WO2024067362A1 - 颗粒过滤器和挤出模具 - Google Patents

颗粒过滤器和挤出模具 Download PDF

Info

Publication number
WO2024067362A1
WO2024067362A1 PCT/CN2023/120491 CN2023120491W WO2024067362A1 WO 2024067362 A1 WO2024067362 A1 WO 2024067362A1 CN 2023120491 W CN2023120491 W CN 2023120491W WO 2024067362 A1 WO2024067362 A1 WO 2024067362A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle filter
channels
channel
outlet
inlet
Prior art date
Application number
PCT/CN2023/120491
Other languages
English (en)
French (fr)
Inventor
袁林峰
马切尔·约翰尼
霍恩斯科夫·尼古拉
Original Assignee
兰德森材料科技(盐城)有限公司
兰德森排放技术有限公司
南京瀚深材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰德森材料科技(盐城)有限公司, 兰德森排放技术有限公司, 南京瀚深材料科技股份有限公司 filed Critical 兰德森材料科技(盐城)有限公司
Publication of WO2024067362A1 publication Critical patent/WO2024067362A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising

Definitions

  • the present disclosure relates to the field of materials, and in particular, to a particle filter and an extrusion die.
  • Particulate filters such as diesel particulate filters (DPFs) are important components installed in diesel vehicle exhaust systems to reduce particulate matter (PM) emissions by mechanically separating/trapping particles in the exhaust gas.
  • DPF filtration is achieved by passing exhaust gas through a porous medium that only allows particles of a certain size to pass through. Therefore, particles that pass through the pores of the medium pass through the filter, while particles that are too large remain in the filter. Therefore, it is understandable that over time, soot and ash will accumulate in the filter channel, especially in the inlet channel, which will lead to a restriction of flow through the filter and ultimately increase the back pressure in the system.
  • DPFs use a symmetrical structure in which the channel cross-section is composed of a symmetrical structure, in which the size of the inlet channel is the same as the size of the outlet channel.
  • the symmetrical structure DPF continuously captures PM during use. When PM is captured to a certain extent, the back pressure will increase significantly. The increase in back pressure will affect the fuel consumption and power of the vehicle.
  • the inlet channel and outlet channel of the asymmetric structure have different sizes, and the inlet channel has a larger area, which allows a higher soot load per unit pore density and reduces the impact of the soot load on the back pressure, but at the cost of increasing the initial back pressure.
  • the DPF with asymmetric channel structure cannot be produced using a traditional electric discharge machine (EDM) due to the asymmetric structure of the channel wall, and special tools are required.
  • EDM electric discharge machine
  • This special tool has a series of disadvantages, resulting in high manufacturing costs, difficulty in manufacturing, time-consuming and difficult to scale up. Therefore, the current particulate filter and extrusion die still need to be improved.
  • the present disclosure aims to alleviate or even solve at least one of the above problems to some extent.
  • a particle filter in one aspect of the present disclosure, includes a body, wherein the body has a plurality of inlet channels and a plurality of outlet channels, wherein the inlet channels and the outlet channels are arranged adjacent to each other, and the plurality of inlet channels are not connected to each other, and the plurality of outlet channels are not connected to each other, and the hydraulic diameter of the inlet channel is greater than the hydraulic diameter of the outlet channel, and the body located between two adjacent channels constitutes the tube wall of the channel, and the tube walls of the plurality of channels whose extension lines are located on the same straight line have the same thickness.
  • the particle filter has an asymmetric structure.
  • the invention discloses a particle filter having a plurality of channels, but the wall thickness of the plurality of channels whose extension lines are located on the same straight line is quite large, so that the particle filter can be produced by a conventional electric spark cutting extrusion die, and thus has good filtering performance and low production cost, and a large filter size can be obtained relatively easily.
  • the extension line of any tube wall of the channel is distributed with tube walls of multiple other channels, thereby reducing the production difficulty of the extrusion die for producing the filter, thereby helping to reduce the production cost of the particle filter.
  • the thickness of the tube wall of the inlet channel is equal to the thickness of the tube wall of the outlet channel, thereby further reducing the production cost of the particle filter.
  • the area ratio of the inlet channel to the outlet channel is 1.2 to 2.
  • the performance of the particle filter can be further improved.
  • the ratio of the area of the inlet channel to the area of the outlet channel is 1.3 to 1.6, thereby further improving the performance of the particle filter.
  • the cross-sections of the inlet channel and the outlet channel are both triangular, thereby easily forming an asymmetric structure in which the inlet channel and the outlet channel are arranged in a staggered manner.
  • the cross-sections of the inlet channel and the outlet channel are both equilateral triangles, thereby further improving the performance of the particle filter.
  • the plurality of channels are arranged in multiple rows and columns, one of the two adjacent channels in the same row is the inlet channel, and the other is the outlet channel, and in a direction perpendicular to the extending direction of the channels, the cross-sections of the adjacent inlet channels and the outlet channels together form a parallelogram, thereby further improving the performance of the particle filter.
  • one of the two adjacent channels located in the same row is the inlet channel, and the other is the outlet channel, and in a direction perpendicular to the extending direction of the channels, the cross-sections of the adjacent inlet channels and the outlet channels together form a rhombus, thereby further improving the performance of the particle filter.
  • the difference between the side length of the triangular inner wall of the inlet channel and the side length of the triangular inner wall of the outlet channel is less than the thickness of the tube wall.
  • the particle filter satisfies at least one of the following conditions: the thickness of the tube wall of the channel is 100-10000 microns, preferably 200-1000 microns; the volume density of the particle filter is 0.45-0.8 kg/L; the hydraulic diameter of the inlet channel is 100-10000 microns, preferably 900-1800 microns.
  • the performance of the particle filter can be further improved.
  • the body is formed by a porous medium. performance.
  • the inlet channel has a first end and a second end, the first end is an inlet of the medium to be filtered, and the second end is a closed structure;
  • the outlet channel has a third end and a fourth end, the fourth end is an outlet of the medium to be filtered, the third end is a closed structure, the first end and the third end are located on the same side, the second end and the fourth end are located on the same side, and the medium to be filtered can pass through the tube wall between the inlet channel and the outlet channel, and flow from the filter medium inlet side to the filter medium outlet. In this way, the performance of the particle filter can be further improved.
  • the present disclosure proposes an extrusion die for preparing a particle filter.
  • the die includes: a die body having a feed hole; a plurality of first molded parts and a plurality of second molded parts, the first molded parts and the second molded parts are arranged adjacent to each other, and the plurality of first molded parts are not connected to each other, and the plurality of second molded parts are not connected to each other, the hydraulic diameter of the first molded part is greater than the hydraulic diameter of the second molded part, the feed hole is located between two adjacent molded parts, and the distance between the two adjacent molded parts constitutes the tube wall of the particle filter to be extruded, and the size and position of the first molded part and the second molded part are configured so that the thickness of the tube wall whose extension lines are located on the same straight line is equivalent.
