WO2024066672A1 - 电子设备 - Google Patents
电子设备 Download PDFInfo
- Publication number
- WO2024066672A1 WO2024066672A1 PCT/CN2023/107503 CN2023107503W WO2024066672A1 WO 2024066672 A1 WO2024066672 A1 WO 2024066672A1 CN 2023107503 W CN2023107503 W CN 2023107503W WO 2024066672 A1 WO2024066672 A1 WO 2024066672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- electronic device
- sub
- radiating portion
- electrically connected
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 140
- 230000005284 excitation Effects 0.000 claims abstract description 21
- 238000004891 communication Methods 0.000 claims description 41
- 238000005452 bending Methods 0.000 claims description 7
- 230000036544 posture Effects 0.000 description 143
- 238000010586 diagram Methods 0.000 description 51
- 239000004020 conductor Substances 0.000 description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 12
- 229910052737 gold Inorganic materials 0.000 description 12
- 239000010931 gold Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 9
- UQMRAFJOBWOFNS-UHFFFAOYSA-N butyl 2-(2,4-dichlorophenoxy)acetate Chemical compound CCCCOC(=O)COC1=CC=C(Cl)C=C1Cl UQMRAFJOBWOFNS-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 7
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 6
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012811 non-conductive material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/005—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
Definitions
- the present application relates to the field of communication technology, and in particular to an electronic device.
- GPS Global Positioning System
- an embodiment of the present application provides an electronic device, the electronic device comprising:
- a posture recognition sensor used to recognize the current posture of the electronic device
- An antenna module comprising a first feed source, a switching switch, a first radiator and a second radiator, the first feed source being used to generate an excitation current so that the first radiator or the second radiator supports a frequency band used for positioning, the switching switch being electrically connected to the first feed source, the first radiator and the second radiator being spaced apart, and a main radiation direction of the first radiator being different from a main radiation direction of the second radiator; and
- a processor is electrically connected to the posture recognition sensor and the switching switch, respectively, and is used to control the switching switch to be electrically connected to one of the first radiator and the second radiator according to the current posture of the electronic device, wherein when the first feed source is connected to the one of the first radiator and the second radiator, the signal strength of the frequency band received by the one is stronger than the signal strength of the other of the first radiator and the second radiator receiving the frequency band.
- FIG1 is a schematic structural diagram of an electronic device 1 provided in one embodiment of the present application.
- FIG. 2 is a perspective exploded schematic diagram of the electronic device 1 provided in FIG. 1 ;
- FIG3 is a top view of a portion of the structure of the antenna module in FIG2 in an unfolded state
- FIG4 is a top view of a partial structure of an antenna module provided in another embodiment of FIG1 in an unfolded state
- FIG5 is a circuit block diagram of an embodiment of the electronic device shown in FIG1 ;
- FIG6 is a far-field pattern of a first radiator in the electronic device provided in FIG3 ;
- FIG. 7 is a schematic diagram of main current distribution excited on the antenna ground by the first radiator in the electronic device provided in FIG. 3 ;
- FIG8 is a schematic diagram of the position of the first radiator when the electronic device 1 is in the first posture
- FIG9 is a far-field pattern of the first radiator in FIG8 ;
- FIG10 is a far-field pattern of a second radiator in the electronic device 1 provided in FIG3 ;
- FIG11 is a schematic diagram of the main current distribution excited on the antenna ground by the second radiator in the electronic device provided in FIG3;
- FIG12 is a schematic diagram of the position of the second radiator when the electronic device is in a second posture
- FIG13 is a far-field pattern of the second radiator in FIG12 ;
- FIG14 is a schematic diagram of the far-field direction of a third radiator in the electronic device provided in FIG3 ;
- FIG15 is a schematic diagram of the position of a third radiator when the electronic device is in a third posture
- FIG16 is a schematic diagram of the far-field direction of the third radiator in the electronic device 1 in FIG15 ;
- FIG17 is a circuit block diagram of another embodiment of the electronic device shown in FIG1 ;
- FIG18 is a schematic diagram of the far-field direction of the fourth radiator in the electronic device provided in FIG3 ;
- FIG19 is a circuit block diagram of another embodiment of the electronic device shown in FIG1 ;
- FIG20 is a schematic diagram of an antenna module provided in another embodiment of the present application.
- FIG21 is a circuit block diagram of another embodiment of the electronic device shown in FIG1 ;
- FIG22 is a circuit block diagram of an electronic device provided in another embodiment of the present application.
- FIG23 is a circuit block diagram of an electronic device provided in yet another embodiment of the present application.
- FIG24 is a schematic structural diagram of an electronic device provided in yet another embodiment of the present application.
- FIG25 is a perspective exploded schematic diagram of the electronic device provided in FIG24 ;
- FIG. 26 is a schematic diagram of a partial structure of the electronic device in FIG. 25 .
- Main markings Electronic equipment 1; Antenna module 10, foldable body 20, display screen 30, housing 40, gesture recognition sensor 50, processor 60, speaker 80, Communication unit 90; A first feed source 110, a switch 120, a first radiator 130, a second radiator 140, a third radiator 150, a fourth radiator 160, Antenna ground 170, second feed source 180, switching unit 190; A first ground end 130a, a first free end 130b, a first sub-radiating portion 131, and a second sub-radiating portion 132; A second ground end 140a, a second free end 140b, a third sub-radiating portion 141, and a fourth sub-radiating portion 142; A third ground end 150a, a third free end 150b, a fifth sub-radiating portion 151, and a sixth sub-radiating portion 152; A fourth ground end 160a, a fourth free end 160b, a seventh sub-radiating portion 161, and an eighth sub-radiating portion 162; A first side 170a, a second side 170
- the present application provides an electronic device, wherein the electronic device includes:
- a posture recognition sensor used to recognize the current posture of the electronic device
- An antenna module comprising a first feed source, a switching switch, a first radiator and a second radiator, the first feed source being used to generate an excitation current so that the first radiator or the second radiator supports a frequency band used for positioning, the switching switch being electrically connected to the first feed source, the first radiator and the second radiator being spaced apart, and a main radiation direction of the first radiator being different from a main radiation direction of the second radiator; and
- a processor is electrically connected to the posture recognition sensor and the switching switch, respectively, and is used to control the switching switch to be electrically connected to one of the first radiator and the second radiator according to the current posture of the electronic device, wherein when the first feed source is connected to the one of the first radiator and the second radiator, the signal strength of the frequency band received by the one is stronger than the signal strength of the other of the first radiator and the second radiator receiving the frequency band.
- the main radiation direction of the one is upward compared to the main radiation direction of the other.
- the processor controls the switch to be electrically connected to the first radiator, wherein when the current posture is the first posture, the main radiation direction of the first radiator is greater than the main radiation direction of the second radiator. Direction upward.
- the first radiator and the second radiator are arranged diagonally, and when the current posture is the second posture, the processor controls the switching switch to be electrically connected to the second radiator, wherein when the current posture is the second posture, the main radiation direction of the second radiator is upward compared to the main radiation direction of the first radiator.
- the antenna module also includes:
- the third radiator being spaced apart from the first radiator and the second radiator respectively, and the main radiation direction of the third radiator is different from the radiation directions of the first radiator and the second radiator;
- the processor controls the switching switch to be electrically connected to the third radiator, wherein when the current posture is the third posture, the main radiation direction of the third radiator is upward compared to the main radiation direction of the first radiator and the main radiation direction of the second radiator.
- the antenna module also includes:
- the fourth radiator is spaced apart from the first radiator and the second radiator respectively, and the fourth radiator is diagonally arranged with the third radiator, and the main radiation direction of the fourth radiator is different from the main radiation directions of the first radiator, the second radiator and the third radiator;
- the processor controls the switching switch to be electrically connected to a fourth radiator, wherein, when the current posture is the fourth posture, the main radiation direction of the fourth radiator is upward compared to the main radiation directions of the first radiator, the second radiator and the third radiator.
- the antenna module also includes an antenna ground, and the antenna ground has a first side, a second side, a third side and a fourth side connected in sequence, wherein the electronic device includes a first corner portion and a second corner portion, the first corner portion includes an end of the first side facing away from the second side, and an end of the fourth side facing away from the third side; the second corner portion is diagonally arranged with the first corner portion, the second corner portion includes an end of the second side facing away from the first side, and an end of the third side facing away from the fourth side; the first radiator is arranged at the first corner portion, and the second radiator is arranged at the second corner portion.
- the first radiator is arranged corresponding to the first side, the first radiator has a first ground end and a first free end, the first ground end is electrically connected to the antenna ground, and the first free end is arranged away from the fourth side compared to the first ground end;
- the second radiator is arranged corresponding to the third side, and has a second grounding end and a second free end, the second grounding end is electrically connected to the antenna ground, and the second free end is arranged away from the second side compared to the second grounding end.
- the first radiator comprises a first sub-radiating portion and a second sub-radiating portion connected in a bent manner, the first sub-radiating portion is arranged corresponding to the fourth side, the first sub-radiating portion has a first grounding end away from the second sub-radiating portion, the first grounding end is electrically connected to the antenna ground, the second sub-radiating portion is arranged corresponding to the first side, the second sub-radiating portion has a first free end away from the first sub-radiating portion, and the length of the second sub-radiating portion is greater than the length of the first sub-radiating portion;
- the second radiator includes a third sub-radiating portion and a fourth sub-radiating portion that are bent and connected to each other.
- the third sub-radiating portion is arranged corresponding to the second edge.
- the third sub-radiating portion has a second grounding end facing away from the fourth sub-radiating portion.
- the second grounding end is electrically connected to the antenna ground.
- the third sub-radiating portion is arranged corresponding to the third edge.
- the fourth sub-radiating portion has a second free end facing away from the third sub-radiating portion. The length of the fourth sub-radiating portion is greater than the length of the third sub-radiating portion.
- the electronic device further comprises a third corner portion and a fourth corner portion, the third corner portion is spaced apart from the first corner portion and the second corner portion respectively, the third corner portion comprises an end of the first side away from the fourth side, and an end of the second side away from the third side; the fourth corner portion is arranged diagonally to the third corner portion, the fourth corner portion comprises an end of the third side away from the second side, and an end of the fourth side away from the first side;
- the antenna module further includes a third radiator and a fourth radiator
- the third radiator is disposed at the third corner portion
- the fourth radiator is disposed at the fourth corner portion
- the third radiator is arranged corresponding to the second side, and has a third grounding end and a third free end, the third grounding end is electrically connected to the antenna ground, and the third free end is arranged away from the first side compared to the third grounding end;
- the fourth radiator is disposed corresponding to the fourth side, and has a fourth grounding end and a fourth free end.
- the fourth grounding end is electrically connected to the antenna ground, and the fourth free end is farther away from the third side than the fourth grounding end.
- the third radiator includes a fifth sub-radiating portion and a sixth sub-radiating portion connected by bending, and the fifth sub-radiating portion corresponds to the The first side is arranged, the fifth sub-radiating portion has a third grounding end away from the sixth radiating portion, the third grounding end is electrically connected to the antenna ground, the sixth sub-radiating portion is arranged corresponding to the second side, the sixth sub-radiating portion has a third free end away from the fifth sub-radiating portion, and the length of the sixth sub-radiating portion is greater than the length of the fifth sub-radiating portion;
- the fourth radiator includes a seventh sub-radiating portion and an eighth sub-radiating portion which are connected by a bending motion.
- the seventh sub-radiating portion is arranged corresponding to the third edge.
- the seventh sub-radiating portion has a fourth grounding end which is away from the eighth sub-radiating portion.
- the fourth grounding end is electrically connected to the antenna ground.
- the eighth sub-radiating portion is arranged corresponding to the fourth edge.
- the eighth sub-radiating portion has a fourth free end which is away from the seventh sub-radiating portion.
- the length of the eighth sub-radiating portion is greater than the length of the seventh sub-radiating portion.
- the electronic device also includes a middle frame, the middle frame includes a middle frame body and a frame portion, the frame portion is arranged around the periphery of the middle frame body and is bent and connected to the middle frame body, and at least one of the first radiator, the second radiator, the third radiator and the fourth radiator is formed on the frame portion.
- the electronic device is foldable and has a folded state and a flattened state.
- the processor controls the switching switch to be electrically connected to one of the first radiator and the second radiator according to the current posture of the electronic device.
- the processor controls the switching switch to be electrically connected to the first radiator, and the second radiator is electrically connected to the second feed source, wherein the RF signal generated by the second feed source is different from the RF signal generated by the first feed source.
- the electronic device further includes a speaker and a display screen, wherein the speaker is electrically connected to the processor.
- the processor plays the voice in the navigation application installed in the electronic device through the speaker, wherein the preset content is a non-navigation interface.
- the electronic device also includes a display screen and a communication unit.
- the processor When the navigation function of the electronic device is turned on and the display screen displays preset content, the processor outputs the display interface of the navigation application in the electronic device through the communication unit to display it on the vehicle screen that is communicatively connected to the communication unit.
- the electronic device has a first folding axis, and when the electronic device is in a flattened state, the first radiator and the third radiator are located on the same side of the first folding axis, the second radiator and the fourth radiator are located on the same side of the first folding axis, and the second radiator and the first radiator are located on different sides of the first folding axis;
- the folding state includes a first folding state.
- the first radiator and the fourth radiator are staggered, and the second radiator and the third radiator are staggered.
- the electronic device has a second folding axis, when the electronic device is in a flattened state, the first radiator and the fourth radiator are located on the same side of the second folding axis, the second radiator and the third radiator are located on the same side of the second folding axis, and the second radiator and the first radiator are located on different sides of the second folding axis;
- the folding state includes a second folding state.
- the first radiator and the third radiator are staggered
- the second radiator and the fourth radiator are staggered.
- Figure 1 is a structural schematic diagram of an electronic device 1 provided in one embodiment of the present application
- Figure 2 is a three-dimensional exploded schematic diagram of the electronic device 1 provided in Figure 1
- Figure 3 is a top view of a partial structure of the antenna module in Figure 2 in an unfolded state
- Figure 4 is a top view of a partial structure of the antenna module provided in another embodiment of Figure 1 in an unfolded state
- Figure 5 is a circuit block diagram of an embodiment of the electronic device shown in Figure 1.
- the present application provides an electronic device 1, and the electronic device 1 can be a mobile phone, a tablet computer, a desktop computer, a laptop computer, an e-reader, a handheld computer, an electronic display screen, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, as well as a cellular phone, a personal digital assistant (PDA), an augmented reality (AR) ⁇ virtual reality (VR) device, a media player, a smart wearable Devices and other foldable devices.
- the foldable electronic device 1 can be a foldable display device or a foldable non-display device.
- the electronic device 1 is taken as an example of a foldable mobile phone, and other devices can refer to the specific description in this application.
- the electronic device 1 can also be a non-folding electronic device.
- the antenna module 10 shown in Figure 3 in the schematic diagram of the embodiment of the present application is a back view, that is, the antenna module 10 seen from the housing 40 of the electronic device 1 toward the display screen 30 of the electronic device 1.
- the electronic device 1 includes a foldable body 20 and an antenna module 10.
- the foldable body 20 has an unfolded state and a folded state.
- the foldable body 20 is the skeleton structure of the electronic device 1.
- the main shape of the foldable body 20 is consistent with the main shape of the electronic device 1.
- the foldable body 20 includes but is not limited to being a middle frame of the electronic device 1.
- the foldable body 20 is taken as an example to be illustrated as the middle frame of the electronic device 1.
- the foldable body 20 in the unfolded state, can be flattened at 180°, or flattened at approximately 180° (for example, 170°, or 175°, or 185°, etc.), or can be bent at a certain bending angle, and the bending angle is not limited.
- the flattened state of 180° is taken as an example.
- the unfolded area of the display screen 30 is relatively large when in the unfolded state, so that the user can enjoy the large-screen electronic device 1.
- the folded state refers to the state in which the foldable body 20 is bent and stacked. At this time, the overall volume of the electronic device 1 is small and easy to carry.
- the foldable body 20 includes but is not limited to a folding structure with one rotation axis, and may also be a three-fold, four-fold, etc. folding structure with two or more rotation axes. This embodiment is described by taking the folding body 20 as an example.
- the foldable body 20 includes a first body 210 and a second body 220 that are rotatably connected.
- at least one of the first body 210 and the second body 220 is rotatably connected via a rotating shaft 230.
- the foldable body 20 includes a first body 210, a rotating shaft 230, and a second body 220 that are sequentially connected.
- the first body 210 and the second body 220 are directly connected, and the connection between the first body 210 and the second body 220 is bendable.
- the embodiment of the present application does not limit the way in which the foldable body 20 is bent, as long as the foldable body 20 can be bent.
- the first body 210 of the foldable body 20 is made of a conductive material
- at least part of the second body 220 of the foldable body 20 is made of a conductive material
- the first body 210 is electrically connected to the second body 220.
- the foldable body 20 further includes a rotating shaft 230
- at least part of the rotating shaft 230 is made of a conductive material
- the first body 210 is electrically connected to the second body 220 via the rotating shaft 230.
- the foldable body 20 can be used as a reference ground (also called a ground pole) of the antenna module 10.
- connection direction of the first body 210, the rotating shaft 230, and the second body 220 is defined as the negative direction of the X axis
- the direction of the rotation axis L0 of the foldable body 20 is the Y direction, that is, in this embodiment, the extension direction of the rotating shaft 230 is the Y axis direction.
- the thickness direction of the foldable body 20 in the unfolded state is the Z axis direction.
- the X axis direction, the Y axis direction, and the Z axis direction are perpendicular to each other.
- the direction indicated by the arrow is the positive direction.
- the electronic device 1 further includes a display screen 30.
- the display screen 30 is disposed on one side of the foldable body 20.
- the display screen 30 is disposed on the front side of the foldable body 20 (the front side refers to the direction facing the user when the user normally uses the display screen 30).
- the portion of the display screen 30 corresponding to the shaft 230 is a bendable flexible display screen 30.
- the display screen 30 is not disposed at the position corresponding to the shaft 230, but two display screens 30 are disposed on the front sides of the first body 210 and the second body 220, respectively.
- the display screen 30 includes a first display portion 310, a second display portion 320 and a connecting portion 330.
- the first display portion 310 is arranged corresponding to the first body 210
- the second display screen 320 is arranged corresponding to the second body 220
- the connecting portion 330 is arranged corresponding to the rotating shaft 230
- the connecting portion 330 is bendable.
- the display screen 30 is an integrated structure.
- the first display portion 310 and the second display portion 320 are separate structures.
- the electronic device 1 further includes a housing 40.
- the housing 40 includes a frame 410 and a back cover 420.
- the display screen 30 and the back cover 420 are respectively located on opposite sides (front and rear sides) of the foldable body 20, wherein the frame 410 is connected between the display screen 30 and the back cover 420 and surrounds the foldable body 20.
- the display screen 30, the frame 410 and the back cover 420 form a relatively closed whole device of the electronic device 1.
- the back side of the electronic device 1 may also be provided with a display screen 30.
- the frame 410 and the back cover 420 may be an integrated structure or a split structure.
- the interior of the frame 410 can form an integrated structure with the middle frame (foldable body 20).
- a plurality of mounting slots for installing various electronic devices are formed on the middle frame.
- the electronic device 1 also includes a circuit board (including a main board, a sub-board, a flexible circuit board, etc.), a battery, a camera module, a microphone, a receiver, a speaker, a face recognition module, a fingerprint recognition module, etc., which are arranged in the receiving space and can realize the basic functions of the electronic device 1, which will not be repeated in this embodiment. It can be understood that the above introduction to the electronic device 1 is only a description of an environment in which the antenna module 10 is used, and the specific structure of the electronic device 1 should not be understood as a limitation on the antenna module 10 provided in this application.
- the antenna module 10 may be disposed inside the housing 40 of the electronic device 1, or partially integrated with the housing 40, or partially disposed outside the housing 40.
- the antenna module 10 is used to transmit and receive radio frequency signals, wherein the radio frequency signals are transmitted in the air medium as electromagnetic wave signals to realize the communication function of the electronic device 1.
- the present application does not specifically limit the position of the antenna module 10 on the electronic device 1, and the position of the antenna module 10 on the electronic device 1 shown in FIG. 2 is only an example.
- the antenna module 10 illustrated in FIG. 2 and FIG. 3 of the present embodiment includes a third radiator 150 and a fourth radiator 160 in addition to the first radiator 130 and the second radiator 140, it should be noted that in other embodiments, the antenna module 10 may not include the third radiator 150 and the fourth radiator 160.
- FIG. 4 is a top view of a partial structure of the antenna module provided in another embodiment of FIG. 1 in an unfolded state.
- the electronic device 1 includes a posture recognition sensor 50, an antenna module 10 and a processor 60.
- the posture recognition sensor 50 is used to recognize the current posture of the electronic device 1.
- the antenna module 10 includes a first feed source 110, a switch 120, a first radiator 130 and a second radiator 140.
- the first feed source 110 is used to generate an excitation current so that the first radiator 130 or the second radiator 140 supports a frequency band used for positioning.
- the switch 120 is electrically connected to the first feed source 110, the first radiator 130 and the second radiator 140 are arranged at intervals, and the main radiation direction of the first radiator 130 is different from the main radiation direction of the second radiator 140.
- the processor 60 is electrically connected to the posture recognition sensor 50 and the switch 120 respectively, and is used to control the switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, and the signal strength of the one receiving the frequency band is stronger than the signal strength of the other of the first radiator 130 and the second radiator 140 receiving the frequency band.
- the embodiments of the present application do not limit the signal strength of the one receiving the frequency band when the switching switch 120 is electrically connected to the one and the signal strength of the other receiving the frequency band.
- the processor 60 when the processor 60 is electrically connected to the gesture recognition sensor 50 and the switching switch 120 respectively, and is used to control the switching switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, the signal strength of the one receiving the frequency band is greater than the signal strength of the other receiving the frequency band.
- the processor 60 when the processor 60 is electrically connected to the gesture recognition sensor 50 and the switching switch 120 respectively, and is used to control the switching switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, the signal strength of the one receiving the frequency band may also be less than or equal to the signal strength of the other receiving the frequency band.
