference point to a point determined to be an interference point based on the acquired information on the clearance and a predetermined criterion.
 (12)本発明に係るねじ継手の計測システムは、上記の発明による計測端末と、前記計測端末によって計測されたねじ形状のデータに基づいて、前記ねじ継手の組ごとにクリアランスを測定する上記の発明によるクリアランス測定装置と、を備える。 (12) A measurement system for threaded joints according to the present invention includes a measurement terminal according to the above invention and a clearance measurement device according to the above invention that measures the clearance for each pair of threaded joints based on data on the thread shape measured by the measurement terminal.
 (13)本発明の一態様に係るねじ継手の品質管理方法は、雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対するねじ継手の品質を管理する、ねじ継手の品質管理方法であって、上記の発明によるクリアランス測定装置の制御部により実行されるクリアランス測定処理から得られたクリアランスに関する情報を用いて、前記ねじ継手の組に対する品質を管理する。 (13) A quality control method for a threaded joint according to one aspect of the present invention is a quality control method for a threaded joint that controls the quality of a threaded joint set having a male joint and a female joint corresponding to the male joint, and controls the quality of the threaded joint set using information regarding the clearance obtained from a clearance measurement process executed by a control unit of the clearance measurement device according to the above invention.
 本発明に係るクリアランス測定方法、クリアランス測定装置、ねじ継手の測定方法、ねじ継手の計測システム、計測端末、ねじ継手の製造方法、ねじ継手の品質管理方法によれば、ねじ継手における接合確認を、ねじ継手または接続されている管の状態にかかわらずより簡便に行うことが可能となる。 The clearance measurement method, clearance measurement device, threaded joint measurement method, threaded joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality control method of the present invention make it possible to more easily check the connection of a threaded joint regardless of the condition of the threaded joint or the connected pipe.
図1は、本発明の実施形態によるねじ継手計測システムにおいて測定対象となるねじ継手の接合開始状態を示す図である。FIG. 1 is a diagram showing the start state of joining of a threaded joint that is to be measured in a threaded joint measurement system according to an embodiment of the present invention. 図2は、本発明の実施形態によるねじ継手計測システムにおいて測定対象となるねじ継手の接合完了状態を示す図である。FIG. 2 is a diagram showing a completed joining state of a threaded joint that is to be measured in the threaded joint measurement system according to an embodiment of the present invention. 図3は、本発明の実施形態の第1例によるねじ継手計測システムを示すブロック図である。FIG. 3 is a block diagram showing a threaded joint measurement system according to a first example of an embodiment of the present invention. 図4は、本発明の実施形態の第2例によるねじ継手計測システムを示すブロック図である。FIG. 4 is a block diagram showing a threaded joint measurement system according to a second embodiment of the present invention. 図5は、本発明の第1の実施形態によるねじ継手の測定方法を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining the measurement method for a threaded joint according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態によるクリアランス測定工程を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the clearance measurement process according to the first embodiment of the present invention. 図7Aは、本発明の実施形態によるクリアランス測定方法におけるねじ継手の座標を説明するための図である。FIG. 7A is a diagram for explaining coordinates of a threaded joint in a clearance measurement method according to an embodiment of the present invention. 図7Bは、本発明の実施形態によるクリアランス測定方法におけるねじ継手の座標を説明するための図である。FIG. 7B is a diagram for explaining coordinates of a threaded joint in the clearance measurement method according to an embodiment of the present invention. 図7Cは、本発明の実施形態によるクリアランス測定方法におけるねじ継手の座標を説明するための図である。FIG. 7C is a diagram for explaining coordinates of a threaded joint in the clearance measurement method according to an embodiment of the present invention. 図8は、本発明の実施形態におけるねじ継手の接合部分を示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing a joining portion of a threaded joint in an embodiment of the present invention. 図9は、本発明の実施形態におけるねじ継手の接合部分における干渉部分を示す拡大断面図である。FIG. 9 is an enlarged cross-sectional view showing an interference portion at a joining portion of a threaded joint in an embodiment of the present invention. 図10は、本発明の第1の実施形態によるクリアランス測定方法におけるクリアランス測定工程の第1変形例を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining a first modified example of the clearance measuring step in the clearance measuring method according to the first embodiment of the present invention. 図11は、本発明の第1の実施形態によるクリアランス測定方法におけるクリアランス測定工程の第2変形例を説明するためのフローチャートである。FIG. 11 is a flowchart for explaining a second modified example of the clearance measuring step in the clearance measuring method according to the first embodiment of the present invention. 図12は、本発明の第2の実施形態によるねじ継手の測定方法を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining a threaded joint measurement method according to the second embodiment of the present invention. 図13は、本発明の第3の実施形態によるねじ継手の測定方法を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining a threaded joint measurement method according to the third embodiment of the present invention.
 以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that in all the drawings of the following embodiments, the same or corresponding parts are given the same reference numerals. Furthermore, the present invention is not limited to the embodiment described below.
 まず、本発明の実施形態のねじ継手計測システムによる計測対象となるねじ継手について説明する。図1および図2はそれぞれ、本実施形態のクリアランス測定システムにおいて測定対象(計測対象)となるねじ継手の接合開始状態および接合完了状態を示す図である。 First, we will explain the threaded joint that is the object of measurement by the threaded joint measurement system of the embodiment of the present invention. Figures 1 and 2 are diagrams showing the joining start state and the joining completion state, respectively, of the threaded joint that is the object of measurement (measurement target) in the clearance measurement system of this embodiment.
 (計測対象となる雄継手と雌継手)
 図1に示すように、本実施形態によるねじ継手10は、内側の継手となる雄継手11および外側の継手となる雌継手12とを有して構成される。雄継手11を挿入させて嵌入させる側である先端側には、雄ねじ13が形成されている。雌継手12において挿入されて嵌入される側である先端側には、雌ねじ14が形成されている。雌継手12に形成された雌ねじ14は、雄継手11に形成された雄ねじ13と対応するねじ形状に形成されている。これにより、雄継手11と雌継手12とは互いに対応して、雄継手11を雌継手12にねじ込みによって挿入可能に構成されている。なお、ねじ形状としては、既知のものであっても未知のものであっても利用可能である。ねじ形状としては単条であっても多条であっても良く、本実施形態においては、例えば多条とする。また、ねじ形状はテーパねじでも平行ねじでも利用可能であり、本実施形態においては、例えば平行ねじである。また、材質は、特に限定されない。鋼、鋼以外の金属材料、コンクリート、樹脂、または複数の材料を組み合わせなどが挙げられる。ねじ継手の材質は、使用目的や後述する管などの条件に応じて選択する。本発明は、大径または重量物(長尺)であるために、工場出荷前の接合確認が困難であるねじ継手の場合に、特に効果的である。
(Male and female fittings to be measured)
As shown in FIG. 1, a threaded joint 10 according to this embodiment is configured to have a male joint 11 as an inner joint and a female joint 12 as an outer joint. A male thread 13 is formed on the tip side, which is the side where the male joint 11 is inserted and fitted. A female thread 14 is formed on the tip side, which is the side where the female joint 12 is inserted and fitted. The female thread 14 formed on the female joint 12 is formed in a thread shape corresponding to the male thread 13 formed on the male joint 11. As a result, the male joint 11 and the female joint 12 correspond to each other, and are configured so that the male joint 11 can be inserted into the female joint 12 by screwing. Note that the thread shape may be known or unknown. The thread shape may be single-thread or multiple-thread, and in this embodiment, for example, multiple-thread. The thread shape may be a tapered thread or a parallel thread, and in this embodiment, for example, a parallel thread. In addition, the material is not particularly limited. Examples include steel, metal materials other than steel, concrete, resin, and a combination of multiple materials. The material of the threaded joint is selected according to the purpose of use and the conditions of the pipes, etc., which will be described later. The present invention is particularly effective in the case of threaded joints that are large in diameter or heavy (long) and therefore difficult to check the joining before shipping from the factory.
 管15,16はそれぞれ、構造体を構成する。管15は上部構造体を構成する。管16は下部構造体を構成する。構造体としては、地面などに埋設された状態で所定の機能を有するものであったり、地上の構造体の一部として使用されるものであったり、管15,16の内部空間を利用するなどして気体や液体を輸送するものであったり、種々の構造体を採用可能である。地面に埋設された状態で所定の機能を有するものとしては例えば、杭、土留杭、地すべり抑止杭、管矢板、矢板壁、トンネルなどを挙げることができる。地上の構造体の一部として使用されるものとしては例えば、柱や梁などを挙げることができる。管15,16の内部空間を利用して気体や液体を輸送するものとしては例えば、油井管、水道管、ガス管などを挙げることができる。また、管15,16としては、例えば鋼管、コンクリート管、樹脂管、または複数の材料を組み合わせた管などを挙げることができる。本発明において、管15,16が、大径、長尺、または重量物であることから、工場出荷前の接合確認が困難であるねじ継手付き鋼管の場合に、特に効果的である。 The pipes 15 and 16 each constitute a structure. The pipe 15 constitutes an upper structure. The pipe 16 constitutes a lower structure. Various structures can be used as the structure, such as those that have a specific function when buried in the ground, those that are used as part of a structure on the ground, and those that transport gas or liquid by utilizing the internal space of the pipes 15 and 16. Examples of those that have a specific function when buried in the ground include piles, retaining piles, landslide prevention piles, pipe sheet piles, sheet pile walls, and tunnels. Examples of those that are used as part of a structure on the ground include columns and beams. Examples of those that transport gas or liquid by utilizing the internal space of the pipes 15 and 16 include oil well pipes, water pipes, and gas pipes. In addition, examples of the pipes 15 and 16 include steel pipes, concrete pipes, resin pipes, and pipes made of a combination of multiple materials. In the present invention, the pipes 15 and 16 are particularly effective in the case of steel pipes with threaded joints, in which it is difficult to confirm the joint before shipping from the factory because the pipes are large in diameter, long, or heavy.
 本実施形態においては、上側の管15に雄ねじ13を有する雄継手11が固定されている。下側の管16に雌ねじ14を有する雌継手12が固定されている。また、上述とは反対に、雄継手11を下側の管16に固定し、雌継手12を上側の管15に固定するようにしても良い。また、管15,16を接続せずに、雄継手11および雌継手12のままで計測対象としても良い。 In this embodiment, a male fitting 11 having a male thread 13 is fixed to the upper pipe 15. A female fitting 12 having a female thread 14 is fixed to the lower pipe 16. Alternatively, the male fitting 11 may be fixed to the lower pipe 16 and the female fitting 12 may be fixed to the upper pipe 15, in the opposite manner to the above. Also, the male fitting 11 and female fitting 12 may be used as the measurement subject without connecting the pipes 15 and 16.
 (実施形態の第1例)
 次に、本発明の実施形態の第1例によるねじ継手計測システムについて説明する。図3は、第1の実施形態によるねじ継手計測システムを示すブロック図である。
(First embodiment)
Next, a threaded joint measurement system according to a first embodiment of the present invention will be described. Fig. 3 is a block diagram showing the threaded joint measurement system according to the first embodiment.
 図3に示すように、ねじ継手計測システム1は、クリアランス測定装置20および計測部35を有して構成される。さらにクリアランス測定装置20は、ねじ加工装置40と接続されている。ねじ継手計測システム1は、クリアランス測定装置20および計測部35と、ねじ加工装置40とを有した構成を採用しても良い。また、第1の実施形態によるねじ継手計測システム1は、クリアランス測定装置20を固定して使う場合を想定しているが、計測部35とクリアランス測定装置20とは、近接した状態であっても、遠距離であっても可能である。 As shown in FIG. 3, the threaded joint measurement system 1 is configured to have a clearance measurement device 20 and a measurement unit 35. Furthermore, the clearance measurement device 20 is connected to a thread processing device 40. The threaded joint measurement system 1 may adopt a configuration having the clearance measurement device 20, the measurement unit 35, and the thread processing device 40. Furthermore, the threaded joint measurement system 1 according to the first embodiment is designed for use with the clearance measurement device 20 fixed in place, but the measurement unit 35 and the clearance measurement device 20 can be located close to each other or at a large distance.
 (クリアランス測定装置)
 クリアランス測定装置20は、クリアランス測定装置20は、制御部21、記憶部22、および入出力部23を備える。なお、入出力部23は設けないことも可能である。クリアランス測定装置20は、公知のコンピュータ、サーバ、ノートパソコン、携帯端末、タブレット、スマートフォン、またはクラウドなどのネットワーク上の仮想装置などを使用可能である。
(Clearance Measuring Device)
Clearance measurement device 20 includes a control unit 21, a storage unit 22, and an input/output unit 23. It is possible not to provide input/output unit 23. Clearance measurement device 20 can use a known computer, server, notebook computer, mobile terminal, tablet, smartphone, or a virtual device on a network such as the cloud.
 制御手段としての制御部31は、具体的に、ハードウェアを有するCPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などのプロセッサ、およびRAM(Random Access Memory)やROM(Read Only Memory)などの主記憶部(いずれも図示せず)を備える。 The control unit 31 as a control means specifically includes a processor having hardware such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), and a main memory unit such as a RAM (Random Access Memory) or a ROM (Read Only Memory) (none of which are shown).
 記憶部22は、物理的には、RAMなどの揮発性メモリ、ROMなどの不揮発性メモリ、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)、ソリッドステートドライブ(SSD、Solid State Drive)、およびリムーバブルメディアなどから選ばれた記憶媒体から構成される。なお、リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、または、CD(Compact Disc)、DVD(Digital Versatile Disc)、またはBD(Blu-ray(登録商標) Disc)のようなディスク記録媒体である。また、外部から装着可能なメモリカードなどのコンピュータ読み取り可能な記録媒体を用いて記憶部22を構成しても良い。記憶部22には、クリアランス測定装置20の動作を実行するための、オペレーティングシステム(Operating System:OS)、各種プログラム、各種テーブル、各種データベースなどが記憶可能である。各種プログラムには、学習モデルやニューラルネットワークも含まれる。これらの各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスクなどのコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。 The storage unit 22 is physically composed of a storage medium selected from a volatile memory such as a RAM, a non-volatile memory such as a ROM, an erasable programmable ROM (EPROM), a hard disk drive (HDD), a solid state drive (SSD), and a removable medium. The removable medium is, for example, a universal serial bus (USB) memory, or a disk recording medium such as a compact disc (CD), a digital versatile disc (DVD), or a Blu-ray (registered trademark) disc (BD). The storage unit 22 may also be configured using a computer-readable recording medium such as an externally mountable memory card. The storage unit 22 can store an operating system (OS), various programs, various tables, various databases, and the like for executing the operation of the clearance measurement device 20. The various programs include learning models and neural networks. These various programs can also be recorded on computer-readable recording media such as hard disks, flash memory, CD-ROMs, DVD-ROMs, and flexible disks, and widely distributed.
 記憶部22には、クリアランスデータベース221および管種データベース222が格納されている。管種データベース222には、基本情報として、ねじ継手10を構成する雄継手11および雌継手12に関する各種情報(管種情報)が検索可能に格納されている。なお、管種情報は、ねじ継手10の識別IDや、雄継手11および雌継手12の寸法(径、ねじ寸法、ねじピッチ、ねじ高さ、および長さなど)や、諸元などの情報を含む。クリアランスデータベース221は、管種情報に基づいた雄ねじ13と雌ねじ14とのクリアランスに関する情報や、後述する計測部35によって計測された、雄ねじ13と雌ねじ14とのクリアランスに関する計測結果の情報(以下、クリアランス情報)が検索可能に格納されている。なお、クリアランス情報としては、クリアランスの計測結果の情報以外にも、干渉箇所を規定する干渉個所の情報としてのフラグの情報や、ねじ継手10の組に対する合否(合格不合格)の情報などの、クリアランスに関連した種々の情報を含む。 The storage unit 22 stores a clearance database 221 and a pipe type database 222. In the pipe type database 222, various information (pipe type information) regarding the male joint 11 and the female joint 12 that constitute the threaded joint 10 is stored in a searchable manner as basic information. The pipe type information includes the identification ID of the threaded joint 10, the dimensions (diameter, thread dimension, thread pitch, thread height, length, etc.) and specifications of the male joint 11 and the female joint 12. The clearance database 221 stores searchable information regarding the clearance between the male thread 13 and the female thread 14 based on the pipe type information, and information on the measurement results regarding the clearance between the male thread 13 and the female thread 14 measured by the measurement unit 35 described later (hereinafter, clearance information). In addition to information on the measurement results of the clearance, the clearance information includes various information related to the clearance, such as flag information as information on the interference location that specifies the interference location, and pass/fail (pass/fail) information for the set of threaded joints 10.
 制御部21のクリアランス演算部211は、計測部35によって計測された雄ねじ13や雌ねじ14のねじ形状をデジタルデータとして、記憶部22のクリアランスデータベース221に格納可能に構成される。記憶部22は、制御部21とは異なる筐体に設けられたものであっても良く、外部記憶装置、ネットワーク上のクラウドなどの仮想記憶装置を利用できる。 The clearance calculation unit 211 of the control unit 21 is configured to be able to store the thread shapes of the male thread 13 and the female thread 14 measured by the measurement unit 35 as digital data in the clearance database 221 of the memory unit 22. The memory unit 22 may be provided in a housing different from that of the control unit 21, and may use an external storage device or a virtual storage device such as a cloud on a network.