  • the extrusion die can easily form the aforementioned particle filter, which is conducive to reducing the production cost of the particle filter.
  • the extrusion die is configured to be used for preparing the above-mentioned particulate filter.
  • the extrusion die is formed by cutting with an electric spark machine, thereby further reducing the cost of forming the extrusion die, thereby facilitating reducing the production cost of the aforementioned particle filter.
  • FIG1 shows a schematic structural diagram of a particle filter in the related art
  • FIG2 shows a schematic structural diagram of another particle filter in the related art
  • FIG3 shows a schematic structural diagram of a particle filter according to an embodiment of the present disclosure
  • FIG4 shows a schematic structural diagram of a particle filter according to another embodiment of the present disclosure.
  • FIG5 shows a schematic structural diagram of a particle filter according to yet another embodiment of the present disclosure.
  • FIG6 shows a schematic structural diagram of a particle filter according to yet another embodiment of the present disclosure.
  • FIG7 shows a partial structural schematic diagram of a particle filter according to an embodiment of the present disclosure
  • FIG8 shows a schematic structural diagram of an extrusion die for preparing a particle filter according to an embodiment of the present disclosure.
  • a particle filter in one aspect of the present disclosure, includes a body, wherein the body has a plurality of inlet channels and a plurality of outlet channels, wherein the inlet channels and the outlet channels are arranged adjacent to each other, and the plurality of inlet channels are not connected to each other, and the plurality of outlet channels are not connected to each other, and the hydraulic diameter of the inlet channel is greater than the hydraulic diameter of the outlet channel, and the body located between two adjacent channels constitutes the tube wall of the channel, and the thickness of the tube wall of the plurality of channels whose extension lines are located on the same straight line is equal.
  • the particle filter has channels with an asymmetric structure, but the thickness of the tube wall of the plurality of channels whose extension lines are located on the same straight line is equal, so that the particle filter can be produced by using a traditional electric spark cutting extrusion die, and thus has good filtering performance and low production cost, and can easily obtain a large filter size.
  • the symmetrical diesel particulate filter has the same area of the inlet channel 110' and the outlet channel 120'.
  • the actual flow rate of the inlet channel is reduced due to the accumulation of soot and other substances in the inlet channel, which leads to the problem of increased system back pressure.
  • the related art adopts an asymmetric design of the inlet channel and the outlet channel, referring to FIG2, that is, the area of the inlet channel is larger than the area of the outlet channel.
  • the asymmetric channel structure of the above technical solution also limits the size of the DPF product: Referring to FIG1, the tube walls of the inlet and outlet of the traditional symmetrical DPF structure are also symmetrical, that is, the tube walls of multiple inlets and outlets are defined by multiple intersecting straight lines. However, due to the asymmetric area of the outlet and the inlet, the asymmetric structure will cause the tube wall between the inlet and outlet of two adjacent rows to bend. Referring to FIG2, the tube wall of the DPF is not formed by multiple straight lines, and there is an inflection point in the extension direction of the tube wall. This structure causes additional stress in the DPF matrix, which in turn makes the tube wall at this location more susceptible to cracking. And as the size difference between the inlet and outlet channels increases, the thickness of the wall intersection decreases, further reducing the thermal and mechanical strength of the particle filter body.
  • the particle filter proposed in the present disclosure designs the structure of the inlet and outlet channels so that the hydraulic diameter of the inlet channel is greater than the hydraulic diameter of the outlet channel, and the thickness of the tube walls of the multiple channels whose extension lines are located on the same straight line can be made equal. Specifically, referring to FIG. 3 , by improving the cross-sectional shape of the inlet channel (as shown in FIG. 110A and 110B) and the outlet channel 120 of the particle filter 1000, the body between the channels can be made equal.
  • the portion 100 is still composed of a straight line structure, so that on the one hand, the problem of mold processing difficulties caused by the tube wall with an inflection point can be avoided, and on the other hand, the design can also make the tube wall thicknesses (as shown in the figure) of the multiple channels whose extension lines are located on the same straight line equal. In this way, the problem of stress increase caused by the change of tube wall thickness at the inflection point can be solved, thereby further improving the service life of the particle filter.
  • the extension line of any tube wall of a channel is distributed with multiple tube walls of other channels.
  • the extension line where the tube wall between the inlet channel 110A and the outlet channel 120C is located can also be distributed with the tube wall between the inlet channel 110C and the outlet channel 120B.
  • the body of the particle filter proposed in the present disclosure can constitute a plurality of mutually intersecting straight lines to define a plurality of inlet and outlet channels, that is, the main body 100 of the particle filter of the present disclosure can be composed of a plurality of intersecting straight lines, and the main body 100 does not have a broken line and an inflection point. Thereby, the production difficulty of the extrusion die for generating the filter can be reduced, which is conducive to reducing the production cost of the particle filter.
  • the wall thickness of the inlet channel (as shown in FIG. 110A-110C) is comparable to the wall thickness of the outlet channel (as shown in FIG. 120A-120C), for example, specifically, the wall thickness d of the inlet channel 110B can be consistent with the wall thickness of the outlet channel 120B, and more specifically, the wall thickness of any one of the multiple inlet channels can be consistent with the wall thickness of any one of the multiple outlet channels.
  • the body of the particle filter according to the embodiment of the present disclosure can be formed by the intersection of multiple straight lines of consistent thickness.
  • the production cost of the particle filter can be further reduced, and the extrusion die for preparing the particle filter can be prepared by relying on the technology of preparing the extrusion die of the particle filter of symmetrical structure in the related art (i.e., using the traditional electric spark machine (EDM)).
  • EDM electric spark machine
  • the body of the particle filter composed of multiple intersecting straight lines of consistent thickness is also conducive to improving the overall mechanical strength of the particle filter, and thus can also improve the overall diameter and size of the particle filter that can be prepared.
  • the specific size, area and shape of the inlet channel and the outlet channel are not particularly limited, as long as the above functions can be achieved.
  • the ratio of the area of the inlet channel to the outlet channel can be 1.2 to 2.
  • it can be 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2, etc.
  • the range of the ratio of the area of the inlet channel to the outlet channel can be 1.3 to 1.6, specifically 1.25-1.75, specifically 1.56.
  • the performance of the particle filter can be further improved.
  • the cross-sections of the inlet channels and the outlet channels are both triangular.
  • the cross-sections of the inlet channel and the outlet channel are both equilateral triangles: taking the inlet channel 110C as an example, the lengths of the three inner edges a of the cross-section of the inlet channel 110C can be equal.
  • the lengths of the three inner edges b of the cross-section of the outlet channel 120C can be equal.
