WO2024067139A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067139A1
WO2024067139A1 PCT/CN2023/118891 CN2023118891W WO2024067139A1 WO 2024067139 A1 WO2024067139 A1 WO 2024067139A1 CN 2023118891 W CN2023118891 W CN 2023118891W WO 2024067139 A1 WO2024067139 A1 WO 2024067139A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
relay
terminal device
remote
message
Prior art date
Application number
PCT/CN2023/118891
Other languages
English (en)
French (fr)
Inventor
姚楚婷
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067139A1 publication Critical patent/WO2024067139A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • remote user equipment can connect to the network through a relay UE, that is, the remote UE communicates with the network through an indirect path.
  • the remote UE can also connect to the network through a direct path, that is, the remote UE directly connects to the network without passing through the relay UE.
  • a remote UE In order to increase the communication capacity of the remote UE, it is expected that the remote UE can support simultaneous communication on multiple paths. For example, a remote UE has established path 1 and can continue to establish path 2. Path 2 is a non-direct path. Under path 2, the remote UE communicates with the access network device through the relay UE. In the process of establishing path 2, the access network device sends a radio resource control (RRC) reconfiguration message to the remote UE, and the remote UE can reply to the access network device with an RRC reconfiguration completion message. At this time, the remote UE can send the RRC reconfiguration completion message to the access network device through the newly established path 2, or it may also send the RRC reconfiguration completion message to the access network device through the existing path 1.
  • RRC radio resource control
  • the remote UE sends the RRC reconfiguration completion message to the access network device through path 2
  • the RRC reconfiguration completion message will be sent to the access network device through the relay UE on path 2.
  • the relay UE is originally in the RRC idle state or the RRC inactive state, the relay UE can enter the RRC connected state after receiving the RRC reconfiguration completion message from the remote UE.
  • the relay UE on path 2 cannot receive the RRC reconfiguration completion message. If the relay UE is originally in the RRC idle state or the RRC inactive state, the relay UE cannot enter the RRC connected state, and thus cannot provide relay services for the remote UE.
  • An embodiment of the present application provides a communication method and apparatus for enabling a relay terminal device to enter an RRC connected state.
  • a first communication method which can be executed by a remote terminal device, or by other devices including the functions of the remote terminal device, or by a chip system (or, chip) or other functional module, the chip system or functional module can realize the functions of the remote terminal device, the chip system or functional module is, for example, set in the remote terminal device.
  • the method includes: receiving an RRC reconfiguration message from a first network device, the RRC reconfiguration message is used to configure a non-directly connected path in a multipath; sending a first message to a relay terminal device, the first message is used to trigger the relay terminal device to enter an RRC connected state, the relay terminal device is a device on the non-directly connected path for providing a relay service for the remote terminal device.
  • the remote terminal device may send the first information to the relay terminal device to trigger the relay terminal device to enter the RRC connection state. For example, in the process of establishing a non-direct connection path, even if the remote terminal device sends an RRC reconfiguration completion message to the access network device through an existing path, it may also send the first information to the relay terminal device, so that even if the relay terminal device does not receive the RRC reconfiguration completion message, it may enter the RRC connection state under the triggering of the first information, thereby being able to provide a relay service for the remote terminal device.
  • the first information is a direct communication request message, which is used to request to establish a PC5 connection with the relay terminal device.
  • the direct communication request message sent by the remote terminal device to the relay terminal device can be used as the first information. Therefore, the direct communication request message is not only used to request to establish a PC5 connection with the relay terminal device, but also can be used to trigger the relay terminal device to enter the RRC connection state. Therefore, the remote terminal device does not need to send an additional message to the relay terminal device to trigger the relay terminal device to enter the RRC connection state, which can save signaling overhead.
  • the relay terminal device receives the first information earlier, which is conducive to the relay terminal device entering the RRC connection state in time.
  • the first information includes second information
  • the second information is used to indicate the direct communication request
  • the message is used to establish a non-direct path in a multipath.
  • the second information indicates the multipath, indicating that the current path is to be added rather than switched.
  • the relay terminal device may not be able to receive the RRC reconfiguration message used to trigger the relay terminal device to enter the RRC connected state. Therefore, when the relay UE receives the DCR containing the second information, it can be determined that the purpose of establishing the connection is to establish multipath communication. Therefore, in addition to requesting to establish a PC5 connection with the relay terminal device, the direct communication request message can also be used to trigger the relay terminal device to enter the RRC connected state. After the relay terminal device receives the second information, if the relay terminal device is in the RRC non-connected state, it can enter the RRC connected state.
  • the second information includes one or more of the following: a service code corresponding to the multipath; a layer 2 identifier corresponding to the multipath, the layer 2 identifier being the identifier of the relay terminal device; or target user information corresponding to the multipath.
  • the second information may be indicated in an implicit manner, so that the second information not only indicates the multipath, but also realizes the original function of the second information (for example, as a layer 2 identifier or service code, etc.), which can improve the utilization rate of the information.
  • the second information may also include other information, which is not limited.
  • the second information includes the multipath information.
  • the second information may be indicated in an explicit manner, for example, the second information includes the multipath information, and the multipath information may indicate that the first information is used to establish the multipath. Indicating in an explicit manner makes the indication clearer.
  • the method further includes: receiving a discovery message from the relay terminal device, the discovery message including the service code and/or the layer 2 identifier.
  • the second information sent by the remote terminal device may include the service code and/or the layer 2 identifier, and the information included in the second information may come from the discovery message of the relay terminal device.
  • the first information is a SRAP control PDU or a SRAP data PDU received by a default configured SL-RLC1; or, the first information is a PC5 RRC reconfiguration message for configuring a relay RLC channel of the relay terminal device.
  • the first information can also be implemented in the form of a SRAP control PDU, a SRAP data PDU, or a PC5 RRC reconfiguration message. If the first information is implemented in these forms, the first information does not need to carry additional multipath indication information, and the relay terminal device can determine that the first information triggers the relay terminal device to enter an RRC connected state based on the first information.
  • the first information is the first information sent to the relay terminal device after the relay terminal device successfully establishes a PC5 connection with the remote terminal device.
  • the relay terminal device After the relay terminal device establishes a PC5 connection with the remote terminal device, if it receives the first message from the remote terminal device through the default configured SL-RLC1 (currently the message is an RRC reconfiguration completion message, but the relay terminal device may not recognize the type of the message, etc.), it can trigger the entry into the RRC connection state.
  • the embodiment of the present application can try not to change the implementation logic of the relay terminal device, that is, the remote terminal device still sends the first information to the relay terminal device through the default configured SL-RLC1, and if the relay terminal device receives the first information through the default configured SL-RLC1, it can enter the RRC connection state.
  • the implementation method provided by the embodiment of the present application can be better compatible with existing technologies.
  • the method further includes: in response to receiving the RRC reconfiguration message, starting a timer, the timer being used to establish the non-direct path; and in response to receiving a third message from the relay terminal device, stopping the timer, the third message being a response to the first message.
  • the relay terminal device may send the third message to the remote terminal device, thereby triggering the remote terminal device to stop the timer to avoid the timer from timing out.
  • the first information is a direct communication request message, and the third information is a direct communication acceptance message; or, the first information is a SRAP control PDU or SRAP data PDU received by the default configured SL-RLC1, and the third information is an RLC response; or, the first information is a PC5 RRC reconfiguration message for configuring the relay RLC channel of the relay terminal device, and the third information is an RLC response or a PC5 RRC reconfiguration completion message.
  • the third information may also have different implementations.
  • the method further includes: in response to receiving the RRC reconfiguration message, starting a timer, the timer being used to establish the non-direct path; and in response to receiving fourth information from the relay terminal device, stopping the timer.
  • the relay terminal device can send the fourth information to the remote terminal device, thereby triggering the remote terminal device to stop the timer to avoid the timer from timing out.
  • the fourth information is a PC5 RRC message for indicating that the relay terminal device has entered an RRC connection state, or the fourth information is a PC5 RRC message for indicating that the relay terminal device and a network device (such as an access network device) have completed the connection, or the fourth information is a PC5 RRC reconfiguration message for the relay terminal device to configure the PC5 RLC channel of the remote terminal device.
  • a first communication method is provided, which can be executed by a relay terminal device, or by other devices including the function of a relay terminal device, or by a chip system (or, chip) or other functional modules, and the chip system or functional module can realize the relay terminal
  • the chip system or functional module is, for example, set in a relay terminal device.
  • the method comprises: receiving first information from a remote terminal device, the first information is used to trigger the relay terminal device to enter an RRC connected state, the relay terminal device is used to provide a relay service for the remote terminal device, the relay terminal device corresponds to a non-directly connected path of the remote terminal device, and the non-directly connected path is one of the multiple paths of the remote terminal device; if the relay terminal device is in an RRC non-connected state, entering the RRC connected state according to the first information.
  • the first information is a direct communication request message, which is used to request to establish a PC5 connection with the relay terminal device.
  • the first information includes second information, where the second information is used to indicate that the direct communication request message is used to establish a non-direct path in a multi-path.
  • the second information includes one or more of the following: a service code corresponding to the multipath; a layer 2 identifier corresponding to the multipath, the layer 2 identifier being an identifier of the relay terminal device; or target user information corresponding to the multipath.
  • the second information includes information of the multipath.
  • the method further includes: sending a discovery message, wherein the discovery message includes the service code and/or the layer 2 identifier.
  • the first information is a SRAP control PDU or a SRAP data PDU received through a default configured SL-RLC1; or, the first information is a PC5 RRC reconfiguration message for configuring a relay RLC channel of the relay terminal device.
  • the first information is the first information from the remote terminal device after the relay terminal device successfully establishes a PC5 connection with the remote terminal device.
  • the method further includes: sending third information to the remote terminal device, the third information being a response to the first information, the third information being used for the remote terminal device to stop a timer, and the timer being used for the remote terminal device to establish the non-direct connection path.
  • the first information is a direct communication request message, and the third information is a direct communication acceptance message; or, the first information is a SRAP control PDU or a SRAP data PDU received through the default configured SL-RLC1, and the third information is an RLC response; or, the first information is a PC5 RRC reconfiguration message for configuring the relay RLC channel of the relay terminal device, and the third information is an RLC response or a PC5 RRC reconfiguration completion message.
  • the method further includes: sending fourth information to the remote terminal device, the fourth information is used for the remote terminal device to stop a timer, and the timer is used for the remote terminal device to establish the non-direct connection path.
  • the fourth information is a PC5 RRC message for indicating that the relay terminal device has entered an RRC connection state, or the fourth information is a PC5 RRC message for indicating that the relay terminal device and a network device (such as an access network device) have completed the connection, or the fourth information is a PC5 RRC reconfiguration message for the relay terminal device to configure the PC5 RLC channel of the remote terminal device.
  • a third communication method is provided, which can be executed by a remote terminal device, or by other devices including the functions of a remote terminal device, or by a chip system (or, chip) or other functional module, which can realize the functions of a remote terminal device, and the chip system or functional module is, for example, arranged in a remote terminal device.
  • the method includes: receiving an RRC reconfiguration message from a first network device, the RRC reconfiguration message being used to configure a non-direct path in a multipath, wherein the RRC reconfiguration message includes information of a first timer, and the information of the first timer is used to configure the multipath; starting the first timer; receiving third information or fourth information from a relay terminal device, wherein the relay terminal device is a device on the non-direct path for providing a relay service to the remote terminal device; and stopping the first timer based on receiving the third information or the fourth information.
  • the fourth information is a PC5RRC message for indicating that the relay terminal device has entered an RRC connection state; or, the fourth information is a PC5 RRC message for indicating that the relay terminal device and the network device have completed the connection; or, the fourth information is a PC5 RRC reconfiguration message for the relay terminal device to configure the PC5 RLC channel of the remote terminal device.
  • the third information is response information or response information of the first information, wherein the first information is information sent by the remote terminal device to the relay terminal, and if the relay device is in a non-connected state, the first information is used to Trigger the relay terminal device to enter the RRC connected state.
  • a communication device may be the remote terminal device described in any one of the first to third aspects.
  • the communication device has the functions of the remote terminal device.
  • the communication device is, for example, a remote terminal device, or a larger device including the remote terminal device, or a functional module in the remote terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • the transceiver unit When the transceiver unit implements the sending function, it can be called a sending unit (sometimes also referred to as a sending module), and when the transceiver unit implements the receiving function, it can be called a receiving unit (sometimes also referred to as a receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and the functional module can implement the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is a general term for these functional modules.
  • the transceiver unit (or, the receiving unit) is used to receive an RRC reconfiguration message from a first network device, and the RRC reconfiguration message is used to configure a non-directly connected path in a multipath; the transceiver unit (or, the sending unit) is used to send first information to a relay terminal device, and the first information is used to trigger the relay terminal device to enter an RRC connected state, and the relay terminal device is a device on the non-directly connected path for providing relay services to the remote terminal device.
  • the transceiver unit (or, the receiving unit) is used to receive an RRC reconfiguration message from a first network device, the RRC reconfiguration message is used to configure a non-direct path in a multipath, wherein the RRC reconfiguration message includes first timer information, and the first timer information is used to configure the multipath;
  • the processing unit is used to start the first timer;
  • the transceiver unit (or, the receiving unit) is also used to receive third information or fourth information from a relay terminal device, wherein the relay terminal device is a device on the non-direct path for providing relay service to the remote terminal device; the processing unit is also used to stop the first timer based on receiving the third information or the fourth information.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the functions of the remote terminal device described in any one of the first to third aspects above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device may be the relay terminal device described in any one of the first to third aspects.
  • the communication device has the functions of the above-mentioned relay terminal device.
  • the communication device is, for example, a relay terminal device, or a larger device including a relay terminal device, or a functional module in a relay terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • a processing unit sometimes also referred to as a processing module
  • a transceiver unit sometimes also referred to as a transceiver module
  • the transceiver unit (or, the receiving unit) is used to receive first information from a remote terminal device, the first information is used to trigger the relay terminal device to enter an RRC connected state, the relay terminal device is used to provide relay service for the remote terminal device, the relay terminal device corresponds to a non-directly connected path of the remote terminal device, and the non-directly connected path is one of multiple paths of the remote terminal device; the processing unit is used to enter the RRC connected state according to the first information if the relay terminal device is in an RRC non-connected state.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the function of the relay terminal device described in any one of the first to third aspects above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device which may be a remote terminal device, or a chip or chip system used in a remote terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the remote terminal device in the above aspects.
  • a communication device which may be a relay terminal device, or a chip or chip system used in a relay terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the relay terminal device in the above aspects.
  • a communication system including a remote terminal device and a relay terminal device, wherein the remote terminal device is used to perform The method performed by the remote terminal device as described in any one of the first to third aspects is performed, and the relay terminal device is used to perform the method performed by the relay terminal device as described in any one of the first to third aspects.
  • the remote terminal device can be implemented by the communication device described in the fourth or sixth aspect; the relay terminal device can be implemented by the communication device described in the fifth or seventh aspect.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store a computer program or instruction, and when the computer-readable storage medium is executed, the method executed by the remote terminal device or the relay terminal device in the above aspects is implemented.
  • a computer program product comprising instructions, which, when executed on a computer, enables the methods described in the above aspects to be implemented.
  • a chip system comprising a processor and an interface, wherein the processor is used to call and execute instructions from the interface so that the chip system implements the methods of the above aspects.
  • Figure 1 is a flow chart of the remote UE handover path
  • Figure 2 is a flow chart of remote UE establishing a path
  • 3A to 3D are schematic diagrams of several application scenarios of the embodiments of the present application.
  • FIGS. 4A to 4C are flow charts of several communication methods provided in embodiments of the present application.