 本実施形態において、制御部21は、記憶部22に記憶されたプログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部などを制御することで、所定の目的に合致した機能を実現できる。具体的に、制御部21は、プログラムの実行によって、クリアランス演算部211および判定部212の機能を実現できる。 In this embodiment, the control unit 21 loads a program stored in the memory unit 22 into the working area of the main memory unit, executes it, and controls each component through the execution of the program, thereby realizing a function that meets a predetermined purpose. Specifically, the control unit 21 can realize the functions of the clearance calculation unit 211 and the determination unit 212 by executing the program.
 入出力部23は、例えば、タッチパネルディスプレイ、スピーカマイクロホン、ボタン、スイッチ、ジョグダイヤルなどから構成される。出力部としての入出力部23は、制御部21による制御に従って、液晶ディスプレイ、有機ELディスプレイ、またはプラズマディスプレイなどのディスプレイの画面上に、文字や図形などを表示したり、スピーカから音声を出力したりして、所定の情報を外部に通知するように構成される。入出力部23は、印刷用紙などに所定の情報を印刷することによって出力するプリンタを含む。記憶部22に格納された各種情報は、例えば所定の事務所などに設置された入出力部23のディスプレイなどで確認することができる。 The input/output unit 23 is composed of, for example, a touch panel display, a speaker microphone, buttons, switches, a jog dial, etc. As an output unit, the input/output unit 23 is configured to notify the outside of specified information by displaying characters, figures, etc. on the screen of a display such as a liquid crystal display, an organic EL display, or a plasma display, or by outputting sound from a speaker, under the control of the control unit 21. The input/output unit 23 includes a printer that outputs specified information by printing it on printing paper, etc. The various information stored in the memory unit 22 can be viewed on a display of the input/output unit 23 installed in, for example, a specified office, etc.
 入力部としての入出力部23は、例えば、キーボードや入出力部23の内部に組み込まれて表示パネルのタッチ操作を検出するタッチパネル式キーボード、外部との間の通話を可能とする音声入力デバイス、スイッチ、またはジョグダイヤルなどから選択されて構成される。入力手段としての入出力部23は、雄ねじ13や雌ねじ14のねじ断面のクリアランスを、出力手段としての入出力部23を用いて目視により測定した場合において、入出力部23からクリアランスの測定値を入力可能である。また、詳細は後述するが、雄ねじ13と雌ねじ14との接合において、干渉のありなしに基づいてフラグを立てたり倒したりの入力を入出力部23から行うことも可能である。具体的に、雄ねじ13と雌ねじ14との間において干渉が存在した場合に「0」、干渉が存在しない場合に「1」を、入出力部23から入力したりするようにしても良い。 The input/output unit 23 as an input unit is configured to be selected from, for example, a keyboard, a touch panel keyboard incorporated inside the input/output unit 23 to detect touch operations on a display panel, a voice input device that enables calls to and from the outside, a switch, or a jog dial. When the clearance of the thread cross section of the male screw 13 or female screw 14 is measured visually using the input/output unit 23 as an output means, the input/output unit 23 can input the clearance measurement value from the input/output unit 23. In addition, as will be described in detail later, it is also possible to input from the input/output unit 23 to set or reset a flag based on the presence or absence of interference in the joining of the male screw 13 and the female screw 14. Specifically, if there is interference between the male screw 13 and the female screw 14, a "0" may be input from the input/output unit 23, and if there is no interference, a "1" may be input.
 (計測部)
 計測部35は、少なくとも1台の例えば、ハンディ型3Dスキャナなどから構成される。3Dスキャナとしては、例えばレーザ照射装置や赤外線照射装置などを採用できる。ハンディ型3Dスキャナは、機種に応じた焦点距離(例えば20cm~40cm)を維持しつつ操作する必要があることから、スキャン対象周辺は50cm以上の空間が確保することが望ましい。
(Measuring section)
The measurement unit 35 is composed of at least one device, such as a handheld 3D scanner. As the 3D scanner, for example, a laser irradiation device or an infrared irradiation device can be adopted. Since the handheld 3D scanner needs to be operated while maintaining a focal length (for example, 20 cm to 40 cm) according to the model, it is desirable to secure a space of 50 cm or more around the scanning target.
 計測部35は、雄継手11と雌継手12との接合の可否を判定する観点からは、計測精度は、所望とするクリアランスの半分以下程度、具体的に例えば、クリアランスが0.75mmの場合には、(0.75/2=)0.375mm以下程度にすることが好ましい。なお、計測精度としては、ねじ継手10の大きさ、雄ねじ13や雌ねじ14のねじ形状などに応じて種々設定され、これらの数値に限定されない。特に、ねじ継手10は3次元形状であることから、凹凸部によって死角が生じやすいため、操作性の観点からハンディ型の計測機器である、例えばハンディ型3Dスキャナが望ましい。なお、通常、ハンディ型3Dスキャナの中でも高精度のタイプでは形状計測用のマーカーを対象物に10cm程度ごとに貼り付ける必要があったりする。これに対し、ねじ継手10が大型になる場合には、効率性の観点から形状計測用のマーカーの貼り付けが不要な、マーカーレスタイプのハンディ型3Dスキャナが望ましい。 From the viewpoint of determining whether the male joint 11 and the female joint 12 can be joined, the measurement accuracy of the measuring unit 35 is preferably about half or less of the desired clearance, specifically, for example, when the clearance is 0.75 mm, about (0.75/2 =) 0.375 mm or less. The measurement accuracy is set in various ways depending on the size of the screw joint 10 and the thread shapes of the male thread 13 and the female thread 14, and is not limited to these numerical values. In particular, since the screw joint 10 has a three-dimensional shape and is prone to blind spots due to unevenness, a handy measuring device, such as a handy 3D scanner, is desirable from the viewpoint of operability. Note that, in the case of a high-precision type of handy 3D scanner, it is usually necessary to attach a marker for shape measurement to the target object every 10 cm or so. In contrast, when the screw joint 10 is large, a markerless handy 3D scanner that does not require the attachment of a marker for shape measurement is desirable from the viewpoint of efficiency.
 計測部35を構成するセンサは具体的に、例えばレーザ光などの所定の光の照射および反射によって、設置位置から対象物、例えば雄ねじ13や雌ねじ14のねじ表面までの距離を計測可能である。計測部35は、計測位置から対象物の表面までの距離を2次元的な位置情報に関連付けて計測する、いわゆるセンシングを実行可能である。センシングとは、計測部35によって行われる各種計測を含む。2次元的な位置情報としては、xy平面による座標(x,y)や距離rおよび回転角θにおける座標(r,θ)などを用いることができる。2次元的な位置情報に対応した距離の情報にも基づいて、雄ねじ13や雌ねじ14の表面のねじ形状を3次元的に計測可能となる。 Specifically, the sensor constituting the measuring unit 35 can measure the distance from an installation position to an object, for example, the thread surface of the male thread 13 or female thread 14, by irradiating and reflecting a specific light, such as laser light. The measuring unit 35 can perform so-called sensing, which measures the distance from the measurement position to the surface of the object in association with two-dimensional position information. Sensing includes various measurements performed by the measuring unit 35. As the two-dimensional position information, coordinates (x, y) on the xy plane, coordinates (r, θ) at distance r and rotation angle θ, etc. can be used. Based on the distance information corresponding to the two-dimensional position information, it becomes possible to measure the thread shape on the surface of the male thread 13 or female thread 14 in three dimensions.
 また、計測部35の機材を選定する際には、解像度は高精度であるほど好ましい。この場合、解像度は、雄継手11と雌継手12との接合の可否を判定に用いるクリアランスに影響を与えるねじの形状を精度良く再現できる程度であれば良い。本実施形態においては、雄ねじ13や雌ねじ14のねじの形状に局所的な凹凸が生じにくい場合もあることから、解像度は1mm程度以下であれば良いが、この数値に限定されるものではない。また、スキャンしたデータ上で雄継手11と雌継手12とを組み合わせて接合の可否に関する判定を行うことから、方向が一方向に定まらない対象物の場合、スキャンによって認識可能なマーカーや形状による目印を設けることによって、方向性を確保することが望ましい。 In addition, when selecting the equipment for the measuring unit 35, the higher the resolution, the more preferable it is. In this case, the resolution should be sufficient to accurately reproduce the shape of the thread that affects the clearance used to determine whether the male joint 11 and the female joint 12 can be joined. In this embodiment, since local irregularities are unlikely to occur in the shape of the threads of the male and female threads 13 and 14, the resolution should be approximately 1 mm or less, but is not limited to this value. In addition, since the male and female joints 11 and 12 are combined on the scanned data to determine whether they can be joined, in the case of an object whose direction is not fixed, it is desirable to ensure directionality by providing a marker or a mark with a shape that can be recognized by scanning.
 計測部35は、センシングによって計測したねじ形状の計測値をクリアランス測定装置20に出力する出力処理を実行する。クリアランス測定装置20の制御部21におけるクリアランス演算部211は、取得した計測値を記憶部22のクリアランスデータベース221に格納する。 The measurement unit 35 executes an output process to output the measurement values of the thread shape measured by sensing to the clearance measurement device 20. The clearance calculation unit 211 in the control unit 21 of the clearance measurement device 20 stores the acquired measurement values in the clearance database 221 of the storage unit 22.
 (ねじ加工装置)
 ねじ加工装置40は、ねじ継手10の雄ねじ13や雌ねじ14に対する調整工程用の装置である。ねじ加工装置40は、制御部41、記憶部42、入出力部43、およびねじ加工部45を備える。制御部41、記憶部42、および入出力部43はそれぞれ、機能的および物理的には、制御部21、記憶部22、および入出力部23と同様に構成される。ねじ加工装置40は、クリアランス測定装置20に接続される。
(Thread processing device)
The thread machining device 40 is a device for an adjustment process for the male threads 13 and the female threads 14 of the threaded joint 10. The thread machining device 40 includes a control unit 41, a memory unit 42, an input/output unit 43, and a thread machining unit 45. The control unit 41, the memory unit 42, and the input/output unit 43 are functionally and physically configured in the same manner as the control unit 21, the memory unit 22, and the input/output unit 23, respectively. The thread machining device 40 is connected to the clearance measurement device 20.
 制御部41は、記憶部42に記憶されたプログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部などを制御することで、所定の目的に合致した機能を実現できる。具体的に、制御部41は、プログラムの実行によって加工制御部411の機能を実現できる。加工制御部411は、ねじ加工部45を制御可能に構成される。 The control unit 41 loads a program stored in the memory unit 42 into the working area of the main memory unit, executes it, and controls each component unit through the execution of the program, thereby realizing a function that meets a predetermined purpose. Specifically, the control unit 41 can realize the function of the machining control unit 411 by executing the program. The machining control unit 411 is configured to be able to control the thread machining unit 45.
 クリアランス測定装置20のクリアランス演算部211は、記憶部22に格納されたクリアランスデータベース221からクリアランス情報を読み出して、ねじ加工装置40に出力する。クリアランス情報を取得したねじ加工装置40は、取得したクリアランス情報を少なくとも一時的に記憶部42に格納する。制御部41の加工制御部411は、オペレータなどから入出力部43を通じて雄ねじ13や雌ねじ14の干渉個所を修正する指示が入力された場合に、ねじ加工部45を制御することによって、取得したクリアランス情報に基づいて干渉個所を修正する加工処理を実行する。なお、ねじ加工装置40は、クリアランス測定装置20と一体に構成しても良い。さらに、ねじ加工装置40によって、ねじ継手10の製造を行うことも可能である。以上により、実施形態の第1例によるねじ継手計測システム1が構成される。 The clearance calculation unit 211 of the clearance measurement device 20 reads out the clearance information from the clearance database 221 stored in the memory unit 22 and outputs it to the thread processing device 40. The thread processing device 40, which has acquired the clearance information, stores the acquired clearance information at least temporarily in the memory unit 42. When an instruction to correct the interference part of the male thread 13 or the female thread 14 is input from an operator or the like through the input/output unit 43, the processing control unit 411 of the control unit 41 controls the thread processing unit 45 to execute a processing process to correct the interference part based on the acquired clearance information. The thread processing device 40 may be configured integrally with the clearance measurement device 20. Furthermore, the thread processing device 40 can also manufacture the threaded joint 10. The above constitutes the threaded joint measurement system 1 according to the first example of the embodiment.
 (実施形態の第2例)
 次に、本発明の第2の実施形態によるねじ継手計測システムについて説明する。図4は、第2の実施形態によるねじ継手計測システムを示すブロック図である。図4に示すように、ねじ継手計測システム1Aは、ネットワーク2を介して互いに通信可能なクリアランス測定装置20および計測端末30Aを有して構成される。
(Second Example of the Embodiment)
Next, a threaded joint measurement system according to a second embodiment of the present invention will be described. Fig. 4 is a block diagram showing the threaded joint measurement system according to the second embodiment. As shown in Fig. 4, the threaded joint measurement system 1A is configured to include a clearance measurement device 20 and a measurement terminal 30A that are capable of communicating with each other via a network 2.
 ネットワーク2は例えば、インターネットなどの公衆通信網であって、例えばLAN(Local Area Network)、WAN(Wide Area Network)、携帯電話などの電話通信網や公衆回線、VPN(Virtual Private Network)、および専用線などの一または複数の組み合わせからなる。ネットワーク2は、有線通信や無線通信が適宜組み合わされている。 Network 2 is, for example, a public communications network such as the Internet, and is composed of one or more combinations of, for example, a LAN (Local Area Network), a WAN (Wide Area Network), a telephone communications network such as a mobile phone, a public line, a VPN (Virtual Private Network), and a dedicated line. Network 2 is an appropriate combination of wired communications and wireless communications.
 ねじ継手計測システム1Aはさらに、ネットワーク2を介して少なくともクリアランス測定装置20と通信可能な、ねじ加工装置40と接続されていても良い。なお、ねじ継手計測システム1Aは、クリアランス測定装置20および計測端末30Aと、ねじ加工装置40とを有した構成を採用しても良い。 The threaded joint measurement system 1A may further be connected to a thread processing device 40 that can communicate with at least the clearance measurement device 20 via the network 2. The threaded joint measurement system 1A may also adopt a configuration that includes the clearance measurement device 20, the measurement terminal 30A, and the thread processing device 40.
 (クリアランス測定装置)
 クリアランス測定装置20Aは、制御部21、記憶部22、入出力部23、および通信部24を備える。通信手段としての通信部24は、例えば、LAN(Local Area Network)インターフェースボードや、無線通信のための無線通信回路などである。LANインターフェースボードや無線通信回路は、ネットワーク2に接続される。通信部24は、ネットワーク2に接続して、計測端末30Aおよびねじ加工装置40Aとの間で通信を行う。その他の構成は第1の実施形態におけるクリアランス測定装置20と同様である。
(Clearance Measuring Device)
The clearance measurement device 20A includes a control unit 21, a storage unit 22, an input/output unit 23, and a communication unit 24. The communication unit 24 serving as a communication means is, for example, a LAN (Local Area Network) interface board or a wireless communication circuit for wireless communication. The LAN interface board and the wireless communication circuit are connected to a network 2. The communication unit 24 is connected to the network 2 and communicates with the measurement terminal 30A and the thread machining device 40A. The other configurations are similar to those of the clearance measurement device 20 in the first embodiment.
 (計測端末)
 計測端末30Aは、制御部31、記憶部32、入出力部33、通信部34、および計測部35を備える。制御部31、記憶部32、入出力部33、および通信部34はそれぞれ、物理的および機能的には、上述した制御部21、記憶部22、入出力部23、および通信部24と同様の構成を有する。
(Measuring terminal)
The measurement terminal 30A includes a control unit 31, a storage unit 32, an input/output unit 33, a communication unit 34, and a measurement unit 35. The control unit 31, the storage unit 32, the input/output unit 33, and the communication unit 34 have the same physical and functional configurations as the control unit 21, the storage unit 22, the input/output unit 23, and the communication unit 24 described above, respectively.
 さらに、第2の実施形態による計測端末30Aにおける計測部35は、第1の実施形態における計測部35と同様に構成される。制御部31は、記憶部32に記憶されたプログラムを主記憶部の作業領域にロードしてプログラムを実行することにより、所定の目的に合致した機能を実現できる。具体的に制御部31は、プログラムの実行によって計測制御部311の機能を実現できる。計測制御部311は、計測部35を制御可能に構成される。 Furthermore, the measurement unit 35 in the measurement terminal 30A according to the second embodiment is configured similarly to the measurement unit 35 in the first embodiment. The control unit 31 can realize functions that meet a predetermined purpose by loading a program stored in the memory unit 32 into the working area of the main memory unit and executing the program. Specifically, the control unit 31 can realize the functions of the measurement control unit 311 by executing the program. The measurement control unit 311 is configured to be able to control the measurement unit 35.
