WO2024069714A1 - 固体酸化物形燃料電池及びその製造方法 - Google Patents

固体酸化物形燃料電池及びその製造方法 Download PDF

Info

Publication number
WO2024069714A1
WO2024069714A1 PCT/JP2022/035754 JP2022035754W WO2024069714A1 WO 2024069714 A1 WO2024069714 A1 WO 2024069714A1 JP 2022035754 W JP2022035754 W JP 2022035754W WO 2024069714 A1 WO2024069714 A1 WO 2024069714A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fuel cell
solid oxide
oxide fuel
anode active
Prior art date
Application number
PCT/JP2022/035754
Other languages
English (en)
French (fr)
Inventor
遥平 三浦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/035754 priority Critical patent/WO2024069714A1/ja
Publication of WO2024069714A1 publication Critical patent/WO2024069714A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for manufacturing the same.
  • Solid oxide fuel cells are fuel cells that use a solid oxide as an electrolyte.
  • Solid oxide fuel cells have a structure in which a solid oxide is sandwiched between an anode and a cathode. During the reaction, hydrogen is used at the anode and oxygen is used at the cathode.
  • An internal reforming fuel cell is a fuel cell in which the fuel is reformed at the anode. That is, in an internal reforming fuel cell, a fuel such as methane is directly supplied to the anode. The fuel is then reformed at the anode, and hydrogen is produced.
  • Patent Document 1 An example of an internal reforming type fuel cell is described in Patent Document 1 (JP2011-60713A).
  • Patent Document 1 describes a solid oxide fuel cell that is operated at a temperature at least higher than 700°C, and has a porous body made of a base metal and oxide ion conductive ceramics on whose surface an electrolyte membrane made of a specific solid oxide is formed, and the porous body is modified with a platinum group precious metal that can improve the reforming activity.
  • the object of the present invention is to provide a solid oxide fuel cell with improved reforming capacity and a method for manufacturing the same.
  • the present invention relates to a solid oxide fuel cell.
  • the solid oxide fuel cell has a metal support, an anode active layer provided on the metal support, an electrolyte layer provided on the anode active layer, and a cathode layer provided on the electrolyte layer.
  • the anode active layer includes composite particles.
  • the composite particles have Ni particles and a bimetal formed around the Ni particles.
  • the bimetal is a solid solution of Ni and a second metal.
  • the second metal is at least one selected from Group 8 to Group 10 elements other than Ni.
  • the present invention relates to a method for producing a solid oxide fuel cell.
  • the method includes the steps of: producing a green sheet laminate including a metal support green sheet, an anode active layer green sheet, and an electrolyte layer green sheet, the anode active layer green sheet including Ni particles; sintering the green sheet laminate in a reducing atmosphere to produce a sintered laminate including the metal support, the anode active layer, and the electrolyte layer; impregnating the anode active layer with an impregnation liquid including a second metal, which is at least one metal selected from the elements of Groups 8 to 10 other than Ni; and, after the impregnation step, heating the sintered laminate so that a bimetal, which is a solid solution of Ni and the second metal, is formed around the Ni particles.
  • FIG. 1 is a schematic cross-sectional view showing a solid oxide fuel cell.
  • FIG. 2 is a diagram showing a schematic diagram of a composite particle.
  • FIG. 3 is a flowchart showing a method for producing a solid oxide fuel cell.
  • FIG. 4 is a diagram showing the results of EDS mapping of Ni in Example 1.
  • FIG. 5 is a diagram showing the results of EDS mapping of Ru in Example 1.
  • FIG. 6 is a graph showing the relationship between temperature and the rate of the steam reforming reaction.
  • FIG. 7 is a diagram showing the relationship between the current density and the cell voltage and power density.
  • the solid oxide fuel cell according to this embodiment is an internal reforming type fuel cell.
  • an internal reforming type fuel cell is a fuel cell in which fuel is reformed at the anode.
  • Such internal reforming type cells are advantageous in terms of space because there is no need to provide a reformer outside the cell. Therefore, they are suitable for use in applications where installation space is limited (for example, vehicle applications).
  • Fig. 1 is a schematic cross-sectional view showing a solid oxide fuel cell 10 according to this embodiment.
  • the solid oxide fuel cell 10 has a metal support 1, an anode active layer 2, an electrolyte layer 3, and a cathode layer 4. These are laminated in the order of the metal support 1, the anode active layer 2, the electrolyte layer 3, and the cathode layer 4.
  • FIG. 2 is a diagram showing a composite particle.
  • the composite particle has Ni particles and a bimetal formed around the Ni particles.
  • FIG. 2 also shows the configuration of the bimetal.
  • the bimetal is a solid solution of Ni and a second metal.
  • the second metal is at least one selected from the elements of Groups 8 to 10 other than Ni. According to the knowledge of the inventors, the inclusion of composite particles having such a configuration improves the reforming ability of the anode active layer 2.
  • the metal support 1 is provided to support the anode active layer 2 and the like.
  • the metal support 1 is also called a metal support or the like.
  • the metal support 1 is in the form of a sheet.
  • the thickness of the metal support 1 is, for example, 50 to 1000 ⁇ m, and preferably 100 to 500 ⁇ m.
  • the metal support 1 is porous. Because the metal support 1 is porous, it is possible to supply fuel gas to the anode active layer 2 from the outside through the metal support 1.
  • the material of the metal support 1 is not particularly limited, but preferably contains Fe and Cr.
  • the metal support 1 contains SUS.
  • the anode active layer 2 is a layer that functions as an electrode. That is, the anode active layer 2 is a portion that reacts hydrogen with oxide ions to generate electrons. As described above, the anode active layer 2 has reforming activity. That is, the anode active layer 2 is configured to reform a fuel gas (e.g., a hydrocarbon gas such as methane) supplied via the metal support 1 to generate hydrogen.
  • a fuel gas e.g., a hydrocarbon gas such as methane
  • the anode active layer 2 is porous. As described above, the anode active layer 2 contains composite particles of Ni particles and a bimetal.
  • the average particle diameter of the Ni particles is, for example, 300 to 2000 nm.
  • the average particle diameter of the particles can be calculated as the number average of the circle equivalent diameter of each particle obtained from an electron microscope image such as a SEM.
  • a bimetal is a solid solution of Ni and a second metal.
  • a bimetal is a portion in which Ni and a second metal are fused together to form a uniform solid phase.
  • Such a solid solution can be obtained by heating non-oxidized Ni particles (metallic nickel particles) together with a second metal to form a solid solution. Specifically, the Ni particles are heated together with the second metal at a temperature at which the Ni particles are not oxidized, and the Ni and the second metal are diffused into each other. This makes it possible to obtain a solid solution of Ni and the second metal as a bimetal. Note that even if oxidized Ni particles are heated together with the second metal, a bimetal cannot be obtained.
  • the second metal is at least one selected from the group 8 to 10 elements other than Ni.
  • the second metal is at least one selected from the group consisting of Ru, Pt, Rh, Pd, Ir, and Co. More preferably, the second metal is Ru.
  • the average particle size of the bimetal is preferably smaller than the average particle size of the Ni particles. More preferably, the average particle size of the bimetal is 1/10 or less of the average particle size of the Ni particles. More preferably, the average particle size of the bimetal is 5 to 30 nm.
  • a bimetal can be confirmed, for example, by EDS mapping. That is, Ni and the second metal are mapped by EDS mapping. If Ni and the second metal are confirmed to be in the same position, it can be determined that a bimetal is present. Details of the measurement conditions for EDS mapping will be explained in the examples described later.
  • the second metal is preferably contained in an amount of, for example, 0.005 g/ cm2 or more, preferably 0.01 g/ cm2 or more.
