WO2024066563A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2024066563A1
WO2024066563A1 PCT/CN2023/103453 CN2023103453W WO2024066563A1 WO 2024066563 A1 WO2024066563 A1 WO 2024066563A1 CN 2023103453 W CN2023103453 W CN 2023103453W WO 2024066563 A1 WO2024066563 A1 WO 2024066563A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
communication device
indicate
terminal device
moment
Prior art date
Application number
PCT/CN2023/103453
Other languages
English (en)
French (fr)
Inventor
王晓鲁
孔垂丽
赵斐然
杨若男
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024066563A1 publication Critical patent/WO2024066563A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and a communication device.
  • Tone reservation (TR) technology can be used to suppress the peak-to-average power ratio (PAPR) of the waveform. That is, the transmitter reserves some subcarriers to carry signals that suppress PAPR.
  • the pattern composed of subcarrier numbers corresponding to the reserved carriers used to suppress PAPR is called a TR pattern. It is understandable that reserving some subcarriers will reduce spectrum utilization.
  • the TR patterns used for these multiple beams are the same. However, different beams cover different numbers of terminal devices, and have different requirements for throughput and spectrum utilization. The current PAPR suppression scheme cannot meet the throughput requirements of each beam, and the spectrum utilization is low.
  • the present application provides a communication method and a communication device to meet the throughput requirements of each beam and improve spectrum utilization.
  • an embodiment of the present application provides a communication method, which can be performed by a first communication device, which can be a communication device or a communication device capable of supporting a communication device to implement the functions required by the method, such as a chip system.
  • a first communication device which can be a communication device or a communication device capable of supporting a communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip provided in the terminal device, or other components for implementing the functions of the terminal device. The following description is based on the example that the first communication device is a terminal device.
  • the communication method includes: a terminal device determines a first TR pattern corresponding to a first beam at a first moment, and determines a second TR pattern corresponding to a second beam at a second moment, wherein the first beam is a service beam of the terminal device at the first moment, the second beam is a service beam of the terminal device at the second moment, and the first TR pattern is different from the second TR pattern.
  • the first TR pattern and the second TR pattern may be different, that is, different TR patterns may be used for different beams in a cell, and the noise interference generated when suppressing PAPR is controlled not to be in the beam direction of the useful signal, thereby avoiding interference between beams and improving the spectrum utilization of the system.
  • an appropriate number of reserved carriers may be allocated to each beam, so that each beam can achieve a higher throughput, improve spectrum utilization, and increase link budget.
  • the terminal device uses the first beam to send or receive information between the first moment and the second moment, and uses the second beam to send or receive information starting from the second moment.
  • the serving beam of the terminal device changes, the TR pattern used by the terminal device may also change accordingly.
  • the terminal device determines the first TR pattern corresponding to the first beam at the first moment, including: the terminal device receives a mapping relationship from the network device, the mapping relationship is used to indicate the correspondence between at least one TR pattern and at least one beam; the terminal device determines the first TR pattern according to the first beam and the mapping relationship.
  • the network device can configure the TR patterns corresponding to each beam for the terminal device, so that the terminal device can determine the TR pattern corresponding to the service beam according to the configuration of the network device, which is more flexible.
  • a mapping relationship is used to indicate a correspondence between at least one TR pattern and at least one beam, including: a mapping relationship is used to indicate a correspondence between at least one TR pattern and a beam parameter set, and the beam parameter set includes one or more of the following information: a bandwidth part (BWP), a transmission configuration indicator (TCI), a synchronization signal block index, or a geographic location range.
  • BWP bandwidth part
  • TCI transmission configuration indicator
  • a synchronization signal block index or a geographic location range.
  • the embodiment of the present application does not limit the specific implementation form of the mapping relationship, for example, it can be a correspondence between at least one TR pattern and a BWP, or a correspondence between at least one TR pattern and a geographic location range, etc.
  • the terminal device determines a first TR pattern corresponding to the first beam at a first moment, including: the terminal device receives first configuration information from a network device, the first configuration information includes configuration information of a first beam set, and each beam in the first beam set corresponds to a third TR pattern; if the first beam belongs to the first beam set, the terminal device determines that the first TR pattern is the third TR.
  • the network device may configure a beam configuration using a TR pattern for the terminal device, and if the service beam of the terminal device belongs to the beam configured by the network device, the terminal device determines to use the TR pattern corresponding to the configured beam.
  • the terminal device determines the first TR pattern corresponding to the first beam at the first moment, including: the terminal device receives second configuration information from the network device, the second configuration information is used to indicate the first TR pattern corresponding to the first beam and/or the TR pattern corresponding to at least one third beam, and the at least one third beam is a beam adjacent to the first beam; the terminal device determines the first TR pattern according to the second configuration information.
  • the network device can configure the TR pattern corresponding to the service beam and the TR pattern corresponding to the beam adjacent to the service beam for the terminal device, without generating the TR pattern corresponding to the used beam, which can save signaling overhead.
  • the method further includes: the terminal device receives indication information from the network device, the indication information is used to indicate that PAPR is not suppressed, for example, the indication information may indicate that the terminal device and/or the network device does not suppress PAPR.
  • the indication information is used to indicate that the TR pattern is associated with a cell; or, the indication information is used to indicate that the TR pattern is associated with a beam.
  • the network device may explicitly indicate to the terminal device whether the terminal device uses a TR pattern, or may explicitly indicate to the terminal device whether to use a cell-level TR pattern or a beam-level TR pattern. If the network device configures a cell-level TR pattern, only one TR pattern needs to be configured for the terminal device, which can save signaling overhead.
  • an embodiment of the present application provides a communication method, which can be performed by a second communication device, and the first communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a network device, or a chip set in the network device, or other components for implementing the functions of the network device.
  • the following description takes the example that the first communication device is a network device.
  • the communication method includes: a network device determines at least one TR pattern corresponding to at least two beams, and indicates at least one TR pattern corresponding to at least two beams to a terminal device, wherein the at least two beams include a first beam and a second beam, and a first TR pattern corresponding to the first beam and a second TR pattern corresponding to the second beam are different.
  • the network device indicates to the terminal device at least one TR pattern corresponding to at least two beams, including: the network device sends a mapping relationship to the terminal device, where the mapping relationship is used to indicate the correspondence between at least one TR pattern and at least one beam.
  • a mapping relationship is used to indicate a correspondence between at least one TR pattern and at least one beam, including: a mapping relationship is used to indicate a correspondence between the at least one TR pattern and a beam parameter set, and the beam parameter set includes one or more of the following information: partial bandwidth BWP, transmission configuration indication TCI, synchronization signal block index or geographic location range.
  • the network device indicates to the terminal device at least one TR pattern corresponding to at least two beams, including: the network device sends first configuration information to the terminal device, where the first configuration information includes configuration information of a first beam set.
  • the network device indicates to the terminal device at least one TR pattern corresponding to at least two beams, including: the network device sends second configuration information to the terminal device, the second configuration information is used to indicate the first TR pattern corresponding to the first beam and/or the TR pattern corresponding to at least one third beam, and the at least one third beam is a beam adjacent to the first beam.
  • the network device also sends indication information to the terminal device, where the indication information is used to indicate not to suppress PAPR, or the indication information is used to indicate that the TR pattern is associated with a cell; or the indication information is used to indicate that the TR pattern is associated with a beam.
  • the beneficial effects of the above-mentioned second aspect and its implementation method can refer to the description of the beneficial effects of the first aspect and its implementation method.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behaviors in the above-mentioned first aspect or second aspect method embodiment.
  • the beneficial effects can be found in the description of the first aspect and will not be repeated here.
  • the communication device may be the communication device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device includes corresponding means (means) or modules for executing the method of the first aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit, and it can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood to be a general term for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units (modules) can perform the corresponding functions in the above-mentioned first aspect method example, please refer to the detailed description in the method example for details, which will not be repeated here.
  • the communication device may be the communication device in the second aspect, or the communication device may be a device capable of implementing the method provided by the second aspect, such as a chip or a chip system.
  • the communication device includes corresponding means (means) or modules for executing the method of the second aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit, and it can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood to be a general term for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units (modules) can perform the corresponding functions in the above-mentioned second aspect method example, specifically Please refer to the detailed description in the method example, which will not be repeated here.
  • an embodiment of the present application provides a communication device, which may be the communication device of the third aspect above, or a chip or chip system arranged in the communication device of the third aspect.
  • the communication device may be a terminal device or a network device.
  • the communication device includes a communication interface and a processor, and optionally, also includes a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program or instruction, the communication device executes the method executed by the communication device in the above method.
  • an embodiment of the present application provides a communication device, the communication device comprising an input/output interface and a logic circuit.
  • the input/output interface is used to input and/or output information.
  • the logic circuit is used to execute the method described in any one of the first aspect to the second aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a communication interface, for implementing the method described in any one of the first aspect to the second aspect.
  • the chip system also includes a memory for storing a computer program.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • an embodiment of the present application provides a communication system, the communication system comprising a terminal device and a network device for implementing the functions related to any one of the first aspect to the second aspect.
  • the communication system may include more terminal devices or more network devices.
  • the present application provides a computer-readable storage medium storing a computer program, which, when executed, implements the method in any one of the first to second aspects described above.
  • a computer program product comprising: a computer program code, when the computer program code is executed, the method in any one of the first to second aspects above is executed.
  • beneficial effects of the above-mentioned second to ninth aspects and their implementation methods can refer to the description of the beneficial effects of the first aspect and its implementation method.