- the signal strength of the one receiving and transmitting the frequency band is greater than the signal strength of the first feed source 110 receiving and transmitting the frequency band through the other of the first radiator 130 and the second radiator 140. It can be understood that this should not constitute a limitation on the embodiments of the present application.
- the processor 60 controls the switching switch 120 to be electrically connected to the first radiator 130 according to the current posture of the electronic device 1, wherein the signal strength of the first feed source 110 receiving the frequency band through the first radiator 130 is greater than the signal strength of the first feed source 110 receiving the frequency band through the second radiator 140.
- the processor 60 controls the switching switch 120 to be electrically connected to the second radiator 140 according to the current posture of the electronic device 1, wherein the signal strength of the first feed source 110 receiving the frequency band through the second radiator 140 is greater than the signal strength of the first feed source 110 receiving the frequency band through the first radiator 130.
- the antenna module 10 communicates with the satellite using a radio frequency signal for positioning, and the satellite is usually located above the earth.
- the main radiation direction of the one is upward compared with the main radiation direction of the other, the intensity of the signal of the frequency band received by the first feed source 110 through the one is greater than the intensity of the signal of the frequency band received by the first feed source 110 through the other.
- the upward mentioned here refers to vertically upward.
- the main radiation direction of the one is upward compared with the main radiation direction of the other, which means that the main radiation direction of the one is closer to the vertical ground and points to the vertical line upward than the main radiation direction of the other.
- the first feed source 110 is connected to one of the first radiator 130 and the second radiator 140.
- the intensity of the signal of the frequency band received by the first feed source 110 through the second radiator 140 is greater than the intensity of the signal of the frequency band received by the first feed source 110 through the first radiator 130.
- the processor 60 controls the switching switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, wherein when the first feed source 110 is connected to the one of the first radiator 130 and the second radiator 140, the intensity of the signal of the frequency band received by the one of the two radiators is greater than the intensity of the signal of the frequency band received by the first feed source 110 through the other of the first radiator 130 and the second radiator 140.
- the posture recognition sensor 50 may be, but is not limited to, the gyroscope, accelerometer, electronic compass, etc.
- the posture sensor may recognize the current posture of the electronic device 1 .
- the first feed source 110 is used to generate an excitation current so that the first radiator 130 or the second radiator 140 supports a frequency band for positioning.
- the frequency band for positioning generally refers to a Global Navigation Satellite System (GNSS) signal band.
- GNSS Global Navigation Satellite System
- GPS Global Positioning System
- Beidou positioning Beidou positioning
- GLONASS positioning GALILEO positioning
- the frequency band for positioning generated by the first feed source 110 is a GPS frequency band as an example for explanation. It can be understood that it should not be understood as a limitation on the electronic device 1 provided in the embodiment of the present application.
- the GPS frequency band includes but is not limited to the GPS L1 frequency band, or the GPS L5 frequency band, etc.
- the switch 120 may be disposed on a circuit board (e.g., a PCB circuit board), and the switch 120 may be disposed on the circuit board by, but not limited to, welding, or conductive adhesive bonding.
- the switch 120 may be electrically connected to the processor 60 by means of a wiring on the circuit board, or a coaxial line, or the like.
- the switch 120 may also be electrically connected to the first radiator 130 and the second radiator 140 by means of a wiring on the circuit board, or a coaxial line, or the like.
- the embodiment of the present application does not limit the type of the switch 120, as long as the switch 120 can be electrically connected to one of the first radiator 130 and the second radiator 140 under the control of the processor 60.
- the shapes of the first radiator 130 include but are not limited to strips, sheets, rods, coatings, films, etc.
- the first radiator 130 shown in the schematic diagram of this embodiment is only an example and does not limit the shape of the first radiator 130 provided in this application.
- the first radiator 130 can be integrated with the frame 410, that is, the first radiator 130 is a frame antenna, and a part of the frame serves as the first radiator 130.
- the first radiator 130 can also be a part of the middle frame (i.e., the foldable body 20), so that the first radiator 130 and the middle frame are interconnected as an integrated structure.
- the first radiator 130 can be formed by cutting a slit on the middle frame.
- the frame 410 of the shell 40 corresponding to the first radiator 130 can be a non-conductive material, so that the first radiator 130 can send and receive electromagnetic wave signals through the frame.
- the antenna formed by the first radiator 130 is a bracket antenna.
- the bracket antenna includes but is not limited to a flexible printed circuit board antenna formed on a flexible printed circuit board (FPC), a laser direct structuring antenna by laser direct structuring (LDS), a printed direct structuring antenna by printing direct structuring (PDS), a conductive sheet antenna, etc.
- the first radiator 130 is an inverted F-shaped antenna (Planar Inverted F-shaped Antenna, IFA).
- the material of the first radiator 130 is a conductive material
- the specific material includes but is not limited to metals such as copper, gold, silver, or alloys formed by copper, gold, silver, or alloys formed by copper, gold, silver and other materials; or other non-metallic conductive materials, for example, metal oxide conductive materials (such as indium tin oxide, gallium indium tin oxide) and other oxide conductive materials, or mixed conductive materials formed by carbon nanotubes and polymers, etc.
- the shapes of the second radiator 140 include but are not limited to strips, sheets, rods, coatings, films, etc.
- the second radiator 140 shown in the schematic diagram of this embodiment is only an example and does not limit the shape of the second radiator 140 provided in this application.
- the second radiator 140 can be integrated with the frame 410, that is, the second radiator 140 is a frame antenna, and a part of the frame serves as the second radiator 140.
- the second radiator 140 can also be a part of the middle frame (i.e., the foldable body 20), so that the second radiator 140 and the middle frame are interconnected as an integrated structure.
- the second radiator 140 can be formed by cutting a slit on the middle frame.
- the frame 410 of the shell 40 corresponding to the second radiator 140 can be a non-conductive material, so that the second radiator 140 can send and receive electromagnetic wave signals through the frame.
- the antenna formed by the second radiator 140 is a bracket antenna.
- the bracket antenna includes but is not limited to a flexible printed circuit board antenna formed on a flexible printed circuit board (FPC), a laser direct structuring antenna by laser direct structuring (LDS), a printed direct structuring antenna by printing direct structuring (PDS), a conductive sheet antenna, etc.
- the second radiator 140 is an inverted F-shaped antenna (Planar Inverted F-shaped Antenna, IFA).
- the material of the second radiator 140 is a conductive material
- the specific material includes but is not limited to metals such as copper, gold, and silver, or alloys formed by copper, gold, and silver, or alloys formed by copper, gold, silver, and other materials; or other non-metallic conductive materials, such as metal oxide conductive materials (such as indium tin oxide, indium tin gallium oxide), or a mixture of carbon nanotubes and polymers. Conductive materials, etc.
- the main radiation direction of the first radiator 130 is different from the main radiation direction of the second radiator 140, which means that when the electronic device 1 is in the same posture, the main radiation direction of the first radiator 130 is different from the main radiation direction of the second radiator 140.
- the main radiation direction of the first radiator 130 is different from the main radiation direction of the second radiator 140.
- the main radiation direction of the first radiator 130 is different from the main radiation direction of the second radiator 140.
- the gesture recognition sensor 50, the switch 120 and the processor 60 are all disposed on the same circuit board (e.g., main board).
- the gesture recognition sensor 50, the switch 120 and the processor 60 can be disposed on the circuit board by, but not limited to, welding or conductive adhesive bonding.
- the processor 60 controls the switching switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140, including: the processor 60 controls the switching switch 120 to be electrically connected to the first radiator 130, and controls the switching switch 120 to disconnect the electrical connection with the second radiator 140; or, the processor 60 controls the switching switch 120 to be electrically connected to the second radiator 140, and controls the switching switch 120 to disconnect the electrical connection with the first radiator 130.
- the processor 60 controls the switch 120 to be electrically connected to the first radiator 130, and controls the switch 120 to disconnect the electrical connection with the second radiator 140
- the main radiation direction of the first radiator 130 is upward compared with the main radiation direction of the second radiator 140. This means that in the current posture (first posture) of the electronic device 1, the performance of the first radiator 130 in communicating with the GPS satellite is better than the performance of the second radiator 140 in communicating with the GPS satellite.
- the processor 60 controls the switch 120 to be electrically connected to the second radiator 140, and controls the switch 120 to be disconnected from the first radiator 130, the main radiation direction of the second radiator 140 is upward compared to the main radiation direction of the first radiator 140.
- the performance of the second radiator 140 in communicating with the GPS satellite is better than the performance of the first radiator 130 in communicating with the GPS satellite.
- the antenna module 10 in the electronic device 1 communicates using electromagnetic wave signals in the GPS frequency band
- the antenna module 10 communicates with the GPS satellite using electromagnetic waves in the GPS frequency band.
- the GPS satellite is located above the electronic device 1.
- the main radiation direction of the first radiator 130 is upward compared to the main radiation direction of the second radiator 140, it means that the performance of the antenna module 10 communicating with the GPS satellite using the first radiator 130 is better than the performance of the antenna module 10 communicating with the GPS satellite using the second radiator 140.
- the performance of the antenna module 10 communicating with the GPS satellite using the second radiator 140 is better than the performance of the antenna module 10 communicating with the GPS satellite using the first radiator 130 .
- the antenna module 10 includes a first radiator 130, a second radiator 140, a third radiator 150 and a fourth radiator 160.
- the antenna module 10 may include the first radiator 130 and the second radiator 140; but does not include the third radiator 150 and does not include the fourth radiator 160.
- the posture recognition sensor 50 recognizes the current posture of the electronic device 1, and the processor 60 controls the switching switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 with better communication performance in the current posture according to the current posture of the electronic device 1, so that the communication performance of the antenna module 10 of the electronic device 1 when communicating using the GPS frequency band has better navigation performance.
- the current posture of the electronic device 1 identified by the posture recognition sensor 50 is linked to the switching of the switch 120, so as to achieve the purpose of intelligently switching the antenna radiator.
- the processor 60 intelligently controls the switch 120 to be electrically connected to the antenna radiator with a better upper hemisphere in the far-field pattern according to the current posture of the electronic device 1, so that the antenna module 10 of the electronic device 1 has better communication performance when communicating using the GPS frequency band.
- Figure 6 is the far-field radiation pattern of the first radiator in the electronic device provided in Figure 3;
- Figure 7 is a schematic diagram of the main current distribution excited by the first radiator in the electronic device provided in Figure 3 on the antenna ground.
- the vertical upward direction is the positive direction of the Y axis, and the horizontal left direction is the positive direction of the X axis.
- the upper hemisphere (positive direction of the Y axis) accounts for about 50%, and it is obvious that the main radiation direction of the beam is biased to the right, and the main radiation direction is the negative direction of the X axis, or roughly the negative direction of the X axis.
- Figure 6 shows that the right hemisphere accounts for a large proportion of about 80% in the far-field radiation pattern.
- Figure 8 is a schematic diagram of the orientation of the first radiator when the electronic device 1 is in the first posture;
- Figure 9 is the far-field radiation pattern of the first radiator in Figure 8.
- the first radiator 130 in Figure 8 is rotated 90° counterclockwise compared to the first radiator 130 in Figure 3. In the viewing angle shown in Figure 8, the first radiator 130 is located in the lower left corner.
- the posture of the electronic device 1 in Figure 8 is named the first posture, and the first posture in Figure 8 is also called the left horizontal screen posture, or the left horizontal screen.
- the first posture in Figure 8 is also called the left horizontal screen posture, or the left horizontal screen.
- the first radiator 130 is located at the lower right corner.
- the main radiation direction (also called the main radiation direction) of the first radiator 130 in FIG. 6 is on the right side (from the perspective of the diagram, i.e., the negative direction of the X-axis).
- the first radiator 130 transmits and receives electromagnetic wave signals in the GPS frequency band according to the excitation current
- the first radiator 130 excites a longitudinal current (from the perspective of the diagram) and a transverse current (from the perspective of the diagram) on the antenna ground 170.
- the longitudinal current excited by the first radiator 130 on the antenna ground 170 is relatively weak, while the transverse current excited by the first radiator 130 on the antenna ground 170 is relatively strong.
- the intensity of the transverse current excited by the first radiator 130 on the antenna ground 170 is greater than the intensity of the longitudinal current excited by the first radiator 130 on the antenna ground 170.
- the first radiator 130 is arranged corresponding to the top of the antenna ground 170 (from the perspective of the diagram, which can be named as the first side 170a), so the first radiator 130 has a relatively strong coupling effect on the top of the antenna ground 170.
- the antenna ground 170 has a first side 170a, a second side 170b, a third side 170c and a fourth side 170d which are connected in sequence.
- the first side 170a and the third side 170c are both short sides of the antenna ground 170
- the second side 170b and the fourth side 170d are both long sides of the antenna ground 170
- the first side 170a and the third side 170c can also be the long sides of the antenna ground 170
- the second side 170b and the fourth side 170d can also be the short sides of the antenna ground 170.
- the lengths of the first side 170a, the second side 170b, the third side 170c and the fourth side 170d are equal.
- the relative length relationship among the first side 170a, the second side 170b, the third side 170c and the fourth side 170d is not limited.
- the first radiator 130 is disposed corresponding to the first side 170a.
- the first radiator 130 has a first grounding end 130a and a first free end 130b.
- the first grounding end 130a is electrically connected to the antenna ground 170.
- the first free end 130b is disposed away from the fourth side 170d compared to the first grounding end 130a.
- the first radiator 130 excites a longitudinal current and a transverse current on the antenna ground 170.
- the longitudinal current excited by the first radiator 130 on the antenna ground 170 is named as a first current I 11
- the transverse current excited by the first radiator 130 on the antenna ground 170 is named as a second current I 12 .
- the intensity of the second current I 12 is greater than the intensity of the first current I 11.
- the second current I 12 is the main current excited by the first radiator 130 on the antenna ground 170.
- the direction of the first current I11 is from the third side 170c to the first side 170a
- the direction of the second current I12 is from the fourth side 170d to the second side 170b. Accordingly, the current I13 on the first radiator 130 flows from the first free end 130b to the first ground end 130a.
- the far-field radiation pattern is along the direction of the current lag, that is, the far-field radiation pattern of the first radiator 130 is along the direction of the main current lag excited on the antenna ground 170. Since the second current is the main current excited by the first radiator 130 on the antenna ground 170 in this embodiment, the far-field radiation pattern of the first radiator 130 is along the direction of the second current lag, that is, the main radiation direction in the far-field radiation pattern of the first radiator 130 is along the negative direction of the X-axis.
- Figure 10 is a far-field pattern of the second radiator in the electronic device 1 provided in Figure 3;
- Figure 11 is a schematic diagram of the main current distribution excited by the second radiator in the electronic device provided in Figure 3 on the antenna ground.
- the left hemisphere accounts for a large proportion in the far-field pattern of the second radiator 140, and it is clearly seen that the main radiation direction of the beam is biased to the left, and the main radiation direction is the positive direction of the X-axis, or approximately the positive direction of the X-axis.
- Figure 10 shows that the left hemisphere accounts for a large proportion in the far-field pattern, which shows that the position of the second radiator 140 is more suitable for rotating the electronic device 1 shown in Figure 3 by 90° clockwise as a navigation antenna.
- Figure 12 is a schematic diagram of the orientation of the second radiator when the electronic device is in the second posture;
- Figure 13 is a far-field pattern of the second radiator in Figure 12.
- the second radiator 140 in Figure 12 is rotated 90° clockwise compared to the second radiator 140 in Figure 3. In the viewing angle shown in FIG12 , the second radiator 140 is located in the lower left corner.
- the posture of the electronic device 1 in FIG12 is named the second posture, also known as the right horizontal screen posture, or the right horizontal screen. It should be noted that since FIG12 shows a back view, that is, FIG12 shows a schematic diagram of the antenna module 10 in the direction from the housing 40 to the display screen 30; in the front view of the electronic device 1, that is, when viewed from the display screen 30 to the housing 40, the second radiator 140 is located in the lower right corner.
- FIG11 can illustrate that the main radiation direction of the second radiator 140 in FIG10 is on the left side.
- the second radiator 140 transmits and receives electromagnetic wave signals in the GPS frequency band according to the excitation current
- the second radiator 140 excites a longitudinal current (illustration perspective) and a transverse current (illustration perspective) on the antenna ground 170.
- the longitudinal current excited by the second radiator 140 on the antenna ground 170 is named as the third current I 21
- the transverse current excited by the second radiator 140 on the antenna ground 170 is named as the fourth current I 22 .
- the second radiator 140 is arranged corresponding to the third side 170c, and the second radiator 140 has a second grounding end 140a and a second free end 140b, the second grounding end 140a is electrically connected to the antenna ground 170, and the second free end 140b is arranged away from the second side 170b compared to the second grounding end 140a.
- the direction of the third current is the direction from the first side 170a to the third side 170c
- the direction of the fourth current I 22 is the direction from the second side 170b to the fourth side 170d. Accordingly, the current I 23 on the second radiator 140 flows from the second free end 140b to the second grounding end 140a.
- the fourth current is the main current excited by the second radiator 140 on the antenna ground 170, and therefore, the far-field radiation pattern of the second radiator 140 is along the direction of the lag of the fourth current, the main radiation direction in the far-field pattern of the second radiator 140 is along the positive direction of the X-axis.
- the processor 60 controls the switching switch 120 to be electrically connected to the first radiator 130, wherein, when the current posture is the first posture, the main radiation direction of the first radiator 130 is upward compared to the main radiation direction of the second radiator 140.
- the processor 60 controls the switch 120 to be electrically connected to the first radiator 130, and the first feed source 110 is electrically connected to the first radiator 130 through the switch 120. Accordingly, when the current posture is the first posture, the processor 60 controls the switch 120 to disconnect the electrical connection between the first feed source 110 and the first radiator 130, and the first feed source 110 cannot be electrically connected to the second radiator 140 through the switch 120.
- the first feed source 110 is electrically connected to the first radiator 130 through the switch 120, so the excitation current generated by the first feed source 110 can be transmitted to the first radiator 130 via the switch 120, and the first radiator 130 receives the electromagnetic wave signal of the GPS frequency band according to the excitation current. It can be understood that in another embodiment, the first radiator 130 can also transmit the electromagnetic wave signal of the GPS frequency band.
- the electronic device 1 uses the first radiator 130 to communicate in the GPS frequency band and can obtain better upper hemisphere radiation performance, thereby achieving better communication performance when using the first radiator 130 to communicate in the GPS frequency band.
- the first radiator 130 and the second radiator 140 are arranged diagonally, and when the current posture is the second posture, the processor 60 controls the switching switch 120 to be electrically connected to the second radiator 140, wherein when the current posture is the second posture, the main radiation direction of the second radiator 140 is upward compared to the main radiation direction of the first radiator 130.
- the processor 60 controls the switch 120 to be electrically connected to the second radiator 140, and the first feed source 110 is electrically connected to the second radiator 140 through the switch 120. Accordingly, when the current posture is the second posture, the processor 60 controls the switch 120 to disconnect the electrical connection with the second radiator 140, and the first feed source 110 cannot be electrically connected to the first radiator 130 through the switch 120.
- the first feed source 110 is electrically connected to the second radiator 140 through the switch 120, so the excitation current generated by the first feed source 110 can be transmitted to the second radiator 140 via the switch 120, and the second radiator 140 receives the electromagnetic wave signal of the GPS frequency band according to the excitation current. It can be understood that in another embodiment, the second radiator 140 can also transmit the electromagnetic wave signal of the GPS frequency band.
- the electronic device 1 uses the second radiator 140 to communicate in the GPS frequency band and can obtain better upper hemisphere radiation performance, thereby achieving better communication performance when using the second radiator 140 to communicate in the GPS frequency band.
- FIG. 14 is a schematic diagram of the far-field direction of the third radiator in the electronic device provided in FIG. 3;
- FIG. 15 is a schematic diagram of the orientation of the third radiator when the electronic device is in the third posture;
- FIG. 16 is a schematic diagram of the far-field direction of the third radiator in the electronic device 1 in FIG. 15;
- FIG. 17 is a circuit block diagram of another embodiment of the electronic device shown in FIG. 1.
- the antenna module 10 also includes a third radiator 150.
- the third radiator 150 is spaced apart from the first radiator 130 and the second radiator 140, respectively, and the main radiation direction of the third radiator 150 is different from the radiation directions of the first radiator 130 and the second radiator 140.
- the processor 60 controls the switch 120 to be electrically connected to the third radiator 150, wherein when the current posture is the third posture, the main radiation direction of the third radiator 150 is upward compared to the main radiation direction of the first radiator 130 and the main radiation direction of the second radiator 140, respectively.
- the shapes of the third radiator 150 include but are not limited to strips, sheets, rods, coatings, films, etc.
- the third radiator 150 shown in the schematic diagram of this embodiment is only an example and does not limit the shape of the third radiator 150 provided in this application.
- the third radiator 150 can be integrated with the frame 410, that is, the third radiator 150 is a frame antenna, and a part of the frame serves as the third radiator 150.
- the third radiator 150 can also be a part of the middle frame (i.e., the foldable body 20), so that the third radiator 150 and the middle frame are interconnected as an integrated structure.
- the third radiator 150 can be formed by cutting a slit on the middle frame.
- the frame 410 of the shell 40 corresponding to the third radiator 150 can be a non-conductive material, so that the third radiator 150 can send and receive electromagnetic wave signals through the frame.
- the antenna formed by the third radiator 150 is a bracket antenna.
- the bracket antenna includes but is not limited to a flexible printed circuit board antenna formed on a flexible printed circuit board (FPC), a laser direct structured antenna formed by laser direct structured (LDS), a printed direct structured antenna formed by printing direct structured (PDS), a conductive sheet antenna, etc.
- the third radiator 150 is an inverted F antenna (Planar Inverted F-shaped Antenna, IFA).
- the material of the third radiator 150 is a conductive material
- the specific material includes but is not limited to metals such as copper, gold, silver, or alloys formed by copper, gold, silver, or alloys formed by copper, gold, silver and other materials; or other non-metallic conductive materials, for example, metal oxide conductive materials (such as indium tin oxide, gallium indium tin oxide) and other oxide conductive materials, or mixed conductive materials formed by carbon nanotubes and polymers.
