WO2021031015A1 - 一种通信方法、设备及系统 - Google Patents

一种通信方法、设备及系统 Download PDF

Info

Publication number
WO2021031015A1
WO2021031015A1 PCT/CN2019/101189 CN2019101189W WO2021031015A1 WO 2021031015 A1 WO2021031015 A1 WO 2021031015A1 CN 2019101189 W CN2019101189 W CN 2019101189W WO 2021031015 A1 WO2021031015 A1 WO 2021031015A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
message
access network
information
count value
Prior art date
Application number
PCT/CN2019/101189
Other languages
English (en)
French (fr)
Inventor
张宏平
严乐
谷柏峰
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980097741.7A priority Critical patent/CN114009076B/zh
Priority to PCT/CN2019/101189 priority patent/WO2021031015A1/zh
Publication of WO2021031015A1 publication Critical patent/WO2021031015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]

Definitions

  • This application relates to the field of communication, and in particular to a communication method, device and system.
  • the network needs to switch the terminal equipment from the source base station to the target base station for data transmission through a handover process.
  • the source base station and the target base station are connected to two different core network equipment or there is no Xn interface (5th generation (5G) mobile communication system) or X2 interface (4th generation) established between the source base station and the target base station.
  • the handover process needs to exchange signaling through the N2 interface (5G mobile communication system) or S1 (4G mobile communication system) interface between the base station and the core network equipment, which is based on N2 handover (may be referred to as N2 handover) or S1 based handover (may be referred to as S1 handover).
  • N2 handover may be referred to as N2 handover
  • S1 based handover may be referred to as S1 handover
  • the sender For data transmission on the wireless air interface, in order to enable data packets to be delivered in order, the sender must assign a corresponding COUNT value for each data packet sent in a sequential accumulation manner.
  • the COUNT value is determined by the hyperframe number (hyper frame number) in the upper part. , HFN) and the lower part of the packet data convergence protocol (Packet Data Convergence Protocol, PDCP) sequence number consists of two parts. Among them, the PDCP sequence number is carried in the data packet header and sent to the receiver together with the data packet.
  • the receiver sorts according to the PDCP serial number, and only after the data packet with the current serial number is successfully received and delivered to the upper layer, the data packet is delivered to the upper layer, thereby realizing the function of sequential delivery.
  • the source base station in order to enable the data packets to be delivered in order, needs to notify the target base station of the next assigned COUNT value of the downlink data packet carried by the data through the core network equipment, so that the target base station can Continue to assign the COUNT value to the downstream data starting from the COUNT value.
  • the source base station also needs to notify the target base station of the COUNT value of the first unreceived uplink data packet carried by the data and the uplink reception status through the core network equipment, so that the target base station determines the next one to be delivered to the upper layer based on the COUNT value. Packets.
  • the process for the source base station to send the COUNT value to the target base station through the core network device is as follows: the source base station first sends the COUNT value to the source core network device connected to it through signaling in the handover process, and then the source core network device The target core network device connected to the target base station sends the COUNT value, and finally the target core network device sends the COUNT value to the target base station. That is, when the source base station sends the COUNT value to the target base station, it needs to be transferred through the core network equipment.
  • the embodiments of the present application provide a communication method, device, and system to at least solve the problem of excessive data transmission delay of users in the handover process, and to obtain the COUNT value faster, thereby shortening the transmission delay of uplink and downlink data, and improving user experience.
  • a communication method includes: a first access network device determines to initiate a handover of a terminal device; the first access network device sends a first message to the first core network device, the first message being used to request Initiate handover for the terminal device; the first access network device receives a second message from the first core network device, and the second message is used to instruct to perform handover; the first access network device accesses the second through the interface between the base stations The network device sends a third message, where the third message includes the COUNT value of the first unreceived uplink data packet of the data bearer and/or the COUNT value of the next downlink data packet to which the data bearer is not assigned a sequence number.
  • the first access network device may directly send the third access network device to the second access network device.
  • the third message informs the second access network device of the COUNT value or the COUNT value of the first unreceived uplink data packet of the terminal device’s data bearer and/or the unassigned sequence number of the terminal device’s data bearer
  • the COUNT value that a downstream data packet should be assigned.
  • the network access device sends the COUNT value to the second access network device. Therefore, even if the distance between the access network device and the core network device is relatively long, the first access network device sends the COUNT value to the second access network device. The delay is still small. Therefore, compared with the prior art, the second access network device can obtain the COUNT value faster, thereby avoiding that in the prior art, even if the second access network device has received uplink or downlink data packets, it still cannot be based on the COUNT value. The user's data delay caused by timely forwarding of data packets is too large and the user experience is poor.
  • the third message further includes first information, and the first information is used by the second access network device to associate the third message with the terminal device. Based on this solution, the second access network device can associate the third message with the corresponding terminal device according to the first information.
  • the second message includes the first information. Based on this solution, the first access network device can obtain the first information through the second message.
  • the first information includes the target identifier of the interface application protocol between base stations allocated by the second access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the target identifier of the interface application protocol between the base stations.
  • the third message further includes first indication information, and the first indication information indicates that the third message is associated with the terminal device only according to the first information; or, the first indication information indicates the inter-base station in the third message.
  • the interface application protocol source identification cell is invalid.
  • the first information includes an inter-base-station interface application protocol target identifier allocated by the second access network device to the terminal device and an inter-base-station interface application protocol source identifier allocated by the first access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the target identifier of the interface application protocol between base stations and the source identifier of the interface application protocol between base stations.
  • the first information includes the core network interface application protocol identifier between the second access network device and the second core network device, and/or, the second access network device and the second core network device The access network interface between the application protocol identifiers.
  • the second access network device can associate the third message with the corresponding terminal device according to the core network interface application protocol identifier and/or the access network interface application protocol identifier.
  • the third message further includes second indication information, and the second indication information indicates that the inter-base station interface application protocol target identification information element and the inter-base station interface application protocol source identification information element in the third message are invalid.
  • the second access network device can correctly parse the third message according to the indication of the second indication information, and then perform data transmission based on the correctly parsed third message.
  • the first information is included in the target-to-source transparent container cell of the second message; or, the first information is included in the radio resource control RRC container cell of the second message. Based on this solution, the first access network device can transmit the first information to the second access network device.
  • the first information includes the S-temporary mobile subscriber identity (S-TMSI) of the terminal device; or, the first information includes the global cell identifier (cell global identifier) of the target cell. CGI) and the cell radio network temporary identifier (C-RNTI) under the target cell allocated by the second access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the S-TMSI, or the second access network device can associate the third message with the corresponding terminal device according to the CGI and C-RNTI Terminal equipment.
  • the method before the first access network device sends the third message to the second access network device through the interface between the base stations, the method further includes: the first access network device determines to send the third message to the second access network device through the interface between the base stations.
  • the access network device sends a third message. Based on this solution, when the first access network device determines that it needs to send the third message to the second access network device through the interface between the base stations, the third message is sent, which can avoid unnecessary signaling overhead.
  • the first access network device determines to send the third message to the second access network device through the interface between the base stations, including: when the first access network device and the second access network device establish a base station When the first access network device and the second access network device support the direct data forwarding path, or when the second message includes the first information, the first access network device determines to pass the inter-base station The interface sends a third message to the second access network device.
  • a communication method includes: a second access network device receives a fourth message from a second core network device, the fourth message is used to request to initiate a handover for the terminal device; the second access network The device sends a fifth message to the second core network device, the fifth message is a response message to the fourth message; the second access network device receives the third message from the first access network device through the interface between the base stations, the third message Including the COUNT value or COUNT value of the first unreceived uplink data packet carried by the data and/or the COUNT value that should be allocated to the next downlink data packet for which the sequence number of the data bearer is not allocated; the second access network device according to the data carried The COUNT value of the first unreceived uplink data packet sorts the uplink data packets carried by the data; or and/or, the second access network device should allocate the next downlink data packet according to the unallocated sequence number of the data bearer
  • the COUNT value is used to assign the COUNT value to
  • the first access network device may directly send the third access network device to the second access network device.
  • the third message informs the second access network device of the COUNT value or the COUNT value of the first unreceived uplink data packet of the terminal device’s data bearer and/or the unassigned sequence number of the terminal device’s data bearer
  • the COUNT value that a downstream data packet should be assigned.
  • the time delay for the network access device to send the COUNT value to the second access network device so even if the access network device is far away from the core network device, the first access network device sends the COUNT value to the second access network device
  • the delay is still small. Therefore, compared with the prior art, the second access network device can obtain the COUNT value faster, thereby avoiding that in the prior art, even if the second access network device has received uplink or downlink data packets, it still cannot be based on the COUNT value.
  • the user's data delay caused by timely forwarding of data packets is too large and the user experience is poor.
  • the third message further includes first information, and the first information is used by the second access network device to associate the third message with the terminal device; accordingly, the second access network device is based on the first data carried
  • the COUNT value of an unreceived uplink data packet is used to sort the uplink data packets, including: the second access network device carries the COUNT value and the first information of the first unreceived uplink data packet carried by the data, Sort the uplink data packets carried by the data of the terminal device; the second access network device allocates the COUNT value for the downlink data packet according to the COUNT value that the next downlink data packet to which the sequence number is not allocated on the data bearer should be allocated, including: The network access device allocates the COUNT value to the downlink data packet carried by the terminal device according to the COUNT value that should be allocated to the next downlink data packet to which the serial number is not allocated and the first information. Based on this solution, the second access network device can associate the third message with the corresponding terminal device according to the first information, and
  • the fifth message includes the first information.
  • the second access network device can transmit the first information to the first access network device by sending the fifth message to the second core network device.
  • the first information includes the target identifier of the interface application protocol between base stations allocated by the second access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the target identifier of the interface application protocol between the base stations.
  • the third message further includes first indication information, and the first indication information indicates that the third message is associated with the terminal device only according to the first information; or, the first indication information indicates the inter-base station in the third message.
  • the interface application protocol source identification cell is invalid.
  • the first information includes an inter-base-station interface application protocol target identifier allocated by the second access network device to the terminal device and an inter-base-station interface application protocol source identifier allocated by the first access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the target identifier of the interface application protocol between base stations and the source identifier of the interface application protocol between base stations.
  • the first information includes the core network interface application protocol identifier between the second access network device and the second core network device, and/or, the second access network device and the second core network device The access network interface between the application protocol identifiers.
  • the second access network device can associate the third message with the corresponding terminal device according to the core network interface application protocol identifier and/or the access network interface application protocol identifier.
  • the third message further includes second indication information, and the second indication information indicates that the inter-base station interface application protocol target identification information element and the inter-base station interface application protocol source identification information element in the third message are invalid.
  • the second access network device can correctly parse the third message according to the indication of the second indication information, and then perform data transmission based on the correctly parsed third message.
  • the first information is included in the target-to-source transparent container cell of the fifth message; or, the first information is included in the radio resource control container cell of the fifth message. Based on this solution, the first access network device can transmit the first information to the second access network device.
  • the method before the second access network device sends the fifth message to the second core network device, the method further includes: the second access network device determines that the fifth message includes the first information. Based on this solution, when the second access network device determines that the first information needs to be included in the fifth message, the first information is included in the fifth message, which can avoid unnecessary signaling overhead.
  • the second access network device determines that the fifth message includes the first information, including: when the first access network device and the second access network device establish an interface between base stations, or when the first When a direct data forward path is supported between an access network device and a second access network device, the second access network device determines to include the first information in the fifth message.
  • the first information includes the S-TMSI of the terminal device; or, the first information includes the CGI of the target cell and the C-RNTI of the target cell allocated by the second access network device to the terminal device.
  • the second access network device can associate the third message with the corresponding terminal device according to the S-TMSI, or the second access network device can associate the third message with the corresponding terminal device according to the CGI and C-RNTI Terminal equipment.
  • a communication device for implementing the above-mentioned various methods.
  • the communication apparatus may be the first access network device in the foregoing first aspect, or an apparatus including the foregoing first access network device.
  • the communication apparatus may be the second access network device in the foregoing second aspect, or an apparatus including the foregoing second access network device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication apparatus may be the first access network device in the foregoing first aspect, or an apparatus including the foregoing first access network device.
  • the communication apparatus may be the second access network device in the foregoing second aspect, or an apparatus including the foregoing second access network device.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication apparatus may be the first access network device in the foregoing first aspect, or an apparatus including the foregoing first access network device.
  • the communication apparatus may be the second access network device in the foregoing second aspect, or an apparatus including the foregoing second access network device.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a ninth aspect, includes a first access network device and a second access network device.
  • the first access network device is used to determine to initiate handover of the terminal device, and then send a first message to the first core network device, where the first message is used to request to initiate handover for the terminal device.
  • the first access network device is also used to receive a second message from the first core network device, and the second message is used to instruct to perform handover.
  • the first access network device is further configured to send a third message to the second access network device through the interface between the base stations, where the third message includes the COUNT value of the first unreceived uplink data packet carried by the data and / Or the data bears the COUNT value that should be allocated to the next downlink data packet to which the sequence number is not allocated.
  • the second access network device is used to receive a fourth message from the second core network device, and the fourth message is used to request to initiate a handover for the terminal device.
  • the second access network device is further configured to send a fifth message to the second core network device, where the fifth message is a response message to the fourth message.
  • the second access network device is further configured to receive the third message from the first access network device through the interface between the base stations, and then, according to the COUNT value of the first unreceived uplink data packet carried by the data bearer,
  • the uplink data packets of the data bearer are sorted, and/or, according to the COUNT value that should be allocated to the next downlink data packet to which the data bearer has no sequence number assigned, the COUNT value is allocated to the downlink data packet of the data bearer.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of the existing 4G network architecture
  • Figure 3 is a schematic diagram of an existing 5G network architecture
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram 1 of the flow of a communication method provided by an embodiment of this application.
  • FIG. 6 is a second schematic diagram of the flow of a communication method provided by an embodiment of this application.
  • FIG. 7 is a third schematic diagram of the flow of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a first access network device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a second access network device provided by an embodiment of this application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the communication system 10 includes a first access network device 101 and a second access network device 102.
  • the first access network device 101 and the second access network device 102 may directly communicate with each other, or communicate through forwarding by other devices, which is not specifically limited in the embodiment of the present application.
  • the first access network device 101 is used to determine to initiate the handover of the terminal device, and then send a first message to the first core network device, and the first message is used to request to initiate the handover for the terminal device.
  • the first access network device 101 is further configured to receive a second message from the first core network device, and the second message is used to instruct to perform handover.
  • the first access network device 101 is further configured to send a third message to the second access network device 102 through the interface between the base stations, where the third message includes the COUNT of the first unreceived uplink data packet carried by the data.