 (ねじ加工装置)
 ねじ加工装置40Aは、制御部41、記憶部42、入出力部43、通信部44、およびねじ加工部45を備える。通信手段としての通信部44は、物理的および機能的には、上述した通信部24と同様に構成され、ネットワーク2に接続される。通信部44は、ネットワーク2に接続して、少なくともクリアランス測定装置20Aとの間で通信を行う。その他の構成は第1の実施形態におけるねじ加工装置40と同様である。以上により、実施形態の第2例によるねじ継手計測システム1Aが構成される。
(Thread processing device)
The thread machining device 40A includes a control unit 41, a memory unit 42, an input/output unit 43, a communication unit 44, and a thread machining unit 45. The communication unit 44, which serves as communication means, is physically and functionally configured in the same manner as the communication unit 24 described above, and is connected to the network 2. The communication unit 44 is connected to the network 2 and communicates with at least the clearance measurement device 20A. The other configurations are the same as those of the thread machining device 40 in the first embodiment. With the above, a threaded joint measurement system 1A according to the second example of the embodiment is configured.
 (第1の実施形態)
 (ねじ継手の測定方法)
 次に、以上のように構成された実施形態の第1例によるねじ継手計測システム1、または第2例によるねじ継手計測システム1Aを用いた、ねじ継手10の計測方法について説明する。図5は、第1の実施形態によるねじ継手10の計測方法を示すフローチャートである。
First Embodiment
(Method of measuring threaded joints)
Next, a method for measuring a threaded joint 10 using the threaded joint measurement system 1 according to the first example of an embodiment or the threaded joint measurement system 1A according to the second example configured as described above will be described. Fig. 5 is a flowchart showing the method for measuring a threaded joint 10 according to the first embodiment.
 (ねじ継手の製造工程)
 図5に示すように、まず、ステップST1において、ねじ加工装置40によって継手製造工程を実行する。ステップST1においてはまず、熱処理によって鍛造リングを製造する。次に、回転切削によって鋳造リングを回転させつつ、切削刃を鋳造リングに当接させて切削することによって、継手に加工する。なお、切削刃の動きに関しては、所定のプログラムに従った加工制御部411の制御により自動で制御可能である。ここで、一例として継手のねじ形状が多条ねじの場合、1つの部位、すなわち1条が完成するまで同じ場所を少しずつ切削する。1条が完成したら切削刃を次の条に移動させる。継手におけるねじが完成した後、実際に試接合を行って、構造性能を満たす接合完了状態において到達線をアイマークによってマーキングする。その後、接合を解除して、それぞれの継手の外周面(ただし、ねじがない箇所を選ぶ)における開始線に矢印をマーキングして、解除時に雌継手12のアイマークに対応する雄継手11に矢印をマーキングする。なお、なお、必ずしも鍛造リングを用いる必要はなく、切削可能な板厚のある鋼管などを用いる場合もある。
(Threaded joint manufacturing process)
As shown in FIG. 5, first, in step ST1, a joint manufacturing process is performed by a thread processing device 40. In step ST1, a forged ring is manufactured by heat treatment. Next, while rotating a cast ring by rotary cutting, a cutting blade is brought into contact with the cast ring and cut to process it into a joint. The movement of the cutting blade can be automatically controlled by the control of the processing control unit 411 according to a predetermined program. Here, as an example, when the thread shape of the joint is a multiple thread, one part, that is, the same place is cut little by little until one thread is completed. When one thread is completed, the cutting blade is moved to the next thread. After the thread of the joint is completed, a test joining is actually performed, and the arrival line is marked with an eye mark in the joining completion state that satisfies the structural performance. Then, the joining is released, and an arrow is marked on the start line on the outer circumferential surface of each joint (however, a place without a thread is selected), and an arrow is marked on the male joint 11 that corresponds to the eye mark of the female joint 12 at the time of release. Note that it is not necessary to use a forged ring, and a steel pipe with a plate thickness that can be cut may be used.
 (管接続工程)
 次に、ステップST2に移行して、管接続工程を実行する。ステップST2においては、まず、ステップST1において行ったねじ継手の接合を解除する。次に、雄継手11と雌継手12のいずれか一方の継手、ここでは例えば雌継手12を横置きの鋼管に取り付ける。次に、横置き状態の雌継手付き鋼管に雄継手11の単体を試接合する。この試接合によって到達線に達するか否かを確認した後、接合を解除する。続いて、雄継手11と雌継手12の他方の継手、ここでは例えば雄継手11を横置きの鋼管に取り付ける。
(Pipe connection process)
Next, the process proceeds to step ST2, where the pipe connection process is performed. In step ST2, first, the joining of the threaded joint performed in step ST1 is released. Next, one of the male joint 11 and the female joint 12, here for example the female joint 12, is attached to a horizontally placed steel pipe. Next, the male joint 11 alone is trial joined to the horizontally placed steel pipe with the female joint. After confirming whether or not the arrival line is reached by this trial joining, the joining is released. Next, the other of the male joint 11 and the female joint 12, here for example the male joint 11, is attached to the horizontally placed steel pipe.
 ここで、鋼製のねじ継手と鋼管との組み合わせの場合は、この試接合によって、溶接による熱変形の影響を許容して、接合完了位置まで接合できるか確認する。なお、鋼製のねじ継手と管が鋼管矢板との組み合わせの場合は、一例として鋼管を横につなぐ鋼製の連結継手を溶接した後、ねじ継手を鋼管に溶接する。なお、このステップST2は実行しないことも可能である。 Here, in the case of a combination of a steel threaded joint and a steel pipe, this trial joint is used to confirm whether the joint can be completed to the joining position while allowing for the effects of thermal deformation caused by welding. Note that in the case of a combination of a steel threaded joint and a pipe with a steel pipe sheet pile, as an example, the steel connecting joint that connects the steel pipes horizontally is welded, and then the threaded joint is welded to the steel pipe. Note that it is also possible not to perform this step ST2.
 (ねじ継手の測定方法)
 ここで、本実施形態によるねじ継手の測定方法について説明する。本実施形態においては、加工後のねじ継手の形状を計測する形状計測工程、および計測されたねじ継手の形状に基づいて、ねじ継手の組に対するクリアランス測定工程を含む。これらの形状計測工程およびクリアランス測定工程は、ねじ継手10が実際に使用される前に実行される。
(Method of measuring threaded joints)
Here, a threaded joint measurement method according to the present embodiment will be described. In this embodiment, the method includes a shape measurement step of measuring the shape of the threaded joint after processing, and a clearance measurement step for a set of threaded joints based on the measured shape of the threaded joint. These shape measurement step and clearance measurement step are performed before the threaded joint 10 is actually used.
 (形状計測工程)
 すなわち、ステップST1またはステップST2を実行後に、ステップST3に移行して形状計測工程を実行する。形状計測工程においては、まず、ステップST1において製造された1組のねじ継手10に対して、計測部35によって、雄継手11の雄ねじ13および雌継手12の雌ねじ14のそれぞれのねじ形状を計測する。計測部35は、計測したねじ形状の計測データをクリアランス測定装置20に出力したり送信したりする(以下、送信という)。ここで、ねじ継手10の形状計測工程において、計測部35を用いたねじ形状の計測は、例えば計測部35からねじ継手(雄継手11、雌継手12)の表面までの距離を計測することによって行われる。
(Shape measurement process)
That is, after performing step ST1 or step ST2, the process proceeds to step ST3 to perform a shape measurement process. In the shape measurement process, first, the thread shapes of the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 are measured by the measurement unit 35 for one set of threaded joint 10 manufactured in step ST1. The measurement unit 35 outputs or transmits (hereinafter referred to as transmission) measurement data of the measured thread shapes to the clearance measurement device 20. Here, in the shape measurement process of the threaded joint 10, the measurement of the thread shape using the measurement unit 35 is performed by, for example, measuring the distance from the measurement unit 35 to the surfaces of the threaded joints (male joint 11, female joint 12).
 また、ねじ継手10の形状測定工程において、ねじ形状は、ねじ継手(雄継手11、雌継手12)を複数の視点から撮像して複数の画像データを取得し、取得した複数の画像を用いたフォトグラメトリによって測定することも可能である。具体的には、計測部35を構成するハンディ型3Dスキャナによって点群データを取得後、取得した点群データを、ポリゴン化(STL化、メッシュ化)して、対象物であるねじ継手10の3次元計測を行うCAD系のソフトによって形状計測や仮想配置を実行する。 In addition, in the shape measurement process of the threaded joint 10, the thread shape can be measured by photographing the threaded joint (male joint 11, female joint 12) from multiple viewpoints to obtain multiple image data, and then using the multiple images obtained to perform photogrammetry. Specifically, after point cloud data is obtained using a handheld 3D scanner constituting the measurement unit 35, the obtained point cloud data is converted into polygons (STL conversion, mesh conversion), and shape measurement and virtual placement are performed using CAD software that performs three-dimensional measurement of the threaded joint 10, which is the target object.
 ここで、仮想配置を実現するために例えば、形状を詳細に把握する場合には、ねじの頂点をデータ点にすることなどを実行するのが好ましい。すなわち、ねじの形状を計測するために、ねじの頂点が点群データのデータ点に含まれることが好ましく、より具体的には、ねじの頂点の曲率半径以下、例えば解像度0.5mm程度以下にすることが好ましい。 Here, in order to realize the virtual arrangement, for example, if the shape is to be grasped in detail, it is preferable to make the apex of the screw a data point. In other words, in order to measure the shape of the screw, it is preferable that the apex of the screw is included in the data points of the point cloud data, and more specifically, it is preferable that the apex of the screw is equal to or smaller than the radius of curvature of the apex of the screw, for example, a resolution of about 0.5 mm or less.
 しかしながら、ねじの形状として局所的な凹凸が生じにくい場合もあり、接合性に影響を与える接触は、ねじ表面の面的な接触であることを考慮すると、解像度を1mm程度としても良い。また、一例として、データ点の精度の目安としてクリアランスの半分以下、具体的に例えば、クリアランスが0.75mmである場合にデータ点の精度の目安を0.375mm以下とすることにより、実用上十分な精度によって判定できる。なお、3次元計測を行うCAD系のソフトを用いることによって、雄継手11と雌継手12とを剛体とみなして接合判定を行うことから、クリアランスがある場合の合格判定については問題ないことになる。一方、ある程度干渉する場合があっても、継手の弾性体としての変形能力の範囲内にであれば、嵌合可能な場合もありえる。 However, considering that the shape of the thread may not produce localized unevenness and that the contact that affects joinability is planar contact on the thread surface, the resolution may be about 1 mm. As an example, the accuracy of the data points can be set to less than half the clearance, specifically, for example, if the clearance is 0.75 mm, the accuracy of the data points can be set to less than 0.375 mm, allowing for a judgment with sufficient accuracy for practical use. By using CAD software that performs three-dimensional measurements, the male joint 11 and female joint 12 are considered to be rigid bodies and the joining judgment is performed, so there is no problem with the pass judgment when there is clearance. On the other hand, even if there is a certain degree of interference, it may be possible for the joints to be fitted together as long as it is within the range of the joint's deformation capacity as an elastic body.
 以上のように、計測精度、局所的な接触の無視、摩擦抵抗、弾性変形量、使用条件(鉛直、水平、斜等の接合時の方向性や外気温)を考慮した判定基準値を設定することによって、判定を高精度化できる。判定基準値は、必ずしも0を基準とする必要はなく、例えばデジタル上でのクリアランスが-0.2mm(仮想干渉量が0.2mm)を基準とし、嵌合の可否を判定する事も可能である。また、計測精度によっては、クリアランスが正の値であっても干渉する場合もあり、適切な判定基準を設定することが望ましい。なお、クリアランスの正負は整理する方法にもよることから、負をクリアランスが存在している状態としても良い。 As described above, by setting a judgment standard value that takes into account measurement accuracy, ignoring local contact, frictional resistance, amount of elastic deformation, and usage conditions (directivity when joining, such as vertical, horizontal, or diagonal, and outside temperature), it is possible to improve the accuracy of the judgment. The judgment standard value does not necessarily have to be based on 0; for example, it is possible to judge whether or not the fit can be performed using a digital clearance of -0.2 mm (virtual interference amount of 0.2 mm) as the standard. Also, depending on the measurement accuracy, interference may occur even when the clearance is a positive value, so it is desirable to set an appropriate judgment standard. Note that positive and negative clearances depend on the method of sorting, so a negative value may be used to indicate that a clearance exists.
 また、ねじ継手10においては、必ずしも全体を計測する必要はなく、計測部35によって、雄継手11に関しては外面側、雌継手12に関しては内面側が計測されていれば良い。この場合、計測時間の短縮や計測データの容量を低減することが可能である。また、取得した点群データを、ポリゴン化(STL化、メッシュ化)する際は、所定の表面誤差(例えば0.01mm)の範囲内の点を省略し、データ容量の削減を行うこともできる。 Furthermore, it is not necessary to measure the entire threaded joint 10; it is sufficient that the measurement unit 35 measures the outer surface side of the male joint 11 and the inner surface side of the female joint 12. In this case, it is possible to shorten the measurement time and reduce the amount of measurement data. Furthermore, when converting the acquired point cloud data into polygons (STL conversion, mesh conversion), points within a specified surface error range (for example, 0.01 mm) can be omitted to reduce the data volume.
 (クリアランス測定工程)
 次にステップST4に移行して、クリアランス測定方法としてのクリアランス測定工程について説明する。図6は、第1の実施形態によるクリアランス測定方法を示すフローチャートである。なお、図6に示すフローチャートは、クリアランス測定装置20により実行される。
(Clearance measurement process)
Next, proceeding to step ST4, a clearance measurement process as part of the clearance measurement method will be described. Fig. 6 is a flowchart showing the clearance measurement method according to the first embodiment. The flowchart shown in Fig. 6 is executed by clearance measurement device 20.
 (取得ステップ)
 図6に示すように、第1の実施形態によるクリアランス測定方法においては、まず、取得処理を行う取得ステップとしてのステップST411において、クリアランス測定装置20の制御部21は、計測部35から、計測データを取得する。計測データは、ステップST3において計測部35によって計測された雄継手11の雄ねじ13のねじ形状、および雌継手12の雌ねじ14のねじ形状に関する計測データである。
(Acquisition step)
6 , in the clearance measurement method according to the first embodiment, first, in step ST411 as an acquisition step for performing acquisition processing, control unit 21 of clearance measurement device 20 acquires measurement data from measurement unit 35. The measurement data is measurement data relating to the thread shape of male thread 13 of male joint 11 and the thread shape of female thread 14 of female joint 12 measured by measurement unit 35 in step ST3.
 (接合完了状態設定ステップ)
 次に、接合完了状態設定処理を実行する接合完了状態設定ステップとしてのステップST412に移行して、制御部21のクリアランス演算部211は、取得した雄ねじ13および雌ねじ14のねじ形状の計測データに基づいて、雄継手11が雌継手12の内側に接合した接合完了状態を設定する。
(Joining completion state setting step)
Next, the process proceeds to step ST412, which is a joining completion state setting step in which a joining completion state setting process is executed, and the clearance calculation unit 211 of the control unit 21 sets a joining completion state in which the male joint 11 is joined to the inside of the female joint 12 based on the acquired measurement data of the thread shapes of the male thread 13 and the female thread 14.
 本発明において、「接合完了状態」とは、図2に示すように、管軸方向に対する雄継手11のねじ部分の全長が雌継手12の内側にほぼ収納され、接合が完了した状態を示す。言い換えれば、雄継手11が雌継手12にねじ込まれた状態で、ねじが進む方向にほぼ回らなくなった状態である。図2に示すように、理想的には、雄継手11のねじの無い部分と雌継手12の先端部とが接する(ショルダータッチという)。 In the present invention, the "joining completed state" refers to a state in which the entire length of the threaded portion of the male fitting 11 in the axial direction of the pipe is almost entirely housed inside the female fitting 12, and joining is complete, as shown in Figure 2. In other words, it is a state in which the male fitting 11 is screwed into the female fitting 12 and can no longer rotate in the direction in which the thread advances. As shown in Figure 2, ideally, the unthreaded portion of the male fitting 11 comes into contact with the tip of the female fitting 12 (this is called shoulder touch).
 本発明においては、この接合完了状態を初期位置として設定し、クリアランスの測定を接合完了状態から開始することが、最大の特徴である。 The greatest feature of this invention is that this joining completion state is set as the initial position, and the clearance measurement starts from the joining completion state.