  • the upper limit of the content of the second metal is not particularly limited, but is, for example, 0.50 g/ cm2 or less, preferably 0.10 g/ cm2 or less, more preferably 0.02 g/ cm2 or less.
  • the anode active layer 2 may contain components other than the composite particles.
  • the other components include ceramics.
  • ceramics refers to a sintered body of an inorganic material, and is a concept that includes not only nonmetallic oxides but also metallic oxides.
  • ceramics include solid oxide ceramics. Examples of solid oxide ceramics that can be used include zirconium oxide and cerium oxide.
  • the Ni particles and ceramics are contained in an amount such that the volume ratio of Ni to ceramics (Ni/ceramics) in the anode active layer 2 is, for example, 20/80 to 60/40.
  • the total content of Ni and ceramics in the anode active layer 2 is, for example, 90 mass% or more, and preferably 95 mass% or more.
  • the thickness of the anode active layer 2 is not particularly limited, but is, for example, 0.3 to 100 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • the electrolyte layer 3 is made of a solid oxide. Specifically, it is made of a dense solid oxide ceramic.
  • the electrolyte layer 3 may be configured to be capable of conducting oxide ions while not allowing gas to pass through.
  • the solid oxide ceramic is not particularly limited, but may be, for example, a zirconia-containing material.
  • the zirconia-containing material may be, for example, stabilized zirconia doped with yttria, neodymium oxide, samarium, gadolinium, scandium, or the like.
  • the thickness of the electrolyte layer 3 is, for example, 0.5 to 20 ⁇ m, and preferably 1 to 10 ⁇ m.
  • the cathode layer 4 is a portion that converts oxygen molecules contained in the cathode gas into oxide ions.
  • the cathode layer 4 can be composed of, for example, a porous ceramic layer.
  • the thickness of the cathode layer 4 is, for example, 0.3 to 50 ⁇ m, preferably 0.5 to 30 ⁇ m.
  • a metal support for the cathode may be provided on the cathode layer 4, similar to the metal support 1 that supports the anode active layer 2.
  • the above is an explanation of the configuration of the solid oxide fuel cell 10.
  • the solid oxide fuel cell 10 according to this embodiment is an internal reforming type, so a hydrocarbon fuel such as methane is supplied to the anode active layer 2 via the metal support 1.
  • the fuel is reformed by a steam reforming reaction to produce hydrogen.
  • the produced hydrogen is used in the power generation reaction in the anode active layer 2.
  • an oxygen-containing gas is supplied to the cathode layer 4 as a cathode gas.
  • the oxygen contained in the cathode gas is used in the power generation reaction in the cathode layer 4.
  • a solid oxide fuel cell having the above-mentioned configuration can be obtained by employing a specific method described below.
  • FIG. 3 is a flowchart showing a method for manufacturing a solid oxide fuel cell 10.
  • This manufacturing method includes a step (S1) of producing a green sheet laminate, a step (S2) of sintering the green sheet laminate to produce a sintered laminate, a step (S3) of impregnating the sintered laminate with an impregnation liquid containing a second metal, and a step (S4) of heating the sintered laminate after impregnation.
  • S1 of producing a green sheet laminate
  • S2 of sintering the green sheet laminate to produce a sintered laminate
  • a step (S3) of impregnating the sintered laminate with an impregnation liquid containing a second metal and a step (S4) of heating the sintered laminate after impregnation.
  • Step S1 Preparation of green sheet laminate
  • a metal support green sheet, an anode active layer green sheet, and an electrolyte layer green sheet are prepared. These are precursors of the metal support, the anode active layer, and the electrolyte layer, respectively.
  • Each green sheet can be obtained, for example, by preparing a slurry containing the constituent materials and forming it into a sheet by a tape casting method or the like. Note that the slurry may contain a binder, a pore former, and the like, as necessary.
  • oxidized Ni particles may be used as a raw material.
  • oxidized Ni particles are mixed with ceramics, a binder, a pore-forming material, a solvent, etc., and pulverized to prepare a slurry.
  • the prepared slurry is then formed into a sheet to obtain the anode active layer green sheet.
  • a bimetal cannot be formed if the Ni particles remain in an oxidized state, but in this embodiment, the Ni particles are reduced in the sintering process described below. Therefore, even if oxidized Ni particles are used as a raw material, it is possible to form a bimetal in a later process.
  • the average particle size of the Ni particles used as the raw material is, for example, 300 to 2000 nm. If Ni particles of this size are used as the raw material, the average particle size of the Ni particles in the final composite particles will also be around 300 to 2000 nm.
  • each green sheet After each green sheet is created, they are laminated and stuck together to obtain a green sheet laminate. At this time, pressure may be applied while pressing to increase the adhesive strength.
  • Step S2 Preparation of sintered laminate
  • the green sheet laminate is sintered in a reducing atmosphere.
  • the green sheet laminate is sintered in a H2 gas atmosphere. This results in a sintered laminate.
  • the Ni particles contained in the anode active layer are in a non-oxidized state.
  • the sintering temperature may be such that the green sheet laminate is sintered into an integrated body.
  • the sintering temperature is 1200 to 1600°C.
  • the sintering time is, for example, 0.5 to 5 hours.
  • Degreasing may be performed before sintering.
  • degreasing can be performed by treating the green sheet laminate in an air atmosphere at 500 to 700°C before sintering.
  • an impregnation solution containing a second metal is prepared, and the anode active layer is impregnated with the impregnation solution.
  • the impregnation solution contains, for example, an aqueous solution of a metal salt containing the second metal.
  • the impregnation solution can be prepared by dissolving Ru nitrate salt in pure water.
  • a dispersant e.g., Triton-X 100 from Sigma-Aldrich
  • Triton-X 100 from Sigma-Aldrich may be mixed in order to improve the dispersibility of Ru.
  • the concentration of the second metal in the impregnation liquid is, for example, 0.1 to 10 ( ⁇ 10 ⁇ 3 mol/m 3 ), preferably 0.5 to 5 ( ⁇ 10 ⁇ 3 mol/m 3 ). If a liquid containing the second metal at such a concentration is used as the impregnation liquid, a bimetal having an average particle size of about 5 to 30 nm can be obtained in step S4.
  • the impregnation liquid is supplied to the anode active layer by dripping it onto the metal support.
  • the sintered laminate is then placed in a vacuum chamber and the pressure is reduced to 0.1 to 0.5 atmospheres. This allows the impregnation liquid to be impregnated into the cathode active layer.
  • reduced pressure it is preferable to keep the temperature between room temperature and 80°C to prevent bumping under reduced pressure.
  • Step S4 Heating Next, the sintered laminate is heated to form the above-mentioned composite particles in the anode active layer. That is, the Ni particles and the second metal are dissolved to form a solid solution, and a bimetal is formed around the Ni particles.
  • the heating in this step may be performed in an air atmosphere, a reducing atmosphere, or an inert gas atmosphere. From the viewpoint of cost, it is preferable to perform the heating in an air atmosphere at normal pressure.
  • the Ni particles in order to form a bimetal, the Ni particles must be in a non-oxidized state. Therefore, when heating in an air atmosphere, heating is performed at a temperature at which the Ni particles are not oxidized. Specifically, when heating in an air atmosphere at normal pressure, heating is preferably performed at 600°C or less, more preferably at 550°C or less, and even more preferably at 500°C or less. Heating at 400°C or more is also preferable, and heating at 450°C or more is even more preferable.
  • the material is heated in a reducing atmosphere or an inert gas atmosphere, it can be heated at a higher temperature than in an air atmosphere. By carrying out heat treatment at a high temperature, a bimetal is more likely to be formed.