  • the value and/or data bears the COUNT value that should be allocated to the next downlink data packet to which the sequence number is not allocated.
  • the second access network device 102 is configured to receive a fourth message from the second core network device, and the fourth message is used to request to initiate a handover for the terminal device.
  • the second access network device 102 is further configured to send a fifth message to the second core network device, where the fifth message is a response message to the fourth message.
  • the second access network device 102 is further configured to receive the third message from the first access network device 101 through the interface between the base stations, and then, according to the COUNT value of the first unreceived uplink data packet carried by the data, to The uplink data packets carried by the data are sorted, and/or the COUNT value should be allocated to the downlink data packets carried by the data according to the COUNT value that should be allocated to the next downlink data packet to which the sequence number is not allocated by the data bearer.
  • the specific implementation of the above solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the communication system 10 provided in the embodiment of the present application may further include a first core network device 103 and a second core network device 104.
  • the first core network device 103 is configured to receive a first message from the first access network device 101 and send a second message to the first access network device 101.
  • the second core network device 104 is configured to send a fourth message to the second access network device 102 and receive a fifth message from the second access network device 102.
  • first access network device 101 and second access network device 102 may be connected to the same core network device, or may be connected to two different core network devices. That is, the aforementioned first core network device 103 and second core network device 104 may be the same core network device, or may be two different core network devices. The embodiment of the application does not specifically limit this.
  • the first access network device may directly send the third access network device to the second access network device.
  • the second access network device may directly send the third access network device to the second access network device.
  • the COUNT value that the packet should be assigned.
  • the first access network device sends the COUNT value to the second access network device, there is no need to transit through the core network device, and the distance between the access network device and the core network device will not affect the first access network device.
  • the network access device sends the COUNT value to the second access network device. Therefore, even if the distance between the access network device and the core network device is relatively long, the first access network device sends the COUNT value to the second access network device. The delay is still small. Therefore, compared with the prior art, the second access network device can obtain the COUNT value faster, thereby avoiding that in the prior art, even if the second access network device has received uplink or downlink data packets, it still cannot be based on the COUNT value. The user's data delay caused by timely forwarding of data packets is too large and the user experience is poor.
  • the communication system 10 shown in FIG. 1 can be applied to the current 4G network, or the current 5G network, or other networks in the future, which is not specifically limited in the embodiment of the present application.
  • the network element or entity corresponding to the first access network device 101 may be an evolution in the 4G network.
  • -Type base station evolved NodeB, eNodeB, or eNB
  • the network element or entity corresponding to the second access network device 102 may be eNB2 in the 4G network
  • the network element corresponding to the first core network device 103 or
  • the entity may be the core network device 1 in the 4G network
  • the network element or entity corresponding to the aforementioned second core network device 104 may be the core network device 2 in the 4G network.
  • the core network device 1 and the core network device 2 may be the same core network device, or may be two different core network devices.
  • the core network equipment 1 may be, for example, a mobility management entity (MME) 1 network element in a 4G network
  • the core network equipment 2 may be, for example, an MME2 network element in a 4G network, where the MME1 network element and The MME2 network elements can be the same MME network element or different MME network elements.
  • MME mobility management entity
  • eNB1 and eNB2 communicate through the X2 interface
  • eNB1/eNB2 communicate with the core network device 1/core network device 2 through the S1 interface
  • the X2 interface here may include an X2-C interface and an X2-U interface, where the X2-C interface is a control plane interface, and the X2-U interface is a user plane interface.
  • the S1 interface here includes an S1-MME interface and an S1-U interface, where the S1-MME interface is a control plane interface, and the S1-U interface is a user plane interface.
  • the network element or entity corresponding to the first access network device 101 may be a next-generation node B (next generation node B, gNB)1, the network element or entity corresponding to the second access network device 102 may be gNB2.
  • the network element or entity corresponding to the aforementioned first core network device 103 may be the core network device 1 in the 5G network
  • the network element or entity corresponding to the aforementioned second core network device 104 may be the core network device in the 5G network. 2.
  • the core network device 1 and the core network device 2 may be the same core network device, or may be two different core network devices.
  • core network equipment 1 and core network equipment 2 may be, for example, access and mobility management function (AMF) 1 network elements in a 5G network, and core network equipment 2 may be, for example, a network element in a 5G network.
  • AMF access and mobility management function
  • gNB1 and gNB2 communicate through an Xn interface
  • gNB1/gNB2 communicate with a core network device 1/core network device 2 through a next generation (NG) 2 or NG3 interface
  • the Xn interface here may include an Xn-U interface and an Xn-C interface, where the Xn-C interface is a control plane interface, and the Xn-U interface is a user plane interface.
  • the NG2 interface here is the control plane interface
  • the NG3 interface is the user plane interface.
  • the related functions of the first access network device 101 and the second access network device 102 in the embodiment of the present application may be implemented by one device, or jointly implemented by multiple devices, or in one device.
  • FIG. 4 shows a schematic structural diagram of a communication device 40 provided by an embodiment of the application.
  • the communication device 40 includes one or more processors 401, a communication line 402, and at least one communication interface (in FIG. 4, the communication interface 404 and one processor 401 are taken as an example for illustration), optional
  • the memory 403 may also be included.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 402 may include a path for connecting different components.
  • the communication interface 404 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 404 may also be a transceiver circuit located in the processor 401 to implement signal input and signal output of the processor.
  • the memory 403 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently and is connected to the processor through the communication line 402. The memory can also be integrated with the processor.
  • the memory 403 is used to store computer-executed instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 403, so as to implement the communication method provided in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the communication method provided in the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 41 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4.
  • the communication device 40 may include multiple processors, such as the processor 401 and the processor 408 in FIG. 4. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 40 may further include an output device 405 and an input device 406.
  • the output device 405 communicates with the processor 401 and can display information in a variety of ways.
  • the aforementioned communication device 40 may be a general-purpose device or a dedicated device.
  • the communication device 40 may be a desktop computer, a portable computer, a network server, a PDA, a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 4.
  • the embodiment of the present application does not limit the type of the communication device 40.
  • the communication device 40 in the embodiment of the present application is a device that connects a terminal device to a wireless network. It may be an eNB in a 4G network, or a gNB in a 5G network, or a public land mobile for future evolution.
  • PLMN public land mobile network
  • BNG broadband network gateway
  • aggregation switches or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc. this application The embodiment does not specifically limit this.
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application .
  • the above-mentioned first access network device may also be referred to as a source access network device, and the second access network device may also be referred to as a target access network device.
  • the first access network device is called the source base station, and the second access network device is called the target base station.
  • the above-mentioned first core network device may also be called the source core network device, and the second core network device may also be called the target core network device.
  • the core network device is an AMF network element
  • the first core network device That is, it is called the source AMF network element
  • the second core network device is called the target AMF network element.
  • the first access network device is gNB1
  • the second access network device is gNB2
  • the first core network device is core network device 1
  • the second core The network device is the core network device 2 as an example.
  • a communication method provided by an embodiment of this application includes the following steps:
  • S501 gNB1 determines to initiate N2 handover of the terminal device.
  • the gNB1 allocates a corresponding Xn interface application protocol source identifier (source Xn application protocol identity, source XnAP ID) for the terminal device.
  • source Xn application protocol identity source XnAP ID
  • the Xn interface application protocol source identifier may also be referred to as the inter-base station interface application protocol source identifier.
  • the gNB1 sends a handover required message (handover required) to the core network device 1.
  • the core network device 1 receives the handover request message from gNB1.
  • the handover request message is used to request to initiate the N2 handover for the terminal device.
  • the handover request message may also be referred to as the first message.
  • the handover request message may include the source XnAP ID.
  • the source XnAP ID may be included in the source to target transparent container cell of the handover request message, or the source XnAP ID may be included in the radio resource of the handover request message Control container (RRC container) cell.
  • RRC container radio resource of the handover request message Control container
  • the RRC container cell may be a part of the source to target transparent container cell.
  • the core network device 1 sends a forward reconfiguration request message (forward relocation request) to the core network device 2.
  • the core network device 2 receives the forward reconfiguration request message from the core network device 1.
  • the source-to-target transparent container cell is included in the forward reconfiguration request message.
  • the core network device 2 sends a handover request message (handover request) to the gNB2.
  • gNB2 receives the handover request message from core network device 2.
  • the handover request message may also be called the fourth message.
  • the handover request message may include the source XnAP ID.
  • the source XnAP ID can be included in the source-to-target transparent container cell of the handover request message, or the source XnAP ID can be included in the radio resource control container (RRC container) information of the handover request message.
  • RRC container radio resource control container
  • the embodiment of the application does not specifically limit this.
  • the RRC container cell may be a part of the source to target transparent container cell.
  • the gNB2 determines to include the target XnAP ID in the handover request response message.
  • the handover request response message may also be called the fifth message.
  • step S506 may include: when the Xn interface is established between gNB1 and gNB2, or when the direct data forwarding path is supported between gNB1 and gNB2, or the handover request received by gNB2 in step 505
  • the message includes the source XnAP ID
  • gNB2 determines to include the target XnAP ID in the handover request response message.
  • gNB2 determines that an Xn interface is established with gNB1 or supports a direct data forward path with gNB1, it includes the target XnAP ID in the handover request response message, and then sends a handover request response message to the core network device 2.
  • the communication method provided by this embodiment of the application is executed to step S510, as long as gNB1 receives the handover command message or gNB1 determines that the handover command message includes the target XnAP ID, it means that gNB1 can pass through the Xn interface between gNB1 and gNB2. Send a message to gNB2, thereby directly sending a sequence number status transfer message to gNB2 through the Xn interface between gNB1 and gNB2.
  • the support of direct data forwarding paths between base stations means that the base stations can send user plane data through available direct data forwarding paths.
  • the gNB2 may also include the source XnAP ID while determining that the target XnAP ID is included in the handover request response message.
  • the gNB2 allocates a corresponding Xn interface application protocol target identifier (target Xn application protocol identity, Target XnAP ID) to the terminal device.
  • the Xn interface application protocol target identifier may also be referred to as the interface application protocol target identifier between base stations.
  • the gNB2 sends a handover request acknowledgement message (handover request acknowledgement) to the core network device 2.
  • the core network device 2 receives the handover request response message from gNB2.
  • the handover request response message includes target XnAP ID.
  • the handover request response message may further include the source XnAP ID.
  • target XnAP ID may be included in the target to source transparent container cell of the handover request response message, or included in The radio resource control container (RRC container) cell of the handover request response message is not specifically limited in the embodiment of the present application.
  • RRC container cell may be a part of the target-to-source transparent container cell.
  • the core network device 2 sends a forward reconfiguration response message (forward relocation response) to the core network device 1.
  • the core network device 1 receives the forward reconfiguration response message from the core network device 2.
  • the target-to-source transparent container cell is included in the forward reconfiguration response message.
  • the core network device 1 sends a handover command message (handover command) to the gNB1.
  • gNB1 receives the handover command message from core network device 1.
  • the handover command message includes target XnAP ID.
  • the handover command message may also be referred to as the second message.
  • the handover command message may further include the source XnAP ID.
  • the target XnAP ID may be included in the target-to-source transparent container cell of the handover command message, or included in the RRC container information of the handover command message.
  • the embodiment of the application does not specifically limit this.
  • the RRC container cell may be a part of the target-to-source transparent container cell.
  • the gNB1 sends a radio resource control reconfiguration message (RRC reconfig) to the terminal device, instructing the terminal device to switch to gNB2.
  • the terminal device receives the radio resource control reconfiguration message from gNB1, and then starts to access the target base station. After the access is successful, data transmission starts with the target base station.
  • RRC reconfig radio resource control reconfiguration message
  • the gNB1 determines to send a sequence number status transfer message (SN status transfer) through the Xn interface between the base stations.
  • SN status transfer sequence number status transfer
  • sequence number status transfer message is also called the third message.
  • step S512 may specifically include: when gNB1 and gNB2 establish an Xn interface, or when a direct data forwarding path is supported between gNB1 and gNB2, or when the handover command message includes target XnAP ID , GNB1 determines to send a sequence number status transfer message to gNB2 through the Xn interface.
  • the gNB1 may also include the source XnAP ID while determining that the sequence number state transfer message includes the target XnAP ID.
  • the gNB1 sends a sequence number status transfer message to the gNB2 through the Xn interface between the base stations.
  • gNB2 receives the sequence number status transfer message from gNB1.
  • the sequence number status transfer message includes the target XnAP ID and the COUNT value of the first unreceived uplink data packet of the data bearer; and/or, the sequence number status transfer message includes the target XnAP ID and the next downlink of the data bearer without a sequence number assigned The COUNT value that the packet should be assigned.
  • the target XnAP ID is used for gNB2 to associate the sequence number status transfer message with the corresponding terminal device.
  • association means that gNB2 can learn the specific terminal device targeted by the sequence number status transfer message through target XnAP ID, or in other words, gNB2 determines the context of the corresponding terminal device through target XnAP ID.
  • the sequence number status transfer message may further include the source XnAP ID.
  • the source XnAP ID and target XnAP ID are used together for gNB2 to associate the sequence number status transfer message with the corresponding terminal device.
  • sequence number status transfer message in the prior art must include the source XnAP ID information element
  • the sequence number status transfer message only includes the target XnAP ID it needs to be further indicated based on the target XnAP ID only. Associate the terminal device, or indicate that the source XnAP ID cell is invalid. That is, if the sequence number status transfer message only includes the target XnAP ID, the sequence number status transfer message may further include the first indication information.
  • the first indication information indicates that the sequence number status transfer message is associated with the terminal device only according to the target XnAP ID; or the first indication information indicates that the source XnAP ID information element in the sequence number status transfer message is invalid.
  • the gNB2 sorts the uplink data packets carried by the data of the terminal device according to the sequence number status transfer message. And/or, the gNB2 allocates the COUNT value to the downlink data packet carried by the terminal device according to the sequence number status transfer message.
  • gNB2 determines the context of the corresponding terminal device according to the target XnAP ID, and then according to the context of the terminal device, the data bearer of the terminal device.
  • the uplink data packets are sorted and/or the COUNT value is assigned to the downlink data packets carried by the terminal device.
  • sequence number status transfer message further includes source XnAP ID
  • gNB2 determines the context of the corresponding terminal device according to the source XnAP ID and target XnAP ID, and then sorts the uplink data packets carried by the terminal device according to the context of the terminal device. And/or assign a COUNT value to the downlink data packet carried by the terminal device.
  • gNB1 can directly send the sequence number status transfer message to gNB2 through the Xn interface between base stations, through the sequence number
  • the status transfer message informs gNB2 of the COUNT value of the first unreceived uplink data packet carried by the terminal device's data and/or the COUNT value that should be allocated to the next downlink data packet to which the sequence number of the terminal device is not allocated.
  • gNB1 when gNB1 sends the COUNT value to gNB2, there is no need to transit through core network equipment 1 and core network equipment 2, and the distance between gNB1/2 and core network equipment 1/2 will not affect gNB1’s sending of COUNT to gNB2. Therefore, even if the distance between gNB1/2 and core network equipment 1/2 is long, the delay for gNB1 to send the COUNT value to gNB2 is still small. Therefore, compared with the prior art, gNB2 can obtain the COUNT value faster, thereby avoiding that in the prior art, even if the gNB2 has received an uplink or downlink data packet, it still cannot forward the user data caused by the data packet in time according to the COUNT value. Excessive delay and poor user experience.
  • the actions of gNB1 and gNB2 in steps S501 to S514 can be executed by the processor 401 in the communication device 40 shown in FIG. 4 calling the application code stored in the memory 403, and this embodiment does not impose any limitation on this.
  • the first access network device is gNB1
  • the second access network device is gNB2
  • the first core network device is core network device 1
  • the second core The network device is the core network device 2 as an example.
  • another communication method provided in this embodiment of the application includes the following steps:
  • gNB1 determines to initiate N2 handover of the terminal device.
  • the gNB1 sends a handover required message (handover required) to the core network device 1.
  • the core network device 1 receives the handover request message from gNB1.
  • the handover request message is used to request to initiate the N2 handover for the terminal device.
  • the handover request message may also be referred to as the first message.
  • the core network device 1 sends a forward reconfiguration request message (forward relocation request) to the core network device 2.
  • the core network device 2 receives the forward reconfiguration request message from the core network device 1.
  • the core network device 2 sends a handover request message (handover request) to the gNB2.
  • gNB2 receives the handover request message from core network device 2.
  • the handover request message may also be called the fourth message.
  • the handover request message includes the core network interface application protocol identifier (access and mobility management function user equipment NG application protocol, AMF UE NGAP ID) between the gNB2 allocated by the core network device 2 and the core network device 2.