 通常、実物で接合確認する場合は、雄ねじと雌ねじが組み合う位置(継手の周方向に対するねじの開始位置でもある)を動かしながら特定することになる。ここで1条ねじの場合は継手の周方向に対するねじの開始位置が1ヶ所しかなく、先に説明したようなねじ継手の条件によっては、当該位置の特定は非常に困難になる。また、多条ねじは継手の周方向に対するねじの開始位置は複数あるが、特定の開始位置での使用を想定している場合は、やはり当該位置の特定が難しくなる。特に、コンピュータ等を使用して仮想上で接合を模擬する場合は、雄ねじと雌ねじが組み合う位置の設定は、周方向や軸方向に複数条件が考えられ、そもそもねじ込みを開始させること自体がさらに難しくなる。  Normally, when checking a joint with an actual object, the position where the male and female threads join (which is also the start position of the threads in the circumferential direction of the joint) is identified while moving. In the case of a single-start thread, there is only one start position of the threads in the circumferential direction of the joint, and depending on the conditions of the threaded joint as explained above, identifying this position can be very difficult. Also, although there are multiple start positions of the threads in the circumferential direction of the joint, identifying this position is also difficult if it is intended to be used at a specific start position. In particular, when simulating a joint virtually using a computer, etc., there are multiple possible conditions in the circumferential and axial directions for setting the position where the male and female threads join, making it even more difficult to start threading in the first place.
 しかしながら、雄ねじと雌ねじの接合が完了した接合完了位置は、仮想上の場合を含めてどのような環境においても容易に設定できる。そこで、本発明においては、接合完了位置を初期位置とし接合解除させながらクリアランスの測定を行うことで、クリアランス測定工程を単純化し、ねじ継手または接続されている管の状態にかかわらずより簡便にクリアランスの測定を行うことができる。 However, the joining completion position where the male and female threads have been joined can be easily set in any environment, including virtual ones. Therefore, in the present invention, the joining completion position is set as the initial position, and the clearance is measured while the joining is released, simplifying the clearance measurement process and making it easier to measure the clearance regardless of the state of the threaded joint or the connected pipe.
 (クリアランス測定ステップ)
 次に、クリアランス測定ステップとしてのステップST413に移行して、制御部21のクリアランス演算部211は、接合完了状態における、雄ねじ13および雌ねじ14の計測データに基づいて、雄ねじ13と雌ねじ14との間のクリアランスを導出する。クリアランス演算部211によるクリアランスの導出は、あらかじめ設定された個所において実行される。なお、本明細書においてクリアランスとは、隙間または遊びなどとも称されるものである。
(Clearance measurement step)
Next, the process proceeds to step ST413 as a clearance measurement step, where the clearance calculation unit 211 of the control unit 21 derives the clearance between the male thread 13 and the female thread 14 based on the measurement data of the male thread 13 and the female thread 14 in the joining completed state. The clearance calculation unit 211 derives the clearance at a preset location. In this specification, the clearance is also referred to as a gap or play.
 ここで、図7A、図7B、および図7Cに、計測位置の座標系の作成方法を示す。すなわち、図7Aに示すように、雄継手11の雄ねじ13の断面や、雌継手12の雌ねじ14の径方向に沿った断面を作成するための平面を作成し、図7Bに示す断面線Lを作成する。次に、断面線から直線lを2本作成して、交点Cを作成する。次に、図7Cに示すように、曲線を指定した点(指定点)との誤差が最小になる円(以下、フィット円)を作成する。このフィット円の中心点と複数の交点Cとによって、座標系を作成する。なお、図7A~図7Cによって説明した座標系の作成方法はあくまで一例に過ぎず、座標系の作成や設定は任意の方法で行うことが可能である。 Here, Figures 7A, 7B, and 7C show how to create a coordinate system for the measurement position. That is, as shown in Figure 7A, a plane is created to create a cross section of the male thread 13 of the male joint 11 and a cross section along the radial direction of the female thread 14 of the female joint 12, and a section line L shown in Figure 7B is created. Next, two straight lines 1 are created from the section line, and an intersection point C is created. Next, as shown in Figure 7C, a circle (hereinafter referred to as a fit circle) that minimizes the error with the point (specified point) where the curve is specified is created. A coordinate system is created using the center point of this fit circle and multiple intersection points C. Note that the method of creating a coordinate system explained using Figures 7A to 7C is merely one example, and the creation and setting of a coordinate system can be performed by any method.
 図6に戻り、このように作成した座標系に基づいて、あらかじめ設定された個所として、雄継手11や雌継手12の横断面(図1および図2において上下方向に対して垂直な平面)における円の中心に対して、円周状で例えば90°ずつずらした4個所を選択することができる。なお、あらかじめ設定された個所として、円の中心に対して円周上で例えば45°ずつずらした8個所とすることも可能であり、必ずしも所定の位置や個数に限定されない。 Returning to FIG. 6, based on the coordinate system created in this way, four locations can be selected as pre-set locations, for example, shifted by 90° on a circumference with respect to the center of the circle in the cross section (plane perpendicular to the up-down direction in FIG. 1 and FIG. 2) of the male joint 11 or female joint 12. Note that it is also possible to select eight locations as pre-set locations, for example, shifted by 45° on a circumference with respect to the center of the circle, and the locations and number of locations are not necessarily limited to a predetermined number.
 ステップST413においてクリアランス演算部211は、上述したように、あらかじめ設定された4個所や8個所の位置において、ねじ形状のデータからねじの断面図を生成して、雄ねじ13と雌ねじ14とのねじ間のクリアランスcを導出する。このように、図7A~図7Cに示すようにして測定点の求め方を設定することによって、クリアランス演算部211は、定められた箇所を所定の方法で自動的に算出可能となる。なお、クリアランス測定装置20の入出力部23に、クリアランス演算部211が生成したねじの断面図を出力させ、作業者が目視でクリアランスの有無を判断して、入出力部23からクリアランスの有無を入力するようにしても良い。 In step ST413, the clearance calculation unit 211 generates a cross-sectional view of the thread from the data on the thread shape at four or eight positions that have been set in advance, as described above, and derives the clearance c between the male thread 13 and the female thread 14. In this way, by setting the method for determining the measurement points as shown in Figures 7A to 7C, the clearance calculation unit 211 can automatically calculate the specified locations using a predetermined method. Note that the cross-sectional view of the thread generated by the clearance calculation unit 211 may be output to the input/output unit 23 of the clearance measurement device 20, and an operator may visually determine whether or not there is a clearance and input the presence or absence of a clearance from the input/output unit 23.
 また、第1の実施形態によるクリアランス測定装置20のクリアランス演算部211によって生成された、データ化されたねじ継手10の断面の一例を図8および図9に示す。図8は、データ化したねじ継手10の雄ねじ13と雌ねじ14とが互いに干渉せず、接合している状態の一部を拡大して示す断面図である。図9は、データ化したねじ継手10の雄ねじ13と雌ねじ14とが部分的に干渉しており、適切に接合していない状態の一部を拡大して示す断面図である。 FIGS. 8 and 9 show an example of a cross section of the digitized threaded joint 10 generated by the clearance calculation unit 211 of the clearance measurement device 20 according to the first embodiment. FIG. 8 is a cross section showing an enlarged portion of the digitized threaded joint 10 in a state in which the male thread 13 and female thread 14 are joined without interfering with each other. FIG. 9 is a cross section showing an enlarged portion of the digitized threaded joint 10 in a state in which the male thread 13 and female thread 14 are partially interfering with each other and are not joined properly.
 図8に示すように、ねじ山13a,14aとねじ底13b,14bとの間にそれぞれ干渉が生じていない場合には、雄継手11と雌継手12との接合ができている状態となる。ここで、例えば、適切に接合する雄ねじ13のねじ山13aの高さhは、例えば5.0mmである。なお、ねじ山13a,14aの中央は、雄ねじ13の角部と角部との距離の半分で一番近い点とする。また、白点pは、雄継手11の雄ねじ13および雌継手12の雌ねじ14に対して、十分な解像度を確保できる計測点である。これらの白点pが多い程、雄ねじ13および雌ねじ14の中央の位置の判定精度を向上できる。 As shown in FIG. 8, when there is no interference between the threads 13a, 14a and the thread roots 13b, 14b, respectively, the male joint 11 and the female joint 12 are joined. Here, for example, the height h of the threads 13a of the male thread 13 that is properly joined is, for example, 5.0 mm. The center of the threads 13a, 14a is the closest point that is half the distance between the corners of the male thread 13. The white points p are measurement points that ensure sufficient resolution for the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12. The more white points p there are, the more accurate the determination of the center positions of the male thread 13 and the female thread 14 can be.
 ねじ山13a,14aの高さhは、ねじ山13a,14aの中央とスタビング側の底との距離とする。また、雄ねじ13のねじ山13aと雌ねじ14のねじ底14bとの間の径方向のクリアランスcは例えば0.75mmとする。なお、クリアランスcは、ねじ山13aの中央とねじ底14bの中央とを結んだ線のうち、雄継手11の回転軸の半径方向成分とする。すなわち、雄継手11のねじ山13aの周方向に接する面の雄継手11の径の中心からの距離r1と、雌継手12のねじ底14bの雄継手11の径の中心からの距離r2とからは、クリアランスcは、c=r2-r1として導出できる。 The height h of the threads 13a, 14a is the distance between the center of the threads 13a, 14a and the bottom of the stabbing side. The radial clearance c between the threads 13a of the male thread 13 and the thread bottom 14b of the female thread 14 is, for example, 0.75 mm. The clearance c is the radial component of the line connecting the center of the threads 13a and the center of the thread bottom 14b of the male joint 11. In other words, the clearance c can be derived as c = r2 - r1 from the distance r1 from the radial center of the male joint 11 to the surface circumferentially tangent to the threads 13a of the male joint 11, and the distance r2 from the radial center of the male joint 11 to the thread bottom 14b of the female joint 12.
 クリアランスcとしては、必ずしも上述した定義に限定されず、ねじ継手10の接合の可否に応じた種々の定義を設定できる。例えば、クリアランスcの他の定義の例としては、ねじ山13a,14aの頂点を考慮した位置の決め方を採用することも可能である。すなわち、計測する頂点どうしをあらかじめ決定して、斜めに結ばれる場合においては、結ばれた頂点どうしの半径方向や軸方向に対応する距離を計測して、クリアランスcとすることも可能である。また、雄継手11におけるそれぞれの点、または点と点とを結んだ線、すなわちメッシュごとに法線方向に距離を計測して、接合状態での雌継手12と接した際の距離、すなわち最短距離をクリアランスcに設定しても良い。反対に、雌継手12から雄継手11に向かう方向に距離を計測しても良い。 Clearance c is not necessarily limited to the above definition, and various definitions can be set according to whether or not the threaded joint 10 can be joined. For example, as another example of the definition of clearance c, it is possible to adopt a method of determining the position taking into account the apexes of the threads 13a and 14a. In other words, when the apexes to be measured are determined in advance and are connected at an angle, it is also possible to measure the distance corresponding to the radial or axial direction between the connected apexes and set it as clearance c. In addition, the distance may be measured in the normal direction for each point on the male joint 11, or for the line connecting the points, i.e., for each mesh, and the distance when it comes into contact with the female joint 12 in the joined state, i.e., the shortest distance, may be set as clearance c. Conversely, the distance may be measured in the direction from the female joint 12 toward the male joint 11.
 一方、図9に示すように、雄継手11と雌継手12との位置関係から、ねじ山13a,14aとねじ底13b,14bとの間の少なくとも一部に干渉(干渉部分E)が生じている場合には、雄継手11と雌継手12との接合ができていない状態となる。ここで、例えば、適切に接合していない状態の雄ねじ13のねじ山13aの高さhは、例えば5.0mmである。雌ねじ14のねじ底14bとの間の径方向のクリアランスcは、例えば-1mm、すなわち径方向に1mmだけ干渉することになる。 On the other hand, as shown in Figure 9, if interference (interference part E) occurs at least partially between the threads 13a, 14a and the thread roots 13b, 14b due to the positional relationship between the male joint 11 and the female joint 12, the male joint 11 and the female joint 12 will not be joined. Here, for example, the height h of the threads 13a of the male thread 13 in an improperly joined state is, for example, 5.0 mm. The radial clearance c between the thread root 14b of the female thread 14 is, for example, -1 mm, meaning that there is interference of 1 mm in the radial direction.
 なお、上述した図8および図9の例においては、ねじピッチPは例えば12.5mmであるが、限定されない。ねじピッチPとは、ある1条における雄ねじ13のねじ底13bの端から次の1条の雄ねじ13のねじ底13bの始まる位置までの軸方向の距離である。または、ねじピッチPは、ある1条の雌ねじ14のねじ山14aの端から次の1条のねじ山14aの始まる位置までの軸方向の距離である。1条ねじの場合、ねじピッチPは、1回転したときにねじが進む距離を意味する。一方、多条ねじの場合、ねじピッチPは、ねじの条数によって1回転したときの進む距離が異なることから、一定の距離としてのねじピッチPが定義することが困難であるため、本明細書においては上述のように定義しているが、必ずしも上述した定義に限定されない。 In the examples of Figs. 8 and 9, the thread pitch P is, for example, 12.5 mm, but is not limited thereto. The thread pitch P is the axial distance from the end of the thread root 13b of a male thread 13 in a certain thread to the beginning of the thread root 13b of the next male thread 13 in a certain thread. Alternatively, the thread pitch P is the axial distance from the end of the thread 14a of a certain female thread 14 in a certain thread to the beginning of the thread 14a of the next single thread. In the case of a single thread thread, the thread pitch P means the distance the thread advances when it rotates once. On the other hand, in the case of a multiple thread thread, the thread pitch P differs in the distance the thread advances when it rotates once depending on the number of threads of the thread, so it is difficult to define the thread pitch P as a constant distance. Therefore, although the thread pitch P is defined as above in this specification, it is not necessarily limited to the above definition.
 クリアランス演算部211は、あらかじめ設定された例えば4個所や8個所の複数の個所において導出したクリアランスcの結果をクリアランス情報として、クリアランスデータベース221に格納する。なお、クリアランスcは、雄継手11および雌継手12において、あらかじめ設定された複数の個所における接合している部分の全てのねじ山13a,14aおよびねじ底13b,14bについて導出する。その上で、回転軸に対する半径方向に沿った最小のクリアランスcを導出する。クリアランス演算部211は具体的に、所定の計測ソフトウェアによって、それぞれの縦断面(図7B参照)において雄継手11の雄ねじ13と雌継手12の雌ねじ14とのクリアランスcが回転半径方向で最小となる値を抽出する。また、導出したクリアランスcの情報については、管種データベース222に格納された管種情報のねじ継手識別IDと関連付けて、記憶部22に格納しても良い。 The clearance calculation unit 211 stores the clearance c results derived at multiple locations, for example, four or eight locations, as clearance information in the clearance database 221. The clearance c is derived for all threads 13a, 14a and thread roots 13b, 14b of the joined portions at multiple locations, which are preset, in the male joint 11 and the female joint 12. The minimum clearance c along the radial direction with respect to the rotation axis is then derived. Specifically, the clearance calculation unit 211 uses a predetermined measurement software to extract the value at which the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is minimum in the rotation radial direction in each longitudinal section (see FIG. 7B). The derived clearance c information may be stored in the storage unit 22 in association with the thread joint identification ID of the pipe type information stored in the pipe type database 222.
(クリアランス判定ステップ)
 次に、次に、クリアランス判定ステップとしてのステップST414に移行して制御部21の判定部212は、記憶部22のクリアランスデータベース221からクリアランス情報を読み出して、所定の基準に従って接合の可否の判定を行う。すなわち、判定部212は、所定の基準として例えば、雄継手11の雄ねじ13と雌継手12の雌ねじ14との間におけるクリアランスcが所定値以下であるか否かに基づいて判定する。なお、所定値としては、任意の値に設定可能であり、本実施形態において所定値は例えば0とする。
(Clearance determination step)
Next, the process proceeds to step ST414 as a clearance determination step, where the determination unit 212 of the control unit 21 reads out clearance information from the clearance database 221 of the storage unit 22 and determines whether or not joining is possible according to a predetermined criterion. That is, the determination unit 212 makes a determination based on, for example, the predetermined criterion, that is, whether or not the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or smaller than a predetermined value. The predetermined value can be set to any value, and in this embodiment, the predetermined value is set to 0, for example.
 ステップST414において判定部212が、雄継手11の雄ねじ13と雌継手12の雌ねじ14との間におけるクリアランスcは所定値以下、具体的に例えば0以下(c≦0)であると判定した場合(ステップST414:Yes)、ステップST418に移行する。ステップST418において判定部212は、測定対象であるねじ継手10が不合格である情報を出力して、この不合格情報をクリアランス情報としてクリアランスデータベース221に格納する。以上により、クリアランス測定工程が終了する。 If the determination unit 212 determines in step ST414 that the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or less than a predetermined value, specifically, for example, equal to or less than 0 (c≦0) (step ST414: Yes), the process proceeds to step ST418. In step ST418, the determination unit 212 outputs information that the threaded joint 10 being measured has failed, and stores this failure information in the clearance database 221 as clearance information. This completes the clearance measurement process.