- the main radiation direction of the third radiator 150 is different from the main radiation direction of the first radiator 130 and the main radiation direction of the second radiator 140. Specifically, when the electronic device 1 is in the same posture, the main radiation direction of the third radiator 150 is different from the main radiation direction of the first radiator 130 and the main radiation direction of the second radiator 140.
- the lower hemisphere accounts for a larger proportion in the far-field radiation pattern of the third radiator 150, and it can be clearly seen that the main radiation direction of the beam is downward, and the main radiation direction is the negative direction of the Y axis, or approximately the negative direction of the Y axis.
- the third radiator 150 in Figure 15 is rotated 180° clockwise or counterclockwise compared to the third radiator 150 in Figure 3.
- the posture of the electronic device 1 in Figure 15 is named the third posture, also called the inverted posture, or inverted.
- the processor 60 controls the switch 120 to be electrically connected to the third radiator 150. Accordingly, when the current posture is the third posture, the processor 60 controls the switch 120 to disconnect the electrical connection between the first feed source 110 and the first radiator 130, and the first feed source 110 cannot be electrically connected to the first radiator 130 through the switch 120. Accordingly, when the current posture is the third posture, the processor 60 controls the switch 120 to disconnect the electrical connection between the first feed source 110 and the second radiator 140, and the first feed source 110 cannot be electrically connected to the second radiator 140 through the switch 120.
- the main radiation direction of the third radiator 150 is upward compared with the main radiation direction of the first radiator 130 and the main radiation direction of the second radiator 140, respectively.
- the processor 60 controls the switch 120 to be electrically connected to the third radiator 150, so the first feed source 110 can be electrically connected to the third radiator 150 through the switch 120, and the third radiator 150 can receive the electromagnetic wave signal of the GPS frequency band according to the excitation current.
- the third radiator 150 can also emit the electromagnetic wave signal of the GPS frequency band.
- the electronic device 1 uses the third radiator 150 to communicate in the GPS frequency band and can obtain better upper hemisphere radiation performance, thereby achieving better communication performance when using the third radiator 150 to communicate in the GPS frequency band.
- FIG. 18 is a schematic diagram of the far-field direction of the fourth radiator in the electronic device provided in FIG. 3;
- FIG. 19 is a circuit block diagram of another embodiment of the electronic device shown in FIG. 1.
- the antenna module 10 also includes a fourth radiator 160.
- the fourth radiator 160 is spaced apart from the first radiator 130 and the second radiator 140, respectively, and the fourth radiator 160 is diagonally arranged with the third radiator 150, and the main radiation direction of the fourth radiator 160 is different from the main radiation directions of the first radiator 130, the second radiator 140 and the third radiator 150.
- the processor 60 controls the switch 120 to be electrically connected to the fourth radiator 160, wherein when the current posture is the fourth posture, the main radiation direction of the fourth radiator 160 is upward compared with the main radiation directions of the first radiator 130, the second radiator 140 and the third radiator 150.
- the shapes of the fourth radiator 160 include but are not limited to strips, sheets, rods, coatings, films, etc.
- the fourth radiator 160 shown in the schematic diagram of this embodiment is only an example and does not limit the shape of the fourth radiator 160 provided in this application.
- the fourth radiator 160 can be integrated with the frame 410, that is, the fourth radiator 160 is a frame antenna, and a part of the frame serves as the fourth radiator 160.
- the fourth radiator 160 can also be a part of the middle frame (i.e., the foldable body 20), so that the fourth radiator 160 and the middle frame are interconnected as an integrated structure.
- the fourth radiator 160 can be formed by cutting a slit on the middle frame.
- the frame 410 of the shell 40 corresponding to the fourth radiator 160 can be a non-conductive material, so that the fourth radiator 160 can send and receive electromagnetic wave signals through the frame.
- the antenna formed by the fourth radiator 160 is a bracket antenna.
- the bracket antenna includes but is not limited to a flexible printed circuit board antenna formed on a flexible printed circuit board (FPC), a laser direct structuring antenna by laser direct structuring (LDS), a printed direct structuring antenna by printing direct structuring (PDS), a conductive sheet antenna, etc.
- the fourth radiator 160 is an inverted F-shaped antenna (Planar Inverted F-shaped Antenna, IFA).
- the material of the fourth radiator 160 is a conductive material
- the specific material includes but is not limited to metals such as copper, gold, silver, or alloys formed by copper, gold, silver, or alloys formed by copper, gold, silver and other materials; or other non-metallic conductive materials, for example, metal oxide conductive materials (such as indium tin oxide, gallium indium tin oxide) and other oxide conductive materials, or mixed conductive materials formed by carbon nanotubes and polymers.
- the main radiation direction of the fourth radiator 160 is different from the main radiation direction of the first radiator 130, the main radiation direction of the second radiator 140, and the main radiation direction of the third radiator 150. Specifically, when the electronic device 1 is in the same posture, the main radiation direction of the fourth radiator 160 is different from the main radiation direction of the first radiator 130, different from the main radiation direction of the second radiator 140, and different from the main radiation direction of the third radiator 150.
- the fourth radiator 160 is suitable as a navigation antenna.
- the posture of the electronic device 1 in FIG3 is named the fourth posture, also called the upright posture, or upright.
- the antenna module 10 further includes an antenna ground 170.
- the antenna ground 170 has a first side 170a, a second side 170b, a third side 170c and a fourth side 170d which are sequentially connected.
- the electronic device 1 includes a first corner portion 171 and a second corner portion 172.
- the first corner portion 171 includes an end of the first side 170a away from the second side 170b, and an end of the fourth side 170d away from the third side 170c; the second corner portion 172 is arranged diagonally with the first corner portion 171.
- the second corner portion 172 includes an end of the second side 170b away from the first side 170a, and an end of the third side 170c away from the fourth side 170d; the first radiator 130 is arranged at the first corner portion 171, and the second radiator 140 is arranged at the second corner portion 172.
- first side 170a and the third side 170c are both short sides of the antenna ground 170
- second side 170b and the fourth side 170d are both long sides of the antenna ground 170.
- first side 170a to the fourth side 170d are described above and will not be described in detail here.
- the first corner portion 171 includes an end of the first side 170a away from the second side 170b, and an end of the fourth side 170d away from the third side 170c. Therefore, the first radiator 130 is arranged at the first corner portion 171, including: the first radiator 130 is arranged at the end of the first side 170a away from the second side 170b; or, the first radiator 130 is arranged at the end of the fourth side 170d away from the third side 170c; or, a part of the first radiator 130 is arranged at the end of the first side 170a away from the second side 170b, and the other part of the first radiator 130 is arranged at the end of the fourth side 170d away from the third side 170c.
- the second corner portion 172 includes an end of the second side 170b away from the first side 170a, and an end of the third side 170c away from the fourth side 170d. Therefore, the second radiator 140 is arranged at the second corner portion 172, including: the second radiator 140 is arranged at the end of the second side 170b away from the first side 170a; or, the second radiator 140 is arranged at the end of the third side 170c away from the fourth side 170d; or, a part of the second radiator 140 is arranged at the end of the second side 170b away from the first side 170a, and the other part of the second radiator 140 is arranged at the end of the third side 170c away from the fourth side 170d.
- the first radiator 130 is arranged at the first corner portion 171, and the second radiator 140 is arranged at the second corner portion 172.
- the first corner portion 171 and the second corner portion 172 are arranged diagonally. Therefore, the far-field radiation pattern corresponding to the first radiator 130 and the far-field radiation pattern corresponding to the second radiator 140 are distributed differently.
- the far-field radiation pattern corresponding to the first radiator 130 and the far-field radiation pattern corresponding to the second radiator 140 are complementary or substantially complementary.
- the first radiator 130 is arranged corresponding to the first side 170a.
- the first radiator 130 has a first grounding end 130a and a first free end 130b.
- the first grounding end 130a is electrically connected to the antenna ground 170.
- the first free end 130b is arranged away from the fourth side 170d compared to the first grounding end 130a.
- the second radiator 140 is arranged corresponding to the third side 170c.
- the second radiator 140 has a second grounding end 140a and a second free end 140b.
- the second grounding end 140a is electrically connected to the antenna ground 170, and the second free end 140b is arranged away from the second side 170b compared to the second grounding end 140a.
- the first radiator 130 is arranged completely corresponding to the first edge 170a. Therefore, the first radiator 130 can excite a larger second current on the antenna ground 170, so that the first radiator 130 receives the electromagnetic wave signal of the GPS frequency band with a larger intensity according to the excitation current of the first feed source 110, so that the electronic device 1 has better communication performance when communicating using the first radiator 130.
- the second radiator 140 is arranged completely corresponding to the third side 170c. Therefore, the second radiator 140 can excite a larger fourth current on the antenna ground 170, so that the second radiator 140 receives the electromagnetic wave signal of the GPS frequency band according to the excitation current of the first feed source 110 with a larger intensity, so that the electronic device 1 has better communication performance when communicating using the second radiator 140.
- FIG. 20 is a schematic diagram of an antenna module provided by another embodiment of the present application.
- the first radiator 130 includes a first sub-radiating portion 131 and a second sub-radiating portion 132 that are connected by bending.
- the first sub-radiating portion 131 The first sub-radiating portion 131 is provided corresponding to the first side 170d.
- the first sub-radiating portion 131 has a first grounding end 130a away from the second sub-radiating portion 132.
- the first grounding end 130a is electrically connected to the antenna ground 170.
- the second sub-radiating portion 132 is provided corresponding to the first side 170a, the second sub-radiating portion 132 has a first free end 130b away from the first sub-radiating portion 131, and the length of the second sub-radiating portion 132 is greater than the length of the first sub-radiating portion 131.
- the second radiator 140 includes a third sub-radiating portion 141 and a fourth sub-radiating portion 142 connected in a bent manner.
- the third sub-radiating portion 141 is provided corresponding to the second side 170b.
- the third sub-radiating portion 141 has a second grounding end 140a away from the fourth sub-radiating portion 142.
- the second grounding end 140a is electrically connected to the antenna ground 170.
- the third sub-radiating portion 141 is disposed corresponding to the third side 170 c .
- the fourth sub-radiating portion 142 has a second free end 140 b away from the third sub-radiating portion 141 .
- the length of the fourth sub-radiating portion 142 is greater than that of the third sub-radiating portion 141 .
- the length of the second sub-radiating portion 132 is greater than the length of the first sub-radiating portion 131. Therefore, the current excited by the first radiator 130 in the antenna ground 170 is mainly the current excited by the second sub-radiating portion 132 in the antenna ground 170.
- the main current excited by the second sub-radiating portion 132 in the antenna ground 170 is a transverse current (illustrated perspective). Specifically, the direction of the main current excited by the second sub-radiating portion 132 in the antenna ground 170 is the direction from the fourth side 170d to the second side 170b. Therefore, the far-field pattern corresponding to the first radiator 130 is substantially the same as the far-field pattern corresponding to the first radiator 130 when it is completely arranged corresponding to the first side 170a.
- the current excited by the second radiator 140 in the antenna ground 170 is mainly the current excited by the fourth sub-radiating portion in the antenna ground 170.
- the main current excited by the fourth sub-radiating portion 142 in the antenna radiator is a transverse current (illustrated perspective).
- the direction of the main current excited by the fourth sub-radiating portion 142 in the antenna radiator is the direction from the second side 170b to the fourth side 170d. Therefore, the far-field pattern corresponding to the second radiator 140 is substantially the same as the far-field pattern when the second radiator 140 is completely arranged corresponding to the third side 170c.
- the first radiator 130 and the second radiator 140 are arranged so that the far-field pattern corresponding to the first radiator 130 and the far-field pattern corresponding to the second radiator 140 are distributed differently, and the far-field pattern corresponding to the first radiator 130 and the far-field pattern corresponding to the second radiator 140 are complementary or substantially complementary.
- the electronic device 1 further includes a third corner portion 173 and a fourth corner portion 174.
- the third corner portion 173 is spaced apart from the first corner portion 171 and the second corner portion 172, respectively.
- the third corner portion 173 includes an end of the first side 170a away from the fourth side 170d, and an end of the second side 170b away from the third side 170c.
- the fourth corner portion 174 is arranged diagonally with the third corner portion 173.
- the fourth corner portion 174 includes an end of the third side 170c away from the second side 170b, and an end of the fourth side 170d away from the first side 170a.
- the antenna module 10 further includes a third radiator 150 and a fourth radiator 160
- the third radiator 150 is arranged at the third corner portion 173, and the fourth radiator 160 is arranged at the fourth corner portion 174.
- the third corner portion 173 includes an end of the first side 170a away from the fourth side 170d, and an end of the second side 170b away from the third side 170c.
- the third radiator 150 is arranged at the third corner portion 173, including: the third radiator 150 is arranged at the end of the first side 170a away from the fourth side 170d; or, the third radiator 150 is arranged at the end of the second side 170b away from the third side 170c; or, the third radiator 150 is partially arranged at the end of the first side 170a away from the fourth side 170d, and the other part of the third radiator 150 is arranged at the end of the second side 170b away from the third side 170c.
- the fourth corner portion 174 includes an end of the third side 170c away from the second side 170b, and an end of the fourth side 170d away from the first side 170a, and the fourth radiator 160 is arranged at the fourth corner portion 174, including: the fourth radiator 160 is arranged at the end of the third side 170c away from the second side 170b; or, the fourth radiator 160 is arranged at the end of the fourth side 170d away from the first side 170a; or, the fourth radiator 160 is partially arranged at the end of the third side 170c away from the second side 170b, and the other part of the fourth radiator 160 is arranged at the end of the fourth side 170d away from the first side 170a.
- the fourth corner portion 174 is arranged diagonally to the third corner portion 173, the third radiator 150 is arranged at the third corner portion 173, and the fourth radiator 160 is arranged at the fourth corner portion 174, therefore, the far-field pattern corresponding to the third radiator 150 is different from the far-field pattern corresponding to the fourth radiator 160 in distribution, the far-field pattern corresponding to the third radiator 150 is complementary or substantially complementary to the far-field pattern corresponding to the fourth radiator 160, and by controlling the switching switch 120 by the processor 60 to electrically connect the third radiator 150 and one of the fourth radiator 160, a better navigation effect can be obtained when the electronic device 1 is in any posture.
- the third radiator 150 is disposed corresponding to the second side 170b.
- the third radiator 150 has a third grounding end 150a and a third free end 150b.
- the third grounding end 150a is electrically connected to the antenna ground 170.
- the third free end 150b is electrically connected to the antenna ground 170.
- the fourth radiator 160 is disposed away from the first side 170a compared to the third grounding end 150a.
- the fourth radiator 160 is disposed corresponding to the fourth side 170d.
- the fourth radiator 160 has a fourth grounding end 160a and a fourth free end 160b.
- the fourth grounding end 160a is electrically connected to the antenna ground 170, and the fourth free end 160b is away from the third side 170c compared to the fourth grounding end 160a.
- the third radiator 150 is arranged completely corresponding to the second edge 170b, so that the third radiator 150 can excite a large amount of third current on the antenna ground 170 (wherein the third current is the main current excited by the third radiator 150 on the antenna ground 170, and the direction of the third current flows from the first edge 170a to the third edge 170c), thereby making the intensity of the electromagnetic wave signal in the GPS frequency band generated by the third radiator 150 according to the excitation signal of the first feed source 110 larger, so that the electronic device 1 has better communication performance when communicating using the third radiator 150.
- the fourth radiator 160 is arranged completely corresponding to the fourth edge 170d, so that the fourth radiator 160 can excite a large amount of fourth current on the antenna ground 170 (wherein the fourth current is the main current excited by the fourth radiator 160 on the antenna ground 170, and the direction of the fourth current flows from the third edge 170c to the first edge 170a), thereby making the intensity of the electromagnetic wave signal in the GPS frequency band generated by the fourth radiator 160 according to the excitation signal of the first feed source 110 larger, so that the electronic device 1 has better communication performance when communicating using the fourth radiator 160.
- the third radiator 150 includes a fifth sub-radiating portion 151 and a sixth sub-radiating portion 152 connected in a bent manner.
- the fifth sub-radiating portion 151 is disposed corresponding to the first side 170a.
- the fifth sub-radiating portion 151 has a third grounding end 150a away from the sixth radiating portion.
- the third grounding end 150a is electrically connected to the antenna ground 170.
- the sixth sub-radiating portion 152 is disposed corresponding to the second side 170b.
- the sixth sub-radiating portion 152 has a third free end 150b away from the fifth sub-radiating portion 151.
- the length of the sixth sub-radiating portion 152 is greater than the length of the fifth sub-radiating portion 151.
- the fourth radiator 160 includes a seventh sub-radiating portion 161 and an eighth sub-radiating portion 162 connected in a bent manner.
- the seventh sub-radiating portion 161 is disposed corresponding to the third side 170c.
- the seventh sub-radiating portion 161 has a fourth grounding end 160a away from the eighth sub-radiating portion 162.
- the fourth grounding end 160a is electrically connected to the antenna ground 170.
- the eighth sub-radiating portion 162 is disposed corresponding to the fourth side 170d.
- the eighth sub-radiating portion 162 has a fourth free end 160b away from the seventh sub-radiating portion 161.
- the length of the eighth sub-radiating portion 162 is greater than the length of the seventh sub-radiating portion 161.
- the length of the sixth sub-radiating portion 152 is greater than the length of the fifth sub-radiating portion 151, so the current excited by the third radiator 150 in the antenna ground 170 is mainly the current excited by the sixth sub-radiating portion 152 in the antenna ground 170.
- the main current excited by the sixth sub-radiating portion 152 in the antenna ground 170 is a longitudinal current (illustrated perspective), specifically, the direction of the main current excited by the sixth sub-radiating portion 152 in the antenna ground 170 is from the first side 170a to the third side 170c, so the far-field pattern corresponding to the third radiator 150 is substantially the same as the far-field pattern corresponding to the third radiator 150 when the third radiator 150 is completely arranged corresponding to the second side 170b.
- the length of the eighth sub-radiating portion 162 is greater than the length of the seventh sub-radiating portion 161, and therefore, the current excited by the fourth radiator 160 in the antenna ground 170 is mainly the current excited by the eighth sub-radiating portion 162 in the antenna ground 170.
- the main current excited by the eighth sub-radiating portion 162 in the antenna ground 170 is a longitudinal current (illustrated perspective), and specifically, the direction of the main current excited by the eighth sub-radiating portion 162 in the antenna ground 170 is from the third side 170c to the first side 170a, and therefore, the far-field pattern corresponding to the fourth radiator 160 is substantially the same as the far-field pattern corresponding to the fourth radiator 160 when the fourth radiator 160 is completely arranged corresponding to the fourth side 170d.
- the electronic device 1 further includes a middle frame (the foldable body 20 described above), and the middle frame includes a middle frame body 20a and a frame portion 20b.
- the frame portion 20b is arranged around the periphery of the middle frame body 20a and is bent and connected to the middle frame body 20a, and at least one of the first radiator 130, the second radiator 140, the third radiator 150 and the fourth radiator 160 is formed on the frame portion 20b.
- At least one of the first radiator 130 , the second radiator 140 , the third radiator 150 , and the fourth radiator 160 is formed on the frame portion 20 b , thereby facilitating the preparation of the radiator.
- the electronic device 1 is foldable, and has a folded state and a flattened state.
- the processor 60 controls the switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1.
- the navigation function of the electronic device 1 is activated, including but not limited to the navigation reference installed in the electronic device 1 being triggered, or the navigation function in a non-navigation application (such as a game application, etc.) installed in the electronic device 1 being triggered.
- a non-navigation application such as a game application, etc.
- the electronic device 1 When the electronic device 1 is in a flattened state, the relative distance between the first radiator 130 and the second radiator 140 in the electronic device 1 is relatively far, or the distance between the first radiator 130 and the second radiator 140 in the electronic device 1 and other components is relatively far, which can avoid the interference of one of the first radiator 130 and the second radiator 140 electrically connected to the first feed source 110 by the other of the first radiator 130 and the second radiator 140 not electrically connected to the first feed source 110, or avoid the interference of other components on the electromagnetic wave signal of the GPS frequency band received and sent by one of the first radiator 130 and the second radiator 140. Therefore, the electronic device 1 is in a flattened state and uses one of the first radiator 130 and the second radiator 140 to It has better communication effect when communicating.
- Fig. 21 is a circuit block diagram of another embodiment of the electronic device shown in Fig. 1.
- the processor 60 controls the switch 120 to be electrically connected to the first radiator 130, and the second radiator 140 to be electrically connected to the second feed source 180, wherein the excitation signal generated by the second feed source 180 is different from the excitation signal generated by the first feed source 110.
- the processor 60 controls the switch 120 to be electrically connected to the first radiator 130, so that the first radiator 130 serves as a backup GPS antenna radiator (also called a standby GPS radiator).
- the processor 60 controls the first feed source 110 to transmit and receive electromagnetic wave signals in the GPS frequency band through the first radiator 130.
- the processor 60 can control the switching unit 190 to be electrically connected to the second radiator 140, so that the second radiator 140 is electrically connected to the second feed source 180 through the switching unit 190, and the second feed source 180 is used to generate an excitation signal of a first preset frequency band, and the second radiator 140 transmits and receives the electromagnetic wave signal of the first preset frequency band according to the excitation signal of the first preset frequency band.
- the electromagnetic wave signal of the first preset frequency band is different from the GPS frequency band.
- the second radiator 140 acts as another antenna radiator, such as a 4G antenna, or a 5G antenna, etc.
- the antenna module 10 also includes a third radiator 150
- the processor 60 also controls the third radiator 150 to be electrically connected to other feed sources (named as third feed sources).
- the third radiator 150 sends and receives electromagnetic wave signals of a second preset frequency band according to the third feed source, wherein the second preset frequency band is different from the GPS frequency band.
- the second preset frequency band may be the same as the first preset frequency band, or it may be different.
- the antenna module 10 also includes a fourth radiator 160
- the processor 60 also controls the fourth radiator 160 to be electrically connected to other feed sources (named as the fourth feed source).
