WO2024027540A1 - 一种通信方法及装置 - Google Patents
一种通信方法及装置 Download PDFInfo
- Publication number
- WO2024027540A1 WO2024027540A1 PCT/CN2023/109360 CN2023109360W WO2024027540A1 WO 2024027540 A1 WO2024027540 A1 WO 2024027540A1 CN 2023109360 W CN2023109360 W CN 2023109360W WO 2024027540 A1 WO2024027540 A1 WO 2024027540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data packet
- network device
- information
- remote device
- source network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 223
- 238000004891 communication Methods 0.000 title claims abstract description 109
- 230000005540 biological transmission Effects 0.000 claims abstract description 170
- 230000015654 memory Effects 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 description 58
- 230000008569 process Effects 0.000 description 55
- 238000005259 measurement Methods 0.000 description 32
- 238000012545 processing Methods 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001585 disappearance potential spectroscopy Methods 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
Definitions
- the present application relates to the field of communication technology, and in particular, to a communication method and device.
- the remote user equipment may switch transmission paths. This process of switching transmission paths can be called path switching.
- the remote UE may switch from a direct path with one base station to connecting with another base station through a relay UE; or, the remote UE may switch from a path connecting with one base station through a relay UE to connecting with another relay UE. Another base station is connected.
- the source network device sends some data packets, and the relay UE may receive part of the data packets and send feedback information to the source network device to indicate that the reception of this part of the data packets is successful. Then, when the source network device forwards the data packet to the target network device, it will no longer forward the data packet that has been confirmed by the relay UE as successfully received. However, although this part of the data packet is received successfully by the relay UE, it may not be received successfully by the remote UE. According to the current mechanism, even if the remote UE fails to receive this part of the data packet, the target network device cannot send this part of the data packet to the remote UE again, resulting in a high packet loss rate.
- Embodiments of the present application provide a communication method and device for reducing the packet loss rate caused by switching transmission paths.
- the first aspect provides a first communication method, which method can be executed by the target network device, or by other devices including the functions of the target network device, or by a chip system (or chip) or other functional modules, and the chip system or The functional module can realize the function of the target network device, and the chip system or the functional module is, for example, provided in the target network device.
- the method includes: sending first information to a source network device, where the first information is used to indicate the reception status of a data packet; receiving a first data packet from the source network device, where the first data packet is a remote device data packet, and the first data packet is determined based on the first information, wherein the remote device connects to the source network device through the first relay device before switching the transmission path, and after switching the transmission path and then connect to the target network device.
- the target network device can indicate the reception status of the data packet to the source network device, so that the source network device can send the first data packet to the target network device.
- the first data packet is a data packet of the remote device, for example, the first data packet.
- the number of a data packet is one or more, and the first data packet may include data packets that the remote device failed to receive. Then the target network device can send data packets that the remote device failed to receive to the remote device to reduce the packet loss rate.
- the method further includes: sending a second data packet to the remote device, where the second data packet is determined based on the first data packet.
- the second data packet may include a data packet that the remote device failed to receive. That is, after the remote device performs transmission path switching, the target network device may send a data packet that the remote device failed to receive to reduce the risk of the remote device. The amount of packet loss.
- the remote device connects to the target network device through a direct path or an indirect path after switching the transmission path.
- the method further includes: receiving second information from the remote device, the second information being used to indicate that the remote device failed to receive the data packet and/or the The remote device receives the successful data packet.
- the remote device can send second information to the target network device to indicate the real data packet reception status of the remote device, so that the target network device can send the remote device to the remote device based on the second information. Failed to receive packets.
- the second information is a PDCP status report; or, the second information is included in an RRC reconfiguration message, and the RRC reconfiguration message is used to indicate that the remote device is successful. Switch to the target network device.
- the embodiments of this application do not limit the implementation manner of the second information.
- the first data packet is the second data packet; or, the first data packet is a part of the second data packet, and the first data packet is The target network device does not receive a data packet from the source network device before receiving the first data packet.
- the second data packet also includes another part of the data packet, and the other part of the data packet is the target The network device has received a data packet from the source network device before receiving the first data packet; or the second data packet is a part of the first data packet.
- the method further includes: before sending the first information to the source network device, receiving a third data packet from the source network device, the third data packet includes that the source network device has not received a data packet receiving feedback, and/or includes a data packet that the source network device has not sent to the remote device, wherein the third data packet includes the other part of the packet.
- the source network device can forward data to the target network device during the transmission path switching process.
- the process of the source network device sending the first data packet to the target network device can be regarded as a supplementary data forwarding process.
- receiving the first data packet from the source network device includes: receiving a third data packet from the source network device, wherein the third data packet includes The source network device does not receive a data packet receiving feedback, and/or includes a data packet that the source network device does not send to the remote device, and the third data packet includes the first data packet. .
- the source network device does not need to forward data to the target network device during the transmission path switching process. Instead, after the transmission path switching is successful, the source network device forwards data to the target network device.
- the source network device in addition to sending the first data packet to the target network device, the source network device also sends a third data packet, thereby reducing the interaction process between the source network device and the target network device, so that the source network device can send the data packet to the target network device at once. forwarded to the target network device.
- the third data packet includes data packets that the source network device has not sent to the remote device, and data that the source network device has not sent to the remote device.
- the packet includes a data packet with no sequence number associated with it
- the method further includes: receiving third information from the source network device, the third information being used to indicate the sequence number of the first data packet with no sequence number associated with it.
- the source network device can indicate to the target network device the sequence number of the first data packet without associated sequence numbers, so that the target network The device can then associate corresponding sequence numbers with each data packet that is not associated with a sequence number.
- the second aspect provides a second communication method, which method can be executed by the source network device, or by other devices including the functions of the source network device, or by a chip system (or chip) or other functional module, the chip system or The functional module can realize the function of the source network device, and the chip system or the functional module is, for example, provided in the source network device.
- the method includes: receiving first information from a target network device, the first information being used to indicate the reception status of a data packet; sending a first data packet to the target network device, where the first data packet is a remote device data packet, and the first data packet is determined based on the first information, wherein the remote device connects to the source network device through the first relay device before switching the transmission path, and after switching the transmission path and then connect to the target network device.
- the remote device connects to the target network device through a direct path or an indirect path after switching the transmission path.
- the method further includes: before receiving the first information from the target network device, sending a third data packet to the target network device, the third data packet includes that the source network device has not received a data packet receiving feedback, and/or includes a data packet that the source network device has not sent to the remote device.
- sending the first data packet to the target network device includes: sending a third data packet to the target network device, wherein the third data packet includes the The source network device does not receive the data packet receiving feedback, and/or includes a data packet that the source network device does not send to the remote device, and the third data packet includes the first data packet.
- the third data packet includes data packets that the source network device has not sent to the remote device, and data that the source network device has not sent to the remote device.
- the packet includes a data packet with no sequence number associated with it, and the method further includes: sending third information to the target network device, where the third information is used to indicate the sequence number of the first data packet with no sequence number associated with it.
- a third communication method is provided, which method can be executed by the source network device, or by other devices including the functions of the source network device, or by a chip system (or chip) or other functional modules, and the chip system or The functional module can realize the function of the source network device, and the chip system or the functional module is, for example, provided in the source network device.
- the method includes: sending fourth information to a remote device, the fourth information being used to indicate a first data packet to instruct the remote device to stop communicating with the first relay device after receiving the first data packet. , wherein the remote device is connected to the source network device through the first relay device before switching the transmission path, and is connected to the target network device after switching the transmission path.
- the remote device disconnects from the first relay device only after receiving the first data packet. Therefore, it can be considered that the remote device has successfully received the first data packet and its previous data packets.
- the source network device then sends the data packets after the first data packet to the target network device. Therefore, after the remote device switches the transmission path, the target network device can continue to send data packets to the remote device, thus reducing the distance to the remote device. The amount of packet loss of the end device. Moreover, the source network device does not have to send too many data packets to the target network device, which can save transmission overhead.
- the fourth information is included in a switching command, and the switching command is used to instruct the remote device to switch the transmission path.
- the fourth information may be included in the switching command, or may be sent separately.
- the method further includes: sending at least one data packet to the target network device, the first data packet in the at least one data packet being the following data packet. Next packet. Because the source network device has ensured to a certain extent that the actual data packet reception status of the remote device is consistent with the data packet reception status of the remote device considered by the source network device through the fourth information, the source network device can obtain the data from the first The next data packet of the data packet starts to be forwarded to the target network device without having to send too many data packets to the target network device, which can save transmission overhead.
- the at least one data packet includes a data packet not associated with a sequence number
- the method further includes: sending fifth information to the target network device, where the fifth information is used to Indicates the sequence number of the first packet with no associated sequence number.
- the source network device can indicate to the target network device the sequence number of the first data packet without associated sequence numbers, so that the target network The device can then associate corresponding sequence numbers with each data packet that is not associated with a sequence number.
- the fourth aspect provides a fourth communication method, which method can be executed by a remote device, or by other devices including remote device functions, or by a chip system (or chip) or other functional modules, and the chip system or The functional module can realize the function of the remote device, and the chip system or the functional module is, for example, provided in the remote device.
- the remote device is, for example, a terminal device or a network device.
- the method includes: receiving fourth information from a source network device, the fourth information being used to indicate a first data packet to instruct the remote device to stop communicating with the first relay device after receiving the first data packet. Communication, wherein the remote device is connected to the source network device through the first relay device before switching the transmission path, and is connected to the target network device after switching the transmission path.
- the fourth information is included in a switching command, and the switching command is used to instruct the remote device to switch the transmission path.
- the method further includes: after receiving the switching command, if the first data packet has not been received, continue to receive data packets from the first relay device; when When the first data packet is received, or when the first data packet that is not submitted to the upper layer of the PDCP layer is the first data packet, communication with the first relay device is stopped.
- the remote device does not receive the first data packet, even if it receives the switching command, it does not need to disconnect from the first relay device, but can continue to receive data from the first relay device.
- the data packet of the relay device is received until the first data packet is received, and then the connection with the first relay device is disconnected.
- the remote device successfully receives the first data packet and its previous data packets, so that the target network device does not need to send the first data packet and its previous data packets to the remote device.
- the source network The device also does not need to forward the first data packet and its previous data packets to the target network device, which is beneficial to saving transmission overhead.
- the fifth aspect provides a fifth communication method, which method can be executed by the source network device, or by other devices including the functions of the source network device, or by a chip system (or chip) or other functional modules, and the chip system or The functional module can realize the function of the source network device, and the chip system or the functional module is, for example, provided in the source network device.
- the method includes: sending at least one data packet to a target network device, where the at least one data packet includes a data packet that the source network device predicts will fail to be received by the remote device, wherein the remote device is switching a transmission path. Before, it is connected to the source network device through the first relay device, and after the transmission path is switched, it is connected to the target network device.
- the source network device sends data packets to the target network device that the remote device may fail to receive based on predictions. Therefore, if the remote device has data packets that the remote device fails to receive, these data packets may have been stored in the target network. within the device. Then, if the target network device determines that the remote device failed to receive data packets based on the first information, it can send these locally stored data packets to the remote device without requesting data packets from the source network device. This reduces the interaction process between the target network device and the source network device, saves signaling overhead, and reduces the delay for the remote device to obtain data.
- the method further includes: sending fourth information to the remote device, where the fourth information is used to indicate the first data packet to indicate that the remote device is receiving the Stop communicating with the first relay device after the first data packet.
- the fourth information is included in a switching command, and the switching command is used to instruct the remote device to switch the transmission path.
- the at least one data packet includes a data packet not associated with a sequence number
- the method further includes: sending fifth information to the target network device, where the fifth information is used to Indicates the sequence number of the first packet with no associated sequence number.
- a sixth aspect provides a sixth communication method, which method can be executed by the source network device, or by other devices including the function of the source network device, or by a chip system (or chip) or other functional module, the chip system or The functional module can realize the function of the source network device, and the chip system or the functional module is, for example, provided in the source network device.
- the method includes: sending a switching command to a remote device, the switching command being used to instruct the remote device to switch a transmission path, wherein the remote device communicates with the source through a first relay device before switching the transmission path.
- Network device connection connecting to the target network device after switching the transmission path; receiving sixth information from the remote device, the sixth information being used to indicate that the remote device failed to receive a data packet and/or received it successfully of data packets.
- the remote device can indicate the true receiving status of the remote device to the source network device through the sixth information.
- the source network device learns the true receiving status of the remote device, and therefore can report the failure of the remote device to receive.
- the packet is forwarded to the target network device. After the remote device switches the transmission path, the target network device can send these data packets to the remote device without having to request these data packets from the source network device, which reduces the interaction process between the target network device and the source network device, and can also Reduce the packet loss of the remote device.
- the switching command further includes seventh information, where the seventh information is used to instruct the remote device to send and receive status information.
- the source network device can trigger the remote device to send the sixth information, thereby simplifying the implementation of the remote device.
- the method further includes: sending at least one data packet to the target network device, where the at least one data packet includes a data packet that the remote device fails to receive. Because the source network device already knows the real receiving status of the remote device, the source network device can send the data packet that the remote device fails to receive to the target network device, and the remote device receives the data packet successfully, and the source network device It does not need to be sent to the target network device, thereby reducing the packet loss rate and saving transmission overhead.
- the at least one data packet also includes data packets that are not sent by the source network device to the remote device.
- the source network device may also have some data packets that cannot be sent to the remote device in the future, and may also be sent to the target network device, and the target network device sends them to the remote device.
- the data packets not sent by the source network device to the remote device include data packets not associated with sequence numbers
- the method further includes: sending a third packet to the target network device. Eighth information, the eighth information is used to indicate the sequence number of the first data packet with no sequence number associated.
- the source network device can indicate to the target network device the sequence number of the first data packet without associated sequence numbers, so that the target network The device can then associate corresponding sequence numbers with each data packet that is not associated with a sequence number.
- a seventh aspect provides a seventh communication method, which method can be executed by a remote device, or by other devices including remote device functions, or by a chip system (or chip) or other functional modules, and the chip system or The functional module can realize the function of the remote device, and the chip system or the functional module is, for example, provided in the remote device.
- the remote device is, for example, a terminal device or a network device.
- the method includes: receiving a switching command from a source network device, the switching command being used to instruct the remote device to switch a transmission path, wherein the remote device communicates with the remote device through a first relay device before switching the transmission path.
- the source network device is connected, and the target network device is connected after switching the transmission path; sending sixth information to the source network device, the sixth information is used to indicate that the remote device fails to receive the data packet and/or the reception is successful. of data packets.
- the switching command further includes seventh information, where the seventh information is used to instruct the remote device to send and receive status information.
- an eighth communication method is provided, which method can be executed by the first relay device, or by other devices including the function of the first relay device, or by a chip system (or chip) or other functional modules,
- the chip system or functional module can realize the function of the first relay device, and the chip system or functional module is, for example, provided in the first relay device.
- the first relay device is, for example, a terminal device or a network device.
- the method includes: receiving a first data packet from a source network device; sending the first data packet to a remote device, wherein the remote device communicates with the first relay device through the first relay device before switching the transmission path.
- the device Connecting to the source network device; receiving first feedback information from the remote device, the first feedback information being used to indicate success or failure in receiving the first data packet; and reporting to the source network according to the first feedback information.
- the device sends second feedback information, where the second feedback information is used to indicate success or failure in receiving the first data packet.
- a communication device may be the target network device described in the first aspect.
- the communication device has the function of the above-mentioned target network device.
- the communication device is, for example, a target network device, or a larger network device including the target network device.
- Equipment, or functional modules in target network equipment such as baseband devices or chip systems.
- the communication device includes a baseband device and a radio frequency device.
- the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module). The transceiver unit can realize the sending function and the receiving function.
- the transceiver unit When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module). When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a sending module). receiving module).
- the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
- the transceiver unit (or the sending unit) is configured to send first information to the source network device, where the first information is used to indicate the reception status of the data packet;
- a transceiver unit (or the receiving unit), configured to receive a first data packet from the source network device, where the first data packet is a data packet of a remote device, and the first data packet is generated according to the Determined by the first information, the remote device connects to the source network device through the first relay device before switching the transmission path, and connects to the target network device after switching the transmission path.
- the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the target network device described in the first aspect.
- a storage unit sometimes also referred to as a storage module
- the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the target network device described in the first aspect.
- a communication device is provided.
- the communication device may be the source network device described in the second aspect, the third aspect, the fifth aspect, or the sixth aspect.
- the communication device has the function of the source network device.
- the communication device is, for example, a source network device, or a larger device including the source network device, or a functional module in the source network device, such as a baseband device or a chip system.
- the communication device includes a baseband device and a radio frequency device.
- the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
- a processing unit sometimes also called a processing module
- a transceiver unit sometimes also called a transceiver module
- the transceiver unit (or the receiving unit) is configured to receive first information from the target network device, where the first information is used to indicate the reception status of the data packet;
- the transceiver unit (or the sending unit) is configured to send a first data packet to the target network device, where the first data packet is a data packet of a remote device, and the first data packet is generated according to the Determined by the first information, the remote device connects to the source network device through the first relay device before switching the transmission path, and connects to the target network device after switching the transmission path.
- the transceiver unit (or the sending unit) is configured to send fourth information to the remote device, where the fourth information is used to indicate the first data packet to indicate the
- the remote device stops communicating with the first relay device after receiving the first data packet, wherein the remote device is connected to the source network device through the first relay device before switching the transmission path, Connect to the target network device after switching the transmission path.
- the transceiver unit (or the sending unit) is configured to send at least one data packet to the target network device, where the at least one data packet includes the information predicted by the source network device.
- the remote device receives the failed data packet, wherein the remote device is connected to the source network device through the first relay device before switching the transmission path, and is connected to the target network device after switching the transmission path. .
- the transceiver unit (or the sending unit) is used to send a switching command to a remote device, where the switching command is used to instruct the remote device to switch a transmission path, wherein , the remote device is connected to the source network device through the first relay device before switching the transmission path, and is connected to the target network device after switching the transmission path; the transceiver unit (or, the receiving unit), For receiving sixth information from the remote device, the sixth information is used to instruct the remote device to receive a failed data packet and/or to receive a successful data packet.
- the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the source network device described in the second aspect, the third aspect, the fifth aspect, or the sixth aspect.
- a storage unit sometimes also referred to as a storage module
- the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the source network device described in the second aspect, the third aspect, the fifth aspect, or the sixth aspect.
- a communication device is provided.
- the communication device may be the remote device described in the fourth or seventh aspect.
- the communication device has the function of the above-mentioned remote device.
- the communication device is, for example, a remote device, or a larger device including the remote device, or a functional module in the remote device, such as a baseband device or a chip system.
- the communication device includes a baseband device and a radio frequency device.
- the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
- a processing unit sometimes also called a processing module
- a transceiver unit sometimes also called a transceiver module
- the transceiver unit (or the receiving unit) is configured to receive the fourth signal from the source network device.
- the fourth information is used to indicate the first data packet to instruct the remote device to stop communicating with the first relay device after receiving the first data packet, wherein the remote device is switching transmission Before the path, it is connected to the source network device through the first relay device, and after the transmission path is switched, it is connected to the target network device.
- the transceiver unit (or the receiving unit) is used to receive a switching command from the source network device, where the switching command is used to instruct the remote device to switch the transmission path,
- the remote device is connected to the source network device through the first relay device before switching the transmission path, and is connected to the target network device after switching the transmission path;
- the transceiver unit (or the sending unit), Used to send sixth information to the source network device, where the sixth information is used to instruct the remote device to receive failed data packets and/or successfully receive data packets.
- the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the remote device described in the fourth or seventh aspect.
- a storage unit sometimes also referred to as a storage module
- the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the remote device described in the fourth or seventh aspect.
- a communication device is provided.
- the communication device may be the first relay device described in the eighth aspect.
- the communication device has the function of the first relay device.
- the communication device is, for example, a first relay device, or a larger device including the first relay device, or a functional module in the first relay device, such as a baseband device or a chip system.
- the communication device includes a baseband device and a radio frequency device.
- the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
- a processing unit sometimes also called a processing module
- a transceiver unit sometimes also called a transceiver module
- the transceiver unit (or the receiving unit) is used to receive the first data packet from the source network device; the transceiver unit (or the sending unit) is used to In sending the first data packet to a remote device, where the remote device is connected to the source network device through the first relay device before switching the transmission path; the transceiver unit (or, the a receiving unit), configured to receive first feedback information from the remote device, the first feedback information being used to indicate success or failure in receiving the first data packet; the transceiving unit (or, the sending unit ), configured to send second feedback information to the source network device according to the first feedback information, where the second feedback information is used to indicate success or failure in receiving the first data packet.
- the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first relay device described in the eighth aspect.
- a storage unit sometimes also referred to as a storage module
- a thirteenth aspect provides a first communication system, including a target network device and a source network device, wherein the target network device is used to perform the communication method as described in the first aspect, and the source network device is used to perform the communication method as described in the second aspect. communication method.
- a fourteenth aspect provides a second communication system, including a source network device configured to perform the communication method described in the third or fifth aspect.
- the second communication system further includes a remote device, configured to perform the communication method described in the fourth aspect.
- a third communication system including a remote device and a source network device, wherein the remote device is used to perform the communication method as described in the seventh aspect, and the source network device is used to perform the communication method as described in the sixth aspect. communication method.
- a fourth communication system including a first relay device for performing the communication method as described in the eighth aspect.
- a computer-readable storage medium is provided.
- the computer-readable storage medium is used to store computer programs or instructions.
- the remote device or the first relay device in the above aspects or The method executed by the target network device or the source network device is implemented.
- An eighteenth aspect provides a computer program product containing instructions that, when run on a computer, enables the methods described in the above aspects to be implemented.
- a nineteenth aspect provides a chip system, including a processor and an interface.
- the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
- FIGS 1A and 1B are schematic diagrams of two application scenarios according to embodiments of the present application.
- Figure 2 is a schematic diagram of packet loss that may occur due to switching when the source network device sends data packets to the remote device;
- FIGS. 3 to 7 are flow charts of several communication methods provided by embodiments of the present application.
- Figure 8 is a schematic diagram of a device provided by an embodiment of the present application.
- Figure 9 is a schematic diagram of yet another device provided by an embodiment of the present application.
- the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (such as , communication module, modem, or chip system, etc.).
- the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart cities, drones, robots and other scenarios.
- the terminal equipment may sometimes be called user equipment (UE), terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
- UE user equipment
- the terminal device is described by taking a UE as an example.
- the network equipment in the embodiment of the present application includes, for example, access network equipment and/or core network equipment.
- the access network device is a device with a wireless transceiver function and is used to communicate with the terminal device.
- the access network equipment includes but is not limited to base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transceiver point (transmission reception point, TRP), third generation Base stations for the subsequent evolution of the 3rd generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
- the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc. Multiple base stations can support networks with the same access technology or networks with different access technologies.
- a base station may contain one or more co-located or non-co-located transmission and reception points.
- the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
- the access network device may also be a server or the like.
- the access network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
- RSU road side unit
- the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
- Terminal devices can communicate with multiple base stations in different access technologies.
- the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and billing.
- the names of devices that implement core network functions in systems with different access technologies may be different, and the embodiments of this application do not limit this.
- the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or User plane function (UPF), etc.
- AMF access and mobility management function
- SMF session management function
- PCF policy control function
- UPF User plane function
- the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
- the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
- the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
- At least one means one or more
- plural means two or more.
- “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
- the character “/” generally indicates that the related objects are in an "or” relationship.
- A/B means: A or B.
- At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
- at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
- the ordinal words such as "first” and “second” mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
- the first information and the second information may be the same information or different information, and such names do not indicate the content, size, sender/receiver, priority or other information of the two information. Differences in importance etc.
