WO2024066778A1 - 多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用 - Google Patents

多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用 Download PDF

Info

Publication number
WO2024066778A1
WO2024066778A1 PCT/CN2023/113278 CN2023113278W WO2024066778A1 WO 2024066778 A1 WO2024066778 A1 WO 2024066778A1 CN 2023113278 W CN2023113278 W CN 2023113278W WO 2024066778 A1 WO2024066778 A1 WO 2024066778A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
weight
reaction
conditions
polymerization reaction
Prior art date
Application number
PCT/CN2023/113278
Other languages
English (en)
French (fr)
Inventor
翟云芳
燕鹏华
杨珊珊
孟令坤
朱晶
魏绪玲
王勤芳
徐典宏
Original Assignee
中国石油天然气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司 filed Critical 中国石油天然气集团有限公司
Publication of WO2024066778A1 publication Critical patent/WO2024066778A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • C08G81/022Block or graft polymers containing only sequences of polymers of C08C or C08F containing sequences of polymers of conjugated dienes and of polymers of alkenyl aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the invention relates to the technical field of rubber preparation, and in particular to a multi-component copolymer and a preparation method and application thereof, and a halogenated branched butyl rubber and a preparation method and application thereof.
  • Butyl rubber is made of isobutylene and a small amount of isoprene as raw materials by cationic polymerization. It has excellent air tightness and damping properties. It is widely used in the manufacture of inner tubes, airtight layers, vulcanized bladders and other fields of automobile tires. It has become one of the most important synthetic rubber varieties.
  • the molecular chain of high-saturation butyl rubber is mainly composed of carbon-carbon single bonds, with low unsaturation (only about 0.5-1.5%), and has extremely low air permeability and excellent ozone resistance. It can be used in the airtight layers of load-bearing tires and medical fields under harsh environments and working conditions.
  • high-saturation butyl rubber has the disadvantages of high molecular chain isotacticity, high crystallinity, poor viscoelasticity and slow vulcanization speed, resulting in low vulcanization efficiency, poor vulcanization performance, and easy excessive flow and deformation during the processing of high-saturation butyl rubber. This has become a bottleneck restricting butyl rubber from entering high-end applications.
  • the purpose of the present invention is to overcome the problems of the existing butyl rubber, such as significant extrusion swell effect, long vulcanization scorch time, low vulcanization speed and poor ozone aging resistance, and to provide a multi-polymer and a preparation method and application thereof, a halogenated branched butyl rubber and a preparation method and application thereof.
  • the first aspect of the present invention provides a multi-polymer, wherein the multi-polymer has the general formula shown in formula (I):
  • R 1 , R 2 and R 3 are polymer segments, and the ends contain structural units derived from conjugated dienes;
  • R1 comprises a styrene structural unit and a butadiene structural unit
  • R 2 comprises a segment represented by formula (II), wherein: represents the connection position between the chain segment represented by formula (II) and the benzene ring;
  • R 3 comprises a segment represented by formula (III), wherein: represents the connection position between the chain segment represented by formula (III) and the benzene ring;
  • a second aspect of the present invention provides a method for preparing a multi-component copolymer, wherein the preparation method comprises:
  • the coupling agent has the general formula described by formula (IV):
  • R 1 , R 2 and R 3 are each independently selected from F, Cl or Br.
  • the third aspect of the present invention provides a multi-polymer obtained by the method described in the second aspect.
  • the fourth aspect of the present invention provides the use of the multi-polymer described in the first aspect or the third aspect as a grafting agent in the preparation of diene rubber.
  • the fifth aspect of the present invention provides a halogenated branched butyl rubber, wherein the halogenated branched butyl rubber comprises: a structural unit A derived from isobutylene, a structural unit B derived from isoprene, and a structural unit C derived from a grafting agent;
  • the grafting agent is the multi-polymer described in the first aspect or the third aspect.
  • the sixth aspect of the present invention provides a method for preparing a halogenated branched butyl rubber, wherein the method comprises: in the presence of a diluent, a solvent and a co-initiator, subjecting isobutylene, isoprene and a grafting agent to a cationic polymerization reaction to obtain the halogenated branched butyl rubber;
  • the grafting agent is the multi-polymer described in the first aspect or the third aspect.
  • the seventh aspect of the present invention provides a halogenated branched butyl rubber prepared by the method described in the sixth aspect.
  • the eighth aspect of the present invention provides the use of the halogenated branched butyl rubber described in the fifth aspect or the seventh aspect in tires and medical rubber plugs.
  • the present invention can achieve the following beneficial effects:
  • the multi-polymer provided by the present invention combines -BR-segments, -IR-segments, -PS-segments and -SBR-segments of different structures on a macromolecular chain to form a "three-arm" star-shaped structure and has a stable secondary halogen substitution structure, wherein the secondary halogen substitution structure is obtained by adding a halogenating agent to the unsaturated "double bonds" in the -BR-segments and -IR-segments, and the content of the unsaturated "double bonds" is significantly reduced.
  • the multi-polymer is used as a grafting agent for preparing halogenated branched butyl rubber.
  • the different segment properties, the "three-arm" star-shaped structure and the stable secondary halogen substitution structure of the multi-polymer work synergistically to improve the saturation of butyl rubber, significantly reduce the extrusion swell effect, greatly improve the vulcanization speed, ozone aging resistance and air tightness, and achieve a balance between the aging resistance, product dimensional stability and vulcanization processing performance of the highly branched and highly saturated halogenated branched butyl rubber;
  • the multi-polymer provided by the present invention does not emit volatile organic compounds (VOC) and by-product hydrogen halide during the preparation process, has the characteristics of being green and environmentally friendly, short process flow, controllable secondary halogen substitution structure, and suitable for industrial production.
  • VOC volatile organic compounds
  • any values of the ranges disclosed in this article are not limited to the precise ranges or values, and these ranges or values should be understood to include values close to these ranges or values.
  • the endpoint values of each range, the endpoint values of each range and the individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges, which should be regarded as specifically disclosed in this article.
  • the first aspect of the present invention provides a multi-polymer, wherein the multi-polymer has the general formula (I):
  • R 1 , R 2 and R 3 are polymer segments, and the ends contain structural units derived from conjugated dienes;
  • R1 comprises a styrene structural unit and a butadiene structural unit
  • R 2 comprises a segment represented by formula (II), wherein: represents the connection position between the chain segment represented by formula (II) and the benzene ring;
  • R 3 comprises a segment represented by formula (III), wherein: represents the connection position between the chain segment represented by formula (III) and the benzene ring;
  • the bonding position to the benzene ring means the bonding position to the benzene ring in formula (I).
  • the styrene structural unit and the butadiene structural unit contained in R1 can be obtained by random copolymerization of styrene and 1,3-butadiene;
  • the chain segment represented by R2 contains a block obtained by halogenating an isoprene homopolymer block with a halogenating agent and a styrene homopolymer block;
  • the chain segment represented by R3 contains a block obtained by halogenating a 1,3-butadiene homopolymer block with a halogenating agent and a styrene homopolymer block, and the chain segments with different structures are respectively connected to the 1, 3, and 5 positions of the benzene ring structure to form a "three-arm" star structure, and at the same time have a stable secondary halogen substitution structure, and the end of the copolymer contains a structural unit from a conjugated diene, so that the multi-polymer has high polymer
  • n and m represent repeating blocks, and the present invention does not impose any particular limitation on the values of n and m.
  • the molar ratio of R1 : R2 : R3 :phenyl is (1-4):(2-9):(2-9):0.1.
  • a multipolymer having the "three-arm" star structure can be synthesized.
  • the content of the structural unit derived from the conjugated diene at the end of the multi-polymer is 0.25-1wt%, preferably 0.3-0.9wt%.
  • the multi-polymer can have high polymerization activity, which is beneficial for being used as a grafting agent to polymerize with diene monomers such as isobutylene and isoprene to prepare halogenated branched diene rubber.
  • the ratio and content of the above structures in the multi-polymer can be determined by infrared spectroscopy or nuclear magnetic resonance, or calculated based on the feeding relationship during the preparation process.
  • the halogen content in the multi-polymer is 10-30wt%, preferably 15-25wt%.
  • the halogenated branched diene rubber obtained by polymerization using the multi-polymer as a grafting agent can have a high halogen content.
  • the halogen content in the multi-polymer is measured by a thermogravimetric analyzer.
  • X is selected from F, Cl or Br, preferably Cl or Br, and more preferably Br.
  • the conjugated diene is selected from butadiene and/or isoprene.
  • the number average molecular weight of the multi-polymer is 80,000-90,000 g/mol, preferably 83,000-87,000 g/mol.
  • the molecular weight distribution index (Mw/Mn) of the multi-polymer is 9-11, preferably 9.3-10.3.
  • the number average molecular weight and the molecular weight distribution index are measured by gel chromatography.
  • a second aspect of the present invention provides a method for preparing a multi-component copolymer, wherein the preparation method comprises:
  • the coupling agent has the general formula described by formula (IV):
  • R 1 , R 2 and R 3 are each independently selected from F, Cl or Br.
  • the above-mentioned preparation method is adopted, and a coupling agent 1,3,5-trihalogenated benzene is used to combine -BR-segments, -IR-segments, -PS-segments and -SBR-segments of different structures on a macromolecular chain to form a "three-arm" star structure.
  • a halogenating agent is used to halogenate to obtain a stable secondary halogen substitution structure, and finally a conjugated diene structural unit is introduced for end-capping, so that the obtained multi-polymer has high polymerization activity and can be used as a grafting agent with excellent performance for the preparation of halogenated branched butyl rubber.
  • the preparation method of the multi-polymer has no by-product hydrogen halide emission during the implementation process, is green and environmentally friendly, and has a short process flow.
  • the first polymerization reaction, the second polymerization reaction, the third polymerization reaction, the fourth polymerization reaction, the first halogenation reaction, the second halogenation reaction, the coupling reaction and the end-capping reaction are all carried out in the presence of a solvent.
  • the first polymerization reaction, the third polymerization reaction and the fifth polymerization reaction are preferably carried out in the presence of a structure regulator; the first halogenation reaction and the second halogenation reaction are preferably carried out in the presence of a molecular weight regulator.
  • a three-reactor polymerization method is preferably adopted, that is, step (1-1), step (1-2) and step (1-3) are respectively carried out in three reactors, as specifically described as follows:
  • step (1-1) based on the total amount of the halogenating agent in the preparation method of the multi-polymer being 100 parts by weight, the amount of each raw material added in step (1-1) satisfies: 100-200 parts by weight of solvent, 30-40 parts by weight of isoprene, 20-30 parts by weight of styrene, 0.1-0.3 parts by weight of structure regulator, 0.05-0.2 parts by weight of first initiator, 50-60 parts by weight of halogenating agent, 0.2-0.5 parts by weight of molecular weight regulator and 0.1-0.4 parts by weight of second initiator.
  • step (1-1) for the operation process of the first polymerization reaction, the second polymerization reaction and the first halogenation reaction, the raw materials are prepared in the proportions as described above, an inert gas is introduced into the first reactor to drive out oxygen, and then a solvent, isoprene, and a structure regulator are added, the temperature is raised to the temperature required for the first polymerization reaction, and a first initiator is added to carry out the first polymerization reaction; after the first polymerization reaction is completed, styrene and a structure regulator are added to the first reactor, the temperature is raised to the temperature required for the second polymerization reaction, and the second polymerization reaction is carried out; after the second polymerization reaction is completed, a halogenating agent and a molecular weight regulator are continuously added to the first reactor, the temperature is raised to the temperature required for the first halogenation reaction, and a second initiator is added to initiate the first halogenation reaction, and after the reaction is completed, a product
  • the temperature of the first polymerization reaction is 40-50°C, preferably 43-47°C. If the temperature of the first polymerization reaction is too low, the polymerization will be incomplete, and the molecular weight of the first polymerization product will be too low; if the temperature of the first polymerization reaction is too high, the molecular structure of the first polymerization product will change.
  • the time of the first polymerization reaction is 20-30min, preferably 23-27min. If the time of the first polymerization reaction is too short, the polymerization will be incomplete, and the molecular weight of the first reaction product will be too low; if the time of the first polymerization reaction is too long, the preparation cost will increase.
  • the temperature of the second polymerization reaction is 60-70°C, preferably 63-67°C. If the temperature of the second polymerization reaction is too low, it will lead to incomplete polymerization, and then the molecular weight of the second polymerization product will be too low; if the temperature of the second polymerization reaction is too high, the molecular structure of the second polymerization product will change.
  • the time of the second polymerization reaction is 40-50min, preferably 43-47min. If the time of the second polymerization reaction is too short, it will lead to incomplete polymerization, This will result in the molecular weight of the second reaction product being too low; and the time of the second polymerization reaction being too long, which will increase the preparation cost.
  • the temperature of the first halogenation reaction is 70-80°C, preferably 73-77°C. If the temperature of the first halogenation reaction is too low, the halogenation will be incomplete, resulting in too low a halogen content of the product a; if the temperature of the first halogenation reaction is too high, the molecular weight of the product a will be too large and the molecular weight distribution will be too wide.
  • the time of the first halogenation reaction is 2-4h, preferably 2.5-3.5h. If the time of the first halogenation reaction is too short, the molecular weight of the product a will be too small; if the time of the first halogenation reaction is too long, the preparation cost will be increased.