  • FIG5 is a schematic diagram of a device provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of another device provided in an embodiment of the present application.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (for example, a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle to everything (vehicle to everything, V2X), machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC), Internet of Things (Internet of Things, IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), self-driving, remote medical, smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation, smart city (smart city), drones, robots and other scenarios of terminal devices.
  • devices such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle to everything (vehicle to everything, V2X), machine-to-machine/mach
  • the terminal device may sometimes be referred to as user equipment (UE), terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • UE user equipment
  • the terminal device is described by taking UE as an example in the embodiments of the present application.
  • the network equipment in the embodiments of the present application includes access network equipment, and/or core network equipment.
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base stations (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception points (TRP), base stations of subsequent evolution of the third generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-station or non-co-station transmission and receiving points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server, etc.
  • the access network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the base station can communicate with the terminal device, or it can communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple base stations in different access technologies.
  • the core network device is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement the core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • UPF user plane function
  • the communication device for realizing the network device function may be a network device, or may be capable of supporting the network device.
  • the device for realizing the function such as a chip system, can be installed in a network device.
  • the device for realizing the function of the network device is a network device as an example to describe the technical solution provided in the embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the ordinal numbers such as "first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first information and the second information can be the same information or different information, and this name does not indicate the difference in content, size, sender/receiver, priority or importance of the two information.
  • the numbering of the steps in the various embodiments introduced in the present application is only to distinguish different steps, and is not used to limit the order of the steps. For example, S401 may occur before S402, or may occur after S402, or may occur at the same time as S402.
  • the technical solution provided in the embodiments of the present application can be applied to the fourth generation mobile communication technology (the 4th generation, 4G) system, such as the long term evolution (long term evolution, LTE) system, or can be applied to the fifth generation mobile communication technology (the 5th generation, 5G) system, such as the new radio (new radio, NR) system, or can also be applied to the next generation mobile communication system or other similar communication systems, such as the sixth generation mobile communication technology (the 6th generation, 6G) system, etc., without specific limitation.
  • the 4th generation, 4G such as the long term evolution (long term evolution, LTE) system
  • the 5th generation, 5G such as the new radio (new radio, NR) system
  • the next generation mobile communication system or other similar communication systems such as the sixth generation mobile communication technology (the 6th generation, 6G) system, etc., without specific limitation.
  • the technical solution provided in the embodiments of the present application can be applied to device-to-device (D2D) scenarios, such as NR-D2D scenarios, etc., or can be applied to vehicle-to-everything (V2X) scenarios, such as NR-V2X scenarios or vehicle-to-vehicle (V2V), etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • the technical solution provided in the embodiments of the present application can be used in the fields of intelligent driving, assisted driving, or intelligent networked vehicles.
  • remote UE can connect to the network through relay UE, that is, remote UE communicates with the network through a non-direct path.
  • remote UE can also connect to the network through a direct path, that is, remote UE does not go through relay UE, but directly connects to the network.
  • path switching path switch
  • remote UE can switch from non-direct path to direct path, or from direct path to non-direct path.
  • Figure 1 is a flowchart of remote UE switching path.
  • the access network device sends an RRC reconfiguration message to the remote UE.
  • the remote UE receives the RRC reconfiguration message from the access network device.
  • the RRC reconfiguration message indicates that the remote UE needs to perform path switching to a non-directly connected path.
  • the RRC reconfiguration message may include configuration information of a timer T420, and the timer T420 may be used to determine whether the path switch fails.
  • the remote UE establishes a PC5 connection with the relay UE.
  • the relay UE is a relay UE that provides relay services for the remote UE on the non-direct path to which the remote UE is to be switched.
  • the remote UE sends an RRC reconfiguration complete message to the relay UE.
  • the relay UE receives the RRC reconfiguration complete message from the remote UE.
  • the remote UE expects to send the RRC reconfiguration complete message to the access network device through the relay UE.
  • the relay UE If the relay UE is in the RRC idle state or the RRC inactive state, it triggers entry into the RRC connected state.
  • the relay UE After entering the RRC connected state, the relay UE sends an RRC reconfiguration completion message of the remote UE to the access network device.
  • the access network device receives the RRC reconfiguration completion message from the relay UE.
  • S107 after the relay UE successfully receives the RLC service data unit (SDU) including the RRC reconfiguration completion message on the SL-radio link control (RLC) RLC1, it sends an RLC layer positive response (ACK) to the remote UE.
  • S105 can be executed before S107, or after S107, or simultaneously with S107.
  • S106 can be executed before S107, or after S107, or simultaneously with S107.
  • the remote UE After receiving the ACK of the RLC layer corresponding to the RRC reconfiguration completion message, the remote UE stops timer T420 to avoid timer T420 timeout.
  • a remote UE In addition to switching paths, in order to increase the communication capacity of the remote UE, it is also expected that the remote UE can support simultaneous communication on multiple paths. For example, a remote UE has established path 1 and can continue to establish path 2. Path 2 is a non-direct path. Under path 2, the remote UE communicates with the access network device through the relay UE. In the path switching process shown in Figure 1, the remote UE sends an RRC reconfiguration completion message to the access network device through the path to be switched. In the process of adding a path, the remote UE has an established path. In this case, the remote UE may send an RRC reconfiguration completion message to the access network device through the established path.
  • Figure 2 is a flow chart for adding a path for the remote UE. In Figure 2, it is taken as an example that the path established by the remote UE is a direct path.
  • the access network device sends an RRC reconfiguration message to the remote UE.
  • the remote UE receives the RRC reconfiguration message from the access network device.
  • the remote UE establishes a PC5 connection with the relay UE.
  • the relay UE is a relay UE on the non-direct path to be added by the remote UE and is used to provide relay service for the remote UE.
  • the remote UE sends an RRC reconfiguration completion message to the access network device.
  • the access network device receives the RRC reconfiguration completion message from the remote UE. Since the path established by the remote UE is a direct connection path, the remote UE sends the RRC reconfiguration completion message to the access network device through the direct connection path.
  • a problem that exists at this time is how to enter the RRC connected state if the relay UE is in the RRC idle state or the RRC inactive state.
  • the remote UE can send a first message to the relay UE to trigger the relay UE to enter the RRC connected state. For example, in the process of establishing a non-direct path, even if the remote UE sends an RRC reconfiguration completion message to the access network device through an existing path, it can also send the first message to the relay UE, so that even if the relay UE does not receive the RRC reconfiguration completion message, it can enter the RRC connected state under the triggering of the first message, thereby being able to provide relay services for the remote UE.
  • FIGs 3A to 3D are schematic diagrams of several application scenarios of the embodiment of the present application.
  • the remote terminal device is initially connected to the access network device through a direct path (path 1), and it is necessary to create (or add) a non-direct path (path 2) that connects to the access network device through a relay terminal device.
  • the remote terminal device is initially connected to the access network device through a relay terminal device 1 (path 1), and it is necessary to create (or add) another non-direct path (path 2) that connects to the access network device through a relay terminal device 2.
  • Figures 3A and 3B are regarded as the process of establishing a path within a base station (intra gNB).
  • the remote terminal device is initially connected to the access network device 1 through a direct path (path 1), and it is necessary to create (or add) a non-direct path (path 2) that connects to the access network device 2 through a relay terminal device.
  • the remote terminal device is initially connected to access network device 1 through relay terminal device 1 (path 1), and another non-direct path (path 2) needs to be newly created (or added) to connect to access network device 2 through relay terminal device 2.
  • FIG3C and FIG3D are regarded as the process of establishing a path between base stations (inter gNB).
  • the methods provided by the embodiments of the present application are introduced below in conjunction with the accompanying drawings.
  • the accompanying drawings corresponding to the various embodiments of the present application all steps represented by dotted lines are optional steps.
  • the methods provided by the various embodiments of the present application can be applied to the network architecture shown in any of Figures 3A to 3D.
  • the remote UE involved in the following text can be a remote terminal device shown in any of Figures 3A to 3D;
  • the relay UE involved in the following text can be a relay terminal device shown in Figure 3A or 3C, or it can be a relay terminal device 2 shown in Figure 3B or 3D.
  • a "direct path” refers to a path for a remote terminal device to communicate with an access network device (or a cell provided by the access network device) through a Uu interface instead of a relay terminal device; an “indirect path” refers to a path for a remote terminal device to communicate with an access network device (or a cell provided by the access network device) through a relay terminal device.
  • path may also be replaced by "link”.
  • a "direct path” may also be referred to as a "direct link”
  • a "indirect path” may also be referred to as an "indirect link”.
  • device A sends a message to device B, and device B may consider that the message comes from device A.
  • the sending process may be direct sending or indirect sending (for example, forwarding through other devices).
  • Figure 4A or Figure 4B are two flow charts of a communication method provided in an embodiment of the present application.
  • the remote UE involved below is the remote terminal device in Figure 4A or Figure 4B
  • the relay UE involved below is the relay terminal device in Figure 4A or Figure 4B.
  • remote UE sends first information to relay UE.
  • relay UE receives the first information from remote UE.
  • the first information may be used to trigger the relay UE to enter the RRC connected state, or the first information may be used to trigger the relay UE to enter the RRC connected state. It can be understood that after the relay UE receives the first information, if the relay UE is currently in the RRC non-connected state, the relay UE may enter the RRC connected state.
  • the RRC non-connected state is, for example, the RRC idle state or the RRC inactive state. Alternatively, the relay UE may enter the RRC connected state when the relay UE is in the RRC non-connected state.
  • the relay UE After receiving the first information, if the relay UE is currently in the RRC connected state, the relay UE only needs to remain in the RRC connected state. It can also be understood that the relay UE does not need to perform any operation for entering the RRC connected state.
  • the first message is a direct communication request (DCR) message, as shown in FIG4A.
  • the original function of the CDR message is to request to establish a PC5 connection with the relay UE.
  • the DCR message may be a PC5-signaling (S) layer message.
  • the remote UE needs to establish a non-direct path, on which the relay UE provides relay services for the remote UE, so the remote UE can request to establish a PC5 connection with the relay UE to communicate with the relay UE.
  • the DCR message sent by the remote UE to the relay UE can be used as the first information. Therefore, the DCR message is not only used to request to establish a PC5 connection with the relay UE, but also can be used to trigger the relay UE to enter the RRC connection state. Therefore, the remote UE does not need to send additional messages to the relay UE to trigger the relay UE to enter the RRC connection state, which can save signaling overhead.
  • the DCR message may include second information, and the second information may be used to trigger the relay UE to enter the RRC connected state.
  • the second information may indicate that the DCR is used to request the establishment of a non-direct path in a multipath.
  • the second information indicates that the DCR is used to request the establishment of a non-direct path in a multipath.
  • an implicit indication method is that the second information indicates that the non-direct path corresponding to the relay UE is a path in a multipath, which is equivalent to implicitly indicating that the remote UE has multiple paths.
  • the second information may also be in an explicit indication method, such as directly indicating a request to establish a non-direct path in a multipath, which is equivalent to explicitly indicating that the remote UE has multiple paths. It can be understood that the second information indicates the multipath, indicating that the current path is to be added rather than switched.
  • the relay UE may not be able to receive the RRC reconfiguration message used to trigger the relay UE to enter the RRC connected state (for example, the remote UE may send the RRC reconfiguration message to the access network device through the existing path, and the access network device may be the access network device shown in Figure 3A or Figure 3B, or may be the access network device 1 shown in Figure 3C or Figure 3D).
  • the relay UE when the relay UE receives the DCR containing the second information, it can be determined that the purpose of establishing the connection is to establish multi-path communication, so that the DCR message can be used to trigger the relay UE to enter the RRC connected state in addition to requesting to establish a PC5 connection with the relay UE.
  • the relay UE After the relay UE receives the second information, if the relay UE is in the RRC non-connected state, it can enter the RRC connected state.
  • the second information may include one or more of the following: information of the multipath, a service code corresponding to the multipath, a layer 2 (L2) identifier corresponding to the multipath, or target user information corresponding to the multipath.
  • the layer 2 identifier is a layer 2 identifier of the relay UE.
  • the second information may be indicated in an explicit manner.
  • the second information includes multipath information, and the multipath information may indicate that the DCR is used to establish a multipath.
  • the multipath information occupies 1 bit, and this 1 bit may indicate that the purpose of the DCR establishing a connection is to establish a multipath.
  • the multipath information may also be referred to as multipath indication information. If the relay UE is in an RRC non-connected state, it may enter an RRC connected state according to the multipath information.
  • the DCR if the DCR includes the second information, indicating that the DCR is requesting to establish a PC5 connection through a multipath, or requesting to establish a non-directly connected path in a multipath, then the DCR is also used to trigger the relay UE to enter an RRC connected state; if the DCR does not include the second information, it indicates that the DCR is requesting to establish a PC5 connection through a single path, and at this time the DCR is not used to trigger the relay UE to enter an RRC connected state.
  • the second information may also be indicated in an implicit manner, for example, the second information includes one or more of a service code corresponding to the multipath, a layer 2 identifier corresponding to the multipath, or target user information corresponding to the multipath.
  • the relay UE may broadcast a discovery message, which can be used for the remote UE to discover the relay UE.
  • the discovery message carries the service code of the relay UE, wherein the service code of the relay UE may indicate the service supported by the relay UE.
  • the relay UE may have two types of service codes, one type of service code corresponding to multipath, and the other type of service code corresponding to a single path.
  • the services indicated by these two types of service codes may be the same, for example, the relay UE has service code 1 and service code 2, and these two service codes indicate the same service, wherein service code 1 corresponds to multipath and service code 2 corresponds to a single path.
  • the discovery message may carry a service code corresponding to multipath, and the service code corresponding to multipath may indicate that the relay UE supports multipath communication; if the relay UE does not support multipath communication, the discovery message may carry a service code corresponding to a single path, and the service code corresponding to a single path may indicate that the relay UE does not support multipath communication, or indicates that the relay UE supports single path communication. If the discovery message carries a service code corresponding to the multipath, and the remote UE creates a new path for multipath communication, the remote UE can carry the service code corresponding to the multipath carried by the discovery message in the DCR to request the establishment of a non-direct path in the multipath.
  • the relay UE After receiving the service code, the relay UE can determine that the DCR is used to establish the multipath. If the relay UE is in the RRC non-connected state, it can enter the RRC connection state according to the service code. In this implementation of the second information, if the DCR includes a service code corresponding to a single path, it indicates that the DCR is requesting to establish a PC5 connection through a single path, and the DCR is not used to trigger the relay UE to enter the RRC connected state.
  • the layer 2 identifier of the relay UE may be carried, and the layer 2 identifier is used as the layer 2 source identity (ID) in the discovery message.
  • the relay UE may have two types of layer 2 identifiers, one type of which corresponds to multipath, and the other type of which corresponds to a single path.
  • the relay UE has a layer 2 identifier 1 and a layer 2 identifier 2, both of which indicate the relay UE, wherein the layer 2 identifier 1 corresponds to multipath, and the layer 2 identifier 2 corresponds to a single path.
  • the discovery message may carry a layer 2 identifier corresponding to multipath, and the layer 2 identifier corresponding to multipath may indicate that the relay UE supports multipath communication; if the relay UE does not support multipath communication, the discovery message may carry a layer 2 identifier corresponding to a single path, and the layer 2 identifier corresponding to a single path may indicate that the relay UE does not support multipath communication, or indicates that the relay UE supports single path communication.
  • the remote UE may carry the layer 2 identifier corresponding to the multipath carried by the discovery message in the DCR to request the establishment of a non-direct path in the multipath.
  • the layer 2 identifier is used as a layer 2 destination ID in the DCR.