  • FIG1 is a schematic diagram of the architecture of a communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of the architecture of another communication system applicable to an embodiment of the present application.
  • FIG3 is a schematic diagram of a network architecture of another communication system applicable to an embodiment of the present application.
  • FIG4 is a schematic diagram of multi-beam PAPR suppression provided in an embodiment of the present application.
  • FIG5 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of multi-beam PAPR suppression provided by an embodiment of the present application.
  • FIG7 is a schematic diagram of TR noise emission direction control provided in an embodiment of the present application.
  • FIG8 is another schematic diagram of TR noise emission direction control provided by an embodiment of the present application.
  • FIG9 is a schematic diagram of multiple beams in one cell provided in an embodiment of the present application.
  • FIG10 is a block diagram of the multi-beam PAPR suppression principle provided by an embodiment of the present application.
  • FIG11 is a schematic diagram of the PAPR suppression effect achieved by the solution provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of two satellite coverage provided by an embodiment of the present application.
  • FIG13 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG. 14 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to new radio (NR) systems, long term evolution (LTE) systems, non terrestrial networks (NTN) systems, or can also be applied to next generation mobile communication systems or other similar communication systems.
  • NR new radio
  • LTE long term evolution
  • NTN non terrestrial networks
  • the technical solutions provided by the embodiments of the present application can also be applied to vehicle to everything (V2X) systems, Internet of things (IoT) systems, etc.
  • V2X vehicle to everything
  • IoT Internet of things
  • FIG. 1 is a schematic diagram of a network architecture of a communication system applicable to an embodiment of the present application.
  • the communication system may include a network device and two terminal devices, and the two terminal devices may be mobile terminal devices and/or any other suitable devices for communicating on a wireless communication system, and both may be connected to the network device. Both terminal devices are capable of communicating with the network device.
  • the number of terminal devices in FIG. 1 is only an example, and may be less or more.
  • the terminal device is a device with wireless transceiver function, which can send signals to the network device or receive signals from the network device. Signals from network devices.
  • Terminal devices may include user equipment (UE), sometimes also referred to as terminals, access stations, UE stations, remote stations, wireless communication devices, or user devices, etc.
  • UE user equipment
  • the terminal devices are used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communications, device to device (D2D), V2X, machine-to-machine/machine-type communications (M2M/MTC), IoT, virtual reality (VR), augmented reality (AR), industrial control, self driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • D2D device to device
  • V2X machine-to-machine/machine-type communications
  • IoT IoT
  • VR virtual reality
  • AR augmented reality
  • industrial control self driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices or smart wearable devices, etc., which are a general term for the intelligent design and development of wearable devices for daily wear using wearable technology, such as glasses, gloves, watches, clothing and shoes, etc.
  • the various terminal devices introduced above, if located on a vehicle can be considered as vehicle-mounted terminal devices, and vehicle-mounted terminal devices are also referred to as on-board units (OBU).
  • OEM on-board units
  • the terminal device of the present application may also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into a vehicle as one or more components or units.
  • the vehicle may implement the method of the present application through the built-in vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit.
  • the communication device for realizing the function of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, which may be installed in the terminal device.
  • the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the terminal device as an example that the terminal device is used as the device.
  • the network device may be an access device that a terminal device accesses to a mobile communication system by wireless means, for example, an access network (AN) device, such as a base station.
  • AN access network
  • the network device may also refer to a device that communicates with a terminal device at an air interface.
  • the network device may include an evolved Node B (eNB/e-NodeB) in an LTE system or an advanced long term evolution (LTE-A); the network device may also include a next generation node B (gNB) in an NR system; or, the network device may also include an access node in a wireless fidelity (Wi-Fi) system; or the network device may be a station, a relay station, a vehicle-mounted device, and a future evolved public land mobile network (PLMN) device, a device in a D2D network, a device in an M2M network, a device in an IoT network, or a network device in a PLMN network.
  • PLMN public land mobile network
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU may be divided according to the protocol layer functions of the wireless network they possess, for example, the functions of the packet data convergence protocol (PDCP) layer and the protocol layers above are set in the CU, and the functions of the protocol layers below the PDCP, such as the radio link control (RLC) layer and the medium access control (MAC) layer, are set in the DU.
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or part of it can be remote and part of it can be integrated in the DU, and the embodiment of the present application does not impose any restrictions.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • the CU control plane CU-CP also includes a further segmented architecture, that is, the existing CU-CP is further divided into CU-CP1 and CU-CP2.
  • CU-CP1 includes various radio resource management functions
  • CU-CP2 only includes radio resource control (RRC) functions and PDCP-C functions (i.e., the basic functions of control plane signaling at the PDCP layer).
  • the communication device for realizing the function of the network device or the terminal device may be a network device or a terminal device, or may be a device capable of supporting the network device or the terminal device to realize the function, such as a chip system, which may be installed in the network device or the terminal device.
  • the technical solution provided in the embodiments of the present application is described by taking the device for realizing the function of the network device as a network device and the device for realizing the function of the terminal device as a terminal device as an example.
  • the communication system includes a satellite, a terminal device and a gateway.
  • the satellite can be a highly elliptical orbit (HEO) satellite, a geostationary orbit satellite (GEO) satellite, a medium orbit (MEO) satellite and a low-earth orbit (LEO) satellite.
  • the NTN system may also include a high altitude platform station (HAPS), etc., which is not limited here.
  • a gateway also called a ground station, earth station, gateway station, gateway station
  • One or more satellites can be connected to one or more ground base stations through one or more gateways, which is not limited here.
  • Terminal devices include, for example, mobile phones, airplanes, etc. ( Figure 2 takes this as an example).
  • the link between the satellite and the terminal device is called a service link, and the link between the satellite and the gateway is called a feeder link.
  • the embodiments of the present application do not limit the working mode of the satellite.
  • the working mode of the satellite can be a transparent mode or a regenerative mode.
  • Transparent transmission mode that is, the satellite acts as an analog RF repeater with the function of relay forwarding, which can realize wireless frequency conversion and amplification, and can transparently transmit or copy the signal between the base station and the terminal device.
  • the signal sent by the terminal device can be transparently transmitted by the satellite, and the gateway forwards it to the ground base station.
  • the gateway has some or all functions of the base station, and the gateway can be regarded as a base station at this time. It can be considered that the gateway and the base station can be deployed together or separately. If the gateway and the base station are deployed separately, the delay of the feeder link includes the delay from the satellite to the gateway and the delay from the gateway to the base station.
  • Regeneration mode that is, the satellite acts as a base station for wireless communication, has some or all functions of the base station, realizes the regeneration of signals received from the ground, and can understand and process these signals.
  • the satellite can be a base station carried on an artificial earth satellite or a high-altitude aircraft, such as an evolved base station (eNB) or a 5G base station (gNB).
  • eNB evolved base station
  • gNB 5G base station
  • the gateway can forward the signaling between the satellite (i.e., the base station) and the core network.
  • FIG. 3 is a schematic diagram of a network architecture of another communication system applicable to the embodiment of the present application.
  • the communication system includes at least one network device and at least one high-altitude terminal device, such as a high-altitude aircraft and an onboard terminal device.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, application scenario, priority or importance of the multiple objects.
  • first beam and second beam indicate that there are two beams, but do not mean that the priorities or importance of the two beams are different.
  • Satellite equipment is limited by manufacturing and launch costs, and the onboard data processing capacity and transmission power are limited. Specifically, satellite equipment is energy and power limited equipment, and is sensitive to onboard power efficiency, which means that it is expected to improve the power efficiency of satellite equipment as much as possible.
  • the high power amplifier (HPA) at the transmitting end is required to operate near the linear saturation region to improve the power efficiency of the HPA.
  • the system uses orthogonal frequency division multiplexing (OFDM) waveforms or waveforms with high PAPR characteristics to transmit data, high PAPR will occur.
  • OFDM orthogonal frequency division multiplexing
  • the signal input to the HPA has a certain probability of entering the nonlinear region and generating nonlinear distortion.
  • Nonlinear distortion will introduce in-band distortion and out-of-band radiation, which will not only affect the decoding accuracy of the receiving end, but also cause interference to adjacent channel users.
  • the nonlinear distortion of the HPA can be minimized by power backoff of the input HPA signal. It can be understood that power backoff of the input HPA signal means reducing the power of the input HPA signal.
  • TR technology can be understood as reserving a part of the reserved carrier as a carrier for suppressing PAPR, and the reserved carrier carries the signal or energy for suppressing PAPR.
  • the reserved carrier for suppressing PAPR can include multiple subcarriers, and the set of these subcarriers can also be called a carrier set.
  • the pattern composed of the subcarrier numbers corresponding to each subcarrier included in the carrier set is called a TR pattern, that is, the TR pattern can indicate the set of reserved carriers for suppressing PAPR.
  • a reserved carrier for suppressing PAPR is reserved at the transmitting end to carry a signal for suppressing PAPR, and some carriers other than the reserved carrier are used to carry data signals.
  • data signals can also be carried on the reserved carrier, that is, the reserved carrier can carry both signals for suppressing PAPR and data signals.
  • the set of carriers carrying signals for suppressing PAPR and the set of carriers carrying data signals do not overlap (this article takes this as an example).
  • the reserved carrier for suppressing PAPR can be skipped or removed, that is, the signal on the reserved carrier for suppressing PAPR is not demodulated.
  • the principle of suppressing PAPR based on TR pattern is a prior art and will not be described in detail here.
  • Figure 4 is a schematic diagram of multi-beam PAPR suppression.
  • Figure 4 takes 4 beams (i.e., beam 0 to beam 3) as an example.
