WO2024070030A1 - 電圧生成回路及び音声出力回路 - Google Patents

電圧生成回路及び音声出力回路 Download PDF

Info

Publication number
WO2024070030A1
WO2024070030A1 PCT/JP2023/016985 JP2023016985W WO2024070030A1 WO 2024070030 A1 WO2024070030 A1 WO 2024070030A1 JP 2023016985 W JP2023016985 W JP 2023016985W WO 2024070030 A1 WO2024070030 A1 WO 2024070030A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
voltage
output
generating circuit
electrically connected
Prior art date
Application number
PCT/JP2023/016985
Other languages
English (en)
French (fr)
Inventor
貴広 早川
Original Assignee
パナソニックオートモーティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックオートモーティブシステムズ株式会社 filed Critical パナソニックオートモーティブシステムズ株式会社
Publication of WO2024070030A1 publication Critical patent/WO2024070030A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Definitions

  • This disclosure relates to a voltage generation circuit and an audio output circuit.
  • a preamplifier that performs amplification and level shifting is known as a voltage generation circuit that generates a predetermined voltage.
  • This preamplifier amplifies an input signal input from a pair of input terminals using an operational amplifier and outputs the amplified signal.
  • the negative input terminal of the pair of input terminals is connected to the inverting input terminal of the operational amplifier via a negative input resistor, the inverting input terminal and output of the operational amplifier are connected with a feedback resistor, the positive input terminal is connected to the non-inverting input terminal of the operational amplifier via a positive input resistor, and the voltage division point obtained by resistively dividing a positive reference voltage is connected to the non-inverting input terminal of the operational amplifier (see Patent Document 1).
  • This disclosure provides a voltage generation circuit and an audio output circuit that can generate a voltage by reducing the fluctuating components superimposed on the input voltage.
  • One aspect of the present disclosure is a transistor comprising: a voltage input terminal to which an input voltage is input; a voltage output terminal to which an output voltage is output; a first resistive element having a first terminal and a second terminal, the first terminal being electrically connected to the voltage input terminal; a second resistive element having a third terminal and a fourth terminal, the third terminal being electrically connected to the second terminal, and the fourth terminal being electrically connected to a ground potential; a first capacitive element having a first capacitive terminal and a second capacitive terminal, the first capacitive terminal being electrically connected to the voltage input terminal; and a fifth terminal and a sixth terminal.
  • a third resistive element having a seventh terminal and an eighth terminal, the seventh terminal being electrically connected to the sixth terminal; and a first operational amplifier having a first inverting input terminal, a first non-inverting input terminal, and a first output terminal, the first inverting input terminal being electrically connected to the sixth terminal, the first non-inverting input terminal being electrically connected to the second terminal, and the first output terminal being electrically connected to the voltage output terminal and the eighth terminal.
  • One aspect of the present disclosure is an audio output circuit comprising the above-mentioned voltage generation circuit and a fourth operational amplifier, the fourth operational amplifier having a first input terminal, a second input terminal, and a fourth output terminal, the output voltage output by the voltage generation circuit being input to the first input terminal, an audio input signal being input to the second input terminal, and an audio output signal based on the audio input signal being output from the fourth output terminal.
  • FIG. 1 is a circuit diagram showing an example of an audio output circuit according to a first embodiment
  • FIG. 1 is a circuit diagram showing an example of a voltage generating circuit according to a first embodiment
  • FIG. 11 is a circuit diagram showing an example of a voltage generating circuit according to a second embodiment
  • FIG. 1 is a circuit diagram showing a voltage generating circuit according to a comparative example.
  • FIG. 13 is a diagram showing input/output characteristics of fluctuation components according to the second embodiment and a comparative example
  • FIG. 13 is a circuit diagram showing an example of a voltage generating circuit according to a third embodiment
  • FIG. 13 is a circuit diagram showing an example of a voltage generating circuit according to a fourth embodiment;
  • FIG. 13 is a circuit diagram showing an example of a voltage generating circuit according to a fifth embodiment
  • FIG. 13 is a circuit diagram showing an example of a voltage generating circuit according to a sixth embodiment
  • FIG. 13 is a diagram showing an example of an output voltage of a voltage generating circuit according to a second embodiment and an output voltage of a voltage generating circuit according to the present embodiment
  • FIG. 13 is a circuit diagram showing a voltage generating circuit according to a modification of the sixth embodiment.
  • FIG. 13 is a circuit diagram showing an example of a voltage generating circuit according to a seventh embodiment.
  • FIG. 13 is a diagram showing an example of an output voltage of a voltage generating circuit according to a sixth embodiment and an output voltage of a voltage generating circuit according to the present embodiment;
  • a conventional voltage generating circuit can operate as a bias circuit that outputs a bias voltage.
  • This bias circuit outputs a bias voltage based on an input voltage that has been input, but if the input voltage fluctuates, the bias voltage containing the fluctuating component is output.
  • a method of absorbing the fluctuating component by adding an element such as a capacitor to the bias circuit is conceivable.
  • it is necessary to increase the capacitance of the capacitor which leads to an increase in the size of the capacitor and the size of the device including the bias circuit. Therefore, there is a demand for a technology that reduces the fluctuating component while suppressing the increase in size of the device.
  • FIG. 1 is a circuit diagram showing an example of an audio output circuit 100 according to the first embodiment.
  • the audio output circuit 100 is an amplifier circuit for an audio signal.
  • the audio output circuit 100 includes an audio input terminal Vi, an audio output terminal Vo, an operational amplifier OP10, and a voltage generating circuit 10.
  • the operational amplifier OP10 includes an inverting input terminal op10-, a non-inverting input terminal op10+, and an output terminal Vop10.
  • the inverting input terminal op10- is electrically connected to the audio input terminal Vi via a capacitance element C11 and a resistance element R13 connected in series.
  • the inverting input terminal op10- is electrically connected to the output terminal Vop10 via a capacitance element C12 and a resistance element R14 connected in parallel.
  • the non-inverting input terminal op10+ is connected to the voltage output terminal (not shown in FIG. 1) of the voltage generating circuit 10.
  • a bias voltage generated by the voltage generating circuit 10 is input to the non-inverting input terminal op10+.
  • the output terminal Vop10 is electrically connected to the audio output terminal Vo via the capacitance element C13.
  • the capacitance elements C11, C12, and C13 are all, for example, capacitors.
  • the audio output circuit 100 is a single-power amplifier circuit electrically connected to a power supply voltage and a ground potential, i.e., ground.
  • the audio output circuit 100 amplifies, for example, the amplitude of an audio input signal by a factor of two and outputs the signal as an audio output signal.
  • the audio output circuit 100 can be used, for example, in car audio.
  • graph g1 shows the voltage amplitude waveform of the audio input signal at audio input terminal Vi.
  • the solid line shows the waveform when the amplitude of the audio input signal is at its maximum
  • the dashed line shows an example of the waveform when the amplitude of the audio input signal is less than the maximum.
  • the amplitude of the audio input signal when it is at its maximum is the maximum amplitude at which the operational amplifier OP10 can output audio without distorting the audio input signal.
  • the relationship between the waveform shown by the solid line and the waveform shown by the dashed line is the same for graphs g2, g3, and g4.
  • Graph g2 shows the voltage amplitude waveform of the input signal between the capacitive element C11 and the resistive element R13.
  • a bias voltage is added to the signal from the audio input terminal Vi.
  • the bias voltage is a voltage generated and output by the voltage generating circuit 10, and is, for example, half (1/2) the power supply voltage.
  • Graph g3 shows the voltage amplitude waveform of the output signal at the output terminal Vop10 of the operational amplifier OP10.
  • the waveform shown in graph g3 is the inverted phase of the waveform shown in graph g2, and the amplitude is amplified by a predetermined amplification factor.
  • the amplification factor is, for example, 2x.
  • Graph g4 shows the voltage amplitude waveform of the audio output signal at the audio output terminal Vo.
  • the bias voltage has been removed by the action of the capacitive element C13.
  • the operational amplifier OP10 adds the noise components to amplify the input signal. For this reason, it is preferable to obtain a constant voltage that does not include noise components as the bias voltage. This allows the operational amplifier OP10 to amplify and output the input signal without the noise components being superimposed. In this case, the amplification process of the operational amplifier OP10 ensures a signal with large amplitude.
  • the noise components are AC components other than the DC component of the voltage, and are voltage fluctuation components.
  • the bias voltage does not have to be half the power supply voltage.
  • the bias voltage may be adjusted to a voltage other than half the power supply voltage depending on the IC that constitutes the operational amplifier OP10.
  • the voltage generation circuit 10 can have various circuit configurations. Below, the circuit configuration of the voltage generation circuit 10 will be described for each embodiment.
  • the voltage generation circuit 10 of the first embodiment is voltage generation circuit 10A.
  • the voltage generation circuit 10 of the second embodiment is voltage generation circuit 10B.
  • the voltage generation circuit 10 of the third embodiment is voltage generation circuit 10C.
  • the voltage generation circuit 10 of the fourth embodiment is voltage generation circuit 10D.
  • the voltage generation circuit 10 of the fifth embodiment is voltage generation circuit 10E.
  • the configuration of the audio output circuit 100 is the same in each embodiment.
  • the voltage generating circuit 10A includes a voltage input terminal Vin, a voltage output terminal Vout, resistor elements R1, R2, R6, R7, a capacitor C1, and an operational amplifier OP1.
  • the resistive element R6 has terminals tr1 and tr2.
  • the terminal tr1 is electrically connected to the voltage input terminal Vin.
  • “electrically connected” includes the case where two elements are directly connected and the case where they are connected with another conductive element between them so that a current can flow from one to the other.
  • the resistive element R7 has terminals tr3 and tr4.
  • the terminal tr3 is electrically connected to the terminal tr2.
  • the terminal tr4 is electrically connected to the ground potential, that is, the ground.
  • the capacitive element C1 has capacitive terminals tc1 and tc2.
  • the terminals of the capacitive element may be referred to as capacitive terminals.
  • the capacitive terminal tc1 is electrically connected to the voltage input terminal Vin and the terminal tr1.
  • the resistive element R1 has terminals tr5 and tr6.
  • the terminal tr5 is electrically connected to the capacitive terminal tc2.
  • Terminal tr5 may be directly connected to capacitance terminal tc2.
  • Resistance element R2 has terminals tr7 and tr8.
  • Terminal tr7 is electrically connected to terminal tr6.
  • the operational amplifier OP1 has an inverting input terminal op1-, a non-inverting input terminal op1+, and an output terminal Vop1.
  • the inverting input terminal op1- is electrically connected to terminals tr6 and tr7.
  • the non-inverting input terminal op1+ is electrically connected to terminals tr2 and tr3.
  • the output terminal Vop1 is electrically connected to the voltage output terminal Vout and terminal tr8.
  • the operational amplifier OP1 also has a positive power supply terminal and a negative power supply terminal.
  • the positive power supply terminal is electrically connected to the power supply potential, and the negative power supply terminal is electrically connected to the ground potential.
  • the voltage generating circuit 10A is a single power supply circuit.
  • the same voltage as the input voltage input to the voltage input terminal Vin is input to the positive power supply terminal.
  • the voltage input to the positive power supply terminal may be different from the input voltage input to the voltage input terminal Vin.
  • the resistance value of resistive element R6 is, for example, 10 k ⁇ .
  • the resistance value of resistive element R7 is, for example, 10 k ⁇ .
  • the capacitance value of capacitive element C1 is, for example, 1 ⁇ F.
  • the resistance value of resistive element R1 is, for example, 30 k ⁇ .
  • the resistance value of resistive element R2 is, for example, 30 k ⁇ .
  • the capacitance value of each element is, for example, the value of electrostatic capacitance.
  • the input voltage input from the voltage input terminal Vin is divided by the resistor elements R6 and R7 and input to the non-inverting input terminal op1+.
  • the input voltage may include a DC component, which is the original input voltage, and a fluctuating component, which is noise.
  • the resistance value of the resistor element R6 is equal to the resistance value of the resistor element R7. Therefore, the input voltage is input to the non-inverting input terminal op1+ as a voltage with approximately half the magnitude. At this time, the DC component and the fluctuating component contained in the input voltage are both approximately half the magnitude and input to the non-inverting input terminal op1+.
  • the fluctuating component input to the non-inverting input terminal op1+ has its amplitude multiplied by (1 + (resistance value of resistor element R2) / (resistance value of resistor element R1)) and is output to the output terminal Vop1.
  • the phase is not inverted between the fluctuating component input to the non-inverting input terminal op1+ and the fluctuating component output to the output terminal Vop1.
  • the resistance value of the resistor element R1 is equal to the resistance value of the resistor element R2. Therefore, the fluctuation component input to the non-inverting input terminal op1+ is output to the output terminal Vop1 with the amplitude doubled without changing the phase.
  • a fluctuation component with the same amplitude as the fluctuation component contained in the input voltage is output to the output terminal Vop1.
  • the input voltage input from the voltage input terminal Vin is input to the inverting input terminal op1- via the capacitance element C1 and the resistance element R1.
  • the capacitance element C1 extracts the fluctuation component from the input voltage by blocking the DC component of the input voltage.
  • the fluctuation component input to the resistance element R1 is output to the output terminal Vop1 with the phase inverted and the amplitude multiplied by (resistance value of the resistance element R2)/(resistance value of the resistance element R1).
  • the resistance value of the resistance element R1 is equal to the resistance value of the resistance element R2.
  • the fluctuation component input to the resistance element R1 is output to the output terminal Vop1 with the phase inverted and the amplitude multiplied by one.
  • the noise as a fluctuating component may include, for example, the following noises.
  • the noise may include noise generated by a microcomputer, DSP, or other device electrically connected to the voltage input terminal Vin.
  • the noise may include electrical noise generated by the drive system of the vehicle in which the voltage generating circuit 10 or the audio output circuit 100 is mounted.
  • the noise may include noise such as the vehicle's alternator, motor, or ignition noise.
  • the noise may also include electrical noise originating from outside the vehicle.
  • the noise may also include noise generated by the audio output circuit 100.
  • the capacitance element C1 extracts the fluctuating components that may be included in the input voltage input to the voltage input terminal Vin, applies them to the inverting input terminal op1-, and feeds back the signal output from the operational amplifier OP1.
  • This allows the voltage generating circuit 10 to cancel out the fluctuating components, and to output a constant voltage even if the input voltage fluctuates.
  • the voltage generating circuit 10 can remove the fluctuating components using smaller components than when the fluctuating components are suppressed by a filter.
  • the voltage generating circuit 10 does not use a diode such as a Zener diode to remove the fluctuating components.
  • the ratio of the resistance value of the resistor element R6 to the resistance value of the resistor element R7 is equal to the ratio of the resistance value of the resistor element R1 to the resistance value of the resistor element R2. This makes it difficult for the output voltage of the operational amplifier OP1 to fluctuate.
  • the voltage generating circuit 10A can remove fluctuation components over a wider frequency band than the voltage generating circuit 10B of the second embodiment described below that includes the capacitive element C2.
  • the audio output circuit 100 equipped with such a voltage generating circuit 10 can use a constant voltage with suppressed fluctuating components as a bias voltage. This allows the audio output circuit 100 to amplify and output an audio input signal without fluctuating components being superimposed. Therefore, the audio output circuit 100 can output an audio output signal with suppressed noise.
  • Second Embodiment (Configuration of the voltage generating circuit) 3 is a circuit diagram showing an example of a voltage generating circuit 10B according to the second embodiment.
  • the voltage generating circuit 10B differs from the voltage generating circuit 10A in that it includes a capacitive element C2. Descriptions of the configuration and operation of the voltage generating circuit 10B that are similar to those of the voltage generating circuit 10A according to the first embodiment will be omitted or simplified.
  • the voltage generating circuit 10B includes a capacitance element C2 in addition to the configuration of the voltage generating circuit 10A.
  • the capacitance element C2 has capacitance terminals tc3 and tc4.
  • the capacitance terminal tc3 is electrically connected to the terminal tr7.
  • the capacitance terminal tc3 may be directly connected to the terminal tr7.
  • the capacitance terminal tc4 is electrically connected to the terminal tr8 and the output terminal Vop1 of the operational amplifier OP1.
  • the capacitance terminal tc4 may be directly connected to the terminal tr8 and the output terminal Vop1.
  • the capacitance element C2 is connected in parallel with the resistance element R2.
  • the capacitance value of the capacitive element C2 is, for example, 0.47 pF.
  • Capacitive element C2 adjusts the phase of the high-frequency components that pass through it. Therefore, capacitive element C2 can improve the phase delay in the feedback circuit that feeds back from output terminal Vop1 to inverting input terminal op1-, thereby contributing to suppressing oscillation of operational amplifier OP10 in the high-frequency band.
  • each resistive element R1, R2, (7) may be described using the same symbol as that attached to the resistive element.
  • the capacitance value of each capacitive element C1, C2, (7) may be described using the same symbol as that attached to the capacitive element.
  • the value of the input voltage input from the voltage input terminal Vin may be described using the same symbol as that attached to the voltage input terminal Vin.
  • the value of the output voltage output from the voltage output terminal Vout may be described using the same symbol as that attached to the voltage output terminal Vout.
  • the capacitance element C1 and resistance element R1 connected in series form an impedance Z1. Furthermore, the capacitance element C2 and resistance element R2 connected in parallel form an impedance Z2.
  • the impedance values of each impedance (Z1, Z2) may be explained using the same symbols as those attached to the impedances.
  • I1 is a current flowing from the resistive element R1 to the point p1
  • I2 is a current flowing from the point p1 to the resistive element R2 and the capacitive element C2.
  • the voltage V2 at point p2 can be expressed by the following formula.
  • Point p2 is the node to which terminals tr2, tr3, and the non-inverting input terminal op1+ are connected.
  • Voltage V2 represents the voltage input to the non-inverting input terminal op1+.
  • I1 I2 + I3
  • I3 is a current flowing from point p1 to the inverting input terminal op1-.
  • the impedance Z1 and the impedance Z2 are expressed as complex numbers. Since the impedance Z1 is a combined resistance of the capacitance element C1 and the resistance element R1 connected in series, the following relational expression holds:
  • Frequency f is the frequency of the fluctuating component contained in the input voltage.
  • the impedance Z1 becomes high.
  • the impedance Z1 becomes infinite ⁇ .
  • the output voltage Vout is half the value of the input voltage Vin.
  • impedance Z2 is the parallel combined resistance of capacitance element C2 and resistance element R2, the following relationship holds:
  • the output voltage Vout is half the value of the input voltage Vin.
  • equation (12) becomes as follows.
  • the voltage generating circuit 10B is most effective at removing the fluctuating components.
  • the cutoff frequency f low is, for example, 5 Hz to 10 Hz
  • the cutoff frequency f high may be, for example, 500 kHz to 10 MHz, or 10 MHz or higher.
  • the voltage generating circuit 10B can suitably remove fluctuation components of the input voltage in a frequency range of 20 Hz to 20 kHz or a frequency range of 20 Hz to 100 kHz.
  • FIG. 4 is a circuit diagram showing a voltage generating circuit 10X according to a comparative example.
  • the voltage generating circuit 10X includes a resistive element R8X, a resistive element R9X, a capacitive element C5X, an operational amplifier OPX, a voltage input terminal VinX, and a voltage output terminal VoutX.
  • One end of the resistive element R8X is electrically connected to the voltage input terminal VinX.
  • One end of the resistive element R9X is electrically connected to the other end of the resistive element R8X, and the other end is electrically connected to the ground potential.
  • One end of the capacitive element C5X is electrically connected to the other end of the resistive element R8X and one end of the resistive element R9X, and the other end is electrically connected to the ground potential.
  • the inverting input terminal opX- of the operational amplifier OPX is electrically connected to the output terminal.