- the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps. For example, S301 may occur before S302, or may occur after S302, or may occur simultaneously with S302.
- the technical solution provided by the embodiments of the present application can be applied to the fourth generation mobile communication technology (the 4th generation, 4G) system, such as the long term evolution (LTE) system, or can be applied to the fifth generation mobile communication technology (the 5th generation (5G) system, such as the new radio (NR) system, or can also be applied to the next generation mobile communication system or other similar Communication systems, such as the sixth generation mobile communication technology (the 6th generation, 6G) system, etc., are not specifically limited.
- the 4th generation, 4G system such as the long term evolution (LTE) system
- 5G 5th generation
- NR new radio
- the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D) scenarios, such as NR-D2D scenarios, etc., or can be applied to vehicle to everything (V2X) scenarios, such as NR -V2X scenarios or vehicle-to-vehicle (V2V), etc.
- D2D device-to-device
- V2X vehicle to everything
- the technical solutions provided by the embodiments of this application can be used in fields such as intelligent driving, assisted driving, or intelligent connected vehicles.
- both the relay device and the remote device may be UE; if applied to a non-D2D scenario, one of the relay device or the remote device may be a UE, and the other device may be Network equipment (such as access network equipment), or remote equipment and relay equipment may also be network equipment.
- the remote device involved in various embodiments later in this application is, for example, a UE or a network device; the relay device is, for example, a UE or a network device.
- FIG. 1A and FIG. 1B are schematic diagrams of two application scenarios according to embodiments of the present application.
- the remote device is initially connected to the access network device 1 through the relay device. After switching the transmission path, the remote device is connected to the access network device 2 through the Uu interface, or the remote device is considered to be connected to the access network device 2.
- Network device 2 is directly connected.
- This scenario is regarded as the inter-base station (inter gNB) handover process from an indirect path to a direct path (indirect link ⁇ direct link).
- the remote device is initially connected to the base station 1 through the relay device 1. After switching the transmission path, the remote device is connected to the access network device 2 through the relay device 2.
- This scenario is regarded as the inter gNB handover process from an indirect path to an indirect path (indirect link ⁇ indirect link).
- Access network device 1 in Figure 1A sends a data packet with sequence number ⁇ 0,1,2,3,4,5,6,7 ⁇ , and the relay device receives a data packet with sequence number ⁇ 0,1,2, 4,6 ⁇ data packets, and sends radio link control (RLC) feedback to the access network device 1 to indicate that the data packets with sequence numbers ⁇ 0,1,2,4,6 ⁇ are successfully received. . Based on the RLC confirmation feedback, the access network device 1 determines that the receiving end has successfully received the data packet with the sequence number ⁇ 0,1,2,4,6 ⁇ .
- RLC radio link control
- the remote device can disconnect In connection with the relay device, at this time, the remote device only received the data packet with the sequence number ⁇ 0 ⁇ from the relay device and did not receive the data packet with the sequence number ⁇ 1,2,4,6 ⁇ , that is, the remote device The end device did not receive the data packet with sequence number ⁇ 1,2,3,4,5,6,7 ⁇ .
- access network device 1 forwards the data packet of the remote device to access network device 2, it will not forward the data packet that has been confirmed to be successfully received. Therefore, access network device 1 uses the RLC feedback from the relay device.
- the target network device can indicate the reception status of the data packet to the source network device, so that the source network device can send the first data packet to the target network device.
- the first data packet is a data packet of the remote device, for example, the first data packet.
- the number of a data packet is one or more, and the first data packet may include data packets that the remote device failed to receive. Then the target network device can send data packets that the remote device failed to receive to the remote device to reduce the packet loss rate.
- the methods provided by the embodiments of the present application are introduced below with reference to the accompanying drawings.
- the drawings corresponding to various embodiments of the present application all steps indicated by dotted lines are optional steps.
- the methods provided by various embodiments of the present application can be applied to the network architecture shown in Figure 1A or Figure 1B.
- the remote device mentioned below is, for example, the remote device shown in FIG. 1A or FIG. 1B;
- the source network device mentioned below is, for example, the access network device 1 shown in FIG. 1A or FIG.
- the target network device involved is, for example, the access network device 2 shown in Figure 1A or Figure 1B; the first relay device involved later is, for example, the relay device shown in Figure 1A, or the first relay device shown in Figure 1B.
- Relay equipment 1 As can be seen from FIG. 1A or FIG. 1B , in various embodiments of the present application, the remote device connects to the source network device through the first relay device before switching the transmission path, and connects to the target network device after switching the transmission path. After switching the transmission path, the remote device can connect to the target network device through a direct path or an indirect path.
- the direct path is a path that communicates through the Uu interface
- the indirect path is, for example, through the second relay.
- a path through which a device (such as relay device 2 shown in Figure 1B) connects to the target network device.
- the "direct path” refers to the path through which the remote device communicates with the access network device (or with the cell provided by the access network device) through the Uu interface, not through the relay device;
- “Indirect path” refers to the path through which the remote device communicates with the access network device (or with the cell provided by the access network device) through the relay device.
- path can also be replaced by "link”.
- a "directly connected path” can also be called a “directly connected link”
- an “indirectly connected path” can also be called an "indirectly connected link”.
- device A sends a message to device B.
- the message can be considered to be from device A.
- the sending process may be direct sending, or may be indirect sending (for example, forwarding through other devices).
- the target network device sends the first information to the source network device.
- the source network device receives the first information from the target network device.
- the first information may indicate the reception status of the data packet, or indicate (or request) data forwarding.
- the reception status of the data packet indicated by the first information may include the reception status of the data packet by the remote device, and/or the reception status of the data packet by the target network device.
- the data packet indicated by the first information may be a data packet of the remote device; if the first information requests data forwarding, it may request forwarding of a data packet of the remote device.
- S302 may also be included before S301, in which the remote device sends second information to the target network device, and accordingly, the target network device receives the second information from the remote device.
- the second information may indicate that the remote device failed to receive the data packet and/or the remote device successfully received the data packet.
- the remote device can send the second information to the target network device.
- the second information is a packet data convergence protocol (PDCP) status report, or the second information can also be other information.
- PDCP packet data convergence protocol
- the second information can be sent separately, or the second information can also be carried in a message used to indicate successful path switching.
- the remote device can send a radio resource control (RRC) reconfiguration message to the target network device.
- RRC radio resource control
- the second information may be included in the RRC reconfiguration message. If the target network device receives the second information, the first information in S301 may be determined based on the second information.
- one indication method is that the information may include the index of the M data packets.
- the first information indicates a data packet with sequence number ⁇ 1, 2, 4, 6 ⁇ , then the first information may include the sequence number ⁇ 1, 2, 4, 6 ⁇ .
- one piece of information may indicate M data packets.
- the information may include the index of the first data packet among the M data packets.
- the first information indicates a data packet with sequence number ⁇ 1,2,4,6 ⁇ , or the first information indicates a data packet with sequence number ⁇ 1,2,3,4,5,6,7 ⁇ , then the first information Can include serial number ⁇ 1 ⁇ .
- the indication mode including the index of the first data packet it is equivalent to the first information indicating the sequence number ⁇ 1 ⁇ and all subsequent data packets.
- the first information indicates the sequence number ⁇ 1, 2, 3, 4,5,6,7 ⁇ data packets.
- one piece of information should indicate M data packets.
- the information may include the index of the first data packet among the M data packets and indicate the reception status of the remaining data packets among the M data packets. For example, if the first information indicates a data packet with sequence number ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ , then the first information may include the sequence number ⁇ 1 ⁇ , and the first information may include a bitmap ), the bitmap includes the same number of bits as the remaining data packets in the M data packets. For example, it includes 6 bits. These 6 bits are the same as the data of the sequence number ⁇ 2,3,4,5,6,7 ⁇ Packages correspond one to one.
- the number of bits included in the bitmap is a multiple of 8, for example, it includes 8 bits, and the first 6 bits correspond to the data packets with sequence numbers ⁇ 2,3,4,5,6,7 ⁇ one-to-one.
- the value of each bit can indicate the reception status of the corresponding data packet. For example, if the value of a bit in the bitmap is "0", it means that the data packet corresponding to the bit has failed to be received, or if the value of the bit is " 1", indicating that the data packet corresponding to this bit is received successfully.
- the second information is a PDCP status report, and the second information may use this method to instruct the remote device to successfully receive data packets and/or to receive failed data packets.
- the PDCP status report includes count value or sequence number information, and bitmap.
- the status report indicates the count value corresponding to the first unsuccessfully received data packet by including the count value or sequence number information, such as the first missing count (FMC), or indicating the first non-received packet.
- the sequence number corresponding to the successful data packet such as the first missing sequence number (first missing SN, FMS), indicates that the data packets before the data packet indicated by this information were successfully received.
- the length of the bitmap included in the PDCP status report can be a multiple of 8, and the bitmap can indicate the reception status of subsequent data packets from the first unsuccessfully received data packet.
- the count value of the first unsuccessfully received data packet is ⁇ 3 ⁇ , that is, the data packets before the count value ⁇ 2 ⁇ are all received successfully, and the count value of the successfully received data packets after the count value ⁇ 3 ⁇ is ⁇ 5 ,9 ⁇ .
- FMC 3. Since subsequent data packets after ⁇ 9 ⁇ are not received successfully, the length of the bitmap is 8, and "0100 0100" can indicate that ⁇ 5,9 ⁇ is received successfully.
- the second information indicates that the remote device fails to receive the data packet.
- the second information only indicates that the remote device fails to receive the data packet.
- the second information may only indicate that the remote device fails to receive the data packet.
- the second information may include the sequence number ⁇ 1,2,4,6 ⁇ .
- the sequence number of the data packet is, for example, the sequence number (SN) of the data packet, or the count value (count) of the data packet.
- the "serial number" described in various embodiments of this application can also be replaced by "serial number” or "count value”.
- the count of the data packet can be determined by the HFN and SN of the data packet.
- the HFN and SN of a data packet can constitute the count of the data packet.
- the first information may be the same as the second information.
- the target network device can forward the second information to the source network device, and then the first information and the second information are the same.
- the first information may indicate the data packet reception status of the remote device.
- the first information and the second information may be different.
- the second information only indicates that the remote device fails to receive the data packet
- the first information may indicate that the remote device receives the first data packet among the failed data packets to indicate starting from the first data packet until the All packets between the last packet of the remote device.
- the first information may indicate the data packet reception status of the remote device.
- the second information includes the sequence number ⁇ 1, 2, 4, 6 ⁇ to indicate that the data packet with the sequence number ⁇ 1, 2, 4, 6 ⁇ fails to be received; and the first information may include the sequence number ⁇ 1 ⁇ to indicate Indicates all packets starting with the packet with sequence number ⁇ 1 ⁇ up to the last packet for this remote device.
- the last data packet of the remote device is, for example, the last data packet that the source network device has sent to the remote device through the first transmission path, or it is the last data packet that the source network device has to send to the remote device through the first transmission path.
- the last data packet among the data packets at this time, the last data packet may have been sent to the remote device through the first transmission path, or it may not have been sent to the remote device through the first transmission path.
- the data packets indicated by the first information may also include data packets that the remote device successfully received and/or data packets that the remote device has not yet received.
- the data packets that have not been received by the remote device are, for example, data packets that have not been sent to the remote device, and may include data packets that have been associated with serial numbers, and/or data packets that have not been associated with serial numbers.
- the target network device may also determine the first information based on the second information and the data packets stored by the target network device.
- the first information may indicate the data packet reception status of the remote device and/or the data packet reception status of the target network device.
- the target network device may determine whether the data packets indicated by the second information include data packets that have been stored by the target network device. If there are data packets that have been stored by the target network device, the first information may not indicate that the target network device Packets that have been stored indicate packets that have not been stored by the destination network device.
- the data packets that the target network device has stored are, for example, the data packets that the target network device has received from the source network device through data forwarding.
- the second information indicates the reception status of the remote device's data packet.
- the second information indicates that the data packet with sequence number ⁇ 1, 2, 4, 6 ⁇ and the data packet after sequence number ⁇ 6 ⁇ failed to receive; the target network device After receiving the second information, it is determined that the data packets with the sequence number ⁇ 4,6 ⁇ and the sequence number after ⁇ 6 ⁇ have been obtained through data forwarding, then the first information can indicate the data packet with the sequence number ⁇ 1,2 ⁇ , or , the first information may indicate the data packet with the sequence number ⁇ 1 ⁇ , to indicate all data packets starting from the data packet with the sequence number ⁇ 1 ⁇ to the last data packet of the remote device, or to indicate the sequence number starting from the data packet ⁇ 1 ⁇ . All packets starting with the packet of ⁇ 1 ⁇ and ending with the first packet that the source network device has forwarded to the destination network device
- the second information indicates that the remote device receives a successful data packet.
- the second information only indicates that the remote device receives a successful data packet.
- the second information may only indicate that the remote device successfully received the data packet.
- the remote device failed to receive the data packet with the sequence number ⁇ 1,2,4,6 ⁇ , but failed to receive the data packet with the sequence number ⁇ 1,2,4,6 ⁇ .
- the second information may indicate the data packet with sequence number ⁇ 0,3,5,7 ⁇ .
- the second information may include the sequence number ⁇ 0,3 ,5,7 ⁇ .
- the first information may be the same as the second information.
- the target network device can forward the second information to the source network device, and then the first information and the second information are the same.
- the first information may indicate the data packet reception status of the remote device.
- the first information and the second information may be different.
- the second information only indicates that the remote device successfully received the data packet, while the first information may indicate that the remote device failed to receive the data packet.
- the first information may indicate the data packet reception status of the remote device.
- the second information includes the sequence number ⁇ 0,3,5,7 ⁇ to indicate that the data packet with the sequence number ⁇ 0,3,5,7 ⁇ is received successfully; and the first information may include the sequence number ⁇ 1,2, 4,6 ⁇ to indicate the packet with sequence number ⁇ 1,2,4,6 ⁇ .
- the second information only indicates that the remote device receives a successful data packet
- the first information may indicate that the remote device receives a first data packet among the failed data packets to indicate that from the first data packet until All packets between the last packet of the remote device.
- the first information may indicate the data packet reception status of the remote device.
- the second information includes the sequence number ⁇ 0,3,5,7 ⁇ to indicate that the data packet with the sequence number ⁇ 0,3,5,7 ⁇ is successfully received; then the target network device can determine that the remote device has received the sequence number ⁇ 0,3,5,7 ⁇ . The reception of data packets 1, 2, 4, 6 ⁇ fails.
- the first information may include the sequence number ⁇ 1 ⁇ to indicate the sequence starting from the data packet with sequence number ⁇ 1 ⁇ until the last data packet of the remote device. All packets.
- sequence number ⁇ 1 ⁇ to indicate the sequence starting from the data packet with sequence number ⁇ 1 ⁇ until the last data packet of the remote device. All packets.
- the target network device may also determine the first information based on the second information and the data packets stored by the target network device.
- the first information may indicate the data packet reception status of the remote device and/or the data packet reception status of the target network device.
- the target network device may determine whether there is data stored by the target network device in the data packet not indicated by the second information. If the packet contains a data packet that has been stored by the target network device, the first information may not indicate the data packet that has been stored by the target network device, but may indicate a data packet that has not been stored by the target network device.
- the data packets that the target network device has stored are, for example, the data packets that the target network device has received from the source network device through data forwarding.
- the second information only indicates that the remote device has successfully received the data packet.
- the second information includes the sequence number ⁇ 0,3,5,7 ⁇ to indicate the reception of the data packet with the sequence number ⁇ 0,3,5,7 ⁇ . Success; then the target network device can determine that the remote device failed to receive the data packets after the sequence number ⁇ 1,2,4,6 ⁇ and the sequence number ⁇ 6 ⁇ .
- the target network device determines that the sequence number is ⁇ through data forwarding.
- the first information may indicate the data packet with the sequence number ⁇ 1,2 ⁇ , or the first information may indicate the data packet with the sequence number ⁇ 1 ⁇ , To indicate all packets starting from the packet with sequence number ⁇ 1 ⁇ until the last packet of the remote device, or to indicate starting from the packet with sequence number ⁇ 1 ⁇ until the source network device has sent the packet to the destination All packets up to the first packet forwarded by the network device.
- the second information indicates one or more of the following: data packets that the remote device failed to receive, data packets that the remote device successfully received, or data packets that the remote device has not yet received.
- the second information may indicate that the remote device fails to receive the first data packet among the data packets to indicate all data packets starting from the first data packet until the last data packet of the remote device.
- the last data packet of the remote device please refer to the previous article. For example, if the remote device fails to receive the data packet with the sequence number ⁇ 1, 2, 4, 6 ⁇ , the second information may indicate the data packet with the sequence number ⁇ 1 ⁇ .
- the second information may include the sequence number ⁇ 1 ⁇ to indicate the data packet with the sequence number ⁇ 1,2,3,4,5,6,7 ⁇ , where the data packet with the sequence number ⁇ 7 ⁇ is, for example, the source network device has sent it to the remote device.
- the data packet indicated by the second information may include the remote device in addition to the data packet that the remote device fails to receive.
- the device successfully received the data packet and/or the remote device has not yet received the data packet.
- the data packets that have not been received by the remote device are, for example, data packets that have not been sent to the remote device, and may include data packets that have been associated with serial numbers, and/or data packets that have not been associated with serial numbers.
- the second information indicates the reception status of the data packet of the remote device.
- the second information is a PDCP status report, or the second information is included in the RRC reconfiguration complete message.
- the second information is included in the RRC reconfiguration complete message.
- the information indicates the reception status corresponding to the DRB ID.
- the second information indicates the first unsuccessfully received data packet of the remote device and the reception status of subsequent data packets.
- the second information may indicate that the count value of the first data packet that has not been successfully received by the remote device is ⁇ 3 ⁇ , that is, the data packets before the count value ⁇ 2 ⁇ are all received successfully, and the count value ⁇ 3 ⁇ ⁇ After that, the count value of successfully received data packets is ⁇ 5,9 ⁇ , and the rest are not received successfully.
- the second information may indicate that the sequence number of the first data packet that was not successfully received by the remote device is ⁇ 3 ⁇ , that is, the data packets before the sequence number ⁇ 2 ⁇ are all received successfully, and the sequence number ⁇ 3 ⁇ The sequence numbers of the subsequent successfully received data packets were ⁇ 5,9 ⁇ , and the rest were not received successfully.
- the data packets that have not been successfully received may include data packets that have been associated with sequence numbers, and/or data packets that have not been associated with sequence numbers.
- the second information also includes the DRB ID.
- the first information may be the same as the second information.
- the target network device can forward the second information to the source network device, and then the first information and the second information are the same.
- the first information may indicate the data packet reception status of the remote device.
- the first information may additionally include a DRB ID compared to the second information to indicate the reception status of the DRB corresponding to the remote device.
- the first information and the second information may be different.
- the target network device can determine which of the data packets indicated by the second information are the data packets that the remote device failed to receive.
- the second information can also include Indicate which data packets are the data packets that have failed to be received and/or indicate which data packets are the data packets that have been successfully received, then the first information can indicate that the remote device has failed to receive the data packets, that is, the second information can indicate that the remote device has failed to receive the data packets through the third The reception status of data packets on a transmission path.
- the second information may indicate that the count value of the first unsuccessfully received data packet is ⁇ 3 ⁇ , that is, the data packets before the count value ⁇ 2 ⁇ are all received successfully, and the data packets after this data packet are successfully received.
- the count value of the data packet is 5,9, and the rest were not received successfully.
- the second information may indicate that the sequence number of the first unsuccessfully received data packet is ⁇ 3 ⁇ , that is, the data packets before the sequence number ⁇ 2 ⁇ are all successfully received, and the data packets after the sequence number ⁇ 3 ⁇ are successfully received.
- the sequence number of the data packet is ⁇ 5,9 ⁇ , and the rest were not received successfully.
- the data packets that have not been successfully received may include data packets that have been associated with sequence numbers, and/or data packets that have not been associated with sequence numbers.
- the target network device After the target network device receives the second information, it determines that the data packets with sequence numbers ⁇ 3, 4, 6, 7, 8, 10 ⁇ and after ⁇ 10 ⁇ are data packets that the remote device failed to receive, then the first information can Indicate the packet with sequence number ⁇ 3 ⁇ to indicate all packets starting from the packet with sequence number ⁇ 3 ⁇ until the last packet of the remote device; or the first information may indicate the sequence number is ⁇ 3 ⁇ to indicate all packets starting from the packet with sequence number ⁇ 3 ⁇ to the first packet that the source network device has forwarded to the destination network device.
- the first information may also indicate that the remote device receives successful data packets and/or the remote device does not receive data packets. .
- the first information may indicate the data packet with the sequence number ⁇ 3, 4, 6, 7, 8, 10 ⁇ .
- the first information may only indicate that the remote device failed to receive the data packet.
- the first information may indicate data packets with sequence numbers ⁇ 3, 4, 6, 7, 8, 10 ⁇ and data packets after ⁇ 10 ⁇ .
- the first information may indicate the remote device Packets that failed to receive and/or were not received by the remote device.
- the target network device may also determine the first information based on the second information and the data packets stored by the target network device.
- the first information may indicate the data packet reception status of the remote device and/or the data packet reception status of the target network device.
- the target network device may determine whether the data packets indicated by the second information include data packets that have been stored by the target network device. If there are data packets that have been stored by the target network device, the first information may not indicate that the target network device Packets that have been stored indicate packets that have not been stored by the destination network device.
- the data packets that the target network device has stored are, for example, the data packets that the target network device has received from the source network device through data forwarding.
- the second information indicates that the remote device fails to receive the first data packet among the data packets to indicate that all data packets starting from the first data packet until the last data packet of the remote device have not been received.
- the second information includes the sequence number ⁇ 1 ⁇ to indicate that all data packets starting from the data packet with the sequence number ⁇ 1 ⁇ to the last data packet of the remote device have not been received successfully.
- the target network device After receiving the second information, the target network device determines that it has received data packets with sequence numbers ⁇ 4 ⁇ and after through data forwarding, then the first information may indicate the data packets with sequence number ⁇ 1 ⁇ to indicate that the data packets with sequence numbers are ⁇ 1 ⁇ . All packets starting from packet ⁇ 1 ⁇ until the last packet of the remote device. Alternatively, the first information may indicate a data packet with a sequence number of ⁇ 1 ⁇ to indicate starting from the data packet with a sequence number of ⁇ 1 ⁇ and preceding the first data packet that the source network device has forwarded to the target network device. All data packets up to the data packet.
- the second information includes the sequence number ⁇ 1 ⁇ to indicate that all data packets from the data packet with the sequence number ⁇ 1 ⁇ to the last data packet of the remote device have not been received successfully, and the target network device receives After receiving the second information, it is determined that the data packets with sequence numbers ⁇ 1 ⁇ and after are the data packets that the remote device failed to receive, and it is determined that the sequence number of the remote device forwarded by the source network device has been received through data forwarding and is ⁇ 4 ⁇ and subsequent data packets, the first information may indicate the data packet with the sequence number ⁇ 1, 2, 3 ⁇ to indicate starting from the data packet with the sequence number ⁇ 1 ⁇ until the last data of the remote device All data packets up to the packet; or the first information may indicate the data packet with the sequence number ⁇ 1,2,3 ⁇ ; or the first information may include the sequence number of the data packet (such as a sequence number or count value), and a bit map , where the sequence number of the data packet can indicate the sequence number or count value of the first data packet that needs to
- the first information may also include DRB ID information to indicate data radio bearer information that needs to be forwarded.
- the source network device sends the first data packet to the target network device.
- the target network device receives the first data packet from the source network device.
- the first data packet may include one or more data packets.