  • a plurality of channels are arranged in a plurality of rows and a plurality of columns.
  • One of the two adjacent channels located in the same row is an inlet channel (e.g., 110A), and the other is an outlet channel (e.g., 120C).
  • the cross-sections of the adjacent inlet channels and the outlet channels together form a parallelogram (as shown in the dotted box in the figure).
  • the area occupied by the inlet and outlet channels can be saved while ensuring that the tube walls between the plurality of inlets and outlets are composed of a plurality of intersecting straight lines, so that more inlet and outlet channels can be accommodated in a unit volume of the particle filter, thereby improving the filtering effect of the particle filter.
  • one of the two adjacent channels located in the same column is the inlet channel (as shown in 110A in the figure), and the other is the outlet channel (as shown in 120A in the figure), and in a direction perpendicular to the extension direction of the channel, the cross-sections of the adjacent inlet channel and outlet channel together form a rhombus (as shown in the dotted box in the figure).
  • the performance of the particle filter can be further improved.
  • the difference between the side length of the triangular inner wall of the inlet channel and the side length of the triangular inner wall of the outlet channel is less than the thickness of the tube wall.
  • the particle filter meets at least one of the following conditions: the thickness of the tube wall of the channel is 100-10000 microns; the volume density of the particle filter is 0.45-0.8 kg/L; the hydraulic diameter of the inlet channel is 100-10000 microns.
  • the particle filter can meet any one of the above requirements, any two, or all three. The inventors found that when the particle filter meets the above requirements, it can have better filtering performance.
  • the thickness of the tube wall of the channel is 200-1000 microns
  • the hydraulic diameter of the inlet channel is 900-1800 microns.
  • the channel diameter of the particle filter is moderate, and the space occupied by the required cross section can be reduced while the back pressure is relatively low.
  • the volume density is within the above range, the filtration area is moderate, and the ash load capacity can be kept high and the back pressure can be kept low.
  • the tube wall thickness is within the above range, good mechanical strength can be maintained without significantly increasing the back pressure. Therefore, the particle filter can have better comprehensive performance.
  • the specific material of the body 100 is not particularly limited, and those skilled in the art can select familiar materials to form the body 100 of the particle filter.
  • the body 100 can be formed of a porous medium. More specifically, the material of the body 100 can be used as long as it can be used to filter gas and intercept particles such as soot.
  • the material of the body 100 can be recrystallized silicon carbide. This material has good high temperature mechanical properties, It has high tolerance to high temperature, high density, good mechanical properties and service life, and is particularly suitable for preparing filter bodies such as diesel particulate filters (DPF) that need to work continuously under a certain temperature environment.
  • DPF diesel particulate filters
  • the inlet channel 110 may have a first end and a second end, the first end is the inlet of the medium to be filtered (as shown by the arrow in the figure), and the second end is a closed structure.
  • the outlet channel 120 has a third end and a fourth end, the fourth end is the outlet of the medium to be filtered (as shown by the arrow in the figure), and the third end is a closed structure.
  • the first end and the third end are located on the same side, the second end and the fourth end are located on the same side, and the medium to be filtered can pass through the tube wall between the inlet channel and the outlet channel, and flow from the filter medium inlet side to the filter medium outlet.
  • the air containing particles such as smoke and dust entering the particle filter through the first end of the inlet channel 110 can pass through the tube wall between the inlet channel 110 and the outlet channel 120 to enter the outlet channel 120 side and finally be discharged, while the particles such as smoke and dust are trapped in the inlet channel 110 closed at the second end.
  • the performance of the particle filter can be further improved.
  • the aforementioned particle filter has an asymmetric structure and the body is composed of a plurality of intersecting straight lines, which makes it easy to produce and does not require additional design for preparing a mold for extruding the particle filter.
  • the thickness of the tube wall of each channel inside the particle filter is uniform, and the stress distribution is uniform, so that a relatively large volume of the particle filter can be formed and the service life can be guaranteed.
  • the particle filter also has a lower back pressure, which can reduce the pressure loss inside the exhaust pipe using the particle filter, so that the vehicle using the particle filter has a higher fuel efficiency.
  • the particle filter has a good ash load capacity, a long maintenance interval, and has at least one of the advantages of little effect on the back pressure over time, good heat resistance, and high mechanical strength.
  • the present disclosure proposes an extrusion die for preparing a particle filter.
  • the die includes: a die body 2000, on which a feed hole 1 is provided.
  • the die also includes a plurality of first molded parts 2 and a plurality of second molded parts 3, wherein the first molded parts and the second molded parts are arranged adjacent to each other, and the plurality of first molded parts are not connected to each other, and the plurality of second molded parts are not connected to each other, the hydraulic diameter of the first molded part is greater than the hydraulic diameter of the second molded part, the feed hole is located between two adjacent molded parts, and the spacing between the two adjacent molded parts constitutes the tube wall of the particle filter to be extruded, and the size and position of the first molded part and the second molded part are configured so that the thickness of the tube wall whose extension lines are located on the same straight line is equivalent.
  • the extrusion die can easily form the aforementioned particle filter, which is conducive to reducing the
  • the first molded part can be used to form the inlet channel in the aforementioned particle filter
  • the second molded part can be used to form the outlet channel of the aforementioned particle filter.
  • the above-mentioned extrusion die can be used to form the particle filter described above. The structure and advantages of the particle filter have been described in detail above.
  • the above-mentioned extrusion die has the first and second molded parts for forming the inlet and outlet channels of the particle filter. Therefore, the first and second molded parts can have features consistent with the inlet and outlet channels, which will not be repeated here.
  • the first molded part 2 and the second molded part 3 on the extrusion die 2000 are arranged adjacent to each other, and the plurality of first molded parts are not connected to each other, and the plurality of second molded parts are not connected to each other, and the hydraulic diameter of the first molded part is larger than that of the first molded part.
  • the hydraulic diameter of the second molded part, the feed hole 1 is located between the two molded parts, the spacing between the two adjacent molded parts constitutes the tube wall of the particle filter to be extruded, and the size and position of the first molded part and the second molded part are configured so that the thickness of the tube wall whose extension lines are located on the same straight line is equivalent.
  • the extrusion die according to the embodiment of the present disclosure can be formed by conventional electric spark cutting. As a result, the cost of forming the extrusion die can be further reduced, which is conducive to reducing the production cost of producing the aforementioned particle filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