- the fourth radiator 160 sends and receives electromagnetic wave signals of a third preset frequency band according to the fourth feed source, wherein the third preset frequency band is different from the GPS frequency band.
- the third preset frequency band may be the same as the first preset frequency band, or it may be different.
- the third preset frequency band may be the same as the second preset frequency band, or it may be the same.
- FIG. 22 is a circuit block diagram of an electronic device provided in another embodiment of the present application.
- the electronic device 1 further includes a speaker 80 and a display screen 30.
- the speaker 80 is electrically connected to the processor 60.
- the processor 60 plays the voice in the navigation application installed in the electronic device 1 through the speaker 80, wherein the preset content is a non-navigation interface.
- the preset content displayed on the display screen 30 is a non-navigation interface, and the preset content may be, but is not limited to, a picture, text, or video, etc.
- the preset content is displayed on the display screen 30, it indicates that the display screen 30 is used, and the processor 60 plays the voice in the navigation application installed in the electronic device 1 through the speaker 80.
- the display screen 30 displays the preset content, the navigation function can still be used.
- the electronic device 1 can achieve the dual effect of viewing the preset content through the display screen 30 and using the navigation function.
- FIG. 23 is a circuit block diagram of an electronic device provided in another embodiment of the present application.
- the electronic device 1 further includes a display screen 30 and a communication unit 90.
- the processor 60 outputs the display interface of the navigation application in the electronic device 1 through the communication unit 90 to be displayed on the vehicle-mounted screen that is communicatively connected to the communication unit 90.
- the preset content displayed on the display screen 30 is a non-navigation interface, and the preset content may be, but is not limited to, pictures, text, or videos.
- the processor 60 controls the switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, so that the first feed source 110 is electrically connected to one of the first radiator 130 and the second radiator 140 through the switch 120, and transmits and receives electromagnetic wave signals in the GPS frequency band through the one.
- the communication unit 90 may include the other of the first radiator 130 and the second radiator 140. The other one is not electrically connected to the first feed source 110, and the communication unit 90 includes the other one to avoid adding an additional radiator, thereby making the electronic device 1 lighter and thinner. It can be understood that in other embodiments, the communication unit 90 includes other radiators as long as the communication function can be realized.
- the processor 60 controls the switch 120 to be electrically connected to one of the first radiator 130 and the second radiator 140 according to the current posture of the electronic device 1, so that the first feed source 110 is electrically connected to the first radiator 130 and the second radiator 140 through the switch.
- 120 is electrically connected to one of the first radiator 130 and the second radiator 140, and transmits and receives electromagnetic wave signals in the GPS frequency band through the one.
- the communication unit 90 may include the other of the first radiator 130 and the second radiator 140, or the third radiator 150 or the fourth radiator 160. The other, the third radiator 150 and the fourth radiator 160 are not electrically connected to the first feed source 110.
- the communication unit 90 includes any one of the other, the third radiator 150 and the fourth radiator 160, which can avoid adding an additional radiator, thereby making the electronic device 1 lighter and thinner. It can be understood that in other embodiments, the communication unit 90 includes other radiators as long as the communication function can be realized.
- the processor 60 outputs the display interface of the navigation application in the electronic device 1 through the communication unit 90 so as to be displayed on the vehicle-mounted screen that is communicatively connected to the communication unit 90 .
- the display screen 30 When the display screen 30 displays preset content, it indicates that the display screen 30 is used, and the processor 60 outputs the display interface of the navigation application in the electronic device 1 through the communication unit 90 to be displayed on the vehicle-mounted screen that is communicatively connected to the communication unit 90.
- the display screen 30 displays the preset content
- navigation can still be performed.
- the electronic device 1 can achieve the dual effect of viewing the preset content through the display screen 30 and using the navigation function.
- the electronic device 1 has a first folding axis L1.
- the first radiator 130 and the third radiator 150 are located on the same side of the first folding axis L1
- the second radiator 140 and the fourth radiator 160 are located on the same side of the first folding axis L1
- the second radiator 140 and the first radiator 130 are located on different sides of the first folding axis L1.
- the folding state includes a first folding state, when the electronic device 1 is in the first folding state, the first radiator 130 and the fourth radiator 160 are staggered, and the second radiator 140 and the third radiator 150 are staggered. It should be noted that when the electronic device 1 is in the first folding state, the electronic device 1 is in a state obtained by folding along the first folding axis L1 from the flattened state.
- the folding state includes a first folding state.
- the first radiator 130 and the fourth radiator 160 are staggered, and there is no overlap between the first radiator 130 and the fourth radiator 160; the second radiator 140 and the third radiator 150 are staggered, and there is no overlap between the second radiator 140 and the third radiator 150. Therefore, the antenna module 10 can still have good communication performance when the electronic device 1 is in the first folding state.
- the first radiator 130 and the fourth radiator 160 are staggered, which can reduce or even avoid the shielding and interference between the first radiator 130 and the fourth radiator 160.
- the processor 60 controls the switching switch 120 to be electrically connected to the first radiator 130
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the first radiator 130
- the shielding and interference of the electromagnetic wave signals in the GPS frequency band transmitted and received by the first radiator 130 by the fourth radiator 160 can be reduced or even avoided.
- the processor 60 controls the switching switch 120 to be electrically connected to the fourth radiator 160
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the fourth radiator 160
- the electronic device 1 when the electronic device 1 is in the first folding state, the shielding and interference of the electromagnetic wave signals in the GPS frequency band transmitted and received by the fourth radiator 160 by the first radiator 130 can be reduced or even avoided.
- the second radiator 140 and the third radiator 150 are staggered, which can reduce or even avoid shielding and interference between the second radiator 140 and the third radiator 150 .
- the processor 60 controls the switching switch 120 to be electrically connected to the second radiator 140
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the second radiator 140
- the shielding and interference of the third radiator 150 on the electromagnetic wave signals in the GPS frequency band transmitted and received by the second radiator 140 can be reduced or even avoided.
- the processor 60 controls the switching switch 120 to be electrically connected to the third radiator 150
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the third radiator 150
- the shielding and interference of the second radiator 140 on the electromagnetic wave signals in the GPS frequency band transmitted and received by the third radiator 150 can be reduced or even avoided.
- FIG. 24 is a schematic diagram of the structure of an electronic device provided in another embodiment of the present application
- FIG. 25 is a schematic diagram of a three-dimensional exploded view of the electronic device provided in FIG. 24
- FIG. 26 is a schematic diagram of a partial structure of the electronic device in FIG. 25.
- the electronic device 1 has a second folding axis L2.
- the folding state includes a second folding state.
- the first radiator 130 and the third radiator 150 are staggered, and the second radiator 140 and the fourth radiator 160 are staggered. It should be noted that when the electronic device 1 is in the second folding state, the electronic device 1 is a state obtained by folding along the second folding axis L2 from the flattened state.
- the antenna module 10 can still have good communication performance when the electronic device 1 is in the second folded state.
- the first radiator 130 and the third radiator 150 are staggered, which can reduce or even avoid the shielding and interference between the first radiator 130 and the third radiator 150.
- the processor 60 controls the switching switch 120 to be electrically connected to the first radiator 130
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the first radiator 130
- the shielding and interference of the third radiator 150 on the electromagnetic wave signals in the GPS frequency band transmitted and received by the first radiator 130 can be reduced or even avoided.
- the processor 60 controls the switching switch 120 to be electrically connected to the third radiator 150
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the third radiator 150
- the electronic device 1 when the electronic device 1 is in the second folding state, the shielding and interference of the first radiator 130 on the electromagnetic wave signals in the GPS frequency band transmitted and received by the third radiator 150 can be reduced or even avoided.
- the second radiator 140 and the fourth radiator 160 are staggered, which can reduce or even avoid the shielding and interference between the second radiator 140 and the fourth radiator 160.
- the processor 60 controls the switching switch 120 to be electrically connected to the second radiator 140
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the second radiator 140
- the shielding and interference of the electromagnetic wave signals in the GPS frequency band transmitted and received by the second radiator 140 by the fourth radiator 160 can be reduced or even avoided.
- the processor 60 controls the switching switch 120 to be electrically connected to the fourth radiator 160
- the first feed source 110 transmits and receives electromagnetic wave signals in the GPS frequency band through the fourth radiator 160
- the electronic device 1 when the electronic device 1 is in the second folding state, the shielding and interference of the electromagnetic wave signals in the GPS frequency band transmitted and received by the fourth radiator 160 by the second radiator 140 can be reduced or even avoided.
- the foldable body is a middle frame
- the antenna ground 170 in the antenna module 10 is the middle frame.
- the first ground terminal 130a is electrically connected to the foldable body 20 (middle frame) for grounding.
- the first ground terminal 130a can be directly or indirectly electrically connected to the foldable body 20.
- the first ground terminal 130a can also be electrically connected to a separate reference ground (also called a ground system) other than the foldable body 20 for grounding.
- the first ground terminal 130a is electrically connected to the ground of the circuit board, or the ground of the screen.
- the foldable body is a middle frame
- the antenna ground 170 in the antenna module 10 is the middle frame.