- the first data packet may be, for example, a data packet from a remote device.
- the first data packet may be determined by the first information.
- the first data packet may include all data packets indicated by the first information.
- the first information indicates the data packet with sequence number ⁇ 1 ⁇ and the data packets after sequence number ⁇ 1 ⁇
- the first data packet may include the data packet starting from the data packet with sequence number ⁇ 1 ⁇ to the end of the remote device. All data packets up to one data packet, for example, including data packets with sequence number ⁇ 1,2,3,4,5,6,7 ⁇ , or including sequence number ⁇ 1 ⁇ and data packets after sequence number ⁇ 1 ⁇ , which includes packets with no sequence numbers associated with them.
- the first data packet may include a data packet with a sequence number of ⁇ 1, 2, 4, 6 ⁇ .
- the first information indicates a data packet with a sequence number of ⁇ 1, 2, 4, 6 ⁇ .
- the first data packet may include starting from the data packet with a sequence number of ⁇ 1 ⁇ until the last data packet of the remote device. All data packets up to , including, for example, the data packets with sequence numbers ⁇ 1,2,3,4,5,6,7 ⁇ .
- the first information indicates that the sequence number of the data packet is ⁇ 1 ⁇ and the bit map is "1100 0000", then the first data packet is the data packet ⁇ 1, 2, 3 ⁇ that needs to be forwarded as indicated by the first information.
- the first data packet may include the partial data packet indicated by the first information.
- the first information indicates the data packet with sequence number ⁇ 1 ⁇ and the data packet after sequence number ⁇ 1 ⁇ .
- the source network device determines that the data packet with sequence number ⁇ 4 ⁇ and after ⁇ 4 ⁇ has been sent to the target network device.
- the first data packet may include the data packet starting from the sequence number ⁇ 1 ⁇ until the source network device All data packets up to the previous data packet of the first data packet that the device has forwarded to the target network device, for example, including the data packets with sequence numbers ⁇ 1,2,3, ⁇ .
- the first information indicates data packets with sequence numbers ⁇ 1, 2, 4, 6 ⁇ , and the source network device determines that the data packets with sequence numbers ⁇ 6 ⁇ and after have been sent to the target network device through data forwarding. Then the first data packet may include data packets with sequence numbers ⁇ 1, 2, 4 ⁇ .
- the first information indicates a data packet with sequence number ⁇ 1 ⁇ , or indicates a data packet with sequence number ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ , and the first information indicates data in which reception fails.
- the first information indicates that the data packets with sequence numbers ⁇ 1,2,4,6 ⁇ are data packets with failed reception and/or indicates that the sequence numbers are ⁇ 0,3, 5,7 ⁇ is a successfully received data packet
- the first information may include a data packet with a sequence number of ⁇ 1,2,4,6 ⁇
- the first information may include a data packet with a sequence number of ⁇ 1,2 ,3,4,5,6,7 ⁇ data packets.
- the first information indicates a data packet with sequence number ⁇ 1 ⁇ , or indicates a data packet with sequence number ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ , and the first information indicates data in which reception fails.
- the first information indicates that the data packets with sequence numbers ⁇ 1,2,4,6 ⁇ are data packets with failed reception and/or indicates that the sequence numbers are ⁇ 0,3, The data packets 5,7 ⁇ are successfully received.
- the source network device determines that the data packet with the sequence number ⁇ 1 ⁇ has been sent to the target network device, then the first information may include the sequence number ⁇ 2,4,6 ⁇ data packets, or the first information may include data packets with sequence numbers ⁇ 2, 3, 4, 5, 6, 7 ⁇ .
- the first data packet may include all data packets not indicated by the first information. This implementation may be applicable to cases where the first information indicates that the remote device successfully received the data packet.
- the first information indicates a data packet with a sequence number of ⁇ 0,3,5,7 ⁇
- the first data packet may include a data packet with a sequence number of ⁇ 1,2,4,6 ⁇ ; or, the first data
- the packets may include consecutive data packets starting from the first data packet that the remote device failed to receive.
- the first data packet may include data packets with sequence numbers ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ .
- the first data packet may include part of the data packet not indicated by the first information.
- This implementation method may be applicable to cases where the first information indicates that the remote device has successfully received the data packet.
- the first information indicates a data packet with sequence number ⁇ 0,3,5,7 ⁇
- the source network device determines that the data packet with sequence number ⁇ 1 ⁇ has been sent to the target network device, then the first data packet can Includes packets with sequence numbers ⁇ 2,4,6 ⁇ .
- the first data packet is all data packets indicated by the first information.
- the first information indicates the data packet with the sequence number ⁇ 1, 2, 3 ⁇ .
- the first information may be indicated by the sequence number of the data packet and the bit map.
- the first information indicates that the sequence number of the data packet is ⁇ 1 ⁇ , indicating that the first data packet that needs to be forwarded is the data packet with the sequence number of ⁇ 1 ⁇ , and the bit map is "1100 0000", indicating that the first data that needs to be forwarded is
- the subsequent packets of the packet are ⁇ 2,3 ⁇ . Therefore, it is determined that the first data packet is the data packet ⁇ 1, 2, 3 ⁇ that needs to be forwarded as indicated by the first information.
- the first data packet is determined by the source network device based on all data packets indicated by the first information.
- the first data packet may include data packets that have not been successfully received by the remote device (indicated by the first information) and that the source network device has not forwarded to the target network device. , namely ⁇ 3,4,6,7,8 ⁇ .
- the first data packet may include data packets that have not been successfully received by the remote device, that is, ⁇ 3, 4, 6, 7, 8, 10 ⁇ and the data packets after ⁇ 10 ⁇ , which can include data packets associated with SN or without SN.
- the first data packet is determined by the source network device based on all data packets indicated by the first information.
- the first data packet may include the remote device starting from the first unsuccessfully received data packet (indicated by the first information).
- All the data packets of the device may also include the data packets that the remote device has successfully received and/or the source network device has not sent the data packets to the remote device, for example,
- the first data packet may include ⁇ 3, 4, 5, 6, 7, 8, 9, 10 ⁇ and data packets after ⁇ 10 ⁇ .
- the first data packet may include all data packets of the remote device starting from the first unsuccessfully received data packet of the remote device.
- the first data packet may include ⁇ 3,4,5,6,7,8,9,10 ⁇ and ⁇ 10 ⁇ and later data packets, for example, in addition to the data packets that the remote device has not received successfully, it may also include the data packets that the remote device has successfully received. Packets and/or packets that the source network device did not send to the remote device.
- the data packets not sent by the source network device to the remote device may include data packets associated with the SN and/or data packets not associated with the SN.
- the embodiment of the present application may involve a transmission path switching process of a remote device, so optionally, before S302, S304 to S311 may also be included.
- the remote device communicates with the source network device through the first relay device.
- the remote device may send an uplink (UL) data packet to the source network device through the first relay device, and/or the remote device may receive a downlink (downlink, UL) data packet from the source network device through the first relay device.
- DL downlink
- the source network device sends measurement configuration information to the remote device through the first relay device, and accordingly, the remote device receives the measurement configuration information from the source network device through the first relay device.
- the measurement configuration information can be used to configure measurement information for the remote device, and the remote device can perform measurements based on the measurement information.
- the measurement information may include information for performing Uu interface measurements, and/or information for performing sidelink (SL) measurements.
- the remote device After the remote device performs the measurement, it can obtain a measurement report (measurement report).
- the remote device can send the measurement report to the source network device through the first relay device, and the source network device can receive the measurement report from the remote device through the first relay device.
- the measurement report may include a measurement report for the Uu interface (for example, including quality information of at least one cell), and/or a sidelink measurement report.
- the sidelink measurement report may include the results of measurements performed by the remote device on one or more other terminal devices, for example, including quality information of the sidelink link between the remote device and the one or more other terminal devices,
- the one or more other terminal devices may serve as candidates for the relay device of the remote device.
- the source network device and/or the target network device determines that the remote device switches the transmission path.
- the source network device or the target network device determines that the remote device switches to the second transmission path.
- the transmission path through which the remote device connects to the source network device through the first relay device is the first transmission path.
- the second transmission path is, for example, a transmission path through which the remote device is directly connected to the target network device (for example, through a Uu interface), or a transmission path through which the remote device is connected to the target network device through a second relay device.
- the source network device may determine based on the measurement report from the remote device that the remote device switches to the second transmission path. After S306, the source network device may send a switching request to the target network device to request that the remote device be switched to the second transmission path. After receiving the handover request from the source network device, the target network device can perform access control. If it is determined that the remote device can be switched to the second transmission path, the target network device may send a switching request confirmation message to the source network device to indicate that the remote device is allowed to be switched to the second transmission path, and the source network device receives the switching request. After confirming the message, S307 may be executed to send a switching command to the remote device through the first relay device to instruct the remote device to switch to the second transmission path.
- the remote device After receiving the switching command through the first relay device, the remote device can switch to the second transmission path.
- the switching command is, for example, an RRC reconfiguration message (RRC reconfiguration message).
- RRC reconfiguration message RRC reconfiguration message
- a switching command may also be called a "path switching command” or the like.
- the source network device may send the measurement report from the remote device to at least one network device, and the at least one network device may include the target network device.
- the source network device may send a switching command to at least one network device, and the switching command may include the measurement report.
- the second transmission path can be determined based on the measurement report.
- the second transmission path is determined to be a path directly connected between the remote device and the network device or a path for the remote device to pass through the second transmission path.
- at least one network device can send a decision result to the source network device, and the source network device can obtain at least one decision result.
- One of the decision results can indicate the corresponding network device.
- Second transmission path for decisions For example, the network device may send the decision result to the source network device through a handover request confirmation message.
- the source network device selects a second transmission path from at least one second transmission path. After the source network device selects the second transmission path, it can execute S307. After the remote device receives the switching command, it can switch to the second transmission path. In this case, it can be considered that the source network device and the target network device jointly determine the second transmission path.
- the source network device does not need to send the measurement report from the remote device to too many network devices, but only needs to send the measurement report to the target network device.
- the target network device may determine the second transmission path based on the measurement report, for example, determine the second transmission path as a path directly connecting the remote device to the network device or as a path connecting the remote device to the network device through a second relay device.
- the target network device can send a decision result to the source network device, and the decision result can indicate the second transmission path.
- the target network device can send the decision result to the source network device through a handover request confirmation message.
- the source network device can determine the second transmission path based on the decision result.
- the source network device determines the second transmission path, or after the source network device receives the decision result, it can execute S307.
- the remote device After the remote device receives the switching command, it can switch to the second transmission path. In this case, it can be considered that the target network device determines the second transmission path.
- the source network device forwards the data to the target network device, and accordingly, the target network device receives the data from the source network device.
- the source network device may forward a third data packet to the target network device, and the third data packet may include that the source network device has not received the Feedback data packets (or data packets receiving feedback indicating reception failure), and/or include data packets that the source network device did not send to the remote device.
- the received feedback is, for example, RLC feedback from the first relay device.
- the source network device may forward to the target network device a PDCP service data unit (SDU) corresponding to a PDCP protocol data unit (PDU) that has not received RLC feedback from the first relay device.
- SDU PDCP service data unit
- PDU PDCP protocol data unit
- the data packets that the source network device has not yet sent to the remote device may include data packets that are associated with the SN and/or data packets that are not associated with the SN.
- the process of S308 can be regarded as a data forwarding process.
- the method may also include S309.
- the source network device may send third information to the target network device.
- the target network device receives third information from the source network device. S309 can occur before S308, after S308, or simultaneously with S308.
- the third information may indicate the sequence number of the first data packet not associated with the SN, for example, the SN of the first data packet not associated with the SN, or the count of the first data packet not associated with the SN.
- the target network device can sequentially associate SNs for data packets that are not associated with SNs.
- the super frame number (HFN) of a data packet and the SN together constitute the count of the data packet.
- the third information may be a serial number status transfer (SN status transfer) message, or the third information may be included in the serial number status transfer message.
- S308 may not be executed.
- the data forwarding process in S303 may be regarded as a late data forwarding process.
- the data forwarding process in S303 can be regarded as a supplementary data forwarding process.
- the data can be forwarded to the target network device after the remote device successfully switches the transmission path. That is, the process of forwarding data can occur at the completion stage of the transmission path switching. For example, delayed data forwarding may occur in S303.
- the first data packet may include a data packet associated with the first information, such as part or all of the data packet indicated by the first information, or include data not indicated by the first information.
- the first data packet may include a data packet with failed reception
- the first data packet may also include a third data packet
- the third data packet may include one or more data packets.
- the third data packet includes data packets for which the source network device has not received reception feedback, and/or includes data packets for which the source network device has not sent to the remote device. Equivalently, it is not necessary to execute S308 and S309, but data forwarding is performed in S303.
- S309 may occur before S303, or after S303, or at the same time as S303.
- S310 The remote device establishes a second transmission path with the target network device according to the switching command. If S308 is executed, S310 may occur before S308, or after S308, or simultaneously with S308. In addition, if S309 is executed, S310 may occur before S309, or after S309, or simultaneously with S309.
- the remote device can perform a random access process to access the target network device.
- the remote device can establish an RRC connection with the target network device through the second relay device.
- the remote device sends an RRC reconfiguration complete message (RRC reconfiguration complete message) to the target network device.
- RRC reconfiguration complete message may indicate that the transmission path of the remote device is successfully switched, or that the remote device is successfully switched to the target network device.
- the RRC reconfiguration completion message may include second information. At this time, the second information also includes DRB ID information.
- the method may also include S312, where the target network device sends a second data packet to the remote device, and accordingly, the remote device receives the second data packet from the target network device.
- the second data packet may include one or more data packets, and the second data packet may be determined based on the first data packet.
- the second data packet may include a data packet that the remote device fails to receive or does not receive successfully.
- the second data packet is the first data packet, that is, the second data packet is the same as the first data packet.
- the second information only indicates that the remote device fails to receive data packets.
- the first information is the same as the second information.
- the first data packet may include data packets that the remote device fails to receive.
- the second data packet may be the same as the first data packet.
- the target network device may forward the first data packet from the source network device to the remote device.
- the second information only indicates that the remote device has successfully received the data packet.
- the first information is the same as the second information.
- the source network device can determine the data packet that the remote device has failed to receive based on the first information.
- the first data packet can include the remote device.
- the second data packet may be the same as the first data packet.
- the target network device may forward the first data packet from the source network device to the remote device.
- the second information may indicate that the remote device received successful data packets and received failed data packets (for example, the second information is a PDCP status report), the first information is the same as the second information, or the first information may indicate that the remote device
- the device receives the data packet successfully or fails to receive the data packet.
- the source network device can determine the data packet that the remote device fails to receive based on the first information.
- the first data packet may include If the remote data packet reception fails, the second data packet may be the same as the first data packet.
- the target network device may forward the first data packet from the source network device to the remote device.
- the second data packet is a part of the first data packet, or in other words, the second data packet may include a part of the first data packet.
- the second information only indicates that the remote device failed to receive data packets.
- the first information is the same as the second information.
- the first data packet may include multiple consecutive data packets starting from the first data packet that the remote device failed to receive.
- the target network device can select the data packet that the remote device fails to receive from the first data packet as the second data packet.
- the second information only indicates that the remote device has successfully received the data packet.
- the first information is the same as the second information.
- the source network device can determine the data packet that the remote device has failed to receive based on the first information.
- the first data packet can include the data packet from the remote device.
- the target network device can select the data packet that the remote device fails to receive from the first data packet as the second data packet.
- the second information may indicate that the remote device received successful data packets and received failed data packets (for example, the second information is a PDCP status report), the first information is the same as the second information, or the first information may indicate that the remote device
- the device receives the data packet successfully or fails to receive the data packet.
- the source network device can determine the data packet that the remote device fails to receive based on the first information.
- the first data packet may include the first line of the data packet that fails to receive the remote data packet. From the first consecutive data packets, the target network device can select the data packet that the remote device failed to receive as the second data packet.
- the first data packet is a part of the second data packet, or in other words, the first data packet may include a part of the second data packet.
- the first information may indicate that the remaining data packets except this part of the data packet have been stored in the target network device.
- the first data packet may include the data packet indicated by the first information, and the target network device may use the first data packet and the data packet stored this time as the second data packet.
- the second information only indicates that the remote device successfully received data packets, and the target network device determines based on this that the remote device failed to receive data packets, and the target network device determines that a part of the data packets indicated by the second information have been stored in the target network.
- the first information may indicate the remaining data packets except this part of the data packet.
- the first data packet may include the data packet indicated by the first information.
- the target network device may combine the first data packet and the data stored this time. packet as the second data packet.
- the second information may indicate that the remote device has successfully received the data packet and the data packet that has failed to be received (for example, the second information is a PDCP status report), and the target network device determines based on this that the remote device has failed to receive the data packet, and the target If the network device determines that a part of the data packets indicated by the second information has been stored in the target network device, the first information may indicate the remaining data packets except this part of the data packets, and the first data packet may include the data indicated by the first information. packet, the target network device can use the first data packet and the data packet stored this time as the second data packet.
- the second information is a PDCP status report
- the remote device may send second information to the target network device to instruct the remote device to receive successful and/or failed data packets. Then the target network device can indicate the reception status of the data packet to the source network device accordingly, so that the source network device can send the first data packet to the target network device.
- the first data packet is a data packet of the remote device, for example, the first data packet Can include packets that the remote device failed to receive. Then the target network device can send data packets that the remote device failed to receive to the remote device to reduce the packet loss rate.
- the source network device sends at least one data packet to the target network device.
- the target network device receives at least one data packet from the source network device.
- This process is, for example, a data forwarding process.
- At least one data packet may include a data packet that the source network device predicts will fail to be received by the remote device. For example, during the process of communicating with the remote device through the first relay device, the source network device may predict that the remote device fails to receive the data packet. If the remote device switches transmission paths, the source network device can send the predicted data packets that the remote device fails to receive to the target network device, so that the target network device can continue to send data packets to the remote device after the remote device switches the transmission path. these packets to reduce the packet loss rate.
- the source network device when the source network device wants to determine which data packets are the data packets that the remote device failed to receive, it does not need to rely on the RLC feedback of the first relay device, but can predict it by itself, thus reducing the The packet loss rate is caused by the inability of the first relay device to feedback the actual reception status of the remote device.
- the source network device can predict the transmission time of a data packet from the source network device to the remote device. If the source network device sends a switching command to the remote device to instruct the remote device to switch the transmission path, the source network device can send the data packet from the source network device to the remote device based on the sending time and data packet sent to the remote device. One or more of the transmission duration of the end device or the sending time of the handover command is used to predict data packets that the remote device fails to receive. For example, before sending the switching command, the source network device sent data packet 1 and data packet 2 to the remote device at time T1 and time T2 respectively, and the source network device sent the switching command at time T3, and time T1 is before time T2.
- time T2 is located before time T3, and the transmission duration of the data packet is T4.
- the source network device may determine that the remote device failed to receive the data packet. For example, if the time difference between T1 and T3 is less than T4, the source network device predicts that the remote device fails to receive data packet 1. Or, because of consideration It takes a certain transmission time for the handover command to reach the remote device, such as T4. Then, if the time difference between the source network device's sending time of a data packet and the (T3+T4) time is less than T4, then The source network device can determine that the remote device failed to receive the packet. For example, if the time difference between T1 and (T3+T4) is less than T4, the source network device predicts that the remote device fails to receive data packet 1.
- the source network device can also use other methods to predict data packets that the remote device fails to receive, and the specific method is not limited.
- At least one data packet may also include data packets that the source network device has not sent to the remote device.
- the data packets not sent by the source network device to the remote device may include data packets that are associated with the SN, and/or include data packets that are not associated with the SN.
- the data forwarding process of S401 can be called redundant data forwarding because the source network device forwards data based on prediction rather than based on the RLC feedback of the first relay device.
- the source network device does not need to wait for the terminal switching success message sent by the target network device to forward data packets that are not associated with the SN.
- the source network device determines that the remote device performing path switching is a remote device connected to the source network device through an indirect path, it can perform data forwarding in the manner of S401. If the remote device performing path switching If the end device is a remote device connected to the source network device through a direct path, it does not need to perform data forwarding in the S401 manner.
- the method may also include S402, where the source network device may send fifth information to the target network device, and accordingly, the target network device receives the fifth information from the source network device.
- S402 can occur before S401, or after S401, or at the same time as S401.
- the fifth information may indicate the sequence number of the first data packet not associated with the SN, for example, indicating the first data packet not associated with the SN.
- the target network device can sequentially associate SNs for data packets that are not associated with SNs.
- the fifth information may indicate the sequence number of the first data packet in the data packet forwarded to the target network device, for example, may indicate the SN and HFN of the first data packet, etc., so that after the target network device receives the fifth information, , the sequence number of each received packet can be determined.
- the fifth information may be a sequence number status transmission message, or the fifth information may be included in a sequence number status transmission message (SN STATUS TRANSFER).
- the fifth message may be an early status transfer message.
- the embodiment of the present application may involve a transmission path switching process of a remote device, so optionally, before S401 (or before S402), S403 to S406 may also be included.
- the remote device communicates with the source network device through the first relay device.
- the remote device may send uplink data packets to the source network device through the first relay device, and/or the remote device may receive downlink data packets from the source network device through the first relay device.
- S404 Measurement process of the remote device. For more information about S404, reference may be made to S305 in the embodiment shown in FIG. 3 .
- S405 The source network device and/or the target network device determines that the remote device switches the transmission path. Alternatively, the source network device or the target network device determines that the remote device switches to the second transmission path. For more information about S405, reference may be made to S306 in the embodiment shown in FIG. 3 .
- the source network device sends a switching command to the remote device through the first relay device.
- the remote device receives the switching command from the source network device through the first relay device.
- the switching command may instruct the remote device to switch to the second transmission path.
- the remote device can disconnect from the first relay device.
- the source network device may also send fourth information to the remote device, for example, the fourth information indicates the first data packet.
- the fourth information may include a sequence number of the first data packet to indicate the first data packet.
- the fourth information is included in the switching command, for example, or may be sent separately.
- the fourth information indicates the first data packet to instruct the remote device to stop communicating with the first relay device after receiving the first data packet. Then after the remote device receives the fourth information, if it has not yet received the first data packet, even if it has received the switching command, it may not disconnect from the first relay device, but continue to communicate with the first relay device. communication. Until the remote device receives the first data packet, the remote device may stop communicating with the first relay device.
- the fourth information indicating the first data packet is to instruct the remote device to stop communicating with the first relay device after the next data packet to be submitted to the upper layer is the first data packet or the data packet after the first data packet.
- the PDCP layer of the remote device can sort the received data packets. For the sorted data packets with continuous sequence numbers, the PDCP layer can submit them to the upper layer, and for the sorted data packets with discontinuous sequence numbers, then The first data packet with discontinuous sequence numbers will not be delivered to the upper layer, but will continue to wait for the reception of data packets that have not yet been received, and the RX_DELIV of the remote device can be used to record the first data packet of the remote device.
- the sequence number of the packet that was not submitted to the upper layer of the PDCP layer For example, if the value of RX_DELIV is equal to 4, it indicates that the first data packet of the remote device that is not submitted to the upper layer of the PDCP layer is the first data packet; or if the value of RX_DELIV is greater than 4, it indicates that the remote device The first data packet that is not submitted to the upper layer of the PDCP layer is the data packet after the first data packet.
- the remote device can disconnect from the first relay. Device connection. Equivalently, in this case, the remote device can disconnect from the first relay device when the condition "the first data packet has been received" is met, so that the source network device can It can be determined that the remote device successfully received the first data packet and the data packets before the first data packet, so that the source network device can determine the data packet that the remote device failed to receive. For example, the data packet that the remote device failed to receive is the third data packet. The data packet after one data packet. Alternatively, the source network device may not send data packets after the first data packet to the remote device.