  • the relay UE can determine that the DCR is used for the establishment of a multipath. If the relay UE is in an RRC non-connected state, it can enter an RRC connected state according to the layer 2 destination ID.
  • the DCR if the DCR includes a layer 2 identifier corresponding to a single path, it indicates that the DCR is requesting the establishment of a PC5 connection through a single path. At this time, the DCR is not used to trigger the relay UE to enter an RRC connected state.
  • the discovery message sent by the relay UE may include the service code and/or layer 2 identifier of the relay UE, so that the remote UE can obtain the service code and/or layer 2 identifier of the relay UE.
  • the target user information may be carried in the DCR.
  • the target user information may indicate the service required by the remote UE, such as the name of the service required by the remote UE.
  • the target user information may be associated with the multipath. That is, if the DCR carries the target user information, it indicates that the DCR is used to establish a multipath, or to request the establishment of a non-direct path in the multipath, and if the DCR does not carry the target user information, it indicates that the DCR is used to establish a single path.
  • the relay UE may enter the RRC connected state according to the target user information; or, if the relay UE determines that the DCR does not include the target user information, it indicates that the DCR is requesting the establishment of a PC5 connection through a single path, and at this time the DCR is not used to trigger the relay UE to enter the RRC connected state.
  • the embodiment of the present application may also set two different types of target user information, one type of target user information corresponds to multi-path, and the other type of target user information corresponds to single path.
  • the relay UE has target user information 1 and target user information 2, and the two target user information indicate the same service, wherein target user information 1 corresponds to multi-path, and target user information 2 corresponds to single path. If the DCR carries target user information corresponding to multi-path, it indicates that the DCR is used for establishing multi-path, and if the DCR carries target user information corresponding to single path, it indicates that the DCR is used for establishing single path.
  • the relay UE determines that the DCR includes target user information corresponding to multi-path and the relay UE is in RRC non-connected state, it can enter RRC connected state according to the target user information; or, if the relay UE determines that the DCR includes target user information corresponding to a single path, it indicates that the DCR is requesting to establish a PC5 connection through a single path, and at this time the DCR is not used to trigger the relay UE to enter the RRC connected state.
  • the first information can be sent after the DCR.
  • the remote UE can send the first information to the relay UE after establishing a PC5 connection with the relay UE. Please refer to Figure 4B.
  • the first information is, for example, a sidelink relay adaptation protocol (SRAP) protocol data unit (PDU) sent by the remote UE through the default configured sidelink (SL)-radio link control (RLC) 1; correspondingly, for the relay UE, the first information is a SRAP PDU received by the relay UE through the default configured SL-RLC1.
  • the SRAP PDU is, for example, a SRAP control PDU or a SRAP data PDU.
  • the SRAP control PDU is, for example, information of the SRAP layer
  • the SRAP data PDU is, for example, information of the SRAP layer, or information of the high layer of the SRAP layer.
  • the embodiment of the present application may try not to change the implementation logic of the relay UE, that is, the remote UE still sends the first information to the relay UE through the default configured SL-RLC1, and if the relay UE receives the first information through the default configured SL-RLC1, it can enter the RRC connection state.
  • the first information may not be the RRC reconfiguration completion message.
  • the first information is sent through the default configured SL-RLC1. Since the relay UE has the relevant default receiving configuration, the relay UE in the RRC inactive state or the RRC idle state can receive the first information, thereby triggering the relay UE to enter the RRC connected state.
  • the SRAP layer of the remote UE may generate a SRAP control PDU according to the instruction of the RRC layer of the remote UE, and the SRAP control PDU may be used as the first information.
  • the SRAP control PDU may not include a bearer ID and/or an ID of the remote UE.
  • the bearer ID may indicate the bearer corresponding to the data included in the SRAP data PDU, and the SRAP control PDU does not include data, and therefore has no corresponding bearer, so the SRAP control PDU may not include a bearer ID.
  • the SRAP control PDU includes control information, and the control information may also have a corresponding bearer, but the first information is mainly to trigger the relay UE to enter the RRC connected state, so the relay UE does not pay attention to the bearer corresponding to the control information, so the SRAP control PDU may not include a bearer ID.
  • the relay UE For the relay UE, if the SRAP control PDU is received from the remote UE through the default configured SL-RLC1, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state; or, if the relay UE receives the SRAP control PDU from the remote UE through the default configured SL-RLC1, and the SRAP control PDU does not include the bearer ID and/or the remote UE's ID, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state.
  • the ID of the remote UE can be the local ID of the remote UE, which refers to the ID of the remote UE under the relay UE.
  • the remote UE served by a relay UE can have different IDs.
  • the local ID of the remote UE is generally allocated by the access network device.
  • the relay UE When the remote UE sends the first information to the relay UE, the relay UE has not yet entered the RRC connection state and cannot identify the local ID allocated by the access network device to the remote UE. Therefore, the SRAP data PDU may not include the local ID of the remote UE.
  • the SRAP layer of the remote UE may generate an SRAP data PDU according to the instruction of the RRC layer of the remote UE, and the SRAP data PDU may be used as the first information.
  • the SRAP data PDU may not include a payload, for example, the SRAP data PDU includes a payload field, but the payload field is empty, which can also be understood as that the SRAP data PDU only includes an SRAP header. Because the SRAP data PDU as the first information is to trigger the relay UE to enter the RRC connection state, not to send data to the relay UE, the payload of the SRAP data PDU may be empty.
  • the relay UE For the relay UE, if the SRAP data PDU is received from the remote UE through the default configured SL-RLC1, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state; or, if the relay UE receives the SRAP data PDU from the remote UE through the default configured SL-RLC1, and the payload field of the SRAP data PDU is empty and/or the SRAP data PDU only includes the SRAP header, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state.
  • the SRAP control PDU or SRAP data PDU may also carry first indication information, which may instruct the relay UE to enter the RRC connected state, thereby making the indication clearer.
  • the first information may also be sent after the DCR.
  • the remote UE may send the first information to the relay UE after establishing a PC5 connection with the relay UE. Please continue to refer to FIG. 4B.
  • the first information is a PC5 RRC message, which is used, for example, to configure the relay RLC channel of the relay UE.
  • the remote UE can configure the receiving configuration on the PC5 interface for the relay UE, and the remote UE can configure the relay UE through the PC5 RRC message. Since the receiving configuration is the configuration of the PC5 relay RLC channel, which is different from the sidelink communication of V2X, the relay UE can determine that the receiving configuration is used to provide data relay services for the remote UE. Therefore, the embodiment of the present application adds a new function to the PC5 RRC message, that is, in addition to configuring the relay RLC channel of the relay UE, the PC5 RRC message can also trigger the relay UE to enter the RRC connected state. In other words, if the relay UE receives the PC5 RRC message for configuring the relay RLC channel of the relay UE, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state.
  • the PC5 RRC message may also carry second indication information, which may instruct the relay UE to enter the RRC connected state, thereby making the indication clearer.
  • the PC5 RRC message is a PC5 RRC reconfiguration message.
  • the RRC reconfiguration message sent by the access network device described above can be understood as a Uu RRC reconfiguration message.
  • the first information may be the first message sent by the remote UE to the relay UE after the PC5 connection is established; or, the first information may be the first message sent by the remote UE to the access network device (the access network device may be the access network device shown in FIG. 3A or FIG. 3B, or may be the access network device 2 shown in FIG. 3C or FIG. 3D) through the relay UE after the PC5 connection is established.
  • the access network device may be the access network device shown in FIG. 3A or FIG. 3B, or may be the access network device 2 shown in FIG. 3C or FIG. 3D
  • the first message sent by the remote UE to the relay UE is the first information, no matter what the first information is (for example, the first information may be SRAP data PDU, SRAP control PDU, or PC5 RRC message, or may be other messages),
  • the first information can be used to trigger the relay UE to enter the RRC connected state; accordingly, if the relay UE receives the first message from the remote UE, no matter what information the first message contains, if the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state.
  • the first message sent by the remote UE to the relay UE is the first information. If the first information is a SRAP control PDU sent through the default configured SL-RLC1, the first information can be used to trigger the relay UE to enter the RRC connected state.
  • the relay UE if the SRAP control PDU is received from the remote UE through the default configured SL-RLC1, and the SRAP control PDU is the first message received from the remote UE after the PC5 connection between the relay UE and the remote UE is established, the relay UE can enter the RRC connected state; or, if the relay UE receives the SRAP control PDU from the remote UE through the default configured SL-RLC1, the SRAP control PDU is the first message received from the remote UE after the PC5 connection between the relay UE and the remote UE is established, and the SRAP control PDU does not include the bearer ID and/or the remote UE ID, the relay UE can enter the RRC connected state.
  • the first message sent by the remote UE to the relay UE is the first information. If the first information is a SRAP data PDU sent through the default configured SL-RLC1, the first information can be used to trigger the relay UE to enter the RRC connected state.
  • the relay UE For the relay UE, if an SRAP data PDU is received from the remote UE through the default configured SL-RLC1, and the SRAP data PDU is the first message received from the remote UE after the PC5 connection between the relay UE and the remote UE is established, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state; or, if the relay UE receives an SRAP data PDU from the remote UE through the default configured SL-RLC1, and the SRAP data PDU is the first message received from the remote UE after the PC5 connection between the relay UE and the remote UE is established, the payload field of the SRAP data PDU is empty and/or the SRAP data PDU only includes a SRAP header, and the relay UE is currently in the RRC non-connected state, the relay UE can enter the RRC connected state.
  • the first message sent by the remote UE to the relay UE is the first information. If the first information is a PC5 RRC message for configuring the relay RLC channel of the relay UE, and the PC5 RRC message is the first message received from the remote UE after the PC5 connection with the remote UE is established, then the first information can be used to trigger the relay UE to enter the RRC connected state.
  • the relay UE can enter the RRC connected state if the relay UE receives the PC5 RRC message for configuring the relay RLC channel of the relay UE, and the PC5 RRC message is the first message received from the remote UE after the PC5 connection with the remote UE is established, and the relay UE is currently in the RRC non-connected state, then the relay UE can enter the RRC connected state.
  • any message that can trigger the relay UE to enter the RRC connected state can be used as the first information in the embodiments of the present application.
  • the relay UE may enter the RRC connected state according to the first information. For example, the relay UE may enter the RRC connected state according to the explicit instruction of the first information; or, if the relay UE determines according to the first information that the remote UE is looking for a relay UE for multipath, the relay UE may enter the RRC connected state.
  • the relay UE may enter the RRC connected state according to the relevant introduction of S401.
  • steps S403 to S405 may also be included.
  • the access network device sends an RRC reconfiguration message to the remote UE.
  • the remote UE receives the RRC reconfiguration message from the access network device.
  • the RRC reconfiguration message can be understood as a Uu RRC reconfiguration message.
  • the access network device can be the access network device shown in FIG. 3A or FIG. 3B, or can be the access network device 1 shown in FIG. 3C or FIG. 3D.
  • the RRC reconfiguration message can be used to configure a non-direct path in a multipath for the remote UE, and the non-direct path is the path that the remote UE needs to add (or, newly create) this time.
  • the "multipath" here means that after the remote UE adds the non-direct path, the remote UE maintains multiple paths at the same time. Before the remote UE adds the non-direct path, the remote UE may have maintained multiple paths, or may have only maintained a single path.
  • the RRC reconfiguration message may include information about a timer, and the timer can be used to determine whether the non-direct path is successfully established, or to determine whether the multipath is successfully configured.
  • the timer is, for example, a newly defined timer in an embodiment of the present application, and the timer can be used to determine whether the path switch fails (or, succeeds), for example, it can be used to determine whether the path addition fails (or, succeeds); or, the timer is an existing timer T420.
  • the remote UE sends an RRC reconfiguration completion message to the access network device.
  • the access network device receives the RRC reconfiguration completion message from the remote UE.
  • the remote UE can send the RRC reconfiguration completion message to the access network device through an existing path, so it does not send the RRC reconfiguration completion message to the access network device through the relay UE (that is, the relay UE mentioned above) on the non-directly connected path to be added (or newly created).
  • the device sends the RRC reconfiguration completion message.
  • the existing path is, for example, a direct path or an indirect path. In FIG. 4A and FIG. 4B , the existing path is an example of a direct path.
  • the access network device is the same access network device as the access network device described in S403 .
  • remote UE starts the timer.
  • the remote UE may configure the timer according to the information of the timer included in the RRC reconfiguration message and start the timer. If the timer times out, it indicates that the indirect path establishment fails or the multipath configuration fails. In this case, the remote UE may send information to the access network device to indicate the indirect path establishment failure or the multipath configuration failure.
  • the access network device is the same access network device as the access network device described in S403.
  • S405 may occur before S404, or after S404, or simultaneously with S404.
  • the remote UE and the relay UE may further interact to establish a PC5 connection.
  • the method further includes S406 in FIG. 4A , where the relay UE sends a direct communication accept (DCA) message to the remote UE to indicate that the PC5 connection is successfully established, and accordingly, the remote UE may receive the DCA message.
  • the relay UE may execute S406 after being in the RRC connected state.
  • the DCA message may be a message of the PC5-S layer.
  • 4A may be understood as the process of establishing a PC5 connection (which may also include other steps, such as the remote UE and the relay UE may establish a PC5 connection through multiple interactions, without limitation).
  • S402 does not belong to the process of establishing a PC5 connection, and it can be considered that the process of the relay UE entering the RRC connected state may occur in the process of establishing a PC5 connection.
  • S407 may be included before S401, where the remote UE establishes a PC5 connection with the relay UE. After the PC5 connection is established, S401 may be executed.
  • a technical problem to be solved by the embodiment of the present application is how the relay UE enters the RRC connected state if the remote UE sends an RRC reconfiguration message to the access network device through an existing path.
  • the remote UE stops the timer T420 after receiving the RLC layer ACK corresponding to the RRC reconfiguration completion message from the relay UE.
  • the embodiment of the present application can reuse T420, that is, the timer in the embodiment of the present application can be T420; or, the embodiment of the present application can also introduce a new timer similar to T420, that is, the timer in the embodiment of the present application can be a newly introduced timer similar to T420.
  • the remote UE does not send the RRC reconfiguration completion message to the relay UE (or, the remote UE does not send the RRC reconfiguration completion message to the access network device through the relay UE), and the relay UE will not send the RLC layer ACK corresponding to the RRC reconfiguration completion message to the remote UE. Therefore, referring to Figure 2, another technical problem to be solved by the embodiment of the present application is how the remote UE controls the timer, for example, how to stop the timer.
  • the relay UE may send a third message to the remote UE, and the third message is a response to the first message, or a response to the first message; or, the relay UE may send a fourth message to the remote UE, and the fourth message may be information that the relay UE actively sends to the remote UE.
  • the remote UE may receive the third message or the fourth message from the relay UE.
  • the sending process of the third message or the fourth message may occur after S401.
  • the third message or the fourth message may be used to stop the timer of the remote UE.
  • the first message may be implemented in a variety of ways, and accordingly, the third message may also be implemented in different ways. Accordingly, the fourth message may also be implemented in different ways.
  • the first information is a DCR message
  • the third information is a DCA message.
  • the DCA message in S406 can be used as the third information.
  • the timer can be stopped. Alternatively, it can be described as that the remote UE stops the timer in response to receiving the DCA.
  • the method may also include S408, the relay UE may send the third information to the remote UE, and correspondingly, the remote UE may receive the third information from the relay UE.
  • the first information is a SRAP control PDU or a SRAP data PDU received by the relay through the default configured SL-RLC1 (or, the first information is a SRAP control PDU or a SRAP data PDU sent by the remote through the default configured SL-RLC1)
  • the third information is, for example, RLC ACK.