  • the non-inverting input terminal opX+ of the operational amplifier OPX is electrically connected to the other end of the resistive element R8X, one end of the resistive element R9X, and one end of the capacitive element C5X.
  • the output terminal VopX of the operational amplifier OPX is electrically connected to the inverting input terminal opX- and the voltage output terminal VoutX.
  • the resistance value of the resistive element R8X is, for example, 10 k ⁇ .
  • the resistance value of the resistive element R9X is, for example, 10 k ⁇ .
  • the capacitance value of the capacitive element C5X is, for example, 1 ⁇ F.
  • FIG. 5 is a diagram showing the input/output characteristics of the fluctuating component as a noise component in the second embodiment and the comparative example. Specifically, FIG. 5 shows the change in the magnitude of the fluctuating component appearing at the voltage output terminal Vout when a sine wave is applied as the fluctuating component to the voltage input terminal and the sine wave is swept in the range of 20 Hz to 20 kHz. 20 Hz to 20 kHz corresponds to the general audible frequency range.
  • the noise signal SG1 indicating the fluctuating component of this embodiment is shown by a solid line
  • the noise signal SGX indicating the fluctuating component of the comparative example is shown by a dashed line.
  • the noise signals SG1 and SGX are shown as relative values (dB) indicating the output with respect to the input, that is, relative values indicating the fluctuating component contained in the output voltage with respect to the fluctuating component contained in the input voltage.
  • the noise signal SG1 of the present embodiment Comparing the noise signal SG1 of the present embodiment with the noise signal SGX of the comparative example in the audible frequency range, it can be seen that the noise signal SG1 is smaller than the noise signal SGX throughout the entire audible frequency range, and that the noise is further reduced. For example, around 20 Hz, the present embodiment achieves approximately 10 dB more noise reduction than the comparative example. Therefore, it can be seen that the noise on the input side is less likely to be transmitted to the output side in this embodiment than in the comparative example. Furthermore, it can be seen that in this embodiment, there is a frequency (for example, about 8 kHz) at which the input noise is significantly reduced. This frequency corresponds to the frequency f derived by the above-mentioned equation (14). In this embodiment, it is possible to reduce the fluctuation component between the low frequency determined by the capacitive element C1 and the high frequency that depends on the operating performance of the operational amplifier OP1.
  • the voltage generating circuit 10B can adjust the slope of the graph shown in FIG. 5 by adjusting the capacitance value C1 and resistance value R1. Therefore, in the voltage generating circuit 10B, the strength and frequency range of the fluctuation component reduction function, i.e., the noise cancellation function, can be adjusted.
  • the resistance value R1 is equal to the resistance value R2, and the resistance value R6 is equal to the resistance value R7, but this is not limited to the above.
  • it is sufficient to satisfy the relationship of resistance value R6:resistance value R7 resistance value R1:resistance value R2, and the resistance value R1 may be different from the resistance value R2, and the resistance value R6 may be different from the resistance value R7.
  • the output voltage Vout satisfies the following relational expression.
  • the voltage generating circuit 10B can arbitrarily change the output voltage output from the voltage output terminal Vout. Even in this case, the voltage generating circuit 10B can reduce fluctuation components as noise components.
  • the resistance value of the resistive element R6 is 16.667 k ⁇
  • the resistance value of the resistive element R7 is 10 k ⁇ .
  • the resistance value of the resistive element R1 is 30 k ⁇
  • the resistance value of the resistive element R2 is 18 k ⁇ .
  • the DC component of the output voltage Vout can be set to any value, rather than half the DC component of the input voltage Vin, by changing the ratio of the resistance values of the resistor elements R6 and R7. In this case, it is necessary to adjust the resistance values R1 and R2 in order to remove the AC component between the cutoff frequencies f low and f high .
  • the resistance value R6 can be determined by determining the resistance value R7 and the output voltage Vout.
  • the voltage generating circuit 10B is mainly illustrated as having an operational amplifier OP1 with a single power supply and a negative power supply terminal connected to a ground potential, but this is not limited thereto.
  • the voltage generating circuit 10B can also operate with an operational amplifier OP1 with dual power supplies.
  • the sum of a DC component of 8V and a fluctuation component can be applied to the positive power supply terminal (Vin) of the operational amplifier OP1.
  • a DC component of -8V can be applied to the negative power supply terminal (-V) of the operational amplifier OP1.
  • the voltage generating circuit 10B is mainly illustrated as having an operational amplifier OP1 with a single power supply and a negative power supply terminal connected to a ground potential, but this is not limited thereto.
  • the positive power supply terminal of the operational amplifier OP1 may be connected to a ground potential, and the negative power supply terminal may be connected to a predetermined potential.
  • the voltage generating circuit 10B can operate even if it includes an operational amplifier OP1 with a positive single power supply, and can also operate even if it includes an operational amplifier OP1 with a negative single power supply.
  • the voltage generating circuit 10B of the second embodiment is provided with a capacitive element C2, which makes it possible to suppress oscillation of the operational amplifier OP1.
  • Other effects are the same as those of the first embodiment. Therefore, the relationship between the input voltage and the output voltage discussed above and the comparison results in FIG. 5 also apply to the first embodiment.
  • FIG. 6 is a circuit diagram showing an example of a voltage generating circuit 10C according to the third embodiment.
  • the voltage generating circuit 10C differs from the voltage generating circuit 10B in that it includes a capacitive element C3.
  • the description of the same configuration as the voltage generating circuit 10A according to the first embodiment or the voltage generating circuit 10B according to the second embodiment will be omitted or simplified.
  • the voltage generating circuit 10C includes a capacitance element C3 in addition to the configuration of the voltage generating circuit 10B.
  • the capacitance element C3 has capacitance terminals tc5 and tc6.
  • the capacitance terminal tc5 is electrically connected to the output terminal Vop1 and the voltage output terminal Vout.
  • the capacitance terminal tc5 may be directly connected to the output terminal Vop1 and the voltage output terminal Vout.
  • the capacitance terminal tc6 is electrically connected to the ground potential.
  • the resistance element R3 may be connected in series to the capacitance terminal tc6.
  • the resistance element R3 is, for example, an equivalent series resistance of the capacitance element C3.
  • the resistance value of the resistance element R3 can be set appropriately based on the characteristics of the capacitance element C3.
  • the capacitance value of the capacitance element C3 is, for example, 1 ⁇ F.
  • the resistance value of the resistance element R3 is, for example, 1 ⁇ .
  • the capacitive element C3 allows high-frequency band fluctuation components of the signal output from the output terminal Vop1 to pass, but does not allow DC components to pass. Therefore, the capacitive element C3 acts as a noise filter in the output stage of the voltage generating circuit 10C. Therefore, the output voltage output from the voltage output terminal Vout has reduced high-frequency band fluctuation components. In this way, the voltage generating circuit 10C can improve the output characteristics in the high-frequency band by providing the capacitive element C3 in the stage preceding the voltage output terminal Vout.
  • the voltage generating circuit 10C can reduce fluctuation components in a frequency band of, for example, 100 kHz or more. This makes it easier for the audio output circuit 100 including the voltage generating circuit 10C to comply with EMC (Electromagnetic Compatibility), an international standard.
  • [Fourth embodiment] 7 is a circuit diagram showing an example of a voltage generating circuit 10D according to a fourth embodiment.
  • the description of the same configuration as the voltage generating circuit 10A according to the first embodiment, the voltage generating circuit 10B according to the second embodiment, or the voltage generating circuit 10C according to the third embodiment will be omitted or simplified.
  • the voltage generating circuit 10D includes a voltage follower circuit K1 and an LPF circuit K2, which is an RC-type LPF (Low Pass Filter) circuit.
  • the voltage follower circuit K1 includes an operational amplifier OP2.
  • the LPF circuit K2 includes a resistive element R4 and a capacitive element C4.
  • the resistive element R4 has terminals tr9 and tr10. Terminal tr9 is electrically connected to the output terminal Vop1.
  • the capacitive element C4 has capacitive terminals tc7 and tc8. Capacitive terminal tc7 is electrically connected to terminal tr10 of the resistive element R4. Capacitive terminal tc8 is electrically connected to the ground potential.
  • the operational amplifier OP2 has an inverting input terminal op2-, a non-inverting input terminal op2+, and an output terminal Vop2.
  • the inverting input terminal op2- is electrically connected to the output terminal Vop2.
  • the non-inverting input terminal op2+ is electrically connected to the terminal tr10 and the capacitance terminal tc7.
  • the output terminal Vop2 is electrically connected to the voltage output terminal Vout.
  • the resistance value of the resistive element R4 is, for example, 10 k ⁇ .
  • the capacitance value of the capacitive element C4 is, for example, 10 ⁇ F.
  • the voltage generating circuit 10D of this embodiment has a higher noise cancellation capability than the voltage generating circuit 10C of the third embodiment.
  • the resistance value of the resistive element R4 is 10 k ⁇ and the capacitance value of the capacitive element C4 is 10 ⁇ F.
  • the cutoff frequency is calculated to be 1.59 Hz.
  • the operational amplifier OP2 can maintain the voltage of the output terminal Vop2 constant by feedback. This allows the operational amplifier OP2 to operate in the same way as when the output impedance is small. For example, even if a load fluctuation occurs due to a current flowing through the resistance element R4, the voltage of the output terminal Vop2 can be maintained constant. Therefore, the voltage of the voltage output terminal Vout electrically connected to the output terminal Vop2 is also maintained constant. Therefore, the voltage follower circuit K1 can lower the output impedance of the voltage generation circuit 10D.
  • the resistance value of the resistance element R4 corresponds to the output impedance of the voltage generation circuit 10D.
  • the output impedance of the voltage generation circuit 10D is 10 k ⁇ .
  • the output impedance of the voltage generating circuit 10D drops to around several m ⁇ to 1 ⁇ .
  • the voltage generation circuit 10D of this embodiment is equipped with a voltage follower circuit K1 and an LPF circuit K2 downstream of the operational amplifier OP1, which can reduce the high-frequency components contained in the output voltage of the voltage generation circuit 10D and improve the bias voltage generation performance.
  • [Fifth embodiment] 8 is a circuit diagram showing an example of a voltage generating circuit 10E according to the fifth embodiment.
  • the voltage generating circuit 10D is different from the voltage generating circuit 10B in that it includes a voltage follower circuit K3.
  • the description of the same configuration as the voltage generating circuit 10A according to the first embodiment, the voltage generating circuit 10B according to the second embodiment, the voltage generating circuit 10C according to the third embodiment, or the voltage generating circuit 10D according to the fourth embodiment will be omitted or simplified.
  • the voltage generation circuit 10E includes a voltage follower circuit K3 in addition to the configuration of the voltage generation circuit 10B.
  • the voltage follower circuit K3 includes an operational amplifier OP3.
  • the operational amplifier OP3 has an inverting input terminal op3-, a non-inverting input terminal op3+, and an output terminal Vop3.
  • the inverting input terminal op3- is electrically connected to the output terminal Vop3.
  • the non-inverting input terminal op3+ is electrically connected to the terminal tr2 and the terminal tr3.
  • the output terminal Vop3 is electrically connected to the inverting input terminal op3- and the non-inverting input terminal op1+.
  • the influence of the impedance between the connection point of the resistor elements R6 and R7 and the operational amplifier OP1 can be reduced.
  • the distance between the connection point of the resistor elements R6 and R7 and the operational amplifier OP1 is a predetermined distance or more, or that a predetermined noise source exists in the vicinity of the connection point of the resistor elements R6 and R7 and the operational amplifier OP1.
  • noise is introduced into the path connecting the connection point of the resistor elements R6 and R7 and the non-inverting input terminal op1+, the voltage input to the non-inverting input terminal op1+ fluctuates.
  • the predetermined noise source As an example of the predetermined noise source, a DCDC circuit installed in the vicinity of the voltage generating circuit 10E is assumed. Note that even if the noise source is not physically connected to any point in the voltage generating circuit 10E, if the noise source and the voltage generating circuit 10E electrically interfere with each other, the voltage generating circuit 10E may be electrically affected by the noise source by being installed in the vicinity of the voltage generating circuit 10E.
  • the voltage follower circuit K3 is placed in front of the non-inverting input terminal op1+, which stabilizes the operation of the operational amplifier OP1 and maintains the noise cancellation capability.
  • the voltage generating circuit 10 may be configured by combining at least two of the third embodiment, the fourth embodiment, and the fifth embodiment. Also, in the third embodiment, the fourth embodiment, and the fifth embodiment, the voltage generating circuit 10 may not include the capacitive element C2, as in the first embodiment.
  • the amplifier circuit that uses the bias voltage generated by the voltage generating circuit 10 is not limited to the audio output circuit 100, and may be another circuit.
  • such an amplifier circuit may be widely applicable to circuits that perform amplification using a constant voltage, and may be a motor drive circuit.
  • Sixth embodiment 9 is a circuit diagram showing an example of a voltage generating circuit 10F according to the sixth embodiment.
  • the voltage generating circuit 10F is different from the voltage generating circuit 10B in that it includes a diode element D1 and a resistor element R5.
  • the description of the same configuration as the voltage generating circuit 10A according to the first embodiment, the voltage generating circuit 10B according to the second embodiment, the voltage generating circuit 10C according to the third embodiment, the voltage generating circuit 10D according to the fourth embodiment, or the voltage generating circuit 10E according to the fifth embodiment will be omitted or simplified.
  • voltage generating circuit 10F includes diode element D1 and resistor element R5.
  • Diode element D1 has diode terminals td1 and td2.
  • the terminals of a diode element may be referred to as diode terminals.
  • Diode terminal td1 is electrically connected to capacitance terminal tc2 and terminal tr5.
  • Diode element D1 may be a rectifying diode element or a Schottky diode.
  • the resistor element R5 has a terminal tr11 and a terminal tr12.
  • the terminal tr11 is electrically connected to the diode terminal td2.
  • the terminal tr12 is electrically connected to the capacitance terminal tc4, the terminal tr8, the output terminal Vop1, and the voltage output terminal Vout.
  • the resistor element R5 limits the current flowing through the diode element D1.
  • the voltage generating circuit 10F does not need to include the resistive element R5.
  • the installation of the resistive element R5 may be omitted.
  • the voltage at point noise1 between the capacitance element C1 and resistance element R1 becomes the power supply voltage, that is, the input voltage Vin, in the voltage generating circuit 10F.
  • the capacitance element C1 does not pass DC components in steady state, but passes AC components when the power supply changes from 0V to 8V when it is turned on.
  • the amount of current passing through the capacitance element C1 changes depending on the time since the power supply is turned on.
  • the voltage at point noise1 is actually smaller than the power supply voltage.
  • the output voltage Vop1 is the voltage at the output terminal Vop1.
  • the forward voltage Vf is, for example, 0.7V.
  • the voltage at point noise1 is generated by the charge QC1 in the capacitance element C1, and this charge is not replenished later. Therefore, the charge QC1 flows to the voltage output terminal Vout via the diode element D1, and as a result, the voltage at point noise1 decreases. In addition, the voltage input to the inverting input terminal op1- decreases by the amount that the voltage at point noise1 decreases, and the voltage at the output terminal Vop1 of the operational amplifier OP1 increases.
  • the voltage generation circuit 10F can quickly increase the output voltage Vout until the output voltage Vout becomes (the voltage at point Vhalf -0.7V). Furthermore, by reducing the resistance value of resistance element R5, the charge QC1 can be made to flow more quickly. Therefore, the voltage generation circuit 10F can increase the output voltage Vout even more quickly.
  • a Schottky barrier diode with a low forward voltage Vf may be used as the diode element D1.
  • the voltage generating circuit 10F can increase the output voltage Vout more quickly, i.e., can rise more quickly, compared to when a normal diode element D1 is used.
  • the Schottky barrier diode has a forward voltage Vf of, for example, about 0.4 V or 0.5 V.
  • the resistance value which is the constant of the resistive element R5 is determined based on at least one of the time required to discharge the charge QC1 stored in the capacitive element C1 and the upper limit of the operating current of the operational amplifier OP1. For example, the smaller the resistance value of the resistive element R5, the faster the rise time of the output voltage Vout becomes, but the greater the operating current of the operational amplifier OP1 becomes. For this reason, the rise time of the output voltage Vout is set taking into account the maximum operating current of the operational amplifier OP1. For example, when the resistance value of the resistive element R5 is small, the current flows quickly, so the charge QC1 flows quickly and is discharged quickly.
  • the coefficient A is calculated based on the constants of the voltage generation circuit 10F using the following formula (19).
  • the resistance value of resistor element R1 is 30 (k ⁇ )
  • the resistance value of resistor element R2 is 30 (k ⁇ )
  • the resistance value of resistor element R5 is 400 ( ⁇ ).
  • coefficient A is 0.00503.
  • the operating current of the operational amplifier OP1 is calculated using coefficient A.
  • the maximum operating current of the operational amplifier OP1 is equal to the maximum value of the current I10 at point noise1 shown in FIG. 9. In other words, it can be expressed by the following equation (20).
  • the voltage Vc at point noise1 is 8 V
  • the voltage Vp at the connection point between terminals tr2 and tr3 is 4 V
  • the forward voltage Vf of diode element D1 is 0.7 V.
  • the current I10 is 18.38 (mA).
  • voltage Vp is the voltage at point Vhalf, and is the reference for the desired output voltage Vout.
  • the current I10 flows into the operational amplifier OP1. Therefore, the current I must be equal to or less than the allowable current of the operational amplifier OP1. If the current I10 is allowable as the maximum current of the operational amplifier OP1, then a time constant is calculated. If the time it takes for the value of the output voltage Vout to be 63.2% of the set value of the output voltage Vout is the time constant ⁇ (s), then the time constant ⁇ is calculated using the following equation (21). Note that this set value is, for example, 4 V.
  • the capacitance value of the capacitance element C1 is 10 ( ⁇ F).
  • the time constant ⁇ is 2.18 (ms).
  • the time constant ⁇ ' is 300 (ms).
  • the voltage generating circuit 10F starts up approximately 137 times faster than the voltage generating circuit 10B.
  • the voltage Vc varies between 0V and the upper limit of the voltage Vc.
  • the maximum upper limit of the voltage Vc is the input voltage Vin.
  • the slower the rise time of the output voltage Vout the smaller the upper limit of the voltage Vc.
  • the forward voltage Vf of the diode element D1 can actually vary over time due to the current flowing through the diode element D1. In this example, each equation is calculated assuming that the forward voltage Vf is a constant value.
  • the forward allowable current of diode element D1 is the upper limit of the current allowed to flow in the forward direction through diode element D1.
  • Diode element D1 is selected, for example, taking into consideration at least one of the following: the current value flowing through resistor element R5 is equal to or less than the forward allowable current of diode element D1, the forward voltage Vf is smaller than the potential difference between input voltage Vin and output voltage Vout, and the reverse current is small.
  • the maximum current I13 flowing through the diode element D1 and the resistor element R5 is calculated using the following formula (23). This calculation result is then compared with the forward allowable current of the diode element D1.
  • the current I13 is calculated based on the voltage Vc that has passed through the capacitance element C1 and the voltage Vp that is to be output as the output voltage Vout.
  • the voltage Vc at point noise1 is 8 V
  • the output voltage Vout is 4 V
  • the forward voltage Vf of the diode element D1 is 0.7 V
  • the resistance value of the resistor element R1 is 30 (k ⁇ )
  • the resistance value of the resistor element R2 is 30 (k ⁇ )
  • the resistance value of the resistor element R5 is 400 ( ⁇ )
  • the capacitance value of the capacitance element C1 is 10 ( ⁇ F).
  • the maximum current I13 is 18.25 (mA). Therefore, a diode with a forward allowable current greater than 18.25 (mA) is selected as the diode element D1.
  • a diode is selected in which the forward voltage Vf of the diode element D1 is smaller than the potential difference of (Vc-Vout). Furthermore, the smaller the forward voltage Vf of the diode element D1, the faster the rise time of the output voltage Vout can be.
  • a PN junction diode made of silicon semiconductor has a forward voltage Vf of about 0.7V.
  • a Schottky barrier diode has a forward voltage Vf of about 0.5V, so that the forward voltage Vf can be smaller than that of a PN junction diode made of silicon semiconductor, and the rise time of the output voltage Vout can be made faster.