  • AMF UE NGAP ID access and mobility management function user equipment NG application protocol
  • the gNB2 determines to include the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 in the handover request acknowledgement message (handover request acknowledgement).
  • the handover request response message may also be called the fifth message.
  • step S605 may include: when gNB1 and gNB2 establish an Xn interface, or when a direct data forwarding path is supported between gNB1 and gNB2, gNB2 determines that the handover request response message includes gNB2 and The AMF UE NGAP ID and/or RAN UE NGAP ID between the core network equipment 2.
  • the handover request response message includes the AMF UE NGAP ID and/or between gNB2 and core network device 2 RAN UE NGAP ID, and then sends a handover request response message to core network device 2.
  • gNB1 only needs to determine that the handover command message includes the AMF UE NGAP ID and/or RAN UE NGAP ID between gNB2 and core network device 2, which means gNB1
  • the message can be sent to gNB2 through the Xn interface between gNB1 and gNB2, and the sequence number status transfer message can be sent directly to gNB2 through the Xn interface between gNB1 and gNB2.
  • the support of direct data forwarding paths between base stations means that the base stations can send user plane data through available direct data forwarding paths.
  • the gNB2 sends a handover request response message to the core network device 2.
  • the core network device 2 receives the handover request response message from gNB2.
  • the handover request response message includes the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2.
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 may be included in the target-to-source transparent container cell of the handover request response message, or included in the In the RRC container cell of the handover request response message, the embodiment of the present application does not specifically limit this.
  • the RRC container cell may be a part of the target-to-source transparent container cell.
  • the handover request response message already includes the AMF UE NGAP ID and RAN UE NGAP ID between the gNB2 and the core network device 2, but this information is mainly used for the core network device 2 identification
  • the specific terminal device targeted by the message will not pass the information to the core network device 1 and gNB1.
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 are included in the target to transparent container cell of the handover command message or In the radio resource control (RRC container) container cell from the target-to-source transparent container cell, the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 can be changed through the target-to-source transparent container cell. Passed to core network equipment 1 and gNB1.
  • RRC container radio resource control
  • step S605 gNB2 determines that the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 are included in the handover request response message, which refers to the transparent container from the target to the source of the handover command message
  • the cell or radio resource control container contains this information.
  • the core network device 2 sends a forward reconfiguration response message (forward relocation response) to the core network device 1.
  • the core network device 1 receives the forward reconfiguration response message from the core network device 2.
  • the target-to-source transparent container cell is included in the forward reconfiguration response message.
  • the core network device 1 sends a handover command message (handover command) to the gNB1.
  • gNB1 receives the handover command message from core network device 1.
  • the handover command message includes the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2.
  • the handover command message can also be referred to as the second message.
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 may be included in the target-to-source transparent container cell of the handover command message, or included in the handover In the RRC container cell of the command message, the embodiment of this application does not specifically limit this.
  • the RRC container cell may be a part of the target-to-source transparent container cell.
  • gNB1 sends a radio resource control reconfiguration message (RRC reconfig) to the terminal device, instructing the terminal device to switch to gNB2.
  • the terminal device receives the radio resource control reconfiguration message from gNB1, and then starts to access the target base station. After the access is successful, data transmission starts with the target base station.
  • RRC reconfig radio resource control reconfiguration message
  • the gNB1 determines to send a sequence number status transfer message (SN status transfer) through the Xn interface between the base stations.
  • SN status transfer sequence number status transfer
  • sequence number status transfer message can also be called the third message.
  • step S610 may specifically include: when gNB1 and gNB2 establish an Xn interface, or when a direct data forwarding path is supported between gNB1 and gNB2, or when the handover command message includes gNB2 and core network equipment When the AMF UE NGAP ID and/or RAN UE NGAP ID between 2 and the RAN UE NGAP ID, gNB1 determines to send a sequence number status transfer message to gNB2 through the Xn interface.
  • the gNB1 sends a sequence number status transfer message to the gNB2 through the Xn interface between the base stations.
  • gNB2 receives the sequence number status transfer message from gNB1.
  • the sequence number status transfer message includes the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2.
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 are used for the gNB2 to associate the sequence number status transfer message with the corresponding terminal device.
  • the association refers to the specific terminal device that gNB2 can learn the sequence number status transfer message for through the AMF UE NGAP ID and/or RAN UE NGAP ID between gNB2 and core network device 2.
  • gNB2 communicates with the core network via gNB2.
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the device 2 can determine the context of the corresponding terminal device.
  • sequence number status transfer message in the prior art must include the target XnAP ID information element and the source XnAP ID information element, in this embodiment of the application, when the sequence number status transfer message includes the gap between the gNB2 and the core network device 2.
  • the sequence number status transfer message may further include second indication information. The second indication information indicates that the source XnAP ID information element and the target XnAP ID information element are invalid.
  • sequence number status transfer message includes the AMF UE NGAP ID and/or RAN UE NGAP ID between gNB2 and core network device 2
  • gNB2 knows that the source XnAP ID cell and target XnAP ID cell are invalid, that is, gNB2 and
  • the AMF UE NGAP ID and/or RAN UE NGAP ID between the core network devices 2 may be regarded as the second indication information.
  • the gNB2 sorts the uplink data packets carried by the data of the terminal device according to the sequence number status transfer message. And/or, the gNB2 allocates the COUNT value to the downlink data packet carried by the terminal device according to the sequence number status transfer message.
  • gNB2 determines the context of the corresponding terminal device according to the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 included in the sequence number status transfer message, and then determines the context of the corresponding terminal device according to the context of the terminal device.
  • the uplink data packets carried by the data of the device are sorted.
  • gNB2 determines the context of the corresponding terminal device according to the AMF UE NGAP ID and/or RAN UE NGAP ID between the gNB2 and the core network device 2 included in the sequence number status transfer message, and then determines the context of the corresponding terminal device according to the context of the terminal device.
  • the downlink data packet carried by the device's data is assigned the COUNT value.
  • steps S601 to S612 can be executed by the processor 401 in the communication device 40 shown in FIG. 4 by calling the application code stored in the memory 403, and this embodiment does not impose any limitation on this.
  • the first access network device is gNB1
  • the second access network device is gNB2
  • the first core network device is core network device 1
  • the second core The network device is the core network device 2 as an example.
  • another communication method provided by this embodiment of the application includes the following steps:
  • gNB1 determines to initiate N2 handover of the terminal device.
  • the gNB1 sends a handover required message (handover required) to the core network device 1.
  • the core network device 1 receives the handover request message from gNB1.
  • the handover request message is used to request to initiate the N2 handover for the terminal device.
  • the handover request message may also be referred to as the first message.
  • the core network device 1 sends a forward reconfiguration request message (forward relocation request) to the core network device 2.
  • the core network device 2 receives the forward reconfiguration request message from the core network device 1.
  • the core network device 2 sends a handover request message (handover request) to the gNB2.
  • gNB2 receives the handover request message from core network device 2.
  • the handover request message may also be called the fourth message.
  • the gNB2 sends a handover request acknowledgement message (handover request acknowledge) to the core network device 2.
  • the core network device 2 receives the handover request response message from gNB2.
  • the handover request response message may also be called the fifth message.
  • the core network device 2 sends a forward relocation response (forward relocation response) to the core network device 1.
  • the core network device 1 receives the forward reconfiguration response message from the core network device 2.
  • the core network device 1 sends a handover command message (handover command) to the gNB1.
  • gNB1 receives the handover command message from core network device 1.
  • the handover command message may also be called the third message.
  • the gNB1 sends a radio resource control reconfiguration message (RRC reconfig) to the terminal device, instructing the terminal device to switch to gNB2.
  • RRC reconfig radio resource control reconfiguration message
  • the terminal device receives the radio resource control reconfiguration message from gNB1, and then starts to access the target base station. After the access is successful, data transmission starts with the target base station.
  • the gNB1 determines to send a sequence number status transfer message (SN status transfer) through the Xn interface between the base stations.
  • step S709 may specifically include: when gNB1 and gNB2 establish an Xn interface, or when a direct data forwarding path is supported between gNB1 and gNB2, gNB1 determines to send a sequence number status transition to gNB2 through the Xn interface news.
  • the support of direct data forwarding paths between base stations means that the base stations can send user plane data through available direct data forwarding paths.
  • the gNB1 sends a sequence number status transfer message to the gNB2 through the Xn interface between the base stations.
  • gNB2 receives the sequence number status transfer message from gNB1.
  • the sequence number status transfer message includes the S-TMSI of the terminal device, or the sequence number status transfer message includes the CGI of the target cell and the C-RNTI of the target cell allocated by the gNB2 for the terminal device.
  • the above identification information included in the sequence number status transfer message is used by the gNB2 to associate the sequence number status transfer message with the corresponding terminal device.
  • the association refers to that the gNB2 can learn the specific terminal device targeted by the sequence number status transfer message through the above identification information, or in other words, the gNB2 can determine the context of the corresponding terminal device through the above identification information.
  • the gNB2 sorts the uplink data packets carried by the data of the terminal device according to the sequence number status transfer message. And/or, the gNB2 allocates the COUNT value to the downlink data packet carried by the terminal device according to the sequence number status transfer message.
  • gNB2 associates the sequence number status transfer message with the corresponding terminal device according to the S-TMSI of the terminal device included in the sequence number status transfer message, or gNB2 according to gNB2 according to the CGI and gNB2 of the target cell included in the sequence number status transfer message
  • the C-RNTI in the target cell allocated to the terminal device associates the sequence number status transfer message with the corresponding terminal device, and then determines the context of the corresponding terminal device, and sorts the uplink data packets carried by the terminal device according to the context of the terminal device .
  • gNB2 associates the sequence number status transfer message with the corresponding terminal device according to the S-TMSI of the terminal device included in the sequence number status transfer message, or gNB2 according to the CGI and CGI of the target cell included in the sequence number status transfer message of gNB2 and
  • the C-RNTI under the target cell allocated by gNB2 for the terminal device associates the sequence number status transfer message with the corresponding terminal device, and then determines the context of the corresponding terminal device, and allocates the downlink data packet carried by the terminal device according to the context of the terminal device COUNT value.
  • the actions of gNB1 and gNB2 in the above steps S701 to S711 can be executed by the processor 401 in the communication device 40 shown in FIG. 4 by calling the application code stored in the memory 403, and this embodiment does not impose any limitation on this.
  • gNB1 still need to send the uplink RAN status transfer of the N2 interface to the core network device 1
  • the message problem can be handled in the following two optional methods: (1) gNB1 still sends an uplink RAN status transfer message on the N2 interface to the core network device 1.
  • the gNB2 first receives the sequence number status transfer message in the embodiment of the present application, then determines the context of the corresponding terminal device according to the sequence number status transfer message, and performs uplink sequencing or downlink sequence number assignment according to the COUNT value in the sequence number status transfer message.
  • the original N2 handover procedure is not changed, but the sequence number status transfer message of the Xn port is added.
  • (2) gNB1 no longer sends the N2 interface uplink RAN status transfer message to the core network device 1. Compared with (1), the signaling overhead can be reduced.
  • FIG. 5 to FIG. 7 are all based on the application of the communication system shown in FIG. 1 to the 5G network architecture shown in FIG. 3 as an example.
  • the communication system is applied to the 4G network architecture shown in 2 as an example.
  • the corresponding communication method is similar to the method in the above-mentioned embodiment. It only needs to adapt the related network elements and the message names exchanged between the network elements. Just replace it, so I won’t repeat it here.
  • the methods and/or steps implemented by the first access network device can also be implemented by components that can be used in the first access network device, and implemented by the second access network device.
  • the methods and/or steps may also be implemented by components that can be used for the second access network device.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be the first access network device in the foregoing method embodiment, or a device including the foregoing first access network device, or may be used for the first access network device.
  • the component of the network access device; or, the communication device may be the second access network device in the above method embodiment, or the device including the first access network device described above, or a component that can be used for the second access network device .
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 8 shows a schematic structural diagram of a first access network device 80.
  • the first access network device 80 includes a transceiver module 801 and a processing module 802.
  • the transceiver module 801 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 802 is used to determine the initiation of the handover of the terminal device; the transceiver module 801 is used to send a first message to the first core network device, and the first message is used to request the initiation of the handover for the terminal device; the transceiver module 801 also Used to receive a second message from the first core network device, the second message is used to instruct to perform handover; the transceiver module 801 is also used to send a third message to the second access network device through the interface between the base stations, where the first The three messages include the COUNT value of the first unreceived uplink data packet of the data bearer and/or the COUNT value that should be allocated to the next downlink data packet of which the data bearer has no sequence number assigned.
  • the processing module 802 is further configured to: before the transceiver module 801 sends the third message to the second access network device through the interface between the base stations, determine to send the third message to the second access network device through the interface between the base stations .
  • the processing module 802 is specifically configured to: when the first access network device and the second access network device establish an interface between base stations, or when the first access network device and the second access network device support When the direct data forward path is used, or when the second message includes the first information, it is determined to send the third message to the second access network device through the interface between the base stations.
  • the first access network device 80 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first access network device 80 may adopt the form of the communication device 40 shown in FIG. 4.
  • the processor 401 in the communication device 40 shown in FIG. 4 may invoke the computer execution instruction stored in the memory 403 to make the communication device 40 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 801 and the processing module 802 in FIG. 8 can be implemented by the processor 401 in the communication device 40 shown in FIG. 4 calling the computer execution instructions stored in the memory 403.
  • the function/implementation process of the processing module 802 in FIG. 8 can be implemented by the processor 401 in the communication device 40 shown in FIG. 4 calling a computer execution instruction stored in the memory 403, and the function of the transceiver module 801 in FIG. 8 /The realization process can be realized through the communication interface 404 in the communication device 40 shown in FIG. 4.
  • the first access network device 80 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 9 shows a schematic structural diagram of a second access network device 90.
  • the second access network device 90 includes a processing module 901 and a transceiver module 902.
  • the transceiver module 902 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 902 is used to receive a fourth message from the second core network device, the fourth message is used to request to initiate a handover for the terminal device; the transceiver module 902 is also used to send a fifth message to the second core network device , The fifth message is a response message to the fourth message; the transceiver module 902 is also used to receive a third message from the first access network device through the interface between base stations, the third message includes the first unreceived data bearer The COUNT value of the uplink data packet and/or the COUNT value that should be allocated to the next downlink data packet with an unallocated sequence number of the data bearer; the processing module 901 is configured to perform according to the COUNT value of the first unreceived uplink data packet of the data bearer , Sort the uplink data packets carried by the data; and/or, the processing module 901 is configured to allocate a COUNT value to the downlink data packet carried by the data according to the COUNT value that should be allocated to the next
  • the third message further includes first information, and the first information is used by the second access network device to associate the third message with the terminal device;
  • the processing module 901 is specifically configured to: sort the uplink data packets carried by the data of the terminal device according to the COUNT value of the first unreceived uplink data packet carried by the data and the first information; and/or process
  • the module 901 is specifically configured to allocate a COUNT value to the downlink data packet carried by the terminal device according to the COUNT value that should be allocated to the next downlink data packet to which the serial number is not allocated and the first information.
  • processing module 901 is further configured to determine that the first information is included in the fifth message before the transceiver module 902 sends the fifth message to the second core network device.
  • the processing module 901 is specifically configured to: when the first access network device and the second access network device establish an interface between base stations, or when the first access network device and the second access network device are connected When the direct data forwarding path is supported, it is determined that the first information is included in the fifth message.
  • the second access network device 90 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the second access network device 90 may adopt the form of the communication device 40 shown in FIG. 4.
  • the processor 401 in the communication device 40 shown in FIG. 4 may invoke the computer execution instructions stored in the memory 403 to make the communication device 40 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 901 and the transceiver module 902 in Fig. 9 can be implemented by the processor 401 in the communication device 40 shown in Fig. 4 calling the computer execution instructions stored in the memory 403.
  • the function/implementation process of the processing module 901 in FIG. 9 can be implemented by the processor 401 in the communication device 40 shown in FIG. 4 calling the computer execution instructions stored in the memory 403, and the function of the transceiver module 902 in FIG. 9 /The realization process can be realized through the communication interface 404 in the communication device 40 shown in FIG. 4.
  • the second access network device 90 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、设备及系统,涉及通信领域,能够更快获取到COUNT值,从而缩短上下行数据的传输时延,提升用户体验。具体包括:第一接入网设备确定发起终端设备的切换,向第一核心网设备发送第一消息,第一消息用于请求发起针对终端设备的切换。第一接入网设备接收来自第一核心网设备的第二消息,第二消息用于指示执行切换。第一接入网设备通过基站间的接口向第二接入网设备发送第三消息,其中,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值。