  • the SRAP control PDU is transmitted through the default configured SL-RLC1, wherein the SRAP control PDU is contained in one or more RLC PDUs, and each time the relay UE successfully receives one of the one or more RLC PDUs, it can send an RLC ACK to the remote UE, and if the one or more RLC PDUs are all received successfully, the relay UE can send one or more RLC ACKs to the remote UE. If the remote UE receives the one or more RLC ACKs, it is determined that the third information has been received, and the remote UE can stop the timer. Or it can be described as that the remote UE stops the timer in response to receiving the one or more RLC ACKs.
  • the SRAP data PDU is transmitted through the default configured SL-RLC1, wherein the SRAP data PDU is included in one or more RLC PDUs, and each time the relay UE successfully receives one of the one or more RLC PDUs, it can Send RLC ACK to the remote UE. If the one or more RLC PDUs are all received successfully, the relay UE can send one or more RLC ACKs to the remote UE. If the remote UE receives the one or more RLC ACKs, it is determined that the third information has been received, and the remote UE can stop the timer. Alternatively, it can be described as the remote UE stopping the timer in response to receiving the one or more RLC ACKs. Alternatively, it can be described as the remote UE stopping the timer according to receiving the RLC ACK of the RLC PDU corresponding to the SRAP control PDU or SRAP data PDU sent through the default SL-RLC1.
  • the first information is a PC5 RRC message for configuring a relay RLC channel of a relay UE
  • the third information is, for example, an RLC ACK.
  • the PC5 RRC message is transmitted through an RLC entity, and the PC5 RRC message may be included in one or more RLC PDUs.
  • the relay UE may send an RLC ACK to the remote UE each time it successfully receives one of the one or more RLC PDUs. If the one or more RLC PDUs are all received successfully, the relay UE may send one or more RLC ACKs to the remote UE. If the remote UE receives the one or more RLC ACKs, it is determined that the third information has been received, and the remote UE may stop the timer.
  • the remote UE stopping the timer in response to receiving the one or more RLC ACKs.
  • it may be described as the remote UE stopping the timer according to receiving the RLC ACK of the RLC PDU corresponding to the PC5 RRC message.
  • the first information is a PC5 RRC message for configuring a relay RLC channel of a relay UE
  • the third information is, for example, a PC5 RRC reconfiguration completion message.
  • the PC5 RRC message is a PC5 RRC reconfiguration message.
  • the relay UE may send an RLC ACK to the remote UE.
  • the relay UE may be configured according to the PC5 RRC reconfiguration message.
  • the relay UE may send a PC5 RRC reconfiguration completion message to the remote UE, and the PC5 RRC reconfiguration completion message may be used as the third information.
  • the remote UE when receiving the PC5 RRC reconfiguration completion message, or after receiving the PC5 RRC reconfiguration completion message, it may be determined that the relay UE has been configured, and thus the timer may be stopped. Alternatively, it may be described as the remote UE stopping the timer in response to receiving the PC5 RRC reconfiguration completion message.
  • the fourth information is a PC5 RRC message, which may be a new PC5 RRC message or a reused existing PC5 RRC message, and is not limited here.
  • the fourth information may indicate that the relay UE has entered the RRC connection state, or indicate that the relay UE has completed the connection establishment with the network device (such as the access network device).
  • the remote UE may stop the timer upon receiving the fourth information.
  • the fourth information is a PC5 RRC reconfiguration message used by the relay UE to configure the PC5 RLC channel of the remote UE, for example, the PC5 RRC reconfiguration message includes PC5 RLC configuration information, and the PC5 RLC configuration information is used to configure the PC5 RLC channel of the remote UE.
  • the remote UE When the remote UE receives the PC5 RLC configuration information from the relay UE (or, when receiving the PC5 RRC reconfiguration message), if the timer is still running, the timer may be stopped. By configuring the downlink PC5 RLC channel for the remote UE through the relay UE, the remote UE can determine that the non-direct path has been established and stop the timer.
  • the embodiment of the present application may further include S409, the remote UE stops the timer.
  • the remote UE stops the timer.
  • the timer started in S405 may be stopped; or it may be described as that the remote UE stops the timer in response to receiving the third information or the fourth information.
  • the remote UE can stop the timer at a reasonable time to avoid the timer from timing out.
  • the remote UE stops timer T420 after receiving the RLC ACK of the Uu RRC reconfiguration completion message from the relay UE. Therefore, the embodiment of the present application can continue to make the RLC ACK the third information (but the RLC ACK no longer corresponds to the Uu RRC reconfiguration completion message, but corresponds to the RLC ACK of the RLC PDU corresponding to the message where the third information is located), so as to minimize the change of the execution logic of the remote UE.
  • the embodiment of the present application can also make the PC5 RRC reconfiguration completion message as the third information, because the timer is used to monitor whether the non-direct path is successfully established or the multipath is successfully configured. If the PC5 RRC reconfiguration completion message is received, it can be considered that the non-direct path is successfully established or the multipath is successfully configured. In this case, stopping the timer can make the timer stop more accurate.
  • the timer may be controlled by another mechanism without resorting to the third or fourth information.
  • the remote UE stops the timer after sending the first information.
  • the remote UE does not have to wait for a response to the first information, or determine whether the first information is successfully sent, or wait for the relay UE to actively send information (such as the fourth information), and can stop the timer.
  • This mechanism reduces the dependence on the peer device and can effectively control the timer.
  • the remote UE in the process of establishing a non-direct path, even if the remote UE sends an RRC reconfiguration completion message to the access network device through the existing path, it can also send the first information to the relay UE, so that even if the relay UE does not receive the RRC reconfiguration completion message, it can enter the RRC connection state under the trigger of the first information, thereby being able to provide relay services for the remote UE.
  • the remote UE can also stop the timer according to the first information or according to the third information or according to the fourth information, which reduces the probability of the timer timing out and improves the success rate of adding the path.
  • the remote UE stops the timer according to the first information according to the foregoing, one implementation method is that the remote UE can stop the timer according to the sending of the first information.
  • FIG. 4C is a flow chart of another communication method provided in an embodiment of the present application.
  • the remote UE mentioned below is the remote terminal device in FIG. 4C
  • the relay UE mentioned below is the relay terminal device in FIG. 4C.
  • the network device sends an RRC reconfiguration message to the remote UE.
  • the remote UE receives the RRC reconfiguration message from the network device.
  • the network device in the embodiment of the present application is, for example, an access network device.
  • the RRC reconfiguration message can be used to configure a non-direct path in a multipath for the remote UE, and the non-direct path is the path that the remote UE needs to add (or, newly create) this time.
  • "Multipath" here means that after the remote UE adds the non-direct path, the remote UE maintains multiple paths at the same time. Before the remote UE adds the non-direct path, the remote UE may have maintained multiple paths, or may have only maintained a single path.
  • the RRC reconfiguration message may include information of a first timer, and the first timer can be used to determine whether the non-direct path is successfully established, or to determine whether the multipath is successfully configured.
  • the first timer is, for example, a newly defined timer in an embodiment of the present application, and the first timer can be used to determine whether the path switch fails (or, succeeds), for example, it can be used to determine whether adding a path fails (or, succeeds); or, the first timer is an existing timer T420.
  • the remote UE may send an RRC reconfiguration completion message to the network device, and accordingly, the network device receives the RRC reconfiguration completion message from the remote UE.
  • the remote UE may send the RRC reconfiguration completion message to the network device via an existing path, and therefore does not send the RRC reconfiguration completion message to the network device via the relay UE (that is, the relay UE described above) on the non-direct path to be added (or newly created).
  • the existing path is, for example, a direct path or a non-direct path.
  • remote UE starts the first timer.
  • the remote UE may configure the timer according to the information of the timer included in the RRC reconfiguration message and start the timer. If the timer times out, it indicates that the indirect path establishment fails or the multipath configuration fails. In this case, the remote UE may send information to the access network device to indicate the indirect path establishment failure or the multipath configuration failure.
  • the access network device is the same access network device as the access network device described in S403.
  • S411 can occur before the remote UE sends the RRC reconfiguration completion message to the network device, or after the remote UE sends the RRC reconfiguration completion message to the network device, or at the same time as the remote UE sends the RRC reconfiguration completion message to the network device.
  • the relay UE sends the third information to the remote UE, and correspondingly, the remote UE receives the third information from the relay UE.
  • the relay UE sends the fourth information to the remote UE, and correspondingly, the remote UE receives the fourth information from the relay UE.
  • the remote UE stops the first timer based on receiving the third information or the fourth information.
  • the remote UE when the remote UE receives the third information or the fourth information, or after receiving the third information or the fourth information, the first timer started in S411 may be stopped; or S413 may be described as the remote UE stopping the first timer in response to receiving the third information or the fourth information.
  • the remote UE can stop the first timer at a reasonable time to avoid the timer from timing out.
  • S410 is a step in the embodiment of the present application, which does not mean that S410 is to be executed after one or some steps in the aforementioned FIG. 4A or FIG. 4B .
  • the execution of S410 to S413 does not depend on any of the aforementioned steps.
  • the embodiment of the present application may be combined with the embodiment shown in FIG. 4A or FIG. 4B .
  • the third information in the embodiment of the present application may be a response or reply to the first information in the embodiment shown in FIG. 4A or FIG. 4B .
  • FIG5 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 500 may be the remote UE or the circuit system of the remote UE described in the embodiment shown in FIG4A , FIG4B , or FIG4C , and is used to implement the method corresponding to the remote UE in the above method embodiment.
  • the communication device 500 may be the circuit system of the relay UE in the embodiment shown in FIG4A , FIG4B , or FIG4C , and is used to implement the method corresponding to the relay UE in the above method embodiment.
  • a circuit system is a chip system.
  • the communication device 500 includes at least one processor 501.
  • the processor 501 can be used for internal processing of the device to implement certain control processing functions.
  • the processor 501 includes instructions.
  • the processor 501 can store data.
  • different processors can be independent devices, can be located in different physical locations, and can be located on different integrated circuits.
  • different processors can be integrated into one or more processors, for example, integrated on one or more integrated circuits.
  • the communication device 500 includes one or more memories 503 for storing instructions.
  • the memory 503 also includes Data can be stored.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 500 includes a communication line 502 and at least one communication interface 504. Since the memory 503, the communication line 502 and the communication interface 504 are all optional, they are all indicated by dotted lines in FIG. 5 .
  • the communication device 500 may further include a transceiver and/or an antenna.
  • the transceiver may be used to send information to other devices or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 500 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter may be used to generate a radio frequency signal from a baseband signal
  • the receiver may be used to convert the radio frequency signal into a baseband signal.
  • Processor 501 may include a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication link 502 may include a pathway for transmitting information between the above-mentioned components.
  • the communication interface 504 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), wired access networks, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access networks etc.
  • the memory 503 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 503 may exist independently and be connected to the processor 501 through the communication line 502. Alternatively, the memory 503 may also be integrated with the processor 501.
  • the memory 503 is used to store computer execution instructions for executing the solution of the present application, and the execution is controlled by the processor 501.
  • the processor 501 is used to execute the computer execution instructions stored in the memory 503, so as to implement the steps performed by the remote UE described in the embodiment shown in Figure 4A, Figure 4B, or Figure 4C, or, to implement the steps performed by the relay UE described in the embodiment shown in Figure 4A, Figure 4B, or Figure 4C.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the communication device 500 may include multiple processors, such as the processor 501 and the processor 505 in FIG5 .
  • processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the chip When the device shown in FIG. 5 is a chip, such as a chip of a remote UE or a chip of a relay UE, the chip includes a processor 501 (may also include a processor 505), a communication line 502 and a communication interface 504, and optionally, may include a memory 503.
  • the communication interface 504 may be an input interface, a pin or a circuit, etc.
  • the memory 503 may be a register, a cache, etc.
  • the processor 501 and the processor 505 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of a program of the communication method of any of the above embodiments.
  • the embodiment of the present application can divide the functional modules of the device according to the above method example.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
  • Figure 6 shows a schematic diagram of a device, and the device 600 can be the remote UE or relay UE involved in the above method embodiments, or a chip in the remote UE or a chip in the relay UE.
  • the device 600 includes a sending unit 601, a processing unit 602 and a receiving unit 603.
  • the device 600 can be used to implement the steps performed by the remote UE or relay UE in the communication method of the embodiment of the present application.
  • the relevant features can refer to the embodiments shown in Figures 4A, 4B or 4C above, and will not be repeated here.
  • the functions/implementation processes of the sending unit 601, the receiving unit 603, and the processing unit 602 in FIG6 may be implemented by the processor 501 in FIG5 calling the computer execution instructions stored in the memory 503.
  • the functions/implementation processes of the processing unit 602 in FIG6 may be implemented by the processor 501 in FIG5 calling the computer execution instructions stored in the memory 503, and the functions/implementation processes of the sending unit 601 and the receiving unit 603 in FIG6 may be implemented by the communication interface 504 in FIG5.
  • the functions/implementation processes of the sending unit 601 and the receiving unit 603 can also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, which stores a computer program or instruction.
  • a computer program or instruction When the computer program or instruction is executed, the method performed by the remote UE or relay UE in the aforementioned method embodiment is implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application can be essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • Storage media include: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the present application also provides a computer program product, which includes: a computer program code, which, when executed on a computer, enables the computer to execute the method performed by the remote UE or the relay UE in any of the aforementioned method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the method executed by the remote UE or relay UE involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented or operated by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor can be a microprocessor, and optionally, the general-purpose processor can also be any conventional processor, controller, microcontroller or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage medium in the art.