一种颗粒过滤器(1000),该颗粒过滤器(1000)包括本体(100),本体(100)内部具有多个入口通道(110)以及多个出口通道(120),入口通道(110)和出口通道(120)相邻排布,且多个入口通道(110)之间不相接,多个出口通道(120)之间也不相接,入口通道(110)的水力直径大于出口通道(120)的水力直径,位于相邻两个通道之间的本体(100)构成通道的管壁,延长线位于同一直线上的多个通道的管壁的厚度相当。该颗粒过滤器(1000)能够使用传统的电火花机器生产挤出模具,降低生成该过滤器的挤出模具的生产难度,进而有利于降低该颗粒过滤器的生产成本。还提供了一种颗粒过滤器(1000)的挤出模具(2000)。

Description

颗粒过滤器和挤出模具
优先权信息
本申请请求2022年09月30日向中国国家知识产权局提交的、专利申请号为202211216206.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本公开涉及材料领域,具体地,涉及颗粒过滤器和挤出模具。
背景技术
颗粒过滤器,如柴油颗粒过滤器(DPF)是安装在柴油车排气系统中,通过机械地分离/截留废气中的颗粒降低颗粒物(PM)排放的重要组件。DPF的过滤是通过使废气通过多孔介质来实现的,该介质只允许特定尺寸的颗粒通过。因此,穿过介质孔的颗粒会穿过过滤器,而过大的颗粒则留在过滤器内。因此可以理解的是,随着时间的推移,过滤通道,特别是入口通道内烟灰和灰烬会产生堆积,进而导致通过过滤器的流量受到限制,最终增加系统中的背压。而目前的DPF多数采用通道横截面由对称结构组成,在这种结构中,入口通道的尺寸与出口通道的尺寸相同。对称结构DPF在使用过程中不断捕集PM,当PM捕集到一定程度后,背压增幅会很大,背压的增加会影响汽车的耗油量及动力。虽然上述问题可以通过采用非对称结构的DPF得到一定程度的缓解,非对称结构的入口通道和出口通道尺寸不同,入口通道具有更大的面积,进而允许单位孔密度更高的烟灰负载,可降低烟灰负载对背压的影响,但代价是增加了初始背压。
但是,非对称通道结构的DPF由于通道壁采用了非对称结构,因此无法使用传统的电火花机器(EDM)生产挤出模具,需要特殊工具。这种特殊工具有一系列缺点,导致制造成本高制造难度大并耗时难扩增等。因此,目前的颗粒过滤器和挤出模具仍有待改进。
公开内容
本公开旨在一定程度上缓解甚至解决上述问题的至少之一。
在本公开的一个方面,本公开提出了一种颗粒过滤器。该颗粒过滤器包括本体,所述本体内部具有多个入口通道以及多个出口通道,所述入口通道和所述出口通道相邻排布,且多个入口通道之间不相接,多个所述出口通道之间也不相接,所述入口通道的水力直径大于所述出口通道的水力直径,位于相邻两个通道之间的所述本体构成所述通道的管壁,延长线位于同一直线上的多个所述通道的管壁的厚度相当。该颗粒过滤器具有非对称结构 的通道,但延长线位于同一直线上的多个所述通道的管壁的厚度相当使得该颗粒过滤器可采用传统的电火花切割生产挤出模具,因此具有好的过滤性能以及较低的生产成本,同时可以较为容易地获得大的过滤器尺寸。
根据本公开的实施例,所述通道的任意一个管壁的延长线上,均分布有多个其他所述通道的管壁。由此,可降低生成该过滤器的挤出模具的生产难度,进而有利于降低该颗粒过滤器的生产成本。
根据本公开的实施例,所述入口通道的管壁厚度和所述出口通道的管壁的厚度相当。由此,可进一步降低该颗粒过滤器的生产成本。
根据本公开的实施例,所述入口通道和所述出口通道的面积之比为1.2~2。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,所述入口通道和所述出口通道的面积之比为1.3~1.6。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,在垂直于所述通道延伸方向的方向上,所述入口通道以及所述出口通道的截面均为三角形。由此,可简便地构成入口通道以及出口通道交错排布的非对称性结构。
根据本公开的实施例,所述入口通道以及所述出口通道的截面均为等边三角形。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,多个所述通道排布为多行以及多列,位于同一行且相邻的两个所述通道中的一个为所述入口通道,另一个为所述出口通道,在垂直于所述通道延伸方向的方向上,相邻的所述入口通道和所述出口通道的截面共同构成一个平行四边形。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,位于同一列且相邻的两个所述通道中的一个为所述入口通道,另一个为所述出口通道,在垂直于所述通道延伸方向的方向上,相邻的所述入口通道和所述出口通道的截面共同构成一个菱形。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,所述入口通道三角形内壁的边长和所述出口通道三角形内壁的边长之差,小于所述管壁的厚度。由此,可简便地保证该非对称结构的管壁均由直线构成,进而可以进一步降低该颗粒过滤器的生产成本。
根据本公开的实施例,所述颗粒过滤器满足以下条件的至少之一:所述通道的管壁的厚度为100-10000微米,优选200-1000微米;所述颗粒过滤器的体积密度为0.45-0.8kg/L;所述入口通道的水力直径为100-10000微米,优选900-1800微米。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,所述本体由多孔介质形成。由此,可进一步提升该颗粒过滤器 的性能。
根据本公开的实施例,所述入口通道具有第一端和第二端,所述第一端为待过滤介质入口,所述第二端为封闭结构;所述出口通道具有第三端和第四端,所述第四端为待过滤介质出口,所述第三端为封闭结构,所述第一端和所述第三端位于同一侧,所述第二端和所述第四端位于同一侧,且所述待过滤介质可穿过所述入口通道和所述出口通道之间的所述管壁,自所述过滤介质入口一侧流动至所述过滤介质出口。由此,可进一步提升该颗粒过滤器的性能。