  • a PN junction diode using a germanium semiconductor or other diodes may be used as the diode element D1. Such a forward voltage Vf may be taken into consideration when selecting the diode element D1.
  • Diode element D1 has a phenomenon in which current flows in the reverse direction. This is called reverse current, and if the value of the reverse current is large, it can deteriorate the noise removal performance of diode element D1 and resistor element R5.
  • a PN junction diode made of silicon semiconductor has a reverse current of about 140 nA, and noise removal performance does not deteriorate much. Noise removal performance is, for example, a PSRR (Power Supply Rejection Ratio) characteristic.
  • a Schottky barrier diode, etc. has a reverse current of about 50 uA, and noise removal performance may deteriorate. Such reverse current may be taken into consideration when selecting diode element D1.
  • FIG. 10 is a diagram showing an example of the output voltage Vout of the voltage generating circuit 10B in the second embodiment and the output voltage Vout of the voltage generating circuit 10F in this embodiment.
  • FIG. 10 also shows an example of the voltage at point noise in the voltage generating circuit 10B and the voltage at point noise1 in the voltage generating circuit 10F.
  • the voltage at point noise is simply indicated as “noise” and the voltage at point noise1 is simply indicated as “noise1.”
  • the resistance value of the resistance element R1 is equal to the resistance value of the resistance element R2.
  • the voltage generating circuit 10F of this embodiment can shorten the time it takes for the output voltage Vout to rise.
  • the voltage at point noise1 of voltage generating circuit 10F rises sharply from 0V to near the input voltage Vin, falls sharply from near the input voltage Vin to near (4+0.7V), and then smoothly converges to near 4V.
  • the period of smooth convergence is the same as when diode element D1 and resistor element R5 are absent.
  • output voltage Vout of voltage generating circuit 10F rises sharply from 0V and converges to near 4V. The same is true for the voltage at point noise and output voltage Vout of voltage generating circuit 10B.
  • the rise time, i.e., the time constant ⁇ , of output voltage Vout of voltage generating circuit 10F is 0.022 seconds
  • the rise time, i.e., the time constant ⁇ , of output voltage Vout of voltage generating circuit 10B is 0.907 seconds.
  • the resistance value of resistor element R5 is, for example, 200 ⁇ . Even in this case, the voltage generation circuit 10F can significantly reduce the rise time compared to the voltage generation circuit 10B.
  • the voltage generating circuit 10F may include a transistor instead of the diode element D1.
  • the transistor is a bipolar transistor and has a base terminal, a collector terminal, and an emitter terminal.
  • the base terminal and the collector terminal are electrically connected to the capacitance terminal tc2 and the terminal tr5.
  • the emitter terminal of the transistor is electrically connected to the terminal tr11. Even if the voltage generating circuit 10F is configured to include a transistor instead of the diode element D1, the same effect as when the voltage generating circuit 10F includes the diode element D1 can be obtained.
  • (Modification 2 of the sixth embodiment) 11 is a circuit diagram showing an example of a voltage generating circuit 10F1 which is a modified example of the voltage generating circuit 10F.
  • the voltage generating circuit 10F1 is different from the voltage generating circuit 10F in the following respects.
  • the operational amplifier OP1 is an operational amplifier with a negative single power supply, not an operational amplifier with a positive single power supply.
  • the direction of the diode element D1 of the voltage generating circuit 10F1 is opposite to that of the diode element D1 of the voltage generating circuit 10F.
  • the forward direction of the diode element D1 is not from the diode element D1 to the resistor element R5, but from the resistor element R5 to the diode element D1. Even with such a configuration of the voltage generating circuit 10F1, the same effect as that of the voltage generating circuit 10F can be obtained.
  • the voltage generating circuit 10F has been illustrated as having a configuration in which a diode element D1 and a resistive element R5 are added to the voltage generating circuit 10B, but this is not limited to the above.
  • the voltage generating circuit 10F may have a configuration in which a diode element D1 and a resistive element R5 are added to the voltage generating circuit 10A of the first embodiment, the voltage generating circuit 10C of the third embodiment, the voltage generating circuit 10D of the fourth embodiment, or the voltage generating circuit 10E of the fifth embodiment. Even with such a configuration, the same effect as that of the voltage generating circuit 10F can be obtained.
  • Seventh Embodiment 12 is a circuit diagram showing an example of a voltage generating circuit 10G according to the seventh embodiment.
  • the voltage generating circuit 10G differs from the voltage generating circuit 10A in that it includes an additional circuit 50.
  • the description of the same configuration as the voltage generating circuit 10A according to the first embodiment, the voltage generating circuit 10B according to the second embodiment, the voltage generating circuit 10C according to the third embodiment, the voltage generating circuit 10D according to the fourth embodiment, and the voltage generating circuit 10E according to the fifth embodiment will be omitted or simplified.
  • the voltage generating circuit 10G includes an additional circuit 50 in addition to the configuration of the voltage generating circuit 10A.
  • the additional circuit 50 includes a transistor Q1, a capacitance element C5, a resistance element R11, and a resistance element R12.
  • the capacitance element C5 has capacitance terminals tc9 and tc10.
  • the resistance element R11 has terminals tr13 and tr14.
  • the resistance element R12 has terminals tr15 and tr16.
  • Transistor Q1 is a bipolar transistor and has a base terminal q1b, a collector terminal q1c, and an emitter terminal q1e.
  • the base terminal q1b is electrically connected to terminal tr14 and capacitance terminal tc10.
  • the collector terminal q1c is electrically connected to capacitance terminal tc2, terminal tr5, and capacitance terminal tc9.
  • the emitter terminal q1e is electrically connected to terminal tr15.
  • the terminal tr13 is electrically connected to the terminal tr2, the terminal tr3, and the non-inverting input terminal op1+.
  • the terminal tr16 is electrically connected to the terminal tr8, the output terminal Vop1, and the voltage output terminal Vout.
  • Capacitive element C5 is used to prevent the operational amplifier OP1 from oscillating.
  • the capacitance value of capacitive element C5 may be any value between 1 pF and 100 pF, for example, but the smallest capacitance value that does not cause the operational amplifier OP1 to oscillate is preferable.
  • the voltage generating circuit 10G does not need to include capacitive element C5.
  • Resistive element R11 limits the magnitude of the base current of transistor Q1. Note that the voltage generating circuit 10G does not need to include resistive element R11.
  • the combination of the resistance values of resistor elements R6, R7, R11, and R12 is selected so that the steady-state output voltage Vout of the voltage generating circuit 10G is a predetermined value.
  • the output voltage Vout is, for example, 4 V.
  • the resistance value of resistor element R6 is set to 10 k ⁇
  • the resistance value of resistor element R7 is set to 10 k ⁇
  • the resistance value of resistor element R11 is set to 0 ⁇
  • the resistance value of resistor element R6 is set to 20 ⁇ .
  • the resistance value of each resistor element may also be determined according to the amplification factor of transistor Q1.
  • the voltage at point noise2 between the capacitance element C1 and resistance element R1 of the voltage generating circuit 10G becomes the power supply voltage, that is, the input voltage Vin.
  • the capacitance element C1 does not pass DC components during steady state, but passes AC components when the power supply changes from 0V to 8V when it is turned on. The amount of current passing through the capacitance element C1 changes depending on the change time, and the voltage at point noise2 is actually smaller than the power supply voltage.
  • the operational amplifier OP1 controls the voltage of the output voltage Vop1 so that the voltage input to the inverting input terminal op1- eliminates the potential difference with the voltage of point Vhalf2 input to the non-inverting input terminal op1+. Therefore, the output voltage Vout of the voltage generating circuit 10G, which is equal to the voltage of the output voltage Vop1, outputs 0V. Specifically, due to the current flowing from point Vhalf2 to the transistor Q1, the voltage of point Vhalf2 becomes lower than the voltage obtained by dividing the input voltage Vin by the resistor elements R3 and R4.
  • the voltage of point Vhalf2 becomes about 2V compared to the set value of the output voltage Vout, which is 4V, and the output voltage Vout outputs a voltage lower than 0V.
  • the negative side of the power supply terminal of the operational amplifier OP1 is electrically connected to 0V, the actual output voltage Vout is 0V.
  • the voltage at point noise2 is generated by the charge QC1 in the capacitive element C1, and this charge is not replenished later. Therefore, the charge QC1 flows to the voltage output terminal Vout via the transistor Q1, and as a result, the voltage at point noise2 decreases. In addition, the voltage input to the inverting input terminal op1- of the operational amplifier OP1 decreases by the amount that the voltage at point noise2 has decreased, and the voltage at the output terminal Vop1 increases.
  • FIG. 13 is a diagram showing an example of the output voltage Vout of the voltage generating circuit 10F in the sixth embodiment and the output voltage Vout of the voltage generating circuit 10G in this embodiment.
  • Both the voltage generating circuit 10F and the voltage generating circuit 10G can quickly shorten the rise time of the output voltage Vout. Furthermore, the voltage generating circuit 10G can improve the noise removal performance in the low frequency range of less than 1 kHz. Furthermore, as shown in FIG. 13, the rise time of the output voltage Vout by the voltage generating circuit 10G is 0.001 (ms), and the rise time of the output voltage Vout by the voltage generating circuit 10F is 0.023 (ms). In other words, the voltage generating circuit 10G can shorten the rise time of the output voltage Vout more quickly than the voltage generating circuit 10F.
  • the voltage generating circuit 10F when the diode element D1 is used without using a transistor, the voltage generating circuit 10F does not generate manufacturing variations in the current amplification factor hfe of the transistor. Therefore, the voltage generating circuit 10F can shorten the rise time of the output voltage Vout without depending on the individual diode element D1. Furthermore, the voltage generating circuit 10F can improve the noise removal performance in the low frequency range of less than 1 kHz and the mid-high frequency range of 1 kHz or more.
  • the voltage generating circuit 10G has been illustrated as having a configuration in which the additional circuit 50 is added to the voltage generating circuit 10A, but this is not limited to the above.
  • the voltage generating circuit 10F may have a configuration in which the additional circuit 50 is added to the voltage generating circuit 10B of the second embodiment, the voltage generating circuit 10C of the third embodiment, the voltage generating circuit 10D of the fourth embodiment, or the voltage generating circuit 10E of the fifth embodiment. With such a configuration, the same effect as the voltage generating circuit 10F can be obtained.
  • the voltage generating circuit 10G is not applicable to the case in which the operational amplifier OP1 is a negative single power supply.
  • the voltage generating circuit is, for example, a voltage generating circuit 10.
  • the voltage input terminal is, for example, a voltage input terminal Vin.
  • the voltage output terminal is, for example, a voltage output terminal Vout.
  • the first terminal is, for example, a terminal tr1.
  • the second terminal is, for example, a terminal tr2.
  • the first resistive element is, for example, a resistive element R6.
  • the third terminal is, for example, a terminal tr3.
  • the fourth terminal is, for example, a terminal tr4.
  • the second resistive element is, for example, a resistive element R7.
  • the first capacitive terminal is, for example, a capacitive terminal tc1.
  • the second capacitive terminal is, for example, a capacitive terminal tc2.
  • the first capacitive element is, for example, a capacitive element C1.
  • the fifth terminal is, for example, a terminal tr5.
  • the sixth terminal is, for example, a terminal tr6.
  • the third resistive element is, for example, a resistive element R1.
  • the seventh terminal is, for example, a terminal tr7.
  • the eighth terminal is, for example, a terminal tr8.
  • the fourth resistive element is, for example, a resistive element R2.
  • the first output terminal is, for example, an output terminal Vop1.
  • the first operational amplifier is, for example, operational amplifier OP1.
  • the voltage generation circuit extracts the power supply fluctuation component of the input voltage input from the voltage input terminal using the first capacitance element, applies it to the inverting input terminal of the first operational amplifier, and feeds back the signal output from the first operational amplifier OP.
  • This allows the voltage generation circuit to cancel out the fluctuation component at the point where the voltage is divided by the first resistance element and the second resistance element.
  • the voltage generation circuit does not need to provide a large capacitance element to remove noise. Therefore, the voltage generation circuit can prevent the device including the voltage generation circuit from becoming larger, and can prevent the fluctuation component of the input voltage from being transmitted to the output voltage. This makes it possible to improve the voltage generation circuit, which cancels noise and generates a midpoint bias voltage.
  • the voltage generation circuit can maintain the ratio of the voltage divided by the first resistance element and the second resistance element, and generate an output voltage output from the voltage generation circuit while maintaining noise cancellation capability.
  • the voltage generation circuit can also adjust the bias voltage according to the above voltage ratio.
  • the voltage generation circuit obtains half the voltage input to the voltage generation circuit by dividing the voltage between the first resistance element and the second resistance element, and can generate an output voltage that is output from the voltage generation circuit while maintaining noise cancellation capabilities.
  • the voltage generation circuit divides the voltage between the first and second resistive elements to obtain a voltage that is shifted by a predetermined value from half the input voltage to the voltage generation circuit, thereby maintaining noise cancellation capability and generating the output voltage that is output from the voltage generation circuit.
  • the third resistance value is greater than the first resistance value; the fourth resistance value is greater than the second resistance value;
  • the voltage generating circuit according to any one of the first to fourth aspects of the present invention.
  • the input terminal of the second capacitance element has a third capacitance terminal and a fourth capacitance terminal, the third capacitance terminal being electrically connected to the seventh terminal and the fourth capacitance terminal being electrically connected to the first output terminal.
  • the voltage generating circuit according to any one of the first to fifth aspects.
  • the third capacitance terminal is, for example, capacitance terminal tc3.
  • the fourth capacitance terminal is, for example, capacitance terminal tc4.
  • the second capacitance element is, for example, capacitance element C2.
  • the voltage generation circuit can prevent the first operational amplifier from oscillating in the high frequency band, and can maintain stable noise cancellation capabilities.
  • the fifth capacitance terminal is, for example, capacitance terminal tc5.
  • the fifth capacitance terminal is, for example, capacitance terminal tc5.
  • the third capacitance element is, for example, capacitance element C3.
  • the third capacitive element can pass high-frequency AC components of the signal output from the first output terminal of the first operational amplifier, but does not pass DC components. Therefore, the voltage generating circuit can reduce high-frequency AC components, thereby reducing noise components superimposed on the high-frequency band of the output voltage.
  • FIG. 9 a fifth resistor element having a ninth terminal and a tenth terminal, the ninth terminal being connected to the first output terminal of the first operational amplifier; a fourth capacitive element having a seventh capacitive terminal and an eighth capacitive terminal, the seventh capacitive terminal being connected to the tenth terminal and the eighth capacitive terminal being electrically connected to a ground potential; a second operational amplifier having a second inverting input terminal, a second non-inverting input terminal, and a second output terminal, the second inverting input terminal being electrically connected to the second output terminal, the second non-inverting input terminal being electrically connected to the tenth terminal, and the second output terminal being electrically connected to the voltage output terminal.
  • the voltage generating circuit according to any one of the first to seventh aspects.
  • the ninth terminal is, for example, terminal tr9.
  • the tenth terminal is, for example, terminal tr10.
  • the fifth resistive element is, for example, resistive element R4.
  • the seventh capacitive terminal is, for example, capacitive terminal tc7.
  • the eighth capacitive terminal is, for example, capacitive terminal tc8.
  • the fourth capacitive element is, for example, capacitive element C4.
  • the second output terminal is, for example, output terminal Vop2.
  • the second operational amplifier is, for example, operational amplifier OP2.
  • the second operational amplifier of the voltage generation circuit operates as a voltage follower circuit, and the fifth resistive element and the fourth capacitive element operate as an RC-type LPF circuit. Therefore, the voltage generation circuit can further reduce the high-frequency components contained in the output voltage. In addition, since the voltage generation circuit can reduce the output impedance, it can output a constant output voltage regardless of the load of the device to which the voltage generation circuit is connected.
  • a third operational amplifier having a third inverting input terminal, a third non-inverting input terminal, and a third output terminal, the third inverting input terminal being electrically connected to the third output terminal, the third non-inverting input terminal being electrically connected to the second terminal, and the third output terminal being electrically connected to the first non-inverting input terminal of the first operational amplifier.
  • the voltage generating circuit according to any one of the first to seventh aspects.
  • the third output terminal is, for example, the output terminal Vop3.
  • the third operational amplifier is, for example, the operational amplifier OP3.
  • the voltage generation circuit operates as a voltage follower circuit with the third op-amp placed in front of the first op-amp. Therefore, the voltage generation circuit can maintain a constant voltage input to the non-inverting input terminal of the first op-amp. Therefore, the voltage generation circuit can stabilize the operation of the op-amp OP1 and generate a bias voltage while maintaining the noise cancellation capability.
  • the first diode terminal is, for example, the diode terminal td1.
  • the second diode terminal is, for example, the diode terminal td2.
  • the entire audio band here is, for example, 20 Hz to 20 kHz.
  • the eleventh terminal is, for example, terminal tr11.
  • the twelfth terminal is, for example, terminal tr12.
  • the sixth resistive element is, for example, resistive element R5.
  • This configuration allows the voltage generation circuit to prevent excessive current from flowing through the diode element.
  • the base terminal is, for example, the base terminal q1b.
  • the collector terminal is, for example, the collector terminal q1c.
  • the emitter terminal is, for example, the emitter terminal q1e.
  • the transistor is, for example, the transistor Q1.
  • the thirteenth terminal is, for example, the terminal tr15.
  • the fourteenth terminal is, for example, the terminal tr16.
  • the seventh resistor element is, for example, the resistor element R12.
  • the low range of the voice band in this case is, for example, less than 1 kHz.
  • the ninth capacitance terminal is, for example, capacitance terminal tc9.
  • the tenth capacitance terminal is, for example, capacitance terminal tc10.
  • the fifth capacitance element is, for example, capacitance element C5.
  • the voltage generation circuit includes a transistor, it is possible to prevent the first operational amplifier from oscillating in the high frequency band, and the noise removal performance can be stably maintained.
  • the fifteenth terminal is, for example, terminal tr13.
  • the sixteenth terminal is, for example, terminal tr14.
  • the eighth resistive element is, for example, resistive element R11.
  • This configuration allows the voltage generation circuit to prevent excessive base current from flowing into the transistor.
  • a voltage generating circuit according to any one of the first to fifteenth embodiments of the present invention; a fourth operational amplifier;
  • the fourth operational amplifier is a first input terminal, a second input terminal, and a fourth output terminal;
  • the output voltage output by the voltage generating circuit is input to the first input terminal;
  • An audio input signal is input to the second input terminal; outputting an audio output signal based on the audio input signal from the fourth output terminal; Audio output circuit.
  • the fourth operational amplifier is, for example, an operational amplifier OP10.
  • the first input terminal is, for example, an inverting input terminal of the fourth operational amplifier.
  • the second input terminal is, for example, a non-inverting input terminal of the fourth operational amplifier.
  • the fourth output terminal is an output terminal Vop10.
  • the audio output circuit is, for example, an audio output circuit 100.
  • the audio output circuit can input the output voltage generated by the voltage generation circuit to the fourth operational amplifier and use it as a bias voltage. Therefore, even if the audio input signal is amplified, the audio output circuit can keep the signal voltage within the range that the fourth operational amplifier can process, and can optimally perform amplification processing of the audio signal.
  • This disclosure is useful for voltage generation circuits and audio output circuits that can generate a voltage by reducing the fluctuating components superimposed on the input voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