Description

一种通信方法、设备及系统 技术领域
本申请涉及通信领域,尤其涉及一种通信方法、设备及系统。
背景技术
在移动通信系统中,随着终端设备的移动,网络需要通过切换过程将终端设备从源基站切换到目标基站进行数据传输。其中,若源基站和目标基站连接的是两个不同的核心网设备或者源基站和目标基站之间没有建立Xn接口(第5代(5th generation,5G)移动通信系统)或X2接口(第4代(4th generation,4G)移动通信系统),则切换过程中需要通过基站与核心网设备之间的N2接口(5G移动通信系统)或S1(4G移动通信系统)接口交互信令,此为基于N2的切换(可以简称N2切换)或基于S1的切换(可以简称S1切换)。
对于无线空口的数据传输,为使数据包能够按序递交,发送方要为发送的每个数据包按照顺序累加方式分配一个对应的COUNT值,COUNT值由高位部分的超帧号(hyper frame number,HFN)和低位部分的包数据汇聚协议(packet data convergence Protocol,PDCP)序号两部分组成。其中,PDCP序号携带在数据包头中,与数据包一起发送给接收方。接收方根据PDCP序号进行排序,只有当前面序号的数据包成功接收并递交给上层后,才将该数据包递交给上层,从而实现按序递交的功能。因此,在N2切换或S1切换中,为使数据包能够按序递交,源基站需要通过核心网设备将数据承载的下行数据包的下个分配的COUNT值告知给目标基站,这样,目标基站才能继续从该COUNT值开始为下行数据分配COUNT值。同时,源基站还需要通过核心网设备将数据承载的第一个未收到的上行数据包的COUNT值以及上行接收状态告知给目标基站,以使目标基站根据该COUNT值确定下一个递交给上层的数据包。具体来说,源基站通过核心网设备向目标基站发送COUNT值的过程为:源基站通过切换过程中的信令将COUNT值先发送给与其连接的源核心网设备,再由源核心网设备向与目标基站连接的目标核心网设备发送COUNT值,最后由目标核心网设备向目标基站发送COUNT值。即,源基站向目标基站发送COUNT值时需要通过核心网设备中转。
然而,为了减低运营开销,运营商往往会将管理范围较大的核心网设备都集中布置在一个地方,这样会造成基站与核心网设备之间的距离较远,从而导致源基站通过核心网设备向目标基站发送COUNT值的时延较大。进一步的,在终端设备接入到目标基站之后,目标基站仍然可能未接收到源基站发送的COUNT值。进而,即使目标基站已经接收到了上行或下行数据包,目标基站依然无法根据COUNT值及时转发数据包,从而导致用户的数据时延过大,用户体验差,比如在线游戏卡顿等。
发明内容
本申请实施例提供一种通信方法、设备及系统,以至少解决切换流程中用户的数 据传输时延过大的问题,能够更快获取到COUNT值,从而缩短上下行数据的传输时延,提升用户体验。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种通信方法,该方法包括:第一接入网设备确定发起终端设备的切换;第一接入网设备向第一核心网设备发送第一消息,第一消息用于请求发起针对终端设备的切换;第一接入网设备接收来自第一核心网设备的第二消息,第二消息用于指示执行切换;第一接入网设备通过基站间的接口向第二接入网设备发送第三消息,其中,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值。由于本申请实施例中,在第一接入网设备通过第一核心网设备请求发起针对该终端设备的切换的场景下,第一接入网设备可以直接向第二接入网设备发送第三消息,通过第三消息告知第二接入网设备该终端设备的数据承载的第一个未接收到的上行数据包的COUNT值或COUNT值和/或该终端设备的数据承载未分配序号的下一个下行数据包应该分配的COUNT值。也就是说,第一接入网设备向第二接入网设备发送COUNT值时无需再通过核心网设备中转,进而接入网设备与核心网设备之间的距离也就不会影响第一接入网设备向第二接入网设备发送COUNT值的时延,因此即使接入网设备与核心网设备之间的距离较远,第一接入网设备向第二接入网设备发送COUNT值的时延依然较小。因而,相比现有技术,第二接入网设备能够更快获取到COUNT值,从而避免现有技术中,即使第二接入网设备已经接收到了上行或下行数据包,依然无法根据COUNT值及时转发数据包所导致的用户的数据时延过大,用户体验差的问题。
一种可能的设计中,第三消息还包括第一信息,第一信息用于第二接入网设备将第三消息关联到终端设备。基于该方案,第二接入网设备可根据该第一信息将第三消息关联到对应的终端设备。
一种可能的设计中,第二消息中包括第一信息。基于该方案,第一接入网设备可通过该第二消息获得第一信息。
一种可能的设计中,第一信息包括第二接入网设备为终端设备分配的基站间接口应用协议目标标识。基于该方案,第二接入网设备可根据该基站间接口应用协议目标标识将第三消息关联到对应的终端设备。
一种可能的设计中,第三消息还包括第一指示信息,第一指示信息指示仅根据第一信息将第三消息关联到终端设备;或者,第一指示信息指示第三消息中的基站间接口应用协议源标识信元无效。基于该方案,第二接入网设备可根据该第一指示信息的指示正确解析第三消息,进而基于该正确解析的第三消息进行数据传输。
一种可能的设计中,第一信息包括第二接入网设备为终端设备分配的基站间接口应用协议目标标识和第一接入网设备为终端设备分配的基站间接口应用协议源标识。基于该方案,第二接入网设备可根据该基站间接口应用协议目标标识和基站间接口应用协议源标识共同将第三消息关联到对应的终端设备。
一种可能的设计中,第一信息包括第二接入网设备和第二核心网设备之间的核心网接口应用协议标识,和/或,第二接入网设备和第二核心网设备之间的接入网接口应用协议标识。基于该方案,第二接入网设备可根据该核心网接口应用协议标识和/或接 入网接口应用协议标识将第三消息关联到对应的终端设备。
一种可能的设计中,第三消息还包括第二指示信息,第二指示信息指示第三消息中的基站间接口应用协议目标标识信元和基站间接口应用协议源标识信元无效。基于该方案,第二接入网设备可根据该第二指示信息的指示正确解析第三消息,进而基于该正确解析的第三消息进行数据传输。
一种可能的设计中,第一信息包括在第二消息的目标到源透明容器信元中;或者,第一信息包括在第二消息的无线资源控制RRC容器信元中。基于该方案,第一接入网设备能够将第一信息传送至第二接入网设备。
一种可能的设计中,第一信息包括终端设备的S临时移动用户标识(s-temporary mobile subscriber identity,S-TMSI);或者,第一信息包括目标小区的全球小区识别码(cell global identifier,CGI)以及第二接入网设备为终端设备分配的目标小区下的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)。基于该方案,第二接入网设备可根据该S-TMSI将第三消息关联到对应的终端设备,或者,第二接入网设备可根据该CGI和C-RNTI将第三消息关联到对应的终端设备。
一种可能的设计中,在第一接入网设备通过基站间的接口向第二接入网设备发送第三消息之前,还包括:第一接入网设备确定通过基站间的接口向第二接入网设备发送第三消息。基于该方案,在第一接入网设备确定需要通过基站间的接口向第二接入网设备发送第三消息时,才发送第三消息,可以避免不必要的信令开销。
一种可能的设计中,第一接入网设备确定通过基站间的接口向第二接入网设备发送第三消息,包括:当第一接入网设备和第二接入网设备建立了基站间接口时,或者当第一接入网设备和第二接入网设备之间支持直接数据前转路径时,或者当第二消息包括第一信息时,第一接入网设备确定通过基站间的接口向第二接入网设备发送第三消息。
第二方面,提供一种通信方法,该方法包括:第二接入网设备接收来自第二核心网设备的第四消息,第四消息用于请求发起针对终端设备的切换;第二接入网设备向第二核心网设备发送第五消息,第五消息为第四消息的响应消息;第二接入网设备通过基站间的接口接收来自第一接入网设备的第三消息,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值或COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值;第二接入网设备根据数据承载的第一个未接收到的上行数据包的COUNT值,对数据承载的上行数据包进行排序;或者和/或,第二接入网设备根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为数据承载的下行数据包分配COUNT值。由于本申请实施例中,在第一接入网设备通过第一核心网设备请求发起针对该终端设备的切换的场景下,第一接入网设备可以直接向第二接入网设备发送第三消息,通过第三消息告知第二接入网设备该终端设备的数据承载的第一个未接收到的上行数据包的COUNT值或COUNT值和/或该终端设备的数据承载未分配序号的下一个下行数据包应该分配的COUNT值。也就是说,第一接入网设备向第二接入网设备发送COUNT值时无需再通过核心网设备中转,进而接入网设备与核心网设备之间的距离也就不会影响第一接入网设备向第二接入网设备发送COUNT值的时延,因此即使接入网设备与核心网设备之间的距离较远,第一接入 网设备向第二接入网设备发送COUNT值的时延依然较小。因而,相比现有技术,第二接入网设备能够更快获取到COUNT值,从而避免现有技术中,即使第二接入网设备已经接收到了上行或下行数据包,依然无法根据COUNT值及时转发数据包所导致的用户的数据时延过大,用户体验差的问题。
一种可能的设计中,第三消息还包括第一信息,第一信息用于第二接入网设备将第三消息关联到终端设备;相应的,第二接入网设备根据数据承载的第一个未接收到的上行数据包的COUNT值,对上行数据包进行排序,包括:第二接入网设备根据数据承载的第一个未接收到的上行数据包的COUNT值和第一信息,对终端设备的数据承载的上行数据包进行排序;第二接入网设备根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为下行数据包分配COUNT值,包括:第二接入网设备根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值和第一信息,为终端设备的数据承载的下行数据包分配COUNT值。基于该方案,第二接入网设备可根据该第一信息将第三消息关联到对应的终端设备,进而确定对应终端设备的上行文,根据所述上行文进行数据传输。
一种可能的设计中,第五消息中包括第一信息。基于该方案,第二接入网设备通过向第二核心网设备发送该第五消息,可将该第一信息传送至第一接入网设备。
一种可能的设计中,第一信息包括第二接入网设备为终端设备分配的基站间接口应用协议目标标识。基于该方案,第二接入网设备可根据该基站间接口应用协议目标标识将第三消息关联到对应的终端设备。
一种可能的设计中,第三消息还包括第一指示信息,第一指示信息指示仅根据第一信息将第三消息关联到终端设备;或者,第一指示信息指示第三消息中的基站间接口应用协议源标识信元无效。基于该方案,第二接入网设备可根据该第一指示信息的指示正确解析第三消息,进而基于该正确解析的第三消息进行数据传输。
一种可能的设计中,第一信息包括第二接入网设备为终端设备分配的基站间接口应用协议目标标识和第一接入网设备为终端设备分配的基站间接口应用协议源标识。基于该方案,第二接入网设备可根据该基站间接口应用协议目标标识和基站间接口应用协议源标识共同将第三消息关联到对应的终端设备。
一种可能的设计中,第一信息包括第二接入网设备和第二核心网设备之间的核心网接口应用协议标识,和/或,第二接入网设备和第二核心网设备之间的接入网接口应用协议标识。基于该方案,第二接入网设备可根据该核心网接口应用协议标识和/或接入网接口应用协议标识将第三消息关联到对应的终端设备。
一种可能的设计中,第三消息还包括第二指示信息,第二指示信息指示第三消息中的基站间接口应用协议目标标识信元和基站间接口应用协议源标识信元无效。基于该方案,第二接入网设备可根据该第二指示信息的指示正确解析第三消息,进而基于该正确解析的第三消息进行数据传输。
一种可能的设计中,第一信息包括在第五消息的目标到源透明容器信元中;或者,第一信息包括在第五消息的无线资源控制容器信元中。基于该方案,第一接入网设备能够将第一信息传送至第二接入网设备。
一种可能的设计中,在第二接入网设备向第二核心网设备发送第五消息之前,方 法还包括:第二接入网设备确定在第五消息中包括第一信息。基于该方案,在第二接入网设备确定需要在第五消息中包括第一信息时,才在第五消息中包括第一信息,可以避免不必要的信令开销。
一种可能的设计中,第二接入网设备确定第五消息中包括第一信息,包括:当第一接入网设备和第二接入网设备建立了基站间接口时,或者,当第一接入网设备和第二接入网设备之间支持直接数据前转路径时,第二接入网设备确定在第五消息中包括第一信息。
一种可能的设计中,第一信息包括终端设备的S-TMSI;或者,第一信息包括目标小区的CGI以及第二接入网设备为终端设备分配的目标小区下的C-RNTI。基于该方案,第二接入网设备可根据该S-TMSI将第三消息关联到对应的终端设备,或者,第二接入网设备可根据该CGI和C-RNTI将第三消息关联到对应的终端设备。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的第一接入网设备,或者包含上述第一接入网设备的装置。或者,该通信装置可以为上述第二方面中的第二接入网设备,或者包含上述第二接入网设备的装置。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入网设备,或者包含上述第一接入网设备的装置。或者,该通信装置可以为上述第二方面中的第二接入网设备,或者包含上述第二接入网设备的装置。
第五方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入网设备,或者包含上述第一接入网设备的装置。或者,该通信装置可以为上述第二方面中的第二接入网设备,或者包含上述第二接入网设备的装置。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,提供一种通信系统,该通信系统包括第一接入网设备和第二接入网设备。第一接入网设备,用于确定发起终端设备的切换,进而向第一核心网设备发送第一消息,第一消息用于请求发起针对终端设备的切换。第一接入网设备,还用于接收来自第一核心网设备的第二消息,第二消息用于指示执行切换。第一接入网设备,还 用于通过基站间的接口向第二接入网设备发送第三消息,其中,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值。第二接入网设备,用于接收来自第二核心网设备的第四消息,第四消息用于请求发起针对终端设备的切换。第二接入网设备,还用于向第二核心网设备发送第五消息,第五消息为第四消息的响应消息。第二接入网设备,还用于通过基站间的接口接收来自第一接入网设备的第三消息,进而根据数据承载的第一个未接收到的上行数据包的COUNT值,对数据承载的上行数据包进行排序,和/或,根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为数据承载的下行数据包分配COUNT值。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为现有的4G网络架构示意图;
图3为现有的5G网络架构示意图;
图4为本申请实施例提供的通信设备的结构示意图;
图5为本申请实施例提供的通信方法流程示意图一;
图6为本申请实施例提供的通信方法流程示意图二;
图7为本申请实施例提供的通信方法流程示意图三;
图8为本申请实施例提供的一种第一接入网设备的结构示意图;
图9为本申请实施例提供的一种第二接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
如图1所示,为本申请实施例提供的一种通信系统10,该通信系统10包括第一 接入网设备101和第二接入网设备102。第一接入网设备101和第二接入网设备102之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