- the second ground terminal 140a is electrically connected to the foldable body 20 (middle frame) for grounding.
- the second ground terminal 140a can be directly or indirectly electrically connected to the foldable body 20.
- the second ground terminal 140a can also be electrically connected to a separate reference ground (also called a ground system) other than the foldable body 20 for grounding.
- the second ground terminal 140a is electrically connected to the ground of the circuit board, or the ground of the screen.
- the foldable body is a middle frame
- the antenna ground 170 in the antenna module 10 is the middle frame.
- the third ground terminal 150a is electrically connected to the foldable body 20 for grounding.
- the third ground terminal 150a can be directly or indirectly electrically connected to the foldable body 20.
- the third ground terminal 150a can also be electrically connected to a separate reference ground (also called a ground system) other than the foldable body 20 for grounding.
- the third ground terminal 150a is electrically connected to the ground of the circuit board, or the ground of the screen.
- the foldable body is a middle frame
- the antenna ground 170 in the antenna module 10 is the middle frame.
- the fourth ground terminal 160a is electrically connected to the foldable body 20 for grounding.
- the fourth ground terminal 160a can be directly or indirectly electrically connected to the foldable body 20.
- the fourth ground terminal 160a can also be electrically connected to a separate reference ground (also called a ground system) other than the foldable body 20 for grounding.
- the fourth ground terminal 160a is electrically connected to the ground of the circuit board, or the ground of the screen.
- the current posture of the electronic device 1 identified by the posture recognition sensor 50 is linked to the switching of the switch 120, so as to achieve the purpose of intelligently switching the antenna radiator.
- the processor 60 intelligently controls the switch 120 to be electrically connected to the antenna radiator with a better upper hemisphere in the far-field pattern according to the current posture of the electronic device 1, so that the antenna module 10 of the electronic device 1 has better communication performance when communicating using the GPS frequency band.
- the antenna module 10 of the electronic device 1 when the electronic device 1 is in a flattened state (also referred to as a large-screen state), the antenna module 10 of the electronic device 1 includes a first radiator 130, a second radiator 140, a third radiator 150, and a fourth radiator 160.
- the posture sensor Based on the recognition function of the posture recognition sensor 50, specifically, the posture sensor recognizes that the current posture of the electronic device 1 is a first posture (a left horizontal screen posture in this embodiment), a second posture (a right horizontal screen posture in this embodiment), and a third posture (an inverted posture in this embodiment).
- the processor 60 controls the switching switch 120 to be electrically connected to the antenna radiator with the best upper hemisphere occupancy in the far-field radiation pattern, so as to obtain the best navigation performance.
- the processor 60 when the posture recognition sensor 50 recognizes that the current posture of the electronic device 1 is the second posture (the right horizontal screen posture in this embodiment), the processor 60 generates a switch switching control signal (or a switch switching state signal) and controls the switching switch 120 to be electrically connected to the second radiator 140, that is, the second radiator 140 works so that the positive direction of the X-axis (towards the sky) has a good upper hemisphere occupancy.
- the processor 60 can control the switching switch 120 to be electrically connected to the antenna radiator with the best upper hemisphere occupancy in the far-field radiation pattern based on the recognition function of the posture recognition sensor 50, so as to obtain the best navigation performance.
- the antenna module 10 includes a first radiator 130, a second radiator 140, a third radiator 150 and a fourth radiator 160, based on the principle that the far-field radiation pattern is along the direction of current lag, the layout of the four radiators, the first radiator 130, the second radiator 140, the third radiator 150 and the fourth radiator 160, is designed, so that when the electronic device 1 is in various postures, the switching switch 120 can switch to the antenna radiator with a better upper hemisphere proportion in the far-field radiation pattern, thereby achieving a better upper hemisphere proportion in all directions.
- the present application adopts a layout of four radiators, namely, a first radiator, a second radiator 140, a third radiator 150 and a fourth radiator 160, to ensure that the electronic device 1 can switch the switch 120 to the antenna radiator with a better upper hemisphere proportion in the far-field pattern in various postures, thereby achieving a better upper hemisphere proportion in all directions.
- the antenna module 10 may include two radiators, for example, a first radiator 130 and a second radiator 140, but not including the third radiator 150 and the fourth radiator 160.
- the antenna module 10 may include the third radiator 150 and the fourth radiator 160, but not including the first radiator 130 and the second radiator 140. It should be noted that when the antenna module 10 includes the third radiator 150 and the fourth radiator 160 but does not include the first radiator 130 and the second radiator 140 , the third radiator 150 may also be named the first radiator 130 , and the fourth radiator 160 may also be named the second radiator 140 .
Landscapes
- Support Of Aerials (AREA)
Abstract
本申请公开了一种电子设备,包括姿态识别传感器、天线模组及处理器;姿态识别传感器用于识别电子设备的当前姿态;天线模组包括第一馈源、切换开关、第一、第二辐射体,第一馈源用于产生激励电流,使得第一、第二辐射体支持段用于定位的频段,切换开关电连接至第一馈源,第一、第二辐射体间隔设置,且第一、第二辐射体的主辐射方向不同;处理器分别与姿态识别传感器及切换开关电连接,用于根据电子设备的当前姿态控制切换开关电连接至第一、第二辐射体中的一者,第一馈源连接至第一、第二辐射体中的一者时,所述一者接收所述频段的信号强大于第一、第二辐射体的另一者接收所述频段的信号强度。本申请提供的电子设备具有较优的导航性能。
Description
本申请要求2022年9月30日递交的申请名称为“电子设备”的申请号为202211214537.9的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
本申请涉及通信技术领域,具体涉及一种电子设备。
随着电子设备的发展,具有优异的通信功能的电子设备成为研发热点。全球导航卫星系统(Global Navigation Satellite System,GNSS),比如,全球定位系统(Global Positioning System,GPS)天线作为电子设备上进行导航通信的重要部分得到广泛的应用,然,在一些情况下,GPS天线的通信功能较差,进而影响导航体验。
发明内容
第一方面本申请实施例提供一种电子设备,所述电子设备包括:
姿态识别传感器,用于识别所述电子设备的当前姿态;
天线模组,所述天线模组包括第一馈源、切换开关、第一辐射体及第二辐射体,第一馈源用于产生激励电流,使得第一辐射体或第二辐射体支持用于定位的频段,所述切换开关电连接至所述第一馈源,所述第一辐射体与所述第二辐射体间隔设置,且所述第一辐射体的主辐射方向与所述第二辐射体的主辐射方向不同;及
处理器,分别与所述姿态识别传感器及所述切换开关电连接,用于根据所述电子设备的当前姿态控制所述切换开关电连接至所述第一辐射体及所述第二辐射体中的一者,其中,所述第一馈源连接至所述第一辐射体及所述第二辐射体中的所述一者时,所述一者接收所述频段的信号强大于所述第一辐射体及所述第二辐射体的另一者接收所述频段的信号强度。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的电子设备1的结构示意图;
图2为图1提供的电子设备1的立体分解示意图;
图3是图2中的天线模组的部分结构在展开状态下俯视图;
图4是图1中另一实施方式提供的天线模组的部分结构在展开状态下俯视图;
图5为图1所示的电子设备一实施方式的电路框图;
图6为图3提供的电子设备中的第一辐射体的远场方向图;
图7为图3提供的电子设备中的第一辐射体在天线地上激励起的主要电流分布示意图;
图8为电子设备1处于第一姿态时第一辐射体的方位示意图;
图9为图8中的第一辐射体的远场方向图;
图10为图3提供的电子设备1中的第二辐射体的远场方向图;
图11为图3提供的电子设备中的第二辐射体在天线地上激励起的主要电流分布示意图;
图12为电子设备处于第二姿态时第二辐射体的方位示意图;
图13为图12中的第二辐射体的远场方向图;
图14为图3中提供的电子设备中第三辐射体的远场方向示意图;
图15为电子设备处于第三姿态时第三辐射体的方位示意图;
图16为图15中的电子设备1中第三辐射体的远场方向示意图;
图17为图1所示的电子设备另一实施方式的电路框图;
图18为图3中提供的电子设备中第四辐射体的远场方向示意图;
图19为图1所示的电子设备又一实施方式的电路框图;
图20为本申请另一实施方式提供的天线模组的示意图;
图21为图1所示的电子设备另一实施方式的电路框图;
图22为本申请另一实施方式提供的电子设备的电路框图;
图23为本申请再一实施方式提供的电子设备的电路框图;
图24为本申请又一实施方式提供的电子设备的结构示意图;
图25为图24提供的电子设备的立体分解示意图;
图26为图25中的电子设备的部分结构示意图。
主要标号说明:
电子设备1;
天线模组10,可折叠主体20,显示屏30,壳体40,姿态识别传感器50,处理器60,扬声器80,
通信单元90;
第一馈源110,切换开关120,第一辐射体130,第二辐射体140,第三辐射体150,第四辐射体160,
天线地170,第二馈源180,切换单元190;
第一接地端130a,第一自由端130b,第一子辐射部131,第二子辐射部132;
第二接地端140a,第二自由端140b,第三子辐射部141,第四子辐射部142;
第三接地端150a,第三自由端150b,第五子辐射部151,第六子辐射部152;
第四接地端160a,第四自由端160b,第七子辐射部161,第八子辐射部162;
第一边170a,第二边170b,第三边170c,第四边170d,第一拐角部171,第二拐角部172,第三
拐角部173,第四拐角部174;
第一主体210,第二主体220,转轴230,中框本体20a,边框部20b;
第一显示部310,第二显示部320,连接部330;
边框410,后盖420;
第一折叠轴线L1,第二折叠轴线L2。
电子设备1;
天线模组10,可折叠主体20,显示屏30,壳体40,姿态识别传感器50,处理器60,扬声器80,
通信单元90;
第一馈源110,切换开关120,第一辐射体130,第二辐射体140,第三辐射体150,第四辐射体160,
天线地170,第二馈源180,切换单元190;
第一接地端130a,第一自由端130b,第一子辐射部131,第二子辐射部132;
第二接地端140a,第二自由端140b,第三子辐射部141,第四子辐射部142;
第三接地端150a,第三自由端150b,第五子辐射部151,第六子辐射部152;
第四接地端160a,第四自由端160b,第七子辐射部161,第八子辐射部162;
第一边170a,第二边170b,第三边170c,第四边170d,第一拐角部171,第二拐角部172,第三
拐角部173,第四拐角部174;
第一主体210,第二主体220,转轴230,中框本体20a,边框部20b;
第一显示部310,第二显示部320,连接部330;
边框410,后盖420;
第一折叠轴线L1,第二折叠轴线L2。
第一方面,本申请提供一种电子设备,其中,所述电子设备包括:
姿态识别传感器,用于识别所述电子设备的当前姿态;
天线模组,所述天线模组包括第一馈源、切换开关、第一辐射体及第二辐射体,第一馈源用于产生激励电流,使得第一辐射体或第二辐射体支持用于定位的频段,所述切换开关电连接至所述第一馈源,所述第一辐射体与所述第二辐射体间隔设置,且所述第一辐射体的主辐射方向与所述第二辐射体的主辐射方向不同;及
处理器,分别与所述姿态识别传感器及所述切换开关电连接,用于根据所述电子设备的当前姿态控制所述切换开关电连接至所述第一辐射体及所述第二辐射体中的一者,其中,所述第一馈源连接至所述第一辐射体及所述第二辐射体中的所述一者时,所述一者接收所述频段的信号强大于所述第一辐射体及所述第二辐射体的另一者接收所述频段的信号强度。
其中,当所述第一馈源连接至所述第一辐射体及所述第二辐射体中的所述一者时,所述一者的主辐射方向相较于所述另一者的主辐射方向朝上。
其中,当所述当前姿态为第一姿态时,所述处理器控制所述切换开关电连接至所述第一辐射体,其中,当所述当前姿态为所述第一姿态时,所述第一辐射体的主辐射方向相较于所述第二辐射体的主辐射
方向朝上。
其中,所述第一辐射体与所述第二辐射体呈对角设置,当所述当前姿态为第二姿态时,所述处理器控制所述切换开关电连接至第二辐射体,其中,当所述当前姿态为所述第二姿态时,所述第二辐射体的主辐射方向相较于所述第一辐射体的主辐射方向朝上。
其中,所述天线模组还包括:
第三辐射体,所述第三辐射体分别与所述第一辐射体及所述第二辐射体间隔设置,且所述第三辐射体的主辐射方向与所述第一辐射体及所述第二辐射体的辐射方向均不相同;
当所述当前姿态为第三姿态时,所述处理器控制所述切换开关电连接至所述第三辐射体,其中,所述当前姿态为所述第三姿态时,所述第三辐射体的主辐射方向分别相较于所述第一辐射体的主辐射方向及所述第二辐射体的主辐射方向朝上。
其中,所述天线模组还包括:
第四辐射体,所述第四辐射体分别与所述第一辐射体及所述第二辐射体间隔设置,且所述第四辐射体与所述第三辐射体呈对角设置,所述第四辐射体的主辐射方向与所述第一辐射体、所述第二辐射体及所述第三辐射体的主辐射方向均不相同;
当所述当前姿态为第四姿态时,所述处理器控制所述切换开关电连接至第四辐射体,其中,当所述当前姿态为所述第四姿态时,所述第四辐射体的主辐射方向相较于所述第一辐射体、所述第二辐射体及所述第三辐射体的主辐射方向朝上。
其中,所述天线模组还包括天线地,天线地具有依次首位相连的第一边、第二边、第三边及第四边,其中,所述电子设备包括第一拐角部及第二拐角部,所述第一拐角部包括第一边背离所述第二边的一端,以及所述第四边背离所述第三边的一端;所述第二拐角部与所述第一拐角部呈对角设置,所述第二拐角部包括第二边背离所述第一边的一端,以及所述第三边背离所述第四边的一端;所述第一辐射体设置于所述第一拐角部,且所述第二辐射体设置于所述第二拐角部。
其中,所述第一辐射体对应所述第一边设置,所述第一辐射体具有第一接地端及第一自由端,所述第一接地端电连接至天线地,所述第一自由端相较于所述第一接地端背离所述第四边设置;
所述第二辐射体对应第三边设置,所述第二辐射体具有第二接地端及第二自由端,所述第二接地端电连接至天线地,所述第二自由端相较于所述第二接地端背离所述第二边设置。
其中,所述第一辐射体包括弯折相连的第一子辐射部及第二子辐射部,所述第一子辐射部对应所述第四边设置,所述第一子辐射部具有背离所述第二子辐射部的第一接地端,所述第一接地端电连接至天线地,所述第二子辐射部对应所述第一边设置,所述第二子辐射部具有背离所述第一子辐射部的第一自由端,且所述第二子辐射部的长度大于所述第一子辐射部的长度;
所述第二辐射体包括弯折相连的第三子辐射部及第四子辐射部,所述第三子辐射部对应所述第二边设置,所述第三子辐射部具有背离所述第四子辐射部的第二接地端,所述第二接地端电连接至天线地,所述第三子辐射部对应所述第三边设置,所述第四子辐射部具有背离所述第三子辐射部的第二自由端,所述第四子辐射部的长度大于所述第三子辐射部的长度。
其中,所述电子设备还包括第三拐角部及第四拐角部,所述第三拐角部分别与所述第一拐角部及所述第二拐角部间隔设置,所述第三拐角部包括第一边背离所述第四边的一端,以及第二边背离所述第三边的一端;所述第四拐角部与所述第三拐角部对角设置,所述第四拐角部包括所述第三边背离所述第二边的一端,以及所述第四边背离所述第一边的一端;
当所述天线模组还包括第三辐射体及第四辐射体时,所述第三辐射体设置于所述第三拐角部,且所述第四辐射体设置于所述第四拐角部。
其中,所述第三辐射体对应所述第二边设置,所述第三辐射体具有第三接地端及第三自由端,所述第三接地端电连接至天线地,所述第三自由端相较于第三接地端背离所述第一边设置;
所述第四辐射体对应所述第四边设置,所述第四辐射体具有第四接地端及第四自由端,所述第四接地端电连接至天线地,所述第四自由端相较于第四接地端背离所述第三边。
其中,所述第三辐射体包括弯折相连的第五子辐射部及第六子辐射部,所述第五子辐射部对应所述
第一边设置,所述第五子辐射部具有背离所述第六辐射部的第三接地端,所述第三接地端电连接至天线地,所述第六子辐射部对应所述第二边设置,所述第六子辐射部具有背离所述第五子辐射部的第三自由端,且所述第六子辐射部的长度大于所述第五子辐射部的长度;
所述第四辐射体包括弯折相连的第七子辐射部及第八子辐射部,所述第七子辐射部对应所述第三边设置,所述第七子辐射部具有背离所述第八子辐射部的第四接地端,所述第四接地端电连接至天线地,所述第八子辐射部对应所述第四边设置,所述第八子辐射部具有背离所述第七子辐射部的第四自由端,且所述第八子辐射部的长度大于所述第七子辐射部的长度。
其中,所述电子设备还包括中框,所述中框包括中框本体及边框部,所述边框部围设在所述中框本体的周缘且与所述中框本体弯折相连,所述第一辐射体、所述第二辐射体、所述第三辐射体及所述第四辐射体中的至少一者形成与所述边框部上。
其中,所述电子设备可折叠,所述电子设备具有折叠状态及展平状态,当所述电子设备处于展平状态时,且所述电子设备的导航功能被开启时,所述处理器根据所述电子设备的当前姿态控制所述切换开关电连接至所述第一辐射体及所述第二辐射体中的所述一者。
其中,当所述电子设备处于展平状态且所述电子设备的导航功能未被开启时,或者,当所述电子设备处于折叠状态时:所述处理器控制所述切换开关电连接至所述第一辐射体,所述第二辐射体电连接至第二馈源,其中,所述第二馈源产生的射频信号与所述第一馈源产生的射频信号的不同。
其中,所述电子设备还包括扬声器及显示屏,所述扬声器与所述处理器电连接,当所述电子设备的导航功能被开启时且所述显示屏显示有预设内容时,所述处理器将所述电子设备中安装的导航应用中的语音通过所述扬声器播放,其中,所述预设内容为非导航界面。
其中,所述电子设备还包括显示屏及通信单元,当所述电子设备的导航功能被开启且所述显示屏显示有预设内容时,所述处理器将所述电子设备中的导航应用的显示界面通过所述通信单元输出,以在与所述通信单元通信连接的车载屏幕上进行显示。
其中,所述电子设备具有第一折叠轴线,当所述电子设备处于展平状态时,所述第一辐射体及所述第三辐射体位于所述第一折叠轴线的同一侧,所述第二辐射体及所述第四辐射体位于所述第一折叠轴线的同一侧,且所述第二辐射体与所述第一辐射体位于所述第一折叠轴线的不同侧;
所述折叠状态包括第一折叠状态,当所述电子设备处于第一折叠状态时,所述第一辐射体与所述第四辐射体错位设置,所述第二辐射体与所述第三辐射体错位设置。
其中,所述电子设备具有第二折叠轴线,当所述电子设备处于展平状态时,所述第一辐射体及所述第四辐射体位于所述第二折叠轴线的同一侧,所述第二辐射体及所述第三辐射体位于所述第二折叠轴线的同一侧,且所述第二辐射体与所述第一辐射体位于所述第二折叠轴线的不同侧;
所述折叠状态包括第二折叠状态,当所述电子设备处于第二折叠状态时,所述第一辐射体与所述第三辐射体错位设置,所述第二辐射体与所述第四辐射体错位设置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本申请中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
请一并参阅图1至图5,图1为本申请一实施方式提供的电子设备1的结构示意图;图2为图1提供的电子设备1的立体分解示意图;图3是图2中的天线模组的部分结构在展开状态下俯视图;图4是图1中另一实施方式提供的天线模组的部分结构在展开状态下俯视图;图5为图1所示的电子设备一实施方式的电路框图。本申请提供一种电子设备1,所述电子设备1可以是手机、平板电脑、桌面型计算机、膝上型计算机、电子阅读器、手持计算机、电子展示屏、笔记本电脑、超级移动个人计算机(ultra-mobilepersonal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmentedreality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器、智能可穿戴
