WO2021185176A1 - 一种接入网络切片的方法及装置 - Google Patents

一种接入网络切片的方法及装置 Download PDF

Info

Publication number
WO2021185176A1
WO2021185176A1 PCT/CN2021/080509 CN2021080509W WO2021185176A1 WO 2021185176 A1 WO2021185176 A1 WO 2021185176A1 CN 2021080509 W CN2021080509 W CN 2021080509W WO 2021185176 A1 WO2021185176 A1 WO 2021185176A1
Authority
WO
WIPO (PCT)
Prior art keywords
ran device
ran
network element
slice type
network slice
Prior art date
Application number
PCT/CN2021/080509
Other languages
English (en)
French (fr)
Inventor
朱方园
孙海洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021185176A1 publication Critical patent/WO2021185176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and device for accessing network slicing.
  • Network slicing technology provides isolated network environments for different application scenarios by virtual independent logical networks on the same network infrastructure, so that different application scenarios can customize network functions and features according to their own needs, thereby ensuring the needs of different services . Since terminal devices have different requirements for speed, capacity, coverage, delay, reliability, security, and bandwidth, the network slices that need to be accessed are also different.
  • a user equipment When a user equipment (UE) initially attaches to the network, it triggers a network slice selection process. When the UE needs to access a certain network slice, the UE sends the requested network slice selection assistance information (NSSAI) to the core network, also called Requested NSSAI, which is used by the core network to select a network slice for the UE.
  • NSSAI network slice selection assistance information
  • the UE In the prior art, if the location of the UE can access one or more radio access network (RAN) devices, but the UE does not perceive the network slice types supported by these RAN devices, so the UE adopts a blind selection method. Access the RAN device and send a registration request to the core network through the RAN device, where the registration request message carries Requested NSSAI. Since the RAN equipment that the UE accesses blindly does not necessarily support Requested NSSAI, the network slice that the core network finally allows the UE to access cannot meet the needs of the UE. That is, the core network allows the UE to access the network slice that is different from the Requested NSSAI, or causes UE registration failed. As a result, the network access efficiency of the UE is low, and the user experience is degraded.
  • RAN radio access network
  • the UE is currently located in the coverage area of RAN1 and the coverage area of RAN2.
  • RAN1 does not support the network slice type requested by the UE
  • RAN2 supports the network slice type requested by the UE. Since the UE does not perceive the network slice types supported by RAN1 and RAN2, it is assumed that UE1 accesses RAN1 through blind selection and sends a registration request to the core network through RAN1.
  • the registration request message carries the requested network slice type.
  • the core network judges that RAN1 does not support the network slice type requested by the UE, and the network slice that the core network finally allows the UE to access cannot meet the requirements of the UE or cause the UE registration to fail.
  • the embodiment of the present invention provides a method and device for accessing network slicing.
  • an embodiment of the present application provides a method for accessing network slicing.
  • the method includes: a first AMF network element (for example, the first AMF network element in FIG. 4 and FIG. 5) passes through a first RAN device ( For example, the first RAN network element in FIG. 4 and FIG. 5) receives the requested network slice type from a terminal device (for example, the UE in FIG. 4 and FIG. 5), where the first RAN device does not support the requested network slice type .
  • the first AMF network element sends the information of the second RAN device (for example, the second RAN network element in FIG. 4 and FIG. 5) to the terminal device, where the information of the second RAN device is used to identify the second RAN device, and the second RAN device
  • the RAN device supports the requested network slice type.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device can access the requested network slice through the second RAN device, Thereby improving the user experience.
  • the first RAN device is located in the first TA, the first TA does not support the requested network slice type, and the second RAN device is located in the second TA, and the second TA supports the requested network slice type.
  • the first RAN device is located in the first TA
  • the second RAN device is located in the second TA
  • the location of the terminal device is located in the first TA and located in the second TA; or, the location of the terminal device is located in the second TA.
  • the coverage area of a RAN device is located in the coverage area of a second RAN device.
  • the first AMF network element determines the second RAN device.
  • the first AMF network element may determine the second RAN device by combining any one or more of the three methods in FIG. 4.
  • the first AMF network element obtains the information of the third RAN device, and then determines from the third RAN device that the RAN device supporting the requested network slice type is the second RAN device. Therefore, the first AMF network element can determine the second RAN device that supports the requested network slice type from the third RAN device by acquiring the information of the third RAN device.
  • the first AMF network element obtains the location of the terminal device, and determines the second RAN device according to the location of the terminal device. Therefore, the first AMF network element can determine the second RAN device that supports the requested network slice type by acquiring the location of the terminal device.
  • the first AMF network element sends the information of the fourth RAN device or the location of the terminal device to the first network element, where the information of the fourth RAN device or the location of the terminal device is used for the second Confirmation of RAN equipment.
  • the first AMF network element receives the information of the second RAN device from the first network element.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device can access the requested network slice through the second RAN device, thereby Improve the user experience.
  • the first network element is a second AMF network element or an NSSF network element.
  • the first AMF network element sends indication information to the terminal device, and the indication information is used to indicate that the second RAN device supports the requested network slice type. Therefore, after receiving the information of the second RAN device, the terminal device can learn the requested network slice type supported by the second RAN device according to the indication information.
  • the first AMF network element receives first priority information from the terminal device, where the first priority information is used to indicate that the priority of the requested network slice type is high, and the first AMF network element is based on The first priority information sends a registration rejection message to the terminal device. Since the first priority information indicates that the priority of the requested network slice type is high, it indicates that the UE preferentially accesses the network slice corresponding to the requested network slice type. Because the first RAN device accessed by the UE cannot support the requested network slice type, the first AMF determines to reject this registration procedure.
  • the first AMF network element receives second priority information from the terminal device.
  • the second priority information is used to indicate that the priority of the requested network slice type is low; the AMF network element is based on the second priority.
  • the information sends a registration acceptance message to the terminal device. Since the second priority information indicates that the priority of the requested network slice type is low, when the first RAN device accessed by the UE cannot support the requested network slice type, the first AMF determines for the UE that the allowed NSSAI is the default S -NSSAI (default S-NSSAI), and determine the rejected NSSAI (Rejected NSSAI). Among them, the rejected NSSAI has the same network slice type as the requested NSSAI.
  • this application also discloses a method for accessing network slicing.
  • the method includes: a terminal device (for example, the UE in FIG. 4 and FIG. 5) passes through a first RAN device (for example, in FIG. 4 and FIG. 5).
  • the first RAN device sends the requested network slice type to the first AMF network element (for example, the first AMF network element in FIG. 4 and FIG. 5).
  • the first RAN device does not support the requested network slice type, and the terminal device
  • the first AMF network element receives the information of the second RAN device (for example, the second RAN device in FIG. 4 and FIG. 5), the information of the second RAN device is used to identify the second RAN device, and the second RAN device supports the requested network Slice type.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device can access the requested network slice through the second RAN device, Thereby improving the user experience.
  • the first RAN device is located in the first TA, and the first TA does not support the requested network slice type; the second RAN device is located in the second TA, and the second TA supports the requested network slice type.
  • the first RAN device is located in the first TA
  • the second RAN device is located in the second TA
  • the location of the terminal device is located in the first TA and located in the second TA; or, the location of the terminal device is located in the second TA.
  • the coverage area of a RAN device is located in the coverage area of a second RAN device.
  • the terminal device sends the requested network slice type to the second RAN device.
  • the terminal device can access the requested network slice through the second RAN device, thereby improving user experience.
  • the terminal device sends the information of the third RAN device to the first AMF network element or the first RAN device, and the RAN device in the third RAN device that supports the requested network slice type is the second RAN device.
  • the first AMF network element can obtain the information of the third RAN device, so that the second RAN device supporting the requested network slice type can be determined from the third RAN device.
  • the terminal device receives indication information from the first AMF network element, and the indication information is used to indicate that the second RAN device supports the requested network slice type. Therefore, after receiving the information of the second RAN device, the terminal device can learn the requested network slice type supported by the second RAN device according to the indication information.
  • the terminal device sends first priority information to the first AMF network element, where the first priority information is used to indicate that the priority of the requested network slice type is high, and the terminal device sends the information from the AMF network element Receive registration rejection message.
  • the terminal device sends second priority information to the first AMF network element, where the second priority information is used to indicate that the priority of the requested network slice type is low, and the terminal device sends the second priority information from the AMF network element.
  • Receive registration acceptance message the second priority information is used to indicate that the priority of the requested network slice type is low.
  • the terminal device selects one second RAN device from the multiple second RAN devices according to signal strength and/or service requirements. Therefore, when there are multiple second RAN devices, the terminal device can select one second RAN device from the multiple second RAN devices.
  • this application also discloses a method for accessing network slicing.
  • the method includes: a first network element (for example, the first network element in FIG. 6) from a first AMF network element (for example, in FIG. 6)
  • the first AMF network element in receives the requested network slice type and the first information, where the requested network slice type is the network slice type that the terminal device (for example, the UE in FIG. 6) requests to access.
  • the first network element determines the second RAN device (for example, the second RAN device in FIG. 6) according to the network slice type and the first information, and sends the information of the second RAN device to the first AMF network element, where the second RAN
  • the device information is used to identify the second RAN device, and the second RAN device supports the requested network slice type.
  • the terminal device can obtain the information of the second RAN device from the first network element. Since the second RAN device supports the requested network slice type, the terminal device can access the requested network slice through the second RAN device, thereby Improve the user experience.
  • the first information is information of the third RAN device
  • the first network element determines that the RAN device in the third RAN device that supports the requested network slice type is the second RAN device. Therefore, the first network element can determine the second RAN device that supports the requested network slice type from the third RAN device by acquiring the information of the third RAN device.
  • the first information is the location of the terminal device.
  • the first network element includes a second AMF network element or an NSSF network element.
  • an embodiment of the present application provides a device for accessing network slicing.
  • the device has the function of realizing the behavior of the first AMF network element (for example, the first AMF network element in FIG. 4 and FIG. 5) in the above method. .
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the foregoing device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the foregoing method.
  • the transceiver is used to implement communication between the above-mentioned apparatus and the terminal equipment/first RAN equipment/first network element.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • an embodiment of the present application provides a device for accessing a network slice, and the device has a function of realizing the behavior of a terminal device (for example, the UE in FIG. 4 and FIG. 5) in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the foregoing device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the foregoing method.
  • the transceiver is used to implement communication between the foregoing apparatus and the first RAN device/first AMF network element/second RAN device.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • an embodiment of the present application provides a device for accessing network slicing, and the device has a function of realizing the behavior of the first network element (for example, the first network element in FIG. 6) in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the foregoing device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the foregoing method.
  • the transceiver is used to implement communication between the above-mentioned apparatus and the first AMF network element/terminal device.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
  • the present application provides a chip system that includes a processor for supporting the above-mentioned device or terminal device to implement the functions involved in the above-mentioned aspects, for example, generating or processing the information involved in the above-mentioned method.
  • the chip system further includes a memory, and the memory is used to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • Figure 1 is a schematic diagram of a scenario provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of a 5G communication system according to an embodiment of the present application.
  • Figure 3 is a flow chart of the UE blindly selecting and accessing network slices
  • Fig. 4 is a method for accessing network slicing according to an embodiment of the present application.
  • Fig. 5 is a flowchart of a method for accessing network slicing according to an embodiment of the present application
  • Fig. 6 is a flowchart of yet another method for accessing network slicing according to an embodiment of the present application.
  • FIG. 7A and 7B are schematic structural diagrams of an apparatus for accessing network slicing provided in an embodiment of the present application.
  • Fig. 2 shows a schematic diagram of a 5G communication system provided by an embodiment of the present application.
  • the control plane function of the mobile gateway is decoupled from the forwarding plane function, and its separated control plane function is merged with the traditional 3GPP control network element mobility management entity (mobility management entity, MME), etc., into a unified Control plane.
  • the user plane function (UPF) network element can implement the user plane functions (SGW-U and PGW-U) of a serving gateway (serving gateway, SGW) and a packet data network gateway (packet data network gateway, PGW).
  • the unified control plane network elements can be decomposed into access and mobility management function (AMF) network elements and session management function (session management function, SMF) network elements.
  • AMF access and mobility management function
  • SMF session management function
  • the communication system includes at least UE 201, RAN device 202, and AMF network element 205.
  • the communication system further includes a UPF network element 203, an SMF network element 206, a network slice selection function (NSSF) network element 207, and a data network (DN) 204.
  • NSF network slice selection function
  • the UE 201 involved in this system is not limited to 5G networks, including: mobile phones, Internet of Things devices, smart home devices, industrial control devices, vehicle equipment, and so on.
  • the UE may also be called a mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), access terminal (Access Terminal), terminal equipment (User Terminal), user Agent (User Agent) is not limited here.
  • the above-mentioned terminal device may also be a car in vehicle-to-vehicle (V2V) communication, a machine in machine-type communication, and the like.
  • V2V vehicle-to-vehicle
  • the RAN device 202 involved in this system is a device for providing wireless communication functions for the UE 201, and can include various forms of base stations, such as macro base stations, micro base stations (also called small stations), and relay stations. Access point, etc.
  • base stations such as macro base stations, micro base stations (also called small stations), and relay stations. Access point, etc.
  • the names of devices with base station functions may be different.
  • LTE systems they are called evolved NodeB (evolved NodeB, eNB, or eNodeB).
  • Node B Node B
  • gNB gNodeB
  • the AMF network element 205 involved in this system can be responsible for the registration of terminal equipment, mobility management, and tracking area update procedures.
  • AMF network elements may also be called AMF devices or AMF entities.
  • the SMF network element 206 involved in this system may be responsible for session management of the terminal device.
  • session management includes user plane device selection, user plane device reselection, internet protocol (IP) address allocation, quality of service (QoS) control, and session establishment, modification, or release.
  • IP internet protocol
  • QoS quality of service
  • the SMF network element may also be referred to as an SMF device or an SMF entity.
  • the UPF network element 203 involved in this system can implement functions such as forwarding, statistics, and detection of user messages.