  • step (1-2) based on the total amount of the halogenating agent in the preparation method of the multi-polymer being 100 parts by weight, the amount of each raw material added in step (1-1) satisfies: 100-200 parts by weight of solvent, 20-30 parts by weight of butadiene, 30-40 parts by weight of styrene, 0.1-0.3 parts by weight of structure regulator, 0.05-0.2 parts by weight of first initiator, 40-50 parts by weight of halogenating agent, 0.1-0.3 parts by weight of molecular weight regulator and 0.1-0.3 parts by weight of second initiator.
  • step (1-2) for the operation process of the third polymerization reaction, the fourth polymerization reaction and the second halogenation reaction, the raw materials are prepared according to the above-mentioned proportions, an inert gas is introduced into the second reactor to drive out oxygen, then a solvent, butadiene, and a structure regulator are added, the temperature is raised to the temperature required for the third polymerization reaction, and a first initiator is added to carry out the third polymerization reaction; after the third polymerization reaction is completed, styrene is added to the second reactor, the temperature is raised to the temperature required for the fourth polymerization reaction, and the fourth polymerization reaction is carried out; after the fourth polymerization reaction is completed, a halogenating agent and a molecular weight regulator are continuously added to the second reactor, the temperature is raised to the temperature required for the second halogenation reaction, and a second initiator is added to initiate the second halogenation reaction. After the reaction is completed, a product b is obtained.
  • the temperature of the third polymerization reaction is 40-50°C, preferably 43-47°C. If the temperature of the third polymerization reaction is too low, it will lead to incomplete polymerization, and then the molecular weight of the third polymerization product will be too low; if the temperature of the third polymerization reaction is too high, the molecular structure of the third polymerization product will change.
  • the time of the third polymerization reaction is 30-40min, preferably 33-37min. If the time of the third polymerization reaction is too short, it will lead to incomplete polymerization, and then the molecular weight of the third polymerization product will be too low; if the time of the third polymerization reaction is too long, it will increase the preparation cost.
  • the temperature of the fourth polymerization reaction is 50-60°C, preferably 53-57°C. If the temperature of the fourth polymerization reaction is too low, it will lead to incomplete polymerization, and then the molecular weight of the fourth polymerization product will be too low; if the temperature of the fourth polymerization reaction is too high, the molecular structure of the fourth polymerization product will change.
  • the time of the fourth polymerization reaction is 50-60min, preferably 53-57min. If the time of the fourth polymerization reaction is too short, it will lead to incomplete polymerization, and then the molecular weight of the fourth polymerization product will be too low; if the time of the fourth polymerization reaction is too long, it will increase the preparation cost.
  • the temperature of the second halogenation reaction is 70-80°C, preferably 73-77°C. If the temperature of the second halogenation reaction is too low, the halogenation will be incomplete, resulting in too low a halogen content of the product b; if the temperature of the second halogenation reaction is too high, the molecular weight of the product b will be too large and the molecular weight distribution will be too wide.
  • the time of the second halogenation reaction is 2-3h, preferably 2.3-2.7h. If the time of the second halogenation reaction is too short, the molecular weight of the product b will be too small; if the time of the second halogenation reaction is too long, the preparation cost will be increased.
  • a halogenating agent is used to perform free radical addition on the unsaturated "double bonds" in the -BR- and -IR- segments generated by the second polymerization reaction and the fourth polymerization reaction under the initiation of a specific second initiator, so that the content of the unsaturated "double bonds” is significantly reduced, and the introduction of unsaturated "double bonds” in the subsequent branching process of butyl rubber is avoided, thereby increasing the saturation of butyl rubber and greatly improving the bromine oxygen resistance and air tightness of butyl rubber.
  • the secondary halogen structure formed by halogenation with a halogenating agent is different from the ion substitution generation method in the prior art, and the generation of by-product hydrogen halide is avoided.
  • the conditions for isomerization of the secondary halogen structure to the primary structure are blocked, the stability of the secondary halogen structure in the halogenated branched butyl rubber is improved, and the vulcanization rate of the halogenated branched butyl rubber can be increased, thus solving the problem of slow vulcanization rate of butyl rubber during processing.
  • step (1-3) based on the total amount of the halogenating agent in the preparation method of the multi-polymer being 100 parts by weight, the amount of each raw material added in step (1-3) satisfies: 100-200 parts by weight of solvent, 5-10 parts by weight of butadiene, 10-20 parts by weight of styrene, 0.1-0.3 parts by weight of structure regulator, and 0.03-0.16 parts by weight of first initiator.
  • step (1-3) for the operation process of the fifth polymerization reaction, the raw materials are prepared according to the proportions as described above, an inert gas is introduced into the third reaction kettle to drive out oxygen, and then a solvent, styrene, butadiene, and a structure regulator are added, the temperature is raised to the required temperature for the fifth polymerization reaction, and the first initiator is added to carry out the fifth polymerization reaction to obtain product c.
  • the temperature of the fifth polymerization reaction is 60-70°C, preferably 63-67°C. If the temperature of the fifth polymerization reaction is too low, it will lead to incomplete polymerization, which will make the molecular weight of the product c too low; if the temperature of the fifth polymerization reaction is too high, it will lead to abnormal polymerization or explosion.
  • the time of the fifth polymerization reaction is 30-40min, preferably 33-37min. If the time of the fifth polymerization reaction is too short, it will lead to incomplete polymerization, which will make the molecular weight of the product c too low; if the time of the fifth polymerization reaction is too long, it will increase the preparation cost.
  • step (1-1), step (1-2) and step (1-3) the -PS-segments and -SBR-segments generated by the second polymerization reaction, the fourth polymerization reaction and the fifth polymerization reaction contain a large number of benzene rings, which have high rigidity and large steric hindrance, and can obtain high strength, which can compensate for the effect of the decrease in strength of butyl rubber due to the increase in the disorder of the molecular segments.
  • step (2) based on the total amount of the halogenating agent in the method for preparing the multi-polymer as 100 parts by weight, the amount of each raw material added in step (2) satisfies: the coupling agent is 0.5-5 parts by weight, the conjugated diene is 1-2 parts by weight, and the product a, product b and product c are the amounts of the products obtained in step (1-1), step (1-2) and step (1-3) respectively.
  • step (2) for the operation process of the coupling reaction and the end-capping reaction, the raw materials are prepared according to the above-mentioned proportions, the product b prepared in the second reactor and the product c prepared in the third reactor are placed in the first reactor and mixed with the product a, and the temperature is raised to the required temperature for the coupling reaction and the coupling reaction is carried out; after the coupling reaction is completed, the required temperature for the coupling reaction is maintained, and a conjugated diene is added to the first reactor for an end-capping reaction, and the reaction product is subjected to wet coagulation and drying to obtain the multi-polymer.
  • the temperature of the coupling reaction is 80-90°C, preferably 83-87°C. If the temperature of the coupling reaction is too low, the coupling effect will be poor, the segment distribution of the obtained multi-polymer will be narrowed, and the viscoelasticity and dimensional stability of the rubber obtained by using the multi-polymer will be poor; if the temperature of the coupling reaction is too high, the coupling effect will also be affected.
  • the time of the coupling reaction is 150-170min, preferably 155-165min. If the time of the coupling reaction is too short or too long, the effect of the coupling reaction will be affected.
  • the temperature of the end-capping reaction is 80-90°C, preferably 83-87°C. If the temperature of the end-capping reaction is too low, the end-capping effect will be poor; if the temperature of the end-capping reaction is too high, the conjugated diene will be easily self-polymerized and cannot play the end-capping role.
  • the time of the end-capping reaction is 20-30min, preferably 23-27min. If the time of the end-capping reaction is too short, the end-capping will be incomplete and the end-capping effect will be poor; if the time of the end-capping reaction is too long, the product will no longer change significantly after the end-capping is complete, resulting in increased preparation costs.
  • the obtained "three-arm" star-shaped structure in step (2), can effectively destroy the regularity of the molecular chain in the copolymerization of isobutylene and isoprene during the preparation process of the halogenated branched butyl rubber, increase the disorder of the chain segments, so that the butyl rubber can obtain good viscoelastic properties, reduce the extrusion swelling effect, and ensure the processing dimensional stability of the butyl rubber.
  • the solvent is selected from at least one of linear alkanes, aromatic hydrocarbons and cycloalkanes, more preferably at least one of pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, xylene and ethylbenzene, more preferably hexane.
  • the solvents used in different steps may be the same or different. Preferably the same.
  • the first initiator is a hydrocarbon monolithium compound, preferably RLi, wherein R is a saturated aliphatic hydrocarbon group containing 1 to 20 carbon atoms, an alicyclic hydrocarbon group containing 3 to 20 carbon atoms, an aromatic hydrocarbon group containing 6 to 20 carbon atoms, or a composite group of the above groups.
  • the first initiator is selected from at least one of n-butyl lithium, sec-butyl lithium, methyl butyl lithium, phenyl butyl lithium, naphthalene lithium, cyclohexyl lithium and dodecyl lithium.
  • the first initiators used in different steps may be the same or different, preferably the same.
  • the second initiator is an organic peroxide, more preferably at least one of di-tert-butyl hydroperoxide (TBHP), 2,5-dimethyl-2,5-di-tert-butyl peroxyhexane (BPDH), di-tert-butyl peroxide (DTBP) and diisopropylbenzene peroxide (DCP), more preferably di-tert-butyl peroxide.
  • TBHP di-tert-butyl hydroperoxide
  • BPDH 2,5-dimethyl-2,5-di-tert-butyl peroxyhexane
  • DTBP di-tert-butyl peroxide
  • DCP diisopropylbenzene peroxide
  • the second initiators used in different steps may be the same or different, preferably the same.
  • the halogenating agent is preferably an organic halogenating agent, preferably, the halogenating agent is selected from at least one of N-bromosuccinimide, dimethyl bromide sulfur bromide, N-bromosuccinimide, N-chlorosuccinimide, N-chlorosuccinimide and dimethyl chlorosulfur chloride, and more preferably at least one of N-bromosuccinimide, dimethyl bromide sulfur bromide and N-bromosuccinimide.
  • the halogenating agents used in different steps may be the same or different, preferably the same.
  • the structure regulator is a polar organic compound, further preferably at least one of diethylene glycol dimethyl ether, tetrahydrofuran, ethyl ether, ethyl methyl ether, anisole, diphenyl ether, ethylene glycol dimethyl ether and triethylamine, more preferably tetrahydrofuran.
  • the structure regulators used in different steps may be the same or different, but are preferably the same.
  • the molecular weight regulator in the method for preparing the multi-polymer, is selected from at least one of tert-decyl mercaptan, tert-dodecyl mercaptan, tert-tetradecyl mercaptan and tert-hexadecanethiol, and is more preferably tert-dodecyl mercaptan.
  • the molecular weight regulators used in different steps may be the same or different, and are preferably the same.
  • the conjugated diene is selected from butadiene and/or isoprene.
  • the third aspect of the present invention provides a multi-polymer obtained by the method described in the second aspect.
  • the multi-polymer prepared by the method described in the second aspect has the same structural composition, performance indexes and efficacy as the multi-polymer described in the first aspect of the present invention, and will not be described in detail here.
  • the fourth aspect of the present invention provides the use of the multi-polymer described in the first aspect or the third aspect as a grafting agent in the preparation of diene rubber.
  • the diene rubber is butyl rubber.
  • the fifth aspect of the present invention provides a halogenated branched butyl rubber, wherein the halogenated branched butyl rubber comprises: a structural unit A derived from isobutylene, a structural unit B derived from isoprene, and a structural unit C derived from a grafting agent;
  • the grafting agent is the multi-polymer described in the first aspect or the third aspect.
  • the weight ratio of the structural unit A, the structural unit B and the structural unit C is (6-15): (0.05-0.5): 1, preferably (8-10): (0.1-0.3): 1.
  • the weight ratio of the structural unit A, the structural unit B and the structural unit C is controlled within a specific range, so that the halogenated branched butyl rubber with a suitable halogen content can be obtained.
  • the halogenated branched butyl rubber provided by the present invention contains structural units derived from the aforementioned specific grafting agent, wherein the grafting agent combines -BR-segments, -IR-segments, -PS-segments and -SBR-segments of different structures on a macromolecular chain to form a "three-arm" star-shaped structure and has a stable secondary halogen substitution structure.
  • the above-mentioned different segments, the "three-arm" star-shaped structure and the stable secondary halogen substitution structure The halogen-substituted structure is introduced into the structure of butyl rubber through graft polymerization and works synergistically, so that the halogenated branched butyl rubber has high saturation and high branching degree, significantly reduced extrusion swelling effect, fast vulcanization speed, strong ozone aging resistance and good air tightness.
  • the sixth aspect of the present invention provides a method for preparing a halogenated branched butyl rubber, wherein the method comprises: in the presence of a diluent, a solvent and a co-initiator, subjecting isobutylene, isoprene and a grafting agent to a cationic polymerization reaction to obtain the halogenated branched butyl rubber;
  • the grafting agent is the multi-polymer described in the first aspect or the third aspect.
  • the solvent is 30-80 parts by weight
  • the diluent is 30-80 parts by weight
  • the grafting agent is 6-15 parts by weight
  • the co-initiator is 0.1-0.6 parts by weight.
  • the weight ratio of isobutylene:isoprene is (25-95):1.