设备等可折叠式的设备。可以理解的,可折叠电子设备1可以为可折叠的显示设备,也可以为可折叠的非显示设备。本申请中以所述电子设备1为折叠手机为例,其他的设备可参考本申请中的具体描述。可以理解地,在其他实施方式中,所述电子设备1也可以为非折叠的电子设备。需要说明的是,本申请实施方式的示意图中如图3所示的天线模组10等是背视图,即自所述电子设备1的壳体40朝向所述电子设备1的显示屏30的方向看到的天线模组10。
请参阅图2,所述电子设备1包括可折叠主体20及天线模组10。所述可折叠主体20具有展开状态及折叠状态。可折叠主体20为电子设备1的骨架结构。可折叠主体20的主体形态与电子设备1的主体形态一致。当可折叠主体20处于展开状态时,电子设备1处于展开状态;当可折叠主体20处于折叠状态时,电子设备1处于折叠状态。具体的,可折叠主体20包括但不限于为电子设备1的中框。在本实施方式中,以所述可折叠主体20为所述电子设备1的中框为例进行示意。
其中,展开状态时,可折叠主体20可呈180°的展平状,或者近似180°(比如,170°、或175°,或185°等)的展平状,也可以为具有一定弯折角度的弯折状,其弯折角度不做限定。本实施例中,以展开状态为180°的展平状为例。当电子设备1具有显示屏30时,处于展开状态下时显示屏30的展开面积相对较大,以便于用户享受大屏幕的电子设备1。折叠状态是指可折叠主体20处于弯折且层叠设置的状态,此时,电子设备1的整体体积小,便于携带。
可选的,可折叠主体20包括但不限于为具有一个转动轴线的对折结构,也可以为具有两个或两个以上的转动轴线的三折式、四折式等的折叠结构。本实施例以可折叠主体20为对折结构为例进行说明。
请参阅图2,所述可折叠主体20包括转动连接的第一主体210及第二主体220,在本实施方式中,所述第一主体210及所述第二主体220中的至少一个通过转轴230转动连接。换而言之,所述可折叠主体20包括依次连接的第一主体210、转轴230及第二主体220。在其他实施方式中,所述第一主体210与所述第二主体220为直接连接,所述第一主体210与所述第二主体220的连接处为可弯折的。本申请实施方式对可折叠主体20弯折的方式不做限定,只要满足所述可折叠主体20能够弯折即可。
需要说明的是,所述可折叠主体20的第一主体210的至少部分为导电材质,所述可折叠主体20的第二主体220的至少部分为导电材质,且所述第一主体210与所述第二主体220电连接。当所述可折叠主体20还包括转轴230时,所述转轴230的至少部分为导电材质,所述第一主体210通过所述转轴230与所述第二主体220电连接。由此可见,所述可折叠主体20可作为天线模组10的参考地(也称为地极)。
为了便于说明,定义第一主体210、转轴230、第二主体220的连接方向为X轴负方向,所述可折叠主体20的转动轴线L0方向为Y方向,即,在本实施方式中,转轴230的延伸方向为Y轴方向。可折叠主体20在展开状态下的厚度方向为Z轴方向。其中,X轴方向、Y轴方向、Z轴方向两两垂直。其中,箭头所指示的方向为正向。
可选的,请参阅图2,所述电子设备1还包括显示屏30。显示屏30设于可折叠主体20的一侧,在本实施方式中,所述显示屏30设于可折叠主体20的前侧(前侧是指用户正常使用显示屏30时朝向用户的方向),可选的,在一实施方式中,显示屏30对应于转轴230的部分为可弯曲的柔性显示屏30。可选的,在另一实施方式中,转轴230对应处未设置显示屏30,而是在第一主体210和第二主体220的前侧分别设置两个显示屏30。
在本实施方式中,所述显示屏30包括第一显示部310、第二显示部320及连接部330。所述第一显示部310对应所述第一主体210设置,所述第二显示屏320对应所述第二主体220设置,所述连接部330对应所述转轴230设置,所述连接部330可弯折。在本实施方式中,所述显示屏30为一体结构。在其他实施方式中,所述第一显示部310及所述第二显示部320为分体结构。
可选地,请参阅图2,所述电子设备1还包括壳体40。所述壳体40包括边框410及后盖420。在电子设备1处于展平状态或近似展平状态时,显示屏30和后盖420分别位于可折叠主体20的相背的两侧(前后侧),其中,边框410连接在显示屏30和后盖420之间,且包围于可折叠主体20的四周,显示屏30、边框410及后盖420使电子设备1形成相对封闭的整机。当然,在其他实施方式中,电子设备1的后侧也可以设有显示屏30。
其中,边框410及后盖420可以为一体结构或分体结构。当边框410及后盖420为分体结构时,所
述边框410的内部可以与中框(可折叠主体20)形成一体结构。中框上形成多个用于安装各种电子器件的安装槽。所述显示屏30、所述中框及所述后盖420盖合后在所述中框的两侧皆形成收容空间。所述电子设备1还包括设于收容空间内的电路板(包括主板、副板、柔性电路板等)、电池、摄像头模组、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现电子设备1的基本功能的器件,在本实施例中不再赘述。可以理解地,上述对所述电子设备1的介绍仅是所述天线模组10所应用的一种环境的说明,所述电子设备1的具体结构不应当理解为对本申请提供的所述天线模组10的限定。
所述天线模组10可设于所述电子设备1的壳体40内部、或部分与所述壳体40集成为一体、或部分设于所述壳体40外。所述天线模组10用于收发射频信号,其中,射频信号在空气介质中以电磁波信号进行传输,以实现所述电子设备1的通信功能。本申请对于所述天线模组10在所述电子设备1上的位置不做具体的限定,图2所示的天线模组10在电子设备1上的位置只是一种示例。
可以理解地,虽然在本实施方式图2和图3中示意出的天线模组10除了包括第一辐射体130及第二辐射体140之外还包括第三辐射体150,第四辐射体160,需要说明的是,在其他实施方式中,所述天线模组10可不包括第三辐射体150,且不包括第四辐射体160。请一并参阅图4,图4是图1中另一实施方式提供的天线模组的部分结构在展开状态下俯视图。
所述电子设备1包括姿态识别传感器50、天线模组10及处理器60。所述姿态识别传感器50用于识别所述电子设备1的当前姿态。所述天线模组10包括第一馈源110、切换开关120、第一辐射体130及第二辐射体140。所述第一馈源110用于产生激励电流,使得第一辐射体130或第二辐射体140支持用于定位的频段。所述切换开关120电连接至所述第一馈源110,所述第一辐射体130与所述第二辐射体140间隔设置,且所述第一辐射体130的主辐射方向与所述第二辐射体140的主辐射方向不同。所述处理器60分别与所述姿态识别传感器50及所述切换开关120电连接,用于根据所述电子设备1的当前姿态控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,所述一者接收所述频段的信号强大于所述第一辐射体130及所述第二辐射体140的另一者接收所述频段的信号强度。
可以理解地,本申请实施方式对所述切换开关120电连接至所述一者接收所述频段的信号强度与所述另一者接收所述频段的信号强度不做限定。在一种实施方式中,当所述处理器60分别与所述姿态识别传感器50及所述切换开关120电连接,用于根据所述电子设备1的当前姿态控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者时,所述一者接收所述频段的信号强度大于所述另一者接收所述频段的信号强度。在其他实施方式中,所述处理器60分别与所述姿态识别传感器50及所述切换开关120电连接,用于根据所述电子设备1的当前姿态控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者时,所述一者接收所述频段的信号强度也可小于或等于所述另一者接收所述频段的信号强度。
在本实施方式中,以所述第一馈源110连接至所述第一辐射体130及所述第二辐射体140的所述一者时,所述一者接收和发射所述频段的信号强度均大于所述第一馈源110通过所述第一辐射体130及所述第二辐射体140的另一者接收和发射所述频段的信号强度为例进行说明。可以理解的,不应当构成对本申请实施方式的限定。
具体地,在一实施方式中,所述处理器60根据所述电子设备1的当前姿态控制切换开关120电连接至所述第一辐射体130,其中,所述第一馈源110通过所述第一辐射体130接收所述频段的信号强度大于所述第一馈源110通过所述第二辐射体140接收所述频段的信号强度。在另一实施方式中,所述处理器60根据所述电子设备1的当前姿态控制切换开关120电连接至所述第二辐射体140,其中,所述第一馈源110通过所述第二辐射体140接收所述频段的信号强度大于所述第一馈源110通过所述第一辐射体130接收所述频段的信号强度。
其中,所述第一馈源110连接至所述第一辐射体130及所述第二辐射体140中的所述一者时,所述一者的主辐射方向相较于所述第一辐射体130及所述第二辐射体140中的另一者的主辐射方向朝上。通常而言,天线模组10与卫星之间采用用于定位的射频信号进行通信,而卫星通常位于地球的上方。当所述一者的主辐射方向相较于所述另一者的主辐射方向朝上时,所述第一馈源110通过所述一者收接收所述频段的信号的强度大于所述第一馈源110通过所述另一者收接收所述频段的信号的强度。需要说明的是,这里所述的朝上,是指垂直地面向上。所述一者的主辐射方向相较于所述另一者的主辐射方向朝上,是指,所述一者的主辐射方向相较于所述另一者的主辐射方向更靠近垂直地面且指向朝上的垂直线。
需要说明的是,所述第一馈源110连接至所述第一辐射体130及所述第二辐射体140中的所述一者
时,所述一者的主辐射方向相较于所述另一者的主辐射方向朝上为所述第一馈源110通过所述第二辐射体140收接收所述频段的信号的强度大于所述第一馈源110通过所述第一辐射体130收接收所述频段的信号的强度的一种实施方式。当所述电子设备1以显示屏30水平朝上,或者显示屏30水平朝下时等第一辐射体130的主辐射方向和第二辐射体140的主辐射方向相较于所述垂直线较难确定哪个辐射体的主辐射方向朝上时,只要满足所述处理器60根据所述电子设备1的当前姿态控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,其中,所述第一馈源110连接至所述第一辐射体130及所述第二辐射体140的所述一者时,所述一者收接收所述频段的信号的强度大于所述第一馈源110通过所述第一辐射体130及所述第二辐射体140的另一者收收接收所述频段的信号的强度即可。
所述姿态识别传感器50可以为但不仅限于为所述陀螺仪、加速度计和电子罗盘等。所述姿态传感器可识别电子设备1的当前姿态。
所述第一馈源110用于产生激励电流,以使得所述第一辐射体130或第二辐射体140支持用于定位的频段。所述用于定位的频段通常是指,全球导航卫星系统(GlobalNavigation Satellite System,GNSS)信号频段。比如,包括但不仅限于全球定位系统(Global Positioning System,GPS)定位、北斗定位、GLONASS定位、GALILEO定位等。接下来以所述第一馈源110产生的用于定位的频段为GPS频段为例进行说明,可以理解地,不应当理解为对本申请实施方式提供的电子设备1的限定。所述GPS频段包括但不仅限于GPS L1频段,或GPS L5频段等。
所述切换开关120可设置于电路板(比如,PCB电路板)上,所述切换开关120设置于所述电路板上的方式可以为但不仅限于为通过焊接,或导电胶粘结等方式设置于所述电路板上。当所述切换开关120设置于所述电路板上时,所述切换开关120可通过所述电路板上的走线,或者同轴线等方式与所述处理器60电连接。所述切换开关120还可通过所述电路板上的走线,或同轴线等方式与第一辐射体130及第二辐射体140电连接。本申请实施方式对所述切换开关120的类型不做限定,只要所述切换开关120可在所述处理器60的控制下电连接至所述第一辐射体130及所述第二辐射体140中的一者即可。
所述第一辐射体130的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。本实施方式的示意图所示的所述第一辐射体130仅仅为一种示例,并不能对本申请提供的所述第一辐射体130的形状造成限定。可选的,当所述电子设备1的壳体40中的边框410为导电材质时,第一辐射体130可以与边框410集成为一体,即第一辐射体130为边框天线,边框的一部分作为第一辐射体130。再可选的,第一辐射体130还可以为中框(即可折叠主体20)上的一部分,如此,第一辐射体130与中框互连为一体结构。第一辐射体130可以通过在中框上切割开缝形成。此实施方式中,第一辐射体130所对应的壳体40的边框410可为非导电材质,以使第一辐射体130能够经边框收发电磁波信号。再可选的,所述第一辐射体130所形成的天线为支架天线。其中,支架天线包括但不限于为成型于柔性电路板(Flexible Printed Circuitboard,FPC)上的柔性电路板天线、通过激光直接成型(LaserDirect Structuring,LDS)的激光直接成型天线、通过印刷直接成型(PrintDirect Structuring,PDS)的印刷直接成型天线、导电片天线等。在另一维度上划分,所述第一辐射体130为倒F天线(Planar InvertedF-shapedAntenna,IFA)。
可选的,所述第一辐射体130的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;或其他非金属的导电材料,比如,金属氧化物导电材料(如,氧化锡铟、氧化锡镓铟)等氧化物导电材料,或碳纳米管及聚合物形成混合导电材料等。
所述第二辐射体140的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。本实施方式的示意图所示的所述第二辐射体140仅仅为一种示例,并不能对本申请提供的所述第二辐射体140的形状造成限定。可选的,当所述电子设备1的壳体40中的边框410为导电材质时,第二辐射体140可以与边框410集成为一体,即第二辐射体140为边框天线,边框的一部分作为第二辐射体140。再可选的,第二辐射体140还可以为中框(即可折叠主体20)上的一部分,如此,第二辐射体140与中框互连为一体结构。第二辐射体140可以通过在中框上切割开缝形成。此实施方式中,第二辐射体140所对应的壳体40的边框410可为非导电材质,以使第二辐射体140能够经边框收发电磁波信号。再可选的,所述第二辐射体140所形成的天线为支架天线。其中,支架天线包括但不限于为成型于柔性电路板(Flexible Printed Circuitboard,FPC)上的柔性电路板天线、通过激光直接成型(LaserDirect Structuring,LDS)的激光直接成型天线、通过印刷直接成型(PrintDirect Structuring,PDS)的印刷直接成型天线、导电片天线等。在另一维度上划分,所述第二辐射体140为倒F天线(Planar InvertedF-shapedAntenna,IFA)。
可选的,所述第二辐射体140的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;或其他非金属的导电材料,比如,金属氧化物导电材料(如,氧化锡铟、氧化锡镓铟)等氧化物导电材料,或碳纳米管及聚合物形成混合
导电材料等。
所述第一辐射体130的主辐射方向与所述第二辐射体140的主辐射方向不同,是指,当所述电子设备1处于同一姿态时,所述第一辐射体130的主辐射方向与所述第二辐射体140的主辐射方向不同。比如,当所述电子设备1处于第一姿态时,所述第一辐射体130的主辐射方向与所述第二辐射体140的主辐射方向不同。比如,当所述电子设备1处于第二姿态时,所述第一辐射体130的主辐射方向与所述第二辐射体140的主辐射方向不同。
在一实施方式中,所述姿态识别传感器50、所述切换开关120及所述处理器60均设置于同一电路板(比如,主板)上。所述姿态识别传感器50、所述切换开关120及所述处理器60可通过但不仅限于焊接,或导电胶粘结等方式设置于所述电路板上。
所述处理器60控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,包括:所述处理器60控制所述切换开关120电连接至所述第一辐射体130,且控制所述切换开关120断开与所述第二辐射体140的电连接;或者,所述处理器60控制所述切换开关120电连接至第二辐射体140,且控制所述切换开关120断开与所述第一辐射体130的电连接。
当所述处理器60控制所述切换开关120电连接至所述第一辐射体130,且控制所述切换开关120断开与所述第二辐射体140的电连接时,所述第一辐射体130的主辐射方向相较于所述第二辐射体140的主辐射方向朝上。那么说明,在所述电子设备1的当前姿态(第一姿态)下,所述第一辐射体130与GPS卫星进行通信的性能优于所述第二辐射体140与GPS卫星进行通信的性能。
当所述处理器60控制所述切换开关120电连接至所述第二辐射体140,且控制所述切换开关120断开与所述第一辐射体130的电连接时,所述第二辐射体140的主辐射方向相较于所述第二辐射体140的主辐射方向朝上。那么说明,在所述电子设备1的当前姿态(第二姿态)下,所述第二辐射体140与GPS卫星进行通信的性能优于所述第一辐射体130与GPS卫星进行通信的性能。
具体地,当所述电子设备1中的天线模组10利用GPS频段的电磁波信号进行通信时,所述天线模组10与GPS卫星之间利用GPS频段的电磁波进行通信。当用户在地球上使用电子设备1时,GPS卫星位于所述电子设备1的上方。当第一辐射体130的主辐射方向相较于第二辐射体140的主辐射方向朝上时,说明所述天线模组10利用所述第一辐射体130与GPS卫星进行通信的性能优于所述天线模组10利用所述第二辐射体140与GSP卫星进行通信的性能。
当所述第二辐射体140的主辐射方向相较于第一辐射体130的主辐射方向朝上时,说明所述天线模组10利用第二辐射体140与GPS卫星进行通信的性能优于所述天线模组10利用所述第一辐射体130与GPS卫星进行通信的性能。
可以理解地,在图2及图3中均以所述天线模组10包括第一辐射体130、第二辐射体140、第三辐射体150及第四辐射体160为例进行示意,在其他实施方式中,所述天线模组10可包括第一辐射体130及第二辐射体140;但不包括第三辐射体150且不包括第四辐射体160。
本申请实施方式提供的电子设备1,所述姿态识别传感器50识别所述电子设备1的当前姿态,所述处理器60根据所述电子设备1的当前姿态控制所述切换开关120电连接至在当前姿态下通信性能较优的第一辐射体130及第二辐射体140中的一者,从而使得所述电子设备1的天线模组10利用GPS频段进行通信时的通信性能,具有较优的导航性能。
换而言之,本申请实施方式提供的电子设备1,姿态识别传感器50识别出的电子设备1的当前姿态与切换开关120的切换联动,达到智能切换天线辐射体的目的。处理器60根据所述电子设备1的当前姿态智能控制所述切换开关120电连接至远场方向图中上半球占比较好的天线辐射体中,从而使得所述电子设备1的天线模组10利用GPS频段进行通信时具有较好的通信性能。
请参阅图6及图7,图6为图3提供的电子设备中的第一辐射体的远场方向图;图7为图3提供的电子设备中的第一辐射体在天线地上激励起的主要电流分布示意图。在图6所示的视角中,以竖直向上为Y轴正方向,以水平向左为X轴正方向。由图6中第一辐射体130的远场方向图可见,上半球(Y轴正方向)的占比约为50%,明显看出波束主辐射方向偏向右侧,主辐射方向为X轴负方向,或大致为X轴负方向。此外,由图6还可见,远场方向图中右侧半球占比较大,约80%。这说明,所述第一辐射体130放置的位置更适合将图3所示电子设备1逆时针旋转90°作为导航天线。请一并参阅图8及图9,图8为电子设备1处于第一姿态时第一辐射体的方位示意图;图9为图8中的第一辐射体的远场方向图。图8中的第一辐射体130相较于图3中的第一辐射体130逆时针旋转了90°。在图8所示的视角中,所述第一辐射体130位于左下角。为了方便描述,将图8中电子设备1的姿态命名为第一姿态,图8中的第一姿态也称为左横屏姿态,或左横屏。需要说的是,由于图8中所示的为背视图,即图8所示的为自所述壳体40指向所述显示屏30的方向所述天线模组10的示意图;在所述电子设备1的前视图中,即,
自所述显示屏30指向所述壳体40的方向观看时,所述第一辐射体130位于右下角。
请参阅图7,图7可阐释图6中第一辐射体130的主辐射方向(也称为辐射主方向)在右侧(图示视角,即X轴负方向)。所述第一辐射体130根据所述激励电流收发GPS频段的电磁波信号时,所述第一辐射体130在所述天线地170上激励起纵向电流(图示视角)和横向电流(图示视角)。其中,所述第一辐射体130在所述天线地170上激励起的纵向电流较弱,而所述第一辐射体130在所述天线地170上激励起的横向电流较强。换而言之,所述第一辐射体130在所述天线地170上激励起的横向电流的强度大于所述第一辐射体130在所述天线地170上激励起的纵向电流的强度。所述第一辐射体130对应所述天线地170的顶部(图示视角,可命名为第一边170a)设置,因此,所述第一辐射体130对天线地170的顶部耦合效果较强。为了方便描述,将所述天线地170的几个侧边进行命名。具体地,所述天线地170具有依次首位相连的第一边170a、第二边170b、第三边170c及第四边170d。在本实施方式中,以所述第一边170a及所述第三边170c均为所述天线地170的短边,所述第二边170b及所述第四边170d均为所述天线地170的长边为例进行示意。在其他实施方式中,所述第一边170a及所述第三边170c也可以为所述天线地170的长边,所述第二边170b及所述第四边170d也可以为所述天线地170的短边。或者,在另外的实施方式中,所述第一边170a、所述第二边170b、所述第三边170c及所述第四边170d的长度均相等。本实施方式对所述第一边170a、所述第二边170b、所述第三边170c及所述第四边170d之间的相对长短关系不做限定。
所述第一辐射体130对应第一边170a设置,所述第一辐射体130具有第一接地端130a及第一自由端130b,所述第一接地端130a电连接至天线地170,所述第一自由端130b相较于所述第一接地端130a背离所述第四边170d设置。所述第一辐射体130在所述天线地170激励起纵向电流及横向电流,为了方便描述,所述第一辐射体130在所述天线地170激励起纵向电流命名为第一电流I11,所述第一辐射体130在所述天线地170上激励起的横向电流命名为第二电流I12。所述第二电流I12强度大于自所述第一电流I11的强度,换而言之,所述第二电流I12为所述第一辐射体130在所述天线地170上激励起的主要电流。所述第一电流I11的方向为所述第三边170c指向所述第一边170a的方向,所述第二电流I12的方向为所述第四边170d指向所述第二边170b的方向。相应地,第一辐射体130上的电流I13自所述第一自由端130b流向所述第一接地端130a。
根据远场方向图沿电流滞后方向原理,即,所述第一辐射体130的远场辐射方向图沿所述天线地170上激励起的主要电流滞后的方向。由于在本实施方式中第二电流为所述第一辐射体130在所述天线地170上激励起的主要电流,因此,所述第一辐射体130的远场辐射方向图沿着所述第二电流滞后的方向,即,所述第一辐射体130的远场方向图中的主辐射方向为沿着X轴负方向。
请一并参阅图10及图11,图10为图3提供的电子设备1中的第二辐射体的远场方向图;图11为图3提供的电子设备中的第二辐射体在天线地上激励起的主要电流分布示意图。在图10所示的视角中,所述第二辐射体140的远场方向图中左侧半球的占比较大,且明确看出波束主辐射方向偏左,主辐射方向为X轴正方向,或者大致为X轴正方向。此外,由图10还可见,远场方向图中左侧半球的占比较大,这说明,所述第二辐射体140放置的位置更适合将图3所示的电子设备1顺时针旋转90°作为导航天线。请一并参阅图12及图13,图12为电子设备处于第二姿态时第二辐射体的方位示意图;图13为图12中的第二辐射体的远场方向图。图12中的第二辐射体140相较于图3中的第二辐射体140顺时针旋转了90°。在图12所示的视角中,所述第二辐射体140位于左下角。为了方便描述,将图12中的电子设备1的姿态命名为第二姿态,也称为右横屏姿态,或右横屏。需要说的是,由于图12中所示的为背视图,即图12所示的为自所述壳体40指向所述显示屏30的方向所述天线模组10的示意图;在所述电子设备1的前视图中,即,自所述显示屏30指向所述壳体40的方向观看时,所述第二辐射体140位于右下角。
图11可阐释图10中第二辐射体140的主辐射方向在左侧,具体原理请参照对第一辐射体130的主辐射方向的阐释。所述第二辐射体140根据所述激励电流收发GPS频段的电磁波信号时,所述第二辐射体140在所述天线地170上激励起纵向电流(图示视角)和横向电流(图示视角)。为了方便描述,所述第二辐射体140在所述天线地170上激励起纵向电流命名为第三电流I21,所述第二辐射体140在所述天线地170上激励起的横向电流命名为第四电流I22。
所述第二辐射体140对应所述第三边170c设置,所述第二辐射体140具有第二接地端140a及第二自由端140b,所述第二接地端140a电连接至天线地170,所述第二自由端140b相较于所述第二接地端140a背离所述第二边170b设置。所述第三电流的方向为所述第一边170a指向所述第三边170c的方向,所述第四电流I22的方向为所述第二边170b指向所述第四边170d的方向。相应地,所述第二辐射体140上的电流I23自所述第二自由端140b流向所述第二接地端140a。
由于所述第二辐射体140上的远场辐射方向图沿着所述天线地170上激励起的主要电流滞后的方向。由于在本实施方式中,所述第四电流为所述第二辐射体140在所述天线地170上激励起的主要电流,因此,所述第二辐射体140的远场辐射方向图沿着所述第四电流滞后的方向,级,所述第二辐射体140的远场方向图中的主辐射方向为沿着X轴正方向。
请继续参阅图5、图8及图9,当所述当前姿态为第一姿态时,所述处理器60控制所述切换开关120电连接至所述第一辐射体130,其中,当所述当前姿态为所述第一姿态时,所述第一辐射体130的主辐射方向相较于所述第二辐射体140的主辐射方向朝上。
当所述当前姿态为第一姿态时,所述处理器60控制所述切换开关120电连接至所述第一辐射体130,所述第一馈源110通过所述切换开关120与所述第一辐射体130电连接。相应地,当所述当前姿态为第一姿态时,所述处理器60控制所述切换开关120断开所述第一馈源110与所述第一辐射体130的电连接,所述第一馈源110无法通过所述切换开关120与所述第二辐射体140电连接。所述第一馈源110通过所述切换开关120与所述第一辐射体130电连接,因此,所述第一馈源110产生的激励电流可经由所述切换开关120传输至所述第一辐射体130,所述第一辐射体130根据所述激励电流接收GPS频段的电磁波信号。可以理解地,在另一实施方式中,所述第一辐射体130还可发射GPS频段的电磁波信号。
由此可见,在本实施方式中,当所述当前姿态为第一姿态时,所述第一辐射体130的主辐射方向相较于所述第二辐射体140的主辐射方向朝上,因此,所述电子设备1利用所述第一辐射体130进行GPS频段的通信,可获得较优的上半球辐射性能,进而使得利用所述第一辐射体130进行GPS频段的通信时具有较好的通信性能。
所述第一辐射体130与所述第二辐射体140呈对角设置,当所述当前姿态为第二姿态时,所述处理器60控制所述切换开关120电连接至第二辐射体140,其中,当所述当前姿态为所述第二姿态时,所述第二辐射体140的主辐射方向相较于所述第一辐射体130的主辐射方向朝上。