 ステップST414において判定部212が、雄継手11の雄ねじ13と雌継手12の雌ねじ14との間におけるクリアランスcは所定値より大きい、具体的に例えば0より大きい(c>0)と判定した場合(ステップST414:No)、ステップST415に移行する。すなわち、あらかじめ設定された複数個所において接合している部分におけるクリアランスcが、所定値より大きい状態であれば、干渉は生じず、雄継手11と雌継手12とは接合可能であると判定される。ここで、所定値を0とした場合、判定部212は、クリアランスcが常に正(c=r2-r1>0)の状態であれば、干渉は生じず、雄継手11と雌継手12とは接合可能であると判定できる。なお、干渉部分Eはねじ部の半径方向のみならず、ねじ部の管軸方向やねじ部以外の箇所においても生じる可能性があることから同様に判定しても良いが、ねじ継手10においては、ねじ部の半径方向の変形が最も生じやすいことから、判定部212は、ねじ部の半径方向のクリアランスが上述した条件(c>所定値)を満たせば、接合可能と判定できる。なお、今回は静的検討として、計測ソフトやCADを用いた継手全体の形状が変形せずに剛であると仮定して検討する方法を採用したが、動的検討として、部分的な微小干渉により継手の形状が弾性変形することや摩擦抵抗なども考慮して検討する方法も採用できる。動的検討としては、FEMや機構解析などによる動的解析を行い、荷重、トルク、接触、摩擦などの変動に基づいて干渉を判定する。 If the judgment unit 212 judges in step ST414 that the clearance c between the male thread 13 of the male fitting 11 and the female thread 14 of the female fitting 12 is greater than a predetermined value, specifically, for example, greater than 0 (c>0) (step ST414: No), it proceeds to step ST415. In other words, if the clearance c in the jointed portion at multiple pre-set locations is greater than a predetermined value, it is judged that no interference occurs and that the male fitting 11 and the female fitting 12 can be joined. Here, if the predetermined value is set to 0, the judgment unit 212 can judge that no interference occurs and that the male fitting 11 and the female fitting 12 can be joined if the clearance c is always positive (c=r2-r1>0). It should be noted that interference E may occur not only in the radial direction of the threaded portion, but also in the axial direction of the threaded portion and in other locations besides the threaded portion, so it may be judged in the same way. However, since radial deformation of the threaded portion is most likely to occur in the threaded joint 10, the judgment unit 212 can judge that joining is possible if the radial clearance of the threaded portion satisfies the above-mentioned condition (c > predetermined value). In addition, as a static study, a method was adopted in which the overall shape of the joint was assumed to be rigid and not deformed using measurement software and CAD, but as a dynamic study, a method can also be adopted in which the shape of the joint is elastically deformed due to partial minute interference, frictional resistance, etc. are taken into consideration. As a dynamic study, dynamic analysis is performed using FEM, mechanism analysis, etc., and interference is judged based on fluctuations in load, torque, contact, friction, etc.
 (接合判定ステップ)
 接合判定ステップとしてのステップST415において判定部212は、ねじ継手10において、雄継手11と雌継手12とがねじ込まれておらず接合が外れているか否かを判定する。判定部212が、雄継手11と雌継手12とはねじ込まれておらず接合は外れていると判定した場合(ステップST415:Yes)、ステップST417に移行する。
(Joining Determination Step)
In step ST415 as a joining determination step, the determination unit 212 determines whether or not the male joint 11 and the female joint 12 are not screwed together and the joining is disengaged in the threaded joint 10. If the determination unit 212 determines that the male joint 11 and the female joint 12 are not screwed together and the joining is disengaged (step ST415: Yes), the process proceeds to step ST417.
 ステップST417において判定部212は、測定対象であるねじ継手10が合格である情報を出力して、この合格情報をクリアランス情報としてクリアランスデータベース221に格納する。クリアランス演算部211は、仮想的に雄継手11と雌継手12との接合が外れた状態まで、雄ねじ13および雌ねじ14の全周に対するクリアランスcを導出することができる。以上により、クリアランス測定工程が終了する。 In step ST417, the determination unit 212 outputs information that the threaded joint 10 being measured has passed, and stores this pass information in the clearance database 221 as clearance information. The clearance calculation unit 211 can derive the clearance c for the entire circumference of the male thread 13 and female thread 14 up to the state where the male joint 11 and female joint 12 are virtually disconnected. This completes the clearance measurement process.
 一方、ステップST415において判定部212が、雄継手11と雌継手12とは離間しておらず、接合は外れていないと判定した場合(ステップST415:No)、ステップST416に移行する。 On the other hand, if the determination unit 212 determines in step ST415 that the male joint 11 and the female joint 12 are not separated and the connection is not disconnected (step ST415: No), the process proceeds to step ST416.
 (回転状態設定ステップ)
 回転状態設定処理を行う回転状態設定ステップとしてのステップST416おいてクリアランス演算部211は、接合した雄継手11と雌継手12とに対して、予め定められた回転角度、具体的には例えば90°や45°だけ、外す方向に回転させた状態を設定する。ここで、ステップST416において実行される回転状態設定ステップについて詳細に説明する。
(Rotation state setting step)
In step ST416 as a rotational state setting step for performing a rotational state setting process, the clearance calculation unit 211 sets a state in which the joined male joint 11 and female joint 12 are rotated in the disengagement direction by a predetermined rotation angle, specifically, for example, 90° or 45°. Here, the rotational state setting step executed in step ST416 will be described in detail.
 すなわち、データ化されている雄継手11と雌継手12とを、接合完了状態から接合時における回転方向とは逆方向に回転(以下、逆回転)させて完全に解除することを検討する。このデータにおいて仮想的に実行する解除の際に、雄ねじ13および雌ねじ14における全てのねじ部において、全ての断面で干渉が生じない場合、雄継手11と雌継手12とは接合可能であると判定できる。反対に、少なくとも一部において、干渉が生じる場合、すなわちクリアランスcが所定値以下であった場合には、接合不可能と判定できる。 In other words, we consider rotating the digitized male joint 11 and female joint 12 from their joined state in the opposite direction to the rotation direction at the time of joining (hereinafter, "reverse rotation") to completely release them. When virtually performing release using this data, if there is no interference at all cross sections in all threaded portions of the male thread 13 and female thread 14, it can be determined that the male joint 11 and female joint 12 can be joined. Conversely, if there is interference at least in some areas, i.e., if the clearance c is below a predetermined value, it can be determined that they cannot be joined.
 このように雄継手11と雌継手12との接合完了状態から開始して逆回転によって判定を行うことが好ましく、本実施形態において重要な特徴である。ねじ継手10において雄継手11と雌継手12とを離間させた接合開始状態から、接合させるような雄ねじ13および雌ねじ14の接合方向に回転させつつ干渉度合を導出する場合、雄継手11と雌継手12とを接触させた位置から直ちに回転接合を開始可能であるとは限らない。この場合、雄継手11と雌継手12との初期位置の変更を繰り返して、実際に回転接合を開始可能な初期位置を探索する必要が生じる。これに対し、本実施形態のように、接合完了状態から逆回転させる場合には、雄継手11と雌継手12との初期位置は1か所に決定されるため、回転開始位置の探索を省略可能となる。ここで、データ化されたものではなく、実物のねじ継手10において接合確認を行う場合、接合開始の初期位置を動かしながら特定することは可能である。データ化された仮想上で接合確認を行う場合には、接合開始の初期位置の設定を、周方向や軸方向などで複数検討して探索する必要があり、仮想のデータにおいて、雄継手11と雌継手12とを回転接合させるのは極めて困難である。これに対し、接合完了位置を特定することは比較的容易である。これにより、接合完了位置を初期位置とし、逆回転させることによって接合を解除させつつ干渉の有無の確認を行うことによって、ねじ継手10の測定処理を単純化して効率化することが可能となる。また、嵌合において雄ねじ13と雌ねじ14との噛み合いが多い位置、すなわち接合完了位置付近になるほど干渉が生じやすくなる。そのため、接合完了位置から逆回転させて干渉度合いを導出することにより、干渉位置をより早期に発見することができる。 In this way, it is preferable to start from the joining completion state of the male joint 11 and the female joint 12 and perform the judgment by reverse rotation, which is an important feature of this embodiment. When deriving the interference degree while rotating in the joining direction of the male thread 13 and the female thread 14 to be joined from the joining start state in which the male joint 11 and the female joint 12 are separated in the threaded joint 10, it is not always possible to start the rotation joining immediately from the position where the male joint 11 and the female joint 12 are contacted. In this case, it is necessary to repeatedly change the initial positions of the male joint 11 and the female joint 12 to search for an initial position where the rotation joining can actually be started. In contrast, when rotating in the reverse direction from the joining completion state as in this embodiment, the initial positions of the male joint 11 and the female joint 12 are determined to be one position, so the search for the rotation start position can be omitted. Here, when the joining confirmation is performed on the actual threaded joint 10 rather than on a digitalized one, it is possible to identify the initial position for starting the joining while moving it. When checking the joining on a digitized virtual system, it is necessary to search for multiple initial positions for the start of joining in the circumferential and axial directions, and it is extremely difficult to rotate and join the male joint 11 and the female joint 12 on virtual data. In contrast, it is relatively easy to identify the joining completion position. This simplifies and improves the efficiency of the measurement process of the threaded joint 10 by setting the joining completion position as the initial position and checking for the presence or absence of interference while releasing the joining by rotating in the reverse direction. In addition, interference is more likely to occur at positions where the male thread 13 and the female thread 14 are more likely to mesh during fitting, that is, closer to the joining completion position. Therefore, by rotating in the reverse direction from the joining completion position to derive the degree of interference, the interference position can be found earlier.
 ステップST416におけるクリアランス演算部211が実行する具体的な手順として、まず、図2に示すようにデータ化した雄継手11と雌継手12を接合完了位置に仮想配置する。雄継手11および雌継手12の回転軸をそれぞれ抽出する。具体的に例えば雄継手11においては先端部の外径、雌継手12においては先端部の内径を例えば4点や8点などの複数点選択する。次に、選択点とのずれが最小となるフィッティング円を作成して、フィッティング円の中心を回転軸に設定する。雄継手11と雌継手12とにおいて回転軸を一致させ、ショルダータッチする状態を導出する。ここで、アイマークの位置を接合完了位置とする。なお、回転軸の設定や接合完了位置の設定は任意の方法を採用することが可能であり、上述した方法以外に種々の方法を採用できる。 Specific steps executed by the clearance calculation unit 211 in step ST416 are as follows: first, the digitized male joint 11 and female joint 12 are virtually placed at the joining completion position as shown in FIG. 2. The rotation axes of the male joint 11 and female joint 12 are extracted. Specifically, for example, multiple points are selected, for example, four or eight points, for the outer diameter of the tip of the male joint 11 and the inner diameter of the tip of the female joint 12. Next, a fitting circle that minimizes the deviation from the selected points is created, and the center of the fitting circle is set as the rotation axis. The rotation axes of the male joint 11 and female joint 12 are aligned to derive a state of shoulder touch. Here, the position of the eye mark is set as the joining completion position. Note that any method can be used to set the rotation axis and the joining completion position, and various methods other than the above-mentioned method can be used.
 次に、雄継手11と雌継手12との回転軸を一致させてショルダータッチした状態で、あらかじめ定められた例えば45°や90°などの角度間隔以下の縦断面(図7A~図7C参照)において、全てのねじ山13a,14aに対し回転軸の半径方向に沿った最小のクリアランスを導出する。ここでクリアランスがマイナスになる部分も測定する。なお、それぞれの縦断面において雄継手11および雌継手12のねじ部のクリアランスが回転半径方向に最小となる値を計測ソフトにより抽出する。より具体的には、全体の最小値を導出したり、ねじ山13a,14aの複数のねじ山ごとに最小値を導出したりする。さらに、条件に応じて目視や代表点を用いた検討なども可能である。また、雄継手11におけるそれぞれの点と点とを結んだ線、すなわちメッシュごとに法線方向に距離を計測して、接合状態での雌継手12と接した際の距離、すなわち最短距離をクリアランスcに設定しても良い。反対に、雌継手12から雄継手11に向かう方向に距離を計測しても良い。 Next, with the rotation axes of the male joint 11 and the female joint 12 aligned and in shoulder contact, the minimum clearance along the radial direction of the rotation axis is derived for all threads 13a, 14a in vertical sections (see Figures 7A to 7C) at an angle interval of less than a predetermined angle, such as 45° or 90°. Here, the part where the clearance is negative is also measured. In addition, the value at which the clearance of the threaded part of the male joint 11 and the female joint 12 in the rotation radius direction is minimum in each vertical section is extracted using measurement software. More specifically, the overall minimum value is derived, or the minimum value is derived for each of the multiple threads of the threads 13a, 14a. Furthermore, depending on the conditions, visual inspection or examination using representative points is also possible. In addition, the distance may be measured in the normal direction of the line connecting each point on the male joint 11, i.e., for each mesh, and the distance when it comes into contact with the female joint 12 in the joined state, i.e., the shortest distance, may be set as the clearance c. Conversely, the distance may be measured in the direction from the female joint 12 to the male joint 11.
 その後、あらかじめ設定された回転角度だけ接合方向とは反対方向に逆回転させる。ここで、回転する角度は、例えば45°間隔であったり90°間隔であったりするが限定されない。逆回転の角度に応じた軸方向の移動量については、雄ねじ13や雌ねじ14のねじピッチPによって決定される。なお、クリアランスを導出する断面の設定や逆回転の間隔を45°以下や90°以下としたのは、ねじ継手10が周方向に連続しており、局部的な変形が生じにくく、45°~90°程度の間隔で確認したとしても、干渉の有無を十分に検出可能であるためである。 Then, the joint is rotated in the opposite direction to the joining direction by a preset rotation angle. The rotation angle can be, for example, 45° or 90° intervals, but is not limited to this. The amount of axial movement corresponding to the angle of reverse rotation is determined by the thread pitch P of the male thread 13 and female thread 14. The cross section from which the clearance is derived and the intervals of reverse rotation are set to 45° or less or 90° or less because the threaded joint 10 is continuous in the circumferential direction, making it difficult for local deformation to occur, and the presence or absence of interference can be sufficiently detected even when checking at intervals of about 45° to 90°.
 逆回転において干渉が生じた場合、雄継手11の回転軸を回転半径方向に沿ったクリアランスが大きい方に移動させた状態を設定し、その段階で干渉の有無を確認する。さらに干渉する場合は、雄継手11および雌継手12の回転軸の軸方向に沿って移動させた状態を設定し、干渉しない位置を探索する。干渉しない位置が特定された場合、その位置から改めて逆回転を開始する。なお、回転軸を移動させないで、干渉の有無を判定するようにしても良い。 If interference occurs during reverse rotation, the rotating shaft of the male joint 11 is moved to the side with the larger clearance along the direction of the rotation radius, and the presence or absence of interference is confirmed at that stage. If further interference occurs, the rotating shafts of the male joint 11 and female joint 12 are moved along the axial direction to search for a position where no interference occurs. When a position where no interference occurs is identified, reverse rotation is started again from that position. Note that the presence or absence of interference may also be determined without moving the rotating shaft.
 以上の手順を繰り返して、雄継手11と雌継手12とを逆回転させて接合解除まで実行する。これらの手順において、全ての雄ねじ13および雌ねじ14とのクリアランスが所定値、例えば0より大きければ接合可能と判定し、所定値以下であれば接合不可と判定する。 The above steps are repeated to rotate the male joint 11 and the female joint 12 in the opposite directions until they are released from the connection. In these steps, if the clearance between all male threads 13 and female threads 14 is greater than a predetermined value, for example 0, it is determined that they can be connected, and if it is less than the predetermined value, it is determined that they cannot be connected.
 ステップST416による回転状態設定ステップが終了した後、ステップST413に移行して、あらかじめ設定された個所において接合している部分のクリアランスcを導出する。制御部21は、ステップST413~ST416を、クリアランスcが所定値以下になる(ステップST414:Yes)か、雄継手11と雌継手12との接合が外れる(ステップST415:Yes)まで繰り返し実行する。その後、判定部212は、測定対象であるねじ継手10の合格または不合格の情報をクラアランス情報としてクリアランスデータベース221に格納する。以上により、クリアランス測定工程が終了する。第1の実施形態によるクリアランス測定工程によれば、クリアランスcが所定値以下になった段階で不合格と判定していることにより、ねじ継手10における不合格品が判明するまでに要する時間を短時間化することができる。 After the rotation state setting step in step ST416 is completed, the process proceeds to step ST413, where the clearance c of the joint at the preset location is derived. The control unit 21 repeats steps ST413 to ST416 until the clearance c becomes equal to or less than a predetermined value (step ST414: Yes) or the joint between the male joint 11 and the female joint 12 is released (step ST415: Yes). The determination unit 212 then stores pass or fail information on the threaded joint 10 being measured as clearance information in the clearance database 221. This completes the clearance measurement process. According to the clearance measurement process of the first embodiment, the time required to determine whether the threaded joint 10 is a failed product can be shortened by determining that the threaded joint 10 is a failed product when the clearance c becomes equal to or less than a predetermined value.