  • the feeding amounts of isobutylene, isoprene and grafting agent are controlled within the above specific ranges, so that a halogenated branched butyl rubber having excellent aging resistance, product dimensional stability and vulcanization processing performance can be obtained.
  • the cationic polymerization reaction can adopt the conventional reaction process of preparing butyl rubber using a grafting agent in the art.
  • the raw materials can be prepared according to the above ratio, an inert gas is introduced into the reactor to drive out oxygen, and then a mixture of a solvent and a first part of a diluent (the volume ratio of the diluent: solvent is 70-30: 30-70) and the grafting agent are added; after the grafting agent is fully dissolved, the temperature is lowered to -95 to -85°C, and then the second part of the diluent, isobutylene and isoprene are added, and the temperature is adjusted to the required temperature for the cationic polymerization reaction, and then the remaining part of the diluent and the co-initiator (the two are mixed and aged at -95 to -85°C in advance) are added to the reaction system to carry out a cationic polymerization reaction, and after the
  • the temperature of the cationic polymerization reaction is -100°C to -90°C. If the temperature of the cationic polymerization reaction is too low, the reaction time will be prolonged, and the molecular weight of the rubber product may be too low; if the temperature of the cationic polymerization reaction is too high, the molecular structure of the rubber product may change.
  • the time of the cationic polymerization reaction is 2-4h. If the time of the cationic polymerization reaction is too short, the reaction will be incomplete, and the molecular weight of the rubber product will be too low; if the time of the cationic polymerization reaction is too long, the molecular structure of the product rubber may change.
  • the solvent is selected from at least one of straight-chain alkanes, aromatic hydrocarbons and cycloalkanes, further preferably at least one of pentane, hexane, octane, heptane, cyclohexane, benzene, toluene, xylene and ethylbenzene, and more preferably hexane.
  • the diluent is a halogenated alkane
  • the halogen in the halogenated alkane is F, Cl or Br; preferably, the halogenated alkane is a halogenated alkane with a carbon number of 1-4.
  • the diluent is selected from at least one of methyl chloride, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloropropane, heptachloropropane, monofluoromethane, difluoromethane, tetrafluoroethane, carbon hexafluoride and fluorobutane.
  • the ratio of the first part of diluent, the second part of diluent and the remaining diluent can be selected according to conventional methods in the art, and the present invention has no particular limitation on this.
  • the co-initiator comprises alkyl aluminum halide and protonic acid.
  • the molar ratio of the alkyl aluminum halide to the protonic acid is (10-100):1.
  • the alkyl aluminum halide is at least one selected from diethylaluminum monochloride, diisobutylaluminum monochloride, methylaluminum dichloride, sesquiethylaluminum chloride, sesquiisobutylaluminum chloride, n-propylaluminum dichloride, isopropylaluminum dichloride, dimethylaluminum chloride and ethylaluminum chloride.
  • the protonic acid is selected from at least one of HCl, HF, HBr, H 2 SO 4 , H 2 CO 3 , H 3 PO 4 and HNO 3 .
  • the terminator is selected from at least one of methanol, ethanol and butanol.
  • the seventh aspect of the present invention provides a halogenated branched butyl rubber prepared by the method described in the sixth aspect.
  • the halogenated branched butyl rubber prepared by the method described in the sixth aspect has the same structural composition, performance indicators and efficacy as the halogenated branched butyl rubber described in the fifth aspect of the present invention, and will not be described in detail here.
  • the eighth aspect of the present invention provides the use of the halogenated branched butyl rubber described in the fifth aspect or the seventh aspect in tires and medical rubber plugs.
  • the halogenated branched butyl rubber of the present invention has high saturation, high branching degree, low extrusion swelling effect, fast vulcanization speed, strong ozone aging resistance, good air tightness, and can be well applied to the requirements of butyl rubber aging resistance, product dimensional stability and vulcanization processing performance in tire inner tubes, tire airtight layers and medical plugs.
  • the specific conditions are not specified, the conventional conditions or the conditions recommended by the manufacturer are used. If the manufacturer of the reagents or instruments is not specified, they are all conventional products that can be obtained through commercial channels.
  • the weight ratio of each structural unit contained in the obtained multi-polymer product and the halogenated branched butyl rubber is determined by calculation according to the raw material input amount.
  • Styrene, 1,3-butadiene polymerization grade, PetroChina Lanzhou Petrochemical Company;
  • Isobutylene, isoprene polymer grade, Zhejiang Xinhui New Materials Co., Ltd.;
  • N-Bromosuccinimide polymer grade, Jiangsu Runfeng Synthetic Technology Co., Ltd.;
  • N-Chlorosuccinimide polymer grade, Wuhan Shuer Biotechnology Co., Ltd.;
  • DTBP Di-tert-butyl peroxide
  • n-Butyl lithium purity 98%, Nanjing Tonglian Chemical Co., Ltd.;
  • Sesquiethylaluminum chloride purity 98%, Bailingwei Technology Co., Ltd.;
  • 1,3,5-Trichlorobenzene purity 99%, Yangzhou Haichen Chemical Co., Ltd.;
  • GPC gel permeation chromatograph
  • branching degree molecular weight of polymer after branching/molecular weight of polymer before branching.
  • Static ozone performance measurement TD-401A thermal aging tester was used, and the test parameters were: stretching 25%, ozone mass fraction 50 ⁇ 10 -8 , temperature 40°C, and time 1000h.
  • Vulcanization characteristics determination Tested according to the method specified in GB/T 16584-1996.
  • Air tightness test The air permeability was measured using an automated air tightness tester in accordance with ISO 2782:1995.
  • the test gas was N 2
  • the test temperature was 23° C.
  • the test sample was a circular sheet with a diameter of 8 cm and a thickness of 1 mm.
  • Extrusion swell ratio was measured using a capillary rheometer model RH2000 produced by Malvern, UK, at a temperature of 100°C, an aspect ratio of 16:1 and a shear rate of 10-1000 S -1 .
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 1.9:5.8:6.3:0.1
  • the content of Br in P1 is 20.9 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P1 is 0.46 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 2.3:6.3:6.8:0.1
  • the content of Br in P2 is 19.8 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P2 is 0.53 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 2.8:6.9:7.3:0.1
  • the content of Br in P3 is 18.8 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P3 is 0.62 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 3.2:7.3:7.8:0.1
  • the content of Cl in P4 is 10.6 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P4 is 0.63 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 3.4:7.8:8.5:0.1
  • the content of Br in P5 is 17.2 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P5 is 0.68 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • reaction was continued for 50 minutes to form a -PS-IR- segment; finally, 600 g of N-bromosuccinimide and 4.0 g of tert-dodecyl mercaptan were added to the first reaction kettle in sequence, the temperature was raised to 80° C., 3.0 g of DTBP was added and the reaction was continued for 4.0 hours to obtain product a;
  • the molar ratio of R 1 :R 2 :R 3 :phenyl in P6 is 3.8:8.1:8.8:0.1
  • the content of Br in P6 is 16.7 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P6 is 0.74 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • Preparation Example 1 The method of Preparation Example 1 was followed, except that in the step involving the use of N-bromosuccinimide, an equal weight of an inorganic brominating agent, hydrogen bromide, was used to replace N-bromosuccinimide. Other conditions were the same as those of Preparation Example 1. A multipolymer was obtained, which was recorded as P7 (Mn was 78,000, Mw/Mn was 8.52).
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 1.9:5.8:6.3:0.1
  • the content of Br in P7 is 45.9 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P7 is 0.46 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 2.3:6.3:6.8:0.1
  • the content of Br in P8 is 19.8 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P8 is 0.53 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 :R 3 :phenyl is 2.8:6.9:7.3:0.1
  • the content of Br in P9 is 12.4 wt %
  • the content of the structural unit derived from the conjugated diene at the end of P9 is 0.73 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 1 :R 2 : R 3 in DP1 is 3.4:7.8:8.5
  • the content of Br in DP1 is 17.2 wt %
  • the content of the structural unit derived from the conjugated diene at the end of DP1 is 0.46 wt %.
  • This preparation example is used to illustrate the preparation of multi-polymer
  • the molar ratio of R 2 :R 3 :phenyl in DP2 is 8.1:8.8:0.1 (DP2 does not contain R 1 ), the content of Br in DP2 is 18.8 wt %, and the content of the structural unit derived from the conjugated diene at the terminal of DP2 is 0.83 wt %.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 13:0.14:1 based on the total weight of S1.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 12:0.18:1 based on the total weight of S2.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 11:0.24:1 based on the total weight of S3.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 10:0.27:1 based on the total weight of S4.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the structural unit A derived from isobutylene, the structural unit B derived from isoprene and the structural unit B derived from the grafting agent The weight ratio of the structural unit C is 9:0.29:1.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 9:0.3:1 based on the total weight of S6.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • Example 6 The method of Example 6 was followed, except that 50 g of the multi-polymer (P2) prepared in Preparation Example 2 was used instead of 50 g of the multi-polymer (P6) prepared in Preparation Example 6. Other conditions were the same as those of Example 6.
  • the halogenated branched butyl rubber was obtained and recorded as S7 (bromine content: 3.16 wt %).
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 9:0.3:1 based on the total weight of S7.
  • This example is used to illustrate the preparation of halogenated branched butyl rubber
  • Example 6 The method of Example 6 was followed, except that 50 g of the multi-polymer (P3) prepared in Preparation Example 3 was used instead of 50 g of the multi-polymer (P6) prepared in Preparation Example 6. Other conditions were the same as those of Example 6.
  • the halogenated branched butyl rubber was obtained and recorded as S8 (bromine content: 3.08 wt%).
  • the weight ratio of the structural unit A derived from isobutylene, the structural unit B derived from isoprene, and the structural unit C derived from the grafting agent was 9:0.3:1 based on the total weight of S8.
  • Example 1 The method of Example 1 was followed, except that an equal weight of multipolymer P7 was used instead of multipolymer P1. Other conditions were the same as those of Example 1.
  • a halogenated branched butyl rubber was obtained, which was designated as S9 (bromine content was 1.85 wt%).
  • Example 2 The method of Example 2 was followed, except that an equal weight of multipolymer P8 was used to replace multipolymer P2. Other conditions were the same as those of Example 2.
  • a halogenated branched butyl rubber was obtained, which was designated as S10 (bromine content was 1.89 wt%).
  • Example 3 The method of Example 3 was followed, except that an equal weight of multipolymer P9 was used to replace multipolymer P3. Other conditions were the same as those of Example 3. A halogenated branched butyl rubber was obtained, which was designated as S11 (bromine content was 1.97 wt%).
  • Example 5 The method of Example 5 was followed, except that an equal weight of multipolymer DP1 was used instead of multipolymer P5. Other conditions were the same as those of Example 5. A halogenated branched butyl rubber was obtained, which was recorded as D1 (bromine content was 0.58 wt%).
  • Example 6 The method of Example 6 was followed, except that an equal weight of multipolymer DP2 was used instead of multipolymer P6. Other conditions were the same as those of Example 6. A halogenated branched butyl rubber was obtained, which was recorded as D2 (bromine content was 0.76 wt%).
  • T10 is the scorch time, reflecting the size of the scorch safety window
  • T90 is the positive vulcanization time, reflecting the speed of vulcanization.
  • the halogenated branched butyl rubber S1-S11 prepared by using the multi-polymer of the present invention as a grafting agent has a high halogen content, high saturation, high branching degree, low extrusion swell ratio, short scorch time (T 10 ) and positive vulcanization time (T 90 ), low air permeability, long static ozone performance crack time, and exhibits good vulcanization characteristics, aging resistance, product processing dimensional stability and extremely high air tightness.
  • S7 and S8 have particularly outstanding comprehensive performance advantages.
  • the present invention achieves a balance between the aging resistance, product dimensional stability and vulcanization processing performance of the high-saturation, high-branched halogenated branched butyl rubber.