  • UPF network elements may also be referred to as UPF devices or UPF entities.
  • the DN 204 involved in this system can be a service provided by an operator, an Internet access service, or a service provided by a third party.
  • the NSSF network element 207 involved in this system can select a network slice for the user equipment.
  • NSSF network elements may also be referred to as NSSF equipment or NSSF entities.
  • the aforementioned network elements can be network elements implemented on dedicated hardware, software instances running on dedicated hardware, or instances of virtualized functions on a virtualization platform.
  • the aforementioned virtualization platform can be a cloud platform.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • Fig. 3 is a flowchart of the UE blindly selecting and accessing network slices in the scenario shown in Fig. 1.
  • RAN1 in Figure 3 is RAN1 in Figure 1
  • RAN2 in Figure 3 is RAN2 in Figure 1
  • AMF network elements in Figure 3 are AMF network elements in the core network in Figure 1
  • UE is located in the coverage of RAN1 Scope and coverage of RAN2.
  • the method may include:
  • RAN1 sends single network slice selection assistance information (Single Network Slice Selection Assistance Information, S-NSSAI) #1 to the AMF network element.
  • S-NSSAI Single Network Slice Selection Assistance Information
  • RAN1 sends a network slice list supported by tracking area (TA) 1 where RAN1 is located to the AMF network element through an NG setup request (NG setup request) message, and the network slice list includes S-NSSAI#1.
  • TA tracking area
  • NG setup request NG setup request
  • the NG interface is the interface between RAN1 and the AMF network element.
  • the AMF network element stores S-NSSAI#1.
  • the AMF network element can learn the network slice type supported by TA1 where RAN1 is located.
  • the AMF network element sends a list of network slices supported by the AMF network element to RAN1 through an NG setup response (NG setup response) message.
  • NG setup response NG setup response
  • RAN2 sends S-NSSAI#2 to the AMF network element.
  • RAN2 sends a network slice list supported by the tracking area TA2 where RAN2 is located to the AMF network element through an NG setup request (NG setup request) message, and the network slice list includes S-NSSAI#2.
  • NG setup request NG setup request
  • the NG interface is the interface between RAN2 and the AMF network element.
  • the AMF network element stores S-NSSAI#2.
  • the AMF network element can learn the network slice type supported by TA2 where RAN2 is located.
  • the AMF network element sends a list of network slices supported by the AMF network element to the RAN2 through an NG setup response (NG setup response) message.
  • NG setup response NG setup response
  • the UE sends the requested NSSAI to RAN1.
  • the requested NSSAI is S-NSSAI#2.
  • the UE selects RAN1 to enter the network through blind selection, and sends the requested NSSAI to RAN1 through a registration request message.
  • RAN1 sends the requested NSSAI to the AMF network element.
  • the AMF network element determines allowed NSSAI (Allowed NSSAI) and rejected NSSAI (Rejected NSSAI).
  • AMF determines that TA1 where RAN1 is located does not support the requested NSSAI. However, the TA1 where RAN1 is located supports the default S-NSSAI (default S-NSSAI). In order to ensure that the UE can successfully register, the AMF determines the allowed NSSAI for the UE as the default S-NSSAI and the registration area (Registration Area). In addition, the AMF network element determines that the rejected NSSAI is S-NSSAI#2.
  • the AMF network element determines the radio access technology/frequency selection priority (Radio Access Technology/Frequency Selection Priority, RFSP).
  • RFSP Radio Access Technology/Frequency Selection Priority
  • RFSP is used by RAN1 to perform air interface spectrum selection priority control on the UE.
  • the AMF network element sends a registration acceptance message to RAN1.
  • the AMF network element sends a registration acceptance message to RAN1 through an N2 message.
  • the N2 message also includes the RFSP in step S308 and the allowed NSSAI, denied NSSAI and registration area in S307.
  • RAN1 sends a registration acceptance message to the UE.
  • the AMF determines the allowed NSSAI for the UE as the default S-NSSAI. Since the default S-NSSAI is not the network slice that the UE requests to access, it cannot meet the requirements of the UE (for example, QoS, bandwidth, etc.). In addition, after the UE receives the rejected NSSAI, in the current registration area, the UE cannot try to access the network slice corresponding to the rejected NSSAI again, and can only try to access the network slice corresponding to the rejected NSSAI after the UE moves out of the registration area.
  • the S-NSSAI requested by the UE is S-NSSAI#2, and there is RAN2 at the current location of the UE, it can support S-NSSAI#2, because in step S307, the AMF determines that the rejected S-NSSAI is S-NSSAI#2 Therefore, the UE cannot try to access S-NSSAI#2 again at the current location, and it needs to wait for the UE to move out of the registration area before attempting to access S-NSSAI#2. Therefore, the method shown in FIG. 3 causes the UE's network access efficiency to be low, and the user experience is degraded.
  • Fig. 4 is a method for accessing network slicing provided by an embodiment of the application.
  • the applicable scenario of the method is: the first RAN device is located in the first TA, the second RAN device is located in the second TA, and the location of the UE is located in the first TA.
  • the TA is located in the second TA; or, the location of the UE is located in the coverage area of the first RAN device and located in the coverage area of the second RAN device.
  • the method shown in 4 can be used in the 5G communication system in FIG. 2.
  • the terminal device can learn the second RAN device that supports the requested network slice type, and then can access the requested network slice through the second RAN device.
  • the method may include:
  • the first AMF network element receives the requested network slice type from the terminal device through the first RAN device, and the first RAN device does not support the requested network slice type.
  • the first AMF network element is located in the core network of FIG. 1, the first RAN device is RAN1 in FIG. 1, and the terminal device is the UE in FIG. 1.
  • the network slice type requested by the UE is S-NSSAI-2
  • the network slice type supported by the first RAN device is S-NSSAI-1
  • the first RAN device does not support S-NSSAI-2.
  • the first RAN device does not support the requested network slice type, which may include but is not limited to the following situations:
  • the TA where the first RAN device is located does not support the requested network slice type. It can also be understood that all RAN devices in the TA where the first RAN device is located do not support the requested network slice type, where the TA where the first RAN device is located includes one or more RAN devices.
  • the first RAN device is located in the first TA, and the first TA does not support the requested network slice type.
  • the tracking area identity (TAI) of the first TA is TAI-1, and all RAN devices in the first TA support S-NSSAI-1, and none of them support S-NSSAI-2.
  • the first RAN device itself does not support the requested network slice type.
  • the cells served by the first RAN device include cells that do not support the requested network slice type, and the UE is located in the cell that does not support the requested network slice type.
  • the first RAN device serves one or more cells, and the UE is located in cell-1 in the one or more cells, where cell-1 does not support the requested network slice type, so for the UE, the first RAN device does not Supports the requested network slice type.
  • the slicing area (slicing area, SA) where the first RAN device is located does not support the requested network slicing type. For example, all RAN devices in the SA where the first RAN device is located do not support the requested network slice type, where the SA where the first RAN device is located includes one or more RAN devices.
  • the coverage area of the SA may be larger than the coverage area of the TA, or the coverage area of the SA may be smaller than the coverage area of the TA, which is not limited in this application.
  • the first AMF network element sends the information of the second RAN device to the terminal device, where the information of the second RAN device is used to identify the second RAN device, and the second RAN device supports the requested network slice type.
  • the number of the second RAN device is one or more.
  • the second RAN device is RAN2 in FIG. 1.
  • the information of the second RAN device includes one or more of the following information: the identity (ID) of the second RAN device or the location information of the second RAN device.
  • the location information of the second RAN device is the cell ID (cell ID) of the second RAN device or the TAI where the second RAN device is located.
  • the second RAN device supports the requested network slice type, which may include but is not limited to the following situations:
  • the TA where the second RAN device is located supports the requested network slice type. It can also be understood that all RAN devices in the TA where the second RAN device is located support the requested network slice type, where the TA where the second RAN device is located includes one or more RAN devices.
  • the second RAN device is located in the second TA, and the second TA supports the requested network slice type.
  • the TAI of the second TA is TAI-2, and all RAN devices in the second TA support S-NSSAI-2.
  • the number of TAI-2 is one or more.
  • the second RAN device itself supports the requested network slice type.
  • the cells served by the second RAN device include a cell that supports the requested network slice type, and the UE is located in the cell that supports the requested network slice type.
  • the second RAN device serves one or more cells, and the UE is located in cell-2 in the one or more cells, where cell-2 supports the requested network slice type, so for the UE, the second RAN device supports the request The type of network slicing.
  • the SA where the second RAN device is located supports the requested network slice type.
  • all RAN devices in the SA where the second RAN device is located support the requested network slice type, where the SA where the second RAN device is located includes one or more RAN devices.
  • the coverage area of the SA may be larger than the coverage area of the TA, or the coverage area of the SA may be smaller than the coverage area of the TA, which is not limited in this application.
  • the first AMF network element also sends indication information to the terminal device, where the indication information is used to indicate that the second RAN device supports the requested network slice type.
  • the method further includes: the first AMF network element determines the second RAN device.
  • the first AMF network element may determine the second RAN device through any one or a combination of the following three methods.
  • the first AMF network element obtains the information of the third RAN device, and then the first AMF network element determines from the third RAN device that the RAN device supporting the requested network slice type is the second RAN device.
  • the first AMF network element obtains the information of the third RAN device from the terminal device or the first RAN device.
  • the third RAN device is a RAN device other than the first RAN device that can be linked to the terminal device.
  • the third RAN device is a RAN device that the terminal device can access the network; or, the third RAN device is a RAN device that can establish a radio resource control (Radio Resource Control, RRC) link with the terminal device; or, the first 3.
  • RRC Radio Resource Control
  • the RAN device is the RAN device that the terminal device can send a registration request.
  • the terminal device determines the third RAN device based on the measurement of signal strength.
  • the information of the third RAN device is used to identify the third RAN device.
  • the information of the third RAN device includes one or more of the following information: the identity (ID) of the third RAN device or the location information of the third RAN device.
  • the location information of the third RAN device is the cell ID (cell ID) of the third RAN device, or the TAI where the third RAN device is located.
  • the information of the third RAN device sent by the UE to the first AMF network element includes the information of RAN2 in FIG. 1.
  • the process of determining the second RAN device is as follows:
  • Step 1 The first AMF network element determines the network slice type supported by the third RAN device according to the information of the third RAN device.
  • the first AMF network element can obtain the network slice capabilities supported by each RAN device deployed in the service area of the first AMF network element.
  • the RAN equipment deployed in the service area of the first AMF network element includes RAN-1 and RAN-2, and the first AMF network element can obtain:
  • the network slice type supported by RAN-1 is S-NSSAI-1
  • the network slice type supported by RAN-2 is S-NSSAI-2.
  • the first AMF network element may obtain the TAI where each RAN device deployed in the service area of the first AMF network element is located, and the network slicing capabilities supported by the TA.
  • the RAN equipment deployed in the service area of the first AMF network element includes RAN-1 and RAN-2.
  • the first AMF network element can obtain: TAI where RAN-1 is located is TAI-1, TAI-1
  • the supported network slice type is S-NSSAI-1
  • the TAI where RAN-2 is located is TAI-2
  • the network slice type supported by TAI-2 is S-NSSAI-2.
  • the first AMF network element determines from Table 1 or Table 2 that the network slice type supported by the third RAN device is S-NSSAI- 2.
  • Step 2 The first AMF network element determines from the third RAN device that the RAN device supporting the requested network slice type is the second RAN device.
  • the network slice type requested by the UE is S-NSSAI-2.
  • the first AMF network element determines that the network slice type supported by RAN-2 is S-NSSAI-2. Therefore, the first AMF network element determines that RAN-2 is the second RAN device.
  • the information of the third RAN device includes RAN-2 information and RAN-3 information, and both RAN-2 and RAN-3 are the first A RAN equipment deployed in the service area of an AMF network element.
  • the first AMF network element obtains that the network slice type supported by RAN-3 is S-NSSAI-3, and in step 2, the first AMF network element determines RAN- 3 If the requested network slice is not supported, the first AMF network element determines that the second RAN device is RAN-2.
  • step 1 Another possible situation is: in the above step 1, it is assumed that the first AMF network element obtains that the network slice types supported by RAN-2 and RAN-3 are both S-NSSAI-2. In the above step 2, the first The AMF network element determines that RAN-2 and RAN-3 support the requested network slices, and the first AMF network element determines that the second RAN devices are RAN-2 and RAN-3.
  • the first AMF network element can determine the second RAN device that supports the requested network slice type from the third RAN device by acquiring the information of the third RAN device.
  • Manner 2 The first AMF network element obtains the location of the terminal device, and then the first AMF network element determines the second RAN device according to the location of the terminal device.
  • the location where the terminal device is located may be the TAI where the first RAN device currently accessed by the terminal device is located.
  • the method for the first AMF network element to obtain the location of the terminal device includes: the first AMF network element obtains the location information from the first RAN device currently accessed by the terminal device. For example, the first AMF network element acquires the location of the terminal device from the RAN-1 device currently accessed by the terminal device as TAI-1, where the TAI where the RAN-1 device is located is TAI-1.
  • the first AMF network element may obtain the second information from the network management system, and the second information includes one or more of the following information: topology information, policy information, and configuration information. Then, the first AMF network element obtains the information of other RAN devices deployed around each RAN according to the second information.
  • the second information may be as shown in Table 3:
  • RAN deployed in the first AMF service area includes RAN-1 and RAN-2.
  • the TAI where RAN-1 is located is TAI-1
  • the adjacent RAN deployed around RAN-1 is RAN-2
  • the TAI where RAN-2 is located is TAI-2
  • the TAI where RAN-2 is located is TAI-2
  • RAN -2 The neighboring RAN deployed around is RAN-1
  • the TAI where RAN-1 is located is TAI-1.
  • the first AMF network element can determine from Table 3 that the neighboring RAN deployed around RAN-1 is RAN-2. It is also because the first AMF network element can obtain the network slicing capabilities supported by each RAN device deployed in the service area of the first AMF network element. As shown in Table 1, the first AMF network element can obtain that the network slice type supported by RAN-2 is S-NSSAI-2. If in step S401, the network slice type requested by the UE is S-NSSAI-2, the first AMF network element determines that RAN-2 supports the requested network slice type, thereby determining that RAN-2 is the second RAN device.