 その後、図5に示すステップST5に移行して、制御部21は入出力部23に対して、測定対象であるねじ継手10の合格または不合格の情報を出力する。なお、不合格と判定されたねじ継手10は、ねじ継手10の実物に印をつけるなどしておいても良い。なお、不合格と判定されたねじ継手10は、後述する調整工程を実行するか廃棄するかなどを適宜選択できる。以上により、ねじ継手の測定処理が終了する。 Then, the process proceeds to step ST5 shown in FIG. 5, where the control unit 21 outputs information on whether the threaded joint 10 being measured is pass or fail to the input/output unit 23. Note that for threaded joints 10 that are judged to be failing, a mark may be put on the actual threaded joint 10. Note that for threaded joints 10 that are judged to be failing, it is possible to appropriately select whether to carry out the adjustment process described below or to discard the threaded joint. With the above, the measurement process for the threaded joint is completed.
 以上説明したねじ継手の測定方法に基づいて、ねじ継手10の品質を管理することが可能である。すなわち、ねじ継手10の品質管理方法においては、まず、ステップST1において継手製造工程によってねじ継手10を製造する。次に、ステップST3による継手計測工程によって、ねじ継手10の雄ねじ13および雌ねじ14のねじ形状を計測する。その後、ステップST4において、継手計測工程によって得られた測定結果を用いて、雄ねじ13および雌ねじ14の組ごとにクリアランスを測定することによって、品質管理工程として、ねじ継手10の品質を管理することが可能である。 The quality of the threaded joint 10 can be controlled based on the above-described method for measuring a threaded joint. That is, in the quality control method for the threaded joint 10, first, the threaded joint 10 is manufactured in a joint manufacturing process in step ST1. Next, the thread shapes of the male threads 13 and female threads 14 of the threaded joint 10 are measured in a joint measurement process in step ST3. After that, in step ST4, the measurement results obtained in the joint measurement process are used to measure the clearance for each pair of the male threads 13 and female threads 14, thereby making it possible to control the quality of the threaded joint 10 as a quality control process.
 (第1変形例)
 次に、上述した第1の実施形態によるクリアランス測定工程の第1変形例について説明する。図10は、第1変形例によるクリアランス測定工程を説明するためのフローチャートである。第1の実施形態によるクリアランス測定方法においては、クリアランスが所定値以下の個所が見出された段階でクリアランス測定処理が完了している。これに対し、第1変形例によるクリアランス測定工程においては、第1の実施形態によるクリアランス測定工程と異なり、クリアランスの測定を合格不合格に関わらず、ねじ継手10の雄継手11および雌継手12の全周を測定する場合を想定している。
(First Modification)
Next, a first modified example of the clearance measurement process according to the first embodiment described above will be described. Fig. 10 is a flow chart for explaining the clearance measurement process according to the first modified example. In the clearance measurement method according to the first embodiment, the clearance measurement process is completed at the stage where a portion where the clearance is equal to or less than a predetermined value is found. In contrast, the clearance measurement process according to the first modified example is different from the clearance measurement process according to the first embodiment in that it is assumed that the entire circumference of the male joint 11 and the female joint 12 of the threaded joint 10 is measured regardless of whether the clearance measurement is pass or fail.
 すなわち、図10に示すように、ステップST421~ST423についてはそれぞれ、上述した第1の実施形態によるステップST411~ST413と同様である。第1変形例においては、ステップST423の実行後において、ステップST424に移行する。ステップST424においてクリアランス演算部211は、あらかじめ設定された例えば4個所や8個所の複数の個所において導出したクリアランスcの結果をクリアランス情報として、クリアランスデータベース221に格納する。その後、ステップST425に移行する。ステップST425,ST426はそれぞれ、第1の実施形態によるステップST415,ST416と同様である。また、第1変形例においては、クリアランスが所定値以下であるか否かを判定する処理を実行しない。その他の処理は第1の実施形態と同様であるので、説明を省略する。 That is, as shown in FIG. 10, steps ST421 to ST423 are respectively similar to steps ST411 to ST413 in the first embodiment described above. In the first modified example, after step ST423 is executed, the process proceeds to step ST424. In step ST424, the clearance calculation unit 211 stores the result of the clearance c derived at multiple locations set in advance, for example, four or eight locations, in the clearance database 221 as clearance information. Thereafter, the process proceeds to step ST425. Steps ST425 and ST426 are respectively similar to steps ST415 and ST416 in the first embodiment. Furthermore, in the first modified example, the process of determining whether the clearance is equal to or less than a predetermined value is not executed. The other processes are similar to those in the first embodiment, and therefore will not be described.
 (第2変形例)
 次に、上述した第1の実施形態によるクリアランス測定工程の第2変形例について説明する。図11は、第2変形例によるクリアランス測定工程を説明するためのフローチャートである。第1の実施形態によるクリアランス測定方法においては、クリアランスが所定値以下の個所が見出された段階でクリアランス測定処理が完了している。これに対し、第2変形例によるクリアランス測定工程においては、第1の実施形態によるクリアランス測定工程と異なり、クリアランスの測定を、所定値以下であるか否かに関わらず、ねじ継手10の雄継手11および雌継手12の全周を測定した後にまとめて所定値との比較に基づく判定を行う場合を想定している。
(Second Modification)
Next, a second modified example of the clearance measurement process according to the first embodiment described above will be described. Fig. 11 is a flow chart for explaining the clearance measurement process according to the second modified example. In the clearance measurement method according to the first embodiment, the clearance measurement process is completed at the stage where a portion where the clearance is equal to or less than a predetermined value is found. In contrast, the clearance measurement process according to the second modified example is different from the clearance measurement process according to the first embodiment in that the clearance is measured over the entire circumference of the male joint 11 and the female joint 12 of the threaded joint 10, regardless of whether the clearance is equal to or less than the predetermined value, and then a judgment is made based on a comparison with the predetermined value.
 すなわち、図11に示すように、ステップST431~ST434についてはそれぞれ、上述した第1変形例によるステップST421~ST424と同様である。第2変形例においては、ステップST434の実行後にステップST435に移行する。ステップST435においてクリアランス演算部211は、第1の実施形態によるステップST416と同様の回転状態設定ステップであるステップST435を実行する。ステップST436に移行する。 That is, as shown in FIG. 11, steps ST431 to ST434 are respectively similar to steps ST421 to ST424 in the first modified example described above. In the second modified example, the process proceeds to step ST435 after step ST434 is executed. In step ST435, the clearance calculation unit 211 executes step ST435, which is a rotation state setting step similar to step ST416 in the first embodiment. The process proceeds to step ST436.
 ステップST436において判定部212は、ステップST415と同様にして接合が外れたか否かを判定する。ステップST436において判定部212がねじ継手10の接合が外れていないと判定した場合(ステップST436:No)、ステップST433に移行して、ステップST433~ST436を繰り返し実行する。ステップST436において判定部212がねじ継手10の接合が外れたと判定した場合(ステップST436:Yes)、ステップST437に移行する。 In step ST436, the determination unit 212 determines whether the connection has come apart in the same manner as in step ST415. If the determination unit 212 determines in step ST436 that the connection of the threaded joint 10 has not come apart (step ST436: No), the process proceeds to step ST433, and steps ST433 to ST436 are repeatedly executed. If the determination unit 212 determines in step ST436 that the connection of the threaded joint 10 has come apart (step ST436: Yes), the process proceeds to step ST437.
 ステップST437において判定部212は、第1の実施形態によるステップST414と同様にして、雄継手11と雌継手12とのクリアランスcが所定値以下であるか否かを判定する。ステップST437において判定部212が、雄継手11と雌継手12とのクリアランスcは所定値以下である部分が存在しないと判定した場合(ステップST437:No)、クリアランス測定工程を終了する。ステップST437において判定部212が、雄継手11と雌継手12とのクリアランスcは所定値以下であると判定した場合(ステップST437:Yes)、干渉情報付与ステップとしてのステップST438に移行する。干渉情報付与処理を行う干渉情報付与ステップとなるステップST438において判定部212は、クリアランスcが所定値以下の箇所に、干渉箇所としてフラグを立てる。次に、判定部212は、干渉箇所に関するフラグをクリアランス情報として記憶部22のクリアランスデータベース221に格納する。以上により、クリアランス測定工程が終了する。 In step ST437, the determination unit 212 determines whether the clearance c between the male joint 11 and the female joint 12 is equal to or less than a predetermined value, in the same manner as in step ST414 in the first embodiment. If the determination unit 212 determines in step ST437 that there is no part where the clearance c between the male joint 11 and the female joint 12 is equal to or less than the predetermined value (step ST437: No), the clearance measurement process is terminated. If the determination unit 212 determines in step ST437 that the clearance c between the male joint 11 and the female joint 12 is equal to or less than a predetermined value (step ST437: Yes), the process proceeds to step ST438, which is an interference information assignment step. In step ST438, which is an interference information assignment step in which an interference information assignment process is performed, the determination unit 212 sets a flag as an interference location at a location where the clearance c is equal to or less than the predetermined value. Next, the determination unit 212 stores the flag related to the interference location as clearance information in the clearance database 221 of the storage unit 22. This completes the clearance measurement process.
 第1変形例および第2変形例によるクリアランス測定工程によれば、製造現場においてクリアランスの設定を行いたい場合や、クリアランスの判定結果をリアルタイムや短時間で得る必要性が低い場合に利用できる。特に、第2変形例によるクリアランス測定工程は、クリアランスが所定値以下の位置やクリアランスが所定値以下の部分がないなどのクリアランス情報を第3者に提供することが可能になる。そのため、クリアランス測定工程を製造現場とは異なる場所で実行する場合に対応しやすくなる。 The clearance measurement process according to the first and second modified examples can be used when it is desired to set the clearance at the manufacturing site or when there is little need to obtain the clearance determination results in real time or in a short time. In particular, the clearance measurement process according to the second modified example makes it possible to provide a third party with clearance information such as positions where the clearance is below a predetermined value or the absence of any parts where the clearance is below a predetermined value. This makes it easier to handle cases where the clearance measurement process is performed at a location other than the manufacturing site.
 以上説明した本発明の第1の実施形態によるねじ継手10の測定方法によれば、ねじ継手10の製造が完了した後や施行前に接合の可否の確認を実行できる。また、従来は、雄継手11や雌継手12が回るか否かで判断していたが、ねじ山13a,14aの干渉をねじ間のクリアランスとして測定結果に基づいた情報によって確認できるため、正確性を確保できる。また、ねじ継手10の接合完了位置から開始するため、接合の開始位置を探索する必要がなく、さらには干渉箇所の早期発見も可能になり、効率的にねじ継手10のクリアランスの測定を開始できる。さらに、長尺や大きさなどのねじの状態に関わらず、工場などの現場における事前の接合確認を安全で簡易化できる。本実施形態によるねじ継手10の測定方法の利用場所は工場などに限定されず、施工現場の置き場などでも利用できる。具体的に例えば、施工現場において、追加部材の溶接の取り付けや、運搬などによる損傷や、直射日光の過度に受光した場合などにおいて、ねじ継手10の変形が懸念される場合に、施工現場の置き場において計測部35によって雄継手11や雌継手12の形状を計測し、実際の接合前に接合判定を行うこともできるので、トラブルにより現場作業が停止するのを最小限に抑制できる。 According to the above-described first embodiment of the present invention, the threaded joint 10 measurement method can check whether or not the threaded joint 10 can be joined after the manufacture of the threaded joint 10 is completed or before the operation. Conventionally, the male joint 11 and the female joint 12 were judged based on whether they could rotate, but the interference between the threads 13a and 14a can be confirmed as the clearance between the threads based on information from the measurement results, ensuring accuracy. In addition, since the measurement starts from the joining completion position of the threaded joint 10, there is no need to search for the joining start position, and it is also possible to find the interference point early, so that the measurement of the clearance of the threaded joint 10 can be started efficiently. Furthermore, regardless of the condition of the thread such as the length or size, it is possible to safely and simply check the joining in advance at the site such as a factory. The place where the threaded joint 10 measurement method according to this embodiment can be used is not limited to a factory, but can also be used in a storage area at the construction site. Specifically, for example, if there is concern that the threaded joint 10 may be deformed due to damage caused by welding additional components, transportation, or excessive exposure to direct sunlight at the construction site, the shape of the male joint 11 and female joint 12 can be measured by the measuring unit 35 at the construction site and a joint determination can be made before the actual joining, minimizing the stoppage of on-site work due to problems.
 (第2の実施形態)
 次に、本発明の第2の実施形態によるねじ継手の測定方法について説明する。図12は、第2の実施形態によるねじ継手10の測定方法を説明するためのフローチャートである。第2の実施形態によるねじ継手10の測定方法は、クリアランスcを雄継手11および雌継手12におけるねじ山13a,14aのねじ全周において判定した後、ねじ継手10ごとに合否判定を実行する。また、第1の実施形態と異なり、クリアランス測定工程(ステップST4)から、クリアランス判定ステップとしてのステップST414(図6参照)を、合否判定工程として分離している。
Second Embodiment
Next, a method for measuring a threaded joint according to a second embodiment of the present invention will be described. Fig. 12 is a flow chart for describing a method for measuring a threaded joint 10 according to the second embodiment. In the method for measuring a threaded joint 10 according to the second embodiment, the clearance c is determined over the entire circumference of the threads 13a, 14a in the male joint 11 and the female joint 12, and then a pass/fail determination is performed for each threaded joint 10. Also, unlike the first embodiment, step ST414 (see Fig. 6) as a clearance determination step is separated from the clearance measurement step (step ST4) as a pass/fail determination step.
 すなわち、図12に示すように、第2の実施形態によるねじ継手10の測定方法においては、第1の実施形態と同様に、ステップST1~ステップST4を実行する。その後、第1の実施形態によるステップST5に代えて、ステップST6において合否判定工程を実行する。また、第2の実施形態においては、ステップST4におけるクリアランス測定工程としては、第1変形例または第2変形例によるクリアランス測定工程を採用することが好ましい。 That is, as shown in FIG. 12, in the measurement method for the threaded joint 10 according to the second embodiment, steps ST1 to ST4 are executed as in the first embodiment. Then, instead of step ST5 according to the first embodiment, a pass/fail determination process is executed in step ST6. Also, in the second embodiment, it is preferable to adopt the clearance measurement process according to the first or second modified example as the clearance measurement process in step ST4.
 ステップST6における合否判定工程は具体的に、ステップST4によってクリアランス演算部211が、例えばステップST423,ST433の実行によって導出した、雄ねじ13および雌ねじ14の全周のクリアランス情報に基づいて、判定部212がねじ継手10の接合の合格不合格を判定する。すなわち、判定部212が記憶部22のクリアランスデータベース221からクリアランス情報を読み出して取得し、取得したクリアランス情報に基づいて、ねじ継手10の接合における合格不合格を判定する。判定部212による合格不合格の判定基準としては、種々の基準を採用可能である。上述したクリアランス判定ステップとしてのステップST414(図6参照)と、同様の方法を利用できる。具体的に、例えばクリアランスcが所定値以下であるか否かを判定する。ここで、所定値は例えば0とする。この場合が所定値以下、すなわち0以下の箇所または0以下となる箇所を干渉個所とした場合、あらかじめ設定された箇所数以上である場合を不合格、それ以外の場合を合格とする判定が可能である。または、0以下の箇所や干渉個所とフラグが付けられた箇所が1個所でも存在した場合を不合格、1個所も存在しない場合を合格とする判定などを採用可能である。すなわち、第3変形例によるクリアランス測定工程において、クリアランスcが所定値以下の箇所の数や干渉個所のフラグの数に応じて合否を判定することが可能である。 Specifically, in the pass/fail judgment process in step ST6, the judgment unit 212 judges whether the joining of the threaded joint 10 is pass/fail based on the clearance information of the entire circumference of the male thread 13 and the female thread 14 derived by the clearance calculation unit 211 in step ST4, for example, by executing steps ST423 and ST433. That is, the judgment unit 212 reads and acquires the clearance information from the clearance database 221 in the storage unit 22, and judges whether the joining of the threaded joint 10 is pass/fail based on the acquired clearance information. Various criteria can be adopted as the criteria for the pass/fail judgment by the judgment unit 212. A method similar to that of step ST414 (see FIG. 6) as the clearance judgment step described above can be used. Specifically, for example, it is judged whether the clearance c is equal to or less than a predetermined value. Here, the predetermined value is, for example, 0. In this case, if the parts that are equal to or less than the predetermined value, i.e., the parts that are equal to or less than 0, are considered to be interference parts, it is possible to judge that the parts that are equal to or more than a predetermined number are fail, and that the other parts are pass. Alternatively, a judgment can be adopted in which if there is even one location with a clearance below 0 or a location flagged as an interference location, it is a failure, and if there are no such locations, it is a pass. In other words, in the clearance measurement process according to the third modification, it is possible to judge pass or fail based on the number of locations where the clearance c is below a predetermined value or the number of flags for interference locations.