- At least one data packet in S401 may include data packets that the source network device has not sent to the remote device.
- the source network device instructs the remote device through the fourth information to stop communicating with the first relay device after receiving the data packet with sequence number ⁇ 3 ⁇ , or instructs the remote device through the fourth information to submit the first packet to the upper layer. Stop communicating with the first relay device when the sequence number corresponding to the data packet is 4 or later.
- at least one data packet in S401 may include the data packet with sequence number ⁇ 4 ⁇ and the data packets after it.
- the switching command may also indicate the data radio bearer (DRB) corresponding to the fourth information.
- the switching command includes the identity number (identity, ID) of the DRB corresponding to the fourth information.
- the handover command is an RRC reconfiguration message.
- the method may also include S407 to S410.
- the remote device establishes a second transmission path with the target network device according to the switching command.
- S407 can occur before S401, after S401, or simultaneously with S401.
- S407 can occur before S402, after S402, or simultaneously with S402.
- the remote device can perform a random access process to access the target network device.
- the remote device can establish an RRC connection with the target network device through the second relay device.
- the remote device sends an RRC reconfiguration completion message to the target network device.
- the target network device receives the RRC reconfiguration complete message from the remote device.
- the RRC reconfiguration completion message may indicate that the transmission path of the remote device is successfully switched, or that the remote device is successfully switched to the target network device.
- the remote device sends the second information to the target network device.
- the target network device receives the second information from the remote device.
- the remote device successfully receives the data packets with a high probability.
- S409 may not be performed, or S409 may be performed.
- the second information at this time may indicate that the remote device successfully received the data packet, and the remote device successfully received the data packet may include all data packets received by the remote device.
- the target network device sends the second data packet to the remote device, and accordingly, the remote device receives the second data packet from the target network device.
- the second data packet may include one or more data packets.
- the second data packet may include a data packet that the remote device fails to receive. If the remote device does not receive the failed data packet, S410 does not need to be executed.
- the source network device sends data packets to the target network device that the remote device may fail to receive based on predictions. Therefore, if the remote device has data packets that the remote device fails to receive, these data packets may have been stored in the target network. within the device. Then, if the target network device determines that the remote device failed to receive data packets based on the first information, it can send these locally stored data packets to the remote device without requesting data packets from the source network device. This reduces the interaction process between the target network device and the source network device, saves signaling overhead, and reduces the delay for the remote device to obtain data.
- the source network device can also send fourth information to the remote device to ensure that the remote device receives successful data packets, thereby reducing the amount of data sent by the source network device to the target network device and saving transmission overhead. It can also reduce the packet loss of the remote device.
- the source network device sends fourth information to the remote device through the first relay device.
- the remote device receives the fourth information from the source network device through the first relay device.
- the fourth information indicates the first data packet.
- the fourth information may include a sequence number of the first data packet to indicate the first data packet.
- the fourth information is, for example, included in the switching command, or may be sent separately. In FIG. 5 , it is taken as an example that the fourth information is included in the switching command.
- the fourth information indicating the first data packet is to instruct the remote device to stop communicating with the first relay device after receiving the first data packet, or to instruct the remote device to send the next data packet to the upper layer as the first relay device. After the data packet or the data packet following the first data packet, communication with the first relay device is stopped.
- the source network device sends at least one data packet to the target network device.
- the target network device receives the data packet from the source network device. At least one packet from the device. This process is, for example, a redundant data forwarding process.
- At least one data packet may include data packets that the source network device did not send to the remote device.
- the source network device instructs the remote device to stop communicating with the first relay device after receiving the data packet with sequence number ⁇ 3 ⁇ through the fourth information, then at least one data packet may include the data packet with sequence number ⁇ 4 ⁇ and the data packet after it. Because the source network device has ensured to a certain extent that the actual data packet reception status of the remote device is consistent with the data packet reception status of the remote device considered by the source network device through the fourth information, the source network device does not need to report to the target network. The device sends too many data packets to save transmission overhead.
- the method may also include S503, the source network device may send fifth information to the target network device, and accordingly, the target network device receives the fifth information from the source network device.
- S503 can occur before S502, or after S502, or at the same time as S502. For more information about S503, reference may be made to S402 in the embodiment shown in FIG. 4 .
- the embodiment of the present application may involve a transmission path switching process of a remote device, so optionally, before S501, S504 to S506 may also be included.
- the remote device communicates with the source network device through the first relay device.
- the remote device may send uplink data packets to the source network device through the first relay device, and/or the remote device may receive downlink data packets from the source network device through the first relay device.
- S505. Measurement process of the remote device. For more information about S505, reference may be made to S305 in the embodiment shown in FIG. 3 .
- the source network device and/or the target network device determines that the remote device switches the transmission path. Alternatively, the source network device or the target network device determines that the remote device switches to the second transmission path. For more information about S506, reference may be made to S306 in the embodiment shown in FIG. 3 .
- the method also includes S507 ⁇ S510.
- the remote device establishes a second transmission path with the target network device according to the switching command.
- S507 can occur before S502, after S502, or simultaneously with S502.
- S507 can occur before S503, after S503, or simultaneously with S503.
- the remote device can perform a random access process to access the target network device.
- the remote device can establish an RRC connection with the target network device through the second relay device.
- the remote device sends an RRC reconfiguration completion message to the target network device.
- the target network device receives the RRC reconfiguration complete message from the remote device.
- the RRC reconfiguration completion message may indicate that the transmission path of the remote device is successfully switched, or that the remote device is successfully switched to the target network device.
- the remote device sends the second information to the target network device.
- the target network device receives the second information from the remote device.
- the remote device successfully receives the data packets with a high probability.
- S509 may not be executed, or S509 may be executed.
- the second information at this time may indicate that the remote device successfully received the data packet, and the remote device successfully received the data packet may include all data packets received by the remote device.
- the target network device sends the second data packet to the remote device, and accordingly, the remote device receives the second data packet from the target network device.
- the second data packet may include one or more data packets.
- the second data packet may include a data packet that the remote device fails to receive. If the remote device does not receive the failed data packet, S510 does not need to be executed.
- the remote device disconnects from the first relay device only after receiving the first data packet. Therefore, it can be considered that the remote device has successfully received both the first data packet and its previous data packets. .
- the source network device then sends the data packets after the first data packet to the target network device. Therefore, after the remote device switches the transmission path, the target network device can continue to send data packets to the remote device, thus reducing the distance to the remote device. The amount of packet loss of the end device. Moreover, the source network device does not have to send too many data packets to the target network device, which can save transmission overhead.
- the source network device sends a switching command to the remote device through the first relay device.
- the remote device receives the switching command from the source network device through the first relay device.
- the switching command may instruct the remote device to switch to the second transmission path.
- the remote device can disconnect from the first relay device.
- the handover command is an RRC reconfiguration message.
- the switching command may also include seventh information, and the seventh information may instruct the remote device to send and receive status information.
- the receiving status information is information about the data packet receiving status of the remote device, which is equivalent to the source network device triggering the remote device to send data through explicit instructions. Send the packet reception status information to the remote device to simplify the implementation of the remote device.
- the switching command may also indicate the DRB corresponding to the seventh information.
- the switching command includes the ID of the DRB corresponding to the fourth information.
- the remote device sends sixth information to the source network device through the first relay device.
- the source network device receives the sixth information from the remote device through the first relay device.
- the sixth information is, for example, information about the data packet reception status of the remote device.
- the sixth information may indicate that the remote device failed to receive a data packet and/or received a successful data packet.
- the implementation of the sixth information may be similar to the implementation of the second information in the embodiment shown in FIG. 3 , so for more information, refer to the introduction of the second information in the embodiment shown in FIG. 3 .
- the remote device can trigger reporting of the sixth information according to the handover command.
- the remote device may trigger reporting of the sixth information based on the seventh information.
- the remote device may send the sixth information through an RRC message.
- the remote device can inform the source network device of the actual reception status of the remote device, so that the source network device can determine the data packet that the remote device failed to receive based on the sixth information.
- the source network device sends at least one data packet to the target network device.
- the target network device receives at least one data packet from the source network device.
- This process is, for example, a data forwarding process or a redundant data forwarding process in S401.
- At least one data packet may include data packets that the source network device did not send to the remote device. For example, the source network device determines based on the sixth information that the remote device failed to receive data packets with sequence numbers ⁇ 1, 2, 4, 6 ⁇ and sequence numbers after ⁇ 6 ⁇ , then at least one data packet may include sequence numbers ⁇ 1,2,4,6 ⁇ and the data packets after sequence number ⁇ 6 ⁇ . Because the source network device has learned the true receiving status of the remote device, the source network device does not need to send too many data packets to the target network device, which can save transmission overhead. Moreover, the data packets sent by the source network device to the target network device also include data packets that the remote device failed to receive, thereby reducing the amount of packet loss of the remote device.
- the method may also include S604, where the source network device may send the eighth information to the target network device, and accordingly, the target network device receives the eighth information from the source network device.
- S604 can occur before S603, or after S603, or at the same time as S603.
- the eighth information may be similar to the fifth information in the embodiment shown in FIG. 4, so for more information about S604, reference may be made to S402 in the embodiment shown in FIG. 4.
- the embodiment of the present application may involve a transmission path switching process of a remote device, so optionally, before S601, S605 to S607 may also be included.
- the remote device communicates with the source network device through the first relay device.
- the remote device may send uplink data packets to the source network device through the first relay device, and/or the remote device may receive downlink data packets from the source network device through the first relay device.
- S606 Measurement process of the remote device. For more information about S606, reference may be made to S305 in the embodiment shown in FIG. 3 .
- S607 The source network device and/or the target network device determine the remote device to switch the transmission path. Alternatively, the source network device or the target network device determines that the remote device switches to the second transmission path. For more information about S607, reference may be made to S306 in the embodiment shown in FIG. 3 .
- the method also includes S608 ⁇ S611.
- the remote device establishes a second transmission path with the target network device according to the switching command.
- S608 can occur before S603, after S603, or simultaneously with S603.
- S608 can occur before S604, after S604, or simultaneously with S604.
- the remote device can perform a random access process to access the target network device.
- the remote device can establish an RRC connection with the target network device through the second relay device.
- the remote device sends an RRC reconfiguration completion message to the target network device.
- the target network device receives the RRC reconfiguration complete message from the remote device.
- the RRC reconfiguration completion message may indicate that the transmission path of the remote device is successfully switched, or that the remote device is successfully switched to the target network device.
- the remote device sends the second information to the target network device.
- the target network device receives the second information from the remote device.
- the target network device sends the second data packet to the remote device, and accordingly, the remote device receives the second data packet from the target network device.
- the second data packet may include one or more data packets.
- the second data packet may include a data packet that the remote device fails to receive.
- the source network device learns the actual receiving status of the remote device, and therefore can forward the data packet that the remote device fails to receive to the target network device. After the remote device switches the transmission path, the target network device can send these data packets to the remote device. Instead of requesting these data packets from the source network device, the interaction process between the target network device and the source network device is reduced, and the amount of packet loss of the remote device can also be reduced.
- the source network device sends the first data packet to the first relay device.
- the first relay device receives the first data packet from the source network device.
- the first data packet is a data packet to be sent to the remote device, and the first relay device serves as a forwarding device.
- a data packet there is a sequence number of the PDCP layer, that is, the sequence number described in the previous embodiments of this application, such as SN, or count, etc.; in addition, a data packet also has a radio link control (radio link control, RLC) layer sequence number.
- RLC radio link control
- the PDCP SN of the first data packet is ⁇ 1 ⁇
- the radio link control (radio link control, RLC) SN is ⁇ a ⁇ , for example.
- the first relay device sends the first data packet to the remote device.
- the remote device receives the first data packet from the first relay device.
- the first relay device may serve multiple remote devices, and the connection between the first relay device and the source network device may be shared by these multiple remote devices, the first relay device receives the first After the data packet is received, the RLC SN of the first data packet can be updated so that the RLC SN of the data packets of different remote devices is different. For example, the first relay device may update the RLC SN of the first data packet to ⁇ b ⁇ , and then send the first data packet to the PC5RLC entity of the remote device through the PC5RLC entity of the first relay device.
- the remote device sends the first feedback information to the first relay device.
- the first relay device receives the first feedback information from the remote device.
- the PC5RLC entity of the remote device may send the first feedback information to the PC5RLC entity of the first relay device.
- the first feedback information may indicate whether the first data packet whose RLC SN is ⁇ b ⁇ is received successfully or failed.
- the first feedback information is feedback information of the RLC layer. For example, if the first feedback information is an acknowledgment (ACK), it indicates that the first data packet is successfully received; or if the first feedback information is a negative acknowledgment (NACK), it indicates that the first data packet is successfully received. Reception of a data packet failed.
- ACK acknowledgment
- NACK negative acknowledgment
- the first relay device sends second feedback information to the source network device according to the first feedback information.
- the source network device receives the second feedback information from the first relay device.
- the second feedback information is, for example, the feedback information of the RLC layer.
- the second feedback information may indicate whether the first data packet whose RLC SN is ⁇ a ⁇ has been received successfully or failed.
- the status indicated by the second feedback information and the first feedback information may be consistent. For example, if the first feedback information indicates that the first data packet is received successfully, then the second feedback information indicates that the first data packet is received successfully; or, the first feedback information indicates that the first data packet is successfully received. If the feedback information indicates that the first data packet has failed to be received, the second feedback information indicates that the first data packet has failed to be received.
- the first relay device may send the second feedback information to the source network device if it receives a polling instruction from the RLC entity of the source network device.
- the polling instruction can be used to trigger the first relay device to send feedback information.
- the first relay device may send the second feedback information to the source network device.
- the timer may be, for example, t-reassembly. (reassembly timer). For example, if the first relay device fails to receive a certain data packet, the timer may time out, and then the first relay device may send the first feedback information to the source network device.
- the second feedback information is determined based on the first feedback information, then the first relay device needs to send the second feedback information to the source network device after receiving the first feedback information. That is, the embodiment of the present application stipulates , the first relay device should send feedback information to the source network device based on the feedback information from the remote device after receiving the feedback information from the remote device. In this way, it can be ensured that the RLC feedback obtained by the source network device from the first relay device can reflect the true receiving status of the remote device.
- the remote device can perform a transmission path switching process, and this process will not be described again. Since the source network device has learned the true receiving status of the remote device, during the transmission path switching process, when the source network device forwards data packets to the target network device, it can forward the data packets that the remote device failed to receive to the target. network device, so that after the remote device switches the transmission path, the target network device can continue to send these data packets to the remote device. In this way, the source network device does not have to send too many data packets to the target network device, which can save transmission overhead. Moreover, the target network device no longer needs to request data packets from the source network device, which reduces the interaction process between the target network device and the source network device, and also reduces the amount of packet loss on the remote device.
- Figure 8 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device 800 may be the remote device or the circuit system of the remote device in the embodiment shown in any one of Figures 3 to 7, and is used to implement the remote device corresponding to the above method embodiment.
- Methods Alternatively, the communication device 800 may be the source network device or the circuit system of the source network device in the embodiment shown in any one of Figures 3 to 7, used to implement the source network device corresponding to the above method embodiment.
- the The communication device 800 may be the target network device or the circuit system of the target network device in the embodiment shown in any one of Figures 3 to 7, and is used to implement the method corresponding to the target network device in the above method embodiment. .
- the communication device 800 may be the first relay device or the circuit system of the first relay device in the embodiment shown in any one of Figures 3 to 7, used to implement the above method embodiments. in corresponds to the method of the first relay device.
- the communication device 800 may be the first relay device or the circuit system of the first relay device in the embodiment shown in any one of Figures 3 to 7, used to implement the above method embodiments. in corresponds to the method of the first relay device.
- one circuit system is a chip system.
- the communication device 800 includes at least one processor 801 .
- the processor 801 can be used for internal processing of the device to implement certain control processing functions.
- processor 801 includes instructions.
- processor 801 can store data.
- different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
- different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
- communication device 800 includes one or more memories 803 for storing instructions.
- the memory 803 may also store data.
- the processor and memory can be provided separately or integrated together.
- the communication device 800 includes a communication line 802 and at least one communication interface 804.
- the memory 803, the communication line 802 and the communication interface 804 are all optional, they are all represented by dotted lines in FIG. 8 .
- the communication device 800 may also include a transceiver and/or an antenna.
- the transceiver may be used to send information to or receive information from other devices.
- the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 800 through an antenna.
- the transceiver includes a transmitter and a receiver.
- the transmitter can be used to generate a radio frequency signal from a baseband signal
- the receiver can be used to convert the radio frequency signal into a baseband signal.
- the processor 801 may include a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. circuit.
- CPU central processing unit
- ASIC application specific integrated circuit
- Communication line 802 may include a path that carries information between the above-mentioned components.
- Communication interface 804 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
- RAN radio access network
- WLAN wireless local area networks
- Cable access network etc.
- Memory 803 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
- a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
- the memory 803 may exist independently and be connected to the processor 801 through the communication line 802. Alternatively, the memory 803 can also be integrated with the processor 801 .
- the memory 803 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 801 for execution.
- the processor 801 is used to execute computer execution instructions stored in the memory 803, thereby implementing the communication method provided by the above embodiments of the application.
- the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
- the processor 801 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 8 .
- the communication device 800 may include multiple processors, such as the processor 801 and the processor 805 in FIG. 8 .
- processors may be a single-CPU processor or a multi-CPU processor.
- a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
- the chip When the device shown in Figure 8 is a chip, such as a chip of a remote device, a chip of a source network device, a chip of a target network device, or a chip of a first relay device, then the chip includes a processor 801 ( It may also include a processor 805), a communication line 802 and a communication interface 804, and optionally, a memory 803.
- the communication interface 804 may be an input interface, a pin or a circuit, or the like.
- Memory 803 may be a register, cache, etc.
- the processor 801 and the processor 805 may be a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the communication method of any of the above embodiments.
- Embodiments of the present application can divide the device into functional modules according to the above method examples.
- the device can be divided into functional modules corresponding to each function.
- a functional module can also integrate two or more functions into one processing module.
- the above integrated modules can be implemented in the form of hardware or software function modules.
- the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
- Figure 9 shows a schematic diagram of a device.
- the device 900 can be the remote device or the source network device or the target network device involved in the above method embodiments.
- the device 900 includes a sending unit 901, a processing unit 902 and a receiving unit 903.
- the device 900 can be used to implement the steps performed by the remote device or the source network device or the target network device or the first relay device in the method of the embodiment of the present application.
- the remote device or the source network device or the target network device or the first relay device in the method of the embodiment of the present application.
- the functions/implementation processes of the sending unit 901, the receiving unit 903 and the processing unit 902 in Figure 9 can be implemented by the processor 801 in Figure 8 calling computer execution instructions stored in the memory 803.
- the function/implementation process of the processing unit 902 in Figure 9 can be implemented by the processor 801 in Figure 8 calling the computer execution instructions stored in the memory 803.
- the functions/implementation of the sending unit 901 and the receiving unit 903 in Figure 9 The process can be implemented through the communication interface 804 in Figure 8.
- the functions/implementation processes of the sending unit 901 and the receiving unit 903 can also be implemented through pins or circuits.
- This application also provides a computer-readable storage medium that stores a computer program or instructions.
- the remote device or the source network device or the remote device or the source network device in the aforementioned method embodiments are implemented.
- the method executed by the target network device or the first relay device.
- the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
- the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium and includes a number of instructions.
- Storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
- the computer program product includes: computer program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the foregoing method embodiments by the remote device or the source network device. Or a method performed by the target network device or the first relay device.
- Embodiments of the present application also provide a processing device, including a processor and an interface; the processor is configured to execute the remote device or the source network device or the target network device or the first relay device involved in any of the above method embodiments. The method performed.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
- the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
- the various illustrative logic units and circuits described in the embodiments of the present application can be programmed by general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (ASICs), and field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
- the general-purpose processor may be a microprocessor.
- the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
- a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
- the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
- Software units can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage media in this field.
- the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
- the storage medium can also be integrated into the processor.
- the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
- the processor and the storage medium may also be provided in different components in the terminal device.