  • the material is heated in a reducing atmosphere or an inert gas atmosphere, it can be heated at a temperature range of 500 to 800°C, preferably at a temperature range of 650 to 750°C.
  • the material is heated in a mixed gas atmosphere of hydrogen and argon (hydrogen concentration 1 to 10 vol%) at a temperature range of 650 to 750°C.
  • step S3 After heating, the processes from step S3 onwards may be repeated as necessary. That is, the impregnation with the impregnation liquid containing the second metal (step S3) and the heating (step S4) are repeated.
  • step S3 the impregnation with the impregnation liquid containing the second metal
  • step S4 the heating
  • steps S3 and S4 up to four times. Even if steps S3 and S4 are repeated four or more times, the amount of the introduced second metal does not tend to increase significantly.
  • the cathode layer and the metal support for the cathode may be formed when the green sheet laminate is produced (step S1). That is, when the green sheet laminate is produced, in addition to the metal support green sheet for the anode, the anode active layer green sheet, and the electrolyte layer green sheet, the cathode layer green sheet and the metal support green sheet for the cathode may also be produced and laminated to prepare the green sheet laminate. If necessary, the cathode layer may be supported with a cathode catalyst (e.g., praseodymium oxide).
  • a cathode catalyst e.g., praseodymium oxide
  • the cathode catalyst can be supported, for example, by impregnating the cathode layer with an aqueous solution containing the cathode catalyst and heating it.
  • the support of the cathode catalyst may be performed before or after the introduction of the second metal into the anode active layer (steps S3 and S4).
  • the impregnation and heating conditions of the aqueous solution containing the cathode catalyst can be, for example, the same as the conditions when the second metal is introduced in steps S3 and S4.
  • the method described above produces a solid oxide fuel cell in which the anode active layer contains specific composite particles.
  • the solid oxide fuel cell according to this embodiment can be manufactured by using a metal support and sintering under specific conditions in step S2. If a ceramic support known in the industry is used as the support for the anode active layer, an anode active layer having specific composite particles cannot be obtained. For example, if a ceramic support is used instead of a metal support and sintering is performed in a reducing atmosphere during sintering of the green sheet laminate (step S2), the strength of the support is reduced. As a result, the support is damaged during the final heat treatment (step S4).
  • a ceramic support is used as the support and sintering is performed in an oxidizing atmosphere during sintering of the green sheet laminate (step S2), the Ni particles are in an oxidized state, so that the reaction with the second metal does not proceed. In other words, a bimetal is not formed during the final heat treatment (step S4).
  • a metal support is used as the support and sintering is performed in a reducing atmosphere during sintering of the green sheet laminate (step S2), so that a bimetal can be formed without damaging the support in step S4, and a solid oxide fuel cell with excellent reforming ability can be obtained.
  • the solid oxide fuel cell has a metal support, an anode active layer provided on the metal support, an electrolyte layer provided on the anode active layer, and a cathode layer provided on the electrolyte layer.
  • the anode active layer includes composite particles.
  • the composite particles have Ni particles and a bimetal formed around the Ni particles.
  • the bimetal is a solid solution of Ni and a second metal.
  • the second metal is at least one selected from Group 8 to Group 10 elements other than Ni.
  • the second metal is preferably at least one selected from the group consisting of Ru, Pt, Rh, Pd, Ir, and Co. With this configuration, a higher modification ability can be obtained.
  • the average particle size of the bimetal is preferably smaller than the average particle size of the Ni particles. With this configuration, a higher modification ability can be obtained.
  • the bimetal is preferably a reaction product between non-oxidized Ni and a second metal. This configuration provides a higher reforming capacity.
  • the solid oxide fuel cell is preferably an internal reforming type.
  • a method for producing a solid oxide fuel cell includes the steps of: preparing a green sheet laminate including a metal support green sheet, an anode active layer green sheet, and an electrolyte layer green sheet, the anode active layer green sheet including Ni particles; sintering the green sheet laminate in a reducing atmosphere to produce a sintered laminate including a metal support, an anode active layer, and an electrolyte layer; impregnating the anode active layer with an impregnation liquid including a second metal, which is at least one metal selected from Groups 8 to 10 other than Ni; and, after the impregnation step, heating the sintered laminate so that a solid solution, which is a reaction product of Ni and the second metal, is formed around the Ni particles.
  • This method allows the production of a solid oxide fuel cell with high reforming capacity.
  • the impregnation liquid preferably contains an aqueous solution of a metal salt containing the second metal.
  • the step of heating the sintered laminate is preferably carried out in an air atmosphere.
  • composite particles can be obtained at low cost.
  • the step of heating the sintered laminate is preferably carried out at an atmospheric temperature of 400 to 600°C or less. At such a temperature, the Ni particles are not oxidized, so a bimetal that is a solid solution of Ni and the second metal can be formed.
  • the step of heating the sintered laminate may be carried out in a reducing atmosphere or an inert gas atmosphere.
  • a reducing atmosphere or an inert gas atmosphere the Ni particles are not oxidized, so the treatment can be carried out at a higher temperature.
  • the process of impregnating with the impregnation liquid and the process of heating the sintered laminate are preferably carried out multiple times.
  • the desired amount of the second metal can be incorporated into the anode active layer.
  • Example 1 A stainless steel powder (average particle size 20 ⁇ m), a binder, and a pore former were mixed in an organic solvent and pulverized in a pot mill to obtain a slurry for a metal support. The obtained slurry was applied onto a lumirror tape to obtain a metal support green sheet (thickness 300 ⁇ m) for an anode.
  • Ni particles (average particle diameter 500 nm), ceramic particles (with ceria as the parent phase), binder, and pore former were mixed in an organic solvent and pulverized in a pot mill to obtain a slurry for the anode active layer.
  • the obtained slurry was applied onto a lumirror tape to obtain an anode active layer green sheet.
  • the ratio of Ni particles to ceramic particles was adjusted so that the volume ratio (Ni/ceramic) was 50/50.
  • the thickness of the anode active layer green sheet was within the range of 30 ⁇ m.
  • a slurry containing a material for the electrolyte layer (zirconia), a slurry containing a material for the cathode layer (zirconia), and a slurry containing a material for forming the metal support on the cathode side were prepared. Then, using each slurry, an electrolyte green sheet (thickness 4 ⁇ m), a cathode layer green sheet (thickness 30 ⁇ m), and a metal support green sheet for the cathode (thickness 300 ⁇ m) were obtained by tape casting.
  • anode metal support green sheet, anode active layer green sheet, electrolyte green sheet, cathode layer green sheet, and cathode metal support green sheet were laminated together. At this time, pressure was applied while applying pressure. This resulted in a green sheet laminate.
  • the green sheet laminate was treated in an air atmosphere at 600° C. and degreased. Further, it was sintered in a H 2 atmosphere at 1300° C. for 1 hour. As a result, a sintered laminate was obtained.
  • the prepared impregnation solution was dropped onto the sintered laminate from the anode side. After dropping, the sintered laminate was placed in a vacuum chamber, and the pressure in the vacuum chamber was reduced to 0.1 to 0.5 atm. This allowed the anode active layer to be impregnated with the impregnation solution. Note that the temperature was controlled to 80° C. or less to prevent bumping. Next, the sintered laminate was placed in an electric furnace, and heated at 500° C. for 30 minutes in an air atmosphere.