  • the TR pattern used by beam 0 to beam 3 is the same. Using the same TR pattern for multiple beams will reduce the frequency utilization of the system.
  • the number of users and user density in different beam coverage areas are different.
  • the number of users in one or some beam coverage areas is large, which requires the coverage area to have higher throughput and spectrum utilization.
  • beams with higher throughput still need to reserve some subcarriers, that is, not transmitting data, which will reduce the spectrum utilization of the beam. It can be seen that using the same TR pattern for multiple beams cannot meet the higher throughput of each beam.
  • different TR patterns can be used for different beams in a cell, which can improve the utilization rate of the system spectrum.
  • an appropriate number of reserved carriers can be allocated to each beam, which can not only enable each beam to achieve a higher throughput rate, but also improve the spectrum utilization rate and the link budget.
  • the communication method provided in the embodiment of the present application can be applied to any communication system as long as the transmitting end and the receiving end communicate.
  • the communication method is applied to any communication system shown in Figures 1 to 3.
  • the communication method provided in the embodiment of the present application can be applied to uplink transmission or downlink transmission. It should be understood that uplink transmission and downlink transmission are relative.
  • the transmission from the first communication device to the second communication device is uplink transmission
  • the transmission from the second communication device to the first communication device is downlink transmission.
  • the embodiment of the present application is not limited to the use of OFDM waveform to transmit data.
  • DFT-S-OFDM waveform can also be used to transmit data. That is, the data can be first DFT precoded and then mapped to the frequency domain data subcarrier.
  • the reference signal may be a phase-tracking reference signal (PTRS), a demodulation reference signal (DMRS), a channel-state information reference signal (CSI-RS), a tracking reference signal (TRS), a channel sounding reference signal (SRS), etc.
  • PTRS phase-tracking reference signal
  • DMRS demodulation reference signal
  • CSI-RS channel-state information reference signal
  • TRS tracking reference signal
  • SRS channel sounding reference signal
  • Figure 5 is a flow chart of a communication method provided in an embodiment of the present application.
  • the communication method is performed by a terminal device and a network device as an example.
  • the network device may be a satellite.
  • a terminal device determines a first TR pattern corresponding to a first beam at a first moment, where the first beam is a serving beam of the terminal device at the first moment;
  • the terminal device determines a second TR pattern corresponding to a second beam at a second moment.
  • the second beam is a serving beam of the terminal device at the second moment.
  • the first TR pattern is different from the second TR pattern.
  • the service beam of the terminal device at different times may be different. If the terminal device determines to use TR to send or receive information, the terminal device may determine the TR pattern corresponding to the service beam at the current moment. For example, the terminal device determines the first TR pattern corresponding to the first beam at the first moment, and determines the second TR pattern corresponding to the second beam at the second moment. Among them, the first beam is the service beam of the terminal device at the first moment, and the second beam is the service beam of the terminal device at the second moment. The terminal device switches from the first beam to the second beam, and the terminal device uses the first beam to send or receive information according to the first TR pattern between the first moment and the second moment, and uses the second beam to send or receive information according to the second TR pattern starting from the second moment.
  • the first TR pattern and the second TR pattern may be different, that is, different TR patterns may be used for different beams in a cell. That is, there is no need to reserve the same subcarrier for all beams.
  • Figure 6 which is a schematic diagram of multi-beam PAPR suppression.
  • Figure 6 takes 4 beams (i.e., beam 0 to beam 3) as an example.
  • the TR patterns used by beams 0 to beam 1 are different, and beams 2 to beam 3 do not use reserved carriers.
  • the use of different TR patterns for different beams can improve the utilization rate of the system frequency.
  • the noise interference generated when suppressing PAPR is controlled not to be in the beam direction of the useful signal, thereby avoiding interference between beams.
  • the network device and/or terminal device controls the emission direction of the interference noise generated by TR, and does not hit the direction of beams 2 and beams 3 where no carriers are reserved. Since the TR noise in beams 0 and beam 1 is also only distributed on the reserved carrier, it does not interfere with the sending and receiving of data.
  • TR noise can be controlled not to be directed to beam 2 and beam 3 without reserved carriers, and TR noise exists in other directions or coverage areas.
  • TR noise can be directed only to beam 0 and beam 1 with reserved carriers, that is, TR noise generated by PAPR suppression is distributed only on the reserved carriers.
  • beams use different TR patterns, and according to the throughput requirements of different beams, appropriate numbers of reserved carriers can be allocated to each beam, which can not only enable each beam to achieve a higher throughput, but also improve spectrum utilization and link budget. For example, beams with higher throughput requirements can reserve fewer subcarriers, and beams with lower throughput requirements can reserve more subcarriers, which can enable each beam to achieve a higher throughput.
  • the terminal device determines the TR pattern according to the beam, which can be understood as the TR pattern used by the terminal device is at the beam level, or the TR pattern is associated with the beam, or the terminal device uses a beam-level TR solution. Conversely, if all beams in a cell use the same TR pattern, it can be understood that the terminal device uses a cell-level TR pattern, or the TR pattern is associated with the cell.
  • the network device may indicate to the terminal device whether to use the TR solution, or whether to use the cell-level TR solution, or whether to use the beam-level TR solution.
  • the network device may execute S500 as follows.
  • the network device sends indication information to the terminal device.
  • the terminal device receives the indication information sent by the network device.
  • the indication information can be used to indicate not to suppress PAPR, or the indication information can indicate that the TR pattern is associated with the cell, or the indication information can indicate that the TR pattern is associated with the beam.
  • the indication information indicates that PAPR is not suppressed, including that the indication information indicates that the terminal device and/or the network device does not suppress PAPR. That is, the indication information may indicate that the terminal device and/or the network device does not use the TR scheme.
  • the indication information indicates that the TR pattern is associated with the cell, which can also be understood as the indication information indicating the use of the cell-level TR scheme. If the indication information indicates that the terminal device uses the cell-level TR scheme, the network device can configure a TR pattern for the terminal device, thereby saving signaling overhead.
  • the indication information indicates that the TR pattern is associated with the beam, which can also be understood as the indication information indicating the use of the beam-level TR scheme. If the indication information indicates that the terminal device uses the beam-level TR scheme, the network device also indicates the TR pattern corresponding to each beam to the terminal device.
  • the indication information can be carried in the system information, for example, the indication information can be carried in the main system information block (MIB) message and the PBCH payload message.
  • MIB main system information block
  • the network device indicates the TR patterns corresponding to each beam to the terminal device, it can also be considered that the network device indicates to the terminal device that the terminal device uses the beam-level TR solution. In this case, the network device does not need to indicate to the terminal device through the indication information that the beam-level TR solution is used. Therefore, S500 is not required to be executed, which is indicated by a dotted line in Figure 5. If the network device does not indicate the TR patterns corresponding to each beam to the terminal device, or the network device does not configure the TR pattern to the terminal device, the terminal device may default to not using the beam-level TR solution or not using the TR solution to suppress PAPR. If the network device configures a TR pattern to the terminal device, the terminal device may default to using the cell-level TR pattern. It can also be considered that the network device may also indicate the cell-level TR solution or the beam-level TR solution to the terminal device in an implicit manner.
  • the network device indicates the TR pattern corresponding to each beam to the terminal device in an implicit manner, including but not limited to the following methods.
  • the specific indication method used is not limited in the embodiments of the present application.
  • Indication method 1 The network device sends a mapping relationship to the terminal device, and the mapping relationship is used to indicate the correspondence between at least one TR pattern and at least one beam. Under this indication method, the terminal device determines the first TR pattern according to the first beam and the mapping relationship at the first moment. In a possible implementation method, the mapping relationship is preconfigured or predefined or agreed. If the network device sends the mapping relationship to the terminal device, it can instruct the terminal device to use the beam-level TR solution, and also indicates to the terminal device the TR pattern used by the terminal device.
  • the mapping relationship may indicate a correspondence between at least one TR pattern and a beam parameter set.
  • Beam parameters may be used to indicate a beam.
  • beam parameters may include a beam index, a BWP, a TCI, a synchronization signal and a physical broadcast channel (PBCH) block (synchronization signal and PBCH block, SSB) or a geographic location range.
  • the beam parameter set includes one or more of the following information: beam index, BWP, TCI, synchronization signal block index or geographic location range. Since the beam is mapped to BWP, TCI or SSB or a geographic location range, the beam can be distinguished by BWP, TCI, SSB or a geographic location range. The corresponding beam can be determined between the terminal device and the network device by the BWP number, TCI number or SSB number. It should be noted that the beam described in the present application may also be replaced by BWP, TCI or SSB.
  • the mapping relationship may be a correspondence between at least one TR pattern and at least one SSB.
  • the terminal device may determine the first TR pattern according to the index of the first beam and the mapping relationship at the first moment.
  • the mapping relationship may be a correspondence between at least one TR pattern and at least one SSB index.
  • the terminal device may determine the first TR pattern according to the index of the SSB forming the first beam and the mapping relationship at the first moment.
  • TR pattern index 0 indicates that the corresponding beam does not use the reserved carrier, or the TR pattern is an empty set. Or when TR pattern is an empty set, it means that the network equipment and terminal equipment within the coverage of the beam do not use the TR solution.
  • the subcarrier number set represented by TR pattern index 1 is ⁇ 1 6 10 12 ⁇
  • the subcarrier number set represented by TR pattern index 2 is ⁇ 1 6 10 12 15 ⁇
  • the subcarrier number set represented by TR pattern index 3 is ⁇ 1 6 10 12 15 ⁇ . 10 12 15 19 ⁇ .