在本公开的另一方面,本公开提出了一种用于制备颗粒过滤器的挤出模具。该模具包括:模具本体,所述模具本体上具有供料孔;多个第一成型件和多个第二成型件,所述第一成型件和所述第二成型件相邻排布,且多个第一成型件之间不相接,多个第二成型件之间也不相接,所述第一成型件的水力直径大于所述第二成型件的水力直径,所述供料孔位于相邻两个成型件之间,相邻的两个成型件之间的间距构成待挤出颗粒过滤器的管壁,所述第一成型件和所述第二成型件的尺寸以及位置被配置为令延长线位于同一直线上的管壁的厚度相当。该挤出模具可简便地形成前述的颗粒过滤器,有利于降低该颗粒过滤器的生产成本。
根据本公开的实施例,所述挤出模具被配置为用于制备前面所述的颗粒过滤器。
根据本公开的实施例,所述挤出模具是通过电火花机切割形成的。由此,可进一步降低形成该挤出模具的成本,从而有利于降低生产前述颗粒过滤器的生产成本。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了相关技术中的一个颗粒过滤器的结构示意图;
图2显示了相关技术中另一个颗粒过滤器的结构示意图;
图3显示了根据本公开一个实施例的颗粒过滤器的结构示意图;
图4显示了根据本公开另一个实施例的颗粒过滤器的结构示意图;
图5显示了根据本公开又一个实施例的颗粒过滤器的结构示意图;
图6显示了根据本公开又一个实施例的颗粒过滤器的结构示意图;
图7显示了根据本公开一个实施例的颗粒过滤器的部分结构示意图;
图8显示了根据本公开一个实施例的用于制备颗粒过滤器的挤出模具的结构示意图。
附图说明:
1000:颗粒过滤器;100:本体;110:入口通道;120:出口通道;2000:挤出模具;1:
供料孔;2:第一成型件;3:第二成型件。
公开详细描述
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种颗粒过滤器。该颗粒过滤器包括本体,所述本体内部具有多个入口通道以及多个出口通道,所述入口通道和所述出口通道相邻排布,且多个入口通道之间不相接,多个所述出口通道之间也不相接,所述入口通道的水力直径大于所述出口通道的水力直径,位于相邻两个通道之间的所述本体构成所述通道的管壁,延长线位于同一直线上的多个所述通道的管壁的厚度相当。该颗粒过滤器具有非对称结构的通道,但延长线位于同一直线上的多个所述通道的管壁的厚度相当使得该颗粒过滤器可采用传统的电火花切割生产挤出模具,因此具有好的过滤性能以及较低的生产成本,同时可以较为容易地获得大的过滤器尺寸。
为了方便理解,下面首先对本公开能够实现上述有益效果的原理进行简单说明:
如前所述,参考图1,对称式的柴油颗粒过滤器(DPF)由于入口通道110’和出口通道120’的面积相一致,在使用一段时间之后,由于入口通道中会堆积烟灰等物质,导致入口通道的实际流通量降低,进而导致系统背压升高的问题。虽然相关技术中为了解决DPF使用一段时间后入口通道由于烟灰等物质堆积导致的流量降低系统背压升高的问题,采用了入口通道和出口通道非对称的设计,参考图2,即入口通道的面积大于出口通道的面积。然而,上述技术方案除了导致前述的加工困难等问题,不对称通道结构还限制了DPF产品的尺寸大小:参考图1,传统的对称式DPF结构的入口和出口的管壁也是对称的,即多个入口和出口的管壁是由多条交叉的直线限定出的。而非对称结构由于出口和入口的面积不对称,会导致相邻两行的入口、出口之间的管壁发生弯曲。参考图2,即DPF的管壁并非由多条直线形成,管壁在延伸方向上存在拐点。该结构会导致DPF基体产生额外应力,进而导致该位置的管壁更容易开裂。并且随着入口和出口通道之间尺寸差异的增加,壁交叉点的厚度减小,也进一步降低了颗粒过滤器本体的热强度和机械强度。
本公开提出的颗粒过滤器对入口以及出口通道的结构进行了设计,从而在保证入口通道的水力直径大于所述出口通道的水力直径的同时,还可以令延长线位于同一直线上的多个通道的管壁的厚度相当。具体地,参考图3,通过对颗粒过滤器1000的入口通道(如图中所示出的110A以及110B)和出口通道120的截面形状进行改进,可以令通道之间的本体 100的部分仍旧由直线结构构成,从而一方面可以避免由于具有拐点的管壁导致的模加工困难的问题,另一方面,该设计还可以令延长线位于同一直线上的多个所述通道的管壁的厚度(如图中所示出的d)相当。由此,可以解决拐点处管壁厚度变化导致的应力增大的问题,从而进一步提高该颗粒过滤器的使用寿命。
下面,根据本公开的具体实施例,对该颗粒过滤器的具体结构,进行详细说明:
根据本公开的实施例,参考图4,通道的任意一个管壁的延长线上,均分布有多个其他所述通道的管壁。具体地,构成入口通道110A以及出口通道120C之间的管壁所在的延长线,还可以分布有构成入口通道110C和出口通道120B之间的管壁。类似地,本公开所提出的颗粒过滤器的本体可以构成多个相互交叉的直线进而限定出多个入口和出口通道,也即是说,本公开的颗粒过滤器的主体100可以由多条交叉的直线构成,主体100不具有折线和拐点。由此,可降低生成该过滤器的挤出模具的生产难度,进而有利于降低该颗粒过滤器的生产成本。
根据本公开的实施例,参考图4,入口通道(如图中所示出的110A-110C)的管壁厚度和出口通道(如图中所示出的120A-120C)的管壁的厚度相当,例如具体地,入口通道110B的管壁厚度d可以和出口通道120B的管壁厚度一致,更具体地,多个入口通道中的任意一个的管壁厚度,可以和多个出口通道中的任意一个的管壁厚度一致。换句话说,根据本公开实施例的颗粒过滤器的本体,可以由多条厚度一致的直线相交叉而构成。由此,可进一步降低该颗粒过滤器的生产成本,用于制备该颗粒过滤器的挤出模具可以依靠相关技术中制备对称结构的颗粒过滤器的挤出模具的技术(即使用传统的电火花机器(EDM))进行制备。并且,多个厚度一致的、相交的直线构成的颗粒过滤器的本体,也有利于提升该颗粒过滤器的整体机械强度,进而也可以提高该颗粒过滤器的可制备的整体直径以及尺寸。