其中,第一接入网设备101,用于确定发起终端设备的切换,进而向第一核心网设备发送第一消息,第一消息用于请求发起针对终端设备的切换。第一接入网设备101,还用于接收来自第一核心网设备的第二消息,第二消息用于指示执行切换。第一接入网设备101,还用于通过基站间的接口向第二接入网设备102发送第三消息,其中,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值。第二接入网设备102,用于接收来自第二核心网设备的第四消息,第四消息用于请求发起针对终端设备的切换。第二接入网设备102,还用于向第二核心网设备发送第五消息,第五消息为第四消息的响应消息。第二接入网设备102,还用于通过基站间的接口接收来自第一接入网设备101的第三消息,进而根据数据承载的第一个未接收到的上行数据包的COUNT值,对数据承载的上行数据包进行排序,和/或,根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为数据承载的下行数据包分配COUNT值。其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
可选的,如图1所示,本申请实施例提供的通信系统10还可以包括第一核心网设备103和第二核心网设备104。
其中,第一核心网设备103,用于接收来自第一接入网设备101的第一消息,并且向第一接入网设备101发送第二消息。第二核心网设备104,用于向第二接入网设备102发送第四消息,并且接收来自第二接入网设备102的第五消息。其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
此外,需要说明的是,上述的第一接入网设备101和第二接入网设备102可以连接同一个核心网设备,也可以连接两个不同的核心网设备。也即,上述的第一核心网设备103和第二核心网设备104可以是同一个核心网设备,也可以是两个不同的核心网设备。本申请实施例对此不作具体限定。
由于本申请实施例中,在第一接入网设备通过第一核心网设备请求发起针对该终端设备的切换的场景下,第一接入网设备可以直接向第二接入网设备发送第三消息,通过第三消息告知第二接入网设备该终端设备的数据承载的第一个未接收到的上行数据包的COUNT值和/或该终端设备的数据承载未分配序号的下一个下行数据包应该分配的COUNT值。也就是说,第一接入网设备向第二接入网设备发送COUNT值时无需再通过核心网设备中转,进而接入网设备与核心网设备之间的距离也就不会影响第一接入网设备向第二接入网设备发送COUNT值的时延,因此即使接入网设备与核心网设备之间的距离较远,第一接入网设备向第二接入网设备发送COUNT值的时延依然较小。因而,相比现有技术,第二接入网设备能够更快获取到COUNT值,从而避免现有技术中,即使第二接入网设备已经接收到了上行或下行数据包,依然无法根据COUNT值及时转发数据包所导致的用户的数据时延过大,用户体验差的问题。
可选的,图1所示的通信系统10可以应用于目前4G网络中、或者目前5G网络中,或者未来的其他网络等,本申请实施例对此不作具体限定。
示例性的,假设图1所示的通信系统10应用于目前4G网络中,则如图2所示,上述的第一接入网设备101所对应的网元或者实体可以为4G网络中的演进型基站(evolved NodeB,eNodeB或eNB)1,上述的第二接入网设备102所对应的网元或者实体可以为4G网络中的eNB2,上述的第一核心网设备103所对应的网元或者实体可以为4G网络中的核心网设备1,上述的第二核心网设备104所对应的网元或者实体可以为4G网络中的核心网设备2。其中,核心网设备1和核心网设备2可以是同一个核心网设备,也可以是两个不同的核心网设备。示例性的,核心网设备1例如可以为4G网络中的移动性管理实体(mobility management entity,MME)1网元,核心网设备2例如可以为4G网络中的MME2网元,其中MME1网元和MME2网元可以是同一个MME网元,也可以是不同的MME网元。
其中,eNB1与eNB2之间通过X2接口通信,eNB1/eNB2与核心网设备1/核心网设备2之间通过S1接口通信。其中,这里的X2接口可以包括X2-C接口和X2-U接口,其中,X2-C接口为控制面接口,X2-U接口为用户面接口。这里的S1接口包括S1-MME接口和S1-U接口,其中,S1-MME接口为控制面接口,S1-U接口为用户面接口。
或者,示例性的,假设图1所示的通信系统10应用于目前的5G网络,则如图3所示,上述的第一接入网设备101所对应的网元或者实体可以为下一代节点B(next generation node B,gNB)1,第二接入网设备102所对应的网元或者实体可以为gNB2。上述的第一核心网设备103所对应的网元或者实体可以为5G网络中的核心网设备1,上述的第二核心网设备104所对应的网元或者实体可以为5G网络中的核心网设备2。其中,核心网设备1和核心网设备2可以是同一个核心网设备,也可以是两个不同的核心网设备。示例性的,核心网设备1和核心网设备2例如可以为5G网络中的接入移动性管理功能(access and mobility management function,AMF)1网元,核心网设备2例如可以为5G网络中的AMF2网元,其中AMF1网元和AMF2网元可以是同一个AMF网元,也可以是不同的AMF网元。
其中,gNB1与gNB2之间通过Xn接口通信,gNB1/gNB2与核心网设备1/核心网设备2之间通过下一代(next generation,NG)2或NG3接口通信。其中,这里的Xn接口可以包括Xn-U接口和Xn-C接口,其中,Xn-C接口为控制面接口,Xn-U接口为用户面接口。这里的NG2接口为控制面接口,NG3接口为用户面接口。
可选的,本申请实施例中的第一接入网设备101、第二接入网设备102的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第一接入网设备101或者第二接入网设备102的相关功能可以通过图4中的通信装置40来实现。图4所示为本申请实施例提供的通信装置40的结构示意图。该通信装置40包括一个或多个处理器401,通信线路402,以及至 少一个通信接口(图4中仅是示例性的以包括通信接口404,以及一个处理器401为例进行说明),可选的还可以包括存储器403。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,用于连接不同组件之间。
通信接口404,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口404也可以是位于处理器401内的收发电路,用以实现处理器的信号输入和信号输出。
存储器403可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置40可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置40还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。
上述的通信装置40可以是一个通用装置或者是一个专用装置。例如通信装置40可以是台式机、便携式电脑、网络服务器、PDA、移动手机、平板电脑、无线终端设备、嵌入式设备或具有图4中类似结构的设备。本申请实施例不限定通信装置40的类型。
可选的,本申请实施例中的通信装置40,是一种将终端设备接入到无线网络的设备,可以是4G网络中的eNB,或者5G网络中的gNB,或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
需要说明的是,上述的第一接入网设备也可以称为源接入网设备,第二接入网设备也可以称为目标接入网设备,例如,当接入网设备为基站时,第一接入网设备即称为源基站,第二接入网设备称为目标基站。类似的,上述的第一核心网设备也可以称为源核心网设备,第二核心网设备也可以称为目标核心网设备,例如,当核心网设备为AMF网元时,第一核心网设备即称为源AMF网元,第二核心网设备称为目标AMF网元。或者,也可以有其他称呼区分第一接入网设备和第二接入网设备、第一核心网设备和第二核心网设备,本申请实施例对此不作具体限定。
下面将结合图1至图4对本申请实施例提供的通信方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图1所示的通信系统应用于图3所示的5G网络,第一接入网设备为gNB1,第二接入网设备为gNB2,第一核心网设备为核心网设备1,第二核心网设备为核心网设备2为例,如图5所示,为本申请实施例提供的一种通信方法,包括如下步骤:
S501、gNB1确定发起终端设备的N2切换。
S502、可选的,gNB1为终端设备分配对应的Xn接口应用协议源标识(source Xn application protocol identity,source XnAP ID)。
其中,Xn接口应用协议源标识也可以称之为基站间接口应用协议源标识。
S503、gNB1向核心网设备1发送切换要求消息(handover required)。核心网设备1接收来自gNB1的切换要求消息。
其中,切换要求消息用于请求发起针对终端设备的N2切换。切换要求消息也可以称之为第一消息。
可选的,若gNB1为终端设备分配了对应的source XnAP ID,则切换要求消息可以包括source XnAP ID。
一种可能的实现方式中,source XnAP ID可以包括在该切换要求消息的源到目标透明容器(source to target transparent container)信元中,或者,source XnAP ID可以包括在该切换要求消息的无线资源控制容器(RRC container)信元中。可选的,RRC容器信元可以是源到目标透明容器信元中的一部分。
S504、核心网设备1向核心网设备2发送前向重配置请求消息(forward relocation request)。核心网设备2接收来自核心网设备1的前向重配置请求消息。
其中,源到目标透明容器信元包括在该前向重配置请求消息中。
S505、核心网设备2向gNB2发送切换请求消息(handover request)。gNB2接收 来自核心网设备2的切换请求消息。
其中,切换请求消息也可以称之为第四消息。
可选的,若gNB1为终端设备分配了对应的source XnAP ID,则切换请求消息可以包括该source XnAP ID。
一种可能的实现方式中,source XnAP ID可以包括在该切换请求消息的源到目标透明容器信元中,或者,source XnAP ID可以包括在该切换请求消息的无线资源控制容器(RRC container)信元中,本申请实施例对此不作具体限定。可选的,RRC容器信元可以是源到目标透明容器信元中的一部分。
S506、可选的,gNB2确定在切换请求应答消息中包括target XnAP ID。
其中,切换请求应答消息也可以称之为第五消息。
一种可能的实现方式中,步骤S506可以包括:当gNB1和gNB2建立了Xn接口时,或者,当gNB1和gNB2之间支持直接数据前转路径时,或者,步骤505中gNB2接收到的切换请求消息包括source XnAP ID时,gNB2确定在切换请求应答消息中包括target XnAP ID。
即,当gNB2确定与gNB1之间建立了Xn接口或者与gNB1之间支持直接数据前转路径时,才在切换请求应答消息中包括target XnAP ID,进而向核心网设备2发送切换请求应答消息。这样一来,本申请实施例提供的通信方法执行到步骤S510时,gNB1只要接收到切换命令消息或者gNB1确定切换命令消息中包括target XnAP ID,即表示gNB1可以通过gNB1和gNB2之间的Xn接口向gNB2发送消息,从而直接通过gNB1和gNB2之间的Xn接口向gNB2发送序号状态转移消息。
其中,需要说明的是,基站之间支持直接数据前转路径表示基站间可通过可用的直接数据前转路径发送用户面数据。
可选的,若gNB2接收到的切换请求消息还包括source XnAP ID,则gNB2在确定在切换请求应答消息中包括target XnAP ID的同时,还可以包括source XnAP ID。
S507、gNB2为终端设备分配对应的Xn接口应用协议目标标识(target Xn application protocol identity,Target XnAP ID)。
其中,Xn接口应用协议目标标识也可以称之为基站间接口应用协议目标标识。
S508、gNB2向核心网设备2发送切换请求应答消息(handover request acknowledge)。核心网设备2接收来自gNB2的切换请求应答消息。
其中,切换请求应答消息包括target XnAP ID。
可选的,若gNB2接收到的切换请求消息包括source XnAP ID,则切换请求应答消息还可以进一步包括source XnAP ID。
一种可能的实现方式中,target XnAP ID,或者,target XnAP ID和source XnAP ID,可以包括在该切换请求应答消息的目标到源透明容器(target to source transparent container)信元中,或者包括在该切换请求应答消息的无线资源控制容器(RRC container)信元中,本申请实施例对此不作具体限定。可选的,RRC容器信元可以是目标到源透明容器信元中的一部分。
S509、核心网设备2向核心网设备1发送前向重配置应答消息(forward relocation response)。核心网设备1接收来自核心网设备2的前向重配置应答消息。
其中,目标到源透明容器信元包括在该前向重配置应答消息中。
S510、核心网设备1向gNB1发送切换命令消息(handover command)。gNB1接收来自核心网设备1的切换命令消息。
其中,切换命令消息包括target XnAP ID。切换命令消息也可以称之为第二消息。
可选的,若gNB1为终端设备分配了对应的source XnAP ID,则切换命令消息还可以进一步包括source XnAP ID。
一种可能的实现方式中,target XnAP ID,或者,target XnAP ID和source XnAP ID,可以包括在该切换命令消息的目标到源透明容器信元中,或者包括在该切换命令消息的RRC容器信元中,本申请实施例对此不作具体限定。可选的,RRC容器信元可以是目标到源透明容器信元中的一部分。
S511、gNB1向终端设备发送无线资源控制重配置消息(RRC reconfig),命令终端设备切换到gNB2。终端设备接收来自gNB1的无线资源控制重配置消息,然后开始接入到目标基站。在接入成功后,开始与目标基站进行数据传输。
S512、可选的,gNB1确定通过基站间的Xn接口发送序号状态转移消息(SN status transfer)。
其中,序号状态转移消息也称之为第三消息。
一种可选的实现方式中,步骤S512具体可以包括:当gNB1和gNB2建立了Xn接口时,或者当gNB1和gNB2之间支持直接数据前转路径时,或者当切换命令消息包括target XnAP ID时,gNB1确定通过Xn接口向gNB2发送序号状态转移消息。
可选的,若步骤S503的切换要求消息包括source XnAP ID,则gNB1在确定序号状态转移消息中包括target XnAP ID的同时,还可以包括source XnAP ID。
S513、gNB1通过基站间的Xn接口向gNB2发送序号状态转移消息。gNB2接收来自gNB1的序号状态转移消息。
其中,序号状态转移消息包括target XnAP ID和数据承载的第一个未接收到的上行数据包的COUNT值;和/或,序号状态转移消息包括target XnAP ID和数据承载未分配序号的下一个下行数据包应该分配的COUNT值。
其中,target XnAP ID,用于gNB2将序号状态转移消息关联到对应的终端设备。其中,关联指的是,gNB2通过target XnAP ID能获知序号状态转移消息针对的具体终端设备,或者说,gNB2通过target XnAP ID确定对应终端设备的上下文。
可选的,若步骤S503的切换要求消息包括source XnAP ID,则序号状态转移消息还可以进一步包括source XnAP ID。此时,source XnAP ID和target XnAP ID一起用于gNB2将序号状态转移消息关联到对应的终端设备。
可选的,由于现有技术中序号状态转移消息中必须包括source XnAP ID信元,因此在本申请实施例中,当序号状态转移消息仅包括target XnAP ID时,需要进一步指示仅根据target XnAP ID关联终端设备,或者,指示source XnAP ID信元无效。即,若序号状态转移消息仅包括target XnAP ID,则序号状态转移消息还可以进一步包括第一指示信息。其中,第一指示信息指示仅根据target XnAP ID将序号状态转移消息关联到终端设备;或者,第一指示信息指示序号状态转移消息中的source XnAP ID信元无效。
S514、gNB2根据序号状态转移消息,对终端设备的数据承载的上行数据包进行排序。和/或,gNB2根据序号状态转移消息,为终端设备的数据承载的下行数据包分配COUNT值。