  • the first AMF network element can determine the second RAN device that supports the requested network slice type by acquiring the location of the terminal device.
  • the first AMF network element sends the information of the fourth RAN device or the location of the terminal device to the first network element, where the information of the fourth RAN device or the location of the terminal device is used to determine the second RAN device. Then the first AMF network element receives the information of the second RAN device from the first network element.
  • the first AMF network element also sends the requested network slice type to the first network element.
  • the first network element is a second AMF network element or an NSSF network element.
  • the fourth RAN device there is no interface between the fourth RAN device and the first AMF network element.
  • the second AMF network element serves the fourth RAN device.
  • Method three can be achieved by either of the following two methods:
  • the first method If the first AMF network element sends the information of the fourth RAN device to the first network element.
  • the first AMF network element may receive the information of the fourth RAN device from the terminal device or the first RAN device.
  • the fourth RAN device is a RAN device other than the first RAN device that can be linked to the terminal device.
  • the fourth RAN device is a RAN device that the terminal device can access to the network; or, the fourth RAN device is a RAN device that can establish an RRC link with the terminal device; or, the fourth RAN device is a terminal device that can send registration The requested RAN device.
  • the terminal device determines the fourth RAN device based on the measurement of signal strength.
  • the first AMF network element can obtain information about other RANs deployed around each RAN from the network management system, and the first AMF network element determines that the neighboring RAN deployed around the first RAN device is the fourth RAN through the location of the terminal device. RAN equipment.
  • the information of the fourth RAN device is used to identify the fourth RAN device.
  • the information of the fourth RAN device includes one or more of the following information: the ID of the fourth RAN device, the cell identity of the fourth RAN device, or the TAI where the fourth RAN device is located.
  • the applicable scenario of this method is as follows: the first AMF network element determines that there is no interface between the fourth RAN device and the first AMF network element, and the fourth RAN device is served by the second AMF network element. In this scenario, the first AMF network element sends the information of the fourth RAN device to the first network element, and the first network element determines the second RAN device according to the information of the fourth RAN device.
  • the first network element determines the network slice type supported by the fourth RAN device according to the information of the fourth RAN device
  • the second AMF network element determines from the fourth RAN device that the RAN device supporting the requested network slice type is the second RAN device
  • the process of determining the second RAN device by the first network element according to the information of the fourth RAN device can refer to the process of determining the second RAN device by the first AMF network element according to the information of the third RAN device in Step 1 and Step 2 of the first manner. , I won’t repeat it this time.
  • the second method If the first AMF network element sends the location of the terminal device to the first network element.
  • the location where the terminal device is located may be the TAI where the first RAN device currently accessed by the terminal device is located.
  • the method for the first AMF network element to obtain the location of the terminal device includes: the first AMF network element obtains the location information from the first RAN device currently accessed by the terminal device.
  • the first AMF network element can obtain information about other RANs deployed around each RAN from the network management system.
  • the first AMF network element determines the surroundings of the first RAN device through the location of the terminal device (that is, the TAI where the first RAN device is located)
  • the deployed nearby RAN device is the fifth RAN device.
  • the applicable scenario of this method is as follows: the first AMF network element determines that there is no interface between the fifth RAN device and the first AMF network element, and the fifth RAN device is served by the second AMF network element.
  • the first AMF network element sends the location of the terminal device to the first network element, and the first network element determines the second RAN device according to the location of the terminal device.
  • the process of determining the second RAN device by the first network element according to the location of the terminal device may refer to the process of determining the second RAN device by the first AMF network element according to the location of the terminal device in the second manner, which will not be repeated this time.
  • the first network element receives the requested network slice type and first information from the first AMF network element, and then determines the second radio access network RAN device according to the network slice type and the first information, and sends it to the first An AMF network element sends the information of the second RAN device.
  • the information of the second RAN device is used to identify the second RAN device, and the second RAN device supports the requested network slice type.
  • the first information is the information of the third RAN device or the location of the terminal device.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device The requested network slice can be accessed through the second RAN device, thereby improving user experience.
  • Fig. 5 is a flowchart of a method for accessing network slicing according to an embodiment of the application.
  • Fig. 5 is suitable for the communication system shown in Fig. 2 and is a concrete realization of the first and second modes in Fig. 4.
  • FIG. 5 will be described in conjunction with FIG. 4.
  • the method may include:
  • the UE sends a requested network slice type and a registration request message to a first RAN device.
  • the first RAN device receives the requested network slice type and registration request message from the UE.
  • the network slice type (Requested NSSAI) requested by the UE is S-NSSAI-2.
  • the UE sends the requested network slice type to the first RAN device through an RRC message.
  • the UE also sends the information of the third RAN device to the first RAN device through an RRC message.
  • the information of the third RAN device is used to identify the third RAN device.
  • the registration request message includes the requested network slice type.
  • the registration request message also includes information about the third RAN device.
  • the information of the third RAN device is used to identify the third RAN device. For example, according to the measurement result of the actual signal, the UE determines that the RAN device other than the first RAN device that the UE can link to is the third RAN device.
  • the description of the information of the third RAN device reference may be made to the description of the information of the third RAN device in Manner 1 of FIG. 4, which will not be repeated here.
  • the UE also carries first priority information or second priority information in the registration request message.
  • the first priority information is used to indicate that the priority of the requested network slice type is high, and the second priority information is used to indicate that the priority of the requested network slice type is low.
  • the registration request message also includes first priority information or second priority information.
  • the first RAN device sends the requested network slice type to the first AMF network element.
  • the first AMF network element receives the requested network slice type from the first RAN device.
  • the first RAN device sends the requested network slice type to the first AMF network element through a registration request message.
  • the first RAN device also sends the current location information (user location information) of the UE to the first AMF network element.
  • the location information may be identified by the TAI where the first RAN device is located.
  • the UE also sends the information of the third RAN device to the first RAN device through an RRC message, then in step 502, the first RAN device sends the information of the third RAN device to the first AMF network element. information.
  • the first AMF network element determines the second RAN device.
  • step 503 refer to the manner 1 and manner 2 of the first AMF network element to determine the second RAN device in FIG. 4. If in step 502, the first AMF network element obtains the information of the third RAN device, method 1: the first AMF network element determines from the third RAN device that the RAN device supporting the requested network slice type is the second RAN equipment. If in step 502, the first AMF network element does not obtain the information of the third RAN device, the second method is adopted: the first AMF network element determines the second RAN device according to the location of the UE.
  • the network slicing requested by the UE through the second RAN device access request can be implemented in either way a or way b.
  • the UE also carries the first priority information in the registration request message
  • method a is adopted, including that the first AMF network element sends a registration rejection message to the UE according to the first priority information.
  • method b is adopted, including the first AMF network element sending a registration acceptance message to the UE according to the second priority information.
  • method a includes steps 504a-509a.
  • the first AMF network element sends a registration rejection message to the first RAN device.
  • the first RAN device receives a registration rejection message from the first AMF network element.
  • the registration rejection message includes the information of the second RAN device in step 503.
  • the first priority information indicates that the priority of the requested network slice type is high, it indicates that the UE preferentially accesses the network slice corresponding to the requested network slice type. Because the first RAN device accessed by the UE cannot support the requested network slice type, the first AMF determines to reject this registration procedure.
  • the registration rejection message further includes first indication information, where the first indication information is used to indicate that the second RAN device supports the requested network slice type.
  • the registration rejection message also includes a reason value, and the reason value is used to indicate that the reason for the rejection is: the requested network slice type is not available.
  • the registration rejection message is used to indicate that the first AMF network element rejects the registration request of the UE.
  • the first RAN device sends a registration rejection message to the UE.
  • the UE receives a registration rejection message from the first RAN device.
  • the UE determines to initiate re-registration with the second RAN device.
  • the UE After the UE obtains the information of the second RAN device from the registration rejection message, it determines to initiate re-registration to the second RAN device according to the link quality or signal strength between the UE and the second RAN device and/or the service requirements of the UE. .
  • the UE selects the second device with the strongest signal as the target RAN device according to the link quality or signal strength between the UE and each second RAN device, and determines the direction to the target RAN device.
  • the device initiates a re-registration.
  • the UE sends an initial registration request to the second RAN device.
  • the second RAN device receives the initial registration request from the UE.
  • the initial registration request includes the network slice type (Requested NSSAI) requested by the UE in step 501.
  • the UE successfully registers with the AMF network element.
  • the second RAN device sends a registration acceptance message to the UE.
  • the UE receives a registration acceptance message from the second RAN device.
  • the registration acceptance message includes allowed NSSAI.
  • the NSSAI requested by the UE is S-NSSAI-2
  • the allowed NSSAI is S-NSSAI-2.
  • Method b includes steps 504b-509b.
  • the first AMF network element sends a registration acceptance message to the first RAN device.
  • the first RAN device receives the registration acceptance message from the first AMF network element.
  • the registration acceptance message includes the information of the second RAN device in step 503.
  • the first AMF determines for the UE that the allowed NSSAI is the default S -NSSAI (default S-NSSAI), and determine the rejected NSSAI (Rejected NSSAI). Among them, the rejected NSSAI has the same network slice type as the requested NSSAI.
  • the registration acceptance message further includes second indication information, where the second indication information is used to indicate that the second RAN device supports the requested network slice type.
  • the first RAN device sends a registration acceptance message to the UE.
  • the UE receives a registration acceptance message from the first RAN device.
  • the UE determines to initiate a registration update to the second RAN device.
  • the UE After the UE obtains the information of the second RAN device from the registration acceptance message, it determines to initiate a registration update to the second RAN device according to the link quality or signal strength between the UE and the second RAN device and/or the service requirements of the UE. .
  • the UE selects the second device with the strongest signal as the target RAN device according to the link quality or signal strength between the UE and each second RAN device, and determines the direction to the target RAN device.
  • the device initiates a registration update.
  • the UE sends a registration update request to the second RAN device.
  • the second RAN device receives the registration update request from the UE.
  • the registration update request includes the requested NSSAI, and the requested NSSAI is the rejected NSSAI in step 504b.
  • the UE successfully registers with the AMF network element and updates the allowed NSSAI.
  • the second RAN device sends a registration update accept message to the UE.
  • the UE receives a registration update accept message from the second RAN device.
  • the registration update accept message includes the updated allowed NSSAI.
  • the NSSAI requested by the UE is S-NSSAI-2
  • the updated allowed NSSAI is S-NSSAI-2.
  • the terminal device can obtain the information of the second RAN device supporting the requested network slice type through the method 1 and method 2 of FIG.
  • the device supports the requested network slice type, so the terminal device can register with the first AMF through the second RAN device and access the requested network slice, thereby improving user experience.
  • Fig. 6 is a flowchart of a method for accessing network slices according to an embodiment of the application.
  • Fig. 6 is suitable for the communication system shown in Fig. 2 and is a concrete realization of the third method in Fig. 4.
  • FIG. 6 will be described in conjunction with FIG. 4 and FIG. 5.
  • the method may include:
  • the UE sends the requested network slice type and registration request message to the first RAN device.
  • the first RAN device receives the requested network slice type and registration request message from the UE.
  • the first RAN device sends the requested network slice type to the first AMF network element.
  • the first AMF network element receives the requested network slice type from the first RAN device.
  • steps 601 and 602 reference may be made to the description of steps 501 and 502 in FIG. 5, which will not be repeated here.
  • the first AMF network element sends the information of the fourth RAN device or the location of the terminal device to the first network element.
  • the first network element receives the information of the fourth RAN device or the location of the terminal device from the first AMF network element.
  • the first AMF network element also sends the requested NSSAI to the first network element.
  • the first AMF network element sends the information of the fourth RAN device or the location of the terminal device and the requested NSSAI to the first network element through a request message or a servicing call.
  • the first network element is a second AMF network element or an NSSF network element.
  • the first AMF network element can call the service operation signal acquisition request (Namf_information_Get_request) of the second AMF network element to send the fourth RAN device information or terminal to the second AMF network element The location of the device and the requested NSSAI.
  • the first AMF network element can call the service operation network slice selection request (Nnssf_NSSelection_Get_request) of the NSSF network element to send the information of the fourth RAN device or the location of the terminal device to the NSSF network element, And the requested NSSAI.
  • the first AMF network element determines the identity of the second AMF network element that can serve the fourth RAN device according to the information of the fourth RAN device.
  • the first network element determines the second RAN device.
  • step 605 For the implementation of step 605, reference may be made to the first method and the second method provided in the third manner in FIG. 4, and details are not described herein again. If in step 604 the first AMF network element sends the information of the fourth RAN device to the first network element, the first method is adopted; if in step 604 the first AMF network element sends the information of the terminal device to the first network element Location, the second method is used.
  • step 604 the first AMF network element sends the information of the fourth RAN device to the first network element, optionally, the method further includes step 603: the first AMF network element determines the fourth device.
  • the first network element sends the information of the second RAN device to the first AMF network element.
  • the first AMF network element receives the information of the second RAN device from the first network element.
  • the first network element sends the information of the second RAN device to the first AMF network element through a response message or a service call.
  • the second AMF network element can call the service operation signal acquisition response (Namf_information_Get_response) of the second AMF network element to send the information of the second RAN device to the first AMF network element;
  • the NSSF network element may call the service operation network slice selection response (Nnssf_NSSelection_Get_response) of the NSSF network element to send the information of the second RAN device to the first AMF network element.
  • mode c includes steps 607a-612a, please refer to the description of steps 504a-509a of mode a in FIG. 5, which will not be repeated here.
  • the method c is different from the method a in that steps 610a-612a are the registration of the UE to the second AMF network element, and steps 507a-509a are the registration of the UE to the first AMF network element.
  • Manner d includes steps 607b-612b, please refer to the description of steps 504b-509b of method b in FIG. 5, which will not be repeated here.