- These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
- Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请涉及一种通信方法及装置。目标网络设备向源网络设备发送第一信息,以指示数据包的接收状态。目标网络设备接收来自源网络设备的第一数据包,第一数据包为远端设备的数据包,且第一数据包是根据第一信息确定的。该远端设备在切换传输路径前通过第一中继设备连接源网络设备,在切换传输路径后与目标网络设备连接。例如第一数据包的数量为一个或多个,第一数据包可以包括远端设备接收失败的数据包。那么目标网络设备可以向远端设备发送该远端设备接收失败的数据包,以减小丢包率。
Description
相关申请的交叉引用
本申请要求在2022年07月30日提交中国国家知识产权局、申请号为202210919785.7、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年08月09日提交中国国家知识产权局、申请号为202210952981.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
在中继(relay)场景下,远端(remote)用户设备(user equipment,UE)可能会切换传输路径,这种切换传输路径的过程可称为路径切换(path switch)。例如,remote UE可能从与一个基站之间的直连路径切换到通过relay UE与另一个基站连接;或者,remote UE可能从通过一个relay UE与一个基站连接的路径切换到通过另一个relay UE与另一个基站连接。
如果remote UE切换传输路径的过程发生在数据传输过程中,则可能会出现一些问题。例如,源网络设备发送了一些数据包,relay UE可能接收了其中的一部分数据包,并向源网络设备发送反馈信息,以指示这部分数据包接收成功。则源网络设备在向目标网络设备转发数据包时,不会再转发已被relay UE确认接收成功的数据包。但这部分数据包虽然对于relay UE来说是接收成功,然而remote UE并不一定接收成功。按照目前的机制,即使remote UE对于这部分数据包接收失败,目标网络设备也无法向remote UE再发送这部分数据包,导致丢包率较高。
发明内容
本申请实施例提供一种通信方法及装置,用于减小因切换传输路径而导致的丢包率。
第一方面,提供第一种通信方法,该方法可由目标网络设备执行,或由包括目标网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现目标网络设备的功能,该芯片系统或功能模块例如设置在目标网络设备中。该方法包括:向源网络设备发送第一信息,所述第一信息用于指示数据包的接收状态;接收来自所述源网络设备的第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
本申请实施例中,目标网络设备可以向源网络设备指示数据包的接收状态,从而源网络设备可以向目标网络设备发送第一数据包,第一数据包为远端设备的数据包,例如第一数据包的数量为一个或多个,第一数据包可以包括远端设备接收失败的数据包。那么目标网络设备可以向远端设备发送该远端设备接收失败的数据包,以减小丢包率。
在一种可选的实施方式中,所述方法还包括:向所述远端设备发送第二数据包,所述第二数据包是根据第一数据包确定的。例如第二数据包可以包括远端设备接收失败的数据包,即,远端设备在执行传输路径切换后,目标网络设备可以向远端设备发送其接收失败的数据包,以减小远端设备的丢包量。
在一种可选的实施方式中,所述远端设备在切换传输路径后通过直连路径或非直连路径与所述目标网络设备连接。
在一种可选的实施方式中,所述方法还包括:接收来自所述远端设备的第二信息,所述第二信息用于指示所述远端设备接收失败的数据包和/或所述远端设备接收成功的数据包。远端设备在执行传输路径切换后,可以向目标网络设备发送第二信息,以指示远端设备真实的数据包接收状态,从而目标网络设备可以根据第二信息向远端设备发送该远端设备接收失败的数据包。
在一种可选的实施方式中,所述第二信息为PDCP状态报告;或,所述第二信息包括在RRC重配置消息中,所述RRC重配置消息用于指示所述远端设备成功切换到所述目标网络设备。本申请实施例对于第二信息的实现方式不做限制。
在一种可选的实施方式中,所述第一数据包为所述第二数据包;或者,所述第一数据包是所述第二数据包中的一部分,所述第一数据包为所述目标网络设备在接收所述第一数据包前未从所述源网络设备接收的数据包,所述第二数据包中还包括另一部分数据包,所述另一部分数据包为所述目标网络设备在接收所述第一数据包前已从所述源网络设备接收的数据包;或者,所述第二数据包是所述第一数据包中的一部分。关于第一数据包和第二数据包的实现方式,有多种可能性,对于各个设备来说都较为灵活。
在一种可选的实施方式中,所述方法还包括:在向所述源网络设备发送所述第一信息之前,接收来自所述源网络设备的第三数据包,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,其中,所述第三数据包中包括所述另一部分数据包。例如,源网络设备在传输路径切换过程中,可以向目标网络设备进行数据转发。在这种情况下,源网络设备向目标网络设备发送第一数据包的过程可以视为补充数据转发过程。
在一种可选的实施方式中,接收来自所述源网络设备的所述第一数据包,包括:接收来自所述源网络设备的第三数据包,其中,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,且所述第三数据包中包括所述第一数据包。例如,源网络设备在传输路径切换过程中可以不必向目标网络设备进行数据转发,而是在传输路径切换成功后,源网络设备再向目标网络设备进行数据转发。例如,源网络设备除了向目标网络设备发送第一数据包外还发送第三数据包,由此可以减少源网络设备与目标网络设备之间的交互过程,使得源网络设备能够一次性将数据包转发给目标网络设备。
在一种可选的实施方式中,所述第三数据包中包括所述源网络设备未向所述远端设备发送的数据包,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:接收来自所述源网络设备的第三信息,所述第三信息用于指示第一个未关联序列号的数据包的序列号。源网络设备向目标网络设备转发的数据包中,可能有未关联序列号的数据包,因此源网络设备可以向目标网络设备指示第一个未关联序列号的数据包的序列号,使得目标网络设备能够据此为各个未关联序列号的数据包关联相应的序列号。
第二方面,提供第二种通信方法,该方法可由源网络设备执行,或由包括源网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现源网络设备的功能,该芯片系统或功能模块例如设置在源网络设备中。该方法包括:接收来自目标网络设备的第一信息,所述第一信息用于指示数据包的接收状态;向所述目标网络设备发送第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
在一种可选的实施方式中,所述远端设备在切换传输路径后通过直连路径或非直连路径与所述目标网络设备连接。
在一种可选的实施方式中,所述方法还包括:在接收来自所述目标网络设备的所述第一信息之前,向所述目标网络设备发送第三数据包,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包。
在一种可选的实施方式中,向所述目标网络设备发送所述第一数据包,包括:向所述目标网络设备发送第三数据包,其中,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,且所述第三数据包中包括所述第一数据包。
在一种可选的实施方式中,所述第三数据包中包括所述源网络设备未向所述远端设备发送的数据包,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第三信息,所述第三信息用于指示第一个未关联序列号的数据包的序列号。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法可由源网络设备执行,或由包括源网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现源网络设备的功能,该芯片系统或功能模块例如设置在源网络设备中。该方法包括:向远端设备发送第四信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接。本申请实施例中,远端设备是在接收到第一数据包后才断开与第一中继设
备的连接,因此可以认为远端设备对于第一数据包及其之前的数据包都接收成功。而源网络设备又将第一数据包之后的数据包发送给了目标网络设备,因此远端设备在切换传输路径后,目标网络设备可以继续向远端设备发送数据包,由此减小了远端设备的丢包量。而且源网络设备也不必向目标网络设备发送过多的数据包,能够节省传输开销。
在一种可选的实施方式中,所述第四信息包括在切换命令中,所述切换命令用于指示所述远端设备切换传输路径。第四信息可以包括在切换命令中,或者也可以单独发送。
在一种可选的实施方式中,所述方法还包括:向所述目标网络设备发送至少一个数据包,所述至少一个数据包中的第一个数据包为所述第一数据包之后的下一个数据包。因源网络设备已经通过第四信息在一定程度上保证了远端设备的实际数据包接收状态与源网络设备所认为的远端设备的数据包接收状态保持一致,因此源网络设备可以从第一数据包的下一个数据包开始向目标网络设备转发,而不必向目标网络设备发送过多的数据包,能够节省传输开销。
在一种可选的实施方式中,所述至少一个数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第五信息,所述第五信息用于指示第一个未关联序列号的数据包的序列号。源网络设备向目标网络设备转发的数据包中,可能有未关联序列号的数据包,因此源网络设备可以向目标网络设备指示第一个未关联序列号的数据包的序列号,使得目标网络设备能够据此为各个未关联序列号的数据包关联相应的序列号。
第四方面,提供第四种通信方法,该方法可由远端设备执行,或由包括远端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现远端设备的功能,该芯片系统或功能模块例如设置在远端设备中。该远端设备例如为终端设备或网络设备。该方法包括:接收来自源网络设备的第四信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接。
在一种可选的实施方式中,所述第四信息包括在切换命令中,所述切换命令用于指示所述远端设备切换传输路径。
在一种可选的实施方式中,所述方法还包括:在接收所述切换命令后,如果还未接收所述第一数据包,继续接收来自所述第一中继设备的数据包;当接收所述第一数据包时,或者,当第一个未递交给PDCP层的上层的数据包为所述第一数据包时,停止与所述第一中继设备通信。远端设备可以根据第四信息的指示,在未接收第一数据包的情况下,即使接收了切换命令,也不必断开与第一中继设备的连接,而是可以继续接收来自第一中继设备的数据包,直到接收了第一数据包,再断开与第一中继设备的连接。通过这种机制,可以尽量保证远端设备对于第一数据包及其之前的数据包都接收成功,从而目标网络设备不必再向远端设备发送第一数据包及其之前的数据包,源网络设备也可以不必将第一数据包及其之前的数据包转发给目标网络设备,有利于节省传输开销。
关于第四方面或一些可选的实施方式所带来的技术效果,可参考对于第三方面或相应实施方式的技术效果的介绍。
第五方面,提供第五种通信方法,该方法可由源网络设备执行,或由包括源网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现源网络设备的功能,该芯片系统或功能模块例如设置在源网络设备中。该方法包括:向目标网络设备发送至少一个数据包,所述至少一个数据包中包括所述源网络设备预测所述远端设备接收失败的数据包,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与所述目标网络设备连接。本申请实施例中,源网络设备根据预测,向目标网络设备发送了远端设备可能接收失败的数据包,因此如果远端设备有接收失败的数据包,则这些数据包可能已经存储在目标网络设备内。那么,如果目标网络设备根据第一信息确定远端设备接收失败的数据包,则可以将本地存储的这些数据包发送给远端设备,而不必再向源网络设备请求数据包。由此减少了目标网络设备与源网络设备的交互过程,节省信令开销,且减小了远端设备获得数据的时延。
在一种可选的实施方式中,所述方法还包括:向所述远端设备发送第四信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信。
在一种可选的实施方式中,所述第四信息包括在切换命令中,所述切换命令用于指示所述远端设备切换传输路径。
在一种可选的实施方式中,所述至少一个数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第五信息,所述第五信息用于指示第一个未关联序列号的数据包的序列号。
关于第五方面或一些可选的实施方式所带来的技术效果,可参考对于第三方面或相应实施方式的技术效果的介绍。
第六方面,提供第六种通信方法,该方法可由源网络设备执行,或由包括源网络设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现源网络设备的功能,该芯片系统或功能模块例如设置在源网络设备中。该方法包括:向远端设备发送切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;接收来自所述远端设备的第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。本申请实施例中,远端设备可通过第六信息向源网络设备指示该远端设备的真实接收状态,源网络设备获知了远端设备的真实接收状态,因此可将远端设备接收失败的数据包转发给目标网络设备。在远端设备切换传输路径后,目标网络设备可以向远端设备发送这些数据包,而不必再向源网络设备请求这些数据包,减少了目标网络设备与源网络设备的交互过程,而且也能减小远端设备的丢包量。
在一种可选的实施方式中,所述切换命令还包括第七信息,所述第七信息用于指示所述远端设备发送接收状态信息。可由源网络设备触发远端设备发送第六信息,由此简化了远端设备的实现。
在一种可选的实施方式中,所述方法还包括:向所述目标网络设备发送至少一个数据包,所述至少一个数据包中包括所述远端设备接收失败的数据包。因为源网络设备已经知道了远端设备的真实接收状态,因此源网络设备可以将该远端设备接收失败的数据包发送给目标网络设备,而该远端设备接收成功的数据包,源网络设备可以不发送给目标网络设备,由此既能减小丢包率,也能节省传输开销。
在一种可选的实施方式中,所述至少一个数据包中还包括所述源网络设备未向所述远端设备发送的数据包。源网络设备还可能有一些未来得及向远端设备发送的数据包,也可以发送给目标网络设备,由目标网络设备发送给远端设备。
在一种可选的实施方式中,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第八信息,所述第八信息用于指示第一个未关联序列号的数据包的序列号。源网络设备向目标网络设备转发的数据包中,可能有未关联序列号的数据包,因此源网络设备可以向目标网络设备指示第一个未关联序列号的数据包的序列号,使得目标网络设备能够据此为各个未关联序列号的数据包关联相应的序列号。
第七方面,提供第七种通信方法,该方法可由远端设备执行,或由包括远端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现远端设备的功能,该芯片系统或功能模块例如设置在远端设备中。该远端设备例如为终端设备或网络设备。该方法包括:接收来自源网络设备的切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;向所述源网络设备发送第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。
在一种可选的实施方式中,所述切换命令还包括第七信息,所述第七信息用于指示所述远端设备发送接收状态信息。
关于第七方面或可选的实施方式所带来的技术效果,可参考对于第六方面或相应实施方式的技术效果的介绍。
第八方面,提供第八种通信方法,该方法可由第一中继设备执行,或由包括第一中继设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现第一中继设备的功能,该芯片系统或功能模块例如设置在第一中继设备中。第一中继设备例如为终端设备或网络设备。该方法包括:接收来自源网络设备的第一数据包;向远端设备发送所述第一数据包,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接;接收来自所述远端设备的第一反馈信息,所述第一反馈信息用于指示所述第一数据包接收成功或失败;根据所述第一反馈信息向所述源网络设备发送第二反馈信息,所述第二反馈信息用于指示所述第一数据包接收成功或失败。
第九方面,提供一种通信装置。所述通信装置可以为上述第一方面所述的目标网络设备。所述通信装置具备上述目标网络设备的功能。所述通信装置例如为目标网络设备,或为包括目标网络设备的较大
设备,或为目标网络设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述收发单元(或,所述发送单元),用于向源网络设备发送第一信息,所述第一信息用于指示数据包的接收状态;所述收发单元(或,所述接收单元),用于接收来自所述源网络设备的第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面所述的目标网络设备的功能。
第十方面,提供一种通信装置。所述通信装置可以为上述第二方面、第三方面、第五方面、或第六方面所述的源网络设备。所述通信装置具备上述源网络设备的功能。所述通信装置例如为源网络设备,或为包括源网络设备的较大设备,或为源网络设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第九方面的介绍。
在一种可选的实现方式中,所述收发单元(或,所述接收单元),用于接收来自目标网络设备的第一信息,所述第一信息用于指示数据包的接收状态;所述收发单元(或,所述发送单元),用于向所述目标网络设备发送第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
在一种可选的实现方式中,所述收发单元(或,所述发送单元),用于向远端设备发送第四信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接。
在一种可选的实现方式中,所述收发单元(或,所述发送单元),用于向目标网络设备发送至少一个数据包,所述至少一个数据包中包括所述源网络设备预测所述远端设备接收失败的数据包,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与所述目标网络设备连接。
在一种可选的实现方式中,所述收发单元(或,所述发送单元),用于向远端设备发送切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;所述收发单元(或,所述接收单元),用于接收来自所述远端设备的第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第二方面、第三方面、第五方面、或第六方面所述的源网络设备的功能。
第十一方面,提供一种通信装置。所述通信装置可以为上述第四方面或第七方面所述的远端设备。所述通信装置具备上述远端设备的功能。所述通信装置例如为远端设备,或为包括远端设备的较大设备,或为远端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第六方面的介绍。
在一种可选的实现方式中,所述收发单元(或,所述接收单元),用于接收来自源网络设备的第四
信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接。
在一种可选的实现方式中,所述收发单元(或,所述接收单元),用于接收来自源网络设备的切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;所述收发单元(或,所述发送单元),用于向所述源网络设备发送第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第四方面或第七方面所述的远端设备的功能。
第十二方面,提供一种通信装置。所述通信装置可以为上述第八方面所述的第一中继设备。所述通信装置具备上述第一中继设备的功能。所述通信装置例如为第一中继设备,或为包括第一中继设备的较大设备,或为第一中继设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第六方面的介绍。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自源网络设备的第一数据包;所述收发单元(或,所述发送单元),用于向远端设备发送所述第一数据包,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接;所述收发单元(或,所述接收单元),用于接收来自所述远端设备的第一反馈信息,所述第一反馈信息用于指示所述第一数据包接收成功或失败;所述收发单元(或,所述发送单元),用于根据所述第一反馈信息向所述源网络设备发送第二反馈信息,所述第二反馈信息用于指示所述第一数据包接收成功或失败。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第八方面所述的第一中继设备的功能。
第十三方面,提供第一通信系统,包括目标网络设备以及源网络设备,其中,目标网络设备用于执行如第一方面所述的通信方法,源网络设备用于执行如第二方面所述的通信方法。
第十四方面,提供第二通信系统,包括源网络设备,该源网络设备用于执行如第三方面或第五方面所述的通信方法。
可选的,第二通信系统还包括远端设备,用于执行如第四方面所述的通信方法。
第十五方面,提供第三通信系统,包括远端设备以及源网络设备,其中,远端设备用于执行如第七方面所述的通信方法,源网络设备用于执行如第六方面所述的通信方法。
第十六方面,提供第四通信系统,包括第一中继设备,用于执行如第八方面所述的通信方法。
第十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中远端设备或第一中继设备或目标网络设备或源网络设备所执行的方法被实现。
第十八方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十九方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
图1A和图1B为本申请实施例的两种应用场景示意图;
图2为源网络设备向远端设备发送数据包的过程中可能因为切换而导致丢包的示意图;
图3~图7为本申请实施例提供的几种通信方法的流程图;
图8为本申请实施例提供的一种装置的示意图;
图9为本申请实施例提供的又一种装置的示意图。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息,可以是同一个信息,也可以是不同的信息,且,这种名称也并不是表示这两个信息的内容、大小、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S301可以发生在S302之前,或者可能发生在S302之后,或者也可能与S302同时发生。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于第五代移动通信技术(the 5th generation,5G)系统中,例如新空口(new radio,NR)系统,或者还可以应用于下一代移动通信系统或其他类似
的通信系统,例如第六代移动通信技术(the 6th generation,6G)系统等,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车联网(vehicle to everything,V2X)场景,例如NR-V2X场景或车与车(vehicle-to-vehicle,V2V)等。或者,本申请实施例提供的技术方案可用于智能驾驶、辅助驾驶、或智能网联车等领域。如果应用于D2D场景,则中继设备与远端设备可以均为UE;如果应用于非D2D场景,则中继设备或远端设备中的其中一个设备可以是UE,其中的另一个设备可以是网络设备(例如接入网设备),或者远端设备与中继设备也可能均为网络设备。本申请后文的各个实施例所涉及的远端设备例如为UE或网络设备;中继设备例如为UE或网络设备。
本申请涉及UE到网络中继(UE to network relay)机制,这种机制可用于提升蜂窝网的覆盖。请参考图1A和图1B,为本申请实施例的两种应用场景示意图。图1A中,远端设备初始时通过中继设备与接入网设备1连接,在切换传输路径后,该远端设备通过Uu接口与接入网设备2连接,或者认为远端设备与接入网设备2直连。这种场景视为基站间(inter gNB)的从非直连路径到直连路径(indirect link→direct link)的切换过程。图1B中,远端设备初始时通过中继设备1与基站1连接,在切换传输路径后,该远端设备通过中继设备2与接入网设备2连接。这种场景视为inter gNB的从非直连路径到非直连路径(indirect link→indirect link)的切换过程。
以图1A所示的场景为例,如果remote UE切换传输路径的过程发生在数据传输过程中,则可能会出现一些问题,请参考图2。图1A中的接入网设备1发送了序列号为{0,1,2,3,4,5,6,7}的数据包,中继设备接收到了序列号为{0,1,2,4,6}的数据包,并向接入网设备1发送无线链路控制(radio link control,RLC)反馈,以指示序列号为{0,1,2,4,6}的数据包接收成功。接入网设备1根据该RLC确认反馈,确定接收端已成功收到了序列号为{0,1,2,4,6}的数据包。中继设备向远端设备发送序列号为{0,1,2,4,6}的数据包时,远端设备接收到了来自接入网设备1的路径切换指令,则远端设备可以断开与该中继设备的连接,此时远端设备只从中继设备接收了序列号为{0}的数据包,未接收序列号为{1,2,4,6}的数据包,即,远端设备未接收到序列号为{1,2,3,4,5,6,7}的数据包。而接入网设备1在向接入网设备2转发该远端设备的数据包时,对于已确认接收成功的数据包不会再转发,因此接入网设备1根据中继设备的RLC反馈,将序列号为{3,5,7}的数据包数据转发给接入网设备2。远端设备在将传输路径切换到接入网设备2后,接入网设备2仅会向远端设备重传序列号为{3,5,7}的数据包。这导致远端设备无法接收序列号为{1,2,4,6}的数据包。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,目标网络设备可以向源网络设备指示数据包的接收状态,从而源网络设备可以向目标网络设备发送第一数据包,第一数据包为远端设备的数据包,例如第一数据包的数量为一个或多个,第一数据包可以包括远端设备接收失败的数据包。那么目标网络设备可以向远端设备发送该远端设备接收失败的数据包,以减小丢包率。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。本申请的各个实施例对应的附图中,凡是用虚线表示的步骤均为可选的步骤。本申请的各个实施例所提供的方法均可应用于图1A或图1B所示的网络架构。例如,后文涉及的远端设备,例如为图1A或图1B所示的远端设备;后文涉及的源网络设备,例如为图1A或图1B所示的接入网设备1;后文涉及的目标网络设备,例如为图1A或图1B所示的接入网设备2;后文涉及的第一中继设备,例如为图1A所示的中继设备,或为图1B所示的中继设备1。根据图1A或图1B可知,本申请的各个实施例中,远端设备在切换传输路径前通过第一中继设备连接源网络设备,在切换传输路径后连接目标网络设备。其中,远端设备在切换传输路径后,可以通过直连路径或非直连路径连接该目标网络设备,其中直连路径为通过Uu接口通信的路径,非直连路径例如为通过第二中继设备(例如图1B所示的中继设备2)连接该目标网络设备的路径。