具体的,当序号状态转移消息包括的是target XnAP ID和数据承载的相关COUNT值时,则gNB2根据target XnAP ID确定对应终端设备的上下文,进而根据终端设备的上下文,对终端设备的数据承载的上行数据包进行排序和/或为终端设备的数据承载的下行数据包分配COUNT值。
当序号状态转移消息还进一步包括source XnAP ID时,则gNB2根据source XnAP ID和target XnAP ID共同确定对应终端设备的上下文,进而根据终端设备的上下文,对终端设备的数据承载的上行数据包进行排序和/或为终端设备的数据承载的下行数据包分配COUNT值。
由于本申请实施例提供的通信方法中,在gNB1通过核心网设备1请求发起针对该终端设备的N2切换的场景下,gNB1可以直接通过基站间的Xn接口向gNB2发送序号状态转移消息,通过序号状态转移消息告知gNB2该终端设备的数据承载的第一个未接收到的上行数据包的COUNT值和/或该终端设备的数据承载未分配序号的下一个下行数据包应该分配的COUNT值。也就是说,gNB1向gNB2发送COUNT值时无需再通过核心网设备1和核心网设备2中转,进而gNB1/2与核心网设备1/2之间的距离也就不会影响gNB1向gNB2发送COUNT值的时延,因此即使gNB1/2与核心网设备1/2之间的距离较远,gNB1向gNB2发送COUNT值的时延依然较小。因而,相比现有技术,gNB2能够更快获取到COUNT值,从而避免现有技术中,即使gNB2已经接收到了上行或下行数据包,依然无法根据COUNT值及时转发数据包所导致的用户的数据时延过大,用户体验差的问题。
其中,上述步骤S501至S514中的gNB1和gNB2的动作可以由图4所示的通信装置40中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图1所示的通信系统应用于图3所示的5G网络,第一接入网设备为gNB1,第二接入网设备为gNB2,第一核心网设备为核心网设备1,第二核心网设备为核心网设备2为例,如图6所示,为本申请实施例提供的另一种通信方法,包括如下步骤:
S601、gNB1确定发起终端设备的N2切换。
S602、gNB1向核心网设备1发送切换要求消息(handover required)。核心网设备1接收来自gNB1的切换要求消息。
其中,切换要求消息用于请求发起针对终端设备的N2切换。切换要求消息也可以称之为第一消息。
S603、核心网设备1向核心网设备2发送前向重配置请求消息(forward relocation request)。核心网设备2接收来自核心网设备1的前向重配置请求消息。
S604、核心网设备2向gNB2发送切换请求消息(handover request)。gNB2接收来自核心网设备2的切换请求消息。
其中,切换请求消息也可以称之为第四消息。切换请求消息包括核心网设备2分配的gNB2和核心网设备2之间的核心网接口应用协议标识(access and mobility  management function user equipment NG application protocol,AMF UE NGAP ID)。
S605、可选的,gNB2确定在切换请求应答消息(handover request acknowledge)中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID。
其中,切换请求应答消息也可以称之为第五消息。
一种可能的实现方式中,步骤S605可以包括:当gNB1和gNB2建立了Xn接口时,或者,当gNB1和gNB2之间支持直接数据前转路径时,gNB2确定在切换请求应答消息中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID。
即,当gNB2确定与gNB1之间建立了Xn接口或者与gNB1之间支持直接数据前转路径时,才在切换请求应答消息中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,进而向核心网设备2发送切换请求应答消息。这样一来,本申请实施例提供的通信方法执行到步骤S608时,gNB1只要确定切换命令消息中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,即表示gNB1可以通过gNB1和gNB2之间的Xn接口向gNB2发送消息,从而直接通过gNB1和gNB2之间的Xn接口向gNB2发送序号状态转移消息。
其中,需要说明的是,基站之间支持直接数据前转路径表示基站间可通过可用的直接数据前转路径发送用户面数据。
S606、gNB2向核心网设备2发送切换请求应答消息。核心网设备2接收来自gNB2的切换请求应答消息。
其中,切换请求应答消息中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID。
一种可能的实现方式中,gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID可以包括在该切换请求应答消息的目标到源透明容器信元中,或者包括在该切换请求应答消息的RRC容器信元中,本申请实施例对此不作具体限定。可选的,RRC容器信元可以是目标到源透明容器信元中的一部分。
需要说明的是,现有技术中,切换请求应答消息中已经包括了gNB2和核心网设备2之间的AMF UE NGAP ID和RAN UE NGAP ID,但这一信息主要是用于核心网设备2识别该消息所针对的具体终端设备,并不会将该信息传递到核心网设备1和gNB1。而在本申请实施例中,通过将gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID包括在切换命令消息的目标到源透明容器(target to transparent container)信元或者目标到源透明容器信元的无线资源控制(RRC container)容器信元中,能够通过目标到源透明容器信元将gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID传递到核心网设备1和gNB1。对应地,步骤S605中,gNB2确定在切换请求应答消息中包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,指的是在切换命令消息的目标到源透明容器信元或者无线资源控制容器容器信元里包含这些信息。
S607、核心网设备2向核心网设备1发送前向重配置应答消息(forward relocation response)。核心网设备1接收来自核心网设备2的前向重配置应答消息。
其中,目标到源透明容器信元包括在该前向重配置应答消息中。
S608、核心网设备1向gNB1发送切换命令消息(handover command)。gNB1接 收来自核心网设备1的切换命令消息。
其中,切换命令消息包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID。切换命令消息也可称之为第二消息。
一种可能的实现方式中,gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID可以包括在该切换命令消息的目标到源透明容器信元中,或者包括在该切换命令消息的RRC容器信元中,本申请实施例对此不作具体限定。可选的,RRC容器信元可以是目标到源透明容器信元中的一部分。
S609、gNB1向终端设备发送无线资源控制重配置消息(RRC reconfig),命令终端设备切换到gNB2。终端设备接收来自gNB1的无线资源控制重配置消息,然后开始接入到目标基站。在接入成功后,开始与目标基站进行数据传输。
S610、可选的,gNB1确定通过基站间的Xn接口发送序号状态转移消息(SN status transfer)。
其中,序号状态转移消息也可以称之为第三消息。
一种可能的实现方式中,步骤S610具体可以包括:当gNB1和gNB2建立了Xn接口时,或者当gNB1和gNB2之间支持直接数据前转路径时,或者当切换命令消息包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID时,gNB1确定通过Xn接口向gNB2发送序号状态转移消息。
S611、gNB1通过基站间的Xn接口向gNB2发送序号状态转移消息。gNB2接收来自gNB1的序号状态转移消息。
其中,序号状态转移消息包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID。gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,用于gNB2将序号状态转移消息关联到对应的终端设备。其中,关联指的是,gNB2通过gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID能获知序号状态转移消息针对的具体终端设备,或者说,gNB2通过gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID能确定对应终端设备的上下文。
可选的,由于现有技术中序号状态转移消息中必须包括target XnAP ID信元和source XnAP ID信元,因此在本申请实施例中,当序号状态转移消息包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID时,需要进一步指示source XnAP ID信元和target XnAP ID信元无效。即,序号状态转移消息还可以进一步包括第二指示信息。其中,第二指示信息指示source XnAP ID信元和target XnAP ID信元无效。或者,只要当序号状态转移消息包括gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID时,gNB2就知道source XnAP ID信元和target XnAP ID信元无效,即gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID可以被认为是第二指示信息。
S612、gNB2根据序号状态转移消息,对终端设备的数据承载的上行数据包进行排序。和/或,gNB2根据序号状态转移消息,为终端设备的数据承载的下行数据包分配COUNT值。
具体的,gNB2是根据序号状态转移消息中包括的gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,确定对应终端设备的上下文,进而根据 终端设备的上下文,对终端设备的数据承载的上行数据包进行排序。和/或,gNB2根据序号状态转移消息中包括的gNB2和核心网设备2之间的AMF UE NGAP ID和/或RAN UE NGAP ID,确定对应终端设备的上下文,进而根据终端设备的上下文,为终端设备的数据承载的下行数据包分配COUNT值。
本申请实施例图6所示的通信方法的有益效果请参考上述图5所示通信方法中的描述,此处不再赘述。
其中,上述步骤S601至S612中的gNB1和gNB2的动作可以由图4所示的通信装置40中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图1所示的通信系统应用于图3所示的5G网络,第一接入网设备为gNB1,第二接入网设备为gNB2,第一核心网设备为核心网设备1,第二核心网设备为核心网设备2为例,如图7所示,为本申请实施例提供的另一种通信方法,包括如下步骤:
S701、gNB1确定发起终端设备的N2切换。
S702、gNB1向核心网设备1发送切换要求消息(handover required)。核心网设备1接收来自gNB1的切换要求消息。
其中,切换要求消息用于请求发起针对终端设备的N2切换。切换要求消息也可以称之为第一消息。
S703、核心网设备1向核心网设备2发送前向重配置请求消息(forward relocation request)。核心网设备2接收来自核心网设备1的前向重配置请求消息。
S704、核心网设备2向gNB2发送切换请求消息(handover request)。gNB2接收来自核心网设备2的切换请求消息。
其中,切换请求消息也可以称之为第四消息。
S705、gNB2向核心网设备2发送切换请求应答消息(handover request acknowledge)。核心网设备2接收来自gNB2的切换请求应答消息。
其中,切换请求应答消息也可以称之为第五消息。
S706、核心网设备2向核心网设备1发送前向重配置应答消息(forward relocation response)。核心网设备1接收来自核心网设备2的前向重配置应答消息。
S707、核心网设备1向gNB1发送切换命令消息(handover command)。gNB1接收来自核心网设备1的切换命令消息。
其中,切换命令消息也可以称之为第三消息。
S708、gNB1向终端设备发送无线资源控制重配置消息(RRC reconfig),命令终端设备切换到gNB2。终端设备接收来自gNB1的无线资源控制重配置消息,然后开始接入到目标基站。在接入成功后,开始与目标基站进行数据传输。
S709、gNB1确定通过基站间的Xn接口发送序号状态转移消息(SN status transfer)。
一种可能的实现方式中,步骤S709具体可以包括:当gNB1和gNB2建立了Xn接口时,或者当gNB1和gNB2之间支持直接数据前转路径时,gNB1确定通过Xn接口向gNB2发送序号状态转移消息。
其中,需要说明的是,基站之间支持直接数据前转路径表示基站间可通过可用的直接数据前转路径发送用户面数据。
S710、gNB1通过基站间的Xn接口向gNB2发送序号状态转移消息。gNB2接收来自gNB1的序号状态转移消息。
其中,序号状态转移消息包括终端设备的,S-TMSI,或者,序号状态转移消息包括目标小区的CGI以及gNB2为终端设备分配的目标小区下的C-RNTI。序号状态转移消息包括的上述标识信息,用于gNB2将序号状态转移消息关联到对应的终端设备。其中,关联指的是,gNB2通过上述标识信息能获知序号状态转移消息针对的具体终端设备,或者说,gNB2通过上述标识信息能确定对应终端设备的上下文。
S711、gNB2根据序号状态转移消息,对终端设备的数据承载的上行数据包进行排序。和/或,gNB2根据序号状态转移消息,为终端设备的数据承载的下行数据包分配COUNT值。
具体的,gNB2根据序号状态转移消息中包括的终端设备的S-TMSI,将序号状态转移消息关联到对应的终端设备,或者,gNB2根据gNB2根据序号状态转移消息中包括的目标小区的CGI和gNB2为终端设备分配的目标小区下的C-RNTI将序号状态转移消息关联到对应的终端设备,进而确定对应终端设备的上下文,根据终端设备的上下文,对终端设备的数据承载的上行数据包进行排序。和/或,gNB2根据序号状态转移消息中包括的终端设备的S-TMSI,将序号状态转移消息关联到对应的终端设备,或者,gNB2根据gNB2根据序号状态转移消息中包括的目标小区的CGI和gNB2为终端设备分配的目标小区下的C-RNTI将序号状态转移消息关联到对应的终端设备,进而确定对应终端设备的上下文,根据终端设备的上下文,为终端设备的数据承载的下行数据包分配COUNT值。
本申请实施例图7所示的通信方法的有益效果请参考上述图5所示通信方法中的描述,此处不再赘述。
其中,上述步骤S701至S711中的gNB1和gNB2的动作可以由图4所示的通信装置40中的处理器401调用存储器403中存储的应用程序代码来执行,本实施例对此不作任何限制。
需要说明的是,采用上述图5至图7所示的实施例提供的通信方法后,对于现有技术的N2切换流程中,gNB1是否还需要向核心网设备1发送N2接口的uplink RAN status transfer消息的问题,可以有以下两种可选的处理方法:(1)gNB1仍然向核心网设备1发送N2接口的uplink RAN status transfer消息。gNB2先收到本申请实施例中的序号状态转移消息,则根据该序号状态转移消息确定对应终端设备的上下文,并根据序号状态转移消息中的COUNT值进行上行排序或下行序号分配。也即,不改变原有N2切换流程,只是增加了Xn口的序号状态转移消息。(2)gNB1不再向核心网设备1发送N2接口的uplink RAN status transfer消息。相比(1),能够减小信令开销。
此外,需要说明的是,上述图5至图7所示的实施例均是以图1所示的通信系统应用于如图3所示的5G网络架构为例进行说明,若以图3所示的通信系统应用于如2所示的4G网络架构为例进行说明,则对应的通信方法与上述实施例中的方法类似,仅需将相关网元以及网元之间交互的消息名称进行适应性替换即可,在此不予赘述。