  • the network device can send a TR pattern index (pattern index) and an SSB index to the terminal device.
  • the correspondence between the TR pattern index and the SSB index can be agreed upon. For example, see Table 1, which shows a mapping relationship between the TR pattern index and the SSB index. Assume that the network device sends a TR pattern index ⁇ 3, 2, 2, 1, 0, 0, 0 ⁇ and an SSB index ⁇ 0 ⁇ 7 ⁇ to the terminal device. When the index of the first beam of the terminal device at the first moment is 2, the first TR pattern is ⁇ 1 6 10 12 15 ⁇ .
  • Indication method 2 The network device sends first configuration information to the terminal device, and the first configuration information includes configuration information of the first beam set.
  • the TR pattern used by the terminal device is the TR pattern corresponding to each beam in the first beam set.
  • the first beam belongs to the first beam set, each beam in the first beam set corresponds to the third TR pattern, and the terminal device determines at the first moment that the first TR pattern is the third TR pattern.
  • the network device configures less content, which can save signaling overhead.
  • the TR pattern may be predefined or preconfigured or configured.
  • beams using the TR scheme and beams not using the TR scheme may be distinguished by the index of the beam, for example, beams 0 to 31 may be agreed to use TR, beams 32 to 63 may be agreed to not use TR, and a third TR pattern may be predefined or preconfigured or configured.
  • the network device may configure the beams using the TR scheme.
  • the set of beams using the TR scheme is the first beam set, and the network device may send configuration information of the first beam set to the terminal device (referred to as the first configuration information in this article).
  • the terminal device determines that the TR pattern used is the TR pattern corresponding to the first beam set.
  • a third TR pattern may be agreed upon or preconfigured or configured, that is, a TR pattern corresponding to each beam in the first beam set.
  • the beam of the terminal device at the first moment is the first beam. If the first beam belongs to the first beam set, the terminal device determines at the first moment that the first TR pattern corresponding to the first beam is the third TR pattern.
  • the network device sends the beam index ⁇ 0,1,2,3 ⁇ to the terminal device, indicating that the beams with indexes 0,1,2,3 use the TR solution, and the beams not included do not use the TR solution.
  • the network device may configure beams that do not use the TR scheme, for example, a set of beams that do not use the TR scheme is a second beam set, and the network device may send configuration information of the second beam set to the terminal device. If the service beam of the terminal device does not belong to the second beam set, the terminal device determines that the TR pattern used is a predefined or preconfigured TR pattern. For example, a third TR pattern may be agreed upon or preconfigured or configured, and the beam of the terminal device at the first moment is the first beam. If the first beam does not belong to the second beam set, the terminal device determines at the first moment that the first TR pattern corresponding to the first beam is the third TR pattern.
  • the network device may be configured with beams that use the TR scheme and beams that do not use the TR scheme.
  • the set of beams that use the TR scheme is the first beam set
  • the set of beams that do not use the TR scheme is the second beam set.
  • the beam of the terminal device at the first moment is the first beam. If the first beam belongs to the first beam set, then the terminal device determines at the first moment that the first TR pattern corresponding to the first beam is the third TR pattern.
  • the network device indicates the beam using the TR scheme through a bit map. For example, the network device sends ⁇ 1,1,1,1,0,0,0,0 ⁇ to the terminal device, corresponding to beam indexes 0 to 8, indicating whether beams 0 to 8 use TR.
  • “1" means using the TR scheme
  • "0" means not using the TR scheme, that is, beams with indexes 0, 1, 2, and 3 use the TR scheme, and beams with indexes 4, 5, 6, and 7 do not use the TR scheme.
  • the TR pattern used by the predefined beam using the TR scheme is TR pattern 1, and TR pattern index 0 indicates that the corresponding beam does not use the reserved carrier.
  • Table 2 The mapping relationship between beams 0 to 8 and TR pattern is shown in Table 2.
  • the network device may send the first configuration information to the terminal device during the initial access phase of the terminal device, or may send the first configuration information to the terminal device after the terminal device receives a system information block (SIB).
  • SIB system information block
  • the terminal device may determine whether the service beam uses TR after receiving the SSB and before receiving the SIB.
  • a basic TR pattern may be predefined or preconfigured, and the network device may indicate the TR pattern used by each beam by indicating an increment on the basic TR pattern.
  • the network device may send configuration information of at least one beam to the terminal device, and the configuration information includes information of at least one beam and an increment corresponding to each of the at least one beam.
  • the basic TR pattern includes a set of subcarrier numbers consisting of ⁇ 1 6 10 12 ⁇ .
  • the network device sends beam indexes 1 to 2, as well as the increments ⁇ 8 9 ⁇ and ⁇ 7 8 ⁇ corresponding to the two beams, to the terminal device.
  • the terminal device can determine that the TR pattern corresponding to beam 1 is ⁇ 1 6 10 12 8 9 ⁇ , and the TR pattern of beam 2 is ⁇ 1 6 10 12 7 8 ⁇ .
  • a basic TR pattern may be predefined or preconfigured, and the network device may indicate the TR pattern used by each beam by indicating a decrement on the basic TR pattern.
  • the network device may send configuration information of at least one beam to the terminal device, and the configuration information includes information of at least one beam and a decrement corresponding to each of the at least one beam.
  • the basic TR pattern includes a set of subcarrier numbers ⁇ 1 6 10 12 ⁇ .
  • the network device sends beam indexes 1 to 2 and the decrements ⁇ 6 ⁇ and ⁇ 6 10 ⁇ corresponding to the two beams to the terminal device.
  • the terminal device can determine that the TR pattern corresponding to beam 1 is ⁇ 110 12 ⁇ and the TR pattern of beam 2 is ⁇ 1 12 ⁇ .
  • a basic TR pattern can be predefined or preconfigured, and the network device selects some subcarriers in the basic TR pattern as reserved carriers by indicating the beam. For example, the network device indicates that beam 1 uses the first 55 subcarriers of the basic TR pattern, and beam 2 uses the first 65 subcarriers of the basic TR pattern; or indicates that beam 3 uses the 14th to 70th subcarriers of the basic TR pattern, and so on.
  • the subcarrier indicated by the basic TR pattern may be a subcarrier included in the frequency band where the beam is located or the BWP.
  • the network device may indicate to the terminal device the TR pattern corresponding to each beam and the TR pattern corresponding to the beam adjacent to the beam in each beam. If there is an overlap in the coverage areas of two beams, or the coverage areas of two beams are adjacent, then the two beams are adjacent.
  • the network device may send a second configuration information to the terminal device, and the second configuration information may indicate a first TR pattern corresponding to the first beam and a TR pattern corresponding to at least one third beam.
  • the terminal device determines that the TR pattern corresponding to the first beam is the first TR pattern at the first moment according to the second configuration information.
  • the terminal device switches from the service beam to the beam adjacent to the service beam, and can determine the TR pattern to be used according to the TR pattern corresponding to the adjacent beam indicated by the network device.
  • the second beam is adjacent to the first beam, that is, at least one third beam may include the second beam, and the terminal device may determine at the second moment that the TR pattern corresponding to the second beam in at least one third beam is the second TR pattern.
  • the network device indicates to the terminal device in each beam the TR pattern corresponding to the beam, and the TR pattern corresponding to the beam adjacent to the beam, which can refer to any of the indication methods in the aforementioned indication methods one to five.
  • the network device does not need to broadcast the TR patterns of all beams in the cell, which can save signaling overhead.
  • Figure 9 is a schematic diagram of multiple beams in a cell.
  • the current service beam of the terminal device is the first beam
  • the first TR pattern corresponding to the first beam is TR pattern 4.
  • the TR patterns corresponding to the multiple beams adjacent to the first beam include TR pattern 0, TR pattern 1, TR pattern 3, TR pattern 5, TR pattern 8 and TR pattern 9.
  • TR pattern 5 corresponds to the second beam.
  • the terminal device can determine that the second TR pattern is TR pattern 5.
  • one of the six indication methods or schemes in the multiple indication methods can be combined with each other to obtain different schemes.
  • the signaling in the scheme and each embodiment of the present application such as indication information, first configuration information, second configuration information, mapping relationship, etc., can be broadcast or multicasted by the network device to the terminal device in at least one of the broadcast information including SIB1, other system information (OSI), MIB, etc. Broadcasting or multicasting the above signaling to the terminal device can avoid scheduling different resources for different terminal devices in order to send the above signaling, saving the signaling overhead of scheduling resources and reducing the complexity of system scheduling.
  • the network device may carry the above signaling in at least one of the RRC signaling (for example, RRC setup message, RRC reconfiguration signaling, RRC resume signaling, etc.), downlink control information (DCI), group DCI, and media access control (MAC) control element (CE), or indicate the above signaling/parameter values to the terminal device in a table, or unicast or multicast to the terminal device along with the data transmission or in a separately allocated PDSCH bearer.
  • RRC signaling for example, RRC setup message, RRC reconfiguration signaling, RRC resume signaling, etc.
  • DCI downlink control information
  • group DCI group DCI
  • CE media access control element
  • Different link budgets are required for the same location or different regions, and different parameter values are configured for the terminal devices to achieve the purpose of optimizing the system transmission power efficiency and optimizing the terminal device communication performance/system communication performance.
  • different TR patterns (such as configuring TR patterns to contain different numbers of subcarriers) can be configured based on the different geographical locations of the terminal devices, different link budgets required, and different requirements for the power or power efficiency of the transmitted signal, so as to optimize the PAPR suppression performance and spectrum efficiency of each/each group of terminal devices, avoid excessive waste of spectrum resources, and improve the overall communication performance of the terminal devices and the system.