電圧生成回路は、電圧入力端子と、電圧出力端子と、第1端子が電圧入力端子に接続される第1抵抗素子と、第3端子が第2端子に接続され第4端子が接地電位に接続される第2抵抗素子と、第1容量端子が電圧入力端子に接続される第1容量素子と、第5端子が第2容量端子に接続される第3抵抗素子と、第7端子が第6端子に接続される第4抵抗素子と、第1反転入力端子が第6端子に接続され、第1非反転入力端子が第2端子に接続され、第1出力端子が電圧出力端子及び第8端子に接続される第1オペアンプと、を備える。

Description

電圧生成回路及び音声出力回路
 本開示は、電圧生成回路及び音声出力回路に関する。
 従来、所定の電圧を生成する電圧生成回路として、増幅及びレベルシフトを行う前置増幅器が知られている。この前置増幅器は、一対の入力端子から入力される入力信号をオペアンプで増幅して出力する前置増幅器であって、一対の入力端子のうちの負入力端子を、負側入力抵抗を介してオペアンプの反転入力端子に接続すると共に、オペアンプの反転入力端子と出力とを帰還抵抗で接続し、正入力端子を、正側入力抵抗を介してオペアンプの非反転入力端子に接続すると共に、正の基準電圧を抵抗分圧した分圧点をオペアンプの非反転入力端子に接続する(特許文献1参照)。
日本国特開平11-168330号公報
 従来の電圧生成回路は、入力電圧に重畳された変動成分の低減が不十分な状態で電圧を生成することがあり、さらなる改善が求められている。
 本開示は、入力電圧に重畳された変動成分を低減して電圧を生成できる電圧生成回路及び音声出力回路を提供する。
 本開示の一態様は、入力電圧が入力される電圧入力端子と、出力電圧が出力される電圧出力端子と、第1端子と第2端子とを有し、前記第1端子が前記電圧入力端子に電気的に接続される第1抵抗素子と、第3端子と第4端子とを有し、前記第3端子が前記第2端子に電気的に接続され、前記第4端子が接地電位に電気的に接続される第2抵抗素子と、第1容量端子と第2容量端子とを有し、前記第1容量端子が前記電圧入力端子に電気的に接続される第1容量素子と、第5端子と第6端子とを有し、前記第5端子が前記第2容量端子に電気的に接続される第3抵抗素子と、第7端子と第8端子とを有し、前記第7端子が前記第6端子に電気的に接続される第4抵抗素子と、第1反転入力端子、第1非反転入力端子、および第1出力端子を有し、前記第1反転入力端子が前記第6端子に電気的に接続され、前記第1非反転入力端子が前記第2端子に電気的に接続され、前記第1出力端子が前記電圧出力端子及び前記第8端子に電気的に接続される第1オペアンプと、を備える電圧生成回路である。
 本開示の一態様は、上記の電圧生成回路と、第4オペアンプと、を備え、前記第4オペアンプは、第1入力端子、第2入力端子、及び第4出力端子を有し、前記第1入力端子に前記電圧生成回路により出力された前記出力電圧を入力し、前記第2入力端子に音声入力信号を入力し、前記音声入力信号に基づいた音声出力信号を前記第4出力端子から出力する、音声出力回路である。
 本開示によれば、入力電圧に重畳された変動成分を低減して電圧を生成できる。
第1の実施形態に係る音声出力回路の一例を示す回路図 第1の実施形態に係る電圧生成回路の一例を示す回路図 第2の実施形態に係る電圧生成回路の一例を示す回路図 比較例に係る電圧生成回路を示す回路図 第2の実施形態及び比較例に係る変動成分の入出力特性を示す図 第3の実施形態に係る電圧生成回路の一例を示す回路図 第4の実施形態に係る電圧生成回路の一例を示す回路図 第5の実施形態に係る電圧生成回路の一例を示す回路図 第6の実施形態に係る電圧生成回路の一例を示す回路図 第2の実施形態における電圧生成回路の出力電圧と、本実施形態における電圧生成回路の出力電圧と、の一例を示す図 第6の実施形態の変形例に係る電圧生成回路を示す回路図 第7の実施形態に係る電圧生成回路の一例を示す回路図 第6の実施形態における電圧生成回路の出力電圧と、本実施形態における電圧生成回路の出力電圧と、の一例を示す図
(本開示の基礎となった知見)
 従来の電圧生成回路は、バイアス電圧を出力するバイアス回路として動作し得る。このバイアス回路は、入力された入力電圧に基づいてバイアス電圧を出力するが、入力電圧が変動すると、その変動成分を含んだままバイアス電圧が出力されてしまう。この変動成分を除去するために、バイアス回路にコンデンサのような素子が付加されることで、変動成分を吸収させる方法が考えられる。しかし、この場合、コンデンサの静電容量を大きくする必要があるため、コンデンサが大型化し、バイアス回路を含む装置の大型化につながる。そのため、装置が大型化することを抑制しつつ変動成分を低減する技術が求められている。
 以下、図面を参照しながら、本開示に係る電圧生成回路及び音声出力回路の実施形態について説明する。
[第1の実施形態]
(音声出力回路の構成)
 図1は、第1の実施形態に係る音声出力回路100の一例を示す回路図である。音声出力回路100は、音声信号の増幅回路である。音声出力回路100は、音声入力端子Viと、音声出力端子Voと、オペアンプOP10と、電圧生成回路10と、を含む。
 オペアンプOP10は、反転入力端子op10-と、非反転入力端子op10+と、出力端子Vop10と、を含む。反転入力端子op10-は、直列に接続された容量素子C11と抵抗素子R13とを介して、音声入力端子Viに電気的に接続される。また、反転入力端子op10-は、並列に接続された容量素子C12と抵抗素子R14とを介して、出力端子Vop10に電気的に接続される。非反転入力端子op10+は、電圧生成回路10の電圧出力端子(図1では不図示)に接続される。非反転入力端子op10+には、電圧生成回路10により生成されたバイアス電圧が入力される。出力端子Vop10は、容量素子C13を介して音声出力端子Voに電気的に接続される。容量素子C11、容量素子C12および容量素子C13は、いずれも、例えばコンデンサである。
 音声出力回路100は、電源電圧と、接地電位つまりグランドと、に電気的に接続される、単電源の増幅回路である。音声出力回路100は、例えば、音声入力信号の振幅を2倍に増幅して、音声出力信号として出力する。音声出力回路100は、例えばカーオーディオにおいて使用可能である。
 図1において、グラフg1は、音声入力端子Viにおける音声入力信号の電圧振幅波形を示す。グラフg1では、実線が、音声入力信号の振幅が最大である場合の波形を示し、破線が、音声入力信号の振幅が最大よりも小さい場合の波形の例を示している。ここで、最大である場合の音声入力信号の振幅とは、オペアンプOP10が、音声入力信号を歪ませずに音声出力できる最大の振幅である。実線で示される波形と破線で示される波形との関係については、グラフg2、グラフg3、グラフg4についても同様である。
 グラフg2は、容量素子C11と抵抗素子R13の間における入力信号の電圧振幅波形を示す図である。グラフg2では、いずれの波形においても、音声入力端子Viからの信号にバイアス電圧が付加されている。バイアス電圧は、電圧生成回路10により生成され出力される電圧であり、例えば電源電圧の半分(1/2)の電圧である。
 グラフg3は、オペアンプOP10の出力端子Vop10における出力信号の電圧振幅波形を示す図である。グラフg3に示される波形は、グラフg2に示される波形の位相が反転し、かつ、所定の増幅率で振幅が増幅されたものとなる。増幅率は、例えば2倍である。
 グラフg4は、音声出力端子Voにおける音声出力信号の電圧振幅波形を示す図である。グラフg4に示される音声出力信号では、容量素子C13の作用により、バイアス電圧が除去されている。
 したがって、電圧生成回路から出力された出力電圧としてのバイアス電圧にノイズ成分が重畳されている場合には、オペアンプOP10はノイズ成分を付加して入力信号を増幅する。そのため、バイアス電圧として、ノイズ成分を含まない、一定の電圧が得られることが好ましい。これにより、ノイズ成分が重畳されることなく、オペアンプOP10が入力信号を増幅して出力することができる。この場合、オペアンプOP10の増幅処理により、大きな振幅の信号を確保できる。ノイズ成分とは、電圧の直流成分以外の交流成分であり、電圧の変動成分である。
 なお、バイアス電圧は、電源電圧の半分の値でなくてもよい。例えば、バイアス電圧は、オペアンプOP10を構成するICに依存して、電源電圧の半分の値以外の電圧に調整されてもよい。
 電圧生成回路10は、様々な回路構成を有することが可能である。以下、電圧生成回路10の回路構成を、実施形態毎に説明する。第1の実施形態の電圧生成回路10は、電圧生成回路10Aである。第2の実施形態の電圧生成回路10は、電圧生成回路10Bである。第3の実施形態の電圧生成回路10は、電圧生成回路10Cである。第4の実施形態の電圧生成回路10は、電圧生成回路10Dである。第5の実施形態の電圧生成回路10は、電圧生成回路10Eである。なお、音声出力回路100の構成は、各実施形態において同じである。
(電圧生成回路の構成)
 図2は、電圧生成回路10Aの一例を示す回路図である。電圧生成回路10Aは、電圧入力端子Vinと、電圧出力端子Voutと、抵抗素子R1と、抵抗素子R2と、抵抗素子R6と、抵抗素子R7と、容量素子C1と、オペアンプOP1と、を備える。
 電圧入力端子Vinには、入力電圧が入力される。電圧出力端子Voutから、出力電圧が出力される。抵抗素子R6は、端子tr1と端子tr2を有する。端子tr1は、電圧入力端子Vinに電気的に接続される。ここで、「電気的に接続される」とは、2つの素子が直接接続される場合と、間に他の導電性素子を挟んで電流が一方から他方へ流入可能に接続される場合と、を含む。抵抗素子R7は、端子tr3と端子tr4とを有する。端子tr3は、端子tr2に電気的に接続される。端子tr4は、接地電位つまりグランドに電気的に接続される。容量素子C1は、容量端子tc1と容量端子tc2とを有する。以下、容量素子が有する端子のことを、容量端子と呼ぶことがある。容量端子tc1は、電圧入力端子Vin及び端子tr1に電気的に接続される。抵抗素子R1は、端子tr5と端子tr6とを有する。端子tr5は容量端子tc2に電気的に接続される。端子tr5は、容量端子tc2に直接接続されてもよい。抵抗素子R2は、端子tr7と端子tr8とを有する。端子tr7は、端子tr6に電気的に接続される。
 オペアンプOP1は、反転入力端子op1-と、非反転入力端子op1+と、出力端子Vop1と、を有する。反転入力端子op1-は、端子tr6及び端子tr7に電気的に接続される。非反転入力端子op1+は、端子tr2及び端子tr3に電気的に接続される。出力端子Vop1は、電圧出力端子Vout及び端子tr8に電気的に接続される。オペアンプOP1は、正側の電源端子と負側の電源端子と、も有する。正側の電源端子が電源電位に電気的に接続され、負側の電源端子が接地電位に電気的に接続される。つまり、電圧生成回路10Aは、単電源の回路である。正側の電源端子には、例えば、電圧入力端子Vinに入力される入力電圧と同じ電圧が入力される。正側の電源端子に入力される電圧は、電圧入力端子Vinに入力される入力電圧と異なっていてもよい。
 抵抗素子R6の抵抗値は、例えば10kΩである。抵抗素子R7の抵抗値は、例えば10kΩである。容量素子C1の容量値は、例えば1μFである。抵抗素子R1の抵抗値は、例えば30kΩである。抵抗素子R2の抵抗値は、例えば30kΩである。各素子の容量値は、例えば静電容量の値である。
 電圧入力端子Vinから入力された入力電圧は、抵抗素子R6及び抵抗素子R7によって分圧され、非反転入力端子op1+に入力される。入力電圧は、本来の入力電圧である直流成分と、ノイズである変動成分と、を含み得る。本実施形態において、抵抗素子R6の抵抗値と抵抗素子R7の抵抗値とは等しい。したがって、入力電圧は、およそ半分の大きさの電圧として非反転入力端子op1+に入力される。このとき、入力電圧に含まれる直流成分と変動成分とは、いずれもおよそ半分の大きさになって非反転入力端子op1+に入力される。非反転入力端子op1+に入力された変動成分は、振幅が(1+(抵抗素子R2の抵抗値)/(抵抗素子R1の抵抗値))倍されて、出力端子Vop1に出力される。このとき、非反転入力端子op1+に入力された変動成分と、出力端子Vop1に出力される変動成分とで、位相は反転しない。本実施形態において、抵抗素子R1の抵抗値と、抵抗素子R2の抵抗値とは等しい。したがって、非反転入力端子op1+に入力された変動成分は、位相は変わらず、振幅は2倍で、出力端子Vop1に出力される。つまり、入力電圧に含まれる変動成分と同じ大きさの振幅の変動成分が、出力端子Vop1に出力される。また、電圧入力端子Vinから入力された入力電圧は、容量素子C1及び抵抗素子R1を介して、反転入力端子op1-に入力される。容量素子C1は、入力電圧の直流成分を遮断することで、入力電圧から変動成分を抽出する。抵抗素子R1に入力された変動成分は、位相が反転し、かつ、振幅が(抵抗素子R2の抵抗値)/(抵抗素子R1の抵抗値)倍されて、出力端子Vop1に出力される。本実施形態において、抵抗素子R1の抵抗値と、抵抗素子R2の抵抗値とは等しい。したがって、抵抗素子R1に入力された変動成分は、位相が反転し、振幅は1倍で、出力端子Vop1に出力される。これにより、電圧生成回路10Aは、非反転入力端子op1+に入力された変動成分を相殺できるため、電圧出力端子Voutから出力される出力電圧に含まれる変動成分を低減できる。
 なお、変動成分としてのノイズとしては、例えば以下のノイズが考えられる。ノイズは、電圧入力端子Vinに電気的に接続されたマイコン、DSP、又はその他のデバイスが発生するノイズを含んでよい。ノイズは、電圧生成回路10や音声出力回路100が搭載される車両の駆動系が発生する電気的なノイズを含んでよい。例えば、ノイズは、車両のオルタネータ、モータ、又はイグニッションノイズ等のノイズを含んでよい。また、ノイズは、車両の外部に由来する電気的なノイズを含んでもよい。また、ノイズは、音声出力回路100が発生するノイズも含み得る。
 このような電圧生成回路10によれば、電圧入力端子Vinに入力される入力電圧に含まれ得る変動成分を容量素子C1により抽出し、反転入力端子op1-へ印加し、オペアンプOP1から出力された信号をフィードバックする。これにより、電圧生成回路10は、変動成分を打ち消すことができ、入力電圧に変動があっても一定の電圧を出力できる。また、電圧生成回路10は、変動成分をフィルタにより抑圧する場合と比較して、小型の部品により、変動成分を除去できる。また、電圧生成回路10は、ツェナーダイオードなどのダイオードを使用して変動成分を除去していない。したがって、例えばダイオード等を用いた場合に起こり得る、電圧生成回路10内の素子によるノイズの発生も抑制できる。また、抵抗素子R6の抵抗値と、抵抗素子R7の抵抗値との比は、抵抗素子R1の抵抗値と、抵抗素子R2の抵抗値との比と等しい。これにより、オペアンプOP1の出力電圧が変動しにくくなる。
 また、電圧生成回路10Aは、後述する第2の実施形態の電圧生成回路10Bが容量素子C2を備える場合と比較して、広範囲の周波数帯域で変動成分を除去できる。
 また、このような電圧生成回路10を備える音声出力回路100は、変動成分が抑制された一定の電圧をバイアス電圧として利用できる。これにより、変動成分が重畳されることなく、音声出力回路100は音声入力信号を増幅して出力することができる。したがって、音声出力回路100は、ノイズが抑制された音声出力信号を出力できる。
[第2の実施形態]
(電圧生成回路の構成)
 図3は、第2の実施形態に係る電圧生成回路10Bの一例を示す回路図である。電圧生成回路10Bは、容量素子C2を備える点で電圧生成回路10Aと異なる。電圧生成回路10Bについて、第1の実施形態に係る電圧生成回路10Aと同様の構成や動作については、その説明を省略又は簡略化する。
 電圧生成回路10Bは、電圧生成回路10Aの構成に加え、容量素子C2を備える。容量素子C2は、容量端子tc3と容量端子tc4とを有する。容量端子tc3は端子tr7に電気的に接続される。容量端子tc3は、端子tr7に直接接続されてもよい。容量端子tc4は端子tr8及びオペアンプOP1の出力端子Vop1に電気的に接続される。容量端子tc4は端子tr8および出力端子Vop1に直接接続されてもよい。容量素子C2は、抵抗素子R2と並列に接続される。
 容量素子C2の容量値は、例えば0.47pFである。
 容量素子C2は、容量素子C2を通過する高周波成分の位相を調整する。そのため、容量素子C2は、出力端子Vop1から反転入力端子op1-にフィードバックされるフィードバック回路での位相遅れを改善できるため、高周波数帯域でのオペアンプOP10の発振の抑制に寄与する。
(入力電圧と出力電圧との関係)
 次に、電圧入力端子Vinから入力される入力電圧と、電圧出力端子Voutから出力される出力電圧と、の関係について説明する。
 なお、以下の説明では、各抵抗素子(R1、R2、…)の抵抗値について、抵抗素子に付された符号と同じ符号を用いて説明することがある。同様に、各容量素子(C1、C2、…)の容量値についても、容量素子に付された符号と同じ符号を用いて説明することがある。また、電圧入力端子Vinから入力される入力電圧の値についても、電圧入力端子Vinと同じ符号を用いて説明することがある。同様に、電圧出力端子Voutから出力される出力電圧の値についても、電圧出力端子Voutと同じ符号を用いて説明することがある。
 図3に示すように、直列に接続された容量素子C1と抵抗素子R1とは、インピーダンスZ1を形成する。また、並列に接続された容量素子C2と抵抗素子R2とは、インピーダンスZ2を形成する。以下、各インピーダンス(Z1、Z2)のインピーダンス値についても、インピーダンスに付された符号と同じ符号を用いて説明することがある。
 まず、点p1における電圧V1は、以下の式(1)及び式(2)で表せる。なお、「・」は乗算符号を示す。点p1は、端子tr6、反転入力端子op1-、および端子tr7が接続されるノードである。電圧V1は、反転入力端子op1-に入力される電圧を表す。
 V1=Vin-I1・Z1  ・・・(1)
 V1=Vout+I2・Z2 ・・・(2)
 なお、I1は、抵抗素子R1から点p1に流れる電流である。I2は、点p1から抵抗素子R2及び容量素子C2へ流れる電流である。
 また、点p2における電圧V2は、以下の式で表せる。点p2は、端子tr2、端子tr3および非反転入力端子op1+が接続されるノードである。電圧V2は、非反転入力端子op1+に入力される電圧を表す。
Figure JPOXMLDOC01-appb-M000001
 ここで、オペアンプOP1は、電圧V1と電圧V2とが同じ電圧になるよう動作する。そのため、以下の関係式が成り立つ。
 V1=V2 ・・・(4)
 式(1)と式(4)とを基に、電流I1について解くと、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 また、キルヒホッフの法則より、点p1に流れる電流は、以下となる。