  • the storage medium can be connected to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium can also be arranged in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • the remote UE or the relay UE may perform some or all of the steps in the embodiment of the present application, and these steps or operations are only examples. In the embodiment of the present application, other operations or variations of various operations may also be performed. In addition, the various steps may be performed in different orders presented in the embodiment of the present application, and it is possible that not all operations in the embodiment of the present application need to be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。远端终端设备接收来自第一网络设备的RRC重配置消息,该RRC重配置消息用于配置多路径中的非直连路径。该远端终端设备向中继终端设备发送第一信息,第一信息用于触发中继终端设备进入RRC连接态,该中继终端设备为该非直连路径上用于为该远端终端设备提供中继服务的设备。远端终端设备在建立非直连路径的过程中,即使通过已有的路径向接入网设备发送了RRC重配置完成消息,也还可以向中继终端设备发送第一信息,从而该中继终端设备即使未接收RRC重配置完成消息,也可以在第一信息的触发下进入RRC连接态,从而能够为该远端终端设备提供中继服务。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月26日提交中国国家知识产权局、申请号为202211175067.X、申请名称为“一种通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年10月25日提交中国国家知识产权局、申请号为202211310334.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,远端(remote)用户设备(user equipment,UE)可以通过中继(relay)UE连接网络,即,remote UE通过非直连(indirect)路径与网络通信。另外,remote UE也可以通过直连(direct)路径连接网络,即,remote UE不经过relay UE,而是直接与网络连通。
为了增加remote UE的通信容量,期望remote UE能够支持多条路径的同时通信。例如一个remote UE已建立了路径1,还可以继续建立路径2,路径2为非直连路径,在路径2下,remote UE通过relay UE与接入网设备通信。在建立路径2的过程中,接入网设备向remote UE发送无线资源控制(radio resource control,RRC)重配置消息,remote UE可以向接入网设备回复RRC重配置完成消息。此时,remote UE可以通过刚建立的路径2向接入网设备发送该RRC重配置完成消息,或者也可能通过已有的路径1向接入网设备发送该RRC重配置完成消息。如果remote UE通过路径2向接入网设备发送该RRC重配置完成消息,则该RRC重配置完成消息会通过路径2上的relay UE发送给接入网设备。如果该relay UE原本处于RRC空闲(idle)态或RRC非激活(inactive)态,该relay UE在接收来自remote UE的该RRC重配置完成消息后,就可以进入RRC连接(connected)态。
但如果remote UE通过路径1向接入网设备发送该RRC重配置完成消息,则路径2上的relay UE无法接收该RRC重配置完成消息。如果该relay UE原本处于RRC空闲态或RRC非激活态,则该relay UE无法进入RRC连接态,从而无法为该remote UE提供中继服务。
发明内容
本申请实施例提供一种通信方法及装置,用于使得中继终端设备能够进入RRC连接态。
第一方面,提供第一种通信方法,该方法可由远端终端设备执行,或由包括远端终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现远端终端设备的功能,该芯片系统或功能模块例如设置在远端终端设备中。该方法包括:接收来自第一网络设备的RRC重配置消息,所述RRC重配置消息用于配置多路径中的非直连路径;向中继终端设备发送第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备为所述非直连路径上用于为所述远端终端设备提供中继服务的设备。
本申请实施例中,远端终端设备可以向中继终端设备发送第一信息,以触发中继终端设备进入RRC连接态。例如远端终端设备在建立非直连路径的过程中,即使通过已有的路径向接入网设备发送了RRC重配置完成消息,也还可以向中继终端设备发送第一信息,从而该中继终端设备即使未接收RRC重配置完成消息,也可以在第一信息的触发下进入RRC连接态,从而能够为该远端终端设备提供中继服务。
在一种可选的实施方式中,所述第一信息为直连通信请求消息,用于请求与所述中继终端设备建立PC5连接。本申请实施例中,远端终端设备发送给中继终端设备的直连通信请求消息可被利用作为第一信息,因此,该直连通信请求消息不仅用于请求与中继终端设备建立PC5连接,还可以用于触发中继终端设备进入RRC连接态。从而远端终端设备不必向中继终端设备再发送额外的消息来触发该中继终端设备进入RRC连接态,能够节省信令开销。而且该中继终端设备接收第一信息的时间较早,有利于该中继终端设备及时进入RRC连接态。
在一种可选的实施方式中,所述第一信息包括第二信息,所述第二信息用于指示所述直连通信请求 消息用于建立多路径中的非直连路径。第二信息指示了多路径,表明当前是添加路径,而不是切换路径。在添加路径的场景下中继终端设备可能会无法接收用于触发该中继终端设备进入RRC连接态的RRC重配置消息,因此,当relay UE接收到包含第二信息的DCR后,可确定建立连接的目的为建立多路径通信,从而该直连通信请求消息除了用于请求与中继终端设备建立PC5连接外,还可以用于触发中继终端设备进入RRC连接态。该中继终端设备接收第二信息后,如果该中继终端设备处于RRC非连接态,就可以进入RRC连接态。
在一种可选的实施方式中,所述第二信息包括如下一项或多项:对应于所述多路径的服务码;对应于所述多路径的层2标识,所述层2标识为所述中继终端设备的标识;或,对应于所述多路径的目标用户信息。第二信息可通过隐式方式指示,从而第二信息既指示了多路径,也实现了第二信息原本的功能(例如作为层2标识或服务码等),能够提高信息的利用率。除如上几项之外,第二信息还可以包括其他信息,对此不做限制。
在一种可选的实施方式中,所述第二信息包括所述多路径的信息。第二信息可通过显式方式进行指示,例如第二信息包括多路径的信息,该多路径的信息可指示该第一信息用于多路径的建立。通过显式方式指示,使得指示更为明确。
在一种可选的实施方式中,所述方法还包括:接收来自所述中继终端设备的发现消息,所述发现消息包括所述服务码和/或所述层2标识。远端终端设备所发送的第二信息可包括该服务码和/或该层2标识,第二信息所包括的这些信息可以来自中继终端设备的发现消息。
在一种可选的实施方式中,所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU;或,所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息。第一信息还可以通过SRAP控制PDU、SRAP数据PDU或PC5 RRC重配置消息等形式实现,如果第一信息以这些形式实现,则第一信息可以不必携带额外的多路径指示信息,中继终端设备根据第一信息就能确定第一信息触发该中继终端设备进入RRC连接态。
在一种可选的实施方式中,所述第一信息为所述中继终端设备与所述远端终端设备建立PC5连接成功后,向所述中继终端设备发送的第一条信息。按照目前的技术,中继终端设备在与远端终端设备建立PC5连接后,如果通过默认配置的SL-RLC1接收了来自远端终端设备的第一条消息(目前该消息为RRC重配置完成消息,但中继终端设备可能并不识别该消息的类型等),就可以触发进入RRC连接态。因此本申请实施例可以尽量不改变中继终端设备的实现逻辑,即,远端终端设备依然通过默认配置的SL-RLC1向中继终端设备发送第一信息,中继终端设备如果通过默认配置的SL-RLC1接收了第一信息,就可以进入RRC连接态。这样可以使得本申请实施例提供的实现方式能够更好地与已有技术兼容。
在一种可选的实施方式中,所述方法还包括:响应于接收到所述RRC重配置消息,启动定时器,所述定时器用于建立所述非直连路径;响应于接收到来自所述中继终端设备的第三信息,停止所述定时器,所述第三信息为所述第一信息的应答。本申请实施例中,中继终端设备可以向远端终端设备发送第三信息,从而可以触发远端终端设备停止该定时器,以避免该定时器超时。
在一种可选的实施方式中,所述第一信息为直连通信请求消息,所述第三信息为直连通信接受消息;或,所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU,所述第三信息为RLC应答;或,所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息,所述第三信息为RLC应答或PC5 RRC重配置完成消息。在第一信息的不同的实现方式下,第三信息也可以有不同的实现方式。
在一种可选的实施方式中,所述方法还包括:响应于接收到所述RRC重配置消息,启动定时器,所述定时器用于建立所述非直连路径;响应于接收到来自所述中继终端设备的第四信息,停止所述定时器。本申请实施例中,中继终端设备可以向远端终端设备发送第四信息,从而可以触发远端终端设备停止该定时器,以避免该定时器超时。
在一种可选的实施方式中,第四信息为用于指示所述中继终端设备已进入RRC连接态的PC5 RRC消息,或者所述第四信息为用于指示所述中继终端设备与网络设备(例如接入网设备)已完成连接的PC5 RRC消息,或者所述第四信息为用于所述中继终端设备配置所述远端终端设备的PC5 RLC信道的PC5 RRC重配置消息。
第二方面,提供第一种通信方法,该方法可由中继终端设备执行,或由包括中继终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现中继终 端设备的功能,该芯片系统或功能模块例如设置在中继终端设备中。该方法包括:接收来自远端终端设备的第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备用于为所述远端终端设备提供中继服务,所述中继终端设备对应于所述远端终端设备的非直连路径,所述非直连路径为所述远端终端设备的多路径中的一条;如果所述中继终端设备处于RRC非连接态,根据所述第一信息进入所述RRC连接态。
在一种可选的实施方式中,所述第一信息为直连通信请求消息,用于请求与所述中继终端设备建立PC5连接。
在一种可选的实施方式中,所述第一信息包括第二信息,所述第二信息用于指示所述直连通信请求消息用于建立多路径中的非直连路径。
在一种可选的实施方式中,所述第二信息包括如下一项或多项:对应于所述多路径的服务码;对应于所述多路径的层2标识,所述层2标识为所述中继终端设备的标识;或,对应于所述多路径的目标用户信息。
在一种可选的实施方式中,所述第二信息包括所述多路径的信息。
在一种可选的实施方式中,所述方法还包括:发送发现消息,所述发现消息包括所述服务码和/或所述层2标识。
在一种可选的实施方式中,所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU;或,所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息。
在一种可选的实施方式中,所述第一信息为所述中继终端设备与所述远端终端设备建立PC5连接成功后,来自所述远端终端设备的第一条信息。
在一种可选的实施方式中,所述方法还包括:向所述远端终端设备发送第三信息,所述第三信息为所述第一信息的应答,所述第三信息用于所述远端终端设备停止定时器,所述定时器用于所述远端终端设备建立所述非直连路径。
在一种可选的实施方式中,所述第一信息为直连通信请求消息,所述第三信息为直连通信接受消息;或,所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU,所述第三信息为RLC应答;或,所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息,所述第三信息为RLC应答或PC5 RRC重配置完成消息。
在一种可选的实施方式中,所述方法还包括:向所述远端终端设备发送第四信息,所述第四信息用于所述远端终端设备停止定时器,所述定时器用于所述远端终端设备建立所述非直连路径。
在一种可选的实施方式中,第四信息为用于指示所述中继终端设备已进入RRC连接态的PC5 RRC消息,或者所述第四信息为用于指示所述中继终端设备与网络设备(例如接入网设备)已完成连接的PC5 RRC消息,或者所述第四信息为用于所述中继终端设备配置所述远端终端设备的PC5 RLC信道的PC5 RRC重配置消息。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法可由远端终端设备执行,或由包括远端终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现远端终端设备的功能,该芯片系统或功能模块例如设置在远端终端设备中。该方法包括:接收来自第一网络设备的RRC重配置消息,所述RRC重配置消息用于配置多路径中的非直连路径,其中,所述RRC重配置消息包括第一定时器的信息,所述第一定时器的信息用于配置多路径;开启所述第一定时器;接收来自中继终端设备的第三信息或第四信息,其中,所述中继终端设备为所述非直连路径上用于为所述远端终端设备提供中继服务的设备;基于接收到所述第三信息或所述第四信息,停止所述第一定时器。
在一种可选的实施方式中,所述第四信息为用于指示所述中继终端设备已进入RRC连接态的PC5RRC消息;或者,所述第四信息为用于指示所述中继终端设备与所述网络设备已完成连接的PC5 RRC消息;或者,所述第四信息为用于所述中继终端设备配置所述远端终端设备的PC5 RLC信道的PC5 RRC重配置消息。
在一种可选的实施方式中,所述第三信息为第一信息的应答信息或者响应信息,其中所述第一信息为所述远端终端设备向所述中继终端发送的信息,如果所述中继设备处于非连接态,所述第一信息用于 触发所述中继终端设备进入RRC连接态。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍,和/或参考对于第二方面或相应实施方式的技术效果的介绍。
第四方面,提供一种通信装置。所述通信装置可以为上述第一方面至第三方面中的任一方面所述的远端终端设备。所述通信装置具备上述远端终端设备的功能。所述通信装置例如为远端终端设备,或为包括远端终端设备的较大设备,或为远端终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自第一网络设备的RRC重配置消息,所述RRC重配置消息用于配置多路径中的非直连路径;所述收发单元(或,所述发送单元),用于向中继终端设备发送第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备为所述非直连路径上用于为所述远端终端设备提供中继服务的设备。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自第一网络设备的RRC重配置消息,所述RRC重配置消息用于配置多路径中的非直连路径,其中,所述RRC重配置消息包括第一定时器信息,所述第一定时器信息用于配置多路径;所述处理单元,用于开启所述第一定时器;所述收发单元(或,所述接收单元),还用于接收来自中继终端设备的第三信息或第四信息,其中,所述中继终端设备为所述非直连路径上用于为所述远端终端设备提供中继服务的设备;所述处理单元,还用于基于接收到所述第三信息或所述第四信息,停止所述第一定时器。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第三方面中的任一方面所述的远端终端设备的功能。
第五方面,提供一种通信装置。所述通信装置可以为上述第一方面至第三方面中的任一方面所述的中继终端设备。所述通信装置具备上述中继终端设备的功能。所述通信装置例如为中继终端设备,或为包括中继终端设备的较大设备,或为中继终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第七方面的介绍。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自远端终端设备的第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备用于为所述远端终端设备提供中继服务,所述中继终端设备对应于所述远端终端设备的非直连路径,所述非直连路径为所述远端终端设备的多路径中的一条;所述处理单元,用于如果所述中继终端设备处于RRC非连接态,根据所述第一信息进入所述RRC连接态。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第三方面中的任一方面所述的中继终端设备的功能。
第六方面,提供一种通信装置,该通信装置可以为远端终端设备,或者为用于远端终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由远端终端设备所执行的方法。
第七方面,提供一种通信装置,该通信装置可以为中继终端设备,或者为用于中继终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由中继终端设备所执行的方法。
第八方面,提供一种通信系统,包括远端终端设备以及中继终端设备,其中,远端终端设备用于执 行如第一方面至第三方面中任一方面所述的由远端终端设备执行的方法,中继终端设备用于执行如第一方面至第三方面中任一方面所述的由中继终端设备执行的方法。例如,远端终端设备可以通过第四方面或第六方面所述的通信装置实现;中继终端设备可以通过第五方面或第七方面所述的通信装置实现。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中远端终端设备或中继终端设备所执行的方法被实现。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十一方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为remote UE切换路径的流程图;
图2为remote UE建立路径的流程图;
图3A~图3D为本申请实施例的几种应用场景的示意图;
图4A至图4C为本申请实施例提供的几种通信方法的流程图;
图5为本申请实施例提供的一种装置的示意图;
图6为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备 实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息,可以是同一个信息,也可以是不同的信息,且,这种名称也并不是表示这两个信息的内容、大小、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S401可以发生在S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于第五代移动通信技术(the 5th generation,5G)系统中,例如新空口(new radio,NR)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,例如第六代移动通信技术(the 6th generation,6G)系统等,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车联网(vehicle to everything,V2X)场景,例如NR-V2X场景或车与车(vehicle-to-vehicle,V2V)等。或者,本申请实施例提供的技术方案可用于智能驾驶、辅助驾驶、或智能网联车等领域。