  • praseodymium oxide was supported on the cathode layer as a cathode catalyst. Specifically, praseodymium oxide was dissolved in pure water to obtain a praseodymium oxide aqueous solution. The solute concentration was 1.0 ⁇ 10 ⁇ 3 (mol/m 3 ). The prepared aqueous solution was dropped onto the sintered laminate from the cathode side. After dropping, the sintered laminate was placed in a vacuum chamber, and the pressure in the vacuum chamber was reduced to 0.1 to 0.5 atm. This allowed the cathode layer to be impregnated with the praseodymium oxide aqueous solution. In order to prevent bumping, the temperature was controlled to 80° C. or less. Next, the sintered laminate was placed in an electric furnace and heated at 500° C. for 30 minutes in an air atmosphere. This resulted in the solid oxide fuel cell according to Example 1 being obtained.
  • Comparative Example 1 instead of the Ru nitrate solution, a Ni-containing aqueous solution was used as the impregnation solution.
  • the solute concentration of the Ni-containing aqueous solution was 1.0 ⁇ 10 -3 (mol/m 3 ).
  • a solid oxide fuel cell according to Comparative Example 1 was obtained using the same method as in Example 1 in other respects.
  • Comparative Example 2 The impregnation with the impregnation liquid and the subsequent heat treatment step were not carried out. In other respects, the solid oxide fuel cell according to Comparative Example 2 was obtained in the same manner as in Example 1.
  • EDS Mapping The fuel cell according to Example 1 was embedded in resin, cut with a metal jig, and the cross section was processed with an FIB. The anode active layer was then observed by EDS mapping under the following conditions.
  • Example 1 For the fuel cells according to Example 1, Comparative Example 1, and Comparative Example 2, power was generated using methane as fuel, and the relationship between current density, cell voltage, and power density was measured. The results are shown in Fig. 7. As shown in Fig. 7, Example 1 had higher cell voltage and power density than Comparative Examples 1 and 2, and it was confirmed that Example 1 was superior in terms of battery characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

固体酸化物形燃料電池は、金属支持体と、金属支持体上に設けられたアノード活性層と、アノード活性層上に設けられた電解質層と、電解質層上に設けられたカソード層とを有する。アノード活性層は、複合粒子を含む。複合粒子は、Ni粒子と、バイメタルとを有しており、バイメタルは、Niと、第2金属との固溶体であり、第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である。

Description

固体酸化物形燃料電池及びその製造方法
 本発明は、固体酸化物形燃料電池及びその製造方法に関する。
 固体酸化物形燃料電池は、電解質として固体酸化物が使用された燃料電池である。固体酸化物形燃料電池は、固体酸化物が、アノード及びカソードにより挟まれた構成を有している。反応時には、アノードにおいて水素が使用され、カソードにおいて酸素が使用される。
 固体酸化物形燃料電池として、内部改質型の燃料電池が知られている。内部改質型の燃料電池とは、アノードにおいて燃料が改質される燃料電池である。すなわち、内部改質型の燃料電池では、アノードにメタンなどの燃料が直接供給される。そして、アノードにおいて燃料が改質され、水素が生成される。
 内部改質型の燃料電池の一例が、特許文献1(JP2011-60713A)に記載されている。特許文献1には、少なくとも700℃よりも高い温度で運転される固体酸化物形燃料電池であって、その表面に特定の固体酸化物からなる電解質膜を形成された卑金属及び酸化物イオン導電性セラミックスからなる多孔性体を有し、多孔性体には改質活性を向上させ得る白金族系貴金属が修飾されていることが記載されている。
 内部改質型の固体酸化物形燃料電池における改質能力は、高い方がよい。従って、本発明の目的は、改質能力が改善された固体酸化物形燃料電池及びその製造方法を提供することにある。
 一態様において、本発明は、固体酸化物形燃料電池に関する。この固体酸化物形燃料電池は、金属支持体と、金属支持体上に設けられたアノード活性層と、アノード活性層上に設けられた電解質層と、電解質層上に設けられたカソード層とを有している。アノード活性層は、複合粒子を含む。複合粒子は、Ni粒子と、Ni粒子の周囲に形成されたバイメタルとを有する。バイメタルは、Niと、第2金属との固溶体である。第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である。
 一態様において、本発明は、固体酸化物形燃料電池の製造方法に関する。この製造方法は、金属支持体グリーンシートと、アノード活性層グリーンシートと、電解質層グリーンシートとを含むグリーンシート積層体を作製する工程であって、アノード活性層グリーンシートが、Ni粒子を含む工程と、グリーンシート積層体を、還元雰囲気中で焼結し、金属支持体、アノード活性層、及び電解質層を有する焼結積層体を作製する工程と、アノード活性層に、Ni以外の第8族~第10族元素から選択される少なくとも一種の金属である第2金属を含む含浸液を含浸させる工程と、含浸させる工程の後に、Ni粒子の周囲にNiと第2金属との固溶体であるバイメタルが形成されるように、焼結積層体を加熱する工程と、を備える。
図1は、固体酸化物形燃料電池を示す概略断面図である。 図2は、複合粒子を模式的に示す図である。 図3は、固体酸化物形燃料電池の製造方法を示すフローチャートである。 図4は、実施例1のNiのEDSマッピングの結果を示す図である。 図5は、実施例1のRuのEDSマッピングの結果を示す図である。 図6は、温度と水蒸気改質反応の速度との関係を示す図である。 図7は、電流密度と、セル電圧及び電力密度との関係を示す図である。
 以下に、本発明の実施形態について説明する。本実施形態に係る固体酸化物形燃料電池は、内部改質型の燃料電池である。既述の通り、内部改質型の燃料電池とは、アノードにおいて燃料が改質される燃料電池である。このような内部改質型の電池は、電池の外部に改質器を設ける必要がないから、スペースの点で有利である。そのため、設置スペースに限りのある用途(例えば車両用途)において好適に使用される。