 I1=I2+I3
 なお、I3は、点p1から反転入力端子op1-に流れる電流である。
 反転入力端子op1-の入力インピーダンスは非常に高い。そのため、電流I3はほぼ無視できる電流量である。そのため、以下の関係式が成り立つ。
 I1=I2 ・・・(6)
 式(2)、式(3)、式(4)、式(5)及び式(6)を基に出力電圧Voutについて解くと、以下となる。
Figure JPOXMLDOC01-appb-M000003
 次に、入力電圧の直流成分と変動成分に対する動作について説明する。
 まず、上記の式(7)を簡易的な式とするために、R6=R7とし、式(7)を変形し、式(8)とする。
Figure JPOXMLDOC01-appb-M000004
 インピーダンスZ1とインピーダンスZ2とを複素数で表現する。
 インピーダンスZ1は、容量素子C1と抵抗素子R1の直列合成抵抗なので、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 ここで、ω=2πfを代入し変形すると、以下の関係式が成り立つ。周波数fは、入力電圧に含まれる変動成分の周波数である。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(9)の実部と虚部が等しくなる周波数fをカットオフ周波数flowとすると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000007
 周波数fがカットオフ周波数flowより低い場合、インピーダンスZ1が高くなる。f=0、即ち入力電圧が直流成分のみを含む場合においては、インピーダンスZ1は無限大Ωとなる。入力電圧Vinに含まれる直流成分は、式(8)のインピーダンスZ1に無限大数を代入すると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000008
 このように、出力電圧Voutは、入力電圧Vinの1/2の値となる。
 また、インピーダンスZ2は、容量素子C2と抵抗素子R2の並列合成抵抗なので、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000009
 さらに、ω=2πfを代入し変形すると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 式(10)の実部と虚部が等しくなる周波数fをカットオフ周波数fhighとすると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 周波数fがカットオフ周波数fhighより高い場合、インピーダンスZ2の逆数(1/Z2)の値(アドミッタンス)が高くなる。即ちf=無限大の場合、インピーダンスZ2は0Ωとなる。入力電圧Vinに含まれる高周波成分は、式(9)のインピーダンスZ2に0を代入すると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000012
 このように、出力電圧Voutは、入力電圧Vinの1/2の値となる。
 一方、周波数fがカットオフ周波数flowとカットオフ周波数fhighとの間、かつZ1=Z2となる場合、式(8)の括弧内が「0」となり、出力電圧Voutが0となる。つまり、この場合、入力電圧Vinの変動成分は出力電圧Voutに出力されず、除去されることになる。
 このZ1=Z2となる周波数fを求めると、式(9)と式(10)とを基に、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 式(11)を変形すると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000014
 ここで、R2=R1、C1>>C2とすると、左辺第1項は「1」、第4項は「0」として近似できる。従って式(12)は、以下となる。
Figure JPOXMLDOC01-appb-M000015
 式(13)を周波数fについて解くと、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000016
 式(14)が示す周波数fの場合、電圧生成回路10Bが変動成分を除去する効果が一番高くなる。
 なお、上記のカットオフ周波数flowは、例えば5Hz以上10Hz以下であり、カットオフ周波数fhighは、例えば500kHz以上10MHz以下であってもよく、10MHz以上であってもよい。この場合、電圧生成回路10Bは、20Hz~20kHzの周波数範囲や20Hz~100kHzの周波数範囲において、入力電圧の変動成分を好適に除去可能である。
 図4は、比較例に係る電圧生成回路10Xを示す回路図である。電圧生成回路10Xは、抵抗素子R8Xと、抵抗素子R9Xと、容量素子C5Xと、オペアンプOPXと、電圧入力端子VinXと、電圧出力端子VoutXと、を備える。
 抵抗素子R8Xは、一端が電圧入力端子VinXに電気的に接続される。抵抗素子R9Xは、一端が、抵抗素子R8Xの他端に電気的に接続され、他端が、接地電位に電気的に接続される。容量素子C5Xは、一端が、抵抗素子R8Xの他端と抵抗素子R9Xの一端とに電気的に接続され、他端が、接地電位に電気的に接続される。
 オペアンプOPXは、その反転入力端子opX-が、その出力端子に電気的に接続される。オペアンプOPXは、その非反転入力端子opX+が、抵抗素子R8Xの他端と抵抗素子R9Xの一端と容量素子C5Xの一端とに電気的に接続される。オペアンプOPXは、その出力端子VopXが、その反転入力端子opX-と電圧出力端子VoutXとに電気的に接続される。
 抵抗素子R8Xの抵抗値は、例えば10kΩである。抵抗素子R9Xの抵抗値は、例えば10kΩである。容量素子C5Xの容量値は、例えば1μFである。
 図5は、第2の実施形態及び比較例に係るノイズ成分としての変動成分の入出力特性を示す図である。具体的には、図5は、電圧入力端子に、変動成分として正弦波を印加し、正弦波を20Hz~20kHzの範囲でスイープしたときに、電圧出力端子Voutに現れる変動成分の大きさの変化を示す。20Hz~20kHzは、一般的な可聴周波数範囲に相当する。図5では、本実施形態の変動成分を示すノイズ信号SG1が実線で、比較例の変動成分を示すノイズ信号SGXが破線で示されている。図5では、ノイズ信号SG1及びノイズ信号SGXが、入力に対する出力を示す相対値(dB)、つまり入力電圧に含まれる変動成分に対する、出力電圧に含まれる変動成分を示す相対値で示されている。
 可聴周波数範囲において本実施形態のノイズ信号SG1と比較例のノイズ信号SGXとを比較すると、可聴周波数範囲の全体にわたってノイズ信号SG1がノイズ信号SGXよりも小さくなっており、ノイズがより低減されていることが理解できる。例えば20Hz付近では、本実施形態の方が比較例よりも10dB程度さらにノイズを低減できている。
したがって、本実施形態の方が比較例よりも、入力側のノイズが出力側に伝達され難いことが理解できる。さらに、本実施形態では、入力ノイズが大きく低減される周波数(例えばおよそ8kHz)が存在することが理解できる。この周波数は、上述した式(14)で導出される周波数fに相当する。本実施形態では、容量素子C1により定まる低い周波数と、オペアンプOP1の動作性能に依存する高い周波数と、の間の変動成分を低減可能である。
 なお、電圧生成回路10Bは、容量値C1および抵抗値R1が調整されることで、図5に示されるグラフの傾きを調整可能である。したがって、電圧生成回路10Bにおいて、変動成分の低減機能つまりノイズキャンセル機能の強度や周波数範囲を調整できる。
 なお、第1の実施形態では変動成分の入出力特性を特にグラフで図示していないが、第1の実施形態でも同様である。
[第2の実施形態の第1変形例]
 第2の実施形態では、抵抗値R1と抵抗値R2とが等しく、抵抗値R6と抵抗値R7とが等しい形態を例示したが、これに限られない。第1変形例では、抵抗値R6:抵抗値R7=抵抗値R1:抵抗値R2を満たせばよく、抵抗値R1と抵抗値R2とが異なり、抵抗値R6と抵抗値R7とが異なってもよい。この場合、出力電圧Voutは、以下の関係式を満たす。
Figure JPOXMLDOC01-appb-M000017
 電圧生成回路10Bは、この関係式を満たすことで、電圧出力端子Voutから出力される出力電圧を任意に変更可能である。この場合でも、電圧生成回路10Bは、ノイズ成分としての変動成分を低減可能である。なお、本変形例では、一例として、抵抗素子R6の抵抗値は16.667kΩであり、抵抗素子R7の抵抗値は10kΩである。また、一例として、抵抗素子R1の抵抗値は30kΩであり、抵抗素子R2の抵抗値は18kΩである。
 ここで、出力電圧Voutを任意の電圧にすることについて考察する。
 電圧生成回路10において、出力電圧Voutの直流成分を入力電圧Vinの直流成分の1/2ではなく、任意の値とすることは、抵抗素子R6と抵抗素子R7との抵抗値の比率を変えることで実現できる。この場合、カットオフ周波数flow~fhighの間の交流成分を除去するために、抵抗値R1と抵抗値R2とを調整する必要がある。
 入力電圧Vinが直流成分のみの場合、インピーダンスZ1が無限大Ωになるので、式(7)にインピーダンスZ1=無限大を代入すると、抵抗値R6と抵抗値R7とにおいて、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000018
 式(15)を用いることで、抵抗値R7と出力電圧Voutを決定すれば抵抗値R6を決定することができる。
 この時、式(7)の括弧内が「0」となるようにインピーダンスZ1及びインピーダンスZ2の定数を決めれば、カットオフ周波数flow~fhighの間の交流成分は出力電圧Voutに出力されず除去できる。すなわち、式(7)の括弧内が「0」となる抵抗値R6、抵抗値R7、インピーダンスZ1、及びインピーダンスZ2の関係を求めればよい。具体的には、以下の式(16)の関係とすればよい。
Figure JPOXMLDOC01-appb-M000019
 また、容量値C1と容量値C2は小さいので、無視することができる。そのため、式(17)の関係とすることで近似できる。
Figure JPOXMLDOC01-appb-M000020
 このように、電圧生成回路10Bにおいて、各抵抗素子の抵抗値を調整することで、生成されるバイアス電圧を任意の値に調整できる。また、電圧生成回路10Bにおいて、抵抗値R6:抵抗値R7=抵抗値R1:抵抗値R2とすることで、ノイズキャンセル能力を維持したまま、オペアンプOP1が動作可能である範囲内で、任意の出力電圧を出力できる。
[第2の実施形態の第2変形例]
 第2の実施形態では、電圧生成回路10Bでは、オペアンプOP1が単電源であり、負側の電源端子が接地電位に接続されていることを主に例示したが、これに限られない。電圧生成回路10Bは、両電源のオペアンプOP1を備えても動作可能である。一例として、オペアンプOP1の正側の電源端子(Vin)には、直流成分8Vと変動成分との合計が印加され得る。また、オペアンプOP1の負側の電源端子(-V)には、直流成分-8Vが印加され得る。
[第2の実施形態の第3変形例]
 第2の実施形態では、電圧生成回路10Bでは、オペアンプOP1が単電源であり、負側の電源端子が接地電位に接続されていることを主に例示したが、これに限られない。オペアンプOP1の、正側の電源端子が接地電位に接続され、負側の電源端子が所定の電位に接続されてもよい。つまり、電圧生成回路10Bは、プラス単電源のオペアンプOP1を備えても動作可能であり、マイナス単電源のオペアンプOP1を備えても動作可能である。
 第2の実施形態の電圧生成回路10Bは、第1の実施形態と比較して、容量素子C2を備えることで、オペアンプOP1の発振を抑制できる。この点以外の効果は、第1の実施形態と同様である。したがって、上記で考察した入力電圧と出力電圧との関係や、図5の比較結果は、第1の実施形態でも同様に言える。
[第3の実施形態]
 図6は、第3の実施形態に係る電圧生成回路10Cの一例を示す回路図である。電圧生成回路10Cは、容量素子C3を備える点で電圧生成回路10Bと異なる。電圧生成回路10Cについて、第1の実施形態に係る電圧生成回路10A又は第2の実施形態に係る電圧生成回路10Bと同様の構成については、その説明を省略又は簡略化する。
 電圧生成回路10Cは、電圧生成回路10Bの構成に加え、容量素子C3を備える。容量素子C3は、容量端子tc5と容量端子tc6とを有する。容量端子tc5は、出力端子Vop1及び電圧出力端子Voutに電気的に接続される。容量端子tc5は、出力端子Vop1及び電圧出力端子Voutに直接接続されてもよい。容量端子tc6は、接地電位に電気的に接続される。抵抗素子R3が容量端子tc6に直列に接続されていてもよい。抵抗素子R3は、例えば、容量素子C3の等価直列抵抗である。抵抗素子R3の抵抗値の大きさは、容量素子C3の特性に基づいて適宜設定することができる。
 容量素子C3の容量値は、例えば1μFである。抵抗素子R3の抵抗値は、例えば1Ωである。
 容量素子C3は、出力端子Vop1から出力された信号の高周波数帯域の変動成分を通過させることができるが、直流成分を通過させない。よって、容量素子C3は、電圧生成回路10Cの出力段においてノイズフィルタとして動作する。よって、電圧出力端子Voutから出力される出力電圧は、高周波数帯域の変動成分が低減されたものとなる。このように、電圧生成回路10Cは、電圧出力端子Voutの前段に容量素子C3を備えることで、高周波帯域の出力特性を改善可能である。電圧生成回路10Cは、例えば周波数100kHz以上の帯域での変動成分を低減できる。これにより、電圧生成回路10Cを備える音声出力回路100を、国際的な規格であるEMC(Electromagnetic Compatibility)に準拠させやすくなる。
[第4の実施形態]
 図7は、第4の実施形態に係る電圧生成回路10Dの一例を示す回路図である。電圧生成回路10Cについて、第1の実施形態に係る電圧生成回路10A、第2の実施形態に係る電圧生成回路10B、又は第3の実施形態に係る電圧生成回路10Cと同様の構成については、その説明を省略又は簡略化する。
 電圧生成回路10Dは、電圧生成回路10Bの構成に加え、ボルテージフォロア回路K1と、RC型LPF(Low Pass Filter)回路であるLPF回路K2と、を備える。ボルテージフォロア回路K1は、オペアンプOP2を含む。LPF回路K2は、抵抗素子R4と容量素子C4とを含む。
 抵抗素子R4は、端子tr9及び端子tr10を有する。端子tr9は、出力端子Vop1に電気的に接続される。容量素子C4は、容量端子tc7及び容量端子tc8を有する。容量端子tc7は、抵抗素子R4の端子tr10に電気的に接続される。容量端子tc8は、接地電位に電気的に接続される。
 オペアンプOP2は、反転入力端子op2-、非反転入力端子op2+、及び出力端子Vop2を有する。反転入力端子op2-は、出力端子Vop2に電気的に接続される。非反転入力端子op2+は、端子tr10及び容量端子tc7に電気的に接続される。出力端子Vop2は、電圧出力端子Voutに電気的に接続される。
 抵抗素子R4の抵抗値は、例えば10kΩである。容量素子C4の容量値は、例えば10μFである。
 本実施形態の電圧生成回路10Dは、第3の実施形態の電圧生成回路10Cよりも、ノイズキャンセル能力が高い。一例として、抵抗素子R4の抵抗値が10kΩであり、容量素子C4の容量値が10μFである場合について説明する。LPF回路K2に流れ込む出力電圧のうち、カットオフ周波数よりも高い周波数の変動成分は、容量素子C4を通過してグランドに流れる。本実施形態において、カットオフ周波数は1.59Hzと算出される。したがって、オペアンプOP1から出力され、LPF回路K2に入力される出力電圧のうち、1.59Hz以下の直流成分及び変動成分は、ボルテージフォロア回路K1に出力され、1.59Hzよりも高い周波数の交流成分は、ボルテージフォロア回路K1に出力されない。
 負荷変動が発生すると、抵抗素子R4に流れる電流が変動し、それに由来するノイズが発生し得る。
 例えば、回路の出力インピーダンスが大きい場合、負荷変動が発生して出力電流が変化すると、電圧降下が発生して出力電圧が変動し得る。一方、オペアンプOP2は、仮に負荷変動が発生しても、フィードバックにより出力端子Vop2の電圧を一定に維持することができる。それにより、オペアンプOP2は、出力インピーダンスが小さいときと同じように動作できる。例えば、抵抗素子R4に電流が流れることによって負荷変動が発生した場合であっても、出力端子Vop2の電圧を一定に維持することができる。よって、出力端子Vop2に電気的に接続された電圧出力端子Voutの電圧も一定に維持される。したがって、ボルテージフォロア回路K1は、電圧生成回路10Dの出力インピーダンスを下げることができる。電圧生成回路10Dがボルテージフォロア回路K1を備えない場合、抵抗素子R4の抵抗値が電圧生成回路10Dの出力インピーダンスに相当する。例えば、ボルテージフォロア回路K1を備えない場合、電圧生成回路10Dの出力インピーダンスは10kΩになる。一方、図7に示されるようにボルテージフォロア回路K1を備える場合、電圧生成回路10Dの出力インピーダンスは数mΩ~1Ω程度まで低下する。
 このように、本実施形態の電圧生成回路10Dは、オペアンプOP1の後段にボルテージフォロア回路K1とLPF回路K2とを備えることで、電圧生成回路10Dの出力電圧に含まれる高周波数帯の成分を低減でき、バイアス電圧の生成性能を改善できる。
[第5の実施形態]
 図8は、第5の実施形態に係る電圧生成回路10Eの一例を示す回路図である。電圧生成回路10Dは、ボルテージフォロア回路K3を備える点で電圧生成回路10Bと異なる。図8の電圧生成回路10Dについて、第1の実施形態に係る電圧生成回路10A、第2の実施形態に係る電圧生成回路10B、第3の実施形態に係る電圧生成回路10C、又は第4の実施形態に係る電圧生成回路10Dと同様の構成については、その説明を省略又は簡略化する。
 電圧生成回路10Eは、電圧生成回路10Bの構成に加え、ボルテージフォロア回路K3を備える。ボルテージフォロア回路K3は、オペアンプOP3を含む。
 オペアンプOP3は、反転入力端子op3-、非反転入力端子op3+、及び出力端子Vop3を有する。反転入力端子op3-は、出力端子Vop3に電気的に接続される。非反転入力端子op3+は、端子tr2及び端子tr3に電気的に接続される。出力端子Vop3は、反転入力端子op3-及び非反転入力端子op1+に電気的に接続される。