  • the terminal device uses the first beam to send or receive information according to the first TR pattern between the first moment and the second moment, and uses the second beam to send or receive information according to the second TR pattern starting from the second moment.
  • the terminal device After the terminal device determines the TR pattern corresponding to the service beam, it uses the service beam and the TR pattern corresponding to the service beam to send information to the network device or receive information from the network device. For example, the terminal device uses the first beam to send or receive information according to the first TR pattern between the first moment and the second moment, and uses the second beam to send or receive information according to the second TR pattern starting from the second moment. Since the use of reserved carriers will cause interference, in an embodiment of the present application, the noise interference generated when suppressing PAPR can be directed not to the beam direction of the useful signal, thereby reducing interference.
  • a functional module may be set in the terminal device and/or the network device, such as a "reserving partial tones" module, which can control the noise generated by the beam using the TR pattern to not be directed to the beam that does not use TR.
  • Figure 10 is a principle block diagram of multi-beam PAPR suppression provided by an embodiment of the present application.
  • a PAPR reduction TR scheme module and a TR noise spatial separation module can be added on the basis of the precoding module and the IDFT module at the transmitting end.
  • the data processing flow can be: the baseband signal (QAM symbol) is mapped to the data carrier, and the reserved carrier for suppressing PAPR does not map the transmitted data.
  • the mapped signal passes through the precoding module, IDFT module, PAPR suppression module, TR noise spatial separation module, cyclic shift module, digital to analog converter (DAC), HPA (high power amplifier), etc. in sequence, and the signal is sent through the antenna.
  • DAC digital to analog converter
  • HPA high power amplifier
  • Sk is a frequency-domain constellation mapping signal vector (B ⁇ 1 vector) of B (B ⁇ 1) beams on subcarrier k.
  • the Sk signal vector passes through the "reserving partial tones" module, and the subcarriers on the beams with reserved carriers are vacated, that is, set to zero, and no data is placed.
  • the precoding matrix Wk of the data on subcarrier k is a P ⁇ B matrix, where P represents the number of antennas and B represents the number of beams.
  • the data of the original constellation mapping signal vector Sk after precoding is:
  • PAPR suppression is performed on Sk , and in the suppression process, TR noise generated by TR is spatially separated, which specifically includes the following steps (1) to (7).
  • the precoded data is transformed into the time domain through the inverse discrete Fourier transform (IDFT).
  • IDFT inverse discrete Fourier transform
  • TR noise spatial separation module also known as the "TR noise spatial separation” module.
  • This module can perform spatial filtering or spatial separation on the noise generated by PAPR suppression.
  • Noise TR_FD DFT(Noise TR_TD )
  • W nonTR,k represents the beam precoding matrix of the non-TR reserved carrier on subcarrier k
  • W nonTR,k is a P ⁇ BnonTR matrix
  • BnonTR represents the number of beams without TR reserved carriers
  • the pseudo-inverse matrix of W nonTR,k is a BnonTR ⁇ P matrix.
  • TR noise satisfies:
  • W TR,k represents the beam precoding matrix of the subcarrier k of the TR reserved carrier and/or the beam direction without useful signal
  • W TR,k is a P ⁇ BTR matrix
  • BTR represents the number of beams with TR reserved carriers and/or beams without useful signal
  • WTR,k represents the pseudo-inverse matrix of WTR,k , which is a BTR ⁇ P matrix.
  • Noise project_TD IDFT(Noise project_FD )
  • the time domain TR noise after spatial separation is added to x TR to obtain an updated PAPR suppression signal.
  • the time domain signal of the updated PAPR suppression signal is expressed as:
  • steps (1) to (7) The process of steps (1) to (7) is called an iteration.
  • the iteration can be stopped, and the updated PAPR suppression signal is output, for example, to a cyclic prefix (CP) module. If the PAPR suppression effect does not meet the requirements after one iteration, the time domain signal of the updated PAPR suppression signal is Replace the data x in step (2) and repeat steps (2) to (7) to perform the next iterative process.
  • CP cyclic prefix
  • a TR noise spatial separation module is added to the terminal device or network device to control the interference noise generated by the PAPR in space (direction) so that it is not directed to the beam direction that does not use the reserved carrier. This can reduce interference and improve the spectrum utilization of the system.
  • Figure 11 is a schematic diagram of the PAPR suppression effect achieved by the solution provided by the embodiment of the present application.
  • Figure 11 takes 8 beams as an example, where 4 of the 8 beams use TR, and the remaining 4 beams do not use TR for PAPR suppression.
  • the solution provided by the embodiment of the present application compared with the 8 beams that do not use this solution for PAPR suppression, the solution provided by the embodiment of the present application has better PAPR suppression performance. It can be seen that the solution provided by the embodiment of the present application can improve spectrum utilization while ensuring PAPR suppression performance.
  • satellites can transmit to each other the beam or wave position number using PAPR suppression, the TR pattern used, and/or the time of PAPR suppression through signaling (for example, through Xn interface signaling).
  • Each satellite performs spatial (directional) separation of interference noise according to the TR pattern used by other satellites to avoid interference noise from interfering with other satellite beams.
  • Figure 12 shows a schematic diagram of two satellite coverage.
  • Figure 12 takes the two satellites, satellite 1 and satellite 2, as an example, where satellite 1 covers cell 1, satellite 2 covers cell 2, and the beams in cell 1 include beam 0 to beam 3, corresponding to coverage of wave positions 0 to wave positions 3, and the beams in cell 2 include beam 0 to beam 3, corresponding to coverage of wave positions 4 to wave positions 7.
  • Wave positions can be understood as dividing the satellite coverage area or a part of the earth or the entire ground area of the earth into units of single beam coverage areas, and the coverage area of each beam is called a wave position.
  • all wave positions constitute the coverage area of a satellite.
  • the PAPR suppression noise (interference noise) of satellite 1 will interfere with wave positions 4 and 5 of satellite 2, so satellite 1 controls the direction of the PAPR suppression noise (interference noise) according to the TR pattern of wave positions 4 and 5 of satellite 2 to avoid interference.
  • the method provided by the embodiments of the present application is introduced from the perspective of the interaction between the network device, the terminal device, and the terminal device and the network device.
  • the terminal device and the network device may include a hardware structure and/or a software module, and the above-mentioned functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function in the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 13 is a schematic block diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may include a processing module 1310 and a transceiver module 1320.
  • a storage unit may be further included, which may be used to store instructions (codes or programs) and/or data.
  • the processing module 1310 and the transceiver module 1320 may be coupled to the storage unit.
  • the processing module 1310 may read the instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the above-mentioned modules may be independently arranged or partially or fully integrated.
  • the communication device 1300 can implement the behaviors and functions of the terminal device in the above-mentioned method embodiments.
  • the communication device 1300 can be a terminal device, or a component (such as a chip or circuit) applied to the terminal device, or a chip or chipset in the terminal device or a part of the chip used to execute related method functions.
  • the processing module 1310 may be used to determine a first TR pattern corresponding to a first beam at a first moment, and determine a second TR pattern corresponding to a second beam at a second moment.
  • the first beam is a service beam of the communication device 1300 at the first moment
  • the second beam is a service beam of the communication device 1300 at the second moment
  • the first TR pattern and the second TR pattern are different.
  • the transceiver module 1320 is used to send or receive information according to the determined beam.
  • the transceiver module 1320 is specifically configured to use the first beam to send or receive information between the first moment and the second moment, and use the second beam to send or receive information starting from the second moment.
  • the transceiver module 1320 is also used to receive a mapping relationship from a network device, which is used to indicate the correspondence between at least one TR pattern and at least one beam; the processing module 1310 is specifically used to determine the first TR pattern based on the first beam and the mapping relationship.
  • a mapping relationship is used to indicate the correspondence between at least one TR pattern and at least one beam, including: a mapping relationship is used for the correspondence between at least one TR pattern and a beam parameter set, and the beam parameter set includes one or more of the following information: BWP, TCI, SSB index or geographic location range.
  • the transceiver module 1320 is also used to receive first configuration information from a network device, and the first configuration information includes configuration information of a first beam set, wherein each beam in the first beam set corresponds to a third TR pattern; the first beam belongs to the first beam set, and the processing module 1310 is specifically used to determine that the first TR pattern is a third TR pattern.
  • the transceiver module 1320 is further used to receive second configuration information from the network device, where the second configuration information is used to indicate the first TR pattern corresponding to the first beam and/or the TR pattern corresponding to at least one third beam.
  • the second configuration information is used to indicate the first TR pattern corresponding to the first beam and/or the TR pattern corresponding to at least one third beam.
  • at least one third beam is a beam adjacent to the first beam; the processing module 1310 is specifically used to determine the first TR pattern according to the second configuration information.
  • the transceiver module 1320 is also used to: receive indication information from a network device, the indication information is used to indicate not to suppress PAPR, or the indication information is used to indicate that the TR pattern is associated with a cell; or the indication information is used to indicate that the TR pattern is associated with a beam.
  • the communication device 1300 can implement the behaviors and functions of the network device in the above-mentioned method embodiments.
  • the communication device 1300 can be a network device, or a component (such as a chip or circuit) used in a network device, or a chip or chipset in the network device or a part of a chip used to execute related method functions.
  • the processing module 1310 can be used to determine at least one TR pattern corresponding to at least two beams, wherein the at least two beams include a first beam and a second beam, and a first TR pattern corresponding to the first beam and a second TR pattern corresponding to the second beam are different; the transceiver module 1320 is used to indicate to the terminal device at least one TR pattern corresponding to at least two beams.