如下介绍本申请实施例涉及的技术特征。
目前,remote UE可以通过relay UE连接网络,即,remote UE通过非直连路径与网络通信。另外,remote UE也可以通过直连路径连接网络,即,remote UE不经过relay UE,而是直接与网络连通。为了保证remote UE的业务连续性,可支持remote UE在非直连路径与直连路径之间的路径切换(path switch)。例如,remote UE可以从非直连路径切换到直连路径,或者从直连路径切换到非直连路径。请参考图1,为remote UE切换路径的流程图。
S101、接入网设备向remote UE发送RRC重配置(RRC reconfiguration)消息。相应的,remote UE接收来自接入网设备的该RRC重配置消息。例如该RRC重配置消息指示remote UE需要path switch到非直连路径。其中,该RRC重配置消息可包括定时器T420的配置信息,定时器T420可用于判断path switch是否失败。
S102、remote UE开启定时器T420。
S103、remote UE与relay UE建立PC5连接。该relay UE为remote UE待切换到的非直连路径上用于为该remote UE提供中继服务的relay UE。
S104、remote UE向relay UE发送RRC重配置完成(RRC reconfiguration complete)消息。相应的,relay UE接收来自该remote UE的RRC重配置完成消息。remote UE是期望通过该relay UE将该RRC重配置完成消息发送给接入网设备。
S105、如果relay UE处于RRC空闲态或RRC非激活态,则触发进入RRC连接态。
S106、在进入RRC连接态后,relay UE向接入网设备发送该remote UE的RRC重配置完成消息。相应的,接入网设备接收来自该relay UE的该RRC重配置完成消息。
S107、relay UE在SL-无线链路控制(radio link control,RLC)RLC1上成功接收到包括RRC重配置完成消息的RLC服务数据单元(service data unit,SDU)后,向remote UE发送RLC层的肯定应答(ACK)。其中,S105可以在S107之前执行,或者在S107之后执行,或者与S107同时执行。另外,S106可以在S107之前执行,或者在S107之后执行,或者与S107同时执行。
S108、remote UE在接收到RRC重配置完成消息对应的RLC层的ACK后,停止定时器T420,以避免定时器T420超时。
除了切换路径外,为了增加remote UE的通信容量,还期望remote UE能够支持多条路径的同时通 信。例如一个remote UE已建立了路径1,还可以继续建立路径2,路径2为非直连路径,在路径2下,remote UE通过relay UE与接入网设备通信。在图1所示的路径切换流程中,remote UE是通过待切换到的路径向接入网设备发送RRC重配置完成消息,而在添加路径的过程中,remote UE有已建立的路径,则remote UE可能通过已建立的路径向接入网设备发送RRC重配置完成消息。例如参考图2,为remote UE添加路径的流程图。在图2中,以remote UE已建立的路径是直连路径为例。
S201、接入网设备向remote UE发送RRC重配置消息。相应的,remote UE接收来自接入网设备的该RRC重配置消息。
S202、remote UE开启定时器T420。
S203、remote UE与relay UE建立PC5连接。该relay UE为remote UE待添加的非直连路径上用于为该remote UE提供中继服务的relay UE。
S204、remote UE向接入网设备发送RRC重配置完成消息。相应的,接入网设备接收来自该remote UE的RRC重配置完成消息。由于remote UE已建立的路径为直连路径,则remote UE通过该直连路径向接入网设备发送了该RRC重配置完成消息。
此时存在的一个问题是,relay UE如果处于RRC空闲态或RRC非激活态,则如何进入RRC连接态。
为了解决该问题,提供本申请实施例的技术方案。本申请实施例中,remote UE可以向relay UE发送第一信息,以触发relay UE进入RRC连接态。例如remote UE在建立非直连路径的过程中,即使通过已有的路径向接入网设备发送了RRC重配置完成消息,也还可以向relay UE发送第一信息,从而该relay UE即使未接收RRC重配置完成消息,也可以在第一信息的触发下进入RRC连接态,从而能够为该remote UE提供中继服务。
本申请实施例可适用于remote UE已维护有路径1,还需添加路径2的场景。请参考图3A~图3D,为本申请实施例的几种应用场景的示意图。图3A中,远端终端设备初始时通过直连路径(路径1)与接入网设备连接,另外需要新建(或,添加)通过中继终端设备与该接入网设备连接的非直连路径(路径2)。图3B中,远端终端设备初始时通过中继终端设备1与接入网设备连接(路径1),另外需要新建(或,添加)通过中继终端设备2与该接入网设备连接的另一条非直连路径(路径2)。图3A和图3B视为基站内(intra gNB)的建立路径的过程。图3C中,远端终端设备初始时通过直连路径(路径1)与接入网设备1连接,另外需要新建(或,添加)通过中继终端设备与接入网设备2连接的非直连路径(路径2)。图3D中,远端终端设备初始时通过中继终端设备1与接入网设备1连接(路径1),另外需要新建(或,添加)通过中继终端设备2与接入网设备2连接的另一条非直连路径(路径2)。图3C和图3D视为基站间(inter gNB)的建立路径的过程。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。本申请的各个实施例对应的附图中,凡是用虚线表示的步骤均为可选的步骤。本申请的各个实施例所提供的方法可应用于图3A至图3D中的任一个附图所示的网络架构。例如,后文涉及的remote UE,可以是图3A至图3D中的任一个附图所示的远端终端设备;后文涉及的relay UE,可以是图3A或图3C所示的中继终端设备,或者可以是图3B或图3D所示的中继终端设备2。
本申请的各个实施例中,“直连路径”是指远端终端设备不通过中继终端设备,而是通过Uu接口与接入网设备(或者,与接入网设备提供的小区)通信的路径;“非直连路径”是指远端终端设备通过中继终端设备与接入网设备(或者,与接入网设备提供的小区)通信的路径。另外,“路径”也可替换为“链路”。例如,“直连路径”也可以称为“直连链路”,“非直连路径”也可以称为“非直连链路”。
本申请的各个实施例中,设备A向设备B发送消息,对于设备B来说,可以认为该消息来自于设备A。其中,该发送过程可以是直接发送,或者也可以是间接发送(例如通过其他设备转发)。
为了解决本申请所要解决的技术问题,请参考图4A或图4B,为本申请实施例提供的一种通信方法的两种流程图。其中,如下所涉及的remote UE为图4A或图4B中的远端终端设备,如下所涉及的relay UE为图4A或图4B中的中继终端设备。
S401、remote UE向relay UE发送第一信息。相应的,relay UE接收来自remote UE的第一信息。
第一信息可用于触发该relay UE进入RRC连接态,或者,第一信息可用于relay UE进入RRC连接态。可理解为,relay UE在接收第一信息后,如果该relay UE当前处于RRC非连接态,则relay UE可进入RRC连接态。其中,RRC非连接态例如为RRC空闲态或RRC非激活态。或者,relay UE在接 收第一信息后,如果该relay UE当前已处于RRC连接态,则relay UE保持处于RRC连接态即可,也可理解为,该relay UE不必执行用于进入RRC连接态的任何操作。
第一信息可能有多种实现方式,下面举例介绍。
1、第一信息的第一种可选的实施方式。
第一信息为直连通信请求(direct communication request,DCR)消息,可参考图4A。该CDR消息原本的作用是用于请求与relay UE建立PC5连接。该DCR消息可以是PC5-信令(signaling,S)层的消息。
remote UE要建立非直连路径,在该非直连路径上,由relay UE为该remote UE提供中继服务,因此remote UE可以请求与该relay UE建立PC5连接,以能够与该relay UE通信。本申请实施例中,remote UE发送给relay UE的DCR消息可被利用作为第一信息,因此,该DCR消息不仅用于请求与relay UE建立PC5连接,还可以用于触发relay UE进入RRC连接态。从而remote UE不必向relay UE再发送额外的消息来触发该relay UE进入RRC连接态,能够节省信令开销。
可选的,该DCR消息可包括第二信息,第二信息可用于触发该relay UE进入RRC连接态。例如,第二信息可指示该DCR用于请求建立多路径中的非直连路径。第二信息指示该DCR用于请求建立多路径中的非直连路径,例如一种隐式指示方式为,第二信息指示该relay UE对应的非直连路径为多路径(multipath)中的一条路径,这样相当于隐式指示了remote UE具有多条路径。或者,第二信息也可以采用显式指示方式,例如直接指示请求建立多路径中的非直连路径,这样相当于显式指示了remote UE具有多条路径。可理解为,第二信息指示了多路径,表明当前是添加路径,而不是切换路径。在添加路径的场景下,relay UE可能会无法接收用于触发该relay UE进入RRC连接态的RRC重配置消息(例如remote UE可能通过已有的路径向接入网设备发送该RRC重配置消息,该接入网设备可以是图3A或图3B所示的接入网设备,或者可以是图3C或图3D所示的接入网设备1),因此,当relay UE接收到包含第二信息的DCR后,可确定建立连接的目的为建立多路径通信,从而该DCR消息除了用于请求与relay UE建立PC5连接外,还可以用于触发relay UE进入RRC连接态。该relay UE接收第二信息后,如果该relay UE处于RRC非连接态,就可以进入RRC连接态。
第二信息可以包括如下一项或多项:多路径的信息,对应于多路径的服务码(service code),对应于多路径的层2(layer 2,L2)标识,或,对应于多路径的目标用户信息(target user information)。该层2标识为relay UE的层2标识。
第二信息可通过显式方式进行指示。例如第二信息包括多路径的信息,该多路径的信息可指示该DCR用于多路径的建立,例如该多路径的信息占用1比特(bit),通过这1比特可指示该DCR建立连接的目的为建立多路径。可选的,该多路径的信息也可以称为多路径指示信息。relay UE如果处于RRC非连接态,根据该多路径的信息就可以进入RRC连接态。在第二信息的这种实现方式下,如果DCR包括第二信息,表明该DCR是请求通过多路径建立PC5连接,或者请求建立多路径中的非直连路径,则该DCR还用于触发该relay UE进入RRC连接态;如果DCR不包括第二信息,则表明该DCR是请求通过单路径(single path)建立PC5连接,此时该DCR不用于触发该relay UE进入RRC连接态。
或者,第二信息也可以通过隐式方式进行指示,例如第二信息包括对应于多路径的服务码、对应于多路径的层2标识、或对应于多路径的目标用户信息中的一项或多项。
remote UE向relay UE发送DCR之前,relay UE可以广播发现(discovery)消息,该发现消息可用于remote UE发现该relay UE。例如该发现消息携带该relay UE的服务码,其中,该relay UE的服务码可指示该relay UE支持的服务。本申请实施例中,该relay UE可以具有两种类型的服务码,其中一种类型的服务码对应于多路径,其中另一种类型的服务码对应于单路径。这两种类型的服务码所指示的服务可以相同,例如relay UE具有服务码1和服务码2,这两个服务码指示同一种服务,其中服务码1对应于多路径,服务码2对应于单路径。如果该relay UE支持多路径通信,则该发现消息可携带对应于多路径的服务码,该对应于多路径的服务码可指示relay UE支持多路径通信;如果该relay UE不支持多路径通信,则该发现消息可携带对应于单路径的服务码,该对应于单路径的服务码可指示relay UE不支持多路径通信,或指示relay UE支持单路径通信。如果该发现消息携带了对应于多路径的服务码,且remote UE新建路径是为了执行多路径通信,则remote UE可以在该DCR中携带该发现消息所携带的对应于多路径的服务码,以请求建立多路径中的非直连路径。该relay UE接收该服务码后就可以确定该DCR用于多路径的建立。relay UE如果处于RRC非连接态,根据该服务码就可以进入RRC连接 态。在第二信息的这种实现方式下,如果DCR包括的是对应于单路径的服务码,则表明该DCR是请求通过单路径建立PC5连接,此时该DCR不用于触发该relay UE进入RRC连接态。
在relay UE广播的发现消息中,可以携带该relay UE的层2标识,该层2标识在该发现消息中作为层2源(source)身份号(identity,ID)。本申请实施例中,该relay UE可以具有两种类型的层2标识,其中一种类型的层2标识对应于多路径,其中另一种类型的层2标识对应于单路径。例如relay UE具有层2标识1和层2标识2,这两个层2标识均指示该relay UE,其中层2标识1对应于多路径,层2标识2对应于单路径。如果该relay UE支持多路径通信,则该发现消息可携带对应于多路径的层2标识,该对应于多路径的层2标识可指示relay UE支持多路径通信;如果该relay UE不支持多路径通信,则该发现消息可携带对应于单路径的层2标识,该对应于单路径的层2标识可指示relay UE不支持多路径通信,或指示relay UE支持单路径通信。如果该发现消息携带了对应于多路径的层2标识,且remote UE新建路径是为了执行多路径通信,则remote UE可以在该DCR中携带该发现消息所携带的对应于多路径的层2标识,以请求建立多路径中的非直连路径,此时该层2标识在该DCR中是作为层2目的(destination)ID。该relay UE接收该层2目的ID后就可以确定该DCR用于多路径的建立。relay UE如果处于RRC非连接态,根据该层2目的ID就可以进入RRC连接态。在第二信息的这种实现方式下,如果DCR包括的是对应于单路径的层2标识,则表明该DCR是请求通过单路径建立PC5连接,此时该DCR不用于触发该relay UE进入RRC连接态。
根据上述介绍可知,relay UE所发送的发现消息可以包括relay UE的服务码和/或层2标识,从而remote UE能够获得relay UE的服务码和/或层2标识。
在DCR中,可以携带目标用户信息。目前,目标用户信息可指示remote UE所需的业务,例如指示remote UE所需的业务的名称等。本申请实施例中,可将目标用户信息与多路径进行关联。也就是说,如果DCR携带了目标用户信息,就表明该DCR是用于多路径的建立,或者用于请求建立多路径中的非直连路径,而如果该DCR未携带目标用户信息,就表明该DCR是用于单路径的建立。relay UE如果确定DCR包括目标用户信息,且relay UE处于RRC非连接态,则根据该目标用户信息可以进入RRC连接态;或者,relay UE如果确定DCR不包括目标用户信息,则表明该DCR是请求通过单路径建立PC5连接,此时该DCR不用于触发该relay UE进入RRC连接态。
或者,本申请实施例也可以设置两种不同类型的目标用户信息,其中一种类型的目标用户信息对应于多路径,其中另一种类型的目标用户信息对应于单路径。例如relay UE具有目标用户信息1和目标用户信息2,这两个目标用户信息指示同一种业务,其中目标用户信息1对应于多路径,目标用户信息2对应于单路径。如果该DCR携带对应于多路径的目标用户信息,则表明该DCR是用于多路径的建立,而如果该DCR携带对应于单路径的目标用户信息,就表明该DCR是用于单路径的建立。relay UE如果确定DCR包括对应于多路径的目标用户信息,且relay UE处于RRC非连接态,则根据该目标用户信息可以进入RRC连接态;或者,relay UE如果确定DCR包括对应于单路径的目标用户信息,则表明该DCR是请求通过单路径建立PC5连接,此时该DCR不用于触发该relay UE进入RRC连接态。
如上显式指示和隐式指示的方式可以分别应用,或者也可以结合应用;且如上几种隐式指示的方式也可以结合应用或分别应用,具体不做限制。
2、第一信息的第二种可选的实施方式。在这种实施方式下,第一信息可以在DCR之后发送,例如,remote UE可以在与relay UE建立PC5连接后向relay UE发送第一信息。可参考图4B。
对于remote UE来说,第一信息例如为remote UE通过默认配置的侧行链路(sidelink,SL)-无线链路控制(radio link control,RLC)1发送的侧行中继适配协议(sidelink relay adaptation protocol,SRAP)协议数据单元(protocol data unit,PDU);相应的,对于relay UE来说,第一信息为relay UE通过默认配置的SL-RLC1接收的SRAP PDU。该SRAP PDU例如为SRAP控制(control)PDU,或为SRAP数据(data)PDU。其中,SRAP control PDU例如为SRAP层的信息;SRAP data PDU例如为SRAP层的信息,或为SRAP层的高层的信息。
按照目前的技术,relay UE在与remote UE建立PC5连接后,如果通过默认配置的SL-RLC1接收了来自remote UE的第一条消息(目前该消息为RRC重配置完成消息,但relay UE可能并不识别该消息的类型等),就可以触发进入RRC连接态。因此本申请实施例可以尽量不改变relay UE的实现逻辑,即,remote UE依然通过默认配置的SL-RLC1向relay UE发送第一信息,relay UE如果通过默认配置的SL-RLC1接收了第一信息,就可以进入RRC连接态。只是本申请实施例中,第一信息可能不是RRC 重配置消息,而是SRAP PDU。另外,通过默认配置的SL-RLC1发送第一信息,由于relay UE具有相关的默认接收配置,使得处于RRC非激活态或RRC空闲态的relay UE均能够接收第一信息,从而能够触发relay UE进入RRC连接态。
例如,remote UE的SRAP层可以根据remote UE的RRC层的指示生成SRAP control PDU,该SRAP control PDU可作为第一信息。可选的,该SRAP control PDU可以不包括承载(bearer)ID和/或remote UE的ID。其中,承载ID可指示SRAP data PDU包括的数据对应的承载,而SRAP control PDU并不包括数据,因此也没有对应的承载,则该SRAP control PDU可以不包括承载ID。或者,SRAP control PDU包括控制信息,该控制信息也可能有对应的承载,但第一信息主要是为了触发relay UE进入RRC连接态,因此relay UE并不关注该控制信息所对应的承载,因此该SRAP control PDU可以不包括承载ID。对于relay UE来说,如果通过默认配置的SL-RLC1接收了来自remote UE的SRAP control PDU,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态;或者,如果relay UE通过默认配置的SL-RLC1接收了来自remote UE的SRAP control PDU,并且该SRAP control PDU不包括承载ID和/或remote UE的ID,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态。
remote UE的ID,可以是remote UE的本地(local)ID,是指remote UE在relay UE下的ID,例如一个relay UE所服务的remote UE可以有不同的ID。remote UE的local ID一般是由接入网设备分配,而在remote UE向relay UE发送第一信息时,relay UE还未进入RRC连接态,并不能识别接入网设备为remote UE所分配的local ID,因此该SRAP data PDU可以不包括remote UE的local ID。