  • Comparative Examples 1-2 do not use the multi-polymer of the present invention as a grafting agent, and the comprehensive performance of the obtained halogenated branched butyl rubber products D1-D2 is significantly worse than that of S1-S11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及橡胶制备技术领域,公开了一种多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用。所述多元共聚物具有式(I)所示的通式: R1、R2和R3分别为聚合物链段,且末端含有来自共轭二烯烃的结构单元;R1包含苯乙烯结构单元和丁二烯结构单元;R2包含式(II)所示的链段;R3包含式(III)-所示的链段;其中,式(A)为苯乙烯链段,X为卤素。利用该多元共聚物作为接枝剂制备卤化支化丁基橡胶,能够提高卤化支化丁基橡胶的饱和度,显著降低挤出胀大效应,提高硫化速度、耐臭氧老化性能和气密性,实现高支化、高饱和度卤化支化丁基橡胶的老化性、产品尺寸稳定性和硫化加工性能的平衡。

Description

多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用
相关申请的交叉引用
本申请要求2022年09月26日提交的发明名称为“多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用”的中国专利申请202211173618.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及橡胶制备技术领域,具体涉及一种多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用。
背景技术
丁基橡胶(Butyl Rubber,简称IIR)是由异丁烯和少量异戊二烯为原料采用阳离子聚合共聚而成,具有优异的气密性、阻尼性,广泛应用于制造车用轮胎的内胎、气密层、硫化胶囊等领域,已成为最重要的合成橡胶品种之一。高饱和度丁基橡胶的分子链主要是由碳碳单键组成,不饱和度低(仅为0.5-1.5%左右),具有极低的透气性和优异的耐臭氧性等特点,能够被应用于严酷环境和工作条件下的载重轮胎的气密层和医用等领域,与此同时,高饱和度丁基橡胶存在分子链等规度高、结晶度高、粘弹性差及硫化速度慢等缺点,导致高饱和度丁基橡胶在加工过程中硫化效率低、硫化性能差、易出现过度流动及变形,这已成为制约丁基橡胶进入高端应用的瓶颈。
因此,亟需解决丁基橡胶在加工过程中所出现的挤出胀大效应显著、硫化焦烧时间长、硫化速度低以及耐臭氧老化性能差的问题。
发明内容
本发明的目的是为了克服现有的丁基橡胶存在挤出胀大效应显著、硫化焦烧时间长、硫化速度低以及耐臭氧老化性能差的问题,提供一种多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用。
为了实现上述目的,本发明第一方面提供一种多元共聚物,所述多元共聚物具有式(I)所示的通式:
其中,R1、R2和R3分别为聚合物链段,且末端含有来自共轭二烯烃的结构单元;
R1包含苯乙烯结构单元和丁二烯结构单元;
R2包含式(II)所示的链段,其中,表示式(II)所示的链段与苯环的连接位置;
R3包含式(III)所示的链段,其中,表示式(III)所示的链段与苯环的连接位置;
在式(II)和式(III)中,为苯乙烯链段,X为卤素。
本发明第二方面提供一种多元共聚物的制备方法,其中,所述制备方法包括:
(1-1)在第一引发剂存在下,将异戊二烯进行第一聚合反应,所得第一聚合反应产物与苯乙烯进行第二聚合反应,并将得到的第二聚合反应产物在第二引发剂和卤化剂存在下进行第一卤化反应,得到产物a;
(1-2)在第一引发剂存在下,将丁二烯进行第三聚合反应,所得第三聚合反应产物与苯乙烯进行第四聚合反应,并将得到的第四聚合反应产物在第二引发剂和卤化剂存在下进行第二卤化反应,得到产物b;
(1-3)在第一引发剂存在下,将苯乙烯和丁二烯进行第五聚合反应,得到产物c;
(2)在偶联剂存在下,将所述产物a、产物b和产物c进行偶联反应,并将偶联反应产物与共轭二烯烃发生封端反应,得到所述多元共聚物;
其中,所述偶联剂具有式(IV)所述的通式:
其中,R1、R2和R3各自独立地选自F、Cl或Br。
本发明第三方面提供前述第二方面所述方法制得的多元共聚物。
本发明第四方面提供前述第一方面或第三方面所述的多元共聚物在制备二烯烃橡胶中作为接枝剂的应用。
本发明第五方面提供一种卤化支化丁基橡胶,其中,所述卤化支化丁基橡胶包括:来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C;
其中,所述接枝剂为前述第一方面或第三方面所述的多元共聚物。
本发明第六方面提供一种卤化支化丁基橡胶的制备方法,其中,所述方法包括:在稀释剂、溶剂和共引发剂的存在下,将异丁烯、异戊二烯和接枝剂进行阳离子聚合反应,得到所述卤化支化丁基橡胶;
其中,所述接枝剂为前述第一方面或第三方面所述的多元共聚物。
本发明第七方面提供前述第六方面所述的方法制得的卤化支化丁基橡胶。
本发明第八方面提供前述第五方面或第七方面所述的卤化支化丁基橡胶在轮胎和医用胶塞中的应用。
通过上述技术方案,本发明能够取得如下有益效果:
(1)本发明提供的多元共聚物将不同结构的-BR-链段、-IR-链段、-PS-链段和-SBR-链段组合在一个大分子链上,形成“三杂臂”星型结构并具有稳定的仲位卤素取代结构,其中的仲位卤素取代结构是卤化剂对-BR-链段和-IR-链段中的不饱和“双键”进行加成得到,并明显降低了不饱和“双键”的含量,将该多元共聚物作为接枝剂用于制备卤化支化丁基橡胶,其所具有的不同链段性能、“三杂臂”星型结构以及稳定的仲位卤素取代结构协同发挥作用,能够提高丁基橡胶的饱和度,显著降低挤出胀大效应,极大提高硫化速度、耐臭氧老化性能和气密性,实现了高支化、高饱和度卤化支化丁基橡胶的老化性、产品尺寸稳定性和硫化加工性能的平衡;
(2)本发明提供的多元共聚物在制备过程中无挥发性有机化合物(VOC)和副产物卤化氢排放,具有制备方法绿色环保、工艺流程简短、仲位卤素取代结构可控、适合工业化生产的特点,在制备二烯烃橡胶中作为接枝剂,能够显著拓宽卤化支化丁基橡胶的应用范围。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种多元共聚物,所述多元共聚物具有式(I)所示的通式:
其中,R1、R2和R3分别为聚合物链段,且末端含有来自共轭二烯烃的结构单元;
R1包含苯乙烯结构单元和丁二烯结构单元;
R2包含式(II)所示的链段,其中,表示式(II)所示的链段与苯环的连接位置;
R3包含式(III)所示的链段,其中,表示式(III)所示的链段与苯环的连接位置;
在式(II)和式(III)中,为苯乙烯链段,X为卤素。
本发明中,“与苯环的连接位置”是指与式(I)中的苯环的连接位置。
根据本发明,在所述多元共聚物中,R1包含的苯乙烯结构单元和丁二烯结构单元可以由苯乙烯和1,3-丁二烯通过无规共聚得到;R2所示的链段含有异戊二烯均聚物嵌段经卤化剂卤化后所得的嵌段和苯乙烯均聚物嵌段;R3所示的链段含有1,3-丁二烯均聚物嵌段经卤化剂卤化后所得的嵌段和苯乙烯均聚物嵌段,上述不同结构的链段分别连接苯环结构的1,3,5位,形成“三杂臂”星型结构,同时具有稳定的仲位卤素取代结构,并且共聚物的末端含有来自共轭二烯的结构单元,使得该多元共聚物具有高的聚合活性,能够作为接枝剂用于制备支化二烯烃橡胶,特别地,用于制备卤化支化二烯烃橡胶,能够提高丁基橡胶的饱和度,显著降低挤出胀大效应,极大提高硫化速度、耐臭氧老化性能和气密性。
根据本发明,在式(II)和式(III)中,n和m表示重复嵌段,本发明对n和m的数值不作特别的限定。
根据本发明,在所述多元共聚物中,R1∶R2∶R3∶苯基的摩尔比为(1-4)∶(2-9)∶(2-9)∶0.1。当所述多元共聚物中上述结构的摩尔比满足该范围时,能够合成出具有所述“三杂臂”星型结构的多元共聚物。
根据本发明,所述多元共聚物的末端来自共轭二烯烃的结构单元的含量为0.25-1wt%,优选为0.3-0.9wt%。当所述多元共聚物中来自共轭二烯烃的结构单元含量满足上述范围时,能够使所述多元共聚物具有高的聚合活性,利于作为接枝剂与异丁烯、异戊二烯等二烯烃单体聚合制得卤化支化二烯烃橡胶。
在本发明中,所述多元共聚物中上述各结构的比例和含量可以通过红外光谱或核磁共振的方法测定,或根据制备过程中投料关系计算确定。
根据本发明,所述多元共聚物中卤素的含量为10-30wt%,优选为15-25wt%。当所述多元共聚物中卤素的含量满足上述范围时,能够使得以该多元共聚物作为接枝剂聚合得到的卤化支化二烯烃橡胶具有高的卤素含量。
在本发明中,所述多元共聚物中卤素的含量采用热重分析仪测定。
根据本发明,在式(II)和式(III)所示的链段中,X选自F、Cl或Br,优选为Cl或Br,进一步优选为Br。
根据本发明,所述共轭二烯烃选自丁二烯和/或异戊二烯。
根据本发明,所述多元共聚物的数均分子量为8万-9万g/mol,优选为8.3万-8.7万g/mol。
根据本发明,所述多元共聚物的分子量分布指数(Mw/Mn)为9-11,优选为9.3-10.3。
在本发明中,数均分子量和分子量分布指数采用凝胶色谱法测定。
本发明第二方面提供一种多元共聚物的制备方法,其中,所述制备方法包括:
(1-1)在第一引发剂存在下,将异戊二烯进行第一聚合反应,所得第一聚合反应产物与苯乙烯进行第二聚合反应,并将得到的第二聚合反应产物在第二引发剂和卤化剂存在下进行第一卤化反应,得到产物a;
(1-2)在第一引发剂存在下,将丁二烯进行第三聚合反应,所得第三聚合反应产物与苯乙烯进行第四聚合反应,并将得到的第四聚合反应产物在第二引发剂和卤化剂存在下进行第二卤化反应,得到产物b;
(1-3)在第一引发剂存在下,将苯乙烯和丁二烯进行第五聚合反应,得到产物c;
(2)在偶联剂存在下,将所述产物a、产物b和产物c进行偶联反应,并将偶联反应产物与共轭二烯烃发生封端反应,得到所述多元共聚物;
其中,所述偶联剂具有式(IV)所述的通式:
其中,R1、R2和R3各自独立地选自F、Cl或Br。
在本发明中,采用上述制备方法,利用偶联剂1,3,5-三卤化苯将不同结构的-BR-链段、-IR-链段、-PS-链段和-SBR-链段组合在一个大分子链上,形成“三杂臂”星型结构,在制备过程中通过卤化剂卤化得到稳定的仲位卤素取代结构,最后引入共轭二烯烃结构单元封端,使获得的多元共聚物具有高的聚合活性,能够作为性能优异的接枝剂用于卤化支化丁基橡胶的制备,所述多元共聚物的制备方法在实施过程中无副产物卤化氢排放,绿色环保、工艺流程简短。
根据本发明,在所述多元共聚物的制备方法中,所述第一聚合反应、第二聚合反应、第三聚合反应、第四聚合反应、第一卤化反应、第二卤化反应、偶联反应和封端反应均在溶剂存在下进行。进一步地,所述第一聚合反应、第三聚合反应和第五聚合反应优选在结构调节剂的存在下进行;所述第一卤化反应、第二卤化反应优选在分子量调节剂的存在下进行。
根据本发明,优选采用三釜聚合的方式,即步骤(1-1)、步骤(1-2)和步骤(1-3)分别在三个反应釜中进行,具体阐述如下:
根据本发明,步骤(1-1)中,以所述多元共聚物的制备方法中卤化剂的总量为100重量份计,步骤(1-1)中各原料投料量满足:溶剂100-200重量份、异戊二烯30-40重量份、苯乙烯20-30重量份、结构调节剂0.1-0.3重量份、第一引发剂0.05-0.2重量份、卤化剂50-60重量份、分子量调节剂0.2-0.5重量份和第二引发剂0.1-0.4重量份。
根据本发明,步骤(1-1)中,对于所述第一聚合反应、第二聚合反应和第一卤化反应的操作过程,按照如上所述比例准备各原料,在第一反应釜中通入惰性气体驱除氧气,之后加入溶剂、异戊二烯、结构调节剂,升温至第一聚合反应所需温度并加入第一引发剂,进行所述第一聚合反应;待所述第一聚合反应结束后,向第一反应釜中加入苯乙烯、结构调节剂,升温至第二聚合反应所需温度并进行所述第二聚合反应;待所述第二聚合反应结束后,向第一反应釜中继续加入卤化剂、分子量调节剂,升温至第一卤化反应所需温度,加入第二引发剂引发第一卤化反应,反应结束后,得到产物a。
根据本发明,所述第一聚合反应的温度为40-50℃,优选为43-47℃。所述第一聚合反应的温度过低,会导致聚合不完全,进而会使得所述第一聚合反应产物的分子量过低;所述第一聚合反应的温度过高,会导致所述第一聚合反应产物的分子结构发生变化。所述第一聚合反应的时间为20-30min,优选为23-27min。所述第一聚合反应的时间过短,会导致聚合不完全,进而会使得所述第一反应产物的分子量过低;所述第一聚合反应的时间过长,会导致增大制备成本。
根据本发明,所述第二聚合反应的温度为60-70℃,优选为63-67℃。所述第二聚合反应的温度过低,会导致聚合不完全,进而会使得所述第二聚合反应产物的分子量过低;所述第二聚合反应的温度过高,会导致所述第二聚合反应产物的分子结构发生变化。所述第二聚合反应的时间为40-50min,优选为43-47min。所述第二聚合反应的时间过短,会导致聚合不完全, 进而会使得所述第二反应产物的分子量过低;所述第二聚合反应的时间过长,会导致增大制备成本。
根据本发明,所述第一卤化反应的温度为70-80℃,优选为73-77℃。所述第一卤化反应的温度过低,会导致卤化不完全,致使所述产物a的卤素含量过低;所述第一卤化反应的温度过高,会使得所述产物a的分子量过大,分子量分布过宽。所述第一卤化反应的时间为2-4h,优选为2.5-3.5h。所述第一卤化反应的时间过短,会导致所述产物a的分子量过小;所述第一卤化反应的时间过长,导致增大制备成本。
根据本发明,步骤(1-2)中,以所述多元共聚物的制备方法中卤化剂的总量为100重量份计,步骤(1-1)中各原料投料量满足:溶剂100-200重量份、丁二烯20-30重量份、苯乙烯30-40重量份、结构调节剂0.1-0.3重量份、第一引发剂0.05-0.2重量份、卤化剂40-50重量份、分子量调节剂0.1-0.3重量份和第二引发剂0.1-0.3重量份。
根据本发明,步骤(1-2)中,对于所述第三聚合反应、第四聚合反应和第二卤化反应的操作过程,按照如上所述比例准备各原料,在第二反应釜中通入惰性气体驱除氧气,之后加入溶剂、丁二烯、结构调节剂,升温至第三聚合反应所需温度并加入第一引发剂,进行所述第三聚合反应;待所述第三聚合反应结束后,向第二反应釜中加入苯乙烯,升温至第四聚合反应所需温度并进行所述第四聚合反应;待所述第四聚合反应结束后,向第二反应釜中继续加入卤化剂、分子量调节剂,升温至第二卤化反应所需温度,加入第二引发剂引发第二卤化反应,反应结束后,得到产物b。