 このように構成されることにより、抵抗素子R6及び抵抗素子R7の接続点とオペアンプOP1との間のインピーダンスの影響を低減できる。例えば、抵抗素子R6及び抵抗素子R7の接続点とオペアンプOP1との間の距離が所定距離以上である場合や、抵抗素子R6及び抵抗素子R7の接続点とオペアンプOP1との間の近傍に所定のノイズ源が存在する場合などを想定する。この場合、抵抗素子R6及び抵抗素子R7の接続点と非反転入力端子op1+とを結ぶ経路上に、ノイズが入ると、非反転入力端子op1+に入力される電圧が変動する。所定のノイズ源として、例えば、電圧生成回路10Eの近傍に設置されるDCDC回路が想定される。なお、ノイズ源が電圧生成回路10Eにおける任意の箇所に物理的に接続されていなくても、ノイズ源と電圧生成回路10Eとが電気的に干渉する場合には、電圧生成回路10Eの近傍に設置されることで、電圧生成回路10Eはノイズ源から電気的な影響を受け得る。
 これに対し、電圧生成回路10Eにおいて、非反転入力端子op1+の前段にボルテージフォロア回路K3が配置されることで、オペアンプOP1の動作を安定化できるため、ノイズキャンセル能力を維持できる。
 なお、上述した各実施形態の電圧生成回路10の構成の少なくとも2つを組み合わせた構成とすることが可能である。例えば、第3の実施形態、第4の実施形態、及び第5の実施形態の少なくとも2つを組み合わせ、電圧生成回路10を構成してもよい。また、第3の実施形態、第4の実施形態、及び第5の実施形態においても、第1の実施形態と同様に、電圧生成回路10が容量素子C2を備えなくてもよい。
 なお、上述した各実施形態では、電圧生成回路10により生成されたバイアス電圧を利用する増幅回路は、音声出力回路100に限られず、他の回路であってもよい。例えば、このような増幅回路として、一定の電圧を用いて増幅を行う回路に広く適用可能であり、モータの駆動回路であってもよい。
[第6の実施形態]
 図9は、第6の実施形態に係る電圧生成回路10Fの一例を示す回路図である。電圧生成回路10Fは、ダイオード素子D1及び抵抗素子R5を備える点で電圧生成回路10Bと異なる。図9の電圧生成回路10Fについて、第1の実施形態に係る電圧生成回路10A、第2の実施形態に係る電圧生成回路10B、第3の実施形態に係る電圧生成回路10C、第4の実施形態に係る電圧生成回路10D、又は第5の実施形態に係る電圧生成回路10Eと同様の構成については、その説明を省略又は簡略化する。
 電圧生成回路10Fは、電圧生成回路10Bの構成に加え、ダイオード素子D1及び抵抗素子R5を備える。
 ダイオード素子D1は、ダイオード端子td1及びダイオード端子td2を有する。以下、ダイオード素子が有する端子のことを、ダイオード端子と呼ぶことがある。ダイオード端子td1は、容量端子tc2と端子tr5とに電気的に接続される。ダイオード素子D1は、整流用のダイオード素子でも、ショットキーダイオードでもよい。
 抵抗素子R5は、端子tr11及び端子tr12を有する。端子tr11は、ダイオード端子td2に電気的に接続される。端子tr12は、容量端子tc4と、端子tr8と、出力端子Vop1と、電圧出力端子Voutとに電気的に接続される。抵抗素子R5は、ダイオード素子D1に流れる電流を制限する。
 なお、電圧生成回路10Fは、抵抗素子R5を備えなくてもよい。例えば、ダイオード素子D1に流れる電流が小さい場合、つまりダイオード素子D1に流れる電流が所定電流未満である場合、抵抗素子R5の設置が省略されてもよい。
 次に、電圧生成回路10Fの回路動作について説明する。
 電圧生成回路10Fは、電源が立ち上がると、つまり入力電圧Vinが印加されると、容量素子C1と抵抗素子R1との間にある点noise1での電圧が、電源電圧つまり入力電圧Vinになる。容量素子C1は、定常時には直流成分を通過させないが、電源立ち上がり時である0Vから8Vへの変化時には、交流成分として通過させる。電源が立ち上がってからの時間に応じて、容量素子C1を通過する電流量は変化する。点noise1での電圧は、実際には電源電圧より小さい。
 オペアンプOP1は、反転入力端子op1-に入力される電圧が、非反転入力端子op1+に入力される点Vhalfでの電圧との電位差をなくすように、出力電圧Vop1を制御する。具体的には、オペアンプOP1は、反転入力端子op1-の電圧が4Vより高いので、4Vから、反転入力端子op1-の電位(約8V)と非反転入力端子op1+(4V)の電位との差分の量を小さくした電圧を、出力端子Vop1から出力する。ここでの例では、4V-4V=0Vが出力される。そのため、電圧生成回路10Fの出力電圧Voutとしては、出力電圧Vop1と等しい0Vが出力される。なお、出力電圧Vop1は、出力端子Vop1の電圧である。
 出力電圧Voutが0Vである状態では、ダイオード素子D1に順方向に順方向電圧Vf以上の電位差が生じる。そのため、ダイオード素子D1がONして、電流が流れる。順方向電圧Vfは、例えば0.7Vである。
 点noise1の電圧は、容量素子C1の電荷QC1により発生し、この電荷は後に補充されることはない。したがって、ダイオード素子D1を経由して電荷QC1が電圧出力端子Voutへ流れ、その結果、点noise1の電圧が小さくなる。また、点noise1の電圧が下がった分、反転入力端子op1-に入力される電圧が小さくなり、オペアンプOP1の出力端子Vop1の電圧が大きくなる。
 点noise1の電圧と出力電圧Voutとの電位差が0.7V未満になった時点で、ダイオード素子D1がOFFになり、容量素子C1に蓄積された電荷QC1の移動が停止する。よって、電圧生成回路10Fは、出力電圧Voutが(点Vhalfでの電圧-0.7V)になるまで、迅速に出力電圧Voutを大きくできる。また、抵抗素子R5の抵抗値を小さくすることで、より迅速に電荷QC1を流すことができる。よって、電圧生成回路10Fは、一層迅速に出力電圧Voutを大きくできる。
 なお、ダイオード素子D1として、順方向電圧Vfが低いショットキーバリアダイオードを用いてもよい。この場合、電圧生成回路10Fは、通常のダイオード素子D1を用いる場合と比較すると、出力電圧Voutを迅速に大きくでき、つまり迅速に立ち上げできる。ショットキーバリアダイオードは、順方向電圧Vfが例えば0.4V又は0.5V程度である。
 次に、電圧生成回路10Fが満たすべき特性について説明する。
 抵抗素子R5の定数である抵抗値は、例えば、容量素子C1に蓄積された電荷QC1を放電することに要する時間と、オペアンプOP1の動作電流の上限と、の少なくとも1つを基に定められる。例えば、抵抗素子R5の抵抗値が小さい程、出力電圧Voutの立ち上がり時間が早くなるが、オペアンプOP1の動作電流が多くなる。そのため、オペアンプOP1の最大動作電流を考慮し、出力電圧Voutの立ち上がり時間が設定される。例えば、抵抗素子R5の抵抗値が小さい場合には、電流が早く流れるので、電荷QC1が早く流れ、早く放電される。
 電圧生成回路10Fの各定数を基に、以下の式(19)により係数Aが算出される。
Figure JPOXMLDOC01-appb-M000021
 式(19)の各定数について、一例として、抵抗素子R1の抵抗値は30(kΩ)であり、抵抗素子R2の抵抗値は30(kΩ)であり、抵抗素子R5の抵抗値は400(Ω)である。この場合、係数Aは、0.00503である。
 係数Aを用いて、オペアンプOP1の動作電流が算出される。オペアンプOP1の最大動作電流は、図9に示す点noise1での電流I10の最大値と等しい。つまり、以下の式(20)で表せる。
Figure JPOXMLDOC01-appb-M000022
 式(20)の各定数について、一例として、点noise1での電圧Vcが8Vであり、端子tr2と端子tr3との接続点での電圧Vpが4Vであり、ダイオード素子D1の順方向電圧Vfが0.7Vである。この場合、電流I10は、18.38(mA)である。なお、電圧Vpは点Vhalfの電圧であり、所望の出力電圧Voutの基準になっている。
 電流I10の一部は、オペアンプOP1に流れる。そのため、電流Iは、オペアンプOP1の許容電流以下である必要がある。電流I10がオペアンプOP1の最大電流として許容される場合、時定数が算出される。出力電圧Voutの値が出力電圧Voutの設定値の63.2%となる時間を時定数τ(s)とすると、時定数τは以下の式(21)で算出される。なお、この設定値は、例えば4Vである。
Figure JPOXMLDOC01-appb-M000023
 式(21)の各定数について、一例として、容量素子C1の容量値が10(μF)である。この場合、時定数τは、2.18(ms)である。
 なお、本実施形態のダイオード素子D1及び抵抗素子R5が挿入されていない第2の実施形態の電圧生成回路10Bでは、時定数τ’は、以下の式(22)で算出される。
 τ’=C1・R1   ・・・(22)
 式(22)の各定数について、一例として、本実施形態の容量値C1、抵抗値R1と同じ値とすると、時定数τ’は、300(ms)である。
 したがって、電圧生成回路10Fは、電圧生成回路10Bよりも、およそ137倍早く立ち上がる。
 なお、電圧Vcは、0Vから電圧Vcの上限値までの間で変化する。電圧Vcの上限値の最大値は、入力電圧Vinである。出力電圧Voutの立ち上がり時間が遅くなる程、電圧Vcの上限値が小さくなる。また、ダイオード素子D1の順方向電圧Vfは、実際には、ダイオード素子D1に流れる電流により、時間経過とともに変化し得る。本例では、順方向電圧Vfが一定値であると仮定して、各式が計算される。
 次に、ダイオード素子D1の順方向許容電流について説明する。
 ダイオード素子D1の順方向許容電流とは、ダイオード素子D1の順方向に流れる電流として許容される上限値である。ダイオード素子D1は、例えば、抵抗素子R5に流れる電流値がダイオード素子D1の順方向許容電流以下であることと、順方向電圧Vfが入力電圧Vinと出力電圧Voutとの電位差よりも小さいことと、逆方向電流が小さいことと、の少なくとも1つを加味されて選定される。
 ダイオード素子D1と抵抗素子R5とに流れる最大の電流I13が、下記の式(23)により算出される。そして、この算出結果が、ダイオード素子D1の順方向許容電流と比較される。
Figure JPOXMLDOC01-appb-M000024
 つまり、容量素子C1を通過してきた電圧Vcと出力電圧Voutとして出力予定の電圧Vpとを基に、電流I13が算出されている。式(23)の各定数について、一例として、点noise1での電圧Vcが8Vであり、出力電圧Voutが4Vであり、ダイオード素子D1の順方向電圧Vfが0.7Vであり、抵抗素子R1の抵抗値は30(kΩ)であり、抵抗素子R2の抵抗値は30(kΩ)であり、抵抗素子R5の抵抗値は400(Ω)であり、容量素子C1の容量値が10(μF)である。この場合、最大の電流I13は、18.25(mA)である。したがって、ダイオード素子D1として、順方向許容電流が18.25(mA)より大きいダイオードが選定される。
 ダイオード素子D1として、ダイオード素子D1の順方向電圧Vfが(Vc-Vout)の電位差よりも小さいダイオードが選定される。また、ダイオード素子D1の順方向電圧Vfが小さい程、出力電圧Voutの立ち上がり時間を早くすることができる。例えば、シリコン半導体によるPN接合ダイオードは、その順方向電圧Vfが約0.7Vである。これに対し、ショットキーバリアダイオードは、その順方向電圧Vfが約0.5Vであるので、シリコン半導体によるPN接合ダイオードよりも順方向電圧Vfを小さくでき、出力電圧Voutの立ち上がり時間を早めることができる。なお、ダイオード素子D1として、シリコン半導体ではなく、ゲルマニウム半導体を用いたPN接合ダイオードやその他のダイオードが用いられてもよい。このような順方向電圧Vfが、ダイオード素子D1の選定に加味されてよい。
 ダイオード素子D1には、逆方向に電流が流れる現象がある。これを逆方向電流といい、逆方向電流の値が大きい場合には、ダイオード素子D1及び抵抗素子R5によるノイズ除去性能が悪化し得る。例えば、シリコン半導体によるPN接合ダイオードは、逆方向電流が約140nA程度であり、ノイズ除去性能はほぼ悪化しない。ノイズ除去性能は、例えばPSRR(Power Supply Rejection Ratio)特性である。一方、ショットキーバリアダイオード等は、逆方向電流が50uA程度であり、ノイズ除去性能が悪化することがある。このような逆方向電流が、ダイオード素子D1の選定に加味されてよい。
 図10は、第2の実施形態における電圧生成回路10Bの出力電圧Voutと、本実施形態における電圧生成回路10Fの出力電圧Voutと、の一例を示す図である。また、図10では、電圧生成回路10Bにおける点noiseでの電圧と、電圧生成回路10Fにおける点noise1での電圧と、の一例も示されている。図10では、点noiseでの電圧が単に「noise」として示され、点noise1での電圧が単に「noise1」として示されている。
 電圧生成回路において、容量素子C1の容量値や抵抗素子R1の値を大きくすると、ノイズ除去能力が向上するが、出力電圧Voutの立ち上がりにかかる時間が長くなる傾向がある。抵抗素子R1の抵抗値は、抵抗素子R2の抵抗値と等しい。
 例えば、容量素子C1の定数を大きくすると音声帯域のノイズ除去能力は上がるが、出力電圧Voutの立ち上がりにかかる時間が長くなる。そのため、音声出力回路100の起動にかかる時間も長くなる。これに対し、本実施形態の電圧生成回路10Fは、出力電圧Voutの立ち上がりにかかる時間を短くすることができる。
 図10を参照すると、電圧生成回路10Fの点noise1での電圧が、0Vから入力電圧Vin付近に急激に立ち上がり、入力電圧Vin付近から(4+0.7V)付近に急激に立ち下がり、その後に滑らかに4V付近に収束していることが理解できる。滑らかに収束する期間は、ダイオード素子D1及び抵抗素子R5が不在である場合と同様の振る舞いである。また、点noise1での電圧に対応して、電圧生成回路10Fの出力電圧Voutが0Vから急激に立ち上がり、4V付近に収束していることが理解できる。電圧生成回路10Bの点noiseでの電圧や出力電圧Voutでも同様である。ただし、電圧生成回路10Fの出力電圧Voutの立ち上がり時間つまり時定数τが0.022秒であり、電圧生成回路10Bの出力電圧Voutの立ち上がり時間つまり時定数τが0.907秒である。ここでの電圧生成回路10Fでは、抵抗素子R5の抵抗値が一例として200Ωである。この場合でも、電圧生成回路10Fは、電圧生成回路10Bよりも立ち上がり時間を大幅に短縮できる。
(第6の実施形態の変形例1)
 電圧生成回路10Fは、ダイオード素子D1の代わりに、トランジスタを備えてもよい。このトランジスタは、バイポーラトランジスタであり、ベース端子、コレクタ端子、及びエミッタ端子を有する。このベース端子及びコレクタ端子は、容量端子tc2と端子tr5とに電気的に接続される。このトランジスタのエミッタ端子は、端子tr11に電気的に接続される。このような電圧生成回路10Fがダイオード素子D1の代わりにトランジスタを備える構成であっても、電圧生成回路10Fがダイオード素子D1を備える場合と同様の効果が得られる。
(第6の実施形態の変形例2)
 図11は、電圧生成回路10Fの変形例である電圧生成回路10F1の一例を示す回路図である。電圧生成回路10F1は、電圧生成回路10Fと比較すると、以下の点が異なる。具体的には、オペアンプOP1が、プラス単電源のオペアンプではなく、マイナス単電源のオペアンプである。また、電圧生成回路10F1のダイオード素子D1の向きが、電圧生成回路10Fのダイオード素子D1の向きと逆である。つまり、ダイオード素子D1の順方向が、ダイオード素子D1から抵抗素子R5へ向かう方向ではなく、抵抗素子R5からダイオード素子D1へ向かう方向である。このような電圧生成回路10F1の構成であっても、電圧生成回路10Fと同様の効果が得られる。
 なお、本実施形態の変形例1と変形例2とを組み合わせてもよい。
 なお、本実施形態では、電圧生成回路10Fは、電圧生成回路10Bにダイオード素子D1及び抵抗素子R5を追加した構成を有することを例示したが、これに限られない。例えば、電圧生成回路10Fは、第1の実施形態の電圧生成回路10A、第3の実施形態の電圧生成回路10C、第4の実施形態の電圧生成回路10D、又は第5の実施形態の電圧生成回路10Eに、ダイオード素子D1及び抵抗素子R5を追加した構成を有してもよい。このような構成でも、電圧生成回路10Fと同様の効果が得られる。
(第7の実施形態)
 図12は、第7の実施形態に係る電圧生成回路10Gの一例を示す回路図である。電圧生成回路10Gは、追加回路50を備える点で電圧生成回路10Aと異なる。図12の電圧生成回路10Gについて、第1の実施形態に係る電圧生成回路10A、第2の実施形態に係る電圧生成回路10B、第3の実施形態に係る電圧生成回路10C、第4の実施形態に係る電圧生成回路10D、および第5の実施形態に係る電圧生成回路10Eと同様の構成については、その説明を省略又は簡略化する。
 電圧生成回路10Gは、電圧生成回路10Aの構成に加え、追加回路50を備える。追加回路50は、トランジスタQ1と、容量素子C5と、抵抗素子R11と、抵抗素子R12と、を含む。容量素子C5は、容量端子tc9及び容量端子tc10を有する。抵抗素子R11は、端子tr13及び端子tr14を有する。抵抗素子R12は、端子tr15及び端子tr16を有する。
 トランジスタQ1は、バイポーラトランジスタであり、ベース端子q1bと、コレクタ端子q1cと、エミッタ端子q1eと、を有する。ベース端子q1bは、端子tr14と容量端子tc10とに電気的に接続される。コレクタ端子q1cは、容量端子tc2と端子tr5と容量端子tc9とに電気的に接続される。エミッタ端子q1eは、端子tr15に電気的に接続される。
 抵抗素子R11では、端子tr13は、端子tr2と、端子tr3と、非反転入力端子op1+と、に電気的に接続される。抵抗素子R12では、端子tr16は、端子tr8と、出力端子Vop1と、電圧出力端子Voutと、に電気的に接続される。
 容量素子C5は、オペアンプOP1の発振止めに用いられる。容量素子C5の容量値は、例えば1pF~100pFのいずれかの値でよいが、オペアンプOP1が発振しない程度の最も小さな容量値が好ましい。なお、電圧生成回路10Gは、容量素子C5を備えなくてもよい。抵抗素子R11は、トランジスタQ1のベース電流の大きさを制限する。なお、電圧生成回路10Gは、抵抗素子R11を備えてなくてもよい。
 また、抵抗素子R6、抵抗素子R7、抵抗素子R11、及び抵抗素子R12の抵抗値の組み合わせは、電圧生成回路10Gの定常時の出力電圧Voutが所定の値となるように選定される。出力電圧Voutは、例えば4Vである。例えば、抵抗素子R6の抵抗値が10kΩとされ、抵抗素子R7の抵抗値が10kΩとされ、抵抗素子R11の抵抗値が0Ωとされ、抵抗素子R6の抵抗値が20Ωとされる。また、トランジスタQ1の増幅率に応じて、各抵抗素子の抵抗値が定められてもよい。
 次に、電圧生成回路10Gの回路動作について説明する。