  • the method d is different from the method b in that steps 610b-612b are the registration of the UE to the second AMF network element, and steps 507b-509b are the registration of the UE to the first AMF network element.
  • the terminal device in the communication system shown in FIG. 2, can obtain the information of the second RAN device that supports the requested network slice type through the third method in FIG. 4, because the second RAN device supports the request Therefore, the terminal device can register to the second AMF through the second RAN device and access the requested network slice, thereby improving the user experience.
  • the solutions of the method for accessing network slicing provided by the embodiments of the present application are respectively introduced from the perspective of each network element itself and the interaction between each network element.
  • each network element and device such as the above-mentioned first AMF network element, first RAN device, terminal device, second RAN device, and first network element, in order to realize the above-mentioned functions, includes hardware corresponding to each function. Structure and/or software module.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the device for accessing the network slice may include a receiving module 701, a processing module 702, and a sending module 703, as shown in FIG. 7A.
  • the device for accessing network slicing may be used to perform the operations of the first AMF network element in FIG. 4 and FIG. 5 described above.
  • the device for accessing network slicing includes:
  • the receiving module 701 is configured to receive a requested network slice type from a terminal device through a first RAN device (for example, the first RAN network element in FIG. 4 and FIG. 5), where the first RAN device does not support the requested network slice type
  • the sending module 703 is used to send information of the second RAN device (for example, the second RAN network element in FIG. 4 and FIG. 5) to the terminal device (for example, the UE in FIG. 4 and FIG. 5), where the second The information of the RAN device is used to identify the second RAN device, and the second RAN device supports the requested network slice type.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device can access through the second RAN device. The requested network slicing, thereby improving the user experience.
  • the first RAN device is located in the first TA, and the first TA does not support the requested network slice type; the second RAN device is located in the second TA, and the second TA supports the requested network slice type.
  • the first RAN device is located in the first TA
  • the second RAN device is located in the second TA
  • the location of the terminal device is located in the first TA and located in the second TA; or, the location of the terminal device is located in the location of the first RAN device.
  • the apparatus for accessing network slicing further includes: a processing module 702, configured to determine the second RAN device.
  • the processing module 702 is configured to obtain information of the third RAN device, and determine from the third RAN device that the RAN device supporting the requested network slice type is the second RAN device.
  • the processing module 702 is configured to obtain the location of the terminal device, and determine the second RAN device according to the location of the terminal device.
  • the sending module 703 is configured to send the information of the fourth RAN device or the location of the terminal device to the first network element, where the information of the fourth RAN device or the location of the terminal device is used for the determination of the second RAN device ;
  • the receiving module 701 is used to receive the information of the second RAN device from the first network element.
  • the first network element is a second AMF network element or an NSSF network element.
  • the sending module 703 is further configured to send indication information to the terminal device, where the indication information is used to indicate that the second RAN device supports the requested network slice type.
  • the receiving module 701 is further configured to receive first priority information from the terminal device, where the first priority information is used to indicate that the priority of the requested network slice type is high; the sending module 703 is further configured to The priority information sends a registration rejection message to the terminal device.
  • the receiving module 701 is further configured to receive second priority information from the terminal device, where the second priority information is used to indicate that the priority of the requested network slice type is low; the sending module 703 is further configured to The priority information sends a registration acceptance message to the terminal device.
  • the receiving module 701, the processing module 702, and the sending module 703 in the device for accessing the network slice can also implement other operations or functions of the first AMF network element in FIG. 4 and FIG. 5, which will not be repeated here.
  • the apparatus for accessing network slices shown in FIG. 7A may also be used to perform the operations of the UE in FIG. 4 and FIG. 5.
  • the device for accessing network slicing includes:
  • the sending module 703 is configured to send a request to a first AMF network element (for example, the first AMF network element in FIG. 4 and FIG. 5) through a first RAN device (for example, the first RAN device in FIG. 4 and FIG. 5)
  • the first RAN device does not support the requested network slice type
  • the receiving module 701 is configured to receive the second RAN device from the first AMF network element (for example, the second RAN device in FIG. 4 and FIG. 5). ), where the information of the second RAN device is used to identify the second RAN device, and the second RAN device supports the requested network slice type.
  • the terminal device can obtain the information of the second RAN device from the first AMF network element. Since the second RAN device supports the requested network slice type, the terminal device can access through the second RAN device. The requested network slicing, thereby improving the user experience.
  • the first RAN device is located in the first TA, and the first TA does not support the requested network slice type; the second RAN device is located in the second TA, and the second TA supports the requested network slice type.
  • the first RAN device is located in the first TA
  • the second RAN device is located in the second TA
  • the location of the terminal device is located in the first TA and located in the second TA; or, the location of the terminal device is located in the location of the first RAN device.
  • the sending module 703 is further configured to send the requested network slice type to the second RAN device.
  • the sending module 703 is further configured to send information of the third RAN device to the first AMF network element or the first RAN device, and the RAN device in the third RAN device that supports the requested network slice type is the second RAN device.
  • the receiving module 701 is further configured to receive indication information from the AMF network element, where the indication information is used to indicate that the second RAN device supports the requested network slice type.
  • the sending module 703 is further configured to send first priority information to the AMF network element, where the first priority information is used to indicate that the priority of the requested network slice type is high; the receiving module 701 is also used to send the information from the AMF The network element receives the registration rejection message.
  • the sending module 703 is further configured to send second priority information to the AMF network element, where the second priority information is used to indicate that the priority of the requested network slice type is low; the receiving module 701 is also used to send a message from the AMF The network element receives the registration acceptance message.
  • the apparatus for accessing network slicing further includes a processing module 702, configured to select a second RAN device from a plurality of second RAN devices according to signal strength and/or service requirements.
  • the receiving module 701, the processing module 702, and the sending module 703 in the device for accessing the network slicing can also implement other operations or functions of the UE in FIG. 4 and FIG. 5, which will not be repeated here.
  • the apparatus for accessing network slicing shown in FIG. 7A may also be used to perform the operation of the first network element in FIG. 6.