  • the transceiver module 1320 is specifically used to: send a mapping relationship to the terminal device, where the mapping relationship is used to indicate a corresponding relationship between at least one TR pattern and at least one beam.
  • a mapping relationship is used to indicate the correspondence between at least one TR pattern and at least one beam, including: a mapping relationship is used to indicate the correspondence between at least one TR pattern and a beam parameter set, and the beam parameter set includes one or more of the following information: BWP, TCI, SSB index or geographic location range.
  • the transceiver module 1320 is specifically used to: send first configuration information to the terminal device, where the first configuration information includes configuration information of the first beam set.
  • the transceiver module 1320 is specifically used to: send second configuration information to the terminal device, where the second configuration information is used to indicate the first TR pattern corresponding to the first beam and/or the TR pattern corresponding to at least one third beam, and the at least one third beam is a beam adjacent to the first beam.
  • the transceiver module 1320 is specifically used to: send indication information to the terminal device, the indication information is used to indicate not to suppress PAPR, or the indication information is used to indicate that the TR pattern is associated with the cell; or the indication information is used to indicate that the TR pattern is associated with the beam.
  • processing module 1310 in the embodiment of the present application can be implemented by a processor or a processor-related circuit component
  • transceiver module 1320 can be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • Figure 14 is a schematic block diagram of a communication device 1400 provided in an embodiment of the present application.
  • the communication device 1400 can be a terminal device, which can implement the functions of the terminal device in the method provided in the embodiment of the present application.
  • the communication device 1400 can also be a device that can support the terminal device to implement the corresponding functions in the method provided in the embodiment of the present application, wherein the communication device 1400 can be a chip system.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the communication device 1400 can also be a network device, which can implement the functions of the network device in the method provided in the embodiment of the present application.
  • the communication device 1400 can also be a device that can support the network device to implement the corresponding functions in the method provided in the embodiment of the present application
  • the communication device 1400 may be a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • specific functions please refer to the description in the above method embodiment.
  • the communication device 1400 includes one or more processors 1401, which can be used to implement or support the communication device 1400 to implement the function of the terminal device in the method provided in the embodiment of the present application. See the detailed description in the method example for details, which will not be repeated here.
  • One or more processors 1401 can also be used to implement or support the communication device 1400 to implement the function of the network device in the method provided in the embodiment of the present application. See the detailed description in the method example for details, which will not be repeated here.
  • the processor 1401 can also be referred to as a processing unit or a processing module, which can implement certain control functions.
  • the processor 1401 can be a general-purpose processor or a dedicated processor, etc.
  • the central processing unit can be used to control the communication device 1400, execute software programs and/or process data.
  • Different processors can be independent devices, or they can be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 1400 includes one or more memories 1402 for storing instructions 1404, and the instructions can be executed on the processor 1401, so that the communication device 1400 performs the method described in the above method embodiment.
  • the memory 1402 and the processor 1401 can be set separately or integrated together, and the memory 1402 and the processor 1401 can also be considered to be coupled.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 1401 may operate in conjunction with the memory 1402. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1402 is not necessary, so it is illustrated by dotted lines in Figure 14.
  • data may also be stored in the memory 1402.
  • the processor and memory may be provided separately or integrated together.
  • the memory 1402 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
  • a memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device that can implement a storage function, for storing program instructions and/or data.
  • the communication device 1400 may include instructions 1403 (sometimes also referred to as codes or programs), and the instructions 1403 may be executed on the processor so that the communication device 1400 performs the method described in the above embodiment.
  • the processor 1401 may store data.
  • the communication device 1400 may further include a transceiver 1405 and an antenna 1406.
  • the transceiver 1405 may be referred to as a transceiver unit, a transceiver module, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 1400 through the antenna 1406.
  • the processor 1401 and the transceiver 1405 described in the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFID), a mixed signal IC, an ASIC, a printed circuit board (PCB), or an electronic device.
  • the communication device described in this article may be an independent device (e.g., an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (e.g., a module that can be embedded in other devices).
  • aforementioned description of the terminal device and the network device which will not be repeated here.
  • the communication device 1400 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, an antenna, a speaker, a microphone, an input and output module, a sensor module, a motor, a camera, or a display screen, etc. It is understood that in some embodiments, the communication device 1400 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiments may be a terminal device (or network device) or a circuit, or a chip applied to a terminal device (or network device) or other combined devices, components, etc. having the above terminal device functions (or network devices).
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device When the communication device is a chip system, the communication device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a CPU, a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), or a programmable controller. (programmable logic device, PLD) or other integrated chips.