根据本发明,所述第三聚合反应的温度为40-50℃,优选为43-47℃。所述第三聚合反应的温度过低,会导致聚合不完全,进而会使得所述第三聚合反应产物的分子量过低;所述第三聚合反应的温度过高,会导致所述第三聚合反应产物的分子结构发生变化。所述第三聚合反应的时间为30-40min,优选为33-37min。所述第三聚合反应的时间过短,会导致聚合不完全,进而会使得所述第三聚合反应产物的分子量过低;所述第三聚合反应的时间过长,会导致增大制备成本。
根据本发明,所述第四聚合反应的温度为50-60℃,优选为53-57℃。所述第四聚合反应的温度过低,会导致聚合不完全,进而会使得所述第四聚合反应产物的分子量过低;所述第四聚合反应的温度过高,会导致所述第四聚合反应产物的分子结构发生变化。所述第四聚合反应的时间为50-60min,优选为53-57min。所述第四聚合反应的时间过短,会导致聚合不完全,进而会使得所述第四聚合反应产物的分子量过低;所述第四聚合反应的时间过长,会导致增大制备成本。
根据本发明,所述第二卤化反应的温度为70-80℃,优选为73-77℃。所述第二卤化反应的温度过低,会导致卤化不完全,致使所述产物b的卤素含量过低;所述第二卤化反应的温度过高,会使得所述产物b的分子量过大,分子量分布过宽。所述第二卤化反应的时间为2-3h,优选为2.3-2.7h。所述第二卤化反应的时间过短,会导致所述产物b的分子量过小;所述第二卤化反应的时间过长,导致增大制备成本。
根据本发明,在步骤(1-1)和步骤(1-2)中,通过卤化剂在特定的第二引发剂引发下对第二聚合反应、第四聚合反应生成的-BR-链段和-IR-链段中的不饱和“双键”进行自由基加成,使得不饱和“双键”的含量明显下降,避免后续在丁基橡胶支化过程不饱和“双键”的引入,进而能够提高丁基橡胶的饱和度,极大地提高丁基橡胶的耐溴氧性和气密性。此外,经卤化剂卤化形成的仲位卤结构,与现有技术中的离子取代生成方式不同,避免了副产物卤化氢的产生, 阻断了仲位卤结构向伯位结构异构化的条件,提高了卤化支化丁基橡胶中仲位卤结构的稳定性,进而能够增大卤化支化丁基橡胶的硫化速度,解决了在加工过程中丁基橡胶硫化速度慢的问题。
根据本发明,步骤(1-3)中,以所述多元共聚物的制备方法中卤化剂的总量为100重量份计,步骤(1-3)中各原料投料量满足:溶剂100-200重量份、丁二烯5-10重量份、苯乙烯10-20重量份、结构调节剂0.1-0.3重量份、第一引发剂0.03-0.16重量份。
根据本发明,步骤(1-3)中,对于所述第五聚合反应的操作过程,按照如上所述比例准备各原料,在第三反应釜中通入惰性气体驱除氧气,之后加入溶剂、苯乙烯、丁二烯、结构调节剂,升温至第五聚合反应所需温度并加入第一引发剂,进行所述第五聚合反应,得到产物c。
根据本发明,所述第五聚合反应的温度为60-70℃,优选为63-67℃。所述第五聚合反应的温度过低,会导致聚合不完全,进而会使得所述产物c的分子量过低;所述第五聚合反应的温度过高,会导致异常聚合或发生爆聚。所述第五聚合反应的时间为30-40min,优选为33-37min。所述第五聚合反应的时间过短,会导致聚合不完全,进而会使得所述产物c的分子量过低;所述第五聚合反应的时间过长,会导致增大制备成本。
根据本发明,在步骤(1-1)、步骤(1-2)和步骤(1-3)中,第二聚合反应、第四聚合反应和第五聚合反应生成的-PS-链段和-SBR-链段含有大量苯环,苯环刚性大、空间位阻大,能够获得高的强度,能够弥补丁基橡胶因分子链段无序性的增大所带来强度下降的影响。
根据本发明,步骤(2)中,以所述多元共聚物的制备方法中卤化剂的总量为100重量份计,步骤(2)中各原料投料量满足:偶联剂为0.5-5重量份,共轭二烯烃为1-2重量份,产物a、产物b和产物c分别采用步骤(1-1)、步骤(1-2)和步骤(1-3)所各自得到产物数量。
根据本发明,步骤(2)中,对于所述偶联反应和封端反应的操作过程,按照如上所述比例准备各原料,将上述第二反应釜制得的产物b和第三反应釜制得的产物c置于第一反应釜中与产物a混合,升温至偶联反应所需温度并进行所述偶联反应;待所述偶联反应结束后,保持偶联反应所需温度,并向第一反应釜中加入共轭二烯烃进行封端反应,反应产物经湿法凝聚、烘干,得到所述多元共聚物。
根据本发明,所述偶联反应的温度为80-90℃,优选为83-87℃。所述偶联反应的温度过低,会导致偶联效果变差,所制得的多元共聚物的链段分布变窄,进而导致利用该多元共聚物所制得橡胶的粘弹性变差,尺寸稳定性变差;所述偶联反应的温度过高,亦会影响偶联效果。所述偶联反应的时间为150-170min,优选为155-165min。所述偶联反应的时间过短或过长,均会影响偶联反应效果。
根据本发明,所述封端反应的温度为80-90℃,优选为83-87℃。所述封端反应的温度过低,会导致封端效果变差;所述封端反应的温度过高,会导致共轭二烯烃易发生自聚,无法起到封端作用。所述封端反应的时间为20-30min,优选为23-27min。所述封端反应的时间过短,会导致封端不完全,封端效果变差;所述封端反应的时间过长,封端完全后产物不再明显变化,导致增大制备成本。
根据本发明,步骤(2)中,所得到的“三杂臂”星型结构在卤化支化丁基橡胶的制备过程中能够有效破坏异丁烯和异戊二烯共聚中分子链的规整性,增大链段的无序性,使得丁基橡胶能够获得良好的粘弹性能,减小挤出胀大效应,确保丁基橡胶的加工尺寸稳定性。
根据本发明,在所述多元共聚物的制备方法中,所述溶剂选自直链烷烃、芳烃和环烷烃中的至少一种,进一步优选为戊烷、己烷、庚烷、辛烷、环己烷、苯、甲苯、二甲苯和乙苯中的至少一种,更优选为己烷。在本发明中,不同步骤中所使用的溶剂可以相同,也可以不同, 优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述第一引发剂为烃基单锂化合物,优选为RLi,其中R是含有1-20个碳原子的饱和脂肪族烃基、3-20个碳原子的脂环族烃基、6-20个碳原子的芳烃基或者上述基团的复合基团。进一步优选地,所述第一引发剂选自正丁基锂、仲丁基锂、甲基丁基锂、苯基丁基锂、萘锂、环己基锂和十二烷基锂中的至少一种。在本发明中,不同步骤中所使用的第一引发剂可以相同,也可以不同,优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述第二引发剂为有机过氧化物,进一步优选为二叔丁基过氧化氢(TBHP)、2,5-二甲基-2,5-二叔丁基过氧化己烷(BPDH)、二叔丁基过氧化物(DTBP)和过氧化二异丙苯(DCP)中的至少一种,更优选为二叔丁基过氧化物。在本发明中,不同步骤中所使用的第二引发剂可以相同,也可以不同,优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述卤化剂优选采用有机卤化剂,优选地,所述卤化剂选自N-溴代丁二酰亚胺、溴化二甲基溴代硫、N-溴代琥珀酰亚胺、N-氯代丁二酰亚胺、N-氯代琥珀酰亚胺和氯化二甲基氯代硫中的至少一种,进一步优选为N-溴代丁二酰亚胺、溴化二甲基溴代硫和N-溴代琥珀酰亚胺中的至少一种。在本发明中,不同步骤中所使用的卤化剂可以相同,也可以不同,优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述结构调节剂为极性有机化合物,进一步优选为二乙二醇二甲醚、四氢呋喃、乙醚、乙基甲醚、苯甲醚、二苯醚、乙二醇二甲醚和三乙胺中的至少一种,更优选为四氢呋喃。
在本发明中,不同步骤中所使用的结构调节剂可以相同,也可以不同,优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述分子量调节剂选自叔十碳硫醇、叔十二碳硫醇、叔十四碳硫醇和叔十六碳硫醇中的至少一种,进一步优选为叔十二碳硫醇。在本发明中,不同步骤中所使用的分子量调节剂可以相同,也可以不同,优选相同。
根据本发明,在所述多元共聚物的制备方法中,所述共轭二烯烃选自丁二烯和/或异戊二烯。
本发明第三方面提供前述第二方面所述方法制得的多元共聚物。
根据本发明,由前述第二方面所述方法制得的多元共聚物,其结构组成、性能指标及功效均同本发明前述第一方面所述的多元共聚物,此处不再赘述。
本发明第四方面提供前述第一方面或第三方面所述的多元共聚物在制备二烯烃橡胶中作为接枝剂的应用。
根据本发明,优选地,所述二烯烃橡胶为丁基橡胶。
本发明第五方面提供一种卤化支化丁基橡胶,其中,所述卤化支化丁基橡胶包括:来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C;
其中,所述接枝剂为前述第一方面或第三方面所述的多元共聚物。
根据本发明,基于所述卤化支化丁基橡胶的总重量,所述结构单元A、结构单元B和结构单元C的重量比为(6-15)∶(0.05-0.5)∶1,优选为(8-10)∶(0.1-0.3)∶1。在本发明中,将所述结构单元A、结构单元B和结构单元C的重量比控制在特定范围内,能够得到卤素含量适宜的卤化支化丁基橡胶。
本发明提供的卤化支化丁基橡胶含有来自前述特定接枝剂的结构单元,该接枝剂将不同结构的-BR-链段、-IR-链段、-PS-链段和-SBR-链段组合在一个大分子链上,形成“三杂臂”星型结构并具有稳定的仲位卤素取代结构,上述不同链段、“三杂臂”星型结构以及稳定的仲位 卤素取代结构通过接枝聚合引入丁基橡胶的结构中,并协同发挥作用,使得所述卤化支化丁基橡胶具有高饱和度、高支化度,挤出胀大效应显著降低,硫化速度快、耐臭氧老化性能强,气密性好。
本发明第六方面提供一种卤化支化丁基橡胶的制备方法,其中,所述方法包括:在稀释剂、溶剂和共引发剂的存在下,将异丁烯、异戊二烯和接枝剂进行阳离子聚合反应,得到所述卤化支化丁基橡胶;
其中,所述接枝剂为前述第一方面或第三方面所述的多元共聚物。
根据本发明,在所述卤化支化丁基橡胶的制备方法中,以异丁烯和异戊二烯的总量为100重量份计,溶剂为30-80重量份、稀释剂为30-80重量份、接枝剂为6-15重量份、共引发剂为0.1-0.6重量份。
根据本发明,在所述卤化支化丁基橡胶的制备方法中,异丁烯∶异戊二烯的重量比为(25-95)∶1。
在本发明中,将异丁烯、异戊二烯和接枝剂的投料量控制在上述特定范围内,能够得到具有优良的老化性、产品尺寸稳定性和硫化加工性能的卤化支化丁基橡胶。
根据本发明,所述阳离子聚合反应可以采用本领域中常规的使用接枝剂制备丁基橡胶的反应过程。优选地,可以按照如上所述比例准备各原料,在反应釜中通入惰性气体驱除氧气,之后加入溶剂和第一部分稀释剂的混合物(稀释剂∶溶剂的体积比为70-30∶30-70)、所述接枝剂;待所述接枝剂充分溶解,降温至-95至-85℃,之后加入第二部分稀释剂、异丁烯和异戊二烯,调节至阳离子聚合反应所需温度,之后将剩余部分稀释剂和共引发剂(二者预先在-95至-85℃条件下混合陈化)加入反应体系中,进行阳离子聚合反应,反应结束后加入终止剂终止反应,产物经凝聚、洗涤和干燥,得到所述卤化支化丁基橡胶。
根据本发明,所述阳离子聚合反应的温度为-100℃至-90℃。所述阳离子聚合反应的温度过低,会导致反应时间延长,还有可能造成橡胶产物的分子量过低;所述阳离子聚合反应的温度过高,可能造成橡胶产物的分子结构发生变化。所述阳离子聚合反应的时间为2-4h。所述阳离子聚合反应的时间过短,导致反应不完全,进而使得橡胶产物的分子量过低;所述阳离子聚合反应的时间过长,可能造成产物橡胶的分子结构发生变化。
根据本发明,在所述卤化支化丁基橡胶的制备方法中,所述溶剂选自直链烷烃、芳烃和环烷烃中的至少一种,进一步优选为戊烷、己烷、辛烷、庚烷、环己烷、苯、甲苯、二甲苯和乙苯中的至少一种,更优选为己烷。
根据本发明,在所述卤化支化丁基橡胶的制备方法中,所述稀释剂为卤代烷烃,所述卤代烷烃中的卤素为F、Cl或Br;优选地,所述卤代烷烃为碳原子数为1-4的卤代烷烃。
在本发明中,优选地,所述稀释剂选自一氯甲烷、二氯甲烷、四氯化碳、二氯乙烷、四氯丙烷、七氯丙烷、一氟甲烷、二氟甲烷、四氟乙烷、六氟化碳和氟丁烷中的至少一种。
在本发明中,上述第一部分稀释剂、第二部分稀释剂和剩余稀释剂的比例可以采用本领域的常规选择,本发明对此没有特别的限定。
根据本发明,所述共引发剂包括烷基卤化铝和质子酸。优选地,在所述共引发剂中,所述烷基卤化铝∶质子酸的摩尔比为(10-100)∶1。
根据本发明,所述烷基卤化铝选自一氯二乙基铝、一氯二异丁基铝、二氯甲基铝、倍半乙基氯化铝、倍半异丁基氯化铝、二氯正丙基铝、二氯异丙基铝、二甲基氯化铝和乙基氯化铝中的至少一种。
根据本发明,所述质子酸选自HCI、HF、HBr、H2SO4、H2CO3、H3PO4和HNO3中的至少一种。
根据本发明,所述终止剂选自甲醇、乙醇和丁醇中的至少一种。
本发明第七方面提供前述第六方面所述的方法制得的卤化支化丁基橡胶。
根据本发明,由前述第六方面所述方法制得的卤化支化丁基橡胶,其结构组成、性能指标及功效均同本发明前述第五方面所述的卤化支化丁基橡胶,此处不再赘述。
本发明第八方面提供前述第五方面或第七方面所述的卤化支化丁基橡胶在轮胎和医用胶塞中的应用。
本发明所述的卤化支化丁基橡胶具有高饱和度、高支化度,挤出胀大效应低,硫化速度快、耐臭氧老化性能强,气密性好,能够很好适用于轮胎内胎、轮胎气密层、医用胶塞中对丁基橡胶老化性、产品尺寸稳定性和硫化加工性能的要求。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购途径获得的常规产品。制得多元共聚物产品和卤化支化丁基橡胶中包含的各结构单元的重量比关系按照原料投料量计算确定。
(1)原料来源:
苯乙烯、1,3-丁二烯:聚合级,中国石油兰州石化公司;
异丁烯、异戊二烯:聚合级,浙江信汇新材料股份有限公司;
N-溴代丁二酰亚胺:聚合级,江苏润丰合成科技有限公司;
N-氯代琥珀酰亚胺:聚合级,武汉曙尔生物科技有限公司;
二叔丁基过氧化物(DTBP):兰州助剂厂;
正丁基锂:纯度为98%,南京通联化工有限公司;
倍半乙基氯化铝:纯度为98%,百灵威科技有限公司;
1,3,5-三氯化苯:纯度为99%,扬州海辰化工有限公司;
其它试剂均为市售工业品。
(2)分析测试方法:
溴含量测定:称取10mg样品,采用Q600型TG/DTG热重分析仪,升温速率10℃/min,在流量为50mL/min氮气气氛中,对样品进行热降解,第一阶段热降解是由样品含溴单元脱溴形成HBr,再由脱去的HBr百分含量来反推样品中的溴含量(X),计算公式如下:
式中:Y-样品在220℃时的百分含量;79.904-溴元素相对原子质量;1.008-氢元素相对原子质量。
数均分子量及分子量分布指数测定:采用美国Waters公司生产的2414凝胶渗透色谱仪(GPC)测定。以聚苯乙烯标样为校正曲线,流动相为四氢呋喃,柱温为40℃,样品浓度为1mg/mL,进样量为50μL,洗脱时间为40min,流速为1mL/min。
不饱和度测定:采用Bruker公司的AVANCE300核磁共振仪,磁场强度为9.20特斯拉,以CDC13作溶剂,TMS为内标,在室温(25℃)下测定。