1:固体酸化物形燃料電池
 まず、固体酸化物形燃料電池の構成について説明する。図1は、本実施形態に係る固体酸化物形燃料電池10を示す概略断面図である。固体酸化物形燃料電池10は、金属支持体1と、アノード活性層2と、電解質層3と、カソード層4とを有している。これらは、金属支持体1、アノード活性層2、電解質層3、及びカソード層4の順に積層されている。
 本実施形態に係る固体酸化物形燃料電池10の特徴の一つは、アノード活性層2の構成である。すなわち、アノード活性層2は、特定の複合粒子を含む。図2は、複合粒子を模式的に示す図である。複合粒子は、Ni粒子と、Ni粒子の周囲に形成されたバイメタルとを有している。図2には、バイメタルの構成も模式的に示されている。バイメタルは、Niと、第2金属との固溶体である。第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である。本発明者の知見によれば、このような構成を有する複合粒子が含まれていることによって、アノード活性層2における改質能力が改善する。
 以下、固体酸化物形燃料電池10における各部分の構成を詳細に説明する。
(金属支持体)
 金属支持体1は、アノード活性層2等を支持するために設けられている。金属支持体1は、メタルサポートなどとも呼ばれる。金属支持体1が設けられていることによって、アノード活性層2や電解質層3等の厚みが薄い場合であっても、全体としての形状を維持することができる。
 また、金属支持体1を用いることによって、製造上、アノード活性層2に上述の複合粒子を生成することが可能となる。この点についての詳細は後述する。
 金属支持体1は、シート状である。金属支持体1の厚みは、例えば50~1000μm、好ましくは100~500μmである。
 金属支持体1は、多孔質である。金属支持体1が多孔質であることにより、外部から金属支持体1を介して燃料ガスをアノード活性層2に供給することが可能となっている。
 金属支持体1の構成材料は特に限定されないが、好ましくは、Fe及びCrを含む。好ましくは、金属支持体1は、SUSを含む。
(アノード活性層)
 アノード活性層2は、電極として機能する層である。すなわち、アノード活性層2は、水素を酸化物イオンと反応させて、電子を生じさせる部分である。また、既述のように、アノード活性層2は、改質活性を有している。すなわち、アノード活性層2は、金属支持体1を介して供給された燃料ガス(例えばメタンなどの炭化水素ガス)を改質し、水素を生成するように構成されている。
 アノード活性層2は、多孔質である。既述のように、アノード活性層2は、Ni粒子とバイメタルとの複合粒子を含んでいる。
 Ni粒子の平均粒子径は、例えば300~2000nmである。なお、本明細書において、粒子の平均粒子径は、例えば、SEMなどの電子顕微鏡画像から求めた各粒子の円相当直径の個数平均として求めることができる。
 本明細書において、バイメタルとは、既述のように、Niと第2金属との固溶体である。すなわち、バイメタル、Niと第2金属とが溶け合い、均一な固相を形成した部分である。このような固溶体は、非酸化状態のNi粒子(金属ニッケル粒子)を、第2金属とともに加熱して固溶させることにより、得ることができる。具体的には、Ni粒子が酸化しない程度の温度でNi粒子を第2金属とともに加熱し、Niと第2金属とを相互に拡散させる。これにより、バイメタルとして、Niと第2金属との固溶体を得ることができる。なお、仮に酸化状態のNi粒子を第2金属とともに加熱しても、バイメタルは得られない。
 第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である。好ましくは、第2金属は、Ru、Pt、Rh、Pd、Ir、およびCoからなる群から選択される少なくとも一種である。より好ましくは、第2金属は、Ruである。
 バイメタルの平均粒子径は、Ni粒子の平均粒子径よりも小さいことが好ましい。より好ましくは、バイメタルの平均粒子径は、Ni粒子の平均粒子径の1/10以下である。より好ましくは、バイメタルの平均粒子径は、5~30nmである。
 バイメタルの存在は、例えば、EDSマッピングにより確認することができる。すなわち、EDSマッピングにより、Niと第2金属のマッピングを行う。そして、Niと第2金属とが同じ位置に確認されれば、バイメタルが存在していると判断することができる。なお、EDSマッピングによる測定条件の詳細は、後述する実施例において説明する。
 第2金属は、例えば0.005g/cm以上、好ましくは0.01g/cm以上の量で含まれていることが好ましい。また、第2金属の含有量の上限は特に限定されないが、例えば、0.50g/cm以下、好ましくは0.10g/cm以下、より好ましくは0.02g/cm以下である。
 アノード活性層2には、複合粒子以外の他の成分が含まれていてもよい。他の成分として、例えば、セラミックスが挙げられる。なお、本発明において、セラミックスとは、無機物の焼結体をいい、非金属酸化物だけでなく、金属酸化物をも包含する概念である。セラミックスとしては、例えば、固体酸化物セラミックスが挙げられる。固体酸化物セラミックスとしては、酸化ジルコニウム及び酸化セリウム等を用いることができる。
 Ni粒子及びセラミックスは、例えば、アノード活性層2中におけるNiとセラミックスとの体積比(Ni/セラミックス)が20/80~60/40となるような量で含まれている。
 アノード活性層2におけるNiとセラミックスとの合計含有量は、例えば90質量%以上であり、好ましくは95質量%以上である。
 アノード活性層2の厚みは、特に限定されないが、例えば0.3~100μm、好ましくは0.5~50μmである。
 アノード活性層2に特定の複合粒子が含まれていることで改質能力が改善される理由は明確ではないが、1つの理由は比表面積であるものと考えられる。すなわち、複合粒子は、Ni粒子の周囲にバイメタルが形成されていることによって、高い比表面積を有していると考えられる。そのため、改質能力が改善されるものと考えられる。また、もう一つの理由として、第2金属の電子供与性が考えられる。すなわち、本実施形態で特定される第2金属は、電子供与性が高い。従って、Niに対して第2金属が電子を供給することによって、改質反応が促進されているものと考えられる。
(電解質層)
 電解質層3は、既述のように、固体酸化物により構成される。具体的には、緻密な固体酸化物セラミックスにより構成される。電解質層3は、酸化物イオンが伝導可能であり、一方でガスについては透過させないように構成されていればよい。固体酸化物セラミックスとしては、特に限定されないが、例えば、ジルコニア含有材料を挙げることができる。ジルコニア含有材料としては、イットリア、酸化ネオジム、サマリウム、ガドリニウム、およびスカンジウム等をドープした安定化ジルコニアなどを挙げることができる。電解質層3の厚さは、例えば0.5~20μm、好ましくは1~10μmである。
(カソード層)
 カソード層4は、カソードガスに含まれる酸素分子を酸化物イオンに変換する部分である。カソード層4は、例えば、多孔質セラミックス層により構成することができる。カソード層4を構成する多孔質セラミックスとしては、例えば、例えば、固体酸化物セラミックスを用いることができる。
 カソード層4の厚みは、例えば0.3~50μm、好ましくは0.5~30μmである。
 なお、図示されていないが、カソード層4上には、必要に応じて、アノード活性層2を支持する金属支持体1と同様に、カソード用の金属支持体が設けられていてもよい。
 以上が、固体酸化物形燃料電池10の構成についての説明である。本実施形態に係る固体酸化物形燃料電池10は、内部改質型であるので、例えばメタンなどの炭化水素燃料が金属支持体1を介してアノード活性層2に供給される。アノード活性層2では、燃料が水蒸気改質反応により改質され、水素が生成される。生成した水素が、アノード活性層2において発電反応に使用される。一方、カソード層4には、カソードガスとして酸素含有ガスが供給される。カソードガスに含まれる酸素が、カソード層4において発電反応に使用される。
2:固体酸化物形燃料電池の製造方法
 続いて、固体酸化物形燃料電池の製造方法について説明する。上述した構成を有する固体酸化物形燃料電池は、以下に説明する特定の方法を採用することにより、得ることができる。
 図3は、固体酸化物形燃料電池10の製造方法を示すフローチャートである。この製造方法は、グリーンシート積層体を作製する工程(S1)と、グリーンシート積層体を焼結し、焼結積層体を作製する工程(S2)と、焼結積層体に第2金属を含む含浸液を含浸させる工程と(S3)、含浸後の焼結積層体を加熱する工程(S4)とを有している。以下に、各工程について詳述する。
(ステップS1)グリーンシート積層体の作製
 まず、金属支持体グリーンシート、アノード活性層グリーンシート、及び電解質層グリーンシートを作成する。これらは、それぞれ、金属支持体、アノード活性層、及び電解質層の前駆体である。各グリーンシートは、例えば、構成材料を含むスラリーを調製し、テープキャスト法等によってシート状に成形することにより、得ることができる。なお、必要に応じて、スラリーには、バインダー及び造孔材などが含まれていてもよい。