根据本公开的实施例,入口通道和出口通道的具体尺寸、面积以及形状均不受特别限制,只要能够实现上述功能即可。例如,根据本公开的一些具体实施例,入口通道和出口通道的面积之比可以为1.2~2。例如,可以为1.2、1.3、1.4、1.5、1.6、1.7、1.8、2等。具体地,入口通道和出口通道的面积之比的范围可以为1.3~1.6,具体地可以为1.25-1.75,具体为1.56。由此,可进一步提升该颗粒过滤器的性能。发明人发现,当上述比例范围过大时,由于入口通道的面积大幅大于出口通道的面积,则颗粒过滤器的实际过滤效果将受到影响:出口通道面积过小可能导致系统初始背压较大,且过滤效率较低;当入口通道和出口通道之比过小,即入口通道大于出口通道的幅度较小,则很难解决使用一段时间之后由于入口通道烟灰等物质堆积而造成的背压升高的问题。
根据本公开的实施例,参考图3-6,在垂直于所通道延伸方向的方向上,入口通道以及出口通道的截面均为三角形。由此,可简便地构成入口通道以及出口通道交错排布的非对 称性结构。更具体地,参考图4,入口通道以及出口通道的截面均为等边三角形:以入口通道110C为例,构成入口通道110C的截面的三个内侧边缘a的长度可以相等。以出口通道120C的截面的三个内侧边缘b的长度可以相等。由此,可进一步提升该颗粒过滤器的性能,入口以及出口通道的各个边缘的长度相等,在该颗粒过滤器使用过程中,各个边缘的受力情况是相一致的,进而也有利于提升该颗粒过滤器的使用寿命。
根据本公开的实施例,参考图5,多个通道排布为多行以及多列。位于同一行且相邻的两个通道中的一个为入口通道(例如110A),另一个为出口通道(例如120C),在垂直于通道延伸方向的方向上,相邻的入口通道和所述出口通道的截面共同构成一个平行四边形(如图中虚线框所示出的)。由此,可以在保证多个入口和出口之间的管壁由相交的多条直线构成的前提下,节省入口和出口通道所占用的面积,从而能够在单位体积的颗粒过滤器内容纳下更多的入口和出口通道,进而可以提升该颗粒过滤器的过滤效果。
根据本公开的实施例,参考图6,位于同一列且相邻的两个所述通道中的一个为所述入口通道(如图中所示出的110A),另一个为出口通道(如图中所示出的120A),在垂直于通道延伸方向的方向上,相邻的入口通道和出口通道的截面共同构成一个菱形(如图中虚线框所示出的)。由此,可进一步提升该颗粒过滤器的性能。
根据本公开的实施例,入口通道三角形内壁的边长和出口通道三角形内壁的边长之差,小于所述管壁的厚度。由此,可简便地保证该非对称结构的管壁均由直线构成,进而可以进一步降低该颗粒过滤器的生产成本。
根据本公开的实施例,颗粒过滤器满足以下条件的至少之一:通道的管壁的厚度为100-10000微米;颗粒过滤器的体积密度为0.45-0.8kg/L;入口通道的水力直径为100-10000微米。由此,可进一步提升该颗粒过滤器的性能。该颗粒过滤器可以满足前述要求中的任意一个,任意两个,或是三者均满足。发明人发现,当颗粒过滤器满足前述要求时,可以具有较好的过滤性能。例如,根据本公开的一些示例,通道的管壁的厚度为200-1000微米,入口通道的水力直径为900-1800微米。具体地,当入口通道的水力直径为900-1800微米时,该颗粒过滤器的通道直径适中,可在背压相对较低的同时,降低所需横截面占据的空间。体积密度在上述范围内时,过滤面积适中,同时可保持烟灰负载能力较高、背压较低。管壁厚度在上述范围内时,可以保持较好的机械强度,同时不显著增大背压。由此,该颗粒过滤器可具有较好的综合性能。
根据本公开的实施例,本体100的具体材料不受特别限制,本领域技术人员可以选择熟悉的材料构成颗粒过滤器的本体100。例如,根据本公开的一些具体实施例,本体100可以由多孔介质形成。更具体地,本体100的材料只要可以用于过滤气体,并截留烟灰等颗粒即可。例如,本体100的材料可以为重结晶碳化硅。该材料具有良好的高温力学性能, 对高温耐受度高,并且具有较高的致密度,以及好的力学性能和使用寿命,特别适用于制备诸如柴油颗粒过滤器(DPF)等需要在一定温度环境下持续工作的过滤器本体。根据本公开的实施例,参考图7,入口通道110可以具有第一端和第二端,第一端为待过滤介质入口(如图中箭头所示出的),所述第二端为封闭结构。出口通道120具有第三端和第四端,第四端为待过滤介质出口(如图中箭头所示出的),第三端为封闭结构。第一端和第三端位于同一侧,第二端和所述第四端位于同一侧,且所述待过滤介质可穿过所述入口通道和所述出口通道之间的所述管壁,自所述过滤介质入口一侧流动至所述过滤介质出口。由此,经入口通道110的第一端进入颗粒过滤器内部的含有烟尘等颗粒的空气,可穿过入口通道110以及出口通道120之间的管壁进入出口通道120一侧并最终排出,而烟尘等颗粒则被截留在第二端封闭的入口通道110内。由此,可进一步提升该颗粒过滤器的性能。
总的来说,前述的颗粒过滤器由于采用了不对称的结构,同时本体由多条交叉的直线构成,进而还具有便于生产,无需额外设计用于制备挤出该颗粒过滤器的模具的优点。并且,该颗粒过滤器内部各通道的管壁处厚度均一,应力分布均一,进而可形成相对较大体积的颗粒过滤器,并保证使用寿命。此外,该颗粒过滤器还具有较低的背压,从而可以降低应用该颗粒过滤器排气管内部的压力损失,从而令应用该颗粒过滤器的车辆具有较高的燃油效率。并且,该颗粒过滤器的烟灰负载能力较好,维修间隔较长,随着使用时间推移,对背压影响小,耐热性能较好以及机械强度较高等优点的至少之一。