支化度测定:支化度=支化后聚合物分子量/支化前聚合物分子量。
静态臭氧性能测定:采用TD-401A型热老化试验机,测试参数为:拉伸25%,臭氧质量分数50×10-8,温度40℃,时间1000h。
硫化特性测定:按GB/T 16584-1996规定的方法测试。
气密性测定:采用自动化气密性测试仪,依据ISO 2782:1995测定透气数,测试气体为N2,测试温度为23℃,测试样片为8cm直径圆形海片,厚度为1mm。
挤出胀大比测定:采用英国马尔文公司生产的RH2000型毛细管流变仪,在温度为100℃,长径比为16∶1且剪切速率为10-1000S-1区间内测定。
制备例1
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换2次,向第一反应釜中依次加入己烷1000g,异戊二烯300g,四氢呋喃1.3g,升温至40℃后,加入13.5mmo1正丁基锂开始反应20min,其次再向第一反应釜中依次加入苯乙烯200g,四氢呋喃1.1g,升温至60℃,反应40min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺500g,叔十二碳硫醇2.0g,升温至70℃,加入DTBP 1.5g反应2.0h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换2次,依次加入己烷1000g,1,3-丁二烯200g,四氢呋喃1.0g,升温至40℃后,加入11.5mmo1正丁基锂开始反应30min,其次再向第二反应釜中加入苯乙烯300g,升温至50℃,反应50min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺500g,叔十二碳硫醇1.0g,升温至70℃,加入DTBP 1.2g反应2.0h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷1000g,苯乙烯100g,1,3-丁二烯50g,四氢呋喃1.0g,升温至60℃后,加入8.5mmo1正丁基锂开始反应30min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至80℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应150min后,然后再向第一反应釜中加入1,3-丁二烯10g进行封端活化,反应20min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P1(Mn为81000,Mw/Mn为9.16)。
经计算,P1中,R1∶R2∶R3∶苯基的摩尔比为1.9∶5.8∶6.3∶0.1,P1中Br的含量为20.9wt%,P1的末端来自共轭二烯烃的结构单元的含量为0.46wt%。
制备例2
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换2次,向第一反应釜中依次加入己烷1200g,异戊二烯330g,四氢呋喃1.9g,升温至43℃后,加入15.5mmo1正丁基锂开始反应23min,其次再向第一反应釜中依次加入苯乙烯220g,四氢呋喃1.5g,升温至63℃,反应43min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺520g,叔十二碳硫醇2.5g,升温至73℃,加入DTBP 2.1g反应2.6h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换2次,依次加入己烷1300g,1,3-丁二烯220g,四氢呋喃1.4g,升温至43℃后,加入12.5mmo1正丁基锂开始反应33min,其次再向第二反应釜中加入苯乙烯320g,升温至56℃,反应56min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺480g,叔十二碳硫醇1.5g,升温至73℃,加入 DTBP 1.7g反应2.5h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷1200g,苯乙烯120g,1,3-丁二烯60g,四氢呋喃1.4g,升温至66℃后,加入10.5mmo1正丁基锂开始反应33min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至83℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应155min后,然后再向第一反应釜中加入1,3-丁二烯12g进行封端活化,反应23min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P2(Mn为83000,Mw/Mn为9.48)。
经计算,P2中,R1∶R2∶R3∶苯基的摩尔比为2.3∶6.3∶6.8∶0.1,P2中Br的含量为19.8wt%,P2的末端来自共轭二烯烃的结构单元的含量为0.53wt%。
制备例3
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换3次,向第一反应釜中依次加入己烷1400g,异戊二烯350g,四氢呋喃2.2g,升温至45℃后,加入17.5mmo1正丁基锂开始反应25min,其次再向第一反应釜中依次加入苯乙烯240g,四氢呋喃1.8g,升温至64℃,反应45min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺540g,叔十二碳硫醇3.0g,升温至75℃,加入DTBP 2.4g反应3.0h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换3次,依次加入己烷1500g,1,3-丁二烯240g,四氢呋喃1.7g,升温至44℃后,加入14.2mmo1正丁基锂开始反应35min,其次再向第二反应釜中加入苯乙烯340g,升温至54℃,反应55min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺460g,叔十二碳硫醇1.8g,升温至74℃,加入DTBP2.2g反应2.5h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷1500g,苯乙烯150g,1,3-丁二烯70g,四氢呋喃2.0g,升温至64℃后,加入11.6mmo1正丁基锂开始反应35min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至85℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应160min后,然后再向第一反应釜中加入1,3-丁二烯15g进行封端活化,反应25min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P3(Mn为85000,Mw/Mn为9.79)。
经计算,P3中,R1∶R2∶R3∶苯基的摩尔比为2.8∶6.9∶7.3∶0.1,P3中Br的含量为18.8wt%,P3的末端来自共轭二烯烃的结构单元的含量为0.62wt%。
制备例4
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换3次,向第一反应釜中依次加入己烷1600g,异戊二烯370g,四氢呋喃2.5g,升温至47℃后,加入19.2mmo1正丁基锂开始反应26min,其次再向第一反应釜中依次加入苯乙烯260g,四氢呋喃2.1g,升温至66℃,反应47min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-氯代琥珀酰亚胺560g,叔十二碳硫醇3.5g,升温至76℃,加入DTBP 2.6g反应3.3h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换3次,依次加入己烷1600g,1,3- 丁二烯260g,四氢呋喃2.0g,升温至46℃后,加入15.6mmo1正丁基锂开始反应36min,其次再向第二反应釜中加入苯乙烯360g,升温至56℃,反应57min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-氯代琥珀酰亚胺440g,叔十二碳硫醇2.1g,升温至76℃,加入DTBP2.5g反应2.7h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷1700g,苯乙烯170g,1,3-丁二烯80g,四氢呋喃2.2g,升温至66℃后,加入13.5mmo1正丁基锂开始反应36min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至86℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应164min后,然后再向第一反应釜中加入1,3-丁二烯16g进行封端活化,反应26min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P4(Mn为87000,Mw/Mn为9.97)。
经计算,P4中,R1∶R2∶R3∶苯基的摩尔比为3.2∶7.3∶7.8∶0.1,P4中Cl的含量为10.6wt%,P4的末端来自共轭二烯烃的结构单元的含量为0.63wt%。
制备例5
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换4次,向第一反应釜中依次加入己烷1800g,异戊二烯390g,四氢呋喃2.8g,升温至49℃后,加入21.5mmo1正丁基锂开始反应28min,其次再向第一反应釜中依次加入苯乙烯280g,四氢呋喃2.6g,升温至68℃,反应49min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺580g,叔十二碳硫醇3.8g,升温至78℃,加入DTBP 2.8g反应3.6h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换4次,依次加入己烷1800g,1,3-丁二烯290g,四氢呋喃2.6g,升温至48℃后,加入16.5mmo1正丁基锂开始反应38min,其次再向第二反应釜中加入苯乙烯380g,升温至58℃,反应59min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺420g,叔十二碳硫醇2.3g,升温至78℃,加入DTBP2.7g反应2.9h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷1900g,苯乙烯180g,1,3-丁二烯90g,四氢呋喃2.6g,升温至68℃后,加入15.5mmo1正丁基锂开始反应38min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至88℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应167min后,然后再向第一反应釜中加入1,3-丁二烯18g进行封端活化,反应28min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P5(Mn为89000,Mw/Mn为10.21)。
经计算,P5中,R1∶R2∶R3∶苯基的摩尔比为3.4∶7.8∶8.5∶0.1,P5中Br的含量为17.2wt%,P5的末端来自共轭二烯烃的结构单元的含量为0.68wt%。
制备例6
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换4次,向第一反应釜中依次加入己烷2000g,异戊二烯400g,四氢呋喃3.0g,升温至50℃后,加入22.5mmo1正丁基锂开始反应30min,其次再向第一反应釜中依次加入苯乙烯300g,四氢呋喃3.0g,升温至70℃, 反应50min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺600g,叔十二碳硫醇4.0g,升温至80℃,加入DTBP 3.0g反应4.0h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换4次,依次加入己烷2000g,1,3-丁二烯300g,四氢呋喃3.0g,升温至50℃后,加入17.5mmo1正丁基锂开始反应40min,其次再向第二反应釜中加入苯乙烯400g,升温至60℃,反应60min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺400g,叔十二碳硫醇2.7g,升温至80℃,加入DTBP3.0g反应3.0h,得到产物b;
(1-3)在15L不锈钢第三反应釜中,通氩气将系统置换2次,依次加入己烷2000g,苯乙烯200g,1,3-丁二烯100g,四氢呋喃3.0g,升温至70℃后,加入16.5mmo1正丁基锂开始反应40min,形成-SBR-链段,得到产物c;
(2)将第二反应釜的全部产物b和第三反应釜的全部产物c加入第一反应釜中与产物a混合,升温至88℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应170min后,然后再向第一反应釜中加入1,3-丁二烯20g进行封端活化,反应30min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,制得多元共聚物,记为P6(Mn为90000,Mw/Mn为10.35)。
经计算,P6中,R1∶R2∶R3∶苯基的摩尔比为3.8∶8.1∶8.8∶0.1,P6中Br的含量为16.7wt%,P6的末端来自共轭二烯烃的结构单元的含量为0.74wt%。
制备例7
本制备例用于阐述多元共聚物的制备
按照制备例1的方法,区别在于,在涉及使用N-溴代丁二酰亚胺的步骤中,分别使用等重量的无机溴化剂溴化氢替代N-溴代丁二酰亚胺。其他条件均同制备例1。制得多元共聚物,记为P7(Mn为78000,Mw/Mn为8.52)。
经计算,P7中,R1∶R2∶R3∶苯基的摩尔比为1.9∶5.8∶6.3∶0.1,P7中Br的含量为45.9wt%,P7的末端来自共轭二烯烃的结构单元的含量为0.46wt%。
制备例8
本制备例用于阐述多元共聚物的制备
按照制备例2的方法,区别在于,在涉及使用DTBP的步骤中,分别使用等重量的过氧化氢(H2O2)替代DTBP。其他条件均同制备例2。制得多元共聚物,记为P8(Mn为71000,Mw/Mn为7.58)。
经计算,P8中,R1∶R2∶R3∶苯基的摩尔比为2.3∶6.3∶6.8∶0.1,P8中Br的含量为19.8wt%,P8的末端来自共轭二烯烃的结构单元的含量为0.53wt%。