  • the device for accessing network slicing includes:
  • the receiving module 701 is configured to receive the requested network slice type and first information from the first AMF network element, where the requested network slice type is the network slice type that the terminal device requests to access; the processing module 702 is configured to receive the network slice type according to the network slice The type and the first information determine the second RAN device; the sending module 703 is used to send the second RAN device information to the first AMF network element, where the second RAN device information is used to identify the second RAN device, and the second RAN device The device supports the requested network slice type.
  • the terminal device can obtain the information of the second RAN device from the first network element. Since the second RAN device supports the requested network slice type, the terminal device can access the request through the second RAN device. Network slicing, thereby improving the user experience.
  • the first information is information of the third RAN device; the processing module 702 is configured to determine that the RAN device in the third RAN device that supports the requested network slice type is the second RAN device.
  • the first information is the location of the terminal device.
  • the first network element includes a second AMF network element or an NSSF network element.
  • FIG. 7B shows another possible structural schematic diagram of the apparatus for accessing network slicing involved in the foregoing embodiment.
  • the device for accessing the network slice includes a transceiver 704 and a processor 705, as shown in FIG. 7B.
  • the processor 705 may be a general-purpose microprocessor, a data processing circuit, an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA) circuit.
  • the device for accessing network slices may further include a memory 706, for example, the memory is a random access memory (RAM).
  • the memory is used for coupling with the processor 705, which stores the computer program 7061 necessary for the device accessing the network slice.
  • the device for accessing network slices involved in the above-mentioned embodiments further provides a carrier 707.
  • the computer program 7071 of the device for accessing network slices is stored in the carrier, and the computer program 7071 can be loaded into the processor. 705 in.
  • the above-mentioned carrier may be an optical signal, an electric signal, an electromagnetic signal, or a computer-readable storage medium (for example, a hard disk).
  • the computer can be caused to execute the above-mentioned method.
  • the processor 705 is configured as other operations or functions of the first AMF network element (for example, the first AMF network element in FIG. 4 and FIG. 5).
  • the transceiver 704 is used to implement communication between the first AMF network element and the terminal device/first RAN device/first network element.
  • the processor 705 is configured as other operations or functions of the terminal device (for example, the UE in FIG. 4 and FIG. 5).
  • the transceiver 704 is used to implement communication between the terminal device and the first RAN device/first AMF network element/second RAN device.
  • the processor 705 is configured as other operations or functions of the first network element (for example, the first network element in FIG. 6).
  • the transceiver 704 is used to implement communication between the first network element and the first AMF network element/terminal device.
  • the processor may include but is not limited to at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (microcontroller unit, MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller unit
  • Artificial intelligence Various computing devices such as processors that run software. Each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be built in SoC (system on chip) or application specific integrated circuit (ASIC), or it can be an independent semiconductor chip.
  • the processor's internal processing is used to execute software instructions to perform calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be CPU, microprocessor, DSP, MCU, artificial intelligence processor, ASIC, SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device
  • the hardware can run necessary software or does not rely on software to perform the above method flow.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,提供了一种接入网络切片的方法,包括:第一AMF网元通过第一RAN设备从终端设备接收请求的网络切片类型,其中,第一RAN设备不支持请求的网络切片类型,第一AMF网元向终端设备发送第二RAN设备的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。通过本实施例提供的方案,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备接入请求的网络切片,从而提高了用户体验。

Description

一种接入网络切片的方法及装置
本申请要求于2020年3月16日提交中国专利局、申请号为202010181190.7、申请名称为“一种接入网络切片的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种接入网络切片的方法及装置。
背景技术
第五代(the 5th-Generation,5G)通信时代将有数以千亿计的物联网设备接入网络,不同类型的应用场景对网络的需求是差异化的。网络切片技术通过在同一网络基础设施上虚拟独立逻辑网络的方式,为不同的应用场景提供相互隔离的网络环境,使得不同应用场景可以按照各自的需求定制网络功能和特性,从而保障不同业务的需求。由于终端设备对速率、容量、覆盖率、延迟、可靠性、安全性和带宽的需求不同,所以需要接入的网络切片也不同。
用户设备(user equipment,UE)初始附着到网络时,会触发网络切片的选择过程。当UE需要接入到某个网络切片时,UE向核心网发送请求的网络切片选择辅助信息(network slice selection assistance information,NSSAI),也称为Requested NSSAI,用于核心网为UE选择网络切片。
在现有技术中,若UE所在的位置能接入一个或者多个无线接入网(radio access network,RAN)设备,但是UE不感知这些RAN设备支持的网络切片类型,所以UE通过盲选方式接入RAN设备,并通过该RAN设备向核心网发送注册请求,其中注册请求消息中携带Requested NSSAI。由于UE盲选接入的RAN设备并不一定支持Requested NSSAI,导致核心网最终允许UE接入的网络切片不能满足UE的需求,即核心网允许UE接入的网络切片与Requested NSSAI不同,或者导致UE注册失败。从而造成UE的入网效率较低,用户体验下降。
例如,在图1所示的场景中,UE当前位于RAN1的覆盖范围和RAN2的覆盖范围中。其中,RAN1不支持UE请求的网络切片类型,RAN2支持UE请求的网络切片类型。由于UE不感知RAN1和RAN2分别支持的网络切片类型,假设UE1通过盲选方式接入了RAN1,并通过RAN1向核心网发送注册请求,其中注册请求消息中携带请求的网络切片类型。核心网判断RAN1不支持UE请求的网络切片类型,并且核心网最终允许UE接入的网络切片不能满足UE的需求或者导致UE注册失败。
发明内容
本发明实施例提供了一种接入网络切片的方法及装置。
一方面,本申请的实施例提供了一种接入网络切片的方法,该方法包括:第一AMF网元(例如,图4、图5中的第一AMF网元)通过第一RAN设备(例如,图4、图5中的第一RAN网元)从终端设备(例如,图4、图5中的UE)接收请求的网络切片类型,其中,第一RAN设备不支持请求的网络切片类型。第一AMF网元向终端设备发送第二RAN设备(例如,图4、图5中的第二RAN网元)的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN 设备支持请求的网络切片类型。
根据上述方法,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
在一种可能的设计中,第一RAN设备位于第一TA,第一TA不支持请求的网络切片类型,第二RAN设备位于第二TA,第二TA支持请求的网络切片类型。
在一种可能的设计中,第一RAN设备位于第一TA,第二RAN设备位于第二TA,终端设备所在的位置位于第一TA且位于第二TA;或者,终端设备所在的位置位于第一RAN设备的覆盖区域且位于第二RAN设备的覆盖区域。
在一种可能的设计中,第一AMF网元确定第二RAN设备。例如,第一AMF网元可以通过图4的三种方式中的任一种或多种方式结合来确定第二RAN设备。
在一种可能的设计中,第一AMF网元获取第三RAN设备的信息,然后从第三RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。由此,第一AMF网元通过获取第三RAN设备的信息,可以从第三RAN设备中确定支持请求的网络切片类型的第二RAN设备。
在一种可能的设计中,第一AMF网元获取终端设备所在的位置,并根据终端设备所在的位置确定第二RAN设备。由此,第一AMF网元通过获取终端设备所在的位置,可以确定支持请求的网络切片类型的第二RAN设备。
在一种可能的设计中,第一AMF网元向第一网元发送第四RAN设备的信息或者终端设备所在的位置,其中,第四RAN设备的信息或者终端设备所在的位置用于第二RAN设备的确定。第一AMF网元从第一网元接收第二RAN设备的信息。由此,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
在一种可能的设计中,第一网元为第二AMF网元或者NSSF网元。由此,
在一种可能的设计中,第一AMF网元向终端设备发送指示信息,指示信息用于指示第二RAN设备支持请求的网络切片类型。由此,终端设备接收第二RAN设备的信息后,根据指示信息可以获知第二RAN设备支持请求的网络切片类型。
在一种可能的设计中,第一AMF网元从终端设备接收第一优先级信息,其中,第一优先级信息用于指示请求的网络切片类型的优先级为高,第一AMF网元根据第一优先级信息向终端设备发送注册拒绝消息。由于第一优先级信息指示请求的网络切片类型的优先级为高,说明UE优先接入请求的网络切片类型对应的网络切片。因为UE接入的第一RAN设备无法支持请求的网络切片类型,由此,第一AMF确定拒绝本次注册流程。
在一种可能的设计中,第一AMF网元从终端设备接收第二优先级信息,第二优先级信息用于指示请求的网络切片类型的优先级为低;AMF网元根据第二优先级信息向终端设备发送注册接受消息。由于第二优先级信息指示请求的网络切片类型的优先级为低,在UE接入的第一RAN设备无法支持请求的网络切片类型时,第一AMF为UE确定允许的NSSAI为缺省的S-NSSAI(default S-NSSAI),并确定拒绝的NSSAI(Rejected NSSAI)。其中,拒绝的NSSAI与请求的NSSAI的网络切片类型相同。
又一方面,本申请还公开了一种接入网络切片的方法,该方法包括:终端设备(例如,图4、图5中的UE)通过第一RAN设备(例如,图4、图5中的第一RAN设备)向第一AMF网元(例如,图4、图5中的第一AMF网元)发送请求的网络切片类型,第一RAN设备不支持请求的网络切片类型,终端设备从第一AMF网元接收第二RAN设备(例如,图4、图5中的 第二RAN设备)的信息,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
根据上述方法,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
在一种可能的设计中,第一RAN设备位于第一TA,第一TA不支持请求的网络切片类型;第二RAN设备位于第二TA,第二TA支持请求的网络切片类型。
在一种可能的设计中,第一RAN设备位于第一TA,第二RAN设备位于第二TA,终端设备所在的位置位于第一TA且位于第二TA;或者,终端设备所在的位置位于第一RAN设备的覆盖区域且位于第二RAN设备的覆盖区域。
在一种可能的设计中,终端设备向第二RAN设备发送请求的网络切片类型。由此,终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
在一种可能的设计中,终端设备向第一AMF网元或者第一RAN设备发送第三RAN设备的信息,第三RAN设备中支持请求的网络切片类型的RAN设备为第二RAN设备。由此,第一AMF网元可以获取第三RAN设备的信息,从而可以从第三RAN设备中确定支持请求的网络切片类型的第二RAN设备。
在一种可能的设计中,终端设备从第一AMF网元接收指示信息,指示信息用于指示第二RAN设备支持请求的网络切片类型。由此,终端设备接收第二RAN设备的信息后,根据指示信息可以获知第二RAN设备支持请求的网络切片类型。
在一种可能的设计中,终端设备向第一AMF网元发送第一优先级信息,其中,第一优先级信息用于指示请求的网络切片类型的优先级为高,终端设备从AMF网元接收注册拒绝消息。
在一种可能的设计中,终端设备向第一AMF网元发送第二优先级信息,其中,第二优先级信息用于指示请求的网络切片类型的优先级为低,终端设备从AMF网元接收注册接受消息。
在一种可能的设计中,当第二RAN设备为多个时,还包括:终端设备根据信号强度和/或业务需求,从多个第二RAN设备中选择一个第二RAN设备。由此,当第二RAN设备为多个时,终端设备可以从多个第二RAN设备中选择一个第二RAN设备。
又一方面,本申请还公开了一种接入网络切片的方法,该方法包括:第一网元(例如,图6中的第一网元)从第一AMF网元(例如,图6中的第一AMF网元)接收请求的网络切片类型和第一信息,其中,请求的网络切片类型为终端设备(例如,图6中的UE)请求接入的网络切片类型。第一网元根据网络切片类型和第一信息确定第二RAN设备(例如,图6中的第二RAN设备),并向第一AMF网元发送第二RAN设备的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
根据上述方法,终端设备可以从第一网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