在本公开的另一方面,本公开提出了一种用于制备颗粒过滤器的挤出模具。参考图8,该模具包括:模具本体2000,所述模具本体上具有供料孔1。该模具还具有多个第一成型件2和多个第二成型件3,第一成型件和所述第二成型件相邻排布,且多个第一成型件之间不相接,多个第二成型件之间也不相接,所述第一成型件的水力直径大于所述第二成型件的水力直径,所述供料孔位于相邻两个成型件之间,相邻的两个成型件之间的间距构成待挤出颗粒过滤器的管壁,所述第一成型件和所述第二成型件的尺寸以及位置被配置为令延长线位于同一直线上的管壁的厚度相当。该挤出模具可简便地形成前述的颗粒过滤器,有利于降低该颗粒过滤器的生产成本。
具体地,第一成型件可以用于形成前述的颗粒过滤器中的入口通道,第二成型件可以用于形成前述的颗粒过滤器的出口通道。本领域技术人员能够理解的是,上述挤出模具可用来形成前面描述的颗粒过滤器。关于颗粒过滤器的结构以及优点,前面已经进行了详细的描述,上述挤出模具具有用于形成颗粒过滤器的入口和出口通道的第一、第二成型件,因此第一、第二成型件可具有和入口以及出口通道相一致的特征,在此不再赘述。
具体地,参考图8,挤出模具2000上的第一成型件2和第二成型件3相邻排布,且多个第一成型件之间不相接,多个第二成型件之间也不相接,第一成型件的水力直径大于所 述第二成型件的水力直径,供料孔1位于两个成型件之间,相邻的两个成型件之间的间距构成待挤出颗粒过滤器的管壁,第一成型件和所述第二成型件的尺寸以及位置被配置为令延长线位于同一直线上的管壁的厚度相当。根据本公开的实施例的挤出模具可以通过传统的电火花机切割形成。由此,可进一步降低形成该挤出模具的成本,从而有利于降低生产前述颗粒过滤器的生产成本。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种颗粒过滤器,其中,包括本体,所述本体内部具有多个入口通道以及多个出口通道,所述入口通道和所述出口通道相邻排布,且多个入口通道之间不相接,多个所述出口通道之间也不相接,所述入口通道的水力直径大于所述出口通道的水力直径,位于相邻两个通道之间的所述本体构成所述通道的管壁,
    延长线位于同一直线上的多个所述通道的管壁的厚度相当。
  2. 根据权利要求1所述的颗粒过滤器,其中,所述通道的任意一个管壁的延长线上,均分布有多个其他所述通道的管壁。
  3. 根据权利要求1所述的颗粒过滤器,其中,所述入口通道的管壁厚度和所述出口通道的管壁的厚度相当。
  4. 根据权利要求1-3任一项所述的颗粒过滤器,其中,所述入口通道和所述出口通道的面积之比为1.2~2。
  5. 根据权利要求1-4任一项所述的颗粒过滤器,其中,所述入口通道和所述出口通道的面积之比为1.3~1.6。
  6. 根据权利要求1-5任一项所述的颗粒过滤器,其中,在垂直于所述通道延伸方向的方向上,所述入口通道以及所述出口通道的截面均为三角形。
  7. 根据权利要求1-6任一项所述的颗粒过滤器,其中,所述入口通道以及所述出口通道的截面均为等边三角形。
  8. 根据权利要求1-7任一项所述的颗粒过滤器,其中,多个所述通道排布为多行以及多列,位于同一行且相邻的两个所述通道中的一个为所述入口通道,另一个为所述出口通道,在垂直于所述通道延伸方向的方向上,相邻的所述入口通道和所述出口通道的截面共同构成一个平行四边形。
  9. 根据权利要求1-8任一项所述的颗粒过滤器,其中,位于同一列且相邻的两个所述通道中的一个为所述入口通道,另一个为所述出口通道,在垂直于所述通道延伸方向的方向上,相邻的所述入口通道和所述出口通道的截面共同构成一个菱形。
  10. 根据权利要求7-9任一项所述的颗粒过滤器,其中,所述入口通道三角形内壁的边长和所述出口通道三角形内壁的边长之差,小于所述管壁的厚度。
  11. 根据权利要求1-10任一项所述的颗粒过滤器,其中,所述颗粒过滤器满足以下条件的至少之一:
    所述通道的管壁的厚度为100-10000微米,优选200-1000微米;
    所述颗粒过滤器的体积密度为0.45-0.8kg/L;
    所述入口通道的水力直径为100-10000微米,优选900-1800微米。
  12. 根据权利要求1-11任一项所述的颗粒过滤器,其中,所述本体由多孔介质形成。
  13. 根据权利要求1-12任一项所述的颗粒过滤器,其中,所述入口通道具有第一端和第二端,所述第一端为待过滤介质入口,所述第二端为封闭结构;
    所述出口通道具有第三端和第四端,所述第四端为待过滤介质出口,所述第三端为封闭结构,
    所述第一端和所述第三端位于同一侧,所述第二端和所述第四端位于同一侧,
    且所述待过滤介质可穿过所述入口通道和所述出口通道之间的所述管壁,自所述过滤介质入口一侧流动至所述过滤介质出口。
  14. 一种用于制备颗粒过滤器的挤出模具,其中,包括:
    模具本体,所述模具本体上具有供料孔;
    多个第一成型件和多个第二成型件,所述第一成型件和所述第二成型件相邻排布,且多个第一成型件之间不相接,多个第二成型件之间也不相接,所述第一成型件的水力直径大于所述第二成型件的水力直径,所述供料孔位于相邻两个成型件之间,相邻的两个成型件之间的间距构成待挤出颗粒过滤器的管壁,所述第一成型件和所述第二成型件的尺寸以及位置被配置为令延长线位于同一直线上的管壁的厚度相当。
  15. 根据权利要求14所述的挤出模具,其中,所述挤出模具被配置为用于制备权利要求1-13任一项所述的颗粒过滤器。
  16. 根据权利要求14或15所述的挤出模具,其中,所述挤出模具是通过电火花机切割形成的。
PCT/CN2023/120491 2022-09-30 2023-09-21 颗粒过滤器和挤出模具 WO2024067362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216206.9A CN115573793A (zh) 2022-09-30 2022-09-30 颗粒过滤器和挤出模具
CN202211216206.9 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067362A1 true WO2024067362A1 (zh) 2024-04-04