制备例9
本制备例用于阐述多元共聚物的制备
按照制备例3的方法,区别在于,第一反应釜中N-溴代丁二酰亚胺的加入量为200g。其他条件均同制备例3。制得多元共聚物,记为P9(Mn为78000,Mw/Mn为9.05)。
经计算,P9中,R1∶R2∶R3∶苯基的摩尔比为2.8∶6.9∶7.3∶0.1,P9中Br的含量为12.4wt%,P9的末端来自共轭二烯烃的结构单元的含量为0.73wt%。
对比制备例1
本制备例用于阐述多元共聚物的制备
按照制备例5的方法,区别在于,制备过程中不加入偶联剂1,3,5-三氯化苯进行偶合。其他条件均同制备例5。制得多元共聚物,记为DP1(Mn为52000,Mw/Mn为2.26)。
经计算,DP1中,R1∶R2∶R3的摩尔比为3.4∶7.8∶8.5,DP1中Br的含量为17.2wt%,DP1的末端来自共轭二烯烃的结构单元的含量为0.46wt%。
对比制备例2
本制备例用于阐述多元共聚物的制备
(1-1)在带有夹套的15L不锈钢第一反应釜中,通氩气置换4次,向聚合釜中依次加入己烷2000g,异戊二烯400g,四氢呋喃3.0g,升温至50℃后,加入22.5mmo1正丁基锂开始反应30min,其次再向第一反应釜中依次加入苯乙烯300g,四氢呋喃3.0g,升温70℃,反应50min,形成-PS-IR-链段;最后再向第一反应釜中依次加入N-溴代丁二酰亚胺600g,叔十二碳硫醇4.0g,升温至80℃,加入DTBP 3.0g反应4.0h,得到产物a;
(1-2)在15L不锈钢第二反应釜中,通氩气将系统置换4次,依次加入己烷2000g,1,3-丁二烯300g,四氢呋喃3.0g,升温至50℃后,加入17.5mmo1正丁基锂开始反应40min,其次再向第二反应釜中加入苯乙烯400g,升温至60℃,反应60min,形成-BR-PS-链段,最后再向第二反应釜中依次加入N-溴代丁二酰亚胺400g,叔十二碳硫醇2.7g,升温至80℃,加入DTBP3.0g反应3.0h,得到产物b;
(2)将第二反应釜的全部产物b加入第一反应釜中与产物a混合,升温至88℃,加入100mmo11,3,5-三氯化苯进行偶联反应,反应170min后,然后再向第一反应釜中加入1,3-丁二烯20g进行封端活化,反应30min直至无游离单体存在时为止,胶液经湿法凝聚、烘干,得多元共聚物,记为DP2(Mn为65000,Mw/Mn为5.12)。
经计算,DP2中,R2∶R3∶苯基的摩尔比为8.1∶8.8∶0.1(DP2中不含有R1),DP2中Br的含量为18.8wt%,DP2的末端来自共轭二烯烃的结构单元的含量为0.83wt%。
实施例1
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换3次,向聚合釜中加入一氯甲烷300g、己烷700g、制备例1制得的多元共聚物(P1)35g,搅拌溶解60min,直到P1完全溶解,然后降温至-85℃时,再依次加入一氯甲烷500g、异丁烯460g、异戊二烯5g,搅拌混合至聚合体系温度降到-90℃时,然后将一氯甲烷50g,以及倍半乙基氯化铝1.075g和HCl 0.007g(在-85℃条件下混合陈化30min),一起加入到聚合体系里搅拌反应2.0h,最后加入25g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S1(溴含量为2.36wt%)。
基于S1的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为13∶0.14∶1。
将S1制成标准试样,测试性能见表1。
实施例2
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换3次,向聚合釜中加入一氯甲烷400g、己烷600g、制备例2制得的多元共聚物(P2)38g,搅拌溶解65min,直到P2完全溶解,然 后降温至-88℃时,再依次加入一氯甲烷600g、异丁烯455g、异戊二烯7g,搅拌混合至聚合体系温度降到-92℃时,然后将一氯甲烷60g,以及倍半乙基氯化铝1.189g和HCl 0.011g(在-85℃条件下混合陈化32min),一起加入到聚合体系里搅拌反应2.6h,最后加入30g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S2(溴含量为2.45wt%)。
基于S2的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为12∶0.18∶1。
将S2制成标准试样,测试性能见表1。
实施例3
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换3次,向聚合釜中加入一氯甲烷500g、己烷500g,制备例3制得的多元共聚物(P3)41g,搅拌溶解70min,直到P3完全溶解,然后降温至-90℃时,再依次加入一氯甲烷700g、异丁烯449g、异戊二烯10g,搅拌混合至聚合体系温度降到-94℃时,然后将一氯甲烷70g,以及倍半乙基氯化铝1.203g和HCl 0.031g(在-88℃条件下混合陈化34min),一起加入到聚合体系里搅拌反应3.0h,最后加入35g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S3(溴含量为2.65wt%)。
基于S3的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为11∶0.24∶1。
将S3制成标准试样,测试性能见表1。
实施例4
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换3次,向聚合釜中加入一氯甲烷600g、己烷400g,制备例4制得的多元共聚物(P4)44g,搅拌溶解74min,直到P4完全溶解,然后降温至-91℃时,再依次加入一氯甲烷800g、异丁烯444g、异戊二烯12g,搅拌混合至聚合体系温度降到-95℃时,然后将一氯甲烷80g,以及倍半乙基氯化铝1.315g和HCl 0.048g(在-90℃条件下混合陈化36min),一起加入到聚合体系里搅拌反应3.3h,最后加入40g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S4(氯含量为2.72wt%)。
基于S4的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为10∶0.27∶1。
将S4制成标准试样,测试性能见表1。
实施例5
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换3次,向聚合釜中加入一氯甲烷650g、己烷350g、制备例5制得的多元共聚物(P5)48g,搅拌溶解78min,直到P5完全溶解,然后降温至-93℃时,再依次加入一氯甲烷900g、异丁烯438g、异戊二烯14g,搅拌混合至聚合体系温度降到-97℃时,然后将一氯甲烷90g,以及倍半乙基氯化铝1.425g和HCl 0.057g(在-93℃条件下混合陈化38min),一起加入到聚合体系里搅拌反应3.7h,最后加入45g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S5(溴含量为2.86wt%)。
基于S5的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂 的结构单元C的重量比为9∶0.29∶1。
将S5制成标准试样,测试性能见表1。
实施例6
本实施例用于阐述卤化支化丁基橡胶的制备
在带有夹套的4L不锈钢反应釜中,通氮气置换5次,向聚合釜中加入一氯甲烷700g、己烷300g、制备例6制得的多元共聚物(P6)50g,搅拌溶解80min,直到接枝剂完全溶解,然后降温至-95℃时,再依次加入一氯甲烷1000g、异丁烯435g、异戊二烯15g,搅拌混合至聚合体系温度降到-100℃时,然后将一氯甲烷100g,以及倍半乙基氯化铝1.564g和HCl 0.074g(在-95℃条件下混合陈化40min),一起加入到聚合体系里搅拌反应4.0h,最后加入50g乙醇,出料凝聚,洗涤,干燥,得到卤化支化丁基橡胶,记为S6(溴含量为2.97wt%)。
基于S6的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为9∶0.3∶1。
将S6制成标准试样,测试性能见表1。
实施例7
本实施例用于阐述卤化支化丁基橡胶的制备
按照实施例6的方法,区别在于使用制备例2制得的多元共聚物(P2)50g替代“制备例6制得的多元共聚物(P6)50g”。其他条件均同实施例6。
得到卤化支化丁基橡胶,记为S7(溴含量为3.16wt%)。
基于S7的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为9∶0.3∶1。
将S7制成标准试样,测试性能见表1。
实施例8
本实施例用于阐述卤化支化丁基橡胶的制备
按照实施例6的方法,区别在于使用制备例3制得的多元共聚物(P3)50g替代“制备例6制得的多元共聚物(P6)50g”。其他条件均同实施例6。
得到卤化支化丁基橡胶,记为S8(溴含量为3.08wt%)。
基于S8的总重量,来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C的重量比为9∶0.3∶1。
将S8制成标准试样,测试性能见表1。
实施例9
按照实施例1的方法,区别在于,使用等重量的多元聚合物P7替代多元聚合物P1。其他条件均同实施例1。制得卤化支化丁基橡胶,记为S9(溴含量为1.85wt%)
将S9制成标准试样,测试性能见表1。
实施例10
按照实施例2的方法,区别在于,使用等重量的多元聚合物P8替代多元聚合物P2。其他条件均同实施例2。制得卤化支化丁基橡胶,记为S10(溴含量为1.89wt%)
将S10制成标准试样,测试性能见表1。
实施例11
按照实施例3的方法,区别在于,使用等重量的多元聚合物P9替代多元聚合物P3。其他条件均同实施例3。制得卤化支化丁基橡胶,记为S11(溴含量为1.97wt%)
将S11制成标准试样,测试性能见表1。
对比例1
按照实施例5的方法,区别在于,使用等重量的多元聚合物DP1替代多元聚合物P5。其他条件均同实施例5。制得卤化支化丁基橡胶,记为D1(溴含量为0.58wt%)
将D1制成标准试样,测试性能见表1。
对比例2
按照实施例6的方法,区别在于,使用等重量的多元聚合物DP2替代多元聚合物P6。其他条件均同实施例6。制得卤化支化丁基橡胶,记为D2(溴含量为0.76wt%)
将D2制成标准试样,测试性能见表1。
表1

注:表1中,T10为焦烧时间,反映焦烧安全窗口大小;T90为正硫化时间,反映硫化速度快慢。
由表1结果可见,采用本发明的多元共聚物作为接枝剂所制得的卤化支化丁基橡胶S1-S11,卤素含量较高,具有高饱和度,高支化度,挤出胀大比低,焦烧时间(T10)和正硫化时间(T90)短,透气量低,静态臭氧性能裂口时间长,表现出良好的硫化特性、抗老化性、产品加工尺寸稳定性和极高的气密性,其中,S7和S8具有尤为突出的综合性能优势,本发明实现了高饱和度高支化卤化支化丁基橡胶的老化性、产品尺寸稳定性和硫化加工性能的平衡。而对比例1-2未采用本发明的多元共聚物作为接枝剂,得到的卤化支化丁基橡胶产品D1-D2的综合性能显著差于S1-S11。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (25)

  1. 一种多元共聚物,其特征在于,所述多元共聚物具有式(I)所示的通式:
    其中,R1、R2和R3分别为聚合物链段,且末端含有来自共轭二烯烃的结构单元;
    R1包含苯乙烯结构单元和丁二烯结构单元;
    R2包含式(II)所示的链段,其中,表示式(II)所示的链段与苯环的连接位置;
    R3包含式(III)所示的链段,其中,表示式(III)所示的链段与苯环的连接位置;
    在式(II)和式(III)中,为苯乙烯链段,X为卤素。
  2. 根据权利要求1所示的多元共聚物,其中,R1∶R2∶R3∶苯基的摩尔比为(1-4)∶(2-9)∶(2-9)∶0.1;
    和/或,所述多元共聚物中卤素的含量为10-30wt%;
    和/或,所述多元共聚物的末端来自共轭二烯烃的结构单元的含量为0.25-1wt%;
    和/或,X选自F、Cl或Br;
    和/或,所述共轭二烯烃选自丁二烯和/或异戊二烯。
  3. 根据权利要求1或2所述的多元共聚物,其中,所述多元共聚物的数均分子量为8万-9万g/mol;
    和/或,所述多元共聚物的分子量分布指数为9-11。
  4. 一种多元共聚物的制备方法,其特征在于,所述制备方法包括:
    (1-1)在第一引发剂存在下,将异戊二烯进行第一聚合反应,所得第一聚合反应产物与苯乙烯进行第二聚合反应,并将得到的第二聚合反应产物在第二引发剂和卤化剂存在下进行第一卤化反应,得到产物a;
    (1-2)在第一引发剂存在下,将丁二烯进行第三聚合反应,所得第三聚合反应产物与苯乙烯进行第四聚合反应,并将得到的第四聚合反应产物在第二引发剂和卤化剂存在下进行第二卤化反应,得到产物b;
    (1-3)在第一引发剂存在下,将苯乙烯和丁二烯进行第五聚合反应,得到产物c;
    (2)在偶联剂存在下,将所述产物a、产物b和产物c进行偶联反应,并将偶联反应产物与共轭二烯烃发生封端反应,得到所述多元共聚物;
    其中,所述偶联剂具有式(IV)所述的通式:
    其中,R1、R2和R3各自独立地选自F、Cl或Br。
  5. 根据权利要求4所述的方法,其中,所述第一聚合反应、第二聚合反应、第三聚合反应、第四聚合反应、第一卤化反应、第二卤化反应、偶联反应和封端反应在溶剂存在下进行。
  6. 根据权利要求5所述的方法,其中,所述第一聚合反应、第三聚合反应和第五聚合反应在结构调节剂的存在下进行;
    和/或,所述第一卤化反应、第二卤化反应在分子量调节剂的存在下进行。
  7. 根据权利要求5或6所述的方法,其中,以所述方法中卤化剂的总量为100重量份计,步骤(1-1)中,各原料的投料量满足:异戊二烯30-40重量份、苯乙烯20-30重量份、结构调节剂0.1-0.3重量份、第一引发剂0.05-0.2重量份、卤化剂50-60重量份、分子量调节剂0.2-0.5重量份和第二引发剂0.1-0.4重量份;
    和/或,步骤(1-2)中,各原料的投料量满足:丁二烯20-30重量份、苯乙烯30-40重量份、结构调节剂0.1-0.3重量份、第一引发剂0.05-0.2重量份、卤化剂40-50重量份、分子量调节剂0.1-0.3重量份和第二引发剂0.1-0.3重量份;
    和/或,步骤(1-3)中,各原料的投料量满足:丁二烯5-10重量份、苯乙烯10-20重量份、结构调节剂0.1-0.3重量份、第一引发剂0.03-0.16重量份;