在一种可能的设计中,第一信息为第三RAN设备的信息,第一网元确定第三RAN设备中支持请求的网络切片类型的RAN设备为第二RAN设备。由此,第一网元通过获取第三RAN设备的信息,可以从第三RAN设备中确定支持请求的网络切片类型的第二RAN设备。
在一种可能的设计中,第一信息为终端设备所在的位置。
在一种可能的设计中,第一网元包括第二AMF网元或者NSSF网元。
又一方面,本申请实施例提供了一种接入网络切片的装置,该装置具有实现上述方法中 第一AMF网元(例如,图4、图5中的第一AMF网元)行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述收发器用于实现上述装置与终端设备/第一RAN设备/第一网元之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
又一方面,本申请实施例提供了一种接入网络切片的装置,该装置具有实现上述方法中终端设备(例如,图4、图5中的UE)行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述收发器用于实现上述装置与第一RAN设备/第一AMF网元/第二RAN设备之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
又一方面,本申请实施例提供了一种接入网络切片的装置,该装置具有实现上述方法中第一网元(例如,图6中的第一网元)行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述收发器用于实现上述装置与第一AMF网元/终端设备之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
又一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述装置或终端设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的场景示意图;
图2为根据本申请实施例提供的5G通信系统示意图;
图3为UE盲选接入网络切片的流程图;
图4为根据本申请实施例提供的一种接入网络切片的方法;
图5为根据本申请实施例提供的一种接入网络切片的方法的流程图;
图6为根据本申请实施例提供的又一种接入网络切片的方法的流程图;
图7A、7B为根据本申请实施例中提供的一种接入网络切片的装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。
图2示出了本申请实施例提供的5G通信系统示意图。在5G移动网络架构中,移动网关的控制面功能和转发面功能解耦,其分离出来的控制面功能与3GPP传统的控制网元移动性管理实体(mobility management entity,MME)等合并成统一的控制面(control plane)。用户面功能(user plane function,UPF)网元能实现服务网关(serving gateway,SGW)和分组数据网络网关(packet data network gateway,PGW)的用户面功能(SGW-U和PGW-U)。进一步的,统一的控制面网元可以分解成接入和移动性管理功能(access and mobility management function,AMF)网元和会话管理功能(session management function,SMF)网元。
如图2所示,该通信系统至少包括UE 201、RAN设备202、AMF网元205。可选的,该通信系统还包括UPF网元203、SMF网元206、网络切片选择功能(network slice selection function,NSSF)网元207和数据网络(data network,DN)204。
其中,本系统中所涉及到的UE 201不受限于5G网络,包括:手机、物联网设备、智能家居设备、工业控制设备、车辆设备等等。所述UE也可以称为移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、终端设备(User Terminal)、用户代理(User Agent),在此不作限定。上述终端设备还可以车与车(Vehicle-to-vehicle,V2V)通信中的汽车、机器类通信中的机器等。
本系统中所涉及到的RAN设备202是一种用于为UE 201提供无线通信功能的装置,可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(2rd generation,2G)系统中,称为节点B(Node B)等。在新一代系统中,称为gNB(gNodeB)。
本系统中所涉及到的AMF网元205可负责终端设备的注册、移动性管理、跟踪区更新流程等。AMF网元也可称为AMF设备或AMF实体。
本系统中所涉及到的SMF网元206可负责终端设备的会话管理。例如,会话管理包括用户面设备的选择、用户面设备的重选、网络协议(internet protocol,IP)地址分配、服务质量(quality of service,QoS)控制,以及会话的建立、修改或释放等。SMF网元也可称为SMF设备或SMF实体。
本系统中所涉及到的UPF网元203可以实现用户报文的转发、统计和检测等功能。UPF网元也可称为UPF设备或UPF实体。
本系统中所涉及到的DN 204可以为运营商提供的服务、互联网接入服务,或者第三方提供的服务。
本系统中所涉及到的NSSF网元207可以为用户设备选择网络切片。NSSF网元也可称为NSSF设备或NSSF实体。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在虚拟化平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以 及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
图3为在图1所示的场景中UE盲选接入网络切片的流程图。例如,图3中的RAN1为图1中的RAN1,图3中的RAN2为图1中的RAN2,图3中的AMF网元为图1中核心网中的AMF网元,UE位于RAN1的覆盖范围和RAN2的覆盖范围中。如图3所示,该方法可以包括:
S301、RAN1向AMF网元发送单网络切片选择辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)#1。
例如,RAN1通过NG建立请求(NG setup request)消息向AMF网元发送RAN1所在的跟踪区域(tracking area,TA)1支持的网络切片列表,该网络切片列表中包括S-NSSAI#1。其中,NG接口为RAN1和AMF网元之间的接口。
S302、AMF网元存储S-NSSAI#1。
通过步骤S301和步骤S302,AMF网元可以获知RAN1所在的TA1支持的网络切片类型。
可选的,在步骤S301之后,AMF网元通过NG建立响应(NG setup response)消息向RAN1发送AMF网元支持的网络切片列表。由此,RAN1可以获知AMF支持的网络切片类型。
S303、RAN2向AMF网元发送S-NSSAI#2。
例如,RAN2通过NG建立请求(NG setup request)消息向AMF网元发送RAN2所在的跟踪区域TA2支持的网络切片列表,该网络切片列表中包括S-NSSAI#2。其中,NG接口为RAN2和AMF网元之间的接口。
S304、AMF网元存储S-NSSAI#2。
通过步骤S303和步骤S304,AMF网元可以获知RAN2所在的TA2支持的网络切片类型。
可选的,在步骤S303之后,AMF网元通过NG建立响应(NG setup response)消息向RAN2发送AMF网元支持的网络切片列表。由此,RAN2可以获知AMF支持的网络切片类型。
S305、UE向RAN1发送请求的NSSAI。
其中,请求的NSSAI为S-NSSAI#2。
例如,UE通过盲选的方式选择RAN1入网,通过注册请求消息向RAN1发送请求的NSSAI。
S306、RAN1向AMF网元发送请求的NSSAI。
S307、AMF网元确定允许的NSSAI(Allowed NSSAI)和拒绝的NSSAI(Rejected NSSAI)。
由于RAN1支持S-NSSAI#1,请求的NSSAI为S-NSSAI#2,AMF判断RAN1所在的TA1不支持请求的NSSAI。但是RAN1所在的TA1支持缺省的S-NSSAI(default S-NSSAI),为了保证UE可以顺利注册,AMF为UE确定允许的NSSAI为缺省的S-NSSAI,以及注册区域(Registration Area)。并且,AMF网元确定拒绝的NSSAI为S-NSSAI#2。
S308、AMF网元确定无线接入技术/频率选择优先级(Radio Access Technology/Frequency Selection Priority,RFSP)。
例如,RFSP用于RAN1对UE进行空口频谱选择优先级控制。
S309、AMF网元向RAN1发送注册接受消息。
例如,AMF网元通过N2消息向RAN1发送注册接受消息。N2消息中还包括步骤S308中的RFSP和S307中的允许的NSSAI、拒绝的NSSAI和注册区域。
S310、RAN1向UE发送注册接受消息。
根据图3所示的方法,AMF为了满足UE注册,为UE确定允许的NSSAI为缺省的S-NSSAI。由于缺省的S-NSSAI并不是UE请求接入的网络切片,所以不能满足UE需求(例如Qos、带 宽等需求)。此外,UE收到了拒绝的NSSAI之后,在当前注册区域内,UE不能再次尝试接入拒绝的NSSAI对应的网络切片,只能当UE移出注册区域之后才能尝试接入拒绝的NSSAI对应的网络切片。所以即使UE请求的S-NSSAI为S-NSSAI#2,且UE所在的当前位置存在RAN2可以支持S-NSSAI#2,由于在步骤S307中AMF确定了拒绝的S-NSSAI为S-NSSAI#2,因此UE在当前的位置不能再次尝试接入S-NSSAI#2,需要等UE移出注册区域之后才能尝试接入S-NSSAI#2。由此,图3所示的方法造成UE的入网效率较低,用户体验下降。
下面以图2所示的5G通信系统为例,通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种接入网络切片的方法,该方法适用的场景为:第一RAN设备位于第一TA,第二RAN设备位于第二TA,UE所在的位置位于第一TA且位于第二TA;或者,UE所在的位置位于第一RAN设备的覆盖区域且位于第二RAN设备的覆盖区域。
如4所示的方法可用于图2中的5G通信系统。通过该方法,终端设备可以获知支持请求的网络切片类型的第二RAN设备,进而通过第二RAN设备可以接入请求的网络切片。如图4所示,该方法可以包括:
S401、第一AMF网元通过第一RAN设备从终端设备接收请求的网络切片类型,第一RAN设备不支持请求的网络切片类型。
例如,第一AMF网元位于图1的核心网,第一RAN设备为图1中的RAN1,终端设备为图1中的UE。
例如,UE请求的网络切片类型为S-NSSAI-2,第一RAN设备支持的网络切片类型为S-NSSAI-1,第一RAN设备不支持S-NSSAI-2。
其中,在本申请的实施例中,第一RAN设备不支持请求的网络切片类型,可以包括但是不限于以下几种情况:
1)第一RAN设备所在的TA不支持请求的网络切片类型。还可以理解为,第一RAN设备所在的TA内所有的RAN设备均不支持请求的网络切片类型,其中,第一RAN设备所在的TA内包含一个或者多个RAN设备。
例如,第一RAN设备位于第一TA,第一TA不支持请求的网络切片类型。
例如,第一TA的跟踪区标识(tracking area identity,TAI)为TAI-1,第一TA中的RAN设备都支持S-NSSAI-1,且都不支持S-NSSAI-2。
2)第一RAN设备自身不支持请求的网络切片类型。
3)第一RAN设备服务的小区(cell)中包括不支持请求的网络切片类型的小区,UE位于该不支持请求的网络切片类型的小区中。例如,第一RAN设备服务一个或多个小区,UE位于该一个或多个小区中的cell-1,其中cell-1不支持请求的网络切片类型,所以对于UE来说,第一RAN设备不支持请求的网络切片类型。
4)第一RAN设备所在的切片服务区域(slicing area,SA)不支持请求的网络切片类型。例如,第一RAN设备所在的SA内所有的RAN设备均不支持请求的网络切片类型,其中,第一RAN设备所在的SA内包含一个或者多个RAN设备。其中,SA的覆盖范围可以比TA的覆盖范围大,或者SA的覆盖范围可以比TA的覆盖范围小,本申请不做限定。
S402、第一AMF网元向终端设备发送第二RAN设备的信息,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
其中,第二RAN设备的数量为一个或者多个。
例如,第二RAN设备为图1中的RAN2。第二RAN设备的信息包括以下一种或多种信息:第二RAN设备的标识(identity,ID)或第二RAN设备的位置信息。例如,第二RAN设备的位置信息为第二RAN设备的小区标识(cell ID)或第二RAN设备所在的TAI。
其中,在本申请的实施例中,第二RAN设备支持请求的网络切片类型,可以包括但是不限于以下几种情况:
1)第二RAN设备所在的TA支持请求的网络切片类型。还可以理解为,第二RAN设备所在的TA内所有的RAN设备均支持请求的网络切片类型,其中,第二RAN设备所在的TA内包含一个或者多个RAN设备。
例如,第二RAN设备位于第二TA,第二TA支持请求的网络切片类型。
例如,第二TA的TAI为TAI-2,第二TA中的RAN设备都支持S-NSSAI-2。其中,TAI-2的数量为一个或者多个。
2)第二RAN设备自身支持请求的网络切片类型。
3)第二RAN设备服务的小区(cell)中包括支持请求的网络切片类型的小区,UE位于该支持请求的网络切片类型的小区中。例如,第二RAN设备服务一个或多个小区,UE位于该一个或多个小区中的cell-2,其中cell-2支持请求的网络切片类型,所以对于UE来说,第二RAN设备支持请求的网络切片类型。
4)第二RAN设备所在的SA支持请求的网络切片类型。例如,第二RAN设备所在的SA内所有的RAN设备均支持请求的网络切片类型,其中,第二RAN设备所在的SA内包含一个或者多个RAN设备。其中,SA的覆盖范围可以比TA的覆盖范围大,或者SA的覆盖范围可以比TA的覆盖范围小,本申请不做限定。
可选的,第一AMF网元还向终端设备发送指示信息,该指示信息用于指示第二RAN设备支持请求的网络切片类型。
可选的,在步骤S402之前还包括:第一AMF网元确定第二RAN设备。例如,第一AMF网元可以通过以下三种方式中的任一种或多种方式结合来确定第二RAN设备。
方式一:第一AMF网元获取第三RAN设备的信息,然后第一AMF网元从第三RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。
例如,第一AMF网元从终端设备或者第一RAN设备获取第三RAN设备的信息。第三RAN设备为该终端设备能链接的除了第一RAN设备之外的其他RAN设备。换句话说,第三RAN设备为终端设备可以接入网络的RAN设备;或者,第三RAN设备为可以与终端设备建立无线资源控制(Radio Resource Control,RRC)链路的RAN设备;或者,第三RAN设备为终端设备可以发送注册请求的RAN设备。例如,终端设备根据信号强度的测量确定第三RAN设备。
其中,第三RAN设备的信息用于标识第三RAN设备。可选的,第三RAN设备的信息包括以下一种或多种信息:第三RAN设备的标识(identity,ID)或第三RAN设备的位置信息。例如第三RAN设备的位置信息为第三RAN设备的小区标识(cell ID)、或第三RAN设备所在的TAI。例如,UE向第一AMF网元发送的第三RAN设备的信息包括图1中的RAN2的信息。
第一AMF网元获取第三RAN设备的信息后,确定第二RAN设备的过程如下:
步骤1、第一AMF网元根据第三RAN设备的信息确定第三RAN设备支持的网络切片类型。
例如,参考图3步骤S301-S304的NG建立流程,第一AMF网元可以获取该第一AMF网元服务区域内部署的每一个RAN设备支持的网络切片的能力。如表1所示,第一AMF网元服务区域内部署的RAN设备包括RAN-1和RAN-2,第一AMF网元可以获取到:RAN-1支持的网络切 片类型为S-NSSAI-1,RAN-2支持的网络切片类型为S-NSSAI-2。
表1
第一AMF服务区域内部署的RAN设备 该RAN设备支持的网络切片类型
RAN-1 S-NSSAI-1
RAN-2 S-NSSAI-2
或者,第一AMF网元可以获取该第一AMF网元服务区域内部署的每一个RAN设备所在的TAI,以及该TA支持的网络切片的能力。如表2所示,第一AMF网元服务区域内部署的RAN设备包括RAN-1和RAN-2,第一AMF网元可以获取到:RAN-1所在的TAI为TAI-1,TAI-1支持的网络切片类型为S-NSSAI-1;RAN-2所在的TAI为TAI-2,TAI-2支持的网络切片类型为S-NSSAI-2。
表2
Figure PCTCN2021080509-appb-000001
假设UE向第一AMF网元发送的第三RAN设备的信息包括RAN-2的信息,则第一AMF网元通过表1或者表2确定第三RAN设备支持的网络切片类型为S-NSSAI-2。
步骤2、第一AMF网元从第三RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。
如步骤S401中,UE请求的网络切片类型为S-NSSAI-2。在步骤1中,第一AMF网元确定RAN-2支持的网络切片类型为S-NSSAI-2。由此,第一AMF网元确定RAN-2为第二RAN设备。
当第一AMF网元从终端设备获取的第三设备有多个时,例如,第三RAN设备的信息包括RAN-2的信息和RAN-3的信息,RAN-2和RAN-3均为第一AMF网元服务区域内部署的RAN设备。一种可能的情况为:在上述步骤1中,假设第一AMF网元获取到RAN-3支持的网络切片类型为S-NSSAI-3,在上述步骤2中,第一AMF网元确定RAN-3不支持请求的网络切片,则第一AMF网元确定第二RAN设备为RAN-2。另一种可能的情况为:在上述步骤1中,假设第一AMF网元获取到RAN-2和RAN-3支持的网络切片类型均为S-NSSAI-2,在上述步骤2中,第一AMF网元确定RAN-2和RAN-3支持请求的网络切片,则第一AMF网元确定第二RAN设备为RAN-2和RAN-3。
由此,通过方式一,第一AMF网元通过获取第三RAN设备的信息,可以从第三RAN设备中确定支持请求的网络切片类型的第二RAN设备。
方式二:第一AMF网元获取终端设备所在的位置,然后第一AMF网元根据终端设备所在的位置确定第二RAN设备。
例如,终端设备所在的位置可以是终端设备当前接入的第一RAN设备所在的TAI。
第一AMF网元获取终端设备所在的位置的方法包括:第一AMF网元从终端设备当前接入的第一RAN设备获取该位置信息。例如,第一AMF网元从终端设备当前接入的RAN-1设备获取终端设备所在的位置为TAI-1,其中,RAN-1设备所在的TAI为TAI-1。第一AMF网元可以从网管系统中获取第二信息,第二信息包括以下信息中的一项或多项:拓扑信息、策略信息和配置信息。然后第一AMF网元根据第二信息获取每一个RAN附近周边部署的其他RAN设备的信息。
例如,该第二信息可以如表3所示:第一AMF服务区域内部署的RAN包括RAN-1和RAN-2。 其中,RAN-1所在的TAI为TAI-1,RAN-1周边部署的临近的RAN为RAN-2,RAN-2所在的TAI为TAI-2;RAN-2所在的TAI为TAI-2,RAN-2周边部署的临近的RAN为RAN-1,RAN-1所在的TAI为TAI-1。
表3
Figure PCTCN2021080509-appb-000002
由于终端设备所在的位置为TAI-1,第一AMF网元通过表3可以确定RAN-1周边部署的临近的RAN为RAN-2。又因为第一AMF网元可以获取该第一AMF网元服务区域内部署的每一个RAN设备支持的网络切片的能力。如表1所示,第一AMF网元可以获取RAN-2支持的网络切片类型为S-NSSAI-2。如步骤S401中,UE请求的网络切片类型为S-NSSAI-2,则第一AMF网元确定RAN-2支持请求的网络切片类型,从而确定RAN-2为第二RAN设备。
由此,通过方式二,第一AMF网元通过获取终端设备所在的位置,可以确定支持请求的网络切片类型的第二RAN设备。