 電圧生成回路10Gは、電源が立ち上がると、つまり入力電圧Vinが印加されると、容量素子C1と抵抗素子R1との間にある点noise2での電圧が、電源電圧つまり入力電圧Vinになる。容量素子C1は、定常時には直流成分を通過させないが、電源立ち上がり時である0Vから8Vへの変化時には、交流成分として通過させる。変化時間により、容量素子C1を通過する電流量は変わり、点noise2での電圧は、実際には電源電圧より小さい。
 オペアンプOP1は、反転入力端子op1-に入力される電圧が、非反転入力端子op1+に入力される点Vhalf2の電圧との電位差をなくすように、出力電圧Vop1の電圧を制御する。そのため、出力電圧Vop1の電圧と等しい電圧生成回路10Gの出力電圧Voutは、0Vを出力する。具体的には、点Vhalf2からトランジスタQ1に流れる電流に起因して、点Vhalf2の電圧は、入力電圧Vinを抵抗素子R3と抵抗素子R4とで分圧した電圧より低くなる。そのため、点Vhalf2の電圧は、出力電圧Voutの設定値である4Vに対して2V程度になり、出力電圧Voutは0Vより低い電圧を出力することになる。しかし、オペアンプOP1の電源端子のマイナス側が0Vに電気的に接続されているので、実際の出力電圧Voutは、0Vである。
 出力電圧Voutが0Vである状態では、点noise2に接続されているトランジスタQ1は、点Vhalf2から電流が供給されている。そのため、ベース電流に電流増幅率hfeを乗算した電流が、点noise2から抵抗素子R12を経由して、電圧出力端子Voutに流れる。
 点noise2の電圧は、容量素子C1の電荷QC1により発生し、この電荷は後に補充されない。したがって、トランジスタQ1を経由して電荷QC1が電圧出力端子Voutへ流れ、その結果、点noise2の電圧が小さくなる。また、点noise2の電圧が下がった分、オペアンプOP1の反転入力端子op1-に入力される電圧が小さくなり、出力端子Vop1の電圧が大きくなる。
 点noise2の電圧が出力電圧Voutの設定値である4Vになった時に、反転入力端子op1-と非反転入力端子op1+との電圧が逆転し、電圧出力端子Voutの電圧がプラス方向つまり正の値の電圧として出力される。つまり、点noise2の電圧が下がることにより、点noise2の電圧と出力電圧Voutとが、抵抗素子R1と抵抗素子R2とで分圧されて2V付近の電圧になる。そして、点noise2の電圧が4Vを下回った瞬間、反転入力端子op1-の電圧が、点Vhalf2の電圧である2Vより小さくなる。それにより、電圧出力端子Voutの電圧が正の値の電圧となる。
 電圧出力端子Voutの電圧が上がってくると、トランジスタQ1のエミッタ電流が減ることでベース電流が減少し、点Vhalf2の電圧が上がり、電圧出力端子Voutの電圧が更に上昇する。
 点noise2の電圧と出力電圧Voutとが同じになると、トランジスタQ1のエミッタ電流が流れなくなる。よって、容量素子C1の電荷QC1は、トランジスタQ1を経由して電圧出力端子Voutへ流れなくなる。したがって、点noise2の電圧は下がらなくなり、同時に点Vhalf2の電圧は入力電圧Vinを抵抗素子R3と抵抗素子R4とで分圧した電圧である4Vとなり、電圧出力端子Voutの出力電圧は、4Vとなる。
 図13は、第6の実施形態における電圧生成回路10Fの出力電圧Voutと、本実施形態における電圧生成回路10Gの出力電圧Voutと、の一例を示す図である。
 電圧生成回路において、容量素子C1の容量値や抵抗素子R1の抵抗値や抵抗素子R2の抵抗値を大きくすると、ノイズ除去能力が向上するが、出力電圧Voutの立ち上がり時間が延びる傾向がある。
 電圧生成回路10F及び電圧生成回路10Gはいずれも、迅速に出力電圧Voutの立ち上げ時間を短縮できる。また、電圧生成回路10Gは、1kHz未満の低域でのノイズ除去性能を向上させることができる。また、図13に示すように、電圧生成回路10Gによる出力電圧Voutの立ち上がり時間は0.001(ms)であり、電圧生成回路10Fによる出力電圧Voutの立ち上がり時間は0.023(ms)である。つまり、電圧生成回路10Gは、電圧生成回路10Fよりも一層迅速に出力電圧Voutの立ち上げ時間を短縮できる。一方、電圧生成回路10Fによれば、トランジスタを用いずにダイオード素子D1を用いる場合、電圧生成回路10Fは、トランジスタの電流増幅率hfeの製造ばらつきが発生しない。そのため、電圧生成回路10Fは、ダイオード素子D1の個体に依存せずに、出力電圧Voutの立ち上げ時間を短縮できる。また、電圧生成回路10Fは、1kHz未満の低域及び1kHz以上の中高域でのノイズ除去性能を向上させることができる。
 なお、本実施形態では、電圧生成回路10Gは、電圧生成回路10Aに追加回路50を追加した構成を有することを例示したが、これに限られない。例えば、電圧生成回路10Fは、第2の実施形態の電圧生成回路10B、第3の実施形態の電圧生成回路10C、第4の実施形態の電圧生成回路10D、又は第5の実施形態の電圧生成回路10Eに、追加回路50を追加した構成を有してもよい。このような構成でも、電圧生成回路10Fと同様の効果が得られる。ただし、電圧生成回路10Gは、オペアンプOP1をマイナス単電源とすることには適用されない。
[付記]
 以上の実施形態の記載により、下記の技術が開示される。
(技術1)
 入力電圧が入力される電圧入力端子と、
 出力電圧が出力される電圧出力端子と、
 第1端子と第2端子とを有し、前記第1端子が前記電圧入力端子に電気的に接続される第1抵抗素子と、
 第3端子と第4端子とを有し、前記第3端子が前記第2端子に電気的に接続され、前記第4端子が接地電位に電気的に接続される第2抵抗素子と、
 第1容量端子と第2容量端子とを有し、前記第1容量端子が前記電圧入力端子に電気的に接続される第1容量素子と、
 第5端子と第6端子とを有し、前記第5端子が前記第2容量端子に電気的に接続される第3抵抗素子と、
 第7端子と第8端子とを有し、前記第7端子が前記第6端子に電気的に接続される第4抵抗素子と、
 第1反転入力端子、第1非反転入力端子、および第1出力端子を有し、前記第1反転入力端子が前記第6端子に電気的に接続され、前記第1非反転入力端子が前記第2端子に電気的に接続され、前記第1出力端子が前記電圧出力端子及び前記第8端子に電気的に接続される第1オペアンプと、
 を備える電圧生成回路。
 電圧生成回路は、例えば電圧生成回路10である。電圧入力端子は、例えば電圧入力端子Vinである。電圧出力端子は、例えば電圧出力端子Voutである。第1端子は、例えば端子tr1である。第2端子は、例えば端子tr2である。第1抵抗素子は、例えば抵抗素子R6である。第3端子は、例えば端子tr3である。第4端子は、例えば端子tr4である。第2抵抗素子は、例えば抵抗素子R7である。第1容量端子は、例えば容量端子tc1である。第2容量端子は、例えば容量端子tc2である。第1容量素子は、例えば容量素子C1である。第5端子は、例えば端子tr5である。第6端子は、例えば端子tr6である。第3抵抗素子は、例えば抵抗素子R1である。第7端子は、例えば端子tr7である。第8端子は、例えば端子tr8である。第4抵抗素子は、例えば抵抗素子R2である。第1出力端子は、例えば出力端子Vop1である。第1オペアンプは、例えばオペアンプOP1である。
 この構成により、電圧生成回路は、電圧入力端子から入力される入力電圧の電源変動成分を第1容量素子により抽出し、第1オペアンプの反転入力端子へ印加し、第1オペアンプOPから出力された信号をフィードバックする。これにより、電圧生成回路は、第1抵抗素子及び第2抵抗素子で分圧された点の変動成分を打ち消すことができる。また、電圧生成回路は、ノイズを除去するために大型の容量素子を設けることが不要である。したがって、電圧生成回路は、電圧生成回路を含む装置の大型化を抑制でき、入力電圧の変動成分が出力電圧に電圧されることを抑制できる。よって、ノイズをキャンセルして中点バイアス電圧を生成する電圧生成回路が改善可能である。
(技術2)
 前記第1抵抗素子が有する抵抗値である第1抵抗値と、前記第2抵抗素子が有する抵抗値である第2抵抗値との比は、前記第3抵抗素子が有する抵抗値である第3抵抗値と、前記第4抵抗素子が有する抵抗値である第4抵抗値との比と等しい、
 技術1に記載の電圧生成回路。
 この構成により、電圧生成回路は、第1抵抗素子と第2抵抗素子とで分圧した電圧の比率を維持し、ノイズキャンセル能力を維持して、電圧生成回路から出力される出力電圧を生成できる。また、電圧生成回路は、上記の電圧の比率によりバイアス電圧を調整できる。
(技術3)
 前記第1抵抗値と前記第2抵抗値とは等しく、
 前記第3抵抗値と前記第4抵抗値とは等しい、
 技術2に記載の電圧生成回路。
 この構成により、電圧生成回路は、第1抵抗素子と第2抵抗素子とで分圧することで、電圧生成回路への入力電圧の半分の電圧を得て、ノイズキャンセル能力を維持して、電圧生成回路から出力される出力電圧を生成できる。
(技術4)
 前記第1抵抗値と前記第2抵抗値とは異なり、
 前記第3抵抗値と前記第4抵抗値とは異なる、
 技術2に記載の電圧生成回路。
 この構成により、電圧生成回路は、第1抵抗素子と第2抵抗素子とで分圧することで、電圧生成回路への入力電圧の半分から所定値ずらした電圧を得て、ノイズキャンセル能力を維持して、電圧生成回路から出力される出力電圧を生成できる。
(技術5)
 前記第3抵抗値は前記第1抵抗値よりも大きく、
 前記第4抵抗値は前記第2抵抗値よりも大きい、
 技術1から技術4のいずれか1つに記載の電圧生成回路。
(技術6)
 第3容量端子と第4容量端子とを有し、前記第3容量端子が前記第7端子に電気的に接続され、前記第4容量端子が前記第1出力端子に電気的に接続される第2容量素子、を更に備える。
 技術1から技術5のいずれか1つに記載の電圧生成回路。
 第3容量端子は、例えば容量端子tc3である。第4容量端子は、例えば容量端子tc4である。第2容量素子は、例えば容量素子C2である。
 この構成により、電圧生成回路は、第1オペアンプが高周波数帯域において発振することを抑制でき、ノイズキャンセル能力を安定して維持できる。
(技術7)
 前記第1容量素子が有する容量値である第1容量値は、前記第2容量素子が有する容量値である第2容量値よりも大きい、
 技術6に記載の電圧生成回路。
(技術8)
 第5容量端子及び第6容量端子を有し、前記第5容量端子が前記第1オペアンプの前記第1出力端子及び前記電圧出力端子に電気的に接続され、前記第6容量端子が接地電位に電気的に接続される第3容量素子、を更に備える、
 技術1から技術7のいずれか1つに記載の電圧生成回路。
 第5容量端子は、例えば容量端子tc5である。第5容量端子は、例えば容量端子tc5である。第3容量素子は、例えば容量素子C3である。
 この構成により、第3容量素子は、第1オペアンプの第1出力端子から出力された信号の高周波数帯域の交流成分を通過させることができ、直流成分を通過させない。よって、電圧生成回路は、高周波数帯域の交流成分を低減できるので、出力電圧の高周波数帯域に重畳されるノイズ成分を低減できる。
(技術9)
 第9端子及び第10端子を有し、前記第9端子が前記第1オペアンプの前記第1出力端子に接続される第5抵抗素子と、
 第7容量端子及び第8容量端子を有し、前記第7容量端子が前記第10端子に接続され、前記第8容量端子が接地電位に電気的に接続される第4容量素子と、
 第2反転入力端子、第2非反転入力端子、および第2出力端子を有し、前記第2反転入力端子が前記第2出力端子に電気的に接続され、前記第2非反転入力端子が前記第10端子に電気的に接続され、前記第2出力端子が前記電圧出力端子に電気的に接続される第2オペアンプと、を更に備える、
 技術1から技術7のいずれか1つに記載の電圧生成回路。
 第9端子は、例えば端子tr9である。第10端子は、例えば端子tr10である。第5抵抗素子は、例えば抵抗素子R4である。第7容量端子は、例えば容量端子tc7である。第8容量端子は、例えば容量端子tc8である。第4容量素子は、例えば容量素子C4である。第2出力端子は、例えば出力端子Vop2である。第2オペアンプは、例えばオペアンプOP2である。
 この構成により、電圧生成回路は、第2オペアンプがボルテージフォロア回路として動作し、第5抵抗素子及び第4容量素子がRC型LPF回路として動作する。よって、電圧生成回路は、出力電圧に含まれる高周波数帯の成分を一層低減できる。また、電圧生成回路は、出力インピーダンスを低減できるので、電圧生成回路が接続される装置の負荷に依存せずに、一定の出力電圧を出力可能である。
(技術10)
 第3反転入力端子、第3非反転入力端子、および第3出力端子を有し、前記第3反転入力端子が前記第3出力端子に電気的に接続され、前記第3非反転入力端子が前記第2端子に電気的に接続され、前記第3出力端子が前記第1オペアンプの前記第1非反転入力端子に電気的に接続される第3オペアンプと、を更に備える、
 技術1から技術7のいずれか1つに記載の電圧生成回路。
 第3出力端子は、例えば出力端子Vop3である。第3オペアンプは、例えばオペアンプOP3である。
 この構成により、電圧生成回路は、第1オペアンプの前段に配置された第3オペアンプがボルテージフォロア回路として動作する。よって、電圧生成回路は、第1オペアンプの非反転入力端子に入力される電圧を一定に維持できる。よって、電圧生成回路は、オペアンプOP1の動作を安定化でき、ノイズキャンセル能力を維持してバイアス電圧を生成できる。
(技術11)
 第1ダイオード端子及び第2ダイオード端子を有し、前記第1ダイオード端子が前記第2容量端子に電気的に接続され、前記第2ダイオード端子が前記第1出力端子に電気的に接続されるダイオード素子、を更に備える、
 技術1から技術10のいずれか1つに記載の電圧生成回路。
 第1ダイオード端子は、例えばダイオード端子td1である。第2ダイオード端子は、例えばダイオード端子td2である。
 この構成により、電圧生成回路は、音声帯域の全域でのノイズ除去能力を維持しつつ、出力電圧の立ち上がり時間を短縮できる。ここでの音声帯域の全域は、例えば20Hz~20kHzである。
(技術12)
 第11端子及び第12端子を有し、前記第11端子が前記第2ダイオード端子に電気的に接続され、前記第12端子が前記第1出力端子に電気的に接続される第6抵抗素子、を更に備える、
 技術11に記載の電圧生成回路。
 第11端子は、例えば端子tr11である。第12端子は、例えば端子tr12である。第6抵抗素子は、例えば抵抗素子R5である。
 この構成により、電圧生成回路は、ダイオード素子に過大な電流が流れることを抑制できる。
(技術13)
 ベース端子とコレクタ端子とエミッタ端子とを有し、前記ベース端子が前記第2端子に電気的に接続され、前記コレクタ端子が前記第2容量端子に電気的に接続されるトランジスタと、
 第13端子及び第14端子を有し、前記第13端子が前記エミッタ端子に電気的に接続され、前記第14端子が前記第1出力端子に電気的に接続される第7抵抗素子と、を更に備える、
 技術1から10のいずれか1つに記載の電圧生成回路。
 ベース端子は、例えばベース端子q1bである。コレクタ端子は、例えばコレクタ端子q1cである。エミッタ端子は、例えばエミッタ端子q1eである。トランジスタは、例えばトランジスタQ1である。第13端子は、例えば端子tr15である。第14端子は、例えば端子tr16である。第7抵抗素子は、例えば抵抗素子R12である。
 この構成により、電圧生成回路は、音声帯域の低域でのノイズ除去性能を維持しつつ、出力電圧の立ち上がり時間を大幅に短縮できる。ここでの音声帯域の低域は、例えば1kHz未満である。
(技術14)
 第9容量端子と第10容量端子とを有し、前記第9容量端子が前記コレクタ端子と第2容量端子とに電気的に接続され、前記第10容量端子が前記ベース端子と前記第2端子とに電気的に接続される第5容量素子、を更に備える、
 技術13に記載の電圧生成回路。
 第9容量端子は、例えば容量端子tc9である。第10容量端子は、例えば容量端子tc10である。第5容量素子は、例えば容量素子C5である。
 この構成により、電圧生成回路は、トランジスタを備える場合でも、第1オペアンプが高周波数帯域において発振することを抑制でき、ノイズ除去性能を安定して維持できる。
(技術15)
 第15端子及び第16端子を有し、前記第15端子が前記第2端子に電気的に接続され、第16端子が前記ベース端子と前記第10容量端子とに電気的に接続される第8抵抗素子と、を更に備える、
 技術13に記載の電圧生成回路。
 第15端子は、例えば端子tr13である。第16端子は、例えば端子tr14である。第8抵抗素子は、例えば抵抗素子R11である。
 この構成により、電圧生成回路は、トランジスタに過大なベース電流が流入することを抑制できる。
(技術16)
 技術1から技術15のいずれか1つに記載の電圧生成回路と、
 第4オペアンプと、を備え、
 前記第4オペアンプは、
 第1入力端子、第2入力端子、及び第4出力端子を有し、
 前記第1入力端子に前記電圧生成回路により出力された前記出力電圧を入力し、
 前記第2入力端子に音声入力信号を入力し、
 前記音声入力信号に基づいた音声出力信号を前記第4出力端子から出力する、
 音声出力回路。
 第4オペアンプは、例えばオペアンプOP10である。第1入力端子は、例えば第4オペアンプの反転入力端子である。第2入力端子は、例えば第4オペアンプの非反転入力端子である。第4出力端子は、出力端子Vop10である。音声出力回路は、例えば音声出力回路100である。
 この構成により、音声出力回路は、電圧生成回路により生成された出力電圧を第4オペアンプに入力し、バイアス電圧として利用可能である。したがって、音声出力回路は、音声入力信号が増幅されても、第4オペアンプが処理可能な範囲に信号の電圧を収めることが可能であり、音声信号の増幅処理を好適に実施できる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本開示は、2022年9月30日出願の日本特許出願(特願2022-158437)に基づくものであり、その内容は本開示の中に参照として援用される。
 本開示は、入力電圧に重畳された変動成分を低減して電圧を生成できる電圧生成回路及び音声出力回路等に有用である。
10,10A,10B,10C,10D,10E,10F,10F1,10G 電圧生成回路
100 音声出力回路
C1,C2,C3,C4 容量素子
OP1,OP2,OP3,OP10 オペアンプ
R1,R2,R3,R4,R5,R6,R7,R11,R12 抵抗素子
tc1,tc2,tc3,tc4,tc5,tc6,tc7,tc8,tc9,tc10 容量端子
tr1,tr2,tr3,tr4,tr5,tr6,tr7,tr8,tr9,tr10,tr11,tr12,tr13,tr14,tr15,tr16 端子
Vin 電圧入力端子
Vout 電圧出力端子
Vop1,Vop2,Vop3,Vop10 出力端子