当所述当前姿态为第二姿态时,所述处理器60控制所述切换开关120电连接至所述第二辐射体140,所述第一馈源110通过所述切换开关120与所述第二辐射体140电连接。相应地,当所述当前姿态为第二姿态时,所述处理器60控制所述切换开关120断开与所述第二辐射体140的电连接,所述第一馈源110无法通过所述切换开关120与所述第一辐射体130电连接。所述第一馈源110通过所述切换开关120与所述第二辐射体140电连接,因此,所述第一馈源110产生的激励电流可经由所述切换开关120传输至所述第二辐射体140,所述第二辐射体140根据所述激励电流接收GPS频段的电磁波信号。可以理解地,在另一实施方式中,所述第二辐射体140还可发射GPS频段的电磁波信号。
由此可见,在本实施方式中,当所述当前姿态为第二姿态时,所述第二辐射体140的主辐射方向相较于所述第一辐射体130的主辐射方向朝上,因此,所述电子设备1利用所述第二辐射体140进行GPS频段的通信,可获得较优的上半球辐射性能,进而使得利用所述第二辐射体140进行GPS频段的通信时具有较好的通信性能。
请继续参阅图3并请一并参阅图14、图15、图16及图17,图14为图3中提供的电子设备中第三辐射体的远场方向示意图;图15为电子设备处于第三姿态时第三辐射体的方位示意图;图16为图15中的电子设备1中第三辐射体的远场方向示意图;图17为图1所示的电子设备另一实施方式的电路框图。所述天线模组10还包括第三辐射体150。所述第三辐射体150分别与所述第一辐射体130及所述第二辐射体140间隔设置,且所述第三辐射体150的主辐射方向与所述第一辐射体130及所述第二辐射体140的辐射方向均不相同。当所述当前姿态为第三姿态时,所述处理器60控制所述切换开关120电连接至所述第三辐射体150,其中,所述当前姿态为所述第三姿态时,所述第三辐射体150的主辐射方向分别相较于所述第一辐射体130的主辐射方向及所述第二辐射体140的主辐射方向朝上。
所述第三辐射体150的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。本实施方式的示意图所示的所述第三辐射体150仅仅为一种示例,并不能对本申请提供的所述第三辐射体150的形状造成限定。可选的,当所述电子设备1的壳体40中的边框410为导电材质时,第三辐射体150可以与边框410集成为一体,即第三辐射体150为边框天线,边框的一部分作为第三辐射体150。再可选的,第三辐射体150还可以为中框(即可折叠主体20)上的一部分,如此,第三辐射体150与中框互连为一体结构。第三辐射体150可以通过在中框上切割开缝形成。此实施方式中,第三辐射体150所对应的壳体40的边框410可为非导电材质,以使第三辐射体150能够经边框收发电磁波信号。再可选的,所述第三辐射体150所形成的天线为支架天线。其中,支架天线包括但不限于为成型于柔性电路板(Flexible Printed Circuitboard,FPC)上的柔性电路板天线、通过激光直接成型(LaserDirect Structuring,LDS)的激光直接成型天线、通过印刷直接成型(PrintDirect Structuring,PDS)的印刷直接成型天线、导电片天线等。在另一维度
上划分,所述第三辐射体150为倒F天线(Planar InvertedF-shapedAntenna,IFA)。
可选的,所述第三辐射体150的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;或其他非金属的导电材料,比如,金属氧化物导电材料(如,氧化锡铟、氧化锡镓铟)等氧化物导电材料,或碳纳米管及聚合物形成混合导电材料等。
所述第三辐射体150的主辐射方向与所述第一辐射体130的主辐射方向、所述第二辐射体140的主辐射方向均不同。具体地,是指,当所述电子设备1处于同一姿态时,所述第三辐射体150的主辐射方向不同于所述第一辐射体130的主辐射方向,且不同于所述第二辐射体140的主辐射方向。
由所述第三辐射体150的位置可知,在图3所示的姿态下,所述第三辐射体150的远场方向图中下侧半球的占比较大,且明确看出波束主辐射方向朝下,主辐射方向为Y轴负方向,或大致为Y轴负方向。这说明,所述第三辐射体150放置的方式更适合将图3中所示的电子设备1顺时针或逆时针旋转180°作为导航天线。图15中的第三辐射体150相较于图3中的第三辐射体150顺时针或逆时针旋转了180°。为了方便描述,将图15中的电子设备1的姿态命名为第三姿态,也称为倒立姿态,或倒立。
请一并参阅图15至图17,当所述当前姿态为第三姿态时,所述处理器60控制所述切换开关120电连接至所述第三辐射体150。相应的,当所述当前姿态为第三姿态时,所述处理器60控制所述切换开关120断开所述第一馈源110与所述第一辐射体130的电连接,所述第一馈源110无法通过所述切换开关120与所述第一辐射体130电连接。相应的,当所述当前姿态为第三姿态时,所述处理器60控制所述切换开关120断开所述第一馈源110与所述第二辐射体140的电连接,所述第一馈源110无法通过所述切换开关120与所述第二辐射体140电连接。其中,所述当前姿态为所述第三姿态时,所述第三辐射体150的主辐射方向分别相较于所述第一辐射体130的主辐射方向及所述第二辐射体140的主辐射方向朝上。当所述当前姿态为第三姿态时,所述处理器60控制所述切换开关120电连接至所述第三辐射体150,因此,所述第一馈源110可通过所述切换开关120电连接至所述第三辐射体150,所述第三辐射体150可根据所述激励电流接收GPS频段的电磁波信号。可以理解地,在另一实施方式中,所述第三辐射体150还可发射GPS频段的电磁波信号。
由此可见,在本实施方式中,当所述当前姿态为第三姿态时,所述第三辐射体150的主辐射方向相较于所述第一辐射体130的主辐射方向朝上,且相较于所述第二辐射体140的主辐射方向朝上,因此,所述电子设备1利用所述第三辐射体150进行GPS频段的通信,可获得较优的上半球辐射性能,进而使得利用所述第三辐射体150进行GPS频段的通信时具有较好的通信性能。
请继续参阅图3并请一并参阅图18及图19,图18为图3中提供的电子设备中第四辐射体的远场方向示意图;图19为图1所示的电子设备又一实施方式的电路框图。所述天线模组10还包括第四辐射体160。所述第四辐射体160分别与所述第一辐射体130及所述第二辐射体140间隔设置,且所述第四辐射体160与所述第三辐射体150呈对角设置,所述第四辐射体160的主辐射方向与所述第一辐射体130、所述第二辐射体140及所述第三辐射体150的主辐射方向均不相同。当所述当前姿态为第四姿态时,所述处理器60控制所述切换开关120电连接至第四辐射体160,其中,当所述当前姿态为所述第四姿态时,所述第四辐射体160的主辐射方向相较于所述第一辐射体130、所述第二辐射体140及所述第三辐射体150的主辐射方向朝上。
所述第四辐射体160的形状皆包括但不限于条状、片状、杆状、涂层状、薄膜状等。本实施方式的示意图所示的所述第四辐射体160仅仅为一种示例,并不能对本申请提供的所述第四辐射体160的形状造成限定。可选的,当所述电子设备1的壳体40中的边框410为导电材质时,第四辐射体160可以与边框410集成为一体,即第四辐射体160为边框天线,边框的一部分作为第四辐射体160。再可选的,第四辐射体160还可以为中框(即可折叠主体20)上的一部分,如此,第四辐射体160与中框互连为一体结构。第四辐射体160可以通过在中框上切割开缝形成。此实施方式中,第四辐射体160所对应的壳体40的边框410可为非导电材质,以使第四辐射体160能够经边框收发电磁波信号。再可选的,所述第四辐射体160所形成的天线为支架天线。其中,支架天线包括但不限于为成型于柔性电路板(Flexible Printed Circuitboard,FPC)上的柔性电路板天线、通过激光直接成型(LaserDirect Structuring,LDS)的激光直接成型天线、通过印刷直接成型(PrintDirect Structuring,PDS)的印刷直接成型天线、导电片天线等。在另一维度上划分,所述第四辐射体160为倒F天线(Planar InvertedF-shapedAntenna,IFA)。
可选的,所述第四辐射体160的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;或其他非金属的导电材料,比如,金属氧化物导电材料(如,氧化锡铟、氧化锡镓铟)等氧化物导电材料,或碳纳米管及聚合物形成混合导电材料等。
所述第四辐射体160的主辐射方向与所述第一辐射体130的主辐射方向、所述第二辐射体140的主辐射方向、所述第三辐射体150的主辐射方向均不同。具体地,是指,当所述电子设备1处于同一姿态时,所述第四辐射体160的主辐射方向不同于所述第一辐射体130的主辐射方向,且不同于所述第二辐射体140的主辐射方向,且不同于所述第三辐射体150的主辐射方向。
由第四辐射体160的位置可知,在图3所示的姿态下,所述第四辐射体160的远场方向图中,上侧半球的占比较大,且波束主辐射方向朝上,主辐射方向为Y轴正方向或大致为Y轴正方向。这说明,图3中所示的电子设备1的姿态的情况下,所述第四辐射体160适合作为导航天线。图3中的电子设备1的姿态命名为第四姿态,也称为竖立姿态,或竖立。
请再次参阅图3,所述天线模组10还包括天线地170。天线地170具有依次首位相连的第一边170a、第二边170b、第三边170c及第四边170d。其中,所述电子设备1包括第一拐角部171及第二拐角部172,所述第一拐角部171包括第一边170a背离所述第二边170b的一端,以及所述第四边170d背离所述第三边170c的一端;所述第二拐角部172与所述第一拐角部171呈对角设置,所述第二拐角部172包括第二边170b背离所述第一边170a的一端,以及所述第三边170c背离所述第四边170d的一端;所述第一辐射体130设置于所述第一拐角部171,且所述第二辐射体140设置于所述第二拐角部172。
在本实施方式中,以所述第一边170a及所述第三边170c均为所述天线地170的短边,所述第二边170b及所述第四边170d均为所述天线地170的长边为例进行示意。其他实施方式中,所述第一边170a至所述第四边170d的情况参阅前面描述,在此不再赘述。
所述第一拐角部171包括第一边170a背离所述第二边170b的一端,以及所述第四边170d背离所述第三边170c的一端,因此,所述第一辐射体130设置于所述第一拐角部171,包括:所述第一辐射体130设置于所述第一边170a背离所述第二边170b的一端;或者,所述第一辐射体130设置于所述第四边170d背离所述第三边170c的一端;或者,所述第一辐射体130的部分设置于所述第一边170a背离所述第二边170b的一端,所述第一辐射体130的另外部分设置于所述第四边170d背离所述第三边170c的一端。
所述第二拐角部172包括第二边170b背离所述第一边170a的一端,以及所述第三边170c背离所述第四边170d的一端,因此,所述第二辐射体140设置于所述第二拐角部172,包括:所述第二辐射体140设置于第二边170b背离所述第一边170a的一端;或者,所述第二辐射体140设置于所述第三边170c背离所述第四边170d的一端;或者,所述第二辐射体140的一部分设置于第二边170b背离所述第一边170a的一端,所述第二辐射体140的另一部分设置于所述第三边170c背离所述第四边170d的一端。
所述第一辐射体130设置于所述第一拐角部171,所述第二辐射体140设置于所述第二拐角部172,所述第一拐角部171与所述第二拐角部172对角设置,因此,所述第一辐射体130对应的远场方向图与所述第二辐射体140对应的远场方向图分布不同,所述第一辐射体130对应的远场方向图与所述第二辐射体140对应的远场方向图互补或者大致互补,通过所述处理器60控制所述切换开关120电连接所述第一辐射体130及所述第二辐射体140中的一者可在所述电子设备1处于任何姿态下均可获得较优的导航效果。
请再次参阅图3,所述第一辐射体130对应所述第一边170a设置,所述第一辐射体130具有第一接地端130a及第一自由端130b。所述第一接地端130a电连接至天线地170。所述第一自由端130b相较于所述第一接地端130a背离所述第四边170d设置。所述第二辐射体140对应第三边170c设置。所述第二辐射体140具有第二接地端140a及第二自由端140b。所述第二接地端140a电连接至天线地170,所述第二自由端140b相较于所述第二接地端140a背离所述第二边170b设置。
在本实施方式中,所述第一辐射体130完全对应所述第一边170a设置,因此,可使得所述第一辐射体130能够在所述天线地170上激励起较多的第二电流,进而使得所述第一辐射体130根据所述第一馈源110的激励电流接收GPS频段的电磁波信号的强度较大,使得所述电子设备1利用所述第一辐射体130通信时具有较好的通信性能。
在本实施方式中,所述第二辐射体140完全对应所述第三边170c设置,因此,可使得所述第二辐射体140能够在所述天线地170上激励起较多的第四电流,进而使得所述第二辐射体140根据所述第一馈源110的激励电流接收GPS频段的电磁波信号的强度较大,使得所述电子设备1利用所述第二辐射体140通信时具有较好的通信性能。
请参阅图20,图20为本申请另一实施方式提供的天线模组的示意图。在本实施方式中,仅示意出天线地170、第一辐射体130、第二辐射体140、第三辐射体150及第四辐射体160,其余部件进行了省略。所述第一辐射体130包括弯折相连的第一子辐射部131及第二子辐射部132。所述第一子辐射部131
对应所述第四边170d设置。所述第一子辐射部131具有背离所述第二子辐射部132的第一接地端130a。所述第一接地端130a电连接至天线地170。所述第二子辐射部132对应所述第一边170a设置,所述第二子辐射部132具有背离所述第一子辐射部131的第一自由端130b,且所述第二子辐射部132的长度大于所述第一子辐射部131的长度。所述第二辐射体140包括弯折相连的第三子辐射部141及第四子辐射部142。所述第三子辐射部141对应所述第二边170b设置。所述第三子辐射部141具有背离所述第四子辐射部142的第二接地端140a。所述第二接地端140a电连接至天线地170。所述第三子辐射部141对应所述第三边170c设置,所述第四子辐射部142具有背离所述第三子辐射部141的第二自由端140b,所述第四子辐射部142的长度大于所述第三子辐射部141的长度。
在本实施方式中,所述第二子辐射部132的长度大于所述第一子辐射部131的长度,因此,所述第一辐射体130在所述天线地170中激励起的电流以所述第二子辐射部132在所述天线地170中所激励起的电流为主。所述第二子辐射部132在所述天线地170中激励起的主要电流为横向电流(图示视角),具体地,所述第二子辐射部132在所述天线地170中激励起的主要电流的方向为所述第四边170d指向所述第二边170b的方向。因此,所述第一辐射体130对应的远场方向图和所述第一辐射体130完全对应第一边170a设置时对应的远场方向图基本相同。
在本实施方式中,由于所述第四子辐射部142的长度大于所述第三子辐射部141的长度,因此,所述第二辐射体140在所述天线地170中激励起的电流以所述第四子辐射体在所述天线地170中所激励起的电流为主。所述第四子辐射部142在所述天线辐射体中所激励起的主要电流为横向电流(图示视角),具体地,所述第四子辐射部142在所述天线辐射体中所激励起的主要电流的方向为所述第二边170b指向所述第四边170d的方向。因此,所述第二辐射体140对应的远场方向图和所述第二辐射体140完全对应所述第三边170c设置时的远场方向图基本相同。
在本实施方式中,所述第一辐射体130及所述第二辐射体140的设置,使得所述第一辐射体130对应的远场方向图与所述第二辐射体140对应的远场方向图分布不同,所述第一辐射体130对应的远场方向图与所述第二辐射体140对应的远场方向图互补或者大致互补,通过所述处理器60控制所述切换开关120电连接所述第一辐射体130及所述第二辐射体140中的一者可在所述电子设备1处于任何姿态下均可获得较优的导航效果。
请继续参阅图3及图20,所述电子设备1还包括第三拐角部173及第四拐角部174。所述第三拐角部173分别与所述第一拐角部171及所述第二拐角部172间隔设置。所述第三拐角部173包括第一边170a背离所述第四边170d的一端,以及第二边170b背离所述第三边170c的一端。所述第四拐角部174与所述第三拐角部173对角设置。所述第四拐角部174包括所述第三边170c背离所述第二边170b的一端,以及所述第四边170d背离所述第一边170a的一端。当所述天线模组10还包括第三辐射体150及第四辐射体160时,所述第三辐射体150设置于所述第三拐角部173,且所述第四辐射体160设置于所述第四拐角部174。
所述第三拐角部173包括第一边170a背离所述第四边170d的一端,以及第二边170b背离所述第三边170c的一端,所述第三辐射体150设置于所述第三拐角部173,包括:所述第三辐射体150设置于所述第一边170a背离所述第四边170d的一端;或者,所述第三辐射体150设置于第二边170b背离所述第三边170c的一端;或者,所述第三辐射体150部分设置于所述第一边170a背离所述第四边170d的一端,所述第三辐射体150的另外部分设置于第二边170b背离所述第三边170c的一端。
所述第四拐角部174包括所述第三边170c背离所述第二边170b的一端,以及所述第四边170d背离所述第一边170a的一端,所述第四辐射体160设置于所述第四拐角部174,包括:所述第四辐射体160设置于所述第三边170c背离所述第二边170b的一端;或者,所述第四辐射体160设置于所述第四边170d背离所述第一边170a的一端;或者,所述第四辐射体160部分设置于所述第三边170c背离所述第二边170b的一端,所述第四辐射体160的另外部分设置于所述第四边170d背离所述第一边170a的一端。
所述第四拐角部174与所述第三拐角部173对角设置,所述第三辐射体150设置于所述第三拐角部173,且所述第四辐射体160设置于所述第四拐角部174,因此,所述第三辐射体150对应的远场方向图与所述第四辐射体160对应的远场方向图分布不同,所述第三辐射体150对应的远场方向图与所述第四辐射体160对应的远场方向图互补或者大致互补,通过所述处理器60控制所述切换开关120电连接所述第三辐射体150及所述第四辐射体160中的一者可在所述电子设备1处于任何姿态下均可获得较优的导航效果。
请再次参阅图3,所述第三辐射体150对应所述第二边170b设置。所述第三辐射体150具有第三接地端150a及第三自由端150b,所述第三接地端150a电连接至天线地170,所述第三自由端150b相
较于第三接地端150a背离所述第一边170a设置。所述第四辐射体160对应所述第四边170d设置。所述第四辐射体160具有第四接地端160a及第四自由端160b。所述第四接地端160a电连接至天线地170,所述第四自由端160b相较于第四接地端160a背离所述第三边170c。
在本实施方式中,所述第三辐射体150完全对应所述第二边170b设置,因此,可使得所述第三辐射体150能够在所述天线地170上激励起较多的第三电流(其中,所述第三电流为所述第三辐射体150在所述天线地170上激励起的主要电流,且所述第三电流的方向自所述第一边170a流向所述第三边170c),进而使得所述第三辐射体150根据所述第一馈源110的激励信号产生的GPS频段的电磁波信号的强度较大,使得所述电子设备1利用所述第三辐射体150通信时具有较好的通信性能。
相应地,在本实施方式中,所述第四辐射体160完全对应所述第四边170d设置,因此,可使得所述第四辐射体160能够在所述天线地170上激励起较多的第四电流(其中,所述第四电流为所述第四辐射体160在所述天线地170上激励起的主要电流,且所述第四电流的方向自所述第三边170c流向所述第一边170a),进而使得所述第四辐射体160根据所述第一馈源110的激励信号产生的GPS频段的电磁波信号的强度较大,使得所述电子设备1利用所述第四辐射体160通信时具有较好的通信性能。
请参阅图20,所述第三辐射体150包括弯折相连的第五子辐射部151及第六子辐射部152。所述第五子辐射部151对应所述第一边170a设置。所述第五子辐射部151具有背离所述第六辐射部的第三接地端150a。所述第三接地端150a电连接至天线地170。所述第六子辐射部152对应所述第二边170b设置。所述第六子辐射部152具有背离所述第五子辐射部151的第三自由端150b。所述第六子辐射部152的长度大于所述第五子辐射部151的长度。所述第四辐射体160包括弯折相连的第七子辐射部161及第八子辐射部162。所述第七子辐射部161对应所述第三边170c设置。所述第七子辐射部161具有背离所述第八子辐射部162的第四接地端160a。所述第四接地端160a电连接至天线地170。所述第八子辐射部162对应所述第四边170d设置。所述第八子辐射部162具有背离所述第七子辐射部161的第四自由端160b。且所述第八子辐射部162的长度大于所述第七子辐射部161的长度。
在本实施方式中,所述第六子辐射部152的长度大于所述第五子辐射部151的长度,因此,所述第三辐射体150在所述天线地170中激励起的电流以所述第六子辐射部152在所述天线地170中所激励起的电流为主。所述第六子辐射部152在所述天线地170中激励起的主要电流为纵向电流(图示视角),具体地,所述第六子辐射部152在所述天线地170中激励起的主要电流的方向为自所述第一边170a流向所述第三边170c,因此,所述第三辐射体150对应的远场方向图和所述第三辐射体150完全对应第二边170b设置时对应的远场方向图基本相同。
在本实施方式中,所述第八子辐射部162的长度大于所述第七子辐射部161的长度,因此,所述第四辐射体160在所述天线地170中激励起的电流以所述第八子辐射部162在所述天线地170中所激励起的电流为主。所述第八子辐射部162在所述天线地170中激励起的主要电流为纵向电流(图示视角),具体地,所述第八子辐射部162在所述天线地170中激励起的主要电流的方向为自所述第三边170c流向所述第一边170a,因此,所述第四辐射体160对应的远场方向图和所述第四辐射体160完全对应第四边170d设置时对应的远场方向图基本相同。
在本实施方式中,所述电子设备1还包括中框(前面所述的可折叠主体20),所述中框包括中框本体20a及边框部20b。所述边框部20b围设在所述中框本体20a的周缘且与所述中框本体20a弯折相连,所述第一辐射体130、所述第二辐射体140、所述第三辐射体150及所述第四辐射体160中的至少一者形成与所述边框部20b上。
所述第一辐射体130、所述第二辐射体140、所述第三辐射体150及所述第四辐射体160中的至少一者形成与所述边框部20b上,因此便于辐射体的制备。
在一实施方式中,所述电子设备1可折叠,所述电子设备1具有折叠状态及展平状态。当所述电子设备1处于展平状态时,且所述电子设备1的导航功能被开启时,所述处理器60根据所述电子设备1的当前姿态控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者。
所述电子设备1的导航功能被开启包括但不仅限于所述电子设备1中安装的导航引用被触发,或者所述电子设备1中安装的非导航应用(比如,游戏应用等)中的导航功能被触发。
当所述电子设备1处于展平状态下,所述电子设备1中的第一辐射体130及所述第二辐射体140之间的相对距离较远,或者,所述电子设备1中的第一辐射体130及所述第二辐射体140与其他部件之间的距离相对较远,所述可避免电连接至所述第一馈源110的第一辐射体130及所述第二辐射体140中的一者被未电连接至第一馈源110的第一辐射体130及第二辐射体140中的另一者的干扰,或者,可避免其他部件对所述第一辐射体130及所述第二辐射体140中的一者收发GPS频段的电磁波信号的干扰。因此,所述电子设备1处于展平状态下利用所述第一辐射体130及所述第二辐射体140中的一者进
行通信时具有较好的通信效果。
请参参阅图21,图21为图1所示的电子设备另一实施方式的电路框图。当所述电子设备1处于展平状态且所述电子设备1的导航功能未被开启时,或者,当所述电子设备1处于折叠状态时:所述处理器60控制所述切换开关120电连接至所述第一辐射体130,所述第二辐射体140电连接至第二馈源180,其中,所述第二馈源180产生的激励信号与所述第一馈源110产生的激励信号不同。
当所述电子设备1处于展平状态且所述电子设备1的导航功能未被开启时,或者,当所述电子设备1处于折叠状态时:所述处理器60控制所述切换开关120电连接至所述第一辐射体130,以使得所述第一辐射体130作为备用的GPS天线辐射体(也称为预备的GPS辐射体)。当所述电子设备1处于展平状态且所述电子设备1的导航功能被开启时,以便所述处理器60控制所述第一馈源110通过所述第一辐射体130收发GPS频段的电磁波信号。
所述处理器60可控制切换单元190电连接至第二辐射体140,进而使得所述第二辐射体140通过切换单元190电连接至所述第二馈源180,所述第二馈源180用于产生第一预设频段的激励信号,所述第二辐射体140根据所述第一预设频段的激励信号收发所述第一预设频段的电磁波信号。其中,所述第一预设频段的电磁波信号与所述GPS频段不同。换而言之,当所述电子设备1处于展平状态且所述电子设备1的导航功能未被开启时,或者,当所述电子设备1处于折叠状态时:所述第二辐射体140作为其他的天线辐射体,比如,4G天线,或5G天线等。
可以理解地,当所述天线模组10还包括第三辐射体150时,当所述电子设备1处于展平状态且所述电子设备1的导航功能未被开启时,或者,当所述电子设备1处于折叠状态时:所述处理器60还控制第三辐射体150电连接至其他馈源(命名为第三馈源)。其中,所述第三辐射体150根据所述第三馈源收发第二预设频段的电磁波信号,其中所述第二预设频段与所述GPS频段不同。所述第二预设频段可与所述第一预设频段相同,也可不相同。
可以理解地,当所述天线模组10还包括第四辐射体160时,当所述电子设备1处于展平状态且所述电子设备1的导航功能未被开启时,或者,当所述电子设备1处于折叠状态时:所述处理器60还控制第四辐射体160电连接至其他馈源(命名为第四馈源)。其中,所述第四辐射体160根据所述第四馈源收发第三预设频段的电磁波信号,其中所述第三预设频段与所述GPS频段不同。所述第三预设频段可与所述第一预设频段相同,也可不相同。所述第三预设频段可与所述第二预设频段相同,也可相同。
请参阅图22,图22为本申请另一实施方式提供的电子设备的电路框图。在一实施方式中,所述电子设备1还包括扬声器80及显示屏30。所述扬声器80与所述处理器60电连接,当所述电子设备1的导航功能被开启时且所述显示屏30显示有预设内容时,所述处理器60将所述电子设备1中安装的导航应用中的语音通过所述扬声器80播放,其中,所述预设内容为非导航界面。
本实施方式中,所述显示屏30显示的预设内容为非导航界面,所述预设内容可以为但不仅限于为图片,或文字,或视频等。当所述显示屏30上显示有预设内容时,表明所述显示屏30被使用,所述处理器60将将所述电子设备1中安装的导航应用中的语音通过所述扬声器80播放,在显示屏30显示预设内容的情况下,仍然可使用导航功能。从而达到了所述电子设备1既可通过显示屏30观看预设内容,也可使用导航功能的双重效果。
请参阅图23,图23为本申请再一实施方式提供的电子设备的电路框图。所述电子设备1还包括显示屏30及通信单元90。当所述电子设备1的导航功能被开启且所述显示屏30显示有预设内容时,所述处理器60将所述电子设备1中的导航应用的显示界面通过所述通信单元90输出,以在与所述通信单元90通信连接的车载屏幕上进行显示。
所述显示屏30显示的预设内容为非导航界面,所述预设内容可以为但不仅限于为图片,或文字,或视频等。
当所述电子设备1的导航功能被开启时,所述处理器60根据所述电子设备1的当前姿态,控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,以使得所述第一馈源110通过所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,并通过所述一者收发GPS频段的电磁波信号。所述通信单元90可包括所述第一辐射体130及所述第二辐射体140中的另一者。所述另一者未电连接至第一馈源110,所述通信单元90包括所述另一者可避免再额外增加一个辐射体,从而使得所述电子设备1较为轻薄化。可以理解地,在其他实施方式中,所述通信单元90包括其他辐射体,只要能够实现通信功能即可。