方式三:第一AMF网元向第一网元发送第四RAN设备的信息或者终端设备所在的位置,其中,第四RAN设备的信息或者终端设备所在的位置用于第二RAN设备的确定。然后第一AMF网元从第一网元接收第二RAN设备的信息。
在方式三中,第一AMF网元还向第一网元发送请求的网络切片类型。
例如,第一网元为第二AMF网元或者NSSF网元。例如,第四RAN设备与第一AMF网元不存在接口。第二AMF网元为第四RAN设备服务。
方式三可以通过以下两种方法中的任一种方法实现:
第一种方法:若第一AMF网元向第一网元发送第四RAN设备的信息。
例如,第一AMF网元可以从终端设备或者第一RAN设备接收第四RAN设备的信息。第四RAN设备为该终端设备能链接的除了第一RAN设备之外的其他RAN设备。换句话说,第四RAN设备为终端设备可以接入网络的RAN设备;或者,第四RAN设备为可以与终端设备建立RRC链路的RAN设备;或者,第四RAN设备为终端设备可以发送注册请求的RAN设备。例如,终端设备根据信号强度的测量确定第四RAN设备。或者,第一AMF网元可以从网管系统中获取每一个RAN附近周边部署的其他RAN的信息,第一AMF网元通过终端设备所在的位置确定第一RAN设备周边部署的临近的RAN为第四RAN设备。
其中,第四RAN设备的信息用于标识第四RAN设备。可选的,第四RAN设备的信息包括以下一种或多种信息:第四RAN设备的ID、第四RAN设备的小区标识、或第四RAN设备所在的TAI。该方法适用的场景如下:第一AMF网元确定第四RAN设备与第一AMF网元之间不存在接口,第四RAN设备由第二AMF网元服务。这种场景下,第一AMF网元向第一网元发送第四RAN设备的信息,由第一网元根据第四RAN设备的信息确定第二RAN设备。例如,第一网元根据第四RAN设备的信息确定第四RAN设备支持的网络切片类型,第二AMF网元从第四RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。例如,第一网元根据第四RAN设备的信息确定第二RAN设备的过程可参考方式一的步骤1和步骤2中第一AMF网元根据第三RAN设备的信息确定第二RAN设备的过程,此次不在赘述。
第二种方法:若第一AMF网元向第一网元发送终端设备所在的位置。
例如,终端设备所在的位置可以是终端设备当前接入的第一RAN设备所在的TAI。
第一AMF网元获取终端设备所在的位置的方法包括:第一AMF网元从终端设备当前接入的第一RAN设备获取该位置信息。
第一AMF网元可以从网管系统中获取每一个RAN附近周边部署的其他RAN的信息,第一AMF网元通过终端设备所在的位置(即第一RAN设备所在的TAI)确定第一RAN设备周边部署的临近的RAN设备为第五RAN设备。
该方法适用的场景如下:第一AMF网元确定第五RAN设备与第一AMF网元之间不存在接口,第五RAN设备由第二AMF网元服务。这种场景下,第一AMF网元向第一网元发送终端设备所在的位置,由第一网元根据终端设备所在的位置确定第二RAN设备。例如,第一网元根据终端设备所在的位置确定第二RAN设备的过程可参考方式二中第一AMF网元根据终端设备所在的位置确定第二RAN设备的过程,此次不再赘述。
由此,通过方式三,第一网元从第一AMF网元接收请求的网络切片类型和第一信息,然后根据网络切片类型和第一信息确定第二无线接入网RAN设备,并向第一AMF网元发送第二RAN设备的信息。其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。其中,第一信息为第三RAN设备的信息或终端设备所在的位置。
根据本发明实施例的方法,在图2所示的通信系统中,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
图5为本申请实施例提供的一种接入网络切片的方法的流程图。图5适用于图2所示的通信系统,是对图4中方式一和方式二的具体实现。图5将结合图4进行描述。如图5所示,该方法可以包括:
501、UE向第一RAN设备发送请求的网络切片类型和注册请求消息。相应的,第一RAN设备从UE接收请求的网络切片类型和注册请求消息。
例如,UE请求的网络切片类型(Requested NSSAI)为S-NSSAI-2。
例如,UE通过RRC消息向第一RAN设备发送请求的网络切片类型。可选的,UE还通过RRC消息向第一RAN设备发送第三RAN设备的信息。其中,第三RAN设备的信息用于标识第三RAN设备。
注册请求消息中包括请求的网络切片类型。可选的,注册请求消息中还包括第三RAN设备的信息。其中,第三RAN设备的信息用于标识第三RAN设备。例如,UE根据实际信号的测量结果,确定该UE能链接的除了第一RAN设备之外的其他RAN设备为第三RAN设备。对第三RAN设备的信息的描述可参考图4的方式一中对第三RAN设备的信息的描述,此处不再赘述。
可选的,UE还在注册请求消息携带第一优先级信息或者第二优先级信息。其中,第一优先级信息用于指示请求的网络切片类型的优先级为高,第二优先级信息用于指示请求的网络切片类型的优先级为低。例如,注册请求消息中还包括第一优先级信息或者第二优先级信息。
502、第一RAN设备向第一AMF网元发送请求的网络切片类型。相应的,第一AMF网元从第一RAN设备接收请求的网络切片类型。
例如,第一RAN设备通过注册请求消息向第一AMF网元发送请求的网络切片类型。
第一RAN设备还向第一AMF网元发送UE当前所在的位置信息(user location information)。例如,该位置信息可以用第一RAN设备所在的TAI标识。可选的,若在步骤501中,UE还通过RRC消息向第一RAN设备发送第三RAN设备的信息,则在步骤502中,第一RAN设备向第一AMF网元发送第三RAN设备的信息。
503、第一AMF网元确定第二RAN设备。
步骤503的实现方式可参考图4中第一AMF网元确定第二RAN设备的方式一和方式二。若在步骤502中,第一AMF网元获取了第三RAN设备的信息,则采用方式一:第一AMF网元从第三RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。若在步骤502中,第一AMF网元没有获取第三RAN设备的信息,则采用方式二:第一AMF网元根据UE所在的位置确定第二RAN设备。
在步骤503之后,可以通过方式a或方式b中的任一种方式,实现UE通过第二RAN设备接入请求的网络切片。若在步骤501中,UE还在注册请求消息中携带第一优先级信息,则采用方式a,包括第一AMF网元根据第一优先级信息向UE发送注册拒绝消息。在步骤501中,UE在注册请求消息中携带第二优先级信息,则采用方式b,包括第一AMF网元根据第二优先级信息向UE发送注册接受消息。
其中,方式a包括步骤504a-509a。
504a、第一AMF网元向第一RAN设备发送注册拒绝消息。相应的,第一RAN设备从第一AMF网元接收注册拒绝消息。
其中,注册拒绝消息中包括步骤503中第二RAN设备的信息。
由于第一优先级信息指示请求的网络切片类型的优先级为高,说明UE优先接入请求的网络切片类型对应的网络切片。因为UE接入的第一RAN设备无法支持请求的网络切片类型,则第一AMF确定拒绝本次注册流程。
可选的,注册拒绝消息中还包括第一指示信息,该第一指示信息用于指示第二RAN设备支持请求的网络切片类型。
可选的,注册拒绝消息中还包括原因值,该原因值用于指示拒绝的原因为:请求的网络切片类型不可用。
例如,注册拒绝消息用于指示第一AMF网元拒绝UE的注册请求。
505a、第一RAN设备向UE发送注册拒绝消息。相应的,UE从第一RAN设备接收注册拒绝消息。
506a、UE确定向第二RAN设备发起重新注册。
例如,UE从注册拒绝消息中获取第二RAN设备的信息后,根据UE与第二RAN设备之间的链路质量或者信号强度和/或UE的业务需求,确定向第二RAN设备发起重新注册。
如果第二RAN设备的数量为多个,则UE根据与每个第二RAN设备之间的链路质量或者信号强度,选择信号最强的第二设备为目标RAN设备,并确定向该目标RAN设备发起重新注册。
507a、UE向第二RAN设备发送初始注册请求。相应的,第二RAN设备从UE接收初始注册请求。
其中,初始注册请求中包括步骤501中UE请求的网络切片类型(Requested NSSAI)。
508a、UE成功注册到AMF网元。
509a、第二RAN设备向UE发送注册接受消息。相应的,UE从第二RAN设备接收注册接受消息。
其中,注册接受消息中包括允许的NSSAI。例如,步骤501中UE请求的NSSAI为S-NSSAI-2,则允许的NSSAI为S-NSSAI-2。
方式b中包括步骤504b-509b。
504b、第一AMF网元向第一RAN设备发送注册接受消息。相应的,第一RAN设备从第一AMF网元接收注册接受消息。
其中,注册接受消息中包括步骤503中第二RAN设备的信息。
由于第二优先级信息指示请求的网络切片类型的优先级为低,在UE接入的第一RAN设备无法支持请求的网络切片类型时,第一AMF为UE确定允许的NSSAI为缺省的S-NSSAI(default S-NSSAI),并确定拒绝的NSSAI(Rejected NSSAI)。其中,拒绝的NSSAI与请求的NSSAI的网络切片类型相同。
可选的,注册接受消息中还包括第二指示信息,该第二指示信息用于指示第二RAN设备支持请求的网络切片类型。
505b、第一RAN设备向UE发送注册接受消息。相应的,UE从第一RAN设备接收注册接受消息。
506b、UE确定向第二RAN设备发起注册更新。
例如,UE从注册接受消息中获取第二RAN设备的信息后,根据UE与第二RAN设备之间的链路质量或者信号强度和/或UE的业务需求,确定向第二RAN设备发起注册更新。
如果第二RAN设备的数量为多个,则UE根据与每个第二RAN设备之间的链路质量或者信号强度,选择信号最强的第二设备为目标RAN设备,并确定向该目标RAN设备发起注册更新。
507b、UE向第二RAN设备发送注册更新请求。相应的,第二RAN设备从UE接收注册更新请求。
其中,注册更新请求中包括请求的NSSAI,该请求的NSSAI为步骤504b中的拒绝的NSSAI。
508b、UE成功注册到AMF网元,更新允许的NSSAI。
509b、第二RAN设备向UE发送注册更新接受消息。相应的,UE从第二RAN设备接收注册更新接受消息。
其中,注册更新接受消息中包括更新后的允许的NSSAI。例如,步骤501中UE请求的NSSAI为S-NSSAI-2,则更新后的允许的NSSAI为S-NSSAI-2。
根据本发明实施例的方法,在图2所示的通信系统中,终端设备可以通过图4的方式一和方式二,获得支持请求的网络切片类型的第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备注册到第一AMF并接入请求的网络切片,从而提高了用户体验。
图6为本申请实施例提供的一种接入网络切片的方法的流程图。图6适用于图2所示的通信系统,是对图4中方式三的具体实现。图6将结合图4和图5进行描述。如图6所示,该方法可以包括:
601、UE向第一RAN设备发送请求的网络切片类型和注册请求消息。相应的,第一RAN设备从UE接收请求的网络切片类型和注册请求消息。
602、第一RAN设备向第一AMF网元发送请求的网络切片类型。相应的,第一AMF网元从第一RAN设备接收请求的网络切片类型。
步骤601和602可参考图5的步骤501和502的描述,此处不再赘述。
604、第一AMF网元向第一网元发送第四RAN设备的信息或者终端设备所在的位置。相应的,第一网元从第一AMF网元接收第四RAN设备的信息或者终端设备所在的位置。
第一AMF网元还向第一网元发送请求的NSSAI。
例如,第一AMF网元通过请求消息或者服务化调用向第一网元发送第四RAN设备的信息或者终端设备所在的位置,以及请求的NSSAI。
例如,第一网元为第二AMF网元或者NSSF网元。当第一网元为第二AMF网元时,第一AMF网元可以调用第二AMF网元的服务化操作信号获取请求(Namf_information_Get_request)向第二AMF网元发送第四RAN设备的信息或者终端设备所在的位置,以及请 求的NSSAI。当第一网元为NSSF网元时,第一AMF网元可以调用NSSF网元的服务化操作网络切片选择请求(Nnssf_NSSelection_Get_request)向NSSF网元发送第四RAN设备的信息或者终端设备所在的位置,以及请求的NSSAI。
当第一网元为第二AMF时,第一AMF网元根据第四RAN设备的信息,确定能服务第四RAN设备的第二AMF网元的标识。
605、第一网元确定第二RAN设备。
步骤605的实现可以参考图4的方式三中提供的第一种方法和第二种方法,此处不再赘述。若在步骤604中第一AMF网元向第一网元发送第四RAN设备的信息,则采用第一种方法;若在步骤604中第一AMF网元向第一网元发送终端设备所在的位置,则采用第二种方法。
若在步骤604中第一AMF网元向第一网元发送第四RAN设备的信息,可选的,还包括步骤603:第一AMF网元确定第四设备。
606、第一网元向第一AMF网元发送第二RAN设备的信息。相应的,第一AMF网元从第一网元接收第二RAN设备的信息。
例如,第一网元通过响应消息或者服务化调用向第一AMF网元发送第二RAN设备的信息。当第一网元为第二AMF网元时,第二AMF网元可以调用第二AMF网元的服务化操作信号获取响应(Namf_information_Get_response)向第一AMF网元发送第二RAN设备的信息;当第一网元为NSSF网元时,NSSF网元可以调用NSSF网元的服务化操作网络切片选择响应(Nnssf_NSSelection_Get_response)向第一AMF网元发送第二RAN设备的信息。
在步骤606之后,可以通过方式c或方式d中的任一种方式,实现UE通过第二RAN设备接入请求的网络切片。其中,方式c包括步骤607a-612a,可参考图5中方式a的步骤504a-509a的描述,此处不再赘述。方式c与方式a不同的是,步骤610a-612a为UE到第二AMF网元的注册,而步骤507a-509a为UE到第一AMF网元的注册。方式d包括步骤607b-612b,可参考图5中方式b的步骤504b-509b的描述,此处不再赘述。方式d与方式b不同的是,步骤610b-612b为UE到第二AMF网元的注册,而步骤507b-509b为UE到第一AMF网元的注册。
根据本发明实施例的方法,在图2所示的通信系统中,终端设备可以通过图4的方式三,获得支持请求的网络切片类型的第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备注册到第二AMF并接入请求的网络切片,从而提高了用户体验。上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的接入网络切片的方法的各方案进行了介绍。可以理解的是,各个网元和设备,例如上述第一AMF网元、第一RAN设备、终端设备、第二RAN设备和第一网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
例如,当上述网元通过软件模块来实现相应的功能。该接入网络切片的装置可包括接收模块701、处理模块702和发送模块703,如图7A所示。
在一个实施例中,该接入网络切片的装置可用于执行上述图4、图5中的第一AMF网元的操作。例如,该接入网络切片的装置包括:
接收模块701,用于通过第一RAN设备(例如,图4、图5中的第一RAN网元)从终端设 备接收请求的网络切片类型,其中,第一RAN设备不支持请求的网络切片类型;发送模块703,用于向终端设备(例如,图4、图5中的UE)发送第二RAN设备(例如,图4、图5中的第二RAN网元)的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
由此,本发明实施例中,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
可选的,第一RAN设备位于第一TA,第一TA不支持请求的网络切片类型;第二RAN设备位于第二TA,第二TA支持请求的网络切片类型。
可选的,第一RAN设备位于第一TA,第二RAN设备位于第二TA,终端设备所在的位置位于第一TA且位于第二TA;或者,终端设备所在的位置位于第一RAN设备的覆盖区域且位于第二RAN设备的覆盖区域。
可选的,该接入网络切片的装置还包括:处理模块702,用于确定第二RAN设备。
可选的,处理模块702用于获取第三RAN设备的信息,并从第三RAN设备中确定支持请求的网络切片类型的RAN设备为第二RAN设备。
可选的,处理模块702用于获取终端设备所在的位置,并根据终端设备所在的位置确定第二RAN设备。
可选的,发送模块703用于向第一网元发送第四RAN设备的信息或者终端设备所在的位置,其中,第四RAN设备的信息或者终端设备所在的位置用于第二RAN设备的确定;接收模块701用于从第一网元接收第二RAN设备的信息。
可选的,第一网元为第二AMF网元或者NSSF网元。
可选的,发送模块703还用于向终端设备发送指示信息,其中,指示信息用于指示第二RAN设备支持请求的网络切片类型。
可选的,接收模块701还用于从终端设备接收第一优先级信息,其中,第一优先级信息用于指示请求的网络切片类型的优先级为高;发送模块703还用于根据第一优先级信息向终端设备发送注册拒绝消息。
可选的,接收模块701还用于从终端设备接收第二优先级信息,其中,第二优先级信息用于指示请求的网络切片类型的优先级为低;发送模块703还用于根据第二优先级信息向终端设备发送注册接受消息。
此外,接入网络切片的装置中的接收模块701、处理模块702和发送模块703还可实现图4、图5中的第一AMF网元的其他操作或功能,此处不再赘述。
在另一个实施例中,图7A所示的接入网络切片的装置还可用于执行图4、图5中的UE的操作。例如,该接入网络切片的装置包括:
发送模块703,用于通过第一RAN设备(例如,图4、图5中的第一RAN设备)向第一AMF网元(例如,图4、图5中的第一AMF网元)发送请求的网络切片类型,其中,第一RAN设备不支持请求的网络切片类型;接收模块701,用于从第一AMF网元接收第二RAN设备(例如,图4、图5中的第二RAN设备)的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
由此,本发明实施例中,终端设备可以从第一AMF网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
可选的,第一RAN设备位于第一TA,第一TA不支持请求的网络切片类型;第二RAN设备位于第二TA,第二TA支持请求的网络切片类型。
可选的,第一RAN设备位于第一TA,第二RAN设备位于第二TA,终端设备所在的位置位于第一TA且位于第二TA;或者,终端设备所在的位置位于第一RAN设备的覆盖区域且位于第二RAN设备的覆盖区域。
可选的,发送模块703还用于向第二RAN设备发送请求的网络切片类型。
可选的,发送模块703还用于向第一AMF网元或者第一RAN设备发送第三RAN设备的信息,第三RAN设备中支持请求的网络切片类型的RAN设备为第二RAN设备。
可选的,接收模块701还用于从AMF网元接收指示信息,指示信息用于指示第二RAN设备支持请求的网络切片类型。
可选的,发送模块703还用于向AMF网元发送第一优先级信息,其中,第一优先级信息用于指示请求的网络切片类型的优先级为高;接收模块701还用于从AMF网元接收注册拒绝消息。
可选的,发送模块703还用于向AMF网元发送第二优先级信息,其中,第二优先级信息用于指示请求的网络切片类型的优先级为低;接收模块701还用于从AMF网元接收注册接受消息。
可选的,该接入网络切片的装置还包括处理模块702,用于根据信号强度和/或业务需求,从多个第二RAN设备中选择一个第二RAN设备。
此外,接入网络切片的装置中的接收模块701、处理模块702和发送模块703还可实现图4、图5中的UE的其他操作或功能,此处不再赘述。
在另一个实施例中,图7A所示的接入网络切片的装置还可用于执行图6中的第一网元的操作。例如,该接入网络切片的装置包括:
接收模块701,用于从第一AMF网元接收请求的网络切片类型和第一信息,其中,请求的网络切片类型为终端设备请求接入的网络切片类型;处理模块702,用于根据网络切片类型和第一信息确定第二RAN设备;发送模块703,用于向第一AMF网元发送第二RAN设备的信息,其中,第二RAN设备的信息用于标识第二RAN设备,第二RAN设备支持请求的网络切片类型。