 なお、アノード活性層グリーンシートの作製にあたっては、酸化状態のNi粒子を原料として使用してもよい。例えば、酸化状態のNi粒子を、セラミックス、バインダー、造孔材、及び溶媒等と混合し、粉砕し、スラリーを調製する。そして、調製したスラリーをシート状に成形し、アノード活性層グリーンシートを得る。なお、既述のように、Ni粒子が酸化状態のままではバイメタルを形成することはできないが、本実施形態では、後述する焼結工程においてNi粒子が還元される。従って、酸化状態のNi粒子を原料として使用しても、後の工程でバイメタルを形成することが可能である。
 原料として使用するNi粒子の平均粒子径は、例えば300~2000nmである。このようなサイズのNi粒子を原料として使用すれば、最終的に得られる複合粒子におけるNi粒子の平均粒子径も、300~2000nm程度になる。
 各グリーンシートの作成後、これらをラミネートし、張り合わせる。これにより、グリーンシート積層体を得る。この際、接着強度を高めるため、加圧しながら圧力を加えてもよい。
(ステップS2)焼結積層体の作製
 続いて、グリーンシート積層体を、還元雰囲気中で焼結する。好ましくは、Hガス雰囲気中で、グリーンシート積層体を焼結する。これにより、焼結積層体が得られる。還元雰囲気中で焼結することにより、アノード活性層に含まれるNi粒子が非酸化状態になる。
 焼結温度は、グリーンシート積層体が焼結して一体化する程度の温度であればよい。例えば、焼結温度は、1200~1600℃である。焼結時間は、例えば0.5~5時間である。
 なお、焼結前に、脱脂を行ってもよい。例えば、焼結前に、大気雰囲気中、500~700℃でグリーンシート積層体を処理することにより、脱脂を行うことができる。
(ステップS3)含浸
 続いて、第2金属を含む含浸液を調製し、アノード活性層に含浸液を含浸させる。含浸液は、例えば、第2金属を含む金属塩の水溶液を含む。例えば、第2金属がRuである場合には、硝酸Ru塩を純水に溶解させることにより、含浸液を調製することができる。なお、Ruの分散性を向上させるために、分散剤(例えばシグマ・アルドリッチ社のTriton-X 100等)を混合してもよい。
 含浸液中における第2金属の濃度は、例えば0.1~10(×10-3mol/m)、好ましくは0.5~5(×10-3mol/m)である。このような濃度で第2金属を含む液を含浸液として使用すれば、ステップS4において、5~30nm程度の平均粒子径を有するバイメタルを得ることができる。
 含浸時には、減圧状態にすることが好ましい。具体的には、含浸液を金属支持体上に滴下することによって、アノード活性層に含浸液を供給する。その後、焼結積層体を真空チャンバー内に設置し、0.1~0.5気圧になるように減圧する。これにより、含浸液をカソード活性層に含浸させることができる。減圧時には、減圧下での突沸を防ぐため、温度を室温~80℃に保つことが好ましい。
(ステップS4)加熱
 続いて、焼結積層体を加熱し、アノード活性層に既述の複合粒子を形成する。すなわち、Ni粒子と第2金属とを固溶させ、Ni粒子の周囲にバイメタルを形成させる。
 本工程における加熱は、大気雰囲気中で行ってもよいし、還元雰囲気下で行ってもよいし、不活性ガス雰囲気下で行ってもよい。コストの観点からは、大気雰囲気下、常圧で加熱を行うことが好ましい。
 ただし、バイメタルを形成するためには、既述のように、Ni粒子が非酸化状態である必要がある。従って、大気雰囲気中で加熱する場合には、Ni粒子が酸化しない程度の温度で加熱を行う。具体的には、大気雰囲気中、常圧で加熱する場合には、600℃以下で加熱することが好ましく、550℃以下で加熱することがより好ましく、500℃以下で加熱することがさらに好ましい。また、400℃以上で加熱することが好ましく、450℃以上で加熱することがより好ましい。
 一方、還元雰囲気下又は不活性ガス雰囲気下であれば、大気雰囲気下よりも高い温度で加熱を行うことができる。高い温度で熱処理を行うことにより、バイメタルが形成されやすくなる。例えば、還元雰囲気下又は不活性ガス雰囲気下であれば、500~800℃の温度範囲、好ましくは650~750℃の温度範囲で加熱することができる。好ましい一態様では、水素とアルゴンの混合ガス雰囲気(水素濃度1~10vol%)で、650~750℃の温度範囲で加熱を行う。
 加熱後、必要に応じて、ステップS3以降の処理を繰り返してもよい。すなわち、第2金属を含む含浸液の含浸(ステップS3)と、加熱(ステップS4)とを繰り返す。これにより、所望する量の第2金属をアノード活性層に導入することができる。すなわち、所望する量のバイメタルを有する複合粒子を、アノード活性層に含ませることができる。なお、製造コスト等を考慮すると、ステップS3及びステップS4は、4回まで繰り返すことが好ましい。4回以上繰り返しても、第2金属の導入量はさほど増えない傾向にある。
 その後、電解質層上にカソード層と、必要に応じてカソード用の金属支持体とを形成する。これにより、本実施形態に係る固体酸化物形燃料電池が得られる。なお、カソード層及びカソード用の金属支持体は、グリーンシート積層体の作製時(ステップS1)に形成されてもよい。すなわち、グリーンシート積層体の作製時に、アノード用の金属支持体グリーンシート、アノード活性層グリーンシート、及び電解質層グリーンシートに加えて、カソード層グリーンシート及びカソード用の金属支持体グリーンシートも作成し、これらをラミネートすることにより、グリーンシート積層体を調製してもよい。また、必要に応じて、カソード層にカソード触媒(例えば、プラセオジム酸化物)を担持させてもよい。カソード触媒は、例えば、カソード触媒を含む水溶液をカソード層に含浸させ、加熱することにより、担持させることができる。カソード触媒の担持は、アノード活性層への第2金属の導入(ステップS3及びS4)よりも前に行ってもよいし、後に行ってもよい。カソード触媒を含む水溶液の含浸及び加熱条件(溶質濃度、加熱時における加熱温度、雰囲気圧力、加熱時間)は、例えば、ステップS3及びS4における第2金属の導入時における条件と同様の条件を採用することができる。
 以上説明した方法により、アノード活性層に特定の複合粒子が含まれる固体酸化物形燃料電池が得られる。
 なお、本実施形態に係る固体酸化物形燃料電池は、金属支持体を使用し、ステップS2において特定の条件で焼結を行っているから、製造することができる。仮に、アノード活性層用の支持体として、当業界で周知のセラミックス支持体を使用した場合には、特定の複合粒子を有するアノード活性層を得ることができない。例えば、金属支持体ではなくセラミックス支持体を用い、グリーンシート積層体の焼結時(ステップS2)に還元雰囲気で焼成を行った場合には、支持体の強度が低くなる。その結果、最終的な熱処理時(ステップS4)において支持体が破損してしまう。一方、支持体としてセラミックス支持体を用い、グリーンシート積層体の焼結時(ステップS2)に酸化雰囲気で焼成を行った場合には、Ni粒子が酸化状態となるので、第2金属との反応が進行しない。すなわち、最終的な熱処理時(ステップS4)に、バイメタルが形成されない。これに対して、本実施形態によれば、支持体として金属支持体を使用し、かつ、グリーンシート積層体の焼結時(ステップS2)において還元雰囲気で焼結を行っているから、ステップS4において支持体を破損させることなくバイメタルを形成することができ、改質能力に優れた固体酸化物形燃料電池を得ることができる。
 以上、本発明の実施形態について説明した。以下に、本実施形態の構成と作用効果との関係を要約する。
 一態様において、固体酸化物形燃料電池は、金属支持体と、金属支持体上に設けられたアノード活性層と、アノード活性層上に設けられた電解質層と、電解質層上に設けられたカソード層とを有する。アノード活性層は、複合粒子を含む。複合粒子は、Ni粒子と、Ni粒子の周囲に形成されたバイメタルとを有する。バイメタルは、Niと、第2金属との固溶体である。第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である。このような構成によれば、高い改質能力を有する固体酸化物形燃料電池を実現できる。
 第2金属は、Ru、Pt、Rh、Pd、Ir、およびCoからなる群から選択される少なくとも一種であることが好ましい。このような構成によれば、より高い改質能力が得られる。
 前記バイメタルの平均粒子径は、前記Ni粒子の平均粒子径よりも小さいことが好ましい。このような構成によれば、より高い改質能力が得られる。
 バイメタルは、非酸化状態のNiと、第2金属との反応生成物であることが好ましい。このような構成によれば、より高い改質能力が得られる。
 固体酸化物形燃料電池は、内部改質型であることが好ましい。