 また、合否判定工程において、第2変形例によるステップST438と同様にして、ねじ継手10の合否のみならず、クリアランス情報に含まれる測定されたクリアランスcに基づいて、クリアランスcがあらかじめ設定された所定値以下の箇所を干渉個所として、フラグを立てるようにしても良い。この場合、フラグがあらかじめ設定された所定数以上の場合に不合格、所定数未満であれば合格などとすることが可能である。 Furthermore, in the pass/fail determination process, similar to step ST438 in the second modified example, not only is the pass/fail of the threaded joint 10 determined, but also, based on the measured clearance c included in the clearance information, any location where the clearance c is equal to or less than a preset value may be flagged as an interference location. In this case, it is possible to determine, for example, that the product is failed if the flag is equal to or greater than a preset number, and that the product is passed if the flag is less than the preset number.
 合否判定工程において合格と判定された場合(ステップST6:Yes)、ステップST61に移行して、ねじ継手10が合格であることを入出力部23などに出力したり、通信部24およびネットワーク2を介して、外部に送信したりすることができる。これに伴って、合格と判定されたねじ継手10が出荷可能となる。他方、不合格と判定されたねじ継手10は廃棄したり再度調整したりすることが可能である。この場合、必要に応じて、対象となるねじ継手10のクリアランス情報をねじ継手の識別IDを関連付けて、ねじ加工装置40,40Aに送信することができる。 If the threaded joint 10 is judged to be passed in the pass/fail judgment process (step ST6: Yes), the process proceeds to step ST61, where the fact that the threaded joint 10 is passed can be output to the input/output unit 23, etc., or transmitted to the outside via the communication unit 24 and the network 2. Accordingly, the threaded joint 10 judged to be passed can be shipped. On the other hand, the threaded joint 10 judged to be unsuccessful can be discarded or readjusted. In this case, if necessary, the clearance information of the target threaded joint 10 can be associated with the identification ID of the threaded joint and transmitted to the thread processing device 40, 40A.
 第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。さらに、第2の実施形態によれば、クリアランス情報を利用して、ネットワーク2を介して外部の処理装置によって合否の判定を行ったり、ねじ継手10の検査結果の情報を共有したりすることが可能になる。 According to the second embodiment, the same effect as in the first embodiment can be obtained. Furthermore, according to the second embodiment, it is possible to use the clearance information to perform pass/fail judgments by an external processing device via the network 2, and to share information on the inspection results of the threaded joint 10.
 (第3の実施形態)
 次に、本発明の第3の実施形態によるねじ継手の測定方法について説明する。図13は、第3の実施形態によるねじ継手10の測定方法を説明するためのフローチャートである。第3の実施形態によるねじ継手10の測定方法は、第1の実施形態と異なり、ステップST4においてクリアランス測定工程を行った後に調整工程を実行する方法である。
Third Embodiment
Next, a method for measuring a threaded joint according to a third embodiment of the present invention will be described. Fig. 13 is a flowchart for explaining a method for measuring a threaded joint 10 according to the third embodiment. The method for measuring a threaded joint 10 according to the third embodiment differs from the first embodiment in that an adjustment step is carried out after a clearance measurement step is carried out in step ST4.
 すなわち、図13に示すように、第3の実施形態によるねじ継手10の測定方法においては、第1の実施形態と同様に、ステップST1~ステップST4を実行する。その後、第1の実施形態によるステップST5に代えて、ステップST7において調整工程を実行する。また、第3の実施形態においては、ステップST4におけるクリアランス測定工程としては、第1の実施形態、第1変形例、または第2変形例によるクリアランス測定工程を採用することが可能である。 In other words, as shown in FIG. 13, in the measurement method for the threaded joint 10 according to the third embodiment, steps ST1 to ST4 are performed in the same manner as in the first embodiment. Then, instead of step ST5 according to the first embodiment, an adjustment process is performed in step ST7. Also, in the third embodiment, the clearance measurement process in step ST4 can be the clearance measurement process according to the first embodiment, the first modified example, or the second modified example.
 (調整工程)
 次に、ステップST7における調整工程について説明する。図13に示すように、測定されたクリアランスcを基づいて不合格、または干渉個所が存在すると判定されたねじ継手10に対して、クリアランス測定工程の後に調整工程を実行する。調整工程は、後述する調整ステップを備える。なお、前段に実行されるクリアランス測定工程において例えば合格または不合格の情報の出力がない場合、ステップST7において後述するそれぞれの調整ステップの前に第2の実施形態によるステップST6(合否判定工程)を実行しても良い。
(Adjustment process)
Next, the adjustment process in step ST7 will be described. As shown in Fig. 13, for a threaded joint 10 that has been determined to be unacceptable or to have an interference portion based on the measured clearance c, an adjustment process is performed after the clearance measurement process. The adjustment process includes adjustment steps described below. Note that, if no pass or fail information is output in the clearance measurement process performed in the preceding stage, step ST6 (pass/fail determination process) according to the second embodiment may be performed before each adjustment step described below in step ST7.
 (調整ステップ)
 ステップST7であるねじ継手10に対する調整工程は、調整が必要であるねじ継手10の組が合格と判定されるまで、形状計測工程、クリアランス測定工程、および調整工程を繰り返し実行可能である。さらに、調整工程内において、調整ステップ前に合否判定工程を実行することも可能である。調整ステップとしては、例えば4通りの方法から、ねじ継手10の仕様や目的によって、適切な方法を適宜選択して採用することができる。
(Adjustment Step)
In step ST7, the adjustment process for the threaded joint 10, the shape measurement process, the clearance measurement process, and the adjustment process can be repeatedly performed until a set of threaded joints 10 that require adjustment is determined to be acceptable. Furthermore, within the adjustment process, a pass/fail determination process can be performed before the adjustment step. As the adjustment step, an appropriate method can be appropriately selected from, for example, four methods depending on the specifications and purpose of the threaded joint 10 and used.
 すなわち、調整ステップにおける第1の方法は、例えば多条ねじなどから構成されるように、ねじ継手10の接合開始位置が複数存在する場合、仮想上で接合開始位置を変更して、判定部212によって合否判定工程を実行して合否判定を行う方法である。ここで、合否判定工程において合格した時点で、実物に対応する位置に完了および開始の位置をマークするようにする。 In other words, the first method in the adjustment step is to virtually change the joining start position when there are multiple joining start positions for the threaded joint 10, for example when it is composed of a multiple thread, and to perform a pass/fail judgment process by the judgment unit 212 to judge whether it is pass or fail. Here, when the pass/fail judgment process is passed, the completion and start positions are marked at the positions corresponding to the actual one.
 次に、調整ステップにおける第2の方法は、仮想上でねじ継手10の一部を雄継手11や雌継手12に要求される耐力を満たす範囲内での切削を考慮して、ねじ形状を修正したねじ継手10を対象として、合否判定工程を改めて実行して、合否判定を行う方法である。干渉が小さい場合には、例えば1.2程度の安全率の範囲内における切削を考慮して、仮想上で合格した時点で実物に対してグラインダーなどで切削を行うことが可能である。以上の第1の方法および第2の方法は、計測部35による再度の3Dスキャン操作が不要の方法である。 The second method in the adjustment step is to virtually cut a part of the threaded joint 10 within a range that satisfies the strength required for the male joint 11 and the female joint 12, and then perform the pass/fail judgment process again on the threaded joint 10 whose thread shape has been modified to make a pass/fail judgment. If the interference is small, it is possible to cut the actual part with a grinder or the like once it has virtually passed, taking into account cutting within a safety factor of, for example, about 1.2. The first and second methods described above do not require another 3D scan operation by the measurement unit 35.
 次に、調整ステップにおける第3の方法は、実物のねじ継手の一部を熱変形による矯正によって修正し、改めて計測部35によって計測を行い、合否判定工程を再度実施して、合否判定を行う方法である。なお、熱変形による矯正は、溶接熱やバーナ加熱、必要に応じてジャッキを用いた圧縮や引張などにより実行される。 The third method in the adjustment step is to correct a part of the actual threaded joint by correcting it with thermal deformation, measure it again with the measuring unit 35, and perform the pass/fail judgment process again to make a pass/fail judgment. Note that correction by thermal deformation is performed by welding heat or burner heating, and, if necessary, compression or tension using a jack.
 次に、調整工程における第4の方法は、新たにねじ継手10を製造して改めて計測部35によって計測した後、合否判定工程を再度実施して、合否判定を行う方法である。なお、新たにねじ継手10を製造するとは、新規製造のみならず、継手付き鋼管の場合においては、ねじ継手10を管15,16から取り外して、再度取り付けたものも含む。なお、同じねじ継手10が複数ある場合は、対応する雄継手と雌継手の組み合わせを変更することで、合否判定工程において合格となるねじ継手とすることもできる。 The fourth method in the adjustment process is to manufacture a new threaded joint 10, measure it again using the measuring unit 35, and then perform the pass/fail judgment process again to make a pass/fail judgment. Note that manufacturing a new threaded joint 10 does not only mean manufacturing a new threaded joint, but also includes removing the threaded joint 10 from the pipes 15, 16 and reattaching it in the case of steel pipes with joints. Note that if there are multiple identical threaded joints 10, it is possible to make threaded joints that pass the pass/fail judgment process by changing the combination of the corresponding male and female joints.
 第3の実施形態によれば、第1の実施形態と同様の効果を得ることができる。さらに、第3の実施形態によれば、調整工程を有していることにより、ねじ継手10を新たに調整工程によって合格品に調整することが可能となる。 According to the third embodiment, the same effect as in the first embodiment can be obtained. Furthermore, according to the third embodiment, since it has an adjustment process, it is possible to adjust the threaded joint 10 to an acceptable product through a new adjustment process.
 (第4の実施形態)
 次に、第4の実施形態について説明する。第4の実施形態においては、ねじ継手の計測システムとして、実施形態の第2例によるねじ継手計測システム1Aを採用するとともに、第1の実施形態によるクリアランス測定工程を採用する。第4の実施形態においては、クリアランス測定装置20Aを、固定した情報処理装置から構成したり、ネットワーク2を介して計測端末30Aと通信可能なサーバから構成したりすることが可能である。この場合、計測端末30Aは、通信部34およびネットワーク2を介してクリアランス測定装置20Aと通信可能な独立した計測部35を有する端末として構成される。
Fourth Embodiment
Next, a fourth embodiment will be described. In the fourth embodiment, a threaded joint measurement system 1A according to the second example of the embodiment is adopted as a threaded joint measurement system, and the clearance measurement process according to the first embodiment is adopted. In the fourth embodiment, the clearance measurement device 20A can be configured from a fixed information processing device, or from a server capable of communicating with the measurement terminal 30A via the network 2. In this case, the measurement terminal 30A is configured as a terminal having a communication unit 34 and an independent measurement unit 35 capable of communicating with the clearance measurement device 20A via the network 2.
 ここで、計測端末30Aの制御部31は、クリアランス測定装置20Aから送信されたクリアランス情報を入出力部33に表示するなどして出力可能である。なお、入出力部33に表示するクリアランス情報としては、ねじ継手10の合否の結果や、雄継手11の雄ねじ13や雌継手12の雌ねじ14の干渉個所の断面図の拡大表示など、種々の情報を出力可能である。 Here, the control unit 31 of the measurement terminal 30A can output the clearance information transmitted from the clearance measurement device 20A, for example by displaying it on the input/output unit 33. Note that the clearance information displayed on the input/output unit 33 can output a variety of information, such as the pass/fail result of the threaded joint 10, and an enlarged cross-sectional view of the interference point of the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12.
 また、制御部31は、クリアランス測定装置20Aからネットワーク2を介して受信した各種情報を、選択して入出力部33から出力することが可能である。例えば、クリアランス測定装置20Aから計測端末30Aに合格および不合格の両方の情報を含むクリアランス情報が送信された場合であっても、制御部31は、不合格が送付された場合だけ不合格であることを入出力部33から出力するように制御可能である。さらに、計測端末30Aは、通信部34およびネットワーク2を介して、ねじ加工装置40Aと通信可能であることから、ねじ加工装置40Aは、計測端末30Aからクリアランス測定装置20Aを通じてねじ加工装置40Aにクリアランス情報を供給して、干渉個所を修正することができる。 The control unit 31 can also select various information received from the clearance measurement device 20A via the network 2 and output it from the input/output unit 33. For example, even if clearance information including both pass and fail information is sent from the clearance measurement device 20A to the measurement terminal 30A, the control unit 31 can control the input/output unit 33 to output a failure only when a failure has been sent. Furthermore, since the measurement terminal 30A can communicate with the thread machining device 40A via the communication unit 34 and the network 2, the thread machining device 40A can supply clearance information from the measurement terminal 30A to the thread machining device 40A via the clearance measurement device 20A to correct the interference area.
 (第5の実施形態)
 次に、第5の実施形態について説明する。第5の実施形態においては、ねじ継手の計測システムとして、実施形態の第2例によるねじ継手計測システム1Aを採用する。また、ねじ継手10の測定方法として、図12に示す第2の実施形態によるねじ継手の測定方法を採用する。この場合、第1変形例または第2変形例によるクリアランス測定工程を採用する事が好ましい。第5の実施形態においては、クリアランス測定装置20を、固定した情報処理装置から構成しても、ネットワーク2を介して計測端末と通信可能なサーバから構成することが可能である。この場合、計測端末30Aは、通信部34およびネットワーク2を介してクリアランス測定装置20と通信可能な独立した端末から構成される。
Fifth Embodiment
Next, a fifth embodiment will be described. In the fifth embodiment, a threaded joint measurement system 1A according to the second example of the embodiment is adopted as a threaded joint measurement system. In addition, a threaded joint measurement method according to the second embodiment shown in FIG. 12 is adopted as a method for measuring a threaded joint 10. In this case, it is preferable to adopt the clearance measurement process according to the first or second modified example. In the fifth embodiment, the clearance measurement device 20 can be configured from a fixed information processing device, or can be configured from a server capable of communicating with the measurement terminal via the network 2. In this case, the measurement terminal 30A is configured from an independent terminal capable of communicating with the clearance measurement device 20 via the communication unit 34 and the network 2.
 第5の実施形態において計測端末30Aの制御部31は、クリアランス測定装置20Aの制御部21における判定部212と同様の機能を有する。なお、クリアランス測定装置20Aとの通信によって、クリアランス測定装置20Aの判定部212と同様の処理を実行可能に構成しても良い。この場合、計測端末30Aの制御部31は、クリアランス測定装置20Aから受信したクリアランス情報に基づいて、図12に示すステップST6における接合判定工程を実行可能である。 In the fifth embodiment, the control unit 31 of the measurement terminal 30A has the same function as the determination unit 212 in the control unit 21 of the clearance measurement device 20A. Note that the control unit 31 may be configured to be able to execute processing similar to that of the determination unit 212 of the clearance measurement device 20A by communicating with the clearance measurement device 20A. In this case, the control unit 31 of the measurement terminal 30A can execute the bonding determination process in step ST6 shown in FIG. 12 based on the clearance information received from the clearance measurement device 20A.
 第4および第5の実施形態においては、計測端末30Aを独立して使用することができるので、種々の現場においてねじ継手10の測定および合否判定を実行することが可能である。 In the fourth and fifth embodiments, the measurement terminal 30A can be used independently, making it possible to measure the threaded joint 10 and perform pass/fail judgments at various sites.
 以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値、材料はあくまでも例に過ぎず、必要に応じてこれと異なる数値、材料を用いても良い。 The above describes the embodiments of the present invention in detail, but the present invention is not limited to the above-mentioned embodiments, and various modifications based on the technical ideas of the present invention are possible. For example, the numerical values and materials given in the above-mentioned embodiments are merely examples, and different numerical values and materials may be used as necessary.
 例えば上述したそれぞれの実施形態やそれぞれの変形例において、判定部212は、所定の基準として、雄継手11の雄ねじ13と雌継手12の雌ねじ14との間におけるクリアランスcが所定値以下であるか否かに基づいて判定したが限定されず、所定の基準として、所定値未満であるか否かに基づいて判定しても良い。同様に、所定の基準として、所定値以上または所定値超えであるか否かに基づいて、ステップST414やステップST437の「Yes」と「No」を入れ替えても良い。これらの場合であっても、所定値としては、0以上の値に設定可能である。 For example, in each of the above-mentioned embodiments and each of the modified examples, the determination unit 212 makes a determination based on whether the clearance c between the male thread 13 of the male joint 11 and the female thread 14 of the female joint 12 is equal to or less than a predetermined value as the predetermined criterion, but this is not limited thereto, and the determination may be made based on whether the clearance c is less than a predetermined value as the predetermined criterion. Similarly, the "Yes" and "No" in step ST414 and step ST437 may be interchanged based on whether the clearance c is equal to or greater than a predetermined value or exceeds a predetermined value as the predetermined criterion. Even in these cases, the predetermined value can be set to a value greater than or equal to 0.