本申请的各个实施例中,“直连路径”是指远端设备不通过中继设备,而是通过Uu接口与接入网设备(或者,与接入网设备提供的小区)通信的路径;“非直连路径”是指远端设备通过中继设备与接入网设备(或者,与接入网设备提供的小区)通信的路径。另外,“路径”也可替换为“链路”。例如,“直连路径”也可以称为“直连链路”,“非直连路径”也可以称为“非直连链路”。
本申请的各个实施例中,设备A向设备B发送消息,对于设备B来说,可以认为该消息来自于设备A。其中,该发送过程可以是直接发送,或者也可以是间接发送(例如通过其他设备转发)。
为了解决本申请所要解决的技术问题,本申请的各个实施例提供了多种方法。下面请先参考图3,
为本申请实施例提供的第一种通信方法的流程图。
S301、目标网络设备向源网络设备发送第一信息。相应的,源网络设备接收来自目标网络设备的第一信息。
第一信息可指示数据包的接收状态,或指示(或,请求)数据转发。例如,第一信息指示的数据包的接收状态,可以包括远端设备对于数据包的接收状态,和/或目标网络设备对于数据包的接收状态。其中,第一信息所指示的数据包可以是该远端设备的数据包;第一信息如果请求数据转发,则可以请求转发该远端设备的数据包。
可选的,在S301之前还可以包括S302,远端设备向目标网络设备发送第二信息,相应的,目标网络设备接收来自远端设备的第二信息。第二信息可指示该远端设备接收失败的数据包和/或该远端设备接收成功的数据包。例如,在远端设备将传输路径切换到与该目标网络设备连接后,或者说,在远端设备切换传输路径成功后,该远端设备可以向目标网络设备发送第二信息。例如第二信息为分组数据汇聚协议(packet data convergence protocol,PDCP)状态报告,或者第二信息也可以是其他信息。第二信息可以单独发送,或者,第二信息也可以携带在用于指示路径切换成功的消息中,例如远端设备可以向目标网络设备发送无线资源控制(radio resource control,RRC)重配置消息,以指示远端设备的传输路径切换成功,或指示远端设备成功切换到该目标网络设备,则第二信息可以包括在该RRC重配置消息中。如果目标网络设备接收了第二信息,则S301中的第一信息可以根据该第二信息确定。
例如,一个信息要指示M个数据包,一种指示方式为,该信息可包括M个数据包的索引。例如第一信息指示序列号{1,2,4,6}的数据包,则第一信息可包括序列号{1,2,4,6}。
或者,一个信息要指示M个数据包,另一种指示方式为,该信息可包括M个数据包中的第一个数据包的索引。例如第一信息指示序列号{1,2,4,6}的数据包,或第一信息指示序列号{1,2,3,4,5,6,7}的数据包,则第一信息可包括序列号{1}。其中,在包括第一个数据包的索引的指示方式下,相当于第一信息指示了序列号{1}以及之后的全部数据包,例如第一信息指示了序列号{1,2,3,4,5,6,7}的数据包。
或者,一个信息要指示M个数据包,又一种指示方式为,该信息可包括M个数据包中的第一个数据包的索引,以及指示M个数据包中剩余数据包的接收状态。例如,第一信息指示序列号{1,2,3,4,5,6,7}的数据包,则第一信息可以包括序列号{1},以及,第一信息可以包括比特地图(bitmap),该bitmap包括的比特数与M个数据包中剩余数据包的比特数相同,例如包括6个比特,这6个比特与序列号{2,3,4,5,6,7}的数据包一一对应。或者该bitmap包括的比特数为8的倍数,例如包括8个比特,前6个比特与序列号{2,3,4,5,6,7}的数据包一一对应。每个比特的取值可以指示对应数据包的接收状态,例如,如果该bitmap中的一个比特的值为“0”,表示该比特对应的数据包接收失败,或者,如果该比特的值为“1”,表示该比特对应的数据包接收成功。例如第二信息为PDCP状态报告,则第二信息可以采用这种方式指示远端设备接收成功的数据包和/或接收失败的数据包。PDCP状态报告包括计数值或序列号信息,以及bitmap。状态报告通过包括的计数值或序列号信息,指示第一个未接收成功的数据包对应的计数值,例如为第一个丢失计数值(first missing count,FMC),或指示第一个未接收成功的数据包对应的序列号,例如为第一个丢失序列号(first missing SN,FMS),说明该信息指示的数据包之前的数据包均成功接收。PDCP状态报告包括的bitmap的长度可以是8的倍数,通过该bitmap可指示从第一个未接收成功的数据包的后续数据包的接收状态。例如第一个未接收成功的数据包的计数值为{3},即计数值{2}之前的数据包均接收成功,而计数值{3}之后接收成功的数据包的计数值为{5,9}。则该情况下FMC=3,由于后续数据包在{9}之后均未接收成功,bitmap的长度为8,“0100 0100”可指示{5,9}接收成功。
第一信息和第二信息的实现方式可能有多种,下面举例介绍。
1、第二信息的第一种实现方式。
第二信息指示远端设备接收失败的数据包,例如,第二信息仅指示远端设备接收失败的数据包。在这种指示方式下,第二信息可以仅指示远端设备接收失败的数据包,例如该远端设备对序列号为{1,2,4,6}的数据包接收失败,则第二信息可指示序列号为{1,2,4,6}的数据包,例如第二信息可包括序列号{1,2,4,6}。本申请的各个实施例中,数据包的序号例如为该数据包的序列号(sequence number,SN),或为该数据包的计数值(count)。例如,本申请的各个实施例所描述的“序列号”,也可以用“序号”或“计数值”替换。其中,数据包的count可以由该数据包的HFN和SN确定,例如一个数据包的HFN和SN可构成该数据包的count。
在第二信息的第一种实现方式下,第一信息可以与第二信息相同。例如目标网络设备接收第二信息后,可将第二信息转发给源网络设备,则第一信息与第二信息相同。此时第一信息可以指示远端设备的数据包接收状态。
或者,第一信息与第二信息也可以不同。
例如,第二信息仅指示远端设备接收失败的数据包,而第一信息可指示远端设备接收失败的数据包中的第一个数据包,以指示从该第一个数据包开始直到该远端设备的最后一个数据包之间的全部数据包。此时第一信息可以指示远端设备的数据包接收状态。例如,第二信息包括序列号{1,2,4,6},以指示序列号{1,2,4,6}的数据包接收失败;而第一信息可包括序列号{1},以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包。该远端设备的最后一个数据包,例如为源网络设备已通过第一传输路径向该远端设备发送的最后一个数据包,或者为源网络设备通过第一传输路径待向该远端设备发送的数据包中的最后一个数据包,此时该最后一个数据包可能已通过第一传输路径向该远端设备发送过,或者也可能未通过第一传输路径向该远端设备发送过。此时,第一信息所指示的数据包中除了包括远端设备接收失败的数据包外,还可以包括远端设备接收成功的数据包和/或远端设备尚未接收的数据包。其中,远端设备尚未接收的数据包例如为还未向远端设备发送的数据包,可以包括已关联了序列号的数据包,和/或还未关联序列号的数据包。
又例如,目标网络设备在接收第二信息后,还可以基于第二信息以及目标网络设备已存储的数据包来确定第一信息。此时,第一信息可以指示远端设备的数据包接收状态和/或目标网络设备的数据包接收状态。例如,目标网络设备可以确定第二信息所指示的数据包中,是否有目标网络设备已存储的数据包,如果其中有目标网络设备已存储的数据包,则第一信息可以不指示目标网络设备已存储的数据包,而指示目标网络设备未存储的数据包。其中,目标网络设备已存储的数据包,例如为目标网络设备已从源网络设备通过数据转发(data forwarding)接收的数据包。例如,第二信息指示远端设备数据包的接收状态,例如第二信息指示序列号{1,2,4,6}的数据包以及序列号{6}之后的数据包接收失败;目标网络设备接收第二信息后,确定已通过数据转发获得序列号为{4,6}以及序列号{6}之后的数据包,则第一信息可以指示序列号为{1,2}的数据包,或者,第一信息可以指示序列号为{1}的数据包,以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包或者以指示从序列号为{1}的数据包开始,到源网络设备已向目标网络设备转发的第一个数据包为止的全部数据包。
2、第二信息的第二种实现方式。
第二信息指示远端设备接收成功的数据包,例如,第二信息仅指示远端设备接收成功的数据包。在这种指示方式下,第二信息可以仅指示远端设备接收成功的数据包,例如该远端设备对序列号为{1,2,4,6}的数据包接收失败,而对序列号为{1,2,4,6}的数据包接收成功,则第二信息可指示序列号为{0,3,5,7}的数据包,例如第二信息可包括序列号{0,3,5,7}。
在第二信息的第二种实现方式下,第一信息可以与第二信息相同。例如目标网络设备接收第二信息后,可将第二信息转发给源网络设备,则第一信息与第二信息相同。此时第一信息可以指示远端设备的数据包接收状态。
或者,第一信息与第二信息也可以不同。
例如,第二信息仅指示远端设备接收成功的数据包,而第一信息可指示远端设备接收失败的数据包。此时第一信息可以指示远端设备的数据包接收状态。例如,第二信息包括序列号{0,3,5,7},以指示序列号{0,3,5,7}的数据包接收成功;而第一信息可包括序列号{1,2,4,6},以指示序列号为{1,2,4,6}的数据包。
又例如,第二信息仅指示远端设备接收成功的数据包,而第一信息可指示远端设备接收失败的数据包中的第一个数据包,以指示从该第一个数据包开始直到该远端设备的最后一个数据包之间的全部数据包。此时第一信息可以指示远端设备的数据包接收状态。例如,第二信息包括序列号{0,3,5,7},以指示序列号{0,3,5,7}的数据包接收成功;则目标网络设备可以确定远端设备对序列号{1,2,4,6}的数据包接收失败,第一信息可包括序列号{1},以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包。关于该远端设备的最后一个数据包以及第一信息所指示的内容的解释,可参考前文。
再例如,目标网络设备在接收第二信息后,还可以基于第二信息以及目标网络设备已存储的数据包来确定第一信息。此时第一信息可以指示远端设备的数据包接收状态和/或目标网络设备的数据包接收状态。例如,目标网络设备可以确定第二信息所未指示的数据包中,是否有目标网络设备已存储的数据
包,如果其中有目标网络设备已存储的数据包,则第一信息可以不指示目标网络设备已存储的数据包,而指示目标网络设备未存储的数据包。其中,目标网络设备已存储的数据包,例如为目标网络设备已通过数据转发从源网络设备接收的数据包。例如,第二信息仅指示远端设备接收成功的数据包,例如第二信息包括序列号{0,3,5,7},以指示序列号{0,3,5,7}的数据包接收成功;则目标网络设备可以确定远端设备对序列号{1,2,4,6}以及序列号{6}之后的数据包接收失败,例如目标网络设备确定已通过数据转发获得序列号为{4,6}以及序列号{6}之后的数据包,则第一信息可以指示序列号为{1,2}的数据包,或者,第一信息可以指示序列号为{1}的数据包,以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包,或者指示从序列号为{1}的数据包开始,到源网络设备已向目标网络设备转发的第一个数据包的前一个数据包为止的全部数据包。
3、第二信息的第三种实现方式。
第二信息指示如下一项或多项:远端设备接收失败的数据包,远端设备接收成功的数据包,或,远端设备尚未接收的数据包。例如,第二信息可以指示远端设备接收失败的数据包中的第一个数据包,以指示从该第一个数据包开始直到该远端设备的最后一个数据包为止的全部数据包。关于该远端设备的最后一个数据包的解释可参考前文。例如该远端设备对序列号为{1,2,4,6}的数据包接收失败,则第二信息可指示序列号为{1}的数据包,例如第二信息可包括序列号{1},以指示序列号为{1,2,3,4,5,6,7}的数据包,其中,序列号为{7}的数据包例如为源网络设备已向该远端设备发送的最后一个数据包,或为源网络设备待向该远端设备发送的数据包中的最后一个数据包。其中,如果第二信息指示远端设备接收失败的数据包中的第一个数据包,则第二信息所指示的数据包中除了包括远端设备接收失败的数据包外,还可以包括远端设备接收成功的数据包和/或远端设备尚未接收的数据包。其中,远端设备尚未接收的数据包例如为还未向远端设备发送的数据包,可以包括已关联了序列号的数据包,和/或还未关联序列号的数据包。
又例如,第二信息指示远端设备数据包的接收状态,例如第二信息为PDCP状态报告,或者第二信息包括在RRC重配置完成消息中,例如,通过RRC重配置完成消息包括的第二信息指示DRB ID对应的接收状态。例如,第二信息指示远端设备的第一个未接收成功的数据包以及后续数据包的接收状态。例如第二信息指示FMC=3,bitmap为“0100 0100”。在这种指示下,第二信息可以指示远端设备第一个未接收成功的数据包的计数值为{3},即计数值{2}之前的数据包均接收成功,而计数值{3}之后接收成功的数据包计数值为{5,9},其余均未接收成功。又例如,第二信息指示FMS=3,bitmap为“0100 0100”。在这种指示下,第二信息可以指示远端设备第一个未接收成功的数据包的序列号为{3},即序列号{2}之前的数据包均接收成功,序列号{3}之后接收成功的数据包序列号为{5,9},其余均未接收成功。其中,未接收成功的数据包可以包括已关联了序列号的数据包,和/或还未关联序列号的数据包。又例如,第二信息还包括DRB ID。例如第二信息指示DRB ID=3,FMC=3,则指示远端设备的DRB ID=3的DRB在计数值为{3}的数据包之前均成功接收。
在第二信息的第三种实现方式下,第一信息可以与第二信息相同。例如目标网络设备接收第二信息后,可将第二信息转发给源网络设备,则第一信息与第二信息相同。此时第一信息可以指示远端设备的数据包接收状态。第一信息较第二信息还可以额外包括DRB ID,以指示远端设备对应的DRB的接收状态。
或者,第一信息与第二信息也可以不同。
例如,目标网络设备在接收第二信息后,可以确定第二信息所指示的数据包中哪些数据包是远端设备接收失败的数据包,例如第二信息除了包括数据包的序列号外,还可以指示哪些数据包是接收失败的数据包和/或指示哪些数据包是接收成功的数据包,则第一信息可以指示远端设备接收失败的数据包,即第二信息可以指示远端设备通过第一传输路径对数据包的接收状态。例如第二信息指示FMC=3,bitmap为“0100 0100”。在这种指示下,第二信息可以指示第一个未接收成功的数据包的计数值为{3},即计数值{2}之前的数据包均接收成功,在该数据包之后接收成功的数据包的计数值为5,9,其余均未接收成功。又例如,第二信息指示FMS=3,bitmap为“0100 0100”。在这种指示下,第二信息可以指示第一个未接收成功的数据包的序列号为{3},即序列号{2}之前的数据包均接收成功,序列号{3}之后接收成功的数据包序列号为{5,9},其余均未接收成功。其中,未接收成功的数据包可以包括已关联了序列号的数据包,和/或还未关联序列号的数据包。又例如,第二信息还包括DRB ID。例如第二信息指示的DRB ID=3,FMC=3,则可指示针对远端设备的DRB ID=3的DRB,计数值位于计数值{3}的数据包
之前的数据包均成功接收。
目标网络设备接收第二信息后,确定其中序列号为{3,4,6,7,8,10}以及{10}以后的数据包是远端设备接收失败的数据包,则第一信息可以指示序列号为{3}的数据包,以指示从序列号为{3}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包;或者第一信息可以指示序列号为{3}的数据包,以指示从序列号为{3}的数据包开始,到源网络设备已向目标网络设备转发的第一个数据包为止的全部数据包。在目标网络设备的如上两种处理方式中,第一信息除了指示远端设备接收失败的数据包外,可能还指示了远端设备接收成功的数据包和/或远端设备未接收的数据包。或者,第一信息可以指示序列号为{3,4,6,7,8,10}的数据包,在这种处理方式下,第一信息可以仅指示远端设备接收失败的数据包。或者,第一信息可以指示序列号为{3,4,6,7,8,10}的数据包以及{10}以后的数据包,在这种处理方式下,第一信息可以指示远端设备接收失败的数据包和/或远端设备未接收的数据包。
又例如,目标网络设备在接收第二信息后,还可以基于第二信息以及目标网络设备已存储的数据包来确定第一信息。此时第一信息可以指示远端设备的数据包接收状态和/或目标网络设备的数据包接收状态。例如,目标网络设备可以确定第二信息所指示的数据包中,是否有目标网络设备已存储的数据包,如果其中有目标网络设备已存储的数据包,则第一信息可以不指示目标网络设备已存储的数据包,而指示目标网络设备未存储的数据包。其中,目标网络设备已存储的数据包,例如为目标网络设备已通过数据转发(data forwarding)从源网络设备接收的数据包。例如,第二信息指示远端设备接收失败的数据包中的第一个数据包,以指示从该第一个数据包开始直到该远端设备的最后一个数据包为止的全部数据包均未接收成功,例如第二信息包括序列号{1},以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包均未接收成功。目标网络设备接收第二信息后,确定已通过数据转发接收到序列号为{4}及之后的数据包,则第一信息可以指示序列号为{1}的数据包,以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包。或者,第一信息可以指示序列号为{1}的数据包,以指示从序列号为{1}的数据包开始,到源网络设备已向目标网络设备转发的第一个数据包的前一个数据包为止的全部数据包。又例如,第二信息包括序列号{1},以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包均未接收成功,目标网络设备接收第二信息后,确定其中序列号为{1}及之后的数据包是远端设备接收失败的数据包,且确定已通过数据转发接收到源网络设备转发的该远端设备的序列号为{4}及之后的数据包,则第一信息可以指示序列号为{1,2,3}的数据包,以指示从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包;或者,第一信息可以指示序列号为{1,2,3}的数据包;或者第一信息可以包括数据包的序号(例如序列号或计数值),以及比特地图,其中数据包的序号可指示第一个需要转发的数据包的序列号或计数值,比特地图指示该数据包后的数据转发情况。例如通过需要转发的数据包为序列号为{1,2,3}的数据包,则第一信息指示的数据包的序号为{1},比特地图为“1100 0000”,由此可以指示2,3数据包也需要进行数据转发。可选的,第一信息还可以包括DRB ID信息,以指示需要进行转发数据的数据无线承载信息。
S303、源网络设备向目标网络设备发送第一数据包。相应的,目标网络设备接收来自源网络设备的第一数据包。
第一数据包可以包括一个或多个数据包,第一数据包例如为远端设备的数据包,第一数据包可以是第一信息确定的。
作为第一数据包的第一种实现方式,第一数据包可以包括第一信息所指示的全部数据包。例如,第一信息指示序列号{1}的数据包及序列号{1}以后的数据包,则第一数据包可以包括从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包,例如包括序列号为{1,2,3,4,5,6,7}的数据包,或者包括序列号{1}及序列号{1}以后的数据包,该数据包包括未关联序列号的数据包。又例如,第一信息指示序列号为{1,2,4,6}的数据包,则第一数据包可以包括序列号为{1,2,4,6}的数据包。再例如,第一信息指示序列号为{1,2,4,6}的数据包,第一数据包可以包括从序列号为{1}的数据包开始直到该远端设备的最后一个数据包为止的全部数据包,例如包括序列号为{1,2,3,4,5,6,7}的数据包。再例如,第一信息指示数据包的序号为{1},比特地图为“1100 0000”,则第一数据包为第一信息指示的需转发的数据包{1,2,3}。
作为第一数据包的第二种实现方式,第一数据包可以包括第一信息所指示的部分数据包。例如,第一信息指示序列号{1}的数据包及序列号{1}以后的数据包,源网络设备确定其中序列号为{4}及{4}之后的数据包已向目标网络设备发送过,则第一数据包可以包括从序列号为{1}的数据包开始直到源网络设
备已向目标网络设备转发的第一个数据包的前一个数据包为止的全部数据包,例如包括序列号为{1,2,3,}的数据包。又例如,第一信息指示序列号为{1,2,4,6}的数据包,源网络设备确定其中序列号为{6}及之后的数据包已通过数据转发向目标网络设备发送过,则第一数据包可以包括序列号为{1,2,4}的数据包。再例如,第一信息指示序列号{1}的数据包,或指示序列号为{1,2,3,4,5,6,7}的数据包,且第一信息指示其中接收失败的数据包和/或接收成功的数据包,例如第一信息指示其中序列号为{1,2,4,6}的数据包为接收失败的数据包和/或指示其中序列号为{0,3,5,7}的数据包是接收成功的数据包,则第一信息可以包括序列号为{1,2,4,6}的数据包,或者,第一信息可以包括序列号为{1,2,3,4,5,6,7}的数据包。还例如,第一信息指示序列号{1}的数据包,或指示序列号为{1,2,3,4,5,6,7}的数据包,且第一信息指示其中接收失败的数据包和/或接收成功的数据包,例如第一信息指示其中序列号为{1,2,4,6}的数据包为接收失败的数据包和/或指示其中序列号为{0,3,5,7}的数据包是接收成功的数据包,源网络设备确定序列号为{1}的数据包已向目标网络设备发送过,则第一信息可包括序列号为{2,4,6}的数据包,或者,第一信息可以包括序列号为{2,3,4,5,6,7}的数据包。
作为第一数据包的第三种实现方式,第一数据包可以包括第一信息未指示的全部数据包,这种实现方式可适用于第一信息指示的是远端设备接收成功的数据包的情况。例如,第一信息指示序列号为{0,3,5,7}的数据包,则第一数据包可以包括序列号为{1,2,4,6}的数据包;或者,第一数据包可以包括从远端设备第一个接收失败的数据包开始的连续数据包,例如第一数据包可包括序列号为{1,2,3,4,5,6,7}的数据包。
作为第一数据包的第四种实现方式,第一数据包可以包括第一信息未指示的部分数据包,这种实现方式可适用于第一信息指示的是远端设备接收成功的数据包的情况。例如,第一信息指示序列号为{0,3,5,7}的数据包,源网络设备确定其中序列号为{1}的数据包已向目标网络设备发送过,则第一数据包可以包括序列号为{2,4,6}的数据包。
作为第一数据包的第五种实现方式,第一数据包为第一信息指示的所有数据包。例如,第一信息指示序号为{1,2,3}的数据包,例如第一信息可以通过数据包的序号和比特地图来指示。此时第一信息指示数据包的序号为{1},指示第一个需要转发的数据包为序号为{1}的数据包,比特地图为“1100 0000”,指示第一个需要转发的数据包的后续数据包为{2,3}。从而确定第一数据包为第一信息指示的需转发的数据包{1,2,3}。
作为第一数据包的第六种实现方式,第一数据包为源网络设备根据第一信息指示的所有数据包确定的。例如,第一信息指示FMC=3,比特地图为“0100 0100”,可指示远端设备的接收状态为{3}之前数据包均接收成功,{3}之后只有{5,9}接收成功,根据已向目标网络设备转发过{10}及之后的数据包,则第一数据包可包括远端设备未接收成功(通过第一信息指示)且源网络设备未向目标网络设备转发的数据包,即{3,4,6,7,8}。又例如,第一信息指示FMC=3,比特地图为“0100 0100”,指示远端设备的接收状态为{3}之前数据包均接收成功,{3}之后只有{5,9}接收成功,若未向目标网络设备转发过数据包,则第一数据包可包括远端设备未接收成功的数据包,即{3,4,6,7,8,10}以及{10}以后的数据包,其中可以包括关联SN或未关联SN的数据包。
作为第一数据包的第七种实现方式,第一数据包为源网络设备根据第一信息指示的所有数据包确定的。例如,第一信息指示FMC=3,比特地图为“0100 0100”,可指示远端设备的接收状态为{3}之前数据包均接收成功,{3}之后只有{5,9}接收成功,根据已向目标网络设备转发过{10}及之后的数据包,则第一数据包可包括从远端设备的第一个未接收成功的数据包(通过第一信息指示)开始的该远端设备的全部数据包,例如其中除了包括远端设备未接收成功的数据包外,还可能包括远端设备接收成功的数据包和/或源网络设备未向远端设备发送的数据包,例如,第一数据包可包括{3,4,5,6,7,8,9,10}以及{10}之后的数据包。又例如,第一信息指示FMC=3,比特地图为“0100 0100”,指示远端设备的接收状态为{3}之前数据包均接收成功,{3}之后只有{5,9}接收成功,若未向目标网络设备转发过数据包,则第一数据包可包括从远端设备的第一个未接收成功的数据包开始的该远端设备的全部数据包,例如第一数据包可包括{3,4,5,6,7,8,9,10}以及{10}以后的数据包,例如其中除了包括远端设备未接收成功的数据包外,还可能包括远端设备接收成功的数据包和/或源网络设备未向远端设备发送的数据包。其中,源网络设备未向远端设备发送的数据包,可以包括关联SN的数据包和/或未关联SN的数据包。
本申请实施例涉及的可以是远端设备的传输路径切换过程,因此可选的,在S302之前,还可以包括S304~S311。
S304、远端设备通过第一中继设备与源网络设备通信。例如,远端设备可通过第一中继设备向源网络设备发送上行(uplink,UL)数据包,和/或,远端设备可通过第一中继设备接收来自源网络设备的下行(downlink,DL)数据包。图3中,S304的箭头上有对应于第一中继设备的圆圈,表示远端设备与源网络设备之间的通信是通过第一中继设备转发。本申请的各个实施例对应的附图中,箭头上对应于某个设备的圆圈的含义都是类似的,后文不多赘述。
S305、远端设备的测量过程。
例如,源网络设备通过第一中继设备向远端设备发送测量配置(measurement configuration)信息,相应的,远端设备通过第一中继设备接收来自源网络设备的测量配置信息。该测量配置信息可用于为该远端设备配置测量信息,远端设备可根据该测量信息进行测量。该测量信息可包括用于执行Uu接口测量的信息,和/或用于执行侧行(sidelink,SL)测量的信息。
远端设备执行测量后,可得到测量报告(measurement report),远端设备可将该测量报告通过第一中继设备发送给源网络设备,则源网络设备可通过第一中继设备接收来自远端设备的测量报告。该测量报告可包括对于Uu接口的测量报告(例如包括至少一个小区的质量信息),和/或侧行测量报告。其中,侧行测量报告可包括远端设备对一个或多个其他终端设备进行测量的结果,例如包括远端设备与所述一个或多个其他终端设备之间的侧行链路的质量信息,所述一个或多个其他终端设备可作为该远端设备的中继设备的候选。