  • the processing module may be a processor of a chip system.
  • the transceiver module or communication interface may be an input/output interface or an interface circuit of a chip system.
  • the interface circuit may be a code/data read/write interface circuit.
  • the interface circuit may be used to receive code instructions (the code instructions are stored in a memory, may be read directly from the memory, or may be read from the memory through other devices) and transmit them to the processor; the processor may be used to run the code instructions to execute the method in the above method embodiment.
  • the interface circuit may also be a signal transmission interface circuit between a communication processor and a transceiver.
  • the device may include a transceiver unit and a processing unit, wherein the transceiver unit may be an input/output circuit and/or a communication interface; and the processing unit may be an integrated processor or microprocessor or integrated circuit.
  • the embodiment of the present application also provides a communication system, specifically, the communication system includes at least one terminal device and at least one network device.
  • the communication system includes a terminal device and a network device for implementing the relevant functions of Figure 5 above. Please refer to the relevant description in the above method embodiment for details, which will not be repeated here.
  • a computer-readable storage medium is also provided in an embodiment of the present application, including instructions, which, when executed on a computer, enable the computer to execute the method executed by the terminal device or network device in FIG. 5 .
  • a computer program product is also provided in an embodiment of the present application, including instructions, which, when executed on a computer, enable the computer to execute the method executed by the terminal device or network device in FIG. 5 .
  • the embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing the functions of the terminal device in the aforementioned method; or for implementing the functions of the network device in the aforementioned method.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the part of the technical solution of the present application that contributes essentially or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), RAM, disk or CD-ROM and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种通信方法及通信装置,该方法包括:终端设备在第一时刻确定与第一波束对应的第一TR图样,在第二时刻确定与第二波束对应的第二TR图样。其中,第一波束为终端设备在第一时刻的服务波束,第二波束为终端设备在第二时刻的服务波束。第一TR图样和第二TR图样不同。即小区内不同波束可使用不同的TR图样,通过控制抑制PAPR时产生的噪声干扰不指向无有用信号的波束方向,在保证PAPR抑制性能的同时,可提高系统频谱利用率。另外,还可以根据不同波束各自对吞吐率的需求,为各个波束分配合适数量的预留载波,既可以使得各个波束达到较高吞吐率,又可以提高链路预算。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2022年09月26日提交中国国家知识产权局、申请号为202211175283.4、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
载波预留(tone reservation,TR)技术可用于抑制波形的峰均功率比(peak-to-average power ratio,PAPR)。即,发送端预留一些子载波用于承载抑制PAPR的信号。用作抑制PAPR的预留载波所对应的子载波编号组成的图样(pattern),称为TR图样。可以理解的是,预留一些子载波会降低频谱利用率。目前针对小区中的多个波束进行PAPR抑制时,这多个波束使用的TR图样相同。但是不同的波束覆盖的终端设备数量不同,对吞吐率和频谱利用率的要求也不同。目前PAPR抑制方案无法满足各个波束对吞吐率的需求,且频谱利用率较低。
发明内容
本申请提供一种通信方法以及通信装置,以满足各个波束对吞吐率的需求,提高频谱利用率。
第一方面,本申请实施例提供一种通信方法,该方法可由第一通信装置执行,该第一通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,所述通信设备为终端设备,或者为设置在终端设备中的芯片,或者为用于实现终端设备的功能的其他部件。下面以所述第一通信装置是终端设备为例进行描述。
所述通信方法包括:终端设备在第一时刻确定与第一波束对应的第一TR图样,在第二时刻确定与第二波束对应的第二TR图样。其中,第一波束为终端设备在第一时刻的服务波束,第二波束为终端设备在第二时刻的服务波束,第一TR图样和第二TR图样不同。
在本申请实施例中,第一TR图样和第二TR图样可以不同,即小区内不同波束可使用不同的TR图样,通过控制抑制PAPR时产生的噪声干扰不在有用信号的波束方向,避免波束间干扰,提高系统频谱利用率。另外,还可以根据不同波束各自对吞吐率的需求,为各个波束分配合适数量的预留载波,既可以使得各个波束达到较高吞吐率,又可以提高频谱利用率,提高链路预算。
在可能的实现方式中,终端设备在第一时刻和第二时刻之间使用第一波束发送或接收信息,从第二时刻开始使用第二波束发送或接收信息。当终端设备的服务波束发生变化,相应的,终端设备使用的TR图样也可能发生变化。
在可能的实现方式中,终端设备在第一时刻确定与第一波束对应的第一TR图样,包括:终端设备接收来自网络设备的映射关系,该映射关系用于指示至少一个TR图样与至少一个波束的对应关系;终端设备根据第一波束以及映射关系确定第一TR图样。该方案中,网络设备可为终端设备配置各个波束分别对应的TR图样,从而终端设备可根据网络设备的配置确定服务波束对应的TR图样,更为灵活。
在可能的实现方式中,映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:映射关系用于指示至少一个TR图样与波束参数集合的对应关系,该波束参数集合包括如下的一种或多种信息:部分带宽(bandwidth part,BWP)、传输配置指示(transmission configuration indicator,TCI)、同步信号块索引或地理位置范围。本申请实施例对映射关系的具体实现形式不作限制,例如,可以是至少一个TR图样和BWP的对应关系,也可以是至少一个TR图样与地理位置范围的对应关系等。
在可能的实现方式中,终端设备在第一时刻确定与第一波束对应的第一TR图样,包括:终端设备接收来自网络设备的第一配置信息,该第一配置信息包括第一波束集合的配置信息,第一波束集合中的各个波束对应第三TR图样;若第一波束属于第一波束集合,所述终端设备确定第一TR图样为第三TR 图样。在本申请实施例中,网络设备可为终端设备配置使用TR图样的波束配置,如果终端设备的服务波束属于网络设备所配置的波束,那么终端设备确定使用所配置的波束对应的TR图样。
在可能的实现方式中,终端设备在第一时刻确定与第一波束对应的第一TR图样,包括:终端设备接收来自网络设备的第二配置信息,该第二配置信息用于指示第一波束对应的第一TR图样和/或至少一个第三波束对应的TR图样,至少一个第三波束是与第一波束相邻的波束;终端设备根据第二配置信息确定第一TR图样。在本申请实施例中,网络设备可以为终端设备配置服务波束对应的TR图样,以及与服务波束相邻的波束对应的TR图样,无需发生所用波束对应的TR图样,可以节约信令开销。
在可能的实现方式中,所述方法还包括:终端设备接收来自网络设备的指示信息,该指示信息用于指示不抑制PAPR,例如,该指示信息可指示终端设备和/或网络设备不抑制PAPR。或者,该指示信息用于指示TR图样与小区关联;或者,该指示信息用于指示TR图样与波束关联。在本申请实施例中,网络设备可向终端设备明确指示终端设备是否使用TR图样,或者可以向终端设备明确指示使用小区级的TR图样或者波束级的TR图样。如果网络设备配置小区级的TR图样,只需向终端设备配置一个TR图样,可节省信令开销。
第二方面,本申请实施例提供一种通信方法,该方法可由第二通信装置执行,该第一通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,所述通信设备为网络设备,或者为设置在网络设备中的芯片,或者为用于实现网络设备的功能的其他部件。下面以所述第一通信装置是网络设备为例进行描述。
所述通信方法包括:网络设备确定至少两个波束对应的至少一个TR图样,以及向终端设备指示至少两个波束对应的至少一个TR图样其中。其中,至少两个波束包括第一波束和第二波束,第一波束对应的第一TR图样和第二波束对应的第二TR图样不同。
在可能的实现方式中,网络设备向终端设备指示至少两个波束对应的至少一个TR图样,包括:网络设备向终端设备发送映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系。
在可能的实现方式中,映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:映射关系用于指示所述至少一个TR图样与波束参数集合的对应关系,波束参数集合包括如下的一种或多种信息:部分带宽BWP、传输配置指示TCI、同步信号块索引或地理位置范围。
在可能的实现方式中,网络设备向终端设备指示至少两个波束对应的至少一个TR图样,包括:网络设备向终端设备发送第一配置信息,该第一配置信息包括第一波束集合的配置信息。
在可能的实现方式中,网络设备向终端设备指示至少两个波束对应的至少一个TR图样,包括:网络设备向终端设备发送第二配置信息,该第二配置信息用于指示第一波束对应的第一TR图样和/或至少一个第三波束对应的TR图样,所述至少一个第三波束是与第一波束相邻的波束。
在可能的实现方式中,网络设备还向终端设备发送指示信息,该指示信息用于指示不抑制PAPR,或者,所述指示信息用于指示TR图样与小区关联;或者,所述指示信息用于指示TR图样与波束关联。
上述第二方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述。
第三方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面或第二方面方法实施例中行为的功能,有益效果可以参见第一方面的描述,此处不再赘述。
该通信装置可以是第一方面中的通信装置,或者该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片系统。在一个可能的设计中,该通信装置包括用于执行第一方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
该通信装置可以是第二方面中的通信装置,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片系统。在一个可能的设计中,该通信装置包括用于执行第二方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第二方面方法示例中的相应功能,具 体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面的通信装置,或者为设置在第三方面中的通信装置中的芯片或芯片系统。该通信装置可以为终端设备或网络设备。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法中由通信装置所执行的方法。
第五方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面至第二方面中的任意一个方面中所述的方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括通信接口,用于实现第一方面至第二方面中的任意一个方面中所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存计算机程序。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例提供了一种通信系统,所述通信系统包括用于实现第一方面至第二方面中的任意一个方面相关功能的终端设备和网络设备。当然,所述通信系统可以包括更多终端设备或更多网络设备。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面至第二方面中的任意一个方面中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面至第二方面中的任意一个方面中的方法被执行。
上述第二方面至第九方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种通信系统的架构示意图;