 例えば上述した実施形態によるねじ継手の測定方法において、ハンディ型3Dスキャナに適用する形状計測ソフトウェアやハイエンドCADなどを用いて、手動または自動で実行可能である。自動で実行する場合には、上述したステップST413~ST416、ステップST423~ST426などの繰り返し処理を、クリアランス測定装置20の制御部21によるソフトウェアプログラムを用いて実行可能である。これにより、ねじ継手の測定方法のより一層の効率化を実現できる。 For example, the method for measuring a threaded joint according to the above-mentioned embodiment can be performed manually or automatically using shape measurement software applied to a handheld 3D scanner, high-end CAD, or the like. When performed automatically, the repeated processes of steps ST413 to ST416 and steps ST423 to ST426 described above can be performed using a software program by the control unit 21 of the clearance measurement device 20. This makes it possible to achieve even greater efficiency in the method for measuring a threaded joint.
 本発明に係るクリアランス測定方法、クリアランス測定装置、ねじ継手の測定方法、ねじ継手の計測システム、計測端末、ねじ継手の製造方法、ねじ継手の品質管理方法は、鋼管を接合する鋼管の継手構造に適用して好適なものである。 The clearance measurement method, clearance measurement device, threaded joint measurement method, threaded joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality control method according to the present invention are suitable for application to steel pipe joint structures that join steel pipes.
1,1A ねじ継手計測システム
2 ネットワーク
10 ねじ継手
11 雄継手
12 雌継手
13 雄ねじ
13a,14a ねじ山
13b,14b ねじ底
14 雌ねじ
15 管
20,20A クリアランス測定装置
21,31,41 制御部
22,32,42 記憶部
23,33,43 入出力部
24,34,44 通信部
30A 計測端末
35 計測部
40,40A ねじ加工装置
45 ねじ加工部
211 クリアランス演算部
212 判定部
221 クリアランスデータベース
222 管種データベース
311 計測制御部
411 加工制御部
1, 1A Threaded joint measurement system 2 Network 10 Threaded joint 11 Male joint 12 Female joint 13 Male thread 13a, 14a Thread 13b, 14b Thread bottom 14 Female thread 15 Pipe 20, 20A Clearance measurement device 21, 31, 41 Control unit 22, 32, 42 Memory unit 23, 33, 43 Input/output unit 24, 34, 44 Communication unit 30A Measurement terminal 35 Measurement unit 40, 40A Thread processing device 45 Thread processing unit 211 Clearance calculation unit 212 Determination unit 221 Clearance database 222 Pipe type database 311 Measurement control unit 411 Processing control unit

Claims (13)

  1.  雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定するクリアランス測定方法であって、
     前記雄継手と前記雌継手とのそれぞれのねじ形状のデータに基づいて、前記雄継手と前記雌継手との接合が完了した接合完了状態を設定する接合完了状態設定ステップと、
     前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスを測定するクリアランス測定ステップと、
     前記クリアランス測定ステップ後、前記雄継手と前記雌継手との接合が外れた状態でなかった場合には、前記接合を外す方向に予め定められた角度だけ回転させた状態を設定する回転状態設定ステップと、
     を備え、
     前記クリアランス測定ステップから前記回転状態設定ステップまでを、前記接合が外れた状態になるまで繰り返し実行する
     クリアランス測定方法。
    A clearance measurement method for measuring a clearance between a thread of a male joint and a thread of a female joint corresponding to the male joint, the method comprising the steps of:
    a joining completion state setting step of setting a joining completion state in which joining of the male joint and the female joint is completed based on data of the respective thread shapes of the male joint and the female joint;
    a clearance measuring step of measuring a clearance between a thread of the male joint and a thread of the female joint corresponding to the thread of the male joint in the joined state;
    a rotation state setting step of setting a state in which the male joint and the female joint are rotated by a predetermined angle in a direction to release the joint, if the joint is not in a released state after the clearance measurement step;
    Equipped with
    the clearance measuring step through the rotation state setting step are repeatedly performed until the joint is released.
  2.  前記クリアランス測定ステップにおいて測定されたクリアランスと所定の基準とに基づいて、前記ねじ継手の組に関して合否を判定するステップと、
     前記クリアランス測定ステップにおいて測定されたクリアランスと所定の基準とに基づいて干渉個所と判定された箇所に対して、前記干渉個所の情報を付与する干渉情報付与ステップと、の少なくとも一方のステップを備える
     請求項1に記載のクリアランス測定方法。
    A step of determining whether the set of threaded joints is pass or fail based on the clearance measured in the clearance measurement step and a predetermined criterion;
    and an interference information providing step of providing information of an interfering portion to a portion determined to be an interfering portion based on the clearance measured in the clearance measuring step and a predetermined criterion.
  3.  雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対し、前記雄継手のねじ形状と前記雌継手のねじ形状とをそれぞれ計測する形状計測工程と、
     前記形状計測工程において計測されたねじ形状のデータに基づいて、請求項1または2に記載のクリアランス測定方法によって、前記ねじ継手の組ごとにクリアランスを測定するクリアランス測定工程と、
     を備える
     ねじ継手の測定方法。
    a shape measuring process for measuring the thread shape of the male joint and the thread shape of the female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint;
    a clearance measurement step of measuring a clearance for each pair of the threaded joints by the clearance measurement method according to claim 1 or 2, based on data of the thread shape measured in the shape measurement step;
    A method for measuring threaded joints.
  4.  雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組を製造するねじ継手の製造方法であって、
     ねじ継手を製造する継手製造工程と、
     前記継手製造工程によって作成された雄継手と雌継手とを有する前記ねじ継手の組に対し、請求項3に記載のねじ継手の測定方法を実行する継手計測工程と、
     を備える
     ねじ継手の製造方法。
    A method for manufacturing a threaded joint, comprising the steps of: manufacturing a set of threaded joints having a male joint and a female joint corresponding to the male joint,
    a joint manufacturing process for manufacturing a threaded joint;
    a joint measurement process for performing the threaded joint measurement method according to claim 3 on a set of threaded joints having a male joint and a female joint produced by the joint manufacturing process;
    A method for manufacturing a threaded joint comprising the steps of:
  5.  雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対する品質を管理するねじ継手の品質管理方法であって、
     前記ねじ継手を製造する継手製造工程と、
     前記継手製造工程によって作成された前記ねじ継手の組に対して、請求項3に記載のねじ継手の測定方法により前記ねじ継手のねじ形状を計測する継手計測工程と、
     前記継手計測工程から得られた結果を用いて、前記作成されたねじ継手の品質を管理する、品質管理工程と、
     を備える
     ねじ継手の品質管理方法。
    A quality control method for a threaded joint, which controls the quality of a set of threaded joints having a male joint and a female joint corresponding to the male joint,
    a joint manufacturing process for manufacturing the threaded joint;
    a joint measurement process in which a thread shape of the threaded joint set produced by the joint manufacturing process is measured by the threaded joint measurement method according to claim 3;
    A quality control process for controlling the quality of the created threaded joint using the results obtained from the joint measurement process;
    A quality control method for threaded joints.
  6.  雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定するクリアランス測定装置であって、
     前記雄継手および前記雌継手のそれぞれのねじ形状のデータに基づいて、前記雄継手と前記雌継手との接合が完了した接合完了状態を設定する接合完了状態設定処理と、
     前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスが測定された後、前記雄継手と前記雌継手との接合が外れた状態でなかった場合には、前記接合を外す方向に予め定められた角度だけ回転させた状態を設定する回転状態設定処理とを、
     前記接合が外れた状態になるまで繰り返し実行する制御部を備える
     クリアランス測定装置。
    A clearance measurement device for measuring a clearance between a thread of a male joint and a thread of a female joint corresponding to the male joint for a set of threaded joints, the clearance measurement device comprising:
    a joining completion state setting process that sets a joining completion state in which joining of the male joint and the female joint is completed based on data of the thread shapes of the male joint and the female joint, respectively;
    a rotation state setting process for setting a state in which the male joint and the female joint are rotated by a predetermined angle in a direction to release the joint when the male joint and the female joint are not in a released state after a clearance between the threads of the male joint and the threads of the female joint corresponding to the threads of the male joint is measured in the joined state;
    a control unit that repeats the process until the joint is released.
  7.  前記制御部は、
     前記回転状態設定処理の前に、前記接合完了状態において、前記雄継手のねじと前記雄継手のねじに対応する前記雌継手のねじとの間のクリアランスを測定するクリアランス測定処理を実行する
     請求項6に記載のクリアランス測定装置。
    The control unit is
    7. The clearance measurement device according to claim 6, further comprising: a clearance measurement process for measuring a clearance between a thread of the male joint and a thread of the female joint corresponding to the thread of the male joint in the joining completed state, before the rotational state setting process.
  8.  さらに、通信部を備え、
     前記通信部は、前記制御部によって、
     前記雄継手および前記雌継手のそれぞれのねじ形状のデータの取得処理と、前記クリアランス測定処理によって得られたクリアランスに関する情報の出力処理との少なくとも一方を実行する
     請求項6に記載のクリアランス測定装置。
    Further, a communication unit is provided,
    The communication unit, by the control unit,
    7. The clearance measurement device according to claim 6, further comprising: a process for acquiring data on the thread shapes of the male joint and the female joint; and a process for outputting information on the clearance obtained by the clearance measurement process.
  9.  雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじ形状と前記雌継手のねじ形状とのそれぞれを計測可能に構成された計測部と、
     前記計測部によって計測された前記ねじ形状のデータに基づいて、前記ねじ継手の組ごとにクリアランスを測定する、請求項6~8のいずれか1項に記載のクリアランス測定装置と、
     を備える
     ねじ継手の計測システム。
    A measurement unit configured to be able to measure the thread shape of the male joint and the thread shape of the female joint for a set of threaded joints having a male joint and a female joint corresponding to the male joint;
    The clearance measurement device according to any one of claims 6 to 8, which measures a clearance for each pair of the threaded joints based on data of the thread shape measured by the measurement unit;
    A measurement system for threaded joints.
  10.  雄継手と前記雄継手に対応した雌継手とを有するねじ継手の組に対して、前記雄継手のねじと前記雌継手のねじとの間のクリアランスを測定可能に構成され、制御部によって制御される計測端末であって、
     前記制御部の制御によって、前記雄継手のねじ形状と前記雌継手のねじ形状とをそれぞれ計測する計測部と、
     前記制御部の制御によって、計測された前記ねじ形状をデータとして請求項6~8のいずれか1項に記載のクリアランス測定装置に出力する出力処理、および前記クリアランス測定装置から、前記継手の組ごとに前記クリアランスに関する情報を取得する取得処理の少なくとも一方の処理を実行する、通信部と、
     前記制御部の制御によって、取得した前記情報を予め定められた形式によって出力可能な出力部と、
     を備える
     計測端末。
    A measurement terminal configured to be capable of measuring a clearance between a thread of a male joint and a thread of a female joint corresponding to the male joint for a set of threaded joints, the measurement terminal being controlled by a control unit,
    A measuring unit that measures the thread profile of the male joint and the thread profile of the female joint under the control of the control unit;
    a communication unit that executes at least one of an output process of outputting the measured thread shape as data to the clearance measurement device according to any one of claims 6 to 8 under the control of the control unit, and an acquisition process of acquiring information regarding the clearance for each pair of the joints from the clearance measurement device; and
    an output unit capable of outputting the acquired information in a predetermined format under the control of the control unit;
    A measurement terminal comprising:
  11.  前記制御部は、
     取得した前記クリアランスに関する前記情報と所定の基準とに基づいて、前記ねじ継手の組に関して合否を判定する処理と、
     取得した前記クリアランスに関する前記情報と所定の基準とに基づいて干渉個所と判定された箇所に対して、前記干渉個所の情報を付与する干渉情報付与処理と、の少なくとも一方の処理を実行する
     請求項10に記載の計測端末。
    The control unit is
    A process of determining whether the set of threaded joints is pass or fail based on the acquired information on the clearance and a predetermined criterion;
    and an interference information assignment process for assigning information about an interference location to a location determined to be an interference location based on the acquired information about the clearance and a predetermined criterion.
  12.  請求項10または11に記載の計測端末と、
     前記計測端末によって計測されたねじ形状のデータに基づいて、前記ねじ継手の組ごとにクリアランスを測定する請求項6~8のいずれか1項に記載のクリアランス測定装置と、
     を備える
     ねじ継手の計測システム。
    The measurement terminal according to claim 10 or 11,
    The clearance measurement device according to any one of claims 6 to 8, which measures a clearance for each pair of the threaded joints based on data of the thread shape measured by the measurement terminal; and
    A measurement system for threaded joints.
  13.  雄継手と前記雄継手と対応した雌継手とを有するねじ継手の組に対するねじ継手の品質を管理する、ねじ継手の品質管理方法であって、
     請求項6~8のいずれか1項に記載のクリアランス測定装置の制御部により実行されるクリアランス測定処理から得られたクリアランスに関する情報を用いて、前記ねじ継手の組に対する品質を管理する
     ねじ継手の品質管理方法。
    A quality control method for a threaded joint for controlling the quality of a threaded joint for a set of a threaded joint having a male joint and a female joint corresponding to the male joint,
    A quality control method for a threaded joint, comprising: controlling the quality of a set of threaded joints using information about the clearance obtained from a clearance measurement process executed by a control unit of the clearance measurement device according to any one of claims 6 to 8.
PCT/JP2023/028725 2022-09-30 2023-08-07 Clearance measuring method, clearance measuring device, screw joint measuring method, screw joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality management method WO2024070241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157597 2022-09-30
JP2022157597 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070241A1 true WO2024070241A1 (en) 2024-04-04

Family

ID=90477162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028725 WO2024070241A1 (en) 2022-09-30 2023-08-07 Clearance measuring method, clearance measuring device, screw joint measuring method, screw joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality management method

Country Status (1)

Country Link
WO (1) WO2024070241A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144604A (en) * 2002-10-24 2004-05-20 Seibu Electric & Mach Co Ltd Screw wear amount detection device
JP2004238942A (en) * 2003-02-06 2004-08-26 Nippon Steel Corp Screw joint for pipe piles, and fastening method
JP2011203108A (en) * 2010-03-25 2011-10-13 Toshiba Corp Apparatus and method for measuring three-dimensional distance
JP2020035434A (en) * 2018-07-30 2020-03-05 ダッソー システムズ シムリア コーポレイション Detection of gaps between objects in computer added design-defined geometries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144604A (en) * 2002-10-24 2004-05-20 Seibu Electric & Mach Co Ltd Screw wear amount detection device
JP2004238942A (en) * 2003-02-06 2004-08-26 Nippon Steel Corp Screw joint for pipe piles, and fastening method
JP2011203108A (en) * 2010-03-25 2011-10-13 Toshiba Corp Apparatus and method for measuring three-dimensional distance
JP2020035434A (en) * 2018-07-30 2020-03-05 ダッソー システムズ シムリア コーポレイション Detection of gaps between objects in computer added design-defined geometries

Similar Documents

Publication Publication Date Title
JP5103402B2 (en) System and related method for projecting defects and inspection positions
US8249832B2 (en) Correlation of inspection information and computer-aided design data for structural assessment
JP2008026165A (en) Device and method for producing reference shape data for tire inspection
CN112884647A (en) Embedded part construction positioning method based on BIM point cloud technology guidance
JP2009133082A (en) Insert installation position collating method and insert installation position collating system
AU2015416255A1 (en) Method and system for assisting installation of elements in a construction work
KR100945066B1 (en) Measurement accuracy managing method of ship building blocks and computr readable recorded media
WO2024070241A1 (en) Clearance measuring method, clearance measuring device, screw joint measuring method, screw joint measurement system, measurement terminal, threaded joint manufacturing method, and threaded joint quality management method
JP2006349579A (en) System, method and program for measuring displacement information
JP2011180007A (en) Structure examination system and position measuring apparatus used for the same
JP2020172784A (en) Mountain tunnel concrete thickness measuring method and measuring device
JP2010140354A (en) Pipe installation support apparatus
TW201307877A (en) Target jig for laser measurement and laser measurement system
JP6503278B2 (en) Shape measuring apparatus and shape measuring method
KR101237434B1 (en) Realistic 3D Architecture Modeling Method using Survey Instrument
JP5321357B2 (en) Three-dimensional shape data processing apparatus, three-dimensional shape data processing system, and three-dimensional shape measurement system
JP2011118581A (en) Pipe installation support apparatus
JP2010140353A (en) Pipe installation support apparatus
CN108896586A (en) The space-location method of defect and banjo fixing butt jointing weldment in banjo fixing butt jointing weldment
CN100464106C (en) Inserting pipe digitalized design and manufacture method
JP2021110614A (en) Method, system and program for measuring gap, step difference, depth and the like between flanges, as well as storage medium and measurement server
JP3169715U (en) Building accuracy management system
JP2017227459A (en) Measurement jig and measuring method of flange distortion using portable non-contact three-dimensional coordinate measuring apparatus
JP7315722B2 (en) Flange-to-flange measurement method, system, program, recording medium and measurement server
JP4604681B2 (en) Column building error measurement method, column beam building method, column beam building error measurement system, column beam building evaluation system.