可以理解的是,以上各个实施例中,由第一接入网设备实现的方法和/或步骤,也可以由可用于第一接入网设备的部件实现,由第二接入网设备实现的方法和/或步骤, 也可以由可用于第二接入网设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的第一接入网设备,或者包含上述第一接入网设备的装置,或者为可用于第一接入网设备的部件;或者,该通信装置可以为上述方法实施例中的第二接入网设备,或者包含上述第而接入网设备的装置,或者为可用于第二接入网设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
比如,以通信装置为上述方法实施例中的第一接入网设备101为例,图8示出了一种第一接入网设备80的结构示意图。该第一接入网设备80包括收发模块801和处理模块802。所述收发模块801,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块802,用于确定发起终端设备的切换;收发模块801,用于向第一核心网设备发送第一消息,第一消息用于请求发起针对终端设备的切换;收发模块801,还用于接收来自第一核心网设备的第二消息,第二消息用于指示执行切换;收发模块801,还用于通过基站间的接口向第二接入网设备发送第三消息,其中,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值。
可选的,处理模块802还用于:在收发模块801通过基站间的接口向第二接入网设备发送第三消息之前,确定通过基站间的接口向第二接入网设备发送第三消息。
可选的,处理模块802具体用于:当第一接入网设备和第二接入网设备建立了基站间接口时,或者当第一接入网设备和第二接入网设备之间支持直接数据前转路径时,或者当第二消息包括第一信息时,确定通过基站间的接口向第二接入网设备发送第三消息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一接入网设备80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一接入网设备80可以采用图4所示的通信装置40的形式。
比如,图4所示的通信装置40中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得通信装置40执行上述方法实施例中的通信方法。
具体的,图8中的收发模块801和处理模块802的功能/实现过程可以通过图4所示的通信装置40中的处理器401调用存储器403中存储的计算机执行指令来实现。或 者,图8中的处理模块802的功能/实现过程可以通过图4所示的通信装置40中的处理器401调用存储器403中存储的计算机执行指令来实现,图8中的收发模块801的功能/实现过程可以通过图4中所示的通信装置40中的通信接口404来实现。
由于本实施例提供的第一接入网设备80可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的第二接入网设备为例。图9示出了一种第二接入网设备90的结构示意图。该第二接入网设备90包括处理模块901和收发模块902。所述收发模块902,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块902,用于接收来自第二核心网设备的第四消息,第四消息用于请求发起针对终端设备的切换;收发模块902,还用于向第二核心网设备发送第五消息,第五消息为第四消息的响应消息;收发模块902,还用于通过基站间的接口接收来自第一接入网设备的第三消息,第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或数据承载未分配序号的下一个下行数据包应该分配的COUNT值;处理模块901,用于根据数据承载的第一个未接收到的上行数据包的COUNT值,对数据承载的上行数据包进行排序;和/或,处理模块901,用于根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为数据承载的下行数据包分配COUNT值。
可选的,第三消息还包括第一信息,第一信息用于第二接入网设备将第三消息关联到终端设备;
相应的,处理模块901具体用于:根据数据承载的第一个未接收到的上行数据包的COUNT值和第一信息,对终端设备的数据承载的上行数据包进行排序;和/或,处理模块901具体用于:根据数据承载未分配序号的下一个下行数据包应该分配的COUNT值和第一信息,为终端设备的数据承载的下行数据包分配COUNT值。
可选的,处理模块901,还用于在收发模块902向第二核心网设备发送第五消息之前,确定在第五消息中包括第一信息。
可选的,处理模块901具体用于:当第一接入网设备和第二接入网设备建立了基站间接口时,或者,当第一接入网设备和第二接入网设备之间支持直接数据前转路径时,确定在第五消息中包括第一信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第二接入网设备90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第二接入网设备90可以采用图4所示的通信装置40的形式。
[根据细则91更正 23.08.2019] 
比如,图4所示的通信装置40中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得通信装置40执行上述方法实施例中的通信方法。
具体的,图9中的处理模块901和收发模块902的功能/实现过程可以通过图4所 示的通信装置40中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图9中的处理模块901的功能/实现过程可以通过图4所示的通信装置40中的处理器401调用存储器403中存储的计算机执行指令来实现,图9中的收发模块902的功能/实现过程可以通过图4中所示的通信装置40中的通信接口404来实现。
由于本实施例提供的第二接入网设备90可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理 解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    第一接入网设备确定发起终端设备的切换;
    所述第一接入网设备向第一核心网设备发送第一消息,所述第一消息用于请求发起针对所述终端设备的切换;
    所述第一接入网设备接收来自所述第一核心网设备的第二消息,所述第二消息用于指示执行切换;
    所述第一接入网设备通过基站间的接口向第二接入网设备发送第三消息,其中,所述第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值。
  2. 根据权利要求1所述的方法,其特征在于,所述第三消息还包括第一信息,所述第一信息用于所述第二接入网设备将所述第三消息关联到所述终端设备。
  3. 根据权利要求2所述的方法,其特征在于,所述第二消息中包括所述第一信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述第二接入网设备为所述终端设备分配的基站间接口应用协议目标标识。
  5. 根据权利要求4所述的方法,其特征在于,所述第三消息还包括第一指示信息,所述第一指示信息指示仅根据所述第一信息将所述第三消息关联到所述终端设备;或者,所述第一指示信息指示所述第三消息中的基站间接口应用协议源标识信元无效。
  6. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述第二接入网设备为所述终端设备分配的基站间接口应用协议目标标识和所述第一接入网设备为所述终端设备分配的基站间接口应用协议源标识。
  7. 根据权利要求3所述的方法,其特征在于,所述第一信息包括所述第二接入网设备和第二核心网设备之间的核心网接口应用协议标识,和/或,所述第二接入网设备和所述第二核心网设备之间的接入网接口应用协议标识。
  8. 根据权利要求7所述的方法,其特征在于,所述第三消息还包括第二指示信息,所述第二指示信息指示所述第三消息中的基站间接口应用协议目标标识信元和基站间接口应用协议源标识信元无效。
  9. 根据权利要求3-8任一项所述的方法,其特征在于,所述第一信息包括在所述第二消息的目标到源透明容器信元中;或者,所述第一信息包括在所述第二消息的无线资源控制RRC容器信元中。
  10. 根据权利要求2所述的方法,其特征在于,所述第一信息包括所述终端设备的S临时移动用户标识S-TMSI;或者,所述第一信息包括目标小区的全球小区识别码CGI以及所述第二接入网设备为所述终端设备分配的目标小区下的小区无线网络临时标识C-RNTI。
  11. 根据权利要求2-10任一项所述的方法,其特征在于,在所述第一接入网设备通过基站间的接口向所述第二接入网设备发送所述第三消息之前,还包括:
    所述第一接入网设备确定通过基站间的接口向所述第二接入网设备发送所述第三消息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一接入网设备确定通过基 站间的接口向所述第二接入网设备发送所述第三消息,包括:
    当所述第一接入网设备和所述第二接入网设备建立了基站间接口时,或者当所述第一接入网设备和所述第二接入网设备之间支持直接数据前转路径时,或者当所述第二消息包括所述第一信息时,所述第一接入网设备确定通过基站间的接口向所述第二接入网设备发送所述第三消息。
  13. 一种通信方法,其特征在于,包括:
    第二接入网设备接收来自第二核心网设备的第四消息,所述第四消息用于请求发起针对终端设备的切换;
    所述第二接入网设备向所述第二核心网设备发送第五消息,所述第五消息为所述第四消息的响应消息;
    所述第二接入网设备通过基站间的接口接收来自第一接入网设备的第三消息,所述第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值;
    所述第二接入网设备根据所述数据承载的第一个未接收到的上行数据包的COUNT值,对所述数据承载的上行数据包进行排序;和/或,所述第二接入网设备根据所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为所述数据承载的下行数据包分配COUNT值。
  14. 根据权利要求13所述的方法,其特征在于,所述第三消息还包括第一信息,所述第一信息用于所述第二接入网设备将所述第三消息关联到所述终端设备;
    相应的,所述第二接入网设备根据所述数据承载的第一个未接收到的上行数据包的COUNT值,对上行数据包进行排序,包括:所述第二接入网设备根据所述数据承载的第一个未接收到的上行数据包的COUNT值和所述第一信息,对所述终端设备的所述数据承载的上行数据包进行排序;
    所述第二接入网设备根据所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为下行数据包分配COUNT值,包括:所述第二接入网设备根据所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值和所述第一信息,为所述终端设备的所述数据承载的下行数据包分配COUNT值。
  15. 根据权利要求14所述的方法,其特征在于,所述第五消息中包括所述第一信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信息包括所述第二接入网设备为所述终端设备分配的基站间接口应用协议目标标识。
  17. 根据权利要求16所述的方法,其特征在于,所述第三消息还包括第一指示信息,所述第一指示信息指示仅根据所述第一信息将所述第三消息关联到所述终端设备;或者,所述第一指示信息指示所述第三消息中的基站间接口应用协议源标识信元无效。
  18. 根据权利要求15所述的方法,其特征在于,所述第一信息包括所述第二接入网设备为所述终端设备分配的基站间接口应用协议目标标识和所述第一接入网设备为所述终端设备分配的基站间接口应用协议源标识。
  19. 根据权利要求15所述的方法,其特征在于,所述第一信息包括所述第二接入网设备和第二核心网设备之间的核心网接口应用协议标识,和/或,所述第二接入网设 备和所述第二核心网设备之间的接入网接口应用协议标识。
  20. 根据权利要求19所述的方法,其特征在于,所述第三消息还包括第二指示信息,所述第二指示信息指示所述第三消息中的基站间接口应用协议目标标识信元和基站间接口应用协议源标识信元无效。
  21. 根据权利要求15-20任一项所述的方法,其特征在于,所述第一信息包括在所述第五消息的目标到源透明容器信元中;或者,所述第一信息包括在所述第五消息的无线资源控制容器信元中。
  22. 根据权利要求15-20任一项所述的方法,其特征在于,在所述第二接入网设备向所述第二核心网设备发送第五消息之前,所述方法还包括:
    所述第二接入网设备确定在所述第五消息中包括所述第一信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第二接入网设备确定所述第五消息中包括所述第一信息,包括:
    当所述第一接入网设备和所述第二接入网设备建立了基站间接口时,或者,当所述第一接入网设备和所述第二接入网设备之间支持直接数据前转路径时,所述第二接入网设备确定在所述第五消息中包括所述第一信息。
  24. 根据权利要求14所述的方法,其特征在于,所述第一信息包括所述终端设备的S临时移动用户标识S-TMSI;或者,所述第一信息包括目标小区的全球小区识别码CGI以及所述第二接入网设备为所述终端设备分配的目标小区下的小区无线网络临时标识C-RNTI。
  25. 一种第一接入网设备,其特征在于,所述第一接入网设备包括:处理模块和收发模块;
    所述处理模块,用于确定发起终端设备的切换;
    所述收发模块,用于向第一核心网设备发送第一消息,所述第一消息用于请求发起针对所述终端设备的切换;
    所述收发模块,还用于接收来自所述第一核心网设备的第二消息,所述第二消息用于指示执行切换;
    所述收发模块,还用于通过基站间的接口向第二接入网设备发送第三消息,其中,所述第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值。
  26. 根据权利要求25所述的第一接入网设备,其特征在于,所述第一接入网设备还用于执行如权利要求2-12任一项所述的通信方法。
  27. 一种第二接入网设备,其特征在于,所述第二接入网设备包括:处理模块和收发模块;
    所述收发模块,用于接收来自第二核心网设备的第四消息,所述第四消息用于请求发起针对终端设备的切换;
    所述收发模块,还用于向所述第二核心网设备发送第五消息,所述第五消息为所述第四消息的响应消息;
    所述收发模块,还用于通过基站间的接口接收来自第一接入网设备的第三消息,所述第三消息包括数据承载的第一个未接收到的上行数据包的COUNT值和/或所述数 据承载未分配序号的下一个下行数据包应该分配的COUNT值;
    所述处理模块,用于根据所述数据承载的第一个未接收到的上行数据包的COUNT值,对所述数据承载的上行数据包进行排序;和/或,所述处理模块,用于根据所述数据承载未分配序号的下一个下行数据包应该分配的COUNT值,为所述数据承载的下行数据包分配COUNT值。
  28. 根据权利要求27所述的第二接入网设备,其特征在于,所述第二接入网设备还用于执行如权利要求13-24任一项所述的通信方法。
PCT/CN2019/101189 2019-08-16 2019-08-16 一种通信方法、设备及系统 WO2021031015A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980097741.7A CN114009076B (zh) 2019-08-16 2019-08-16 一种通信方法、设备及系统
PCT/CN2019/101189 WO2021031015A1 (zh) 2019-08-16 2019-08-16 一种通信方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101189 WO2021031015A1 (zh) 2019-08-16 2019-08-16 一种通信方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2021031015A1 true WO2021031015A1 (zh) 2021-02-25