Family

ID=84582474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120491 WO2024067362A1 (zh) 2022-09-30 2023-09-21 颗粒过滤器和挤出模具

Country Status (2)

Country Link
CN (1) CN115573793A (zh)
WO (1) WO2024067362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573793A (zh) * 2022-09-30 2023-01-06 兰德森排放技术有限公司 颗粒过滤器和挤出模具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014553A1 (ja) * 2002-08-08 2004-02-19 Ngk Insulators, Ltd. セラミックハニカム構造体
DE102005009749A1 (de) * 2005-03-03 2006-09-07 Arvinmeritor Emissions Technologies Gmbh Gehäuse für ein Bauteil einer Abgasanlage
CN1856349A (zh) * 2003-09-25 2006-11-01 康宁股份有限公司 具有改进结构强度的非对称蜂窝状壁流过滤器
CN103458991A (zh) * 2011-03-31 2013-12-18 现代自动车株式会社 封孔蜂窝结构体及废气净化装置
CN104053486A (zh) * 2012-01-20 2014-09-17 陶氏环球技术有限责任公司 具有不对称通道的用于废气微粒的陶瓷过滤器
CN110475599A (zh) * 2017-01-31 2019-11-19 康宁股份有限公司 图案堵塞的蜂窝体、微粒过滤器及用于其的挤出模头
CN115573793A (zh) * 2022-09-30 2023-01-06 兰德森排放技术有限公司 颗粒过滤器和挤出模具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014553A1 (ja) * 2002-08-08 2004-02-19 Ngk Insulators, Ltd. セラミックハニカム構造体
CN1856349A (zh) * 2003-09-25 2006-11-01 康宁股份有限公司 具有改进结构强度的非对称蜂窝状壁流过滤器
DE102005009749A1 (de) * 2005-03-03 2006-09-07 Arvinmeritor Emissions Technologies Gmbh Gehäuse für ein Bauteil einer Abgasanlage
CN103458991A (zh) * 2011-03-31 2013-12-18 现代自动车株式会社 封孔蜂窝结构体及废气净化装置
CN104053486A (zh) * 2012-01-20 2014-09-17 陶氏环球技术有限责任公司 具有不对称通道的用于废气微粒的陶瓷过滤器
CN110475599A (zh) * 2017-01-31 2019-11-19 康宁股份有限公司 图案堵塞的蜂窝体、微粒过滤器及用于其的挤出模头
CN115573793A (zh) * 2022-09-30 2023-01-06 兰德森排放技术有限公司 颗粒过滤器和挤出模具

Also Published As

Publication number Publication date
CN115573793A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN1305664C (zh) 通道尺寸变化的蜂窝状结构及其制造用模具
US7238217B2 (en) Diesel engine exhaust filters
US4464185A (en) Exhaust gas filter
WO2024067362A1 (zh) 颗粒过滤器和挤出模具
JP4528153B2 (ja) 目封止ハニカム構造体の製造方法
US20050274097A1 (en) Diesel particulate filter with filleted corners
US11213781B2 (en) Pattern-plugged honeycomb bodies, particulate filters, and extrusion dies therefor
US6800107B2 (en) Exhaust gas purifying filter
US7674513B2 (en) Crack-resistant ceramic honeycomb structures
EP1663447A1 (en) Asymmetric honeycomb wall-flow filter having improved structural strength
EP1594687A2 (en) Ceramic honeycomb body and process for manufacture
JP2009154124A (ja) 部分目封止レスdpf
JP2019515786A (ja) 長方形出口ハニカム構造、微粒子フィルタ、押出ダイ、およびそれらの製造方法
US10947877B2 (en) Exhaust gas purification filter
CN101583407A (zh) 封孔蜂窝结构体
JPS5870814A (ja) 排気ガス浄化用構造物
CN112368465B (zh) 高均衡强度蜂窝结构及用于其的挤出模头
JP7068453B2 (ja) 高灰ストレージの、パターンで塞がれるハニカム体及びパティキュレートフィルタ
WO2024118391A1 (en) Pentagonal cell based honeycomb bodies
JP5171043B2 (ja) 押出成形機
JP2006231111A (ja) フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870594

Country of ref document: EP

Kind code of ref document: A1