又例如,remote UE的SRAP层可以根据remote UE的RRC层的指示生成SRAP data PDU,该SRAP data PDU可作为第一信息。可选的,该SRAP data PDU可以不包括载荷(payload),例如该SRAP data PDU包括payload字段,但payload字段为空,对此也可以理解为,该SRAP data PDU仅包括SRAP头。因为作为第一信息的SRAP data PDU是为了触发relay UE进入RRC连接态,并不是要向relay UE发送数据,因此该SRAP data PDU的payload可以为空。对于relay UE来说,如果通过默认配置的SL-RLC1接收了来自remote UE的SRAP data PDU,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态;或者,如果relay UE通过默认配置的SL-RLC1接收了来自remote UE的SRAP data PDU,并且该SRAP data PDU的payload字段为空和/或该SRAP data PDU仅包括SRAP头,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态。
可选的,该SRAP control PDU或SRAP data PDU还可以携带第一指示信息,该第一指示信息可指示relay UE进入RRC连接态,从而使得指示更为明确。
3、第一信息的第三种可选的实施方式。在这种实施方式下,第一信息也可以在DCR之后发送,例如,remote UE可以在与relay UE建立PC5连接后向relay UE发送第一信息。可继续参考图4B。
第一信息为PC5 RRC消息,该PC5 RRC消息例如用于配置relay UE的relay RLC信道(channel)。例如,remote UE可以为relay UE配置PC5接口上的接收配置,则remote UE可以通过该PC5 RRC消息为relay UE进行配置。由于该接收配置是PC5 relay RLC信道的配置,与V2X的侧行通信(sidelink communication)不同,则relay UE可以确定该接收配置是用于为remote UE提供数据中继服务,因此本申请实施例为该PC5 RRC消息新增一种功能,即,该PC5 RRC消息除了配置relay UE的relay RLC信道外,还可以触发relay UE进入RRC连接态。或者说,relay UE如果接收了用于配置relay UE的relay RLC信道的该PC5 RRC消息,且relay UE当前处于RRC非连接态,则relay UE就可以进入RRC连接态。
可选的,该PC5 RRC消息还可以携带第二指示信息,该第二指示信息可指示relay UE进入RRC连接态,从而使得指示更为明确。
可选的,该PC5 RRC消息为PC5 RRC重配置消息。相区分的,前文所介绍的由接入网设备所发送的RRC重配置消息可理解为Uu RRC重配置消息。
如果第一信息在remote UE与relay UE之间的PC5连接建立后发送,可选的,第一信息可以是该PC5连接建立后,remote UE向relay UE发送的第一条消息;或者,第一信息可以是该PC5连接建立后,remote UE通过relay UE向接入网设备(该接入网设备可以是图3A或图3B所示的接入网设备,或者可以是图3C或图3D所示的接入网设备2)发送的第一条消息。例如在remote UE与relay UE之间的PC5连接建立后,remote UE向relay UE发送的第一条消息为第一信息,无论第一信息是什么信息(例如,第一信息可以是SRAP data PDU、SRAP control PDU、或PC5 RRC消息,或者也可以是其他消息), 该第一信息都可以用于触发relay UE进入RRC连接态;相应的,如果relay UE接收了来自remote UE的第一条消息,则无论该第一条消息是什么信息,relay UE如果当前处于RRC非连接态,则relay UE都可以进入RRC连接态。
又例如,在remote UE与relay UE之间的PC5连接建立后,remote UE向relay UE发送的第一条消息为第一信息,如果第一信息是通过默认配置的SL-RLC1发送的SRAP control PDU,则第一信息可以用于触发relay UE进入RRC连接态。相应的,对于relay UE来说,如果通过默认配置的SL-RLC1接收了来自remote UE的SRAP control PDU,且该SRAP control PDU是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,则relay UE可以进入RRC连接态;或者,如果relay UE通过默认配置的SL-RLC1接收了来自remote UE的SRAP control PDU,该SRAP control PDU是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,并且该SRAP control PDU不包括承载ID和/或remote UE的ID,relay UE可以进入RRC连接态。
又例如,在remote UE与relay UE之间的PC5连接建立后,remote UE向relay UE发送的第一条消息为第一信息,如果第一信息是通过默认配置的SL-RLC1发送的SRAP data PDU,则第一信息可以用于触发relay UE进入RRC连接态。对于relay UE来说,如果通过默认配置的SL-RLC1接收了来自remote UE的SRAP data PDU,该SRAP data PDU是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态;或者,如果relay UE通过默认配置的SL-RLC1接收了来自remote UE的SRAP data PDU,该SRAP data PDU是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,该SRAP data PDU的payload字段为空和/或该SRAP data PDU仅包括SRAP头,且relay UE当前处于RRC非连接态,则relay UE可以进入RRC连接态。
再例如,在remote UE与relay UE之间的PC5连接建立后,remote UE向relay UE发送的第一条消息为第一信息,如果第一信息是用于配置relay UE的relay RLC信道的PC5 RRC消息,该PC5 RRC消息是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,则第一信息可以用于触发relay UE进入RRC连接态。相应的,relay UE如果接收了用于配置relay UE的relay RLC信道的该PC5 RRC消息,该PC5 RRC消息是在与remote UE之间的PC5连接建立后从remote UE接收的第一条消息,且relay UE当前处于RRC非连接态,则relay UE就可以进入RRC连接态。
如上介绍了第一信息的几种实现方式,本申请实施例不限于此,只要能够触发relay UE进入RRC连接态的消息均可作为本申请实施例的第一信息。
S402、如果relay UE处于RRC非连接态,则relay UE可根据第一信息进入RRC连接态。例如,relay UE根据第一信息的显式指示,可以进入RRC连接态;或者,relay UE根据第一信息确定remote UE是要寻找用于多路径的relay UE,则该relay UE可以进入RRC连接态。关于relay UE的判断过程可参考S401的相关介绍。
如果relay UE当前已处于RRC连接态,则不必执行S402。
可选的,因为本申请实施例涉及的是添加路径(或新建路径)的过程,因此在S401之前,还可以包括S403~S405等步骤。
S403、接入网设备向remote UE发送RRC重配置消息。相应的,remote UE接收来自接入网设备的RRC重配置消息。该RRC重配置消息可理解为Uu RRC重配置消息。该接入网设备可以是图3A或图3B所示的接入网设备,或者可以是图3C或图3D所示的接入网设备1。
该RRC重配置消息可用于为remote UE配置多路径中的非直连路径,该非直连路径为remote UE本次需要添加(或,新建)的路径。这里的“多路径”是指,在remote UE添加该非直连路径后,该remote UE就同时维护了多条路径。而在remote UE添加该非直连路径之前,该remote UE可能已经维护了多条路径,或者也可能仅维护了单个路径。可选的,该RRC重配置消息可包括定时器的信息,该定时器可用于确定该非直连路径是否建立成功,或用于确定multipath是否配置成功。该定时器例如为本申请实施例新定义的定时器,该定时器可用于判断path switch是否失败(或,是否成功),例如可用于判断添加路径是否失败(或,是否成功);或者,该定时器为已有的定时器T420。
S404、remote UE向接入网设备发送RRC重配置完成消息。相应的,接入网设备接收来自remote UE的RRC重配置完成消息。其中,remote UE可通过已有路径向接入网设备发送该RRC重配置完成消息,因此并不通过待添加(或,新建)的非直连路径上的relay UE(也就是前文所述的relay UE)向接入网 设备发送该RRC重配置完成消息。已有路径例如为直连路径或非直连路径,图4A和图4B中,以已有路径是直连路径为例。该接入网设备与S403所述的接入网设备为同一接入网设备。
S405、remote UE开启定时器。
remote UE可根据RRC重配置消息包括的定时器的信息配置该定时器,并开启该定时器。其中,如果该定时器超时,则表明非直连路径建立失败,或表明multipath配置失败。在这种情况下,remote UE可以向接入网设备发送信息以指示非直连路径建立失败,或指示multipath配置失败。该接入网设备与S403所述的接入网设备为同一接入网设备。
其中,S405可以发生在S404之前,或者发生在S404之后,或者与S404同时发生。
如果S401中的第一信息为DCR消息,则可参考图4A,在S401之后,remote UE与relay UE还可以进行进一步的交互过程,以建立PC5连接。可选的,该方法还包括图4A中的S406,relay UE向remote UE发送直连通信接受(direct communication accept,DCA)消息,以指示PC5连接建立成功,相应的,remote UE可接收该DCA消息。例如,relay UE可以在处于RRC连接态后执行S406。该DCA消息可以是PC5-S层的消息。其中,图4A中的S401和S406,可理解为建立PC5连接的过程(其中可能还包括其他步骤,例如remote UE与relay UE可能通过多次交互来建立PC5连接,不做限制)。而S402则不属于建立PC5连接的过程,可以认为relay UE进入RRC连接态的过程可能发生在建立PC5连接的过程中。
或者,如果S401中的第一信息为在PC5连接后发送的消息,则可参考图4B,在S401之前还可以包括S407,remote UE与relay UE建立PC5连接。在建立PC5连接后,可执行S401。
根据前述图2可知,本申请实施例要解决的一个技术问题是,如果remote UE通过已有路径向接入网设备发送RRC重配置消息,则relay UE如何进入RRC连接态。除此之外,根据图1可知,按照目前的技术,remote UE是在从relay UE接收RRC重配置完成消息对应的RLC层的ACK后,停止定时器T420。考虑到同样需要建立非直连路径,本申请实施例可以重用T420,即,本申请实施例中的定时器可以是T420;或者,本申请实施例也可以引入新的类似T420的定时器,即,本申请实施例中的定时器可以是新引入的类似T420的定时器。但是按照图2,remote UE并未向relay UE发送RRC重配置完成消息(或者说,remote UE并未通过relay UE向接入网设备发送RRC重配置完成消息),则relay UE也不会向remote UE发送该RRC重配置完成消息对应的RLC层的ACK。因此可参考图2,本申请实施例要解决的另一个技术问题是,remote UE如何控制定时器,例如,如何停止定时器。
为了解决该技术问题,本申请实施例中,relay UE可以向remote UE发送第三信息,第三信息为第一信息的应答,或为第一信息的响应;或者,relay UE可以向remote UE发送第四信息,第四信息可以是relay UE主动向remote UE发送的信息。相应的,remote UE可接收来自relay UE的第三信息或第四信息。可选的,第三信息或第四信息的发送过程可以发生在S401之后。第三信息或第四信息可以用于remote UE停止定时器。根据前文可知,第一信息可以有多种实现方式,相应的,第三信息也可以有不同的实现方式。相应的,第四信息也可以有不同的实现方式。
作为第三信息的一种可选的实施方式,第一信息为DCR消息,第三信息为DCA消息。例如图4A中,S406中的DCA消息就可以作为第三信息。remote UE接收该DCA消息时,或者接收该DCA消息后,可以停止该定时器。或者描述为,remote UE响应于接收该DCA,停止该定时器。
作为第三信息的另一种可选的实施方式,第一信息为PC5连接建立后发送的信息,则可参考图4B,该方法还可包括S408,relay UE可以向remote UE发送第三信息,相应的,remote UE可接收来自relay UE的第三信息。
例如,第一信息为relay通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU(或者,第一信息为remote通过默认配置的SL-RLC1发送的SRAP控制PDU或者SRAP数据PDU),则第三信息例如为RLC ACK。例如,SRAP control PDU通过默认配置的SL-RLC1传输,其中,该SRAP control PDU包含在一个或多个RLC PDU中,relay UE每接收成功这一个或多个RLC PDU中的一个RLC PDU,就可以向remote UE发送RLC ACK,如果这一个或多个RLC PDU均接收成功,则relay UE可以向remote UE发送一个或多个RLC ACK。如果remote UE接收了所述一个或多个RLC ACK,则确定接收了第三信息,remote UE可以停止该定时器。或者描述为,remote UE响应于接收该一个或多个RLC ACK,停止该定时器。又例如,SRAP data PDU通过默认配置的SL-RLC1传输,其中,该SRAP data PDU包含在一个或多个RLC PDU中,relay UE每接收成功这一个或多个RLC PDU中的一个RLC PDU,就可以 向remote UE发送RLC ACK,如果这一个或多个RLC PDU均接收成功,则relay UE可以向remote UE发送一个或多个RLC ACK。如果remote UE接收了所述一个或多个RLC ACK,则确定接收了第三信息,remote UE可以停止该定时器。或者描述为,remote UE响应于接收该一个或多个RLC ACK,停止该定时器。或者描述为,remote UE根据接收到通过默认SL-RLC1发送的SRAP控制PDU或者SRAP数据PDU对应的RLC PDU的RLC ACK,停止该定时器。
又例如,第一信息为用于配置relay UE的relay RLC信道的PC5 RRC消息,第三信息例如为RLC ACK。例如,该PC5 RRC消息通过RLC实体传输,该PC5 RRC消息可包括在一个或多个RLC PDU中。relay UE每接收成功这一个或多个RLC PDU中的一个RLC PDU,就可以向remote UE发送RLC ACK,如果这一个或多个RLC PDU均接收成功,则relay UE可以向remote UE发送一个或多个RLC ACK。如果remote UE接收了所述一个或多个RLC ACK,则确定接收了第三信息,remote UE可以停止该定时器。或者描述为,remote UE响应于接收该一个或多个RLC ACK,停止该定时器。或者描述为,remote UE根据接收到通过该PC5 RRC消息对应的RLC PDU的RLC ACK,停止该定时器。
再例如,第一信息为用于配置relay UE的relay RLC信道的PC5 RRC消息,第三信息例如为PC5RRC重配置完成消息。例如该PC5 RRC消息为PC5 RRC重配置消息,relay UE接收该PC5 RRC重配置消息后,可以向remote UE发送RLC ACK,另外,还可以根据该PC5 RRC重配置消息进行配置。在配置成功后,relay UE可以向remote UE发送PC5 RRC重配置完成消息,该PC5 RRC重配置完成消息可作为第三信息。对于remote UE来说,接收该PC5 RRC重配置完成消息时,或接收该PC5 RRC重配置完成消息之后,可以确定relay UE已经配置完成,从而可以停止该定时器。或者描述为,remote UE响应于接收该PC5 RRC重配置完成消息,停止该定时器。
作为第四信息的一种可选的实施方式,第四信息为PC5 RRC消息,可以为新的PC5 RRC消息或者重用现有的PC5 RRC消息,此处不做限制。例如第四信息可指示relay UE已经进入RRC连接态,或者指示relay UE已经与网络设备(例如接入网设备)完成连接建立。remote UE可以在接收到第四信息时停止该定时器。又例如,第四信息为relay UE用于配置remote UE的PC5 RLC信道的PC5 RRC重配置消息,例如该PC5 RRC重配置消息包括PC5 RLC配置信息,该PC5 RLC配置信息用于配置remote UE的PC5 RLC信道。remote UE在接收到来自relay UE的该PC5 RLC配置信息(或者,在接收到该PC5 RRC重配置消息)时,如果该定时器还在运行,则可以停止该定时器。通过relay UE为remote UE配置下行的PC5 RLC信道,使得remote UE可以确定非直连路径已经建立完成,从而停止该定时器。
可选的,本申请实施例还可以包括S409,remote UE停止定时器。例如remote UE接收第三信息或第四信息时,或者接收第三信息或第四信息之后,可以停止在S405中开启的定时器;或者描述为,remote UE响应于接收第三信息或第四信息,停止该定时器。本申请实施例中remote UE能够在合理的时机停止该定时器,以避免该定时器超时。
按照已有的方案,remote UE是在从relay UE接收Uu RRC重配置完成消息的RLC ACK后停止定时器T420。因此本申请实施例可以继续令RLC ACK为第三信息(只是该RLC ACK不再对应Uu RRC重配置完成消息,而对应第三信息所在的消息所对应的RLC PDU的RLC ACK),从而可以尽量不改变remote UE的执行逻辑。或者,本申请实施例也可以令PC5 RRC重配置完成消息作为第三信息,因为该定时器是用于监测非直连路径是否建立成功或multipath是否配置成功,如果接收了PC5 RRC重配置完成消息,则可以认为非直连路径建立成功或multipath配置成功,在这种情况下停止定时器,可以使得该定时器的停止时机更为准确。
或者也可以不必借助于第三信息或第四信息,而是通过另一种机制来控制该定时器。例如,remote UE在发送第一信息完毕后,停止该定时器。在这种情况下,remote UE不必等待第一信息的应答,或者说不必确定第一信息是否发送成功,也不必等待relay UE主动发送信息(例如第四信息),就可以停止该定时器。这种机制减少了对于对端设备的依赖,能够有效实现对定时器的控制。
综上,remote UE在建立非直连路径的过程中,即使通过已有的路径向接入网设备发送了RRC重配置完成消息,也还可以向relay UE发送第一信息,从而该relay UE即使未接收RRC重配置完成消息,也可以在第一信息的触发下进入RRC连接态,从而能够为该remote UE提供中继服务。另外,remote UE还可以根据第一信息或根据第三信息或根据第四信息停止定时器,减少了该定时器超时的概率,提高了添加路径的成功率。其中,remote UE如果根据第一信息停止定时器,按照前文可知,一种实现方式为,remote UE可根据第一信息的发送情况停止该定时器。
请再参考图4C,为本申请实施例提供的另一种通信方法的流程图。其中,如下所涉及的remote UE为图4C中的远端终端设备,如下所涉及的relay UE为图4C中的中继终端设备。
S410、网络设备向remote UE发送RRC重配置消息。相应的,remote UE接收来自网络设备的RRC重配置消息。本申请实施例中的网络设备例如为接入网设备。
该RRC重配置消息可用于为remote UE配置多路径中的非直连路径,该非直连路径为remote UE本次需要添加(或,新建)的路径。这里的“多路径”是指,在remote UE添加该非直连路径后,该remote UE就同时维护了多条路径。而在remote UE添加该非直连路径之前,该remote UE可能已经维护了多条路径,或者也可能仅维护了单个路径。可选的,该RRC重配置消息可包括第一定时器的信息,第一定时器可用于确定该非直连路径是否建立成功,或用于确定multipath是否配置成功。第一定时器例如为本申请实施例新定义的定时器,第一定时器可用于判断path switch是否失败(或,是否成功),例如可用于判断添加路径是否失败(或,是否成功);或者,第一定时器为已有的定时器T420。