由此,本发明实施例中,终端设备可以从第一网元获得第二RAN设备的信息,由于第二RAN设备支持请求的网络切片类型,所以终端设备可以通过第二RAN设备可以接入请求的网络切片,从而提高了用户体验。
可选的,第一信息为第三RAN设备的信息;处理模块702用于确定第三RAN设备中支持请求的网络切片类型的RAN设备为第二RAN设备。
可选的,第一信息为终端设备所在的位置。
可选的,第一网元包括第二AMF网元或者NSSF网元。
此外,接入网络切片的装置中的接收模块701、处理模块702和发送模块703还可实现图6中的第一网元的其他操作或功能,此处不再赘述。图7B示出了上述实施例中所涉及的接入网络切片的装置的另一种可能的结构示意图。接入网络切片的装置包括收发器704和处理器705,如图7B所示。例如,处理器705可以为通用微处理器、数据处理电路、专用集成电路(application specific integrated circuit,ASIC)或者现场可编程门阵列(field-programmable gate arrays,FPGA)电路。所述接入网络切片的装置还可以包括存储器706,例如,存储器为随机存取存储器(random access memory,RAM)。所述存储器用 于与处理器705耦合,其保存该接入网络切片的装置必要的计算机程序7061。
此外,上述实施例中所涉及的接入网络切片的装置还提供了一种载体707,所述载体内保存有该接入网络切片的装置的计算机程序7071,可以将计算机程序7071加载到处理器705中。上述载体可以为光信号、电信号、电磁信号或者计算机可读存储介质(例如,硬盘)。
当上述计算机程序7061或7071在计算机(例如,处理器705)上运行时,可使得计算机执行上述的方法。
例如,在一个实施例中,处理器705被配置为第一AMF网元(例如,图4、图5中的第一AMF网元)的其他操作或功能。收发器704用于实现第一AMF网元与终端设备/第一RAN设备/第一网元之间的通信。
在另一个实施例中,处理器705被配置为终端设备(例如,图4、图5中的UE)的其他操作或功能。收发器704用于实现终端设备与第一RAN设备/第一AMF网元/第二RAN设备之间的通信。
在另一个实施例中,处理器705被配置为第一网元(例如,图6中的第一网元)的其他操作或功能。收发器704用于实现第一网元与第一AMF网元/终端设备之间的通信。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以内置于SoC(片上系统)或专用集成电路(application specific integrated circuit,ASIC),也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护 范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (29)

  1. 一种接入网络切片的方法,其特征在于,包括:
    第一接入及移动性管理功能AMF网元通过第一无线接入网RAN设备从终端设备接收请求的网络切片类型,所述第一RAN设备不支持所述请求的网络切片类型;
    所述第一AMF网元向所述终端设备发送第二RAN设备的信息,所述第二RAN设备的信息用于标识所述第二RAN设备,所述第二RAN设备支持所述请求的网络切片类型。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一RAN设备位于第一跟踪区TA,所述第一TA不支持所述请求的网络切片类型;
    所述第二RAN设备位于第二TA,所述第二TA支持所述请求的网络切片类型。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一RAN设备位于第一TA,所述第二RAN设备位于第二TA,所述终端设备所在的位置位于所述第一TA且位于所述第二TA;或者,
    所述终端设备所在的位置位于所述第一RAN设备的覆盖区域且位于所述第二RAN设备的覆盖区域。
  4. 根据权利要求1至3任一所述的方法,其特征在于,还包括:
    所述第一AMF网元确定所述第二RAN设备。
  5. 根据权利要求4所述的方法,其特征在于,所述第一AMF网元确定所述第二RAN设备,包括:
    所述第一AMF网元获取第三RAN设备的信息;
    所述第一AMF网元从所述第三RAN设备中确定支持所述请求的网络切片类型的RAN设备为所述第二RAN设备。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一AMF网元确定所述第二RAN设备,包括:
    所述第一AMF网元获取所述终端设备所在的位置;
    所述第一AMF网元根据所述终端设备所在的位置确定所述第二RAN设备。
  7. 根据权利要求4所述的方法,其特征在于,所述第一AMF网元确定所述第二RAN设备,包括:
    所述第一AMF网元向第一网元发送第四RAN设备的信息或者所述终端设备所在的位置,所述第四RAN设备的信息或者所述终端设备所在的位置用于所述第二RAN设备的确定;
    所述第一AMF网元从所述第一网元接收所述第二RAN设备的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网元为第二AMF网元或者网络切片选择功能NSSF网元。
  9. 根据权利要求1至8任一所述的方法,还包括:
    所述第一AMF网元向所述终端设备发送指示信息,所述指示信息用于指示所述第二RAN设备支持所述请求的网络切片类型。
  10. 一种接入网络切片的方法,其特征在于,包括:
    终端设备通过第一无线接入网RAN设备向第一接入及移动性管理功能AMF网元发送请求的网络切片类型,所述第一RAN设备不支持所述请求的网络切片类型;
    所述终端设备从所述第一AMF网元接收第二RAN设备的信息,所述第二RAN设备的信息用于标识所述第二RAN设备,所述第二RAN设备支持所述请求的网络切片类型。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一RAN设备位于第一跟踪区TA,所述第一TA不支持所述请求的网络切片类型;
    所述第二RAN设备位于第二TA,所述第二TA支持所述请求的网络切片类型。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第一RAN设备位于第一TA,所述第二RAN设备位于第二TA,所述终端设备所在的位置位于所述第一TA且位于所述第二TA;或者,
    所述终端设备所在的位置位于所述第一RAN设备的覆盖区域且位于所述第二RAN设备的覆盖区域。
  13. 根据权利要求10至12任一所述的方法,其特征在于,还包括:
    所述终端设备向所述第二RAN设备发送所述请求的网络切片类型。
  14. 根据权利要求10至13任一所述的方法,其特征在于,还包括:
    所述终端设备向所述第一AMF网元或者所述第一RAN设备发送第三RAN设备的信息,所述第三RAN设备中支持所述请求的网络切片类型的RAN设备为所述第二RAN设备。
  15. 一种接入网络切片的装置,其特征在于,包括:
    接收模块,用于通过第一无线接入网RAN设备从终端设备接收请求的网络切片类型,所述第一RAN设备不支持所述请求的网络切片类型;
    发送模块,用于向所述终端设备发送第二RAN设备的信息,所述第二RAN设备的信息用于标识所述第二RAN设备,所述第二RAN设备支持所述请求的网络切片类型。
  16. 根据权利要求15所述的装置,其特征在于,
    所述第一RAN设备位于第一跟踪区TA,所述第一TA不支持所述请求的网络切片类型;
    所述第二RAN设备位于第二TA,所述第二TA支持所述请求的网络切片类型。
  17. 根据权利要求15或16所述的装置,其特征在于,
    所述第一RAN设备位于第一TA,所述第二RAN设备位于第二TA,所述终端设备所在的位置位于所述第一TA且位于所述第二TA;或者,
    所述终端设备所在的位置位于所述第一RAN设备的覆盖区域且位于所述第二RAN设备的覆盖区域。
  18. 根据权利要求15至17任一所述的装置,其特征在于,还包括:
    处理模块,用于确定所述第二RAN设备。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理模块用于获取第三RAN设备的信息;
    所述处理模块用于从所述第三RAN设备中确定支持所述请求的网络切片类型的RAN设备为所述第二RAN设备。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述处理模块用于获取所述终端设备所在的位置;
    所述处理模块用于根据所述终端设备所在的位置确定所述第二RAN设备。
  21. 根据权利要求18所述的装置,其特征在于,
    所述发送模块用于向第一网元发送第四RAN设备的信息或者所述终端设备所在的位置,所述第四RAN设备的信息或者所述终端设备所在的位置用于所述第二RAN设备的确定;
    所述接收模块用于从所述第一网元接收所述第二RAN设备的信息。
  22. 根据权利要求21所述的装置,其特征在于,所述第一网元为第二AMF网元或者网络切片选择功能NSSF网元。
  23. 根据权利要求15至22任一所述的装置,其特征在于,
    所述发送模块还用于向所述终端设备发送指示信息,所述指示信息用于指示所述第二RAN设备支持所述请求的网络切片类型。
  24. 一种接入网络切片的装置,其特征在于,包括:
    发送模块,用于通过第一无线接入网RAN设备向第一接入及移动性管理功能AMF网元发送请求的网络切片类型,所述第一RAN设备不支持所述请求的网络切片类型;
    接收模块,用于从所述第一AMF网元接收第二RAN设备的信息,所述第二RAN设备的信息用于标识所述第二RAN设备,所述第二RAN设备支持所述请求的网络切片类型。
  25. 根据权利要求24所述的装置,其特征在于,
    所述第一RAN设备位于第一跟踪区TA,所述第一TA不支持所述请求的网络切片类型;
    所述第二RAN设备位于第二TA,所述第二TA支持所述请求的网络切片类型。
  26. 根据权利要求24或25所述的装置,其特征在于,
    所述第一RAN设备位于第一TA,所述第二RAN设备位于第二TA,所述终端设备所在的位置位于所述第一TA且位于所述第二TA;或者,
    所述终端设备所在的位置位于所述第一RAN设备的覆盖区域且位于所述第二RAN设备的覆盖区域。
  27. 根据权利要求24至26任一所述的装置,其特征在于,
    所述发送模块还用于向所述第二RAN设备发送所述请求的网络切片类型。
  28. 根据权利要求24至27任一所述的装置,其特征在于,
    所述发送模块还用于向所述第一AMF网元或者所述第一RAN设备发送第三RAN设备的信息,所述第三RAN设备中支持所述请求的网络切片类型的RAN设备为所述第二RAN设备。
  29. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-14任意一项所述的方法。
PCT/CN2021/080509 2020-03-16 2021-03-12 一种接入网络切片的方法及装置 WO2021185176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010181190.7A CN113411815B (zh) 2020-03-16 2020-03-16 一种接入网络切片的方法及装置
CN202010181190.7 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021185176A1 true WO2021185176A1 (zh) 2021-09-23

Family

ID=77676347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080509 WO2021185176A1 (zh) 2020-03-16 2021-03-12 一种接入网络切片的方法及装置

Country Status (2)

Country Link
CN (1) CN113411815B (zh)
WO (1) WO2021185176A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950141A (zh) * 2021-11-30 2022-01-18 新华三技术有限公司成都分公司 一种终端ue注册方法、装置及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116867054A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 通信方法及终端设备、核心网设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135992A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of mapping a network slice
CN108924884A (zh) * 2017-04-04 2018-11-30 华为技术有限公司 通信方法及通信设备
CN110248353A (zh) * 2018-03-07 2019-09-17 电信科学技术研究院有限公司 一种网络切片处理方法及设备
CN110463335A (zh) * 2017-03-29 2019-11-15 鸿颖创新有限公司 用于网络切片之无线通信方法及系统
CN110679179A (zh) * 2017-06-02 2020-01-10 鸿颖创新有限公司 用于服务驱动的移动性管理的方法、装置及系统
CN110741684A (zh) * 2019-09-05 2020-01-31 北京小米移动软件有限公司 信息发送方法及装置、网络选择方法及装置和基站
CN110769458A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 通信方法、接入网设备和终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412770B (zh) * 2017-09-23 2019-09-20 华为技术有限公司 通信方法及装置
CN110278096B (zh) * 2018-03-14 2022-01-07 华为技术有限公司 一种基于网络切片的通信方法及装置
CN110267327B (zh) * 2019-05-08 2021-04-27 中国联合网络通信集团有限公司 业务传输方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135992A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of mapping a network slice
CN110463335A (zh) * 2017-03-29 2019-11-15 鸿颖创新有限公司 用于网络切片之无线通信方法及系统
CN108924884A (zh) * 2017-04-04 2018-11-30 华为技术有限公司 通信方法及通信设备
CN110679179A (zh) * 2017-06-02 2020-01-10 鸿颖创新有限公司 用于服务驱动的移动性管理的方法、装置及系统
CN110248353A (zh) * 2018-03-07 2019-09-17 电信科学技术研究院有限公司 一种网络切片处理方法及设备
CN110769458A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 通信方法、接入网设备和终端设备
CN110741684A (zh) * 2019-09-05 2020-01-31 北京小米移动软件有限公司 信息发送方法及装置、网络选择方法及装置和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950141A (zh) * 2021-11-30 2022-01-18 新华三技术有限公司成都分公司 一种终端ue注册方法、装置及设备
CN113950141B (zh) * 2021-11-30 2023-05-26 新华三技术有限公司 一种终端ue注册方法、装置及设备

Also Published As

Publication number Publication date
CN113411815A (zh) 2021-09-17
CN113411815B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US11381956B2 (en) Obtaining of UE policy
US11026080B2 (en) Policy control function determining method, apparatus, and system
US11659454B2 (en) Methods, systems and apparatuses for management or network functions
US11564284B2 (en) Communication method, apparatus, and system for determining a target user plan function entity
JP7013498B2 (ja) データスケジューリング方法、基地局およびシステム
US11528591B2 (en) Network slicing-based communication method and network slicing-based communications apparatus
WO2019029674A1 (zh) 通信方法及源基站、目标基站、核心网设备、终端设备
WO2021189869A1 (zh) 一种获取信息的方法及装置
US11818652B2 (en) Method and apparatus for selecting network slices in wireless communication system
US11818800B2 (en) Method and apparatus for improving service reliability in wireless communication system
WO2018121616A1 (zh) 一种双连接方法及接入网设备
AU2018370721A1 (en) Session processing method, device, and system
US20220150683A1 (en) Method, Apparatus, and System for Selecting Session Management Network Element
US10999768B2 (en) Session context handling method, network element, and terminal device
WO2020216099A1 (zh) 通信方法及相关设备
WO2022067643A1 (zh) 一种小区选择方法、寻呼方法及装置
WO2021185176A1 (zh) 一种接入网络切片的方法及装置
US20210014720A1 (en) Relocation Method and Apparatus
WO2021000938A1 (zh) 一种同步pdu会话状态的方法、装置、系统及芯片
US20240121670A1 (en) Quality of service continuity in converged networks
CN114423074A (zh) 一种通信方法及装置
WO2021163894A1 (zh) 一种基于中继的通信方法及装置
WO2023142981A1 (zh) 通信方法及相关装置
WO2024067139A1 (zh) 一种通信方法及装置
WO2020156182A1 (zh) 服务小区信息的更新方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770603

Country of ref document: EP

Kind code of ref document: A1