S306、源网络设备和/或目标网络设备确定远端设备切换传输路径。或者,源网络设备或目标网络设备确定远端设备切换到第二传输路径。例如远端设备通过第一中继设备与源网络设备连接的传输路径为第一传输路径。第二传输路径例如为远端设备与目标网络设备直接连接(例如通过Uu接口)连接的传输路径,或为远端设备通过第二中继设备与目标网络设备连接的传输路径。
例如S306中,源网络设备可根据来自远端设备的测量报告确定远端设备切换到第二传输路径。则在S306之后,源网络设备可以向目标网络设备发送切换请求,以请求将远端设备切换到第二传输路径。目标网络设备接收来自源网络设备的切换请求后,可以进行接入控制。如果确定可以将远端设备切换到第二传输路径,则目标网络设备可以向源网络设备发送切换请求确认消息,以指示允许将远端设备切换到第二传输路径,源网络设备接收该切换请求确认消息后,可以执行S307,通过第一中继设备向远端设备发送切换命令,以指示远端设备切换到第二传输路径。远端设备通过第一中继设备接收该切换命令后,即可切换到第二传输路径。可选的,该切换命令例如为RRC重配置消息(RRC reconfiguration message)。本申请的各个实施例中,“切换命令”也可以称为“路径切换命令”等。
或者,在S306之前,源网络设备可将来自远端设备的测量报告发送给至少一个网络设备,至少一个网络设备可包括目标网络设备。例如源网络设备可向至少一个网络设备发送切换命令,在切换命令中可包括该测量报告。对于一个接收了该测量报告的网络设备来说,可以根据该测量报告确定第二传输路径,例如确定第二传输路径为远端设备与该网络设备直连的路径或为远端设备通过第二中继设备与该网络设备连接的非直连路径,例如至少一个网络设备可以向源网络设备发送决策结果,源网络设备可以获得至少一个决策结果,其中的一个决策结果可以指示对应的网络设备所决策的第二传输路径。例如,网络设备可以通过切换请求确认消息向源网络设备发送决策结果。源网络设备从至少一个第二传输路径中选择一个第二传输路径。源网络设备选择第二传输路径后,可以执行S307,远端设备接收该切换命令后,即可切换到第二传输路径。这种情况可以认为是由源网络设备和目标网络设备共同确定第二传输路径。
或者,在S306之前,源网络设备不必将来自远端设备的测量报告发送给过多的网络设备,而是将该测量报告发送给该目标网络设备即可。该目标网络设备可以根据该测量报告确定第二传输路径,例如确定第二传输路径为远端设备与该网络设备直连的路径或为远端设备通过第二中继设备与该网络设备连接的非直连路径,该目标网络设备可以向源网络设备发送决策结果,该决策结果可指示第二传输路径。例如,目标网络设备可以通过切换请求确认消息向源网络设备发送决策结果。源网络设备根据该决策结果就可以确定第二传输路径。源网络设备确定第二传输路径后,或者源网络设备接收该决策结果后,可以执行S307,远端设备接收该切换命令后,即可切换到第二传输路径。这种情况可以认为是由目标网络设备确定第二传输路径。
S308、源网络设备向目标网络设备转发数据,相应的,目标网络设备接收来自源网络设备的数据。
例如,源网络设备可以向目标网络设备转发第三数据包,第三数据包可包括源网络设备未收到接收
反馈的数据包(或者,接收反馈指示接收失败的数据包),和/或包括源网络设备未向远端设备发送的数据包。其中,接收反馈例如为来自第一中继设备的RLC反馈。例如源网络设备可以向目标网络设备转发未接收到第一中继设备的RLC反馈的PDCP协议数据单元(protocol data unit,PDU)所对应的PDCP服务数据单元(service data unit,SDU)。源网络设备尚未向远端设备发送的数据包中,可以包括已关联SN的数据包,和/或未关联SN的数据包。其中,S308的过程可以视为数据转发(data forwarding)过程。
如果源网络设备尚未向远端设备发送的数据包中包括未关联SN的数据包,则可选的,该方法还可以包括S309,源网络设备可以向目标网络设备发送第三信息,相应的,目标网络设备接收来自源网络设备的第三信息。S309可以发生在S308之前,或者发生在S308之后,或者与S308同时发生。第三信息可指示第一个未关联SN的数据包的序列号,例如指示第一个未关联SN的数据包的SN,或指示第一个未关联SN的数据包的count。目标网络设备接收第三信息后,就可以为未关联SN的数据包依次关联SN。其中,一个数据包的超帧号(hyper frame number,HFN)和SN合起来就构成该数据包的count。可选的,第三信息可以是序列号状态传输(SN status transfer)消息,或者,第三信息可以包括在序列号状态传输消息中。
其中,S308也可以不执行,例如不执行该步骤的过程S303中的数据转发过程,可以视为延迟数据转发(late data forwarding)过程。如果执行S308,则S303中的数据转发过程,可视为补充数据转发过程。如果未执行S308,则在late data forwarding过程中,可以在远端设备切换传输路径成功后,再向目标网络设备转发数据,即,转发数据的过程可以发生在传输路径切换完成阶段。例如延迟数据转发可发生在S303,在S303中介绍了,第一数据包可以包括与第一信息关联的数据包,例如包括第一信息指示的部分或全部数据包,或包括第一信息未指示的部分或全部数据包(例如第一信息指示接收成功的数据包,则第一数据包可包括接收失败的数据包),而除此之外,第一数据包还可以包括第三数据包,第三数据包可以包括一个或多个数据包,例如第三数据包包括源网络设备未收到接收反馈的数据包,和/或包括源网络设备未向远端设备发送的数据包。相当于,不必执行S308和S309,而是在S303中进行数据转发。
可选的,如果未执行S308,且执行了S309,那么S309可以发生在S303之前,或者发生在S303之后,或者与S303同时发生。
S310、远端设备根据切换命令,与目标网络设备建立第二传输路径。如果执行了S308,则S310可以发生在S308之前,或者发生在S308之后,或者与S308同时发生。另外,如果执行了S309,则S310可以发生在S309之前,或者发生在S309之后,或者与S309同时发生。
例如,如果第二传输路径为直连路径,则远端设备可以执行随机接入流程,以接入目标网络设备。或者,如果第二传输路径为非直连路径,则远端设备可以通过第二中继设备与目标网络设备建立RRC连接。
S311、远端设备向目标网络设备发送RRC重配置完成消息(RRC reconfiguration complete message)。相应的,目标网络设备接收来自远端设备的RRC重配置完成消息。该RRC重配置完成消息可指示远端设备的传输路径切换成功,或指示远端设备成功切换到该目标网络设备。可选的,RRC重配置完成消息可包括第二信息,此时,第二信息还包括DRB ID信息。
可选的,在S303之后,该方法还可以包括S312,目标网络设备向远端设备发送第二数据包,相应的,远端设备接收来自目标网络设备的第二数据包。第二数据包可以包括一个或多个数据包,第二数据包可以是根据第一数据包确定的。例如,第二数据包可以包括远端设备接收失败或未接收成功的数据包。
作为一种可选的实施方式,第二数据包为第一数据包,即,第二数据包与第一数据包相同。例如第二信息仅指示远端设备接收失败的数据包,第一信息与第二信息相同,第一数据包可包括远端数据包接收失败的数据包,第二数据包可以与第一数据包相同,例如目标网络设备可将来自源网络设备的第一数据包转发给远端设备。或者,第二信息仅指示远端设备接收成功的数据包,第一信息与第二信息相同,源网络设备可以根据第一信息确定远端设备接收失败的数据包,第一数据包可包括远端数据包接收失败的数据包,第二数据包可以与第一数据包相同,例如目标网络设备可将来自源网络设备的第一数据包转发给远端设备。或者,第二信息可指示远端设备接收成功的数据包和接收失败的数据包(例如,第二信息为PDCP状态报告),第一信息与第二信息相同,或者第一信息可指示远端设备接收成功的数据包或接收失败的数据包,源网络设备可以根据第一信息确定远端设备接收失败的数据包,第一数据包可包括
远端数据包接收失败的数据包,第二数据包可以与第一数据包相同,例如目标网络设备可将来自源网络设备的第一数据包转发给远端设备。
作为另一种可选的实施方式,第二数据包为第一数据包中的一部分,或者说,第二数据包可包括第一数据包中的一部分数据包。例如第二信息仅指示远端设备接收失败的数据包,第一信息与第二信息相同,第一数据包可包括从远端数据包接收失败的第一个数据包开始的连续多个数据包,目标网络设备可以从第一数据包中选出远端设备接收失败的数据包作为第二数据包。或者,第二信息仅指示远端设备接收成功的数据包,第一信息与第二信息相同,源网络设备可以根据第一信息确定远端设备接收失败的数据包,第一数据包可包括从远端数据包接收失败的第一个数据包开始的连续多个数据包,目标网络设备可以从第一数据包中选出远端设备接收失败的数据包作为第二数据包。或者,第二信息可指示远端设备接收成功的数据包和接收失败的数据包(例如,第二信息为PDCP状态报告),第一信息与第二信息相同,或者第一信息可指示远端设备接收成功的数据包或接收失败的数据包,源网络设备可以根据第一信息确定远端设备接收失败的数据包,第一数据包可包括从远端数据包接收失败的第一行数据包开始的连续多个数据包,目标网络设备可以从第一数据包中选出远端设备接收失败的数据包作为第二数据包。
作为又一种可选的实施方式,第一数据包为第二数据包中的一部分,或者说,第一数据包可包括第二数据包中的一部分数据包。例如,第二信息指示远端设备接收失败的数据包,目标网络设备确定第二信息指示的一部分数据包已存储在该目标网络设备中,则第一信息可指示除了这部分数据包外的剩余数据包,第一数据包可以包括第一信息所指示的数据包,目标网络设备可将第一数据包以及本次存储的数据包作为第二数据包。或者,第二信息仅指示远端设备接收成功的数据包,目标网络设备据此确定远端设备接收失败的数据包,且目标网络设备确定第二信息指示的一部分数据包已存储在该目标网络设备中,则第一信息可指示除了这部分数据包外的剩余数据包,第一数据包可以包括第一信息所指示的数据包,目标网络设备可将第一数据包以及本次存储的数据包作为第二数据包。或者,第二信息可指示远端设备接收成功的数据包和接收失败的数据包(例如,第二信息为PDCP状态报告),目标网络设备据此确定远端设备接收失败的数据包,且目标网络设备确定第二信息指示的一部分数据包已存储在该目标网络设备中,则第一信息可指示除了这部分数据包外的剩余数据包,第一数据包可以包括第一信息所指示的数据包,目标网络设备可将第一数据包以及本次存储的数据包作为第二数据包。
本申请实施例中,远端设备在接入目标网络设备后,可以向目标网络设备发送第二信息,以指示远端设备接收成功和/或失败的数据包。那么目标网络设备可以据此向源网络设备指示数据包的接收状态,从而源网络设备可以向目标网络设备发送第一数据包,第一数据包为远端设备的数据包,例如第一数据包可以包括远端设备接收失败的数据包。那么目标网络设备可以向远端设备发送该远端设备接收失败的数据包,以减小丢包率。
接下来介绍本申请实施例提供的第二种通信方法。请参考图4,为该方法的流程图。
S401、源网络设备向目标网络设备发送至少一个数据包,相应的,目标网络设备接收来自源网络设备的至少一个数据包。该过程例如为data forwarding过程。
至少一个数据包中可包括源网络设备预测远端设备接收失败的数据包。例如,源网络设备在通过第一中继设备与远端设备通信的过程中,可以预测远端设备接收失败的数据包。如果远端设备发生传输路径切换,则源网络设备可以将预测的远端设备接收失败的数据包发送给目标网络设备,从而目标网络设备可以在远端设备切换传输路径后继续向远端设备发送这些数据包,以降低丢包率。相当于,本申请实施例中,源网络设备要确定哪些数据包是远端设备接收失败的数据包,可以不依赖于第一中继设备的RLC反馈,而是自行预测,由此能够减小由于第一中继设备无法反馈远端设备的真实接收情况而带来的丢包率。
例如,源网络设备可以预测数据包从源网络设备到达远端设备的传输时长。如果源网络设备向该远端设备发送了切换命令以指示该远端设备切换传输路径,则源网络设备可以根据已向远端设备发送的数据包的发送时间、数据包从源网络设备到达远端设备的传输时长、或切换命令的发送时间中的一项或多项,预测远端设备接收失败的数据包。例如,源网络设备在发送切换命令前,分别在T1时刻和T2时刻向远端设备发送了数据包1和数据包2,且源网络设备在T3时刻发送了切换命令,T1时刻位于T2时刻之前,T2时刻位于T3时刻之前,数据包的传输时长为T4。例如,如果源网络设备对于一个数据包的发送时间与T3时刻之间的时差小于T4,则源网络设备可以确定远端设备对该数据包接收失败。例如T1与T3之间的时差小于T4,则源网络设备预测远端设备对于数据包1接收失败。或者,因为考虑
到切换命令要到达远端设备也要经历一定的传输时长,例如也经历T4时长,那么,如果源网络设备对于一个数据包的发送时间与(T3+T4)时刻之间的时差小于T4,则源网络设备可以确定远端设备对该数据包接收失败。例如T1与(T3+T4)时刻之间的时差小于T4,则源网络设备预测远端设备对于数据包1接收失败。
或者,源网络设备还可以采用其他方式预测远端设备接收失败的数据包,具体方式不做限制。
可选的,至少一个数据包中除了包括源网络设备所预测的远端设备接收失败的数据包之外,还可以包括源网络设备未向远端设备发送的数据包。其中,源网络设备未向远端设备发送的数据包中,可以包括已关联了SN的数据包,和/或包括未关联SN的数据包。
其中,S401的数据转发过程可以称为冗余数据转发,因为源网络设备是根据预测进行转发,而并不是根据第一中继设备的RLC反馈进行转发。同时,也不同于双激活协议栈(DAPS dual active protocol stack)切换下,源网络设备无需等待目标网络设备发送的终端切换成功消息,就能转发未关联SN的数据包。可选的,源网络设备如果确定进行路径切换的远端设备是通过非直连路径与该源网络设备连接的远端设备,则可以按照S401的方式执行数据转发,而如果进行路径切换的远端设备是通过直连路径与该源网络设备连接的远端设备,则可以不必按照S401的方式执行数据转发。
可选的,该方法还可以包括S402,源网络设备可以向目标网络设备发送第五信息,相应的,目标网络设备接收来自源网络设备的第五信息。S402可以发生在S401之前,或者发生在S401之后,或者与S401同时发生。
例如,源网络设备未向远端设备发送的数据包中包括未关联SN的数据包,则第五信息可指示第一个未关联SN的数据包的序列号,例如指示第一个未关联SN的数据包的SN,或指示第一个未关联SN的数据包的count。目标网络设备接收第五信息后,就可以为未关联SN的数据包依次关联SN。或者,第五信息可以指示转发给目标网络设备的数据包中的第一个数据包的序列号,例如可指示该第一个数据包的SN和HFN等,从而目标网络设备接收第五信息后,就可以确定所接收的每个数据包的序列号。
可选的,第五信息可以是序列号状态传输消息,或者,第五信息可以包括在序列号状态传输消息(SN STATUS TRANSFER)中。或者,第五消息可以是提前状态传输(early status transfer)消息。
本申请实施例涉及的可以是远端设备的传输路径切换过程,因此可选的,在S401之前(或者,在S402之前),还可以包括S403~S406。
S403、远端设备通过第一中继设备与源网络设备通信。例如,远端设备可通过第一中继设备向源网络设备发送上行数据包,和/或,远端设备可通过第一中继设备接收来自源网络设备的下行数据包。
S404、远端设备的测量过程。关于S404的更多内容,可参考图3所示的实施例中的S305。
S405、源网络设备和/或目标网络设备确定远端设备切换传输路径。或者,源网络设备或目标网络设备确定远端设备切换到第二传输路径。关于S405的更多内容,可参考图3所示的实施例中的S306。
S406、源网络设备通过第一中继设备向远端设备发送切换命令。相应的,远端设备通过第一中继设备接收来自源网络设备的切换命令。该切换命令可指示远端设备切换到第二传输路径。
可选的,远端设备接收该切换命令后,即可断开与第一中继设备的连接。
或者,源网络设备还可以向远端设备发送第四信息,例如第四信息指示第一数据包。例如第四信息可包括第一数据包的序列号,以指示第一数据包。第四信息例如包括在切换命令中,或者也可以单独发送。第四信息指示第一数据包,是为了指示远端设备在接收第一数据包后停止与第一中继设备通信。那么远端设备接收第四信息后,如果当前还未接收第一数据包,即使当前已收到了切换命令,也可以不断开与第一中继设备的连接,而是继续与第一中继设备通信。直到该远端设备接收了第一数据包,则远端设备可以停止与第一中继设备通信。或者,第四信息指示第一数据包,是为了指示远端设备在下一个待递交给上层的数据包为第一数据包或第一数据包之后的数据包后,停止与第一中继设备通信。例如,该远端设备的PDCP层可对所接收的数据包进行排序,对于排序后序列号连续的数据包,该PDCP层可以递交给上层,而对于排序后序列号不连续的数据包,则从序列号不连续的第一个数据包开始不会递交给上层,而是继续等待接收还未收到的数据包,而该远端设备的RX_DELIV就可用于记录该远端设备的第一个未递交给PDCP层的上层的数据包的序列号。例如,该RX_DELIV的值如果等于4,表明该远端设备的第一个未递交给PDCP层的上层的数据包为第一数据包;或者,该RX_DELIV的值如果大于4,表明该远端设备的第一个未递交给PDCP层的上层的数据包为第一数据包之后的数据包。
或者,远端设备接收第四信息后,如果当前已接收到第一数据包,则远端设备可以断开与第一中继
设备的连接。相当于在这种情况下,远端设备可以在满足“已接收第一数据包”这一条件下再断开与第一中继设备的连接,从而源网络设备即使在没有反馈的情况下也能确定远端设备对于第一数据包及第一数据包之前的数据包都接收成功,这样源网络设备就可以确定远端设备接收失败的数据包,例如远端设备接收失败的数据包为第一数据包之后的数据包。或者,源网络设备也可能并未向远端设备发送第一数据包之后的数据包,因此,S401中的至少一个数据包可以包括源网络设备未向远端设备发送的数据包。例如,源网络设备通过第四信息指示远端设备在接收序列号为{3}的数据包后停止与第一中继设备通信,或者通过第四信息指示远端设备在第一个向上层递交的数据包对应的序列号为4或之后的值时停止与第一中继设备通信。那么S401中的至少一个数据包可以包括序列号{4}的数据包及其之后的数据包。
可选的,该切换命令还可以指示第四信息所对应的数据无线承载(data radio bearer,DRB),例如该切换命令包括第四信息对应的DRB的身份号(identity,ID)。
例如,该切换命令为RRC重配置消息。
可选的,该方法还可以包括S407~S410。
S407、远端设备根据切换命令,与目标网络设备建立第二传输路径。S407可以发生在S401之前,或者发生在S401之后,或者与S401同时发生。S407可以发生在S402之前,或者发生在S402之后,或者与S402同时发生。
例如,如果第二传输路径为直连路径,则远端设备可以执行随机接入流程,以接入目标网络设备。或者,如果第二传输路径为非直连路径,则远端设备可以通过第二中继设备与目标网络设备建立RRC连接。
S408、远端设备向目标网络设备发送RRC重配置完成消息。相应的,目标网络设备接收来自远端设备的RRC重配置完成消息。该RRC重配置完成消息可指示远端设备的传输路径切换成功,或指示远端设备成功切换到该目标网络设备。
S409、远端设备向目标网络设备发送第二信息。相应的,目标网络设备接收来自远端设备的第二信息。
可选的,如果源网络设备向远端设备发送了第四信息,则远端设备在较大概率上对于数据包均接收成功,在这种情况下,可以不执行S409,或者也可以执行S409,此时的第二信息可以指示远端设备接收成功的数据包,且远端设备接收成功的数据包可包括该远端设备接收的全部数据包。
关于该步骤的更多内容,可参考图3所示的实施例中的S302。
S410、目标网络设备向远端设备发送第二数据包,相应的,远端设备接收来自目标网络设备的第二数据包。
第二数据包可以包括一个或多个数据包,例如,第二数据包可以包括远端设备接收失败的数据包。其中,如果远端设备没有接收失败的数据包,则可以不执行S410。
本申请实施例中,源网络设备根据预测,向目标网络设备发送了远端设备可能接收失败的数据包,因此如果远端设备有接收失败的数据包,则这些数据包可能已经存储在目标网络设备内。那么,如果目标网络设备根据第一信息确定远端设备接收失败的数据包,则可以将本地存储的这些数据包发送给远端设备,而不必再向源网络设备请求数据包。由此减少了目标网络设备与源网络设备的交互过程,节省信令开销,且减小了远端设备获得数据的时延。可选的,源网络设备还可以向远端设备发送第四信息,以保证远端设备接收成功的数据包,从而可以减少源网络设备向目标网络设备所发送的数据量,能够节省传输开销,而且也可以减小远端设备的丢包量。
接下来介绍本申请实施例提供的第三种通信方法。请参考图5,为该方法的流程图。
S501、源网络设备通过第一中继设备向远端设备发送第四信息。相应的,远端设备通过第一中继设备接收来自源网络设备的第四信息。
例如第四信息指示第一数据包。例如第四信息可包括第一数据包的序列号,以指示第一数据包。第四信息例如包括在切换命令中,或者也可以单独发送,图5中,以第四信息包括在切换命令中为例。第四信息指示第一数据包,是为了指示远端设备在接收第一数据包后停止与第一中继设备通信,或者是为了指示远端设备在下一个待递交给上层的数据包为第一数据包或第一数据包之后的数据包后,停止与第一中继设备通信。
关于S501的更多内容,可参考图4所示的实施例中的S406。
S502、源网络设备向目标网络设备发送至少一个数据包,相应的,目标网络设备接收来自源网络
设备的至少一个数据包。该过程例如为冗余数据转发过程。
至少一个数据包可以包括源网络设备未向远端设备发送的数据包。例如,源网络设备通过第四信息指示远端设备在接收序列号为{3}的数据包后停止与第一中继设备通信,那么至少一个数据包可以包括序列号{4}的数据包及其之后的数据包。因源网络设备已经通过第四信息在一定程度上保证了远端设备的实际数据包接收状态与源网络设备所认为的远端设备的数据包接收状态保持一致,因此源网络设备不必向目标网络设备发送过多的数据包,能够节省传输开销。
可选的,该方法还可以包括S503,源网络设备可以向目标网络设备发送第五信息,相应的,目标网络设备接收来自源网络设备的第五信息。S503可以发生在S502之前,或者发生在S502之后,或者与S502同时发生。关于S503的更多内容,可参考图4所示的实施例中的S402。
本申请实施例涉及的可以是远端设备的传输路径切换过程,因此可选的,在S501之前,还可以包括S504~S506。
S504、远端设备通过第一中继设备与源网络设备通信。例如,远端设备可通过第一中继设备向源网络设备发送上行数据包,和/或,远端设备可通过第一中继设备接收来自源网络设备的下行数据包。
S505、远端设备的测量过程。关于S505的更多内容,可参考图3所示的实施例中的S305。
S506、源网络设备和/或目标网络设备确定远端设备切换传输路径。或者,源网络设备或目标网络设备确定远端设备切换到第二传输路径。关于S506的更多内容,可参考图3所示的实施例中的S306。
可选的,该方法还包括S507~S510。
S507、远端设备根据切换命令,与目标网络设备建立第二传输路径。S507可以发生在S502之前,或者发生在S502之后,或者与S502同时发生。S507可以发生在S503之前,或者发生在S503之后,或者与S503同时发生。
例如,如果第二传输路径为直连路径,则远端设备可以执行随机接入流程,以接入目标网络设备。或者,如果第二传输路径为非直连路径,则远端设备可以通过第二中继设备与目标网络设备建立RRC连接。
S508、远端设备向目标网络设备发送RRC重配置完成消息。相应的,目标网络设备接收来自远端设备的RRC重配置完成消息。该RRC重配置完成消息可指示远端设备的传输路径切换成功,或指示远端设备成功切换到该目标网络设备。
S509、远端设备向目标网络设备发送第二信息。相应的,目标网络设备接收来自远端设备的第二信息。
可选的,如果源网络设备向远端设备发送了第四信息,则远端设备在较大概率上对于数据包均接收成功,在这种情况下,可以不执行S509,或者也可以执行S509,此时的第二信息可以指示远端设备接收成功的数据包,且远端设备接收成功的数据包可包括该远端设备接收的全部数据包。
关于该步骤的更多内容,可参考图3所示的实施例中的S302。
S510、目标网络设备向远端设备发送第二数据包,相应的,远端设备接收来自目标网络设备的第二数据包。
第二数据包可以包括一个或多个数据包,例如,第二数据包可以包括远端设备接收失败的数据包。其中,如果远端设备没有接收失败的数据包,则可以不执行S510。
本申请实施例中,远端设备是在接收到第一数据包后才断开与第一中继设备的连接,因此可以认为远端设备对于第一数据包及其之前的数据包都接收成功。而源网络设备又将第一数据包之后的数据包发送给了目标网络设备,因此远端设备在切换传输路径后,目标网络设备可以继续向远端设备发送数据包,由此减小了远端设备的丢包量。而且源网络设备也不必向目标网络设备发送过多的数据包,能够节省传输开销。
接下来介绍本申请实施例提供的第四种通信方法。请参考图6,为该方法的流程图。
S601、源网络设备通过第一中继设备向远端设备发送切换命令。相应的,远端设备通过第一中继设备接收来自源网络设备的切换命令。该切换命令可指示远端设备切换到第二传输路径。
例如,远端设备接收该切换命令后,即可断开与第一中继设备的连接。
例如,该切换命令为RRC重配置消息。
可选的,该切换命令还可以包括第七信息,第七信息可指示远端设备发送接收状态信息。该接收状态信息为该远端设备的数据包接收状态的信息,相当于源网络设备通过显式指示方式来触发远端设备发
送该远端设备的数据包接收状态的信息,以此简化远端设备的实现。
可选的,该切换命令还可以指示第七信息所对应的DRB,例如该切换命令包括第四信息对应的DRB的ID。
S602、远端设备通过第一中继设备向源网络设备发送第六信息。相应的,源网络设备通过第一中继设备接收来自远端设备的第六信息。
第六信息例如为远端设备的数据包接收状态的信息,第六信息可指示远端设备接收失败的数据包和/或接收成功的数据包。例如第六信息的实现方式与图3所示的实施例中的第二信息的实现方式可以是类似的,因此更多内容可参考图3所示的实施例中对于第二信息的介绍。
例如,远端设备可以根据切换命令,触发上报第六信息。或者,远端设备可以根据第七信息,触发上报第六信息。或者,远端设备在接收该切换命令后,可以通过RRC消息来发送第六信息。
本申请实施例中,远端设备可以将该远端设备的真实接收状态告知源网络设备,从而源网络设备可以根据第六信息确定远端设备接收失败的数据包。
S603、源网络设备向目标网络设备发送至少一个数据包,相应的,目标网络设备接收来自源网络设备的至少一个数据包。该过程例如为数据转发过程,或者S401中的冗余数据转发过程。
至少一个数据包可以包括源网络设备未向远端设备发送的数据包。例如,源网络设备根据第六信息确定远端设备对于序列号为{1,2,4,6}及序列号{6}之后的数据包接收失败,那么至少一个数据包可以包括序列号为{1,2,4,6}及序列号{6}之后的数据包。因源网络设备已经获知了远端设备的真实接收状态,因此源网络设备不必向目标网络设备发送过多的数据包,能够节省传输开销。而且源网络设备向目标网络设备的发送的数据包中也包括了远端设备接收失败的数据包,由此能够减小远端设备的丢包量。
可选的,该方法还可以包括S604,源网络设备可以向目标网络设备发送第八信息,相应的,目标网络设备接收来自源网络设备的第八信息。S604可以发生在S603之前,或者发生在S603之后,或者与S603同时发生。第八信息与图4所示的实施例中的第五信息可以是类似的,因此关于S604的更多内容,可参考图4所示的实施例中的S402。
本申请实施例涉及的可以是远端设备的传输路径切换过程,因此可选的,在S601之前,还可以包括S605~S607。