    和/或,步骤(2)中,偶联剂为0.5-5重量份,共轭二烯烃为1-2重量份。
  8. 根据权利要求5或6所述的方法,其中,所述溶剂选自直链烷烃、芳烃和环烷烃中的至少一种;
    和/或,所述第一引发剂为烃基单锂化合物;
    和/或,所述第二引发剂为有机过氧化物;
    和/或,所述卤化剂选自N-溴代丁二酰亚胺、溴化二甲基溴代硫、N-溴代琥珀酰亚胺、N-氯代丁二酰亚胺、N-氯代琥珀酰亚胺和氯化二甲基氯代硫中的至少一种;
    和/或,所述结构调节剂为极性有机化合物;
    和/或,所述分子量调节剂选自叔十碳硫醇、叔十二碳硫醇、叔十四碳硫醇和叔十六碳硫醇中的至少一种;
    和/或,所述共轭二烯烃选自丁二烯和/或异戊二烯。
  9. 根据权利要求7所述的方法,其中,所述溶剂选自直链烷烃、芳烃和环烷烃中的至少一种;
    和/或,所述第一引发剂为烃基单锂化合物;
    和/或,所述第二引发剂为有机过氧化物;
    和/或,所述卤化剂选自N-溴代丁二酰亚胺、溴化二甲基溴代硫、N-溴代琥珀酰亚胺、N-氯代丁二酰亚胺、N-氯代琥珀酰亚胺和氯化二甲基氯代硫中的至少一种;
    和/或,所述结构调节剂为极性有机化合物;
    和/或,所述分子量调节剂选自叔十碳硫醇、叔十二碳硫醇、叔十四碳硫醇和叔十六碳硫醇中的至少一种;
    和/或,所述共轭二烯烃选自丁二烯和/或异戊二烯。
  10. 根据权利要求5、6和9中任意一项所述的制备方法,其中,所述第一聚合反应的条件包括:温度为40-50℃;时间为20-30min;
    和/或,所述第二聚合反应的条件包括:温度为60-70℃;时间为40-50min;
    和/或,所述第一卤化反应的条件包括:温度为70-80℃;时间为2-4h;
    和/或,所述第三聚合反应的条件包括:温度为40-50℃;时间为30-40min;
    和/或,所述第四聚合反应的条件包括:温度为50-60℃;时间为50-60min;
    和/或,所述第二卤化反应的条件包括:温度为70-80℃;时间为2-3h;
    和/或,所述第五聚合反应的条件包括:温度为60-70℃;时间为30-40min;
    和/或,所述偶联反应的条件包括:温度为80-90℃;时间为150-170min;
    和/或,所述封端反应的条件包括:温度为80-90℃;时间为20-30min。
  11. 根据权利要求7所述的制备方法,其中,所述第一聚合反应的条件包括:温度为40-50℃;时间为20-30min;
    和/或,所述第二聚合反应的条件包括:温度为60-70℃;时间为40-50min;
    和/或,所述第一卤化反应的条件包括:温度为70-80℃;时间为2-4h;
    和/或,所述第三聚合反应的条件包括:温度为40-50℃;时间为30-40min;
    和/或,所述第四聚合反应的条件包括:温度为50-60℃;时间为50-60min;
    和/或,所述第二卤化反应的条件包括:温度为70-80℃;时间为2-3h;
    和/或,所述第五聚合反应的条件包括:温度为60-70℃;时间为30-40min;
    和/或,所述偶联反应的条件包括:温度为80-90℃;时间为150-170min;
    和/或,所述封端反应的条件包括:温度为80-90℃;时间为20-30min。
  12. 根据权利要求8所述的制备方法,其中,所述第一聚合反应的条件包括:温度为40-50℃;时间为20-30min;
    和/或,所述第二聚合反应的条件包括:温度为60-70℃;时间为40-50min;
    和/或,所述第一卤化反应的条件包括:温度为70-80℃;时间为2-4h;
    和/或,所述第三聚合反应的条件包括:温度为40-50℃;时间为30-40min;
    和/或,所述第四聚合反应的条件包括:温度为50-60℃;时间为50-60min;
    和/或,所述第二卤化反应的条件包括:温度为70-80℃;时间为2-3h;
    和/或,所述第五聚合反应的条件包括:温度为60-70℃;时间为30-40min;
    和/或,所述偶联反应的条件包括:温度为80-90℃;时间为150-170min;
    和/或,所述封端反应的条件包括:温度为80-90℃;时间为20-30min。
  13. 一种权利要求4-12中任意一项所述的方法制得的多元共聚物。
  14. 一种权利要求1-3和13中任意一项所述的多元共聚物在制备二烯烃橡胶中作为接枝剂的应用。
  15. 根据权利要求14所述的应用,其中,所述二烯烃橡胶为丁基橡胶。
  16. 一种卤化支化丁基橡胶,其特征在于,所述卤化支化丁基橡胶包括:来自异丁烯的结构单元A、来自异戊二烯的结构单元B和来自接枝剂的结构单元C;
    其中,所述接枝剂为权利要求1-3和13中任意一项所述的多元共聚物。
  17. 根据权利要求16所述的卤化支化丁基橡胶,其中,基于所述卤化支化丁基橡胶的总重量,所述结构单元A、结构单元B和结构单元C的重量比为(6-15)∶(0.05-0.5)∶1。
  18. 一种卤化支化丁基橡胶的制备方法,其特征在于,所述方法包括:
    在稀释剂、溶剂和共引发剂的存在下,将异丁烯、异戊二烯和接枝剂进行阳离子聚合反应,得到所述卤化支化丁基橡胶;
    其中,所述接枝剂为权利要求1-3和13中任意一项所述的多元共聚物。
  19. 根据权利要求18所述的方法,其中,以异丁烯和异戊二烯的总量为100重量份计,稀释剂为30-80重量份、接枝剂为6-15重量份、共引发剂为0.1-0.6重量份;
    和/或,异丁烯∶异戊二烯的重量比为(25-95)∶1。
  20. 根据权利要求18或19所述的方法,其中,所述稀释剂为卤代烷烃,所述卤代烷烃中的卤素为F、Cl或Br;
    和/或,所述共引发剂包括烷基卤化铝和质子酸。
  21. 根据权利要求20所述的方法,其中,在所述共引发剂中,所述烷基卤化铝∶质子酸的摩尔比为(10-100)∶1。
  22. 根据权利要求18、19和21中任意一项所述的方法,其中,所述阳离子聚合的条件包括:温度为-100℃至-90℃,时间为2-4h。
  23. 根据权利要求20所述的方法,其中,所述阳离子聚合的条件包括:温度为-100℃至-90℃,时间为2-4h。
  24. 一种根据权利要求18-23中任意一项所述的方法制得的卤化支化丁基橡胶。
  25. 权利要求16、17和24中任意一项所述的卤化支化丁基橡胶在轮胎和医用胶塞中的应用。
PCT/CN2023/113278 2022-09-26 2023-08-16 多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用 WO2024066778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211173618.9A CN117801292A (zh) 2022-09-26 2022-09-26 多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用
CN202211173618.9 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024066778A1 true WO2024066778A1 (zh) 2024-04-04

Family

ID=90418964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113278 WO2024066778A1 (zh) 2022-09-26 2023-08-16 多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117801292A (zh)
WO (1) WO2024066778A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086298A (en) * 1975-11-08 1978-04-25 Basf Aktiengesellschaft Branched block copolymers and their manufacture
KR20060084450A (ko) * 2006-06-01 2006-07-24 금호석유화학 주식회사 헤테로-브랜치를 갖는 라디알 폴리스티렌-폴리이소프렌블록 공중합체 및 그 제조 방법
US20110319568A1 (en) * 2010-06-25 2011-12-29 China Petroleum & Chemical Corporation Copolymer rubber having a star-shaped block structure, the preparation process and use thereof
CN113493549A (zh) * 2020-04-08 2021-10-12 中国石油天然气股份有限公司 高宽分布、高支化丁基橡胶的制备方法
CN113831470A (zh) * 2020-06-24 2021-12-24 中国石油天然气股份有限公司 一种中门尼粘度、低饱和度丁基橡胶的制备方法
CN113831458A (zh) * 2020-06-24 2021-12-24 中国石油天然气股份有限公司 中门尼粘度、低饱和度丁基橡胶的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086298A (en) * 1975-11-08 1978-04-25 Basf Aktiengesellschaft Branched block copolymers and their manufacture
KR20060084450A (ko) * 2006-06-01 2006-07-24 금호석유화학 주식회사 헤테로-브랜치를 갖는 라디알 폴리스티렌-폴리이소프렌블록 공중합체 및 그 제조 방법
US20110319568A1 (en) * 2010-06-25 2011-12-29 China Petroleum & Chemical Corporation Copolymer rubber having a star-shaped block structure, the preparation process and use thereof
CN113493549A (zh) * 2020-04-08 2021-10-12 中国石油天然气股份有限公司 高宽分布、高支化丁基橡胶的制备方法
CN113831470A (zh) * 2020-06-24 2021-12-24 中国石油天然气股份有限公司 一种中门尼粘度、低饱和度丁基橡胶的制备方法
CN113831458A (zh) * 2020-06-24 2021-12-24 中国石油天然气股份有限公司 中门尼粘度、低饱和度丁基橡胶的制备方法

Also Published As

Publication number Publication date
CN117801292A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US3992561A (en) Preparation of solution polymers
US5936029A (en) Macrocyclic polymers having low hysteresis compounded properties
US4033900A (en) Composition useful in anionic polymerization
CN104114589B (zh) 支化共轭二烯聚合物的制造方法
JP2544606B2 (ja) オレフイン系ベンゾシクロブテンポリマ−及びその製法
US3903019A (en) Preparation of solution polymers using a barium di-tert alkoxide and a di-butyl magnesium catalyst complex
CA2036655A1 (en) Catalyst system for polymerization of 1,3-butadiene to trans-1,4-polybutadiene
CN113831470B (zh) 一种中门尼粘度、低饱和度丁基橡胶的制备方法
WO2024066778A1 (zh) 多元共聚物及其制备方法和应用、卤化支化丁基橡胶及其制备方法和应用
CN106188356A (zh) 一种四元稀土催化体系及其制备方法和应用
CN116355153A (zh) 一种溴化接枝剂及其制备方法和应用
US4031300A (en) High molecular weight, high unsaturation isobutylene-cyclopentadiene copolymers
US3215679A (en) Process for the preparation of polymers of isoprene and butadiene
CN116410413A (zh) 一种仲位溴化支化丁基橡胶的制备方法
CN116410419A (zh) 一种阴离子溴化支化丁基橡胶的制备方法
CN113831476B (zh) 一种低饱和度丁基橡胶的制备方法
US2772255A (en) Polymerization process
US6274689B1 (en) Random isomonoolefin/allyl styrene copolymers and functionalized derivatives thereof
WO2024066787A1 (zh) 卤化接枝剂和卤化支化丁基橡胶及其制备方法和应用
US3639520A (en) Production of butadiene-styrene graft copolymers with a nickel carboxylic acid salt or nickel organic complex compound-titanium tetrachloride-trialkylaluminum catalyst
CN116284530B (zh) 一种丁基橡胶的制备方法和应用
CN116355151A (zh) 一种溴化接枝剂及其制备方法和应用
CN113831477B (zh) 一种低门尼粘度、低饱和度丁基橡胶的制备方法
CN113493551B (zh) 一种支化丁基橡胶的制备方法
CN116355155A (zh) 一种溴化接枝剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870024

Country of ref document: EP

Kind code of ref document: A1