 一態様において、固体酸化物形燃料電池の製造方法は、金属支持体グリーンシートと、アノード活性層グリーンシートと、電解質層グリーンシートとを含むグリーンシート積層体を作製する工程であって、アノード活性層グリーンシートが、Ni粒子を含む工程と、グリーンシート積層体を、還元雰囲気中で焼結し、金属支持体、アノード活性層、及び電解質層を有する焼結積層体を作製する工程と、アノード活性層に、Ni以外の第8族~第10族元素から選択される少なくとも一種の金属である第2金属を含む含浸液を含浸させる工程と、含浸させる工程の後に、Ni粒子の周囲にNiと第2金属との反応生成物である固溶体が形成されるように、焼結積層体を加熱する工程とを備える。このような方法によれば、高い改質能力を有する固体酸化物形燃料電池を製造することができる。
 含浸液は、第2金属を含む金属塩の水溶液を含んでいることが好ましい。
 焼結積層体を加熱する工程は、大気雰囲気中で実施されることが好ましい。大気雰囲気中であれば、低コストで複合粒子を得ることができる。この場合に、焼結積層体を加熱する工程は、400~600℃以下の雰囲気温度で実施されることが好ましい。このような温度であれば、Ni粒子が酸化されないから、Niと第2金属との固溶体であるバイメタルを形成することができる。
 あるいは、焼結積層体を加熱する工程は、還元雰囲気又は不活性ガス雰囲気で実施されてもよい。還元雰囲気又は不活性ガス雰囲気であれば、Ni粒子が酸化されないから、より高い温度で処理を行うことができる。
 含浸液を含侵させる工程と、焼結積層体を加熱する工程とは、複数回実施されることが好ましい。このような方法により、所望する量の第2金属をアノード活性層に含ませることができる。
 以下に、本発明をより詳細に説明するため、本発明者によって行われた実施例について説明する。ただし、本発明は、以下の実施例に限定されて解釈されるべきものではない。
(実施例1)
 ステンレス粉末(平均粒子径20μm)、バインダー、及び造孔材を有機溶媒中で混合し、ポットミルで粉砕し、金属支持体用のスラリーを得た。得られたスラリーをルミラーテープ上に塗工し、アノード用の金属支持体グリーンシート(厚み300μm)を得た。
 また、Ni粒子(平均粒子径500nm)、セラミックス粒子(セリアを母相とするもの)、バインダー、及び造孔材を有機溶媒中で混合し、ポットミルで粉砕し、アノード活性層用のスラリーを得た。得られたスラリーをルミラーテープ上に塗工し、アノード活性層グリーンシートを得た。なお、Ni粒子とセラミックス粒子との比率は、体積比(Ni/セラミックス)が50/50となるように調整した。アノード活性層グリーンシートの厚みは、30μmの範囲内であった。
 更に、電解質層用の材料(ジルコニア)を含むスラリーと、カソード層用の材料(ジルコニア)を含むスラリーと、カソード側の金属支持体形成用の材料(ステンレス粉末)を含むスラリーとを調製した。そして、各スラリーを用いて、テープキャスト法により、電解質グリーンシート(厚み4μm)と、カソード層グリーンシート(厚み30μm)と、カソード用の金属支持体グリーンシート(厚み300μm)とを得た。
 得られたアノード用の金属支持体グリーンシート、アノード活性層グリーンシート、電解質グリーンシート、カソード層グリーンシート、及びカソード用の金属支持体グリーンシートを張り合わせた。この際、加圧しながら圧力を加えた。これにより、グリーンシート積層体を得た。
 次いで、グリーンシート積層体を600℃、大気雰囲気で処理し、脱脂した。更に、H雰囲気で1300℃で1時間焼結した。これにより、焼結積層体を得た。
 続いて、硝酸Ru塩を純水に溶解し、含浸液を調製した。含浸液の溶質濃度は、1.0×10-3(mol/m)とした。調製した含浸液を、アノード側から焼結積層体に滴下した。滴下後、焼結積層体を真空チャンバー内に配置し、0.1~0.5気圧になるように真空チャンバー内を減圧した。これにより、アノード活性層に含浸液を含浸させた。なお、突沸を防ぐため、温度は80℃以下にコントロールした。続いて、焼結積層体を電気炉内に配置し、大気雰囲気下、500℃で30分加熱した。
 その後、含浸液の含浸によるアノード層の重量増加が0.005~0.02g/cmになるまで、含浸液の含浸及び熱処理を繰り返した。
 更に、カソード層に、カソード触媒として、プラセオジム酸化物を担持させた。具体的には、プラセオジム酸化物を純水に溶解させ、プラセオジム酸化物水溶液を得た。溶質濃度は、1.0×10-3(mol/m)とした。調製した水溶液を、カソード側から焼結積層体に滴下した。滴下後、焼結積層体を真空チャンバー内に配置し、0.1~0.5気圧になるように真空チャンバー内を減圧した。これにより、カソード層にプラセオジム酸化物水溶液を含浸させた。なお、突沸を防ぐため、温度は80℃以下にコントロールした。続いて、焼結積層体を電気炉内に配置し、大気雰囲気下、500℃で30分加熱した。これにより、実施例1に係る固体酸化物形燃料電池を得た。
(比較例1)
 硝酸Ru塩の水溶液に変えて、Ni含有水溶液を含浸液として使用した。Ni含有水溶液の溶質濃度は、1.0×10-3(mol/m)とした。その他の点は実施例1と同様の方法を用いて、比較例1に係る固体酸化物形燃料電池を得た。
(比較例2)
 含浸液の含浸と、その後の熱処理工程を実施しなかった。その他の点は実施例1と同様にして、比較例2に係る固体酸化物形燃料電池を得た。
[EDSマッピング]
 実施例1に係る燃料電池を樹脂に包埋し、金属治具で切断後し、FIBにより断面加工した。そして、下記の条件で、アノード活性層をEDSマッピングにより観察した。
 使用機器・・・TEM:分析電子顕微鏡ARM200F[日本電子株式会社製]、EDX:EDX検出器JED-2300T[日本電子株式会社製]
 加速電圧:200kV
 具体的には、500nm×500nmとなる倍率で、アノード層におけるRu及びNiを観察した。図4にNiのEDSマッピングの結果を示す。図5にRuのEDSマッピングの結果を示す。図4及び図5に示されるように、RuとNiとが略同じ位置に観察された。このことから、アノード活性層においては、Ni粒子の周囲にバイメタルとして、RuとNiとの固溶体が存在していることが確認された。
[水蒸気改質反応速度測定]
 実施例1、比較例1及び比較例2に係る燃料電池について、温度と水蒸気改質反応(CH+HO→H+CO)の速度との関係を測定した。水蒸気改質反応速度は、メタンと水蒸気の比率および流量を変えた際の出口側の燃料組成をガスクロマトグラフィで計測し、求めた。結果を図6に示す。図6に示されるように、実施例1は、比較例1及び比較例2に比べて水蒸気改質の反応速度が大きく、改質性能に優れていることが確認された。
[電池特性測定]
 実施例1、比較例1及び比較例2に係る燃料電池について、メタンを燃料として発電を行い、電流密度と、セル電圧及び電力密度との関係を測定した。結果を図7に示す。図7に示されるように、実施例1は、比較例1及び2に比べてセル電圧及び電力密度が大きく、電池特性において優れていることが確認された。

Claims (11)

  1.  金属支持体と、
     前記金属支持体上に設けられたアノード活性層と、
     前記アノード活性層上に設けられた電解質層と、
     前記電解質層上に設けられたカソード層と、
    を有し、
     前記アノード活性層は、複合粒子を含み、
     前記複合粒子は、Ni粒子と、前記Ni粒子の周囲に形成されたバイメタルとを有し、
     前記バイメタルは、Niと、第2金属との固溶体であり、
     前記第2金属は、Ni以外の第8族~第10族元素から選択される少なくとも一種である、
    固体酸化物形燃料電池。
  2.  請求項1に記載の固体酸化物形燃料電池であって、
     第2金属は、Ru、Pt、Rh、Pd、Ir、およびCoからなる群から選択される少なくとも一種である、
    固体酸化物形燃料電池。
  3.  請求項1又は2に記載の固体酸化物形燃料電池であって、
     前記バイメタルの平均粒子径は、前記Ni粒子の平均粒子径よりも小さい、
    固体酸化物形燃料電池。
  4.  請求項1又は2に記載の固体酸化物形燃料電池であって、
     前記バイメタルは、非酸化状態のNiと、前記第2金属との反応生成物である、
    固体酸化物形燃料電池。
  5.  請求項1又は2に記載の固体酸化物形燃料電池であって、
     内部改質型である、
    固体酸化物形燃料電池。
  6.  金属支持体グリーンシートと、アノード活性層グリーンシートと、電解質層グリーンシートとを含むグリーンシート積層体を作製する工程であって、前記アノード活性層グリーンシートが、Ni粒子を含む工程と、
     前記グリーンシート積層体を、還元雰囲気中で焼結し、金属支持体、アノード活性層、及び電解質層を有する焼結積層体を作製する工程と、
     前記アノード活性層に、Ni以外の第8族~第10族元素から選択される少なくとも一種の金属である第2金属を含む含浸液を含浸させる工程と、
     前記含浸させる工程の後に、前記Ni粒子の周囲にNiと前記第2金属との固溶体が形成されるように、前記焼結積層体を加熱する工程と、
    を備える、
    固体酸化物形燃料電池の製造方法。
  7.  請求項6に記載の製造方法であって、
     前記含浸液は、前記第2金属を含む金属塩の水溶液を含んでいる、