S605、远端设备通过第一中继设备与源网络设备通信。例如,远端设备可通过第一中继设备向源网络设备发送上行数据包,和/或,远端设备可通过第一中继设备接收来自源网络设备的下行数据包。
S606、远端设备的测量过程。关于S606的更多内容,可参考图3所示的实施例中的S305。
S607、源网络设备和/或目标网络设备确定远端设备切换传输路径。或者,源网络设备或目标网络设备确定远端设备切换到第二传输路径。关于S607的更多内容,可参考图3所示的实施例中的S306。
可选的,该方法还包括S608~S611。
S608、远端设备根据切换命令,与目标网络设备建立第二传输路径。S608可以发生在S603之前,或者发生在S603之后,或者与S603同时发生。S608可以发生在S604之前,或者发生在S604之后,或者与S604同时发生。
例如,如果第二传输路径为直连路径,则远端设备可以执行随机接入流程,以接入目标网络设备。或者,如果第二传输路径为非直连路径,则远端设备可以通过第二中继设备与目标网络设备建立RRC连接。
S609、远端设备向目标网络设备发送RRC重配置完成消息。相应的,目标网络设备接收来自远端设备的RRC重配置完成消息。该RRC重配置完成消息可指示远端设备的传输路径切换成功,或指示远端设备成功切换到该目标网络设备。
S610、远端设备向目标网络设备发送第二信息。相应的,目标网络设备接收来自远端设备的第二信息。
关于该步骤的更多内容,可参考图3所示的实施例中的S302。
S611、目标网络设备向远端设备发送第二数据包,相应的,远端设备接收来自目标网络设备的第二数据包。
第二数据包可以包括一个或多个数据包,例如,第二数据包可以包括远端设备接收失败的数据包。
本申请实施例中,源网络设备获知了远端设备的真实接收状态,因此可将远端设备接收失败的数据包转发给目标网络设备。在远端设备切换传输路径后,目标网络设备可以向远端设备发送这些数据包,
而不必再向源网络设备请求这些数据包,减少了目标网络设备与源网络设备的交互过程,而且也能减小远端设备的丢包量。
接下来介绍本申请实施例提供的第五种通信方法。请参考图7,为该方法的流程图。
S701、源网络设备向第一中继设备发送第一数据包。相应的,第一中继设备接收来自源网络设备的第一数据包。
其中,第一数据包是待发送给远端设备的数据包,第一中继设备是作为转发设备。对于一个数据包来说,既有PDCP层的序列号,即本申请前述的各个实施例所述的序列号,例如SN,或count等;另外,一个数据包还有无线链路控制(radio link control,RLC)层的序列号。例如第一数据包的PDCP SN为{1},无线链路控制(radio link control,RLC)SN例如为{a}。
S702、第一中继设备向远端设备发送第一数据包。相应的,远端设备接收来自第一中继设备的第一数据包。
因为第一中继设备可能服务了多个远端设备,而第一中继设备与源网络设备之间的连接可能为这多个远端设备所共用,因此第一中继设备在接收第一数据包后,可以更新第一数据包的RLC SN,使得不同的远端设备的数据包的RLC SN不同。例如,第一中继设备可将第一数据包的RLC SN更新为{b},再通过第一中继设备的PC5RLC实体向远端设备的PC5RLC实体发送第一数据包。
S703、远端设备向第一中继设备发送第一反馈信息。相应的,第一中继设备接收来自远端设备的第一反馈信息。例如,远端设备的PC5RLC实体可以向第一中继设备的PC5RLC实体发送第一反馈信息。
第一反馈信息可指示RLC SN为{b}的第一数据包接收成功或失败。例如,第一反馈信息为RLC层的反馈信息,例如第一反馈信息为肯定应答(ACK),则指示第一数据包接收成功;或者,第一反馈信息为否定应答(NACK),则指示第一数据包接收失败。
S704、第一中继设备根据第一反馈信息向源网络设备发送第二反馈信息。相应的,源网络设备接收来自第一中继设备的第二反馈信息。
第二反馈信息例如为RLC层的反馈信息,第二反馈信息可指示RLC SN为{a}的第一数据包接收成功或失败。其中,第二反馈信息与第一反馈信息指示的状态可以是一致的,例如,第一反馈信息指示第一数据包接收成功,则第二反馈信息指示第一数据包接收成功;或者,第一反馈信息指示第一数据包接收失败,则第二反馈信息指示第一数据包接收失败。
例如,第一中继设备在接收第一反馈信息后,如果接收到来自源网络设备的RLC实体的轮询(polling)指令,则可以向源网络设备发送第二反馈信息。其中,polling指令可用于触发第一中继设备发送反馈信息。
或者,第一中继设备在接收第一反馈信息后,如果第一中继设备的RLC实体维护的定时器超时,则可以向源网络设备发送第二反馈信息,该定时器例如为t-重组(reassembly定时器)。例如,如果第一中继设备对于某个数据包接收失败,则该定时器可能会超时,那么第一中继设备就可以向源网络设备发送第一反馈信息。
根据如上介绍可知,第二反馈信息是根据第一反馈信息确定的,那么第一中继设备需要在接收第一反馈信息后再向源网络设备发送第二反馈信息,即,本申请实施例规定,第一中继设备应该在接收远端设备的反馈信息后再根据远端设备的反馈信息向源网络设备发送反馈信息。通过这种方式可以保证源网络设备从第一中继设备获得的RLC反馈能够反映远端设备的真实接收状态。
可选的,在S704之后,远端设备可以执行传输路径切换过程,对于该过程不再赘述。由于源网络设备已经获知了远端设备的真实接收状态,则在传输路径切换过程中,源网络设备在向目标网络设备转发数据包时,就可以将远端设备接收失败的数据包转发给目标网络设备,从而远端设备在切换传输路径后,目标网络设备可以向远端设备继续发送这些数据包。通过这种方式,源网络设备不必向目标网络设备发送过多的数据包,能够节省传输开销。而且目标网络设备也不必再向源网络设备请求数据包,减少了目标网络设备与源网络设备之间的交互过程,另外也减小了远端设备的丢包量。
图8给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置800可以是图3至图7中的任一个附图所示的实施例中的远端设备或该远端设备的电路系统,用于实现上述方法实施例中对应于远端设备的方法。或者,所述通信装置800可以是图3至图7中的任一个附图所示的实施例中的源网络设备或该源网络设备的电路系统,用于实现上述方法实施例中对应于源网络设备的方法。或者,所述
通信装置800可以是图3至图7中的任一个附图所示的实施例中的目标网络设备或该目标网络设备的电路系统,用于实现上述方法实施例中对应于目标网络设备的方法。或者,所述通信装置800可以是图3至图7中的任一个附图所示的实施例中的第一中继设备或该第一中继设备的电路系统,用于实现上述方法实施例中对应于第一中继设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置800包括至少一个处理器801。处理器801可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器801包括指令。可选地,处理器801可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置800包括一个或多个存储器803,用以存储指令。可选地,所述存储器803中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置800包括通信线路802,以及至少一个通信接口804。其中,因为存储器803、通信线路802以及通信接口804均为可选项,因此在图8中均以虚线表示。
可选地,通信装置800还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置800的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器801可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路802可包括一通路,在上述组件之间传送信息。
通信接口804,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器803可以是独立存在,通过通信线路802与处理器801相连接。或者,存储器803也可以和处理器801集成在一起。
其中,存储器803用于存储执行本申请方案的计算机执行指令,并由处理器801来控制执行。处理器801用于执行存储器803中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置800可以包括多个处理器,例如图8中的处理器801和处理器805。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图8所示的装置为芯片时,例如是远端设备的芯片,或源网络设备的芯片,或目标网络设备的芯片,或第一中继设备的芯片,则该芯片包括处理器801(还可以包括处理器805)、通信线路802和通信接口804,可选的,还可以包括存储器803。例如,通信接口804可以是输入接口、管脚或电路等。存储器803可以是寄存器、缓存等。处理器801和处理器805可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各
个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图9示出了一种装置示意图,该装置900可以是上述各个方法实施例中所涉及的远端设备或源网络设备或目标网络设备或第一中继设备,或者为远端设备中的芯片或源网络设备中的芯片或目标网络设备中的芯片或第一中继设备中的芯片。该装置900包括发送单元901、处理单元902和接收单元903。
应理解,该装置900可以用于实现本申请实施例的方法中由远端设备或源网络设备或目标网络设备或第一中继设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图9中的发送单元901、接收单元903以及处理单元902的功能/实现过程可以通过图8中的处理器801调用存储器803中存储的计算机执行指令来实现。或者,图9中的处理单元902的功能/实现过程可以通过图8中的处理器801调用存储器803中存储的计算机执行指令来实现,图9中的发送单元901和接收单元903的功能/实现过程可以通过图8中的通信接口804来实现。
可选的,当该装置900是芯片或电路时,则发送单元901和接收单元903的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由远端设备或源网络设备或目标网络设备或第一中继设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由远端设备或源网络设备或目标网络设备或第一中继设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的远端设备或源网络设备或目标网络设备或第一中继设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable
read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。
Claims (29)
- 一种通信方法,其特征在于,应用于目标网络设备,所述方法包括:向源网络设备发送第一信息,所述第一信息用于指示数据包的接收状态;接收来自所述源网络设备的第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:向所述远端设备发送第二数据包,所述第二数据包是根据第一数据包确定的。
- 根据权利要求1或2所述的方法,其特征在于,所述远端设备在切换传输路径后通过直连路径或非直连路径与所述目标网络设备连接。
- 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:接收来自所述远端设备的第二信息,所述第二信息用于指示所述远端设备接收失败的数据包和/或所述远端设备接收成功的数据包。
- 根据权利要求4所述的方法,其特征在于,所述第二信息为PDCP状态报告;或,所述第二信息包括在RRC重配置消息中,所述RRC重配置消息用于指示所述远端设备成功切换到所述目标网络设备。
- 根据权利要求2~5任一项所述的方法,其特征在于,所述第一数据包为所述第二数据包;或者,所述第一数据包是所述第二数据包中的一部分,所述第一数据包为所述目标网络设备在接收所述第一数据包前未从所述源网络设备接收的数据包,所述第二数据包中还包括另一部分数据包,所述另一部分数据包为所述目标网络设备在接收所述第一数据包前已从所述源网络设备接收的数据包;或者,所述第二数据包是所述第一数据包中的一部分。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:在向所述源网络设备发送所述第一信息之前,接收来自所述源网络设备的第三数据包,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,其中,所述第三数据包中包括所述另一部分数据包。
- 根据权利要求1~6任一项所述的方法,其特征在于,接收来自所述源网络设备的所述第一数据包,包括:接收来自所述源网络设备的第三数据包,其中,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,且所述第三数据包中包括所述第一数据包。
- 根据权利要求7或8所述的方法,其特征在于,所述第三数据包中包括所述源网络设备未向所述远端设备发送的数据包,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:接收来自所述源网络设备的第三信息,所述第三信息用于指示第一个未关联序列号的数据包的序列号。
- 一种通信方法,其特征在于,应用于源网络设备,所述方法包括:接收来自目标网络设备的第一信息,所述第一信息用于指示数据包的接收状态;向所述目标网络设备发送第一数据包,所述第一数据包为远端设备的数据包,且所述第一数据包是根据所述第一信息确定的,其中,所述远端设备在切换传输路径前通过第一中继设备连接所述源网络设备,在切换传输路径后与所述目标网络设备连接。
- 根据权利要求10所述的方法,其特征在于,所述远端设备在切换传输路径后通过直连路径或非直连路径与所述目标网络设备连接。
- 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:在接收来自所述目标网络设备的所述第一信息之前,向所述目标网络设备发送第三数据包,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设 备发送的数据包。
- 根据权利要求10或11所述的方法,其特征在于,向所述目标网络设备发送所述第一数据包,包括:向所述目标网络设备发送第三数据包,其中,所述第三数据包中包括所述源网络设备未收到接收反馈的数据包,和/或包括所述源网络设备未向所述远端设备发送的数据包,且所述第三数据包中包括所述第一数据包。
- 根据权利要求12或13所述的方法,其特征在于,所述第三数据包中包括所述源网络设备未向所述远端设备发送的数据包,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第三信息,所述第三信息用于指示第一个未关联序列号的数据包的序列号。
- 一种通信方法,其特征在于,应用于源网络设备,所述方法包括:向目标网络设备发送至少一个数据包,所述至少一个数据包中包括所述源网络设备预测所述远端设备接收失败的数据包,其中,所述远端设备在切换传输路径前通过所述第一中继设备与所述源网络设备连接,在切换传输路径后与所述目标网络设备连接。
- 根据权利要求15所述的方法,其特征在于,所述方法还包括:向所述远端设备发送第四信息,所述第四信息用于指示第一数据包,以指示所述远端设备在接收所述第一数据包后停止与第一中继设备通信。
- 根据权利要求16所述的方法,其特征在于,所述第四信息包括在切换命令中,所述切换命令用于指示所述远端设备切换传输路径。
- 根据权利要求15~17任一项所述的方法,其特征在于,所述至少一个数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第五信息,所述第五信息用于指示第一个未关联序列号的数据包的序列号。
- 一种通信方法,其特征在于,应用于源网络设备,所述方法包括:向远端设备发送切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;接收来自所述远端设备的第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。
- 根据权利要求19所述的方法,其特征在于,所述切换命令还包括第七信息,所述第七信息用于指示所述远端设备发送接收状态信息。
- 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:向所述目标网络设备发送至少一个数据包,所述至少一个数据包中包括所述远端设备接收失败的数据包。
- 根据权利要求21所述的方法,其特征在于,所述至少一个数据包中还包括所述源网络设备未向所述远端设备发送的数据包。
- 根据权利要求22所述的方法,其特征在于,所述源网络设备未向所述远端设备发送的数据包中包括未关联序列号的数据包,所述方法还包括:向所述目标网络设备发送第八信息,所述第八信息用于指示第一个未关联序列号的数据包的序列号。
- 一种通信方法,其特征在于,应用于远端设备,所述方法包括:接收来自源网络设备的切换命令,所述切换命令用于指示所述远端设备切换传输路径,其中,所述远端设备在切换传输路径前通过第一中继设备与所述源网络设备连接,在切换传输路径后与目标网络设备连接;向所述源网络设备发送第六信息,所述第六信息用于指示所述远端设备接收失败的数据包和/或接收成功的数据包。
- 根据权利要求24所述的方法,其特征在于,所述切换命令还包括第七信息,所述第七信息用于指示所述远端设备发送接收状态信息。
- 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~9任一项所述的方法,或用于执行如权利要求10~14任一项所述的方法,或用于执行如权利要求15~18任一项所述的方法,或用于执行如权利要求19~23任一项所述的方法,或 用于执行如权利要求24~25任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9任一项所述的方法,或使得所述计算机执行如权利要求10~14任一项所述的方法,或使得所述计算机执行如权利要求15~18任一项所述的方法,或使得所述计算机执行如权利要求19~23任一项所述的方法,或使得所述计算机执行如权利要求24~25任一项所述的方法。
- 一种芯片系统,其特征在于,所述芯片系统包括:处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~9任一项所述的方法,或实现如权利要求10~14任一项所述的方法,或实现如权利要求15~18任一项所述的方法,或实现如权利要求19~23任一项所述的方法,或实现如权利要求24~25任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9任一项所述的方法,或使得所述计算机执行如权利要求10~14任一项所述的方法,或使得所述计算机执行如权利要求15~18任一项所述的方法,或使得所述计算机执行如权利要求19~23任一项所述的方法,或使得所述计算机执行如权利要求24~25任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210919785 | 2022-07-30 | ||
CN202210919785.7 | 2022-07-30 | ||
CN202210952981.4A CN117528639A (zh) | 2022-07-30 | 2022-08-09 | 一种通信方法及装置 |
CN202210952981.4 | 2022-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024027540A1 true WO2024027540A1 (zh) | 2024-02-08 |
Family
ID=89761369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/109360 WO2024027540A1 (zh) | 2022-07-30 | 2023-07-26 | 一种通信方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117528639A (zh) |
WO (1) | WO2024027540A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102246555A (zh) * | 2009-05-07 | 2011-11-16 | 华为技术有限公司 | 切换处理方法、基站及中继节点 |
CN110035453A (zh) * | 2018-01-12 | 2019-07-19 | 华为技术有限公司 | 数据处理方法及相关设备 |
CN110999441A (zh) * | 2017-08-11 | 2020-04-10 | 华为技术有限公司 | 数据传输的方法及相关设备 |
KR20210088389A (ko) * | 2020-01-06 | 2021-07-14 | 삼성전자주식회사 | 차세대 이동 통신 시스템에서 daps 핸드오버의 실패 시 베어러 별로 폴백을 설정하는 설정 방법 및 장치 |
CN113316202A (zh) * | 2020-02-27 | 2021-08-27 | 华为技术有限公司 | 一种切换方法及通信装置 |
CN113556792A (zh) * | 2020-04-24 | 2021-10-26 | Oppo广东移动通信有限公司 | 状态报告传输方法、终端设备和网络设备 |
CN114390609A (zh) * | 2020-10-22 | 2022-04-22 | 展讯通信(上海)有限公司 | 数据传输方法、装置及设备 |
CN114631354A (zh) * | 2019-10-30 | 2022-06-14 | 中兴通讯股份有限公司 | 减少切换场景中的服务中断 |
-
2022
- 2022-08-09 CN CN202210952981.4A patent/CN117528639A/zh active Pending
-
2023
- 2023-07-26 WO PCT/CN2023/109360 patent/WO2024027540A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102246555A (zh) * | 2009-05-07 | 2011-11-16 | 华为技术有限公司 | 切换处理方法、基站及中继节点 |
CN110999441A (zh) * | 2017-08-11 | 2020-04-10 | 华为技术有限公司 | 数据传输的方法及相关设备 |
CN110035453A (zh) * | 2018-01-12 | 2019-07-19 | 华为技术有限公司 | 数据处理方法及相关设备 |
CN114631354A (zh) * | 2019-10-30 | 2022-06-14 | 中兴通讯股份有限公司 | 减少切换场景中的服务中断 |
KR20210088389A (ko) * | 2020-01-06 | 2021-07-14 | 삼성전자주식회사 | 차세대 이동 통신 시스템에서 daps 핸드오버의 실패 시 베어러 별로 폴백을 설정하는 설정 방법 및 장치 |
CN113316202A (zh) * | 2020-02-27 | 2021-08-27 | 华为技术有限公司 | 一种切换方法及通信装置 |
CN113556792A (zh) * | 2020-04-24 | 2021-10-26 | Oppo广东移动通信有限公司 | 状态报告传输方法、终端设备和网络设备 |
CN114390609A (zh) * | 2020-10-22 | 2022-04-22 | 展讯通信(上海)有限公司 | 数据传输方法、装置及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN117528639A (zh) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020164560A1 (zh) | 一种iab节点的切换方法及装置 | |
US9699800B2 (en) | Systems, methods, and appartatuses for bearer splitting in multi-radio HetNet | |
WO2019029643A1 (zh) | 通信方法、基站、终端设备和系统 | |
CN115243337B (zh) | 数据传输方法及装置 | |
CN103947249A (zh) | 通过多个无线网络同时地传送因特网业务的方法 | |
US11533136B2 (en) | Discard of PDCP PDU submitted for transmission | |
US12063543B2 (en) | Network nodes and methods supporting multiple connectivity | |
WO2019223639A1 (zh) | 无线通信方法和设备 | |
CN107347199B (zh) | 一种切换及其控制方法、装置 | |
WO2023051634A1 (zh) | 通信方法及装置 | |
WO2020063401A1 (zh) | 一种模式切换方法、数据流分流方法及装置 | |
WO2021031015A1 (zh) | 一种通信方法、设备及系统 | |
WO2021254345A1 (zh) | 通信方法、装置、中继设备及终端设备 | |
US20230199600A1 (en) | Method and communications apparatus for configuring assistance information | |
WO2020258018A1 (zh) | 一种数据包处理方法、设备及存储介质 | |
WO2020088611A1 (zh) | 一种重置mac层、数据传输方法及装置 | |
WO2024027540A1 (zh) | 一种通信方法及装置 | |
KR102661693B1 (ko) | 데이터를 포워딩하기 위한 방법 및 장치 | |
US20230336277A1 (en) | Burst transmission of data packets with feedback | |
RU2817719C1 (ru) | Способ и устройство связи для конфигурирования вспомогательной информации | |
WO2024067139A1 (zh) | 一种通信方法及装置 | |
WO2024000110A1 (zh) | 一种小区切换方法及装置、终端设备、网络设备 | |
WO2023273633A1 (zh) | 一种数据传输方法、装置及系统 | |
WO2023134332A1 (zh) | 一种通信方法及系统 | |
WO2023246745A1 (zh) | 一种通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23849248 Country of ref document: EP Kind code of ref document: A1 |