可以理解地,当所述天线模组10包括第一辐射体130及第二辐射体140,且还包括第三辐射体150及第四辐射体160时,所述处理器60根据所述电子设备1的当前姿态,控制所述切换开关120电连接至所述第一辐射体130及所述第二辐射体140中的一者,以使得所述第一馈源110通过所述切换开关
120电连接至所述第一辐射体130及所述第二辐射体140中的一者,并通过所述一者收发GPS频段的电磁波信号。所述通信单元90可包括所述第一辐射体130及所述第二辐射体140中的另一者、或第三辐射体150或第四辐射体160。所述另一者、所述第三辐射体150及第四辐射体160均未电连接至第一馈源110,所述通信单元90包括所述另一者、所述第三辐射体150及第四辐射体160中的任意一个辐射体,可避免再额外增加一个辐射体,从而使得所述电子设备1较为轻薄化。可以理解地,在其他实施方式中,所述通信单元90包括其他辐射体,只要能够实现通信功能即可。
所述处理器60将所述电子设备1中的导航应用的显示界面通过所述通信单元90输出,以在与所述通信单元90通信连接的车载屏幕上进行显示。
当所述显示屏30上显示有预设内容时,表明所述显示屏30被使用,所述处理器60将所述电子设备1中的导航应用的显示界面通过所述通信单元90输出,以在与所述通信单元90通信连接的车载屏幕上进行显示,在显示屏30显示预设内容的情况下,仍然可进行导航。从而达到了所述电子设备1既可通过显示屏30观看预设内容,也可使用导航功能的双重效果。
请继续参阅图1及图3,所述电子设备1具有第一折叠轴线L1。当所述电子设备1处于展平状态时,所述第一辐射体130及所述第三辐射体150位于所述第一折叠轴线L1的同一侧,所述第二辐射体140及所述第四辐射体160位于所述第一折叠轴线L1的同一侧,且所述第二辐射体140与所述第一辐射体130位于所述第一折叠轴线L1的不同侧。所述折叠状态包括第一折叠状态,当所述电子设备1处于第一折叠状态时,所述第一辐射体130与所述第四辐射体160错位设置,所述第二辐射体140与所述第三辐射体150错位设置。需要说明的是,当所述电子设备1处于第一折叠状态时,所述电子设备1是由展平状态沿着所述第一折叠轴线L1进行折叠而得到的状态。
在本实施方式中,所述折叠状态包括第一折叠状态,当所述电子设备1处于第一折叠状态时,所述第一辐射体130与所述第四辐射体160错位设置,所述第一辐射体130与所述第四辐射体160之间没有重合;所述第二辐射体140与所述第三辐射体150错位设置,所述第二辐射体140与所述第三辐射体150之间没有重合。因此,所述天线模组10在所述电子设备1处于第一折叠状态下仍可具有较好的通信性能。
当所述电子设备1处于第一折叠状态时,所述第一辐射体130与所述第四辐射体160错位设置,可减少甚至避免所述第一辐射体130和所述第四辐射体160之间的遮挡及干扰。比如,当所述处理器60控制所述切换开关120电连接至所述第一辐射体130时,所述第一馈源110通过所述第一辐射体130收发GPS频段的电磁波信号,在所述电子设备1处于第一折叠状态时,可减小甚至避免所述第四辐射体160对所述第一辐射体130收发所述GPS频段的电磁波信号的遮挡及干扰。相应地,比如,当所述处理器60控制所述切换开关120电连接至所述第四辐射体160时,所述第一馈源110通过所述第四辐射体160收发GPS频段的电磁波信号,在所述电子设备1处于第一折叠状态时,可减小甚至避免所述第一辐射体130对所述第四辐射体160收发所述GPS频段的电磁波信号的遮挡及干扰。
当所述电子设备1处于第一折叠状态时,所述第二辐射体140与所述第三辐射体150错位设置,可减小甚至避免所述第二辐射体140和所述第三辐射体150之间的遮挡及干扰。
比如,当所述处理器60控制所述切换开关120电连接至所述第二辐射体140时,所述第一馈源110通过所述第二辐射体140收发GPS频段的电磁波信号,在所述电子设备1处于第一折叠状态时,可减小甚至避免所述第三辐射体150对所述第二辐射体140收发所述GPS频段的电磁波信号的遮挡及干扰。相应地,比如,当所述处理器60控制所述切换开关120电连接至所述第三辐射体150时,所述第一馈源110通过所述第三辐射体150收发GPS频段的电磁波信号,在所述电子设备1处于第一折叠状态时,可减小甚至避免所述第二辐射体140对所述第三辐射体150收发所述GPS频段的电磁波信号的遮挡及干扰。
请一并参阅图24、图25及图26,图24为本申请又一实施方式提供的电子设备的结构示意图;图25为图24提供的电子设备的立体分解示意图;图26为图25中的电子设备的部分结构示意图。在本实施方式中,所述电子设备1具有第二折叠轴线L2。当所述电子设备1处于展平状态时,所述第一辐射体130及所述第四辐射体160位于所述第二折叠轴线L2的同一侧,所述第二辐射体140及所述第三辐射体150位于所述第二折叠轴线L2的同一侧,且所述第二辐射体140与所述第一辐射体130位于所述第二折叠轴线L2的不同侧。所述折叠状态包括第二折叠状态,当所述电子设备1处于第二折叠状态时,所述第一辐射体130与所述第三辐射体150错位设置,所述第二辐射体140与所述第四辐射体160错位设置。需要说明的是,当所述电子设备1处于第二折叠状态时,所述电子设备1是由展平状态沿着所述第二折叠轴线L2进行折叠而得到的状态。
在本实施方式中,当所述电子设备1处于第二折叠状态时,所述第一辐射体130与所述第三辐射体
150错位设置,所述第一辐射体130与所述第三辐射体150之间没重合;所述第二辐射体140与所述第四辐射体160错位设置,所述第二辐射体140与所述第四辐射体160之间没有重合。因此,所述天线模组10在所述电子设备1处于第二折叠状态下仍可具有较好的通信性能。
当所述电子设备1处于第二折叠状态时,所述第一辐射体130与所述第三辐射体150错位设置,可减少甚至避免所述第一辐射体130和所述第三辐射体150之间的遮挡及干扰。比如,当所述处理器60控制所述切换开关120电连接至所述第一辐射体130时,所述第一馈源110通过所述第一辐射体130收发GPS频段的电磁波信号,在所述电子设备1处于第二折叠状态时,可减小甚至避免所述第三辐射体150对所述第一辐射体130收发所述GPS频段的电磁波信号的遮挡及干扰。相应地,比如,当所述处理器60控制所述切换开关120电连接至所述第三辐射体150时,所述第一馈源110通过所述第三辐射体150收发GPS频段的电磁波信号,在所述电子设备1处于第二折叠状态时,可减小甚至避免所述第一辐射体130对所述第三辐射体150收发所述GPS频段的电磁波信号的遮挡及干扰。
当所述电子设备1处于第二折叠状态时,所述第二辐射体140与所述第四辐射体160错位设置,可减少甚至避免所述第二辐射体140和所述第四辐射体160之间的遮挡及干扰。比如,当所述处理器60控制所述切换开关120电连接至所述第二辐射体140时,所述第一馈源110通过所述第二辐射体140收发GPS频段的电磁波信号,在所述电子设备1处于第二折叠状态时,可减小甚至避免所述第四辐射体160对所述第二辐射体140收发所述GPS频段的电磁波信号的遮挡及干扰。相应地,比如,当所述处理器60控制所述切换开关120电连接至所述第四辐射体160时,所述第一馈源110通过所述第四辐射体160收发GPS频段的电磁波信号,在所述电子设备1处于第二折叠状态时,可减小甚至避免所述第二辐射体140对所述第四辐射体160收发所述GPS频段的电磁波信号的遮挡及干扰。
需要说明的是,在上述实施方式中,所述可折叠主体为中框,所述天线模组10中的天线地170为所述中框。所述第一接地端130a电连接至所述可折叠主体20(中框)以接地。所述第一接地端130a电连接至所述可折叠主体20以接地时,可直接或间接与所述可折叠主体20电连接。在其他实施方式中,所述第一接地端130a也可以电连接至除了所述可折叠主体20之外的单独的参考地(也称地系统),以接地。比如,所述第一接地端130a电连接至所述电路板的地,或者屏幕的地。
需要说明的是,在上述实施方式中,所述可折叠主体为中框,所述天线模组10中的天线地170为所述中框。所述第二接地端140a电连接至所述可折叠主体20(中框)以接地。所述第二接地端140a电连接至所述可折叠主体20以接地时,可直接或间接与所述可折叠主体20电连接。在其他实施方式中,所述第二接地端140a也可以电连接至除了所述可折叠主体20之外的单独的参考地(也称地系统),以接地。比如,所述第二接地端140a电连接至所述电路板的地,或者屏幕的地。
需要说明的是,在上述实施方式中,所述可折叠主体为中框,所述天线模组10中的天线地170为所述中框。所述第三接地端150a电连接至所述可折叠主体20以接地。所述第三接地端150a电连接至所述可折叠主体20以接地时,可直接或间接与所述可折叠主体20电连接。在其他实施方式中,所述第三接地端150a也可以电连接至除了所述可折叠主体20之外的单独的参考地(也称地系统),以接地。比如,所述第三接地端150a电连接至所述电路板的地,或者屏幕的地。
需要说明的是,在上述实施方式中,所述可折叠主体为中框,所述天线模组10中的天线地170为所述中框。所述第四接地端160a电连接至所述可折叠主体20以接地。所述第四接地端160a电连接至所述可折叠主体20以接地时,可直接或间接与所述可折叠主体20电连接。在其他实施方式中,所述第四接地端160a也可以电连接至除了所述可折叠主体20之外的单独的参考地(也称地系统),以接地。比如,所述第四接地端160a电连接至所述电路板的地,或者屏幕的地。
本申请实施方式提供的电子设备1,姿态识别传感器50识别出的电子设备1的当前姿态与切换开关120的切换联动,达到智能切换天线辐射体的目的。处理器60根据所述电子设备1的当前姿态智能控制所述切换开关120电连接至远场方向图中上半球占比较好的天线辐射体中,从而使得所述电子设备1的天线模组10利用GPS频段进行通信时具有较好的通信性能。
在一实施方式中,当所述电子设备1处于展平状态下(也称为大屏状态),所述电子设备1中的天线模组10第一辐射体130、第二辐射体140、第三辐射体150及第四辐射体160,再基于姿态识别传感器50的识别功能,具体地,所述姿态传感器识别所述电子设备1的当前姿态为第一姿态(本实施方式中为左横屏姿态)、第二姿态(本实施方式中为右横屏姿态)、第三姿态(本实施方式中为倒立姿态)
或第四姿态(本实施方式为竖立姿态),处理器60控制切换开关120电连接至远场方向图中上半球占比最优的天线辐射体上,从而获得最优的导航性能。
比如,所述姿态识别传感器50识别出所述电子设备1的当前姿态为第二姿态(本实施方式中为右横屏姿态)时,所述处理器60生成开关切换控制信号(或称为开关切换状态信号),并控制所述切换开关120电连接至所述第二辐射体140,即,所述第二辐射体140工作,从而使得X轴正向(朝向天空的方向)具有良好的上半球占比。
需要说明的是,在其他实施方式中,当所述电子设备1处于折叠状态下,也可基于再基于姿态识别传感器50的识别功能,处理器60控制切换开关120电连接至远场方向图中上半球占比最优的天线辐射体上,从而获得最优的导航性能。
当所述天线模组10包括第一辐射体130、第二辐射体140、第三辐射体150及第四辐射体160,基于远场方向图沿电流滞后的方向原理,设计出了第一辐射体130、第二辐射体140、第三辐射体150及第四辐射体160这四个辐射体的布局,从而使得所述电子设备1在各种姿态下,切换开关120均可切换至远场方向图中上半球占比较好的天线辐射体,进而达到各个方向的上半球占比都较优。
需要说明的是,本申请采用一辐射体、第二辐射体140、第三辐射体150及第四辐射体160这四个辐射体的布局保证所述电子设备1在各种姿态下,切换开关120均可切换远场方向图中上半球占比较好的天线辐射体,进而达到各个方向的上半球占比都较优。如对于一些导航方向图要求不是特别高(比如,远场方向图中上半球占为50%左右时),所述天线模组10可包括两个辐射体,比如,第一辐射体130及第二辐射体140,而不包括第三辐射体150及第四辐射体160。在其他实施方式中,所述天线模组10可包括第三辐射体150及第四辐射体160,而不包括第一辐射体130及第二辐射体140。需要说明的是,当所述天线模组10包括第三辐射体150及第四辐射体160,而不包括第一辐射体130及第二辐射体140时,所述第三辐射体150也可命名为第一辐射体130,所述第四辐射体160也可命名为第二辐射体140。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
Claims (19)
- 一种电子设备,其中,所述电子设备包括:姿态识别传感器,用于识别所述电子设备的当前姿态;天线模组,所述天线模组包括第一馈源、切换开关、第一辐射体及第二辐射体,第一馈源用于产生激励电流,使得第一辐射体或第二辐射体支持用于定位的频段,所述切换开关电连接至所述第一馈源,所述第一辐射体与所述第二辐射体间隔设置,且所述第一辐射体的主辐射方向与所述第二辐射体的主辐射方向不同;及处理器,分别与所述姿态识别传感器及所述切换开关电连接,用于根据所述电子设备的当前姿态控制所述切换开关电连接至所述第一辐射体及所述第二辐射体中的一者,其中,所述第一馈源连接至所述第一辐射体及所述第二辐射体中的所述一者时,所述一者接收所述频段的信号强大于所述第一辐射体及所述第二辐射体的另一者接收所述频段的信号强度。
- 如权利要求1所述的电子设备,其中,当所述第一馈源连接至所述第一辐射体及所述第二辐射体中的所述一者时,所述一者的主辐射方向相较于所述另一者的主辐射方向朝上。
- 如权利要求1所述的电子设备,其中,当所述当前姿态为第一姿态时,所述处理器控制所述切换开关电连接至所述第一辐射体,其中,当所述当前姿态为所述第一姿态时,所述第一辐射体的主辐射方向相较于所述第二辐射体的主辐射方向朝上。
- 如权利要求2所述的电子设备,其中,所述第一辐射体与所述第二辐射体呈对角设置,当所述当前姿态为第二姿态时,所述处理器控制所述切换开关电连接至第二辐射体,其中,当所述当前姿态为所述第二姿态时,所述第二辐射体的主辐射方向相较于所述第一辐射体的主辐射方向朝上。
- 如权利要求4所述的电子设备,其中,所述天线模组还包括:第三辐射体,所述第三辐射体分别与所述第一辐射体及所述第二辐射体间隔设置,且所述第三辐射体的主辐射方向与所述第一辐射体及所述第二辐射体的辐射方向均不相同;当所述当前姿态为第三姿态时,所述处理器控制所述切换开关电连接至所述第三辐射体,其中,所述当前姿态为所述第三姿态时,所述第三辐射体的主辐射方向分别相较于所述第一辐射体的主辐射方向及所述第二辐射体的主辐射方向朝上。
- 如权利要求5所述的电子设备,其中,所述天线模组还包括:第四辐射体,所述第四辐射体分别与所述第一辐射体及所述第二辐射体间隔设置,且所述第四辐射体与所述第三辐射体呈对角设置,所述第四辐射体的主辐射方向与所述第一辐射体、所述第二辐射体及所述第三辐射体的主辐射方向均不相同;当所述当前姿态为第四姿态时,所述处理器控制所述切换开关电连接至第四辐射体,其中,当所述当前姿态为所述第四姿态时,所述第四辐射体的主辐射方向相较于所述第一辐射体、所述第二辐射体及所述第三辐射体的主辐射方向朝上。
- 如权利要求6所述的电子设备,其中,所述天线模组还包括天线地,天线地具有依次首位相连的第一边、第二边、第三边及第四边,其中,所述电子设备包括第一拐角部及第二拐角部,所述第一拐角部包括第一边背离所述第二边的一端,以及所述第四边背离所述第三边的一端;所述第二拐角部与所述第一拐角部呈对角设置,所述第二拐角部包括第二边背离所述第一边的一端,以及所述第三边背离所述第四边的一端;所述第一辐射体设置于所述第一拐角部,且所述第二辐射体设置于所述第二拐角部。
- 如权利要求7所述的电子设备,其中,所述第一辐射体对应所述第一边设置,所述第一辐射体具有第一接地端及第一自由端,所述第一接地端电连接至天线地,所述第一自由端相较于所述第一接地端背离所述第四边设置;所述第二辐射体对应第三边设置,所述第二辐射体具有第二接地端及第二自由端,所述第二接地端电连接至天线地,所述第二自由端相较于所述第二接地端背离所述第二边设置。
- 如权利要求7所述的电子设备,其中,所述第一辐射体包括弯折相连的第一子辐射部及第二子辐射部,所述第一子辐射部对应所述第四边设置,所述第一子辐射部具有背离所述第二子辐射部的第一接 地端,所述第一接地端电连接至天线地,所述第二子辐射部对应所述第一边设置,所述第二子辐射部具有背离所述第一子辐射部的第一自由端,且所述第二子辐射部的长度大于所述第一子辐射部的长度;所述第二辐射体包括弯折相连的第三子辐射部及第四子辐射部,所述第三子辐射部对应所述第二边设置,所述第三子辐射部具有背离所述第四子辐射部的第二接地端,所述第二接地端电连接至天线地,所述第三子辐射部对应所述第三边设置,所述第四子辐射部具有背离所述第三子辐射部的第二自由端,所述第四子辐射部的长度大于所述第三子辐射部的长度。
- 如权利要求7所述的电子设备,其中,所述电子设备还包括第三拐角部及第四拐角部,所述第三拐角部分别与所述第一拐角部及所述第二拐角部间隔设置,所述第三拐角部包括第一边背离所述第四边的一端,以及第二边背离所述第三边的一端;所述第四拐角部与所述第三拐角部对角设置,所述第四拐角部包括所述第三边背离所述第二边的一端,以及所述第四边背离所述第一边的一端;当所述天线模组还包括第三辐射体及第四辐射体时,所述第三辐射体设置于所述第三拐角部,且所述第四辐射体设置于所述第四拐角部。
- 如权利要求10所述的电子设备,其中,所述第三辐射体对应所述第二边设置,所述第三辐射体具有第三接地端及第三自由端,所述第三接地端电连接至天线地,所述第三自由端相较于第三接地端背离所述第一边设置;所述第四辐射体对应所述第四边设置,所述第四辐射体具有第四接地端及第四自由端,所述第四接地端电连接至天线地,所述第四自由端相较于第四接地端背离所述第三边。
- 如权利要求10所述的电子设备,其中,所述第三辐射体包括弯折相连的第五子辐射部及第六子辐射部,所述第五子辐射部对应所述第一边设置,所述第五子辐射部具有背离所述第六辐射部的第三接地端,所述第三接地端电连接至天线地,所述第六子辐射部对应所述第二边设置,所述第六子辐射部具有背离所述第五子辐射部的第三自由端,且所述第六子辐射部的长度大于所述第五子辐射部的长度;所述第四辐射体包括弯折相连的第七子辐射部及第八子辐射部,所述第七子辐射部对应所述第三边设置,所述第七子辐射部具有背离所述第八子辐射部的第四接地端,所述第四接地端电连接至天线地,所述第八子辐射部对应所述第四边设置,所述第八子辐射部具有背离所述第七子辐射部的第四自由端,且所述第八子辐射部的长度大于所述第七子辐射部的长度。
- 如权利要求6所述的电子设备,其中,所述电子设备还包括中框,所述中框包括中框本体及边框部,所述边框部围设在所述中框本体的周缘且与所述中框本体弯折相连,所述第一辐射体、所述第二辐射体、所述第三辐射体及所述第四辐射体中的至少一者形成与所述边框部上。
- 如权利要求1所述的电子设备,其中,所述电子设备可折叠,所述电子设备具有折叠状态及展平状态,当所述电子设备处于展平状态时,且所述电子设备的导航功能被开启时,所述处理器根据所述电子设备的当前姿态控制所述切换开关电连接至所述第一辐射体及所述第二辐射体中的所述一者。
- 如权利要求14所述的电子设备,其中,当所述电子设备处于展平状态且所述电子设备的导航功能未被开启时,或者,当所述电子设备处于折叠状态时:所述处理器控制所述切换开关电连接至所述第一辐射体,所述第二辐射体电连接至第二馈源,其中,所述第二馈源产生的射频信号与所述第一馈源产生的射频信号的不同。
- 如权利要求14所述的电子设备,其中,所述电子设备还包括扬声器及显示屏,所述扬声器与所述处理器电连接,当所述电子设备的导航功能被开启时且所述显示屏显示有预设内容时,所述处理器将所述电子设备中安装的导航应用中的语音通过所述扬声器播放,其中,所述预设内容为非导航界面。
- 如权利要求14所述的电子设备,其中,所述电子设备还包括显示屏及通信单元,当所述电子设备的导航功能被开启且所述显示屏显示有预设内容时,所述处理器将所述电子设备中的导航应用的显示界面通过所述通信单元输出,以在与所述通信单元通信连接的车载屏幕上进行显示。
- 如权利要求14所述的电子设备,其中,所述电子设备具有第一折叠轴线,当所述电子设备处于展平状态时,所述第一辐射体及所述第三辐射体位于所述第一折叠轴线的同一侧,所述第二辐射体及所述第四辐射体位于所述第一折叠轴线的同一侧,且所述第二辐射体与所述第一辐射体位于所述第一折叠轴线的不同侧;所述折叠状态包括第一折叠状态,当所述电子设备处于第一折叠状态时,所述第一辐射体与所述第四辐射体错位设置,所述第二辐射体与所述第三辐射体错位设置。
- 如权利要求14所述的电子设备,其中,所述电子设备具有第二折叠轴线,当所述电子设备处于展平状态时,所述第一辐射体及所述第四辐射体位于所述第二折叠轴线的同一侧,所述第二辐射体及所述第三辐射体位于所述第二折叠轴线的同一侧,且所述第二辐射体与所述第一辐射体位于所述第二折叠轴线的不同侧;所述折叠状态包括第二折叠状态,当所述电子设备处于第二折叠状态时,所述第一辐射体与所述第三辐射体错位设置,所述第二辐射体与所述第四辐射体错位设置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211214537.9A CN115458918A (zh) | 2022-09-30 | 2022-09-30 | 电子设备 |
CN202211214537.9 | 2022-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024066672A1 true WO2024066672A1 (zh) | 2024-04-04 |
Family
ID=84309227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/107503 WO2024066672A1 (zh) | 2022-09-30 | 2023-07-14 | 电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115458918A (zh) |
WO (1) | WO2024066672A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115458918A (zh) * | 2022-09-30 | 2022-12-09 | Oppo广东移动通信有限公司 | 电子设备 |
CN116961687B (zh) * | 2023-09-21 | 2023-12-19 | 浪潮(山东)计算机科技有限公司 | 一种通信装置及其广播通信设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736140A (zh) * | 2018-08-15 | 2018-11-02 | 维沃移动通信有限公司 | 一种天线控制方法及终端设备 |
CN109193123A (zh) * | 2018-08-29 | 2019-01-11 | Oppo广东移动通信有限公司 | 电子设备、天线辐射体控制方法及存储介质 |
CN212752311U (zh) * | 2020-07-22 | 2021-03-19 | 联想(北京)有限公司 | 一种终端 |
CN112751160A (zh) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | 可折叠电子设备 |
CN112954793A (zh) * | 2021-02-18 | 2021-06-11 | Oppo广东移动通信有限公司 | 定位方法、装置、终端及存储介质 |
WO2022025627A1 (ko) * | 2020-07-31 | 2022-02-03 | 삼성전자 주식회사 | 전자 장치 및 안테나 운용 방법 |
CN115458918A (zh) * | 2022-09-30 | 2022-12-09 | Oppo广东移动通信有限公司 | 电子设备 |
-
2022
- 2022-09-30 CN CN202211214537.9A patent/CN115458918A/zh active Pending
-
2023
- 2023-07-14 WO PCT/CN2023/107503 patent/WO2024066672A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736140A (zh) * | 2018-08-15 | 2018-11-02 | 维沃移动通信有限公司 | 一种天线控制方法及终端设备 |
CN109193123A (zh) * | 2018-08-29 | 2019-01-11 | Oppo广东移动通信有限公司 | 电子设备、天线辐射体控制方法及存储介质 |
CN112751160A (zh) * | 2019-10-31 | 2021-05-04 | 华为技术有限公司 | 可折叠电子设备 |
CN212752311U (zh) * | 2020-07-22 | 2021-03-19 | 联想(北京)有限公司 | 一种终端 |
WO2022025627A1 (ko) * | 2020-07-31 | 2022-02-03 | 삼성전자 주식회사 | 전자 장치 및 안테나 운용 방법 |
CN112954793A (zh) * | 2021-02-18 | 2021-06-11 | Oppo广东移动通信有限公司 | 定位方法、装置、终端及存储介质 |
CN115458918A (zh) * | 2022-09-30 | 2022-12-09 | Oppo广东移动通信有限公司 | 电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN115458918A (zh) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024066672A1 (zh) | 电子设备 | |
CN112438042B (zh) | 天线结构和包括天线的电子设备 | |
USRE48738E1 (en) | Mobile terminal | |
CN112352351B (zh) | 包括5g天线模块的电子设备 | |
US9008737B2 (en) | Mobile terminal and an antenna for the mobile terminal | |
US7839340B2 (en) | Collapsable portable wireless unit | |
CN111492644A (zh) | 天线装置及具有该天线装置的移动终端 | |
JP2008085869A (ja) | 携帯無線装置 | |
CN110676557B (zh) | 电子设备 | |
TW200905977A (en) | Receiving device for global positioning system and antenna structure thereof | |
CN102834971B (zh) | 天线装置及显示装置 | |
CN112018495A (zh) | 电子设备 | |
WO2008075156A1 (en) | Antenna for a portable device | |
CN112467370B (zh) | 天线组件及电子设备 | |
CN109638453B (zh) | 天线组件及电子设备 | |
JP2006325152A (ja) | 携帯型無線端末装置 | |
WO2024109272A1 (zh) | 电子设备 | |
WO2024082821A1 (zh) | 可折叠电子设备 | |
CN118263677A (zh) | 天线装置及电子设备 | |
CN117748169A (zh) | 电子设备 | |
WO2024198666A1 (zh) | 一种电子设备 | |
WO2022267597A1 (zh) | 天线装置及电子设备 | |
CN117317570A (zh) | 天线组件、中框组件以及电子设备 | |
CN118523061A (zh) | 天线装置及电子设备 | |
JP2006303720A (ja) | 携帯無線機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23869919 Country of ref document: EP Kind code of ref document: A1 |