    製造方法。
  8.  請求項6又は7に記載の製造方法であって、
     前記焼結積層体を加熱する工程は、大気雰囲気中で実施される、
    製造方法。
  9.  請求項8に記載の製造方法であって、
     前記焼結積層体を加熱する工程は、600℃以下の雰囲気温度で実施される、
    製造方法。
  10.  請求項6又は7に記載の製造方法であって、
     前記焼結積層体を加熱する工程は、還元雰囲気又は不活性ガス雰囲気で実施される、
    製造方法。
  11.  請求項6又は7に記載の製造方法であって、
     前記含浸液を含侵させる工程と、前記焼結積層体を加熱する工程とが、複数回実施される、
    製造方法。
PCT/JP2022/035754 2022-09-26 2022-09-26 固体酸化物形燃料電池及びその製造方法 WO2024069714A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035754 WO2024069714A1 (ja) 2022-09-26 2022-09-26 固体酸化物形燃料電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035754 WO2024069714A1 (ja) 2022-09-26 2022-09-26 固体酸化物形燃料電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2024069714A1 true WO2024069714A1 (ja) 2024-04-04

Family

ID=90476585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035754 WO2024069714A1 (ja) 2022-09-26 2022-09-26 固体酸化物形燃料電池及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024069714A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005527A (ja) * 2014-09-04 2015-01-08 株式会社東芝 固体酸化物電気化学セルの燃料極及び固体酸化物電気化学セル
JP2018519617A (ja) * 2015-03-30 2018-07-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 炭酸塩化学種の閉ループ循環による発電のためのsofc系システム
JP2020168588A (ja) * 2019-04-01 2020-10-15 国立大学法人 東京大学 担持バイメタル合金の製造方法
WO2022137335A1 (ja) * 2020-12-22 2022-06-30 日産自動車株式会社 固体酸化物型燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005527A (ja) * 2014-09-04 2015-01-08 株式会社東芝 固体酸化物電気化学セルの燃料極及び固体酸化物電気化学セル
JP2018519617A (ja) * 2015-03-30 2018-07-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 炭酸塩化学種の閉ループ循環による発電のためのsofc系システム
JP2020168588A (ja) * 2019-04-01 2020-10-15 国立大学法人 東京大学 担持バイメタル合金の製造方法
WO2022137335A1 (ja) * 2020-12-22 2022-06-30 日産自動車株式会社 固体酸化物型燃料電池

Similar Documents

Publication Publication Date Title
JP5591526B2 (ja) 固体酸化物セル及び固体酸化物セルスタック
JP5689107B2 (ja) NiO−セラミック複合粉体及びNiO−セラミック複合燃料極の製造方法
JP5101777B2 (ja) 電極支持体の製造方法および電気化学的電池
US9142838B2 (en) Anode on a pretreated substrate for improving redox-stability of solid oxide fuel cell and the fabrication method therof
JP2005529464A (ja) セラミックアノード及びそれを生産する方法
CN111418027B (zh) 质子导体、质子传导型电池结构体、水蒸气电解池以及氢电极-固体电解质层复合体的制造方法
WO2011108526A1 (ja) 固体電解質膜、燃料電池用セル及び燃料電池
Yu et al. Understanding the A-site non-stoichiometry in perovskites: promotion of exsolution of metallic nanoparticles and the hydrogen oxidation reaction in solid oxide fuel cells
JP2014510014A (ja) 低pO2雰囲気中で得られるセラミックデバイスのための焼結添加剤
Jeon et al. Metal-oxide nanocomposite catalyst simultaneously boosts the oxygen reduction reactivity and chemical stability of solid oxide fuel cell cathode
JP5389378B2 (ja) 複合セラミック電解質構造、その製造方法及び関連物品
EP2621006B1 (en) An anode on a pretreated substrate for improving redox-stablility of solid oxide fuel cell and the fabrication method thereof
KR20100093957A (ko) 연료극 물질, 그의 제조방법 및 이를 포함하는 고체 산화물연료전지
Yoo et al. A Facile Combustion Synthesis Route for Performance Enhancement of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC
JP4534188B2 (ja) 燃料電池用電極材料及びこれを用いた固体酸化物形燃料電池
Kane et al. Precision surface modification of solid oxide fuel cells via layer-by-layer surface sol–gel deposition
Zhang et al. Vacuum cold sprayed nanostructured La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ as a high-performance cathode for porous metal-supported solid oxide fuel cells operating below 600 C
Sadykov et al. Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes
JP2004265746A (ja) 固体酸化物形燃料電池
Huang et al. An excellent bismuth-doped perovskite cathode with high activity and CO2 resistance for solid-oxide fuel cells operating below 700° C
WO2024069714A1 (ja) 固体酸化物形燃料電池及びその製造方法
JPH0869804A (ja) 溶融炭酸塩燃料電池用アノード及びその製造方法
KR101185323B1 (ko) 은 나노입자가 코팅된 소재를 포함하는 고체산화물 연료전지의 공기극 및 이의 제조방법
KR101218602B1 (ko) 은 나노입자를 포함하는 저온 작동 고체산화물 연료전지 제조방법 및 이에 의해 제조된 고체산화물 연료전지
Shipilova et al. The effect of thin functional electrode layers on characteristics of intermediate temperature solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960778

Country of ref document: EP

Kind code of ref document: A1