Family

ID=74660412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101189 WO2021031015A1 (zh) 2019-08-16 2019-08-16 一种通信方法、设备及系统

Country Status (2)

Country Link
CN (1) CN114009076B (zh)
WO (1) WO2021031015A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210081770A1 (en) * 2019-09-17 2021-03-18 GOWN Semiconductor Corporation System architecture based on soc fpga for edge artificial intelligence computing
CN114585034A (zh) * 2022-05-06 2022-06-03 武汉世炬信息技术有限公司 一种daps切换方法、网络设备及用户设备
CN115190547A (zh) * 2021-04-01 2022-10-14 展讯通信(上海)有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384414A (zh) * 2013-06-28 2013-11-06 大唐移动通信设备有限公司 一种x2链路建立方法和设备
CN106134231A (zh) * 2015-02-28 2016-11-16 华为技术有限公司 密钥生成方法、设备及系统
CN108282781A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 移动过程中的数据传输的方法、终端和基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343687B1 (ko) * 2017-11-20 2021-12-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 핸드오버 동안 5g에서의 보안 컨텍스트 핸들링

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384414A (zh) * 2013-06-28 2013-11-06 大唐移动通信设备有限公司 一种x2链路建立方法和设备
CN106134231A (zh) * 2015-02-28 2016-11-16 华为技术有限公司 密钥生成方法、设备及系统
CN108282781A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 移动过程中的数据传输的方法、终端和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Non-split bearer solution for reducing the service interruption time in HO", 3GPP DRAFT; R2-1817691 NON-SPLIT BEARER SOLUTION FOR REDUCING THE SERVICE INTERRUPTION TIME IN HO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, US; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051557215 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210081770A1 (en) * 2019-09-17 2021-03-18 GOWN Semiconductor Corporation System architecture based on soc fpga for edge artificial intelligence computing
US11544544B2 (en) * 2019-09-17 2023-01-03 Gowin Semiconductor Corporation System architecture based on SoC FPGA for edge artificial intelligence computing
CN115190547A (zh) * 2021-04-01 2022-10-14 展讯通信(上海)有限公司 一种通信方法及装置
CN114585034A (zh) * 2022-05-06 2022-06-03 武汉世炬信息技术有限公司 一种daps切换方法、网络设备及用户设备

Also Published As

Publication number Publication date
CN114009076A (zh) 2022-02-01
CN114009076B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US11483743B2 (en) Handover method, apparatus, and system
JP6918977B2 (ja) 無線接続制御方法、分散ユニット、集中ユニット、および基地局システム
KR102387163B1 (ko) 데이터 전달 방법, 장치, 및 시스템
JP2019533385A (ja) 切り替え方法及び装置
WO2021031015A1 (zh) 一种通信方法、设备及系统
US20230209425A1 (en) Preserving Cell Group Addition/Change Configuration of Handover
WO2020108220A1 (zh) 通信方法及装置
US10952265B2 (en) Dynamic resource scaling and VM migration in NG-RAN
US11849498B2 (en) Communication system
CN110649997B (zh) 数据处理方法及装置
WO2019242756A1 (zh) 通信方法及装置
US11611501B2 (en) Apparatus, method, and computer program
WO2018233446A1 (zh) 数据传输方法、装置、系统、网元、存储介质及处理器
EP3858086A1 (en) Methods and apparatuses for handling dual connectivity in redundancy transmission
WO2022019825A1 (en) Handling of buffered traffic during inter-cu migration of an integrated access backhaul (iab) node
WO2020155972A1 (zh) 一种移动性管理方法及装置
WO2023051634A1 (zh) 通信方法及装置
US20230345579A1 (en) SCG Suspension/Dormancy/Deactivation - Signaling, Configurations and Behavior
CN105474692A (zh) 切换控制方法、装置及无线通信网络
WO2020063401A1 (zh) 一种模式切换方法、数据流分流方法及装置
US20230328604A1 (en) Handling of buffered traffic during inter-cu migration of an ancestor integrated access backhaul (iab) node
WO2021129018A1 (zh) 网络连接的重建立方法及装置、存储介质、电子装置
WO2020088634A1 (zh) 数据转发方法、装置、主基站及从基站
US20230199600A1 (en) Method and communications apparatus for configuring assistance information
WO2020088618A1 (zh) 一种寻呼方法、装置、系统、cu、amf及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941836

Country of ref document: EP

Kind code of ref document: A1