可选的,remote UE接收该RRC重配置消息后,可以向网络设备发送RRC重配置完成消息,相应的,网络设备接收来自remote UE的RRC重配置完成消息。其中,remote UE可通过已有路径向网络设备发送该RRC重配置完成消息,因此并不通过待添加(或,新建)的非直连路径上的relay UE(也就是前文所述的relay UE)向网络设备发送该RRC重配置完成消息。已有路径例如为直连路径或非直连路径。
S411、remote UE开启第一定时器。
remote UE可根据RRC重配置消息包括的定时器的信息配置该定时器,并开启该定时器。其中,如果该定时器超时,则表明非直连路径建立失败,或表明multipath配置失败。在这种情况下,remote UE可以向接入网设备发送信息以指示非直连路径建立失败,或指示multipath配置失败。该接入网设备与S403所述的接入网设备为同一接入网设备。
其中,S411可以发生在remote UE向网络设备发送RRC重配置完成消息之前,或者发生在remote UE向网络设备发送RRC重配置完成消息之后,或者与remote UE向网络设备发送RRC重配置完成消息的步骤同时发生。
S412、relay UE向remote UE发送第三信息,相应的,remote UE接收来自relay UE的第三信息。或者,relay UE向remote UE发送第四信息,相应的,remote UE接收来自relay UE的第四信息。
关于S412的更多内容,例如对于第三信息或第四信息的介绍等,可参考图4A或图4B所示的实施例。
S413、remote UE基于接收到第三信息或第四信息,停止第一定时器。
例如remote UE接收第三信息或第四信息时,或者接收第三信息或第四信息之后,可以停止在S411中开启的第一定时器;或者将S413描述为,remote UE响应于接收到第三信息或第四信息,停止第一定时器。本申请实施例中remote UE能够在合理的时机停止第一定时器,以避免该定时器超时。
其中,为了与图4A和图4B中的步骤相区分,本申请实施例中的步骤从S410开始编号。但本申请实施例与图4A和/或图4B所示的实施例可以是彼此独立的,并不互相结合。例如S410是本申请实施例中的步骤,并不表示S410要在前述的图4A或图4B中的某个或某些步骤之后执行。又例如,S410~S413的执行并不依赖于前述任何步骤。
或者,本申请实施例与图4A或图4B所示的实施例也可以结合应用,例如本申请实施例中的第三信息可以是图4A或图4B所示的实施例中第一信息的应答或响应。
图5给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置500可以是图4A或图4B或图4C所示的实施例所述的remote UE或该remote UE的电路系统,用于实现上述方法实施例中对应于remote UE的方法。或者,所述通信装置500可以是图4A或图4B或图4C所示的实施例中的relay UE的电路系统,用于实现上述方法实施例中对应于relay UE的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置500包括至少一个处理器501。处理器501可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器501包括指令。可选地,处理器501可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置500包括一个或多个存储器503,用以存储指令。可选地,所述存储器503中还 可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置500包括通信线路502,以及至少一个通信接口504。其中,因为存储器503、通信线路502以及通信接口504均为可选项,因此在图5中均以虚线表示。
可选地,通信装置500还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置500的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器501可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息。
通信接口504,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器503可以是独立存在,通过通信线路502与处理器501相连接。或者,存储器503也可以和处理器501集成在一起。
其中,存储器503用于存储执行本申请方案的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现图4A或图4B或图4C所示的实施例中所述的remote UE所执行的步骤,或,实现图4A或图4B或图4C所示的实施例所述的relay UE所执行的步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置500可以包括多个处理器,例如图5中的处理器501和处理器505。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图5所示的装置为芯片时,例如是remote UE的芯片,或relay UE的芯片,则该芯片包括处理器501(还可以包括处理器505)、通信线路502和通信接口504,可选的,该可包括存储器503。具体地,通信接口504可以是输入接口、管脚或电路等。存储器503可以是寄存器、缓存等。处理器501和处理器505可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了一种装置示意图,该装置600可以是上述各个方法实施例中所涉及的remote UE或relay UE,或者为remote UE中的芯片或relay UE中的芯片。该装置600包括发送单元601、处理单元602和接收单元603。
应理解,该装置600可以用于实现本申请实施例的通信方法中由remote UE或relay UE执行的步骤,相关特征可以参照上文图4A或图4B或图4C所示实施例,此处不再赘述。
可选的,图6中的发送单元601、接收单元603以及处理单元602的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图6中的处理单元602的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现,图6中的发送单元601和接收单元603的功能/实现过程可以通过图5中的通信接口504来实现。
可选的,当该装置600是芯片或电路时,则发送单元601和接收单元603的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由remote UE或relay UE所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由remote UE或relay UE所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的remote UE或relay UE所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,remote UE或relay UE可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (24)

  1. 一种通信方法,其特征在于,应用于远端终端设备,所述方法包括:
    接收来自第一网络设备的无线资源控制RRC重配置消息,所述RRC重配置消息用于配置多路径中的非直连路径;
    向中继终端设备发送第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备为所述非直连路径上用于为所述远端终端设备提供中继服务的设备。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一信息为直连通信请求消息,用于请求与所述中继终端设备建立PC5连接。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括第二信息,所述第二信息用于指示所述直连通信请求消息用于建立多路径中的非直连路径。
  4. 根据权利要求3所述的方法,其特征在于,所述第二信息包括如下一项或多项:
    对应于所述多路径的服务码;
    对应于所述多路径的层2标识,所述层2标识为所述中继终端设备的标识;或,
    对应于所述多路径的目标用户信息。
  5. 根据权利要求3所述的方法,其特征在于,所述第二信息包括所述多路径的信息。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收来自所述中继终端设备的发现消息,所述发现消息包括所述服务码和/或所述层2标识。
  7. 根据权利要求1所述的方法,其特征在于,
    所述第一信息为通过默认配置的侧行链路SL-无线资源控制RLC1接收的侧行中继适配协议SRAP控制协议数据单元PDU或者SRAP数据PDU;或,
    所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息。
  8. 根据权利要求1或7所述的方法,其特征在于,所述第一信息为所述中继终端设备与所述远端终端设备建立PC5连接成功后,向所述中继终端设备发送的第一条信息。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述方法还包括:
    响应于接收到所述RRC重配置消息,启动定时器,所述定时器用于建立所述非直连路径;
    响应于接收到来自所述中继终端设备的第三信息,停止所述定时器,所述第三信息为所述第一信息的应答。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一信息为直连通信请求消息,所述第三信息为直连通信接受消息;或,
    所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU,所述第三信息为RLC应答;或,
    所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息,所述第三信息为RLC应答或PC5 RRC重配置完成消息。
  11. 一种通信方法,其特征在于,应用于中继终端设备,所述方法包括:
    接收来自远端终端设备的第一信息,所述第一信息用于触发所述中继终端设备进入RRC连接态,所述中继终端设备用于为所述远端终端设备提供中继服务,所述中继终端设备对应于所述远端终端设备的非直连路径,所述非直连路径为所述远端终端设备的多路径中的一条;
    如果所述中继终端设备处于RRC非连接态,根据所述第一信息进入所述RRC连接态。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一信息为直连通信请求消息,用于请求与所述中继终端设备建立PC5连接。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息包括第二信息,所述第二信息用于指示所述直连通信请求消息用于建立多路径中的非直连路径。
  14. 根据权利要求13所述的方法,其特征在于,所述第二信息包括如下一项或多项:
    对应于所述多路径的服务码;
    对应于所述多路径的层2标识,所述层2标识为所述中继终端设备的标识;或,
    对应于所述多路径的目标用户信息。
  15. 根据权利要求13所述的方法,其特征在于,所述第二信息包括所述多路径的信息。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    发送发现消息,所述发现消息包括所述服务码和/或所述层2标识。
  17. 根据权利要求11所述的方法,其特征在于,
    所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU;或,
    所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息。
  18. 根据权利要求11或17所述的方法,其特征在于,所述第一信息为所述中继终端设备与所述远端终端设备建立PC5连接成功后,来自所述远端终端设备的第一条信息。
  19. 根据权利要求11~18任一项所述的方法,其特征在于,所述方法还包括:
    向所述远端终端设备发送第三信息,所述第三信息为所述第一信息的应答,所述第三信息用于所述远端终端设备停止定时器,所述定时器用于所述远端终端设备建立所述非直连路径。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一信息为直连通信请求消息,所述第三信息为直连通信接受消息;或,
    所述第一信息为通过默认配置的SL-RLC1接收的SRAP控制PDU或者SRAP数据PDU,所述第三信息为RLC应答;或,
    所述第一信息为用于配置所述中继终端设备的中继RLC信道的PC5 RRC重配置消息,所述第三信息为RLC应答或PC5 RRC重配置完成消息。
  21. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~10任一项所述的方法,或用于执行如权利要求11~20任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10任一项所述的方法,或使得所述计算机执行如权利要求11~20任一项所述的方法。
  23. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~10任一项所述的方法,或实现如权利要求11~20任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10任一项所述的方法,或使得所述计算机执行如权利要求11~20任一项所述的方法。
PCT/CN2023/118891 2022-09-26 2023-09-14 一种通信方法及装置 WO2024067139A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211175067.X 2022-09-26
CN202211175067 2022-09-26
CN202211310334.X 2022-10-25
CN202211310334.XA CN117769056A (zh) 2022-09-26 2022-10-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024067139A1 true WO2024067139A1 (zh) 2024-04-04

Family

ID=90311021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118891 WO2024067139A1 (zh) 2022-09-26 2023-09-14 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117769056A (zh)
WO (1) WO2024067139A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236894A1 (en) * 2020-05-20 2021-11-25 Convida Wireless, Llc Sidelink relay connectivity management
US20210377842A1 (en) * 2020-05-28 2021-12-02 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for fast path switching in wireless communications with user equipment (ue) cooperation
CN114762452A (zh) * 2020-01-09 2022-07-15 联发科技(新加坡)私人有限公司 层2ue到ue中继的侧链路配置和业务转发

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762452A (zh) * 2020-01-09 2022-07-15 联发科技(新加坡)私人有限公司 层2ue到ue中继的侧链路配置和业务转发
WO2021236894A1 (en) * 2020-05-20 2021-11-25 Convida Wireless, Llc Sidelink relay connectivity management
US20210377842A1 (en) * 2020-05-28 2021-12-02 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for fast path switching in wireless communications with user equipment (ue) cooperation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on Rel-18 multi-path via SL relay and UE aggregation", 3GPP DRAFT; R2-2208488, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e electronic; 20220817 - 20220829, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052261795 *

Also Published As

Publication number Publication date
CN117769056A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US20220217575A1 (en) Sidelink communication method and apparatus, and storage medium
US11228951B2 (en) Session handling method and related device
US20190166526A1 (en) Method for establishing a fronthaul interface, method for performing access for a ue, method and apparatus for performing a handover for a ue, data forwarding method, user equipment and base station
WO2021238774A1 (zh) 通信方法及装置
WO2020135850A1 (zh) 通信方法和装置
WO2020034697A1 (zh) 通信方法和装置
WO2015018232A1 (zh) 设备到设备连接管理方法、装置及基站
EP4185009A1 (en) Packet forwarding method, apparatus and system
JP2021502756A (ja) 通信装置のランダム・アクセス方法、装置、及び記憶媒体
US20220070967A1 (en) Communications method, apparatus, and system
WO2021185176A1 (zh) 一种接入网络切片的方法及装置
WO2021163894A1 (zh) 一种基于中继的通信方法及装置
US20230099586A1 (en) Communication method and related apparatus
WO2022206393A1 (zh) 通信方法及装置
WO2024067139A1 (zh) 一种通信方法及装置
WO2024146301A1 (zh) 一种通信方法及装置
WO2023134332A1 (zh) 一种通信方法及系统
WO2024027540A1 (zh) 一种通信方法及装置
US20240373494A1 (en) Communication method and system
WO2024093986A1 (zh) 一种通信方法及装置
WO2023231032A1 (zh) 非激活态组播业务区域的确定方法、配置方法、及装置
WO2024067266A1 (zh) 一种通信方法、装置及系统
WO2021203249A1 (zh) 会话释放方法与装置
WO2024082880A1 (zh) 一种通信方法及装置
WO2023024910A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870373

Country of ref document: EP

Kind code of ref document: A1