Claims (16)

  1.  入力電圧が入力される電圧入力端子と、
     出力電圧が出力される電圧出力端子と、
     第1端子と第2端子とを有し、前記第1端子が前記電圧入力端子に電気的に接続される第1抵抗素子と、
     第3端子と第4端子とを有し、前記第3端子が前記第2端子に電気的に接続され、前記第4端子が接地電位に電気的に接続される第2抵抗素子と、
     第1容量端子と第2容量端子とを有し、前記第1容量端子が前記電圧入力端子に電気的に接続される第1容量素子と、
     第5端子と第6端子とを有し、前記第5端子が前記第2容量端子に電気的に接続される第3抵抗素子と、
     第7端子と第8端子とを有し、前記第7端子が前記第6端子に電気的に接続される第4抵抗素子と、
     第1反転入力端子、第1非反転入力端子、および第1出力端子を有し、前記第1反転入力端子が前記第6端子に電気的に接続され、前記第1非反転入力端子が前記第2端子に電気的に接続され、前記第1出力端子が前記電圧出力端子及び前記第8端子に電気的に接続される第1オペアンプと、
     を備える電圧生成回路。
  2.  前記第1抵抗素子が有する抵抗値である第1抵抗値と、前記第2抵抗素子が有する抵抗値である第2抵抗値との比は、前記第3抵抗素子が有する抵抗値である第3抵抗値と、前記第4抵抗素子が有する抵抗値である第4抵抗値との比と等しい、
     請求項1に記載の電圧生成回路。
  3.  前記第1抵抗値と前記第2抵抗値とは等しく、
     前記第3抵抗値と前記第4抵抗値とは等しい、
     請求項2に記載の電圧生成回路。
  4.  前記第1抵抗値と前記第2抵抗値とは異なり、
     前記第3抵抗値と前記第4抵抗値とは異なる、
     請求項2に記載の電圧生成回路。
  5.  前記第3抵抗値は前記第1抵抗値よりも大きく、
     前記第4抵抗値は前記第2抵抗値よりも大きい、
     請求項2に記載の電圧生成回路。
  6.  第3容量端子と第4容量端子とを有し、前記第3容量端子が前記第7端子に電気的に接続され、前記第4容量端子が前記第1出力端子に電気的に接続される第2容量素子、を更に備える、
     請求項1に記載の電圧生成回路。
  7.  前記第1容量素子が有する容量値である第1容量値は、前記第2容量素子が有する容量値である第2容量値よりも大きい、
     請求項6に記載の電圧生成回路。
  8.  第5容量端子及び第6容量端子を有し、前記第5容量端子が前記第1オペアンプの前記第1出力端子及び前記電圧出力端子に接続され、前記第6容量端子が接地電位に電気的に接続される第3容量素子、を更に備える、
     請求項1又は6に記載の電圧生成回路。
  9.  第9端子及び第10端子を有し、前記第9端子が前記第1オペアンプの前記第1出力端子に接続される第5抵抗素子と、
     第7容量端子及び第8容量端子を有し、前記第7容量端子が前記第10端子に接続され、前記第8容量端子が接地電位に電気的に接続される第4容量素子と、
     第2反転入力端子、第2非反転入力端子、および第2出力端子を有し、前記第2反転入力端子が前記第2出力端子に電気的に接続され、前記第2非反転入力端子が前記第10端子に電気的に接続され、前記第2出力端子が前記電圧出力端子に電気的に接続される第2オペアンプと、を更に備える、
     請求項1又は6に記載の電圧生成回路。
  10.  第3反転入力端子、第3非反転入力端子、および第3出力端子を有し、前記第3反転入力端子が前記第3出力端子に電気的に接続され、前記第3非反転入力端子が前記第2端子に電気的に接続され、前記第3出力端子が前記電圧出力端子に電気的に接続される第3オペアンプと、を更に備える、
     請求項1又は6に記載の電圧生成回路。
  11.  第1ダイオード端子及び第2ダイオード端子を有し、前記第1ダイオード端子が前記第2容量端子に電気的に接続され、前記第2ダイオード端子が前記第1出力端子に電気的に接続されるダイオード素子、を更に備える、
     請求項1又は6に記載の電圧生成回路。
  12.  第11端子及び第12端子を有し、前記第11端子が前記第2ダイオード端子に電気的に接続され、前記第12端子が前記第1出力端子に電気的に接続される第6抵抗素子、を更に備える、
     請求項11に記載の電圧生成回路。
  13.  ベース端子とコレクタ端子とエミッタ端子とを有し、前記ベース端子が前記第2端子に電気的に接続され、前記コレクタ端子が前記第2容量端子に電気的に接続されるトランジスタと、
     第13端子及び第14端子を有し、前記第13端子が前記エミッタ端子に電気的に接続され、前記第14端子が前記第1出力端子に電気的に接続される第7抵抗素子と、を更に備える、
     請求項1又は6に記載の電圧生成回路。
  14.  第9容量端子と第10容量端子とを有し、前記第9容量端子が前記コレクタ端子と第2容量端子とに電気的に接続され、前記第10容量端子が前記ベース端子と前記第2端子とに電気的に接続される第5容量素子、を更に備える、
     請求項13に記載の電圧生成回路。
  15.  第15端子及び第16端子を有し、前記第15端子が前記第2端子に電気的に接続され、第16端子が前記ベース端子と前記第10容量端子とに電気的に接続される第8抵抗素子と、を更に備える、
     請求項14に記載の電圧生成回路。
  16.  請求項1又は6に記載の電圧生成回路と、
     第4オペアンプと、を備え、
     前記第4オペアンプは、
     第1入力端子、第2入力端子、及び第4出力端子を有し、
     前記第1入力端子に前記電圧生成回路により出力された前記出力電圧を入力し、
     前記第2入力端子に音声入力信号を入力し、
     前記音声入力信号に基づいた音声出力信号を前記第4出力端子から出力する、
     音声出力回路。
PCT/JP2023/016985 2022-09-30 2023-04-28 電圧生成回路及び音声出力回路 WO2024070030A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158437 2022-09-30
JP2022158437A JP2024052010A (ja) 2022-09-30 2022-09-30 電圧生成回路及び音声出力回路

Publications (1)

Publication Number Publication Date
WO2024070030A1 true WO2024070030A1 (ja) 2024-04-04

Family

ID=90476834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016985 WO2024070030A1 (ja) 2022-09-30 2023-04-28 電圧生成回路及び音声出力回路

Country Status (2)

Country Link
JP (1) JP2024052010A (ja)
WO (1) WO2024070030A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474811A (en) * 1987-09-16 1989-03-20 Nippon Electric Ic Microcomput Reference power source circuit
JP2012114870A (ja) * 2010-11-29 2012-06-14 Mitsumi Electric Co Ltd 映像信号出力回路
US20160294337A1 (en) * 2015-03-30 2016-10-06 Qualcomm Incorporated Power supply rejection rate through noise cancellation in an audio amplifier loop
JP2017050664A (ja) * 2015-09-01 2017-03-09 セイコーエプソン株式会社 アナログ基準電圧生成回路、回路装置、物理量センサー、電子機器及び移動体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474811A (en) * 1987-09-16 1989-03-20 Nippon Electric Ic Microcomput Reference power source circuit
JP2012114870A (ja) * 2010-11-29 2012-06-14 Mitsumi Electric Co Ltd 映像信号出力回路
US20160294337A1 (en) * 2015-03-30 2016-10-06 Qualcomm Incorporated Power supply rejection rate through noise cancellation in an audio amplifier loop
JP2017050664A (ja) * 2015-09-01 2017-03-09 セイコーエプソン株式会社 アナログ基準電圧生成回路、回路装置、物理量センサー、電子機器及び移動体

Also Published As

Publication number Publication date
JP2024052010A (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
US9300259B2 (en) Sensor amplifier arrangement and method for amplification of a sensor signal
US5852359A (en) Voltage regulator with load pole stabilization
US8737646B2 (en) Temperature compensated voltage pump
CN108334149B (zh) 一种低静态电流高psrr低压差线性稳压器电路
US8063700B2 (en) Amplifier arrangement and method for amplifying a signal
KR101407924B1 (ko) Ldo 전압 레귤레이터
CN107015593A (zh) 调节器用半导体集成电路
US5650746A (en) Circuit arrangement for capacitance amplification
WO2024070030A1 (ja) 電圧生成回路及び音声出力回路
JP2005533421A (ja) 容量性フィードバック回路
KR100880706B1 (ko) 반도체 장치
US6617931B2 (en) Two-stage amplifier
US5714872A (en) Telecommunication terminal with voltage controller having a phase-shifting component and a feedback path
EP1510897A1 (en) Noise filter circuit
US7551005B2 (en) Output circuit and current source circuit used in the same
CN107797595B (zh) 具有消除噪声的电压稳压电路
JP7523041B2 (ja) 電源安定化回路
CN113141163B (zh) D类功率放大器电路
TWI811974B (zh) 具有雙向電流調整的低壓差穩壓器
JP2014050055A (ja) 増幅器および制御方法
TWI854390B (zh) 輸出過濾之電壓源電路
JP7084479B2 (ja) 定電圧発生回路
JP2004013230A (ja) 基準電圧発生回路
JP5555600B2 (ja) カレントミラー回路
JP7191598B2 (ja) 増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871278

Country of ref document: EP

Kind code of ref document: A1