图2为本申请实施例适用的另一种通信系统的架构示意图;
图3为本申请实施例适用的又一种通信系统的网络架构示意图;
图4为本申请实施例提供的多波束抑制PAPR示意图;
图5为本申请实施例提供的通信方法的流程示意图;
图6为本申请实施例提供的为多波束抑制PAPR示意图;
图7为本申请实施例提供的TR噪声发射方向控制的一种示意图;
图8为本申请实施例提供的TR噪声发射方向控制的另一种示意图;
图9为本申请实施例提供的一个小区下多个波束的示意图;
图10为本申请实施例提供的多波束PAPR抑制原理框图;
图11为通过本申请实施例提供的方案达到的PAPR抑制效果示意图;
图12为本申请实施例提供的两颗卫星覆盖示意图;
图13为本申请实施例提供的通信装置的一种结构示意图;
图14为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
本申请的实施例提供的技术方案可以应用于新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、非陆地网络(non terrestrial networks,NTN)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统。本申请的实施例提供的技术方案也可以应用于车到万物(vehicle to everything,V2X)系统,物联网(internet of things,IoT)系统等。
作为一种示例,请参见图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统可包括网络设备和两个终端设备,这两个终端设备可以是移动终端设备和/或用于在无线通信系统上通信的任意其它适合设备,且均可以与网络设备连接。这两个终端设备均能够与网络设备通信。当然图1中的终端设备的数量只是举例,还可以更少或更多。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来 自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备(device to device,D2D)、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景中的终端设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,用于实现终端设备功能的通信装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。在本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,网络设备可以是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B,eNB/e-NodeB);网络设备也可以包括NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为站点(station)、中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、M2M网络中的设备、物联网IoT网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。CU的控制面CU-CP还包括一种进一步切分的架构,即把现有的CU-CP进一步切分为CU-CP1和CU-CP2。其中CU-CP1包括各种无线资源管理功能,CU-CP2仅包括无线资源控制(radio resource control,RRC)功能和PDCP-C功能(即控制面信令在PDCP层的基本功能)。
本申请实施例中,用于实现网络设备或终端设备功能的通信装置可以是网络设备或终端设备,也可以是能够支持网络设备或终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备或终端设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
作为另一种示例,请参见图2,为本申请实施例适用的另一种通信系统的网络架构示意图。该通信系统包括卫星、终端设备和网关。卫星可以是高椭圆轨道(highly elliptical orbiting,HEO)卫星、地球静止轨道卫星(geosynchronous earth orbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。此外,NTN系统还可以包括高空平台(high altitude platform station,HAPS)等,这里不作限制。网关(或称地面站、地球站、信关站、关口站)(gateway),可用于连接卫星和地面基站。一个或多个卫星可以通过一个或多个网关连接到一个或多个地面基站,在此不做限制。 终端设备,例如包括手机、飞机等(图2以此为例)。卫星与终端设备间的链路称作服务链路(service link),卫星与网关间的链路称作馈电链路(feeder link)。
本申请实施例对卫星的工作模式不作限制,例如,卫星的工作模式可以是透传(transparent)模式,也可以是再生(regenerative)模式。
透传模式,即,卫星作为一个模拟射频中继器,具有中继转发的功能,可以实现无线频率转换和放大,可透传或复制基站与终端设备之间的信号。例如,终端设备发送的信号可用过卫星透传,网关转发进入地面基站。网关具有基站的部分功能或全部功能,此时可以将网关看作为基站。可以认为,网关与基站可以部署在一起,也可以分开部署。如果网关与基站分开部署,那么馈电链路的时延包括卫星到网关的时延和网关到基站的时延。
再生模式,即卫星作为无线通信的基站,具有基站的部分功能或全部功能,实现从地面接收的信号的再生,可以理解并处理这些信号。例如,卫星可以是搭载在人造地球卫星或高空飞行器上的基站,例如基站可以为演进型基站(eNB)或5G基站(gNB)等。网关可转发卫星(即基站)与核心网之间的信令。
可以理解的是,本申请实施例也可以适用于空地(air to ground,ATG)通信系统,作为示例,请参见图3,为本申请实施例适用的又一种通信系统的网络架构示意图。该通信系统包括至少一个网络设备和至少一个高空终端设备,例如高空飞机和机上终端设备。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,“第一波束”和“第二波束”是表示存在两个波束,并不表示这两个波束的优先级或者重要程度等不同。
如上介绍了本申请实施例适用的通信系统,下面介绍本申请实施例主要涉及的相关技术内容。
卫星设备受限于制造与发射成本,星上数据处理能力与发射功率都会受到限制。具体来说,卫星设备属于能量和功率受限设备,对星上功率效率敏感,即期望尽可能提高卫星设备的功率效率。在陆地蜂窝网通信或NTN通信中均要求发射端的高功率放大器(high power amplifier,HPA)工作在线性饱和区附近,以提高HPA的功率效率。
如果系统采用正交频分复用(orthogonal frequency division multiplexing,OFDM)波形或具有高PAPR特性的波形来传输数据,会出现高PAPR。由于OFDM信号的PAPR较大,因此当HPA工作在饱和点附近时,输入HPA的信号有较一定概率进入非线性区域而产生非线性失真。非线性失真会引入带内失真和带外辐射,既会影响接收端的解码正确率,也会给相邻信道用户带来干扰。为此,可通过对输入的HPA信号做功率回退,尽量减少HPA的非线性失真。对输入的HPA信号做功率回退,可以理解的是,降低输入HPA信号的功率。对输入的HPA信号做功率回退,虽然可以减少HPA的非线性失真,但是会降低HPA输出的信号功率,从而降低了发射功率、降低了HPA的功率效率,进而导致接收端的信号接收功率的降低,降低了接收端的信噪比。为此,提出通过TR技术抑制OFDM等波形的PAPR。TR技术,可以理解为,保留一部分预留载波作为抑制PAPR的载波,预留载波上承载抑制PAPR的信号或能量。用于抑制PAPR的预留载波可以包括多个子载波,也可以将这些子载波组成的集合称为载波集合。该载波集合包括的各个子载波分别对应的子载波编号组成的图样(pattern),称为TR图样(TR pattern),即TR图样可指示用于抑制PAPR的预留载波的集合。
可以理解的是,在发送端保留用于抑制PAPR的预留载波,承载抑制PAPR的信号,除去预留载波之外的部分载波用于承载数据信号。当然,为了提高频谱效率,也可以在预留载波上承载数据信号,即预留载波既可以承载抑制PAPR的信号,又可以承载数据信号。可选地,承载抑制PAPR的信号的载波集合和承载数据信号的载波集合不重叠(本文以此为例)。对于接收端来说,在解调从发送端接收的信息时,可跳过或去除用于抑制PAPR的预留载波,也就是对用于抑制PAPR的预留载波上的信号不进行 译码。关于基于TR图样抑制PAPR的原理为现有技术,此处不作赘述。
在对小区中的多个波束进行PAPR抑制时,为了避免PAPR抑制时产生的噪声带来干扰,这多个波束使用相同的TR pattern,即需要为这多个波束预留相同的子载波。例如,请参见图4,为多波束抑制PAPR示意图。图4以4个波束(即波束0~波束3)为例。其中,波束0~波束3使用的TR pattern相同。多个波束使用相同的TR pattern,会降低系统频率利用率。举例来说,200M大小的带宽,当子载波间隔为120KHz时,TR pattern占用88个子载波,则一个波束损失88/1584=5.56%频谱,即该小区损失5.56%频谱。
另外,不同波束覆盖区域内用户数量和用户密度不同。某个或某些波束覆盖区域内的用户数量较多,这就要求该覆盖区域具有更高的吞吐率和频谱利用率。然而对多波束信号作PAPR抑制时,具有较高吞吐率的波束仍需要预留一部分子载波,即不传输数据,反而会降低波束的频谱利用率。可见,多个波束使用相同的TR pattern,无法满足各个波束较高的吞吐率。
在本申请实施例中,小区内不同波束可使用不同的TR pattern,可提高系统频谱的利用率。另外,还可以根据不同波束各自对吞吐率的需求,为各个波束分配合适数量的预留载波,既可以使得各个波束达到较高吞吐率,又可以提高频谱利用率,提高链路预算。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供的通信方法,该方法可应用任意通信系统,只要发送端和接收端通信即可。下文的介绍中,以该通信方法应用于图1-图3所示的任意通信系统。本申请实施例提供的通信方法,可以应用于上行传输,也可以应用于下行传输。应理解,上行传输和下行传输是相对而言的,例如,从第一通信装置到第二通信装置的传输为上行传输,那么从第二通信装置到第一通信装置的传输为下行传输。本申请实施例不限于采用OFDM波形传输数据,例如,也可以采用DFT-S-OFDM波形传输数据。即可将数据先进行DFT预编码,然后映射到频域数据子载波上。
本申请实施例对参考信号的类型不作限制,例如,参考信号可以为相位跟踪参考信号(Phase-tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel-state information reference signal,CSI-RS)、跟踪参考信号(tracking reference signal,TRS)、信道探测参考信号(sounding reference signal,SRS)等。在下文的描述中,“当….时”和“在…情况下”属于同一概念,如无特殊说明,二者可替换。
请参见图5,为本申请实施例提供的通信方法的流程示意图。在下文的描述中,以该通信方法通过终端设备和网络设备执行为例。网络设备可以是卫星。
S501、终端设备在第一时刻确定与第一波束对应的第一TR图样,该第一波束为终端设备在第一时刻的服务波束;
S502、终端设备在第二时刻确定与第二波束对应的第二TR图样,该第二波束为终端设备在第二时刻的服务波束,第一TR图样和第二TR图样不同。
随着终端设备的移动,或者随着网络设备的移动,终端设备在不同时刻的服务波束可能不同。如果终端设备确定要使用TR来发送或接收信息,终端设备可在当前时刻确定服务波束对应的TR图样。例如,终端设备在第一时刻确定与第一波束对应的第一TR图样,在第二时刻确定与第二波束对应的第二TR图样。其中,第一波束是终端设备在第一时刻的服务波束,第二波束是终端设备在第二时刻的服务波束。终端设备从第一波束切换到第二波束,终端设备在第一时刻和第二时刻之间使用第一波束根据第一TR图样发送或接收信息,从第二时刻开始使用第二波束根据第二TR图样发送或接收信息。
在本申请实施例中,第一TR图样和第二TR图样可以不同,即小区内不同波束可使用不同的TR图样。也就是,无需为所有波束预留相同的子载波。例如,请参见图6,为多波束抑制PAPR示意图。图6以4个波束(即波束0~波束3)为例。其中,波束0~波束1使用的TR pattern不相同,波束2~波束3不使用预留载波。从图6和图4中可以看出,不同波束使用不同的TR pattern来说,可提高系统频率的利用率。这种情况下,通过控制抑制PAPR时产生的噪声干扰不在有用信号的波束方向,避免波束间干扰。沿用图6的例子,网络设备和/或终端设备通过控制TR产生的干扰噪声发射方向,不打向未预留载波的波束2和波束3方向。由于波束0和波束1中的TR噪声也只分布在预留载波上,不干扰数据的发送与接收。例如,如图7所示,可以控制TR噪声不打向无预留载波的波束2和波束3,在其它方向或覆盖范围内存在TR噪声。又例如,如图8所示,可以将TR噪声只打向存在预留载波的波束0和波束1,即将PAPR抑制产生的TR噪声只分布在预留载波上。
另外,不同波束使用不同的TR pattern,还可以根据不同波束各自对吞吐率的需求,为各个波束分配合适数量的预留载波,既可以使得各个波束达到较高吞吐率,又可以提高频谱利用率,提高链路预算。例如,吞吐率需求较高的波束可预留较少的子载波,吞吐率需求较低的波束可预留较多的子载波,可以使得各个波束达到较高的吞吐率。
终端设备根据波束确定TR图样,可以理解为,终端设备采用的TR图样是波束级的,也可以认为TR图样与波束关联,或者终端设备采用波束级TR方案。相对的,如果一个小区内的所有波束使用相同的TR图样,可以理解为,终端设备采用小区级TR图案,或者TR图样与小区关联。
在可能的实现方式中,网络设备可向终端设备指示是否使用TR方案,或者,是否使用小区级TR方案,或者,是否使用波束级TR方案。例如,网络设备可执行如下的S500。
S500、网络设备向终端设备发送指示信息,相应的,终端设备接收网络设备发送的指示信息,该指示信息可用于指示不抑制PAPR,或者,该指示信息可指示TR图样与小区关联,或者,该指示信息可指示TR图样与波束关联。
指示信息指示不抑制PAPR,包括该指示信息指示终端设备和/或网络设备不抑制PAPR。也就是,该指示信息可指示终端设备和/或网络设备不使用TR方案。指示信息指示TR图样与小区关联,也可以理解为,该指示信息指示使用小区级TR方案。如果指示信息指示终端设备使用小区级TR方案,那么网络设备可向终端设备配置一个TR图样,从而节省信令开销。指示信息指示TR图样与波束关联,也可以理解为,该指示信息指示使用波束级TR方案。如果指示信息指示终端设备使用波束级TR方案,网络设备还向终端设备指示各个波束对应的TR图样。
其中,指示信息可承载于系统信息,例如,指示信息可承载于主系统信息块(mater information block,MIB)消息、PBCH payload消息。
如果网络设备向终端设备指示各个波束对应的TR图样,也可以认为,网络设备向终端设备指示终端设备使用波束级TR方案。这种情况下,网络设备无需通过指示信息向终端设备指示使用波束级TR方案。因此,S500不是必须执行的,在图5中以虚线示意。如果网络设备不向终端设备指示各个波束对应的TR图样,或者网络设备不向终端设备配置TR图样,终端设备可默认不使用波束级TR方案或不使用TR方案抑制PAPR。如果网络设备向终端设备配置一个TR图样,终端设备可默认使用小区级TR图样。也可以认为,网络设备也可以通过隐式方式向终端设备指示小区级TR方案或者波束级TR方案。
网络设备通过隐式方式向终端设备指示各个波束对应的TR图样,包括但不限于如下的几种方式,具体使用何种指示方式,本申请实施例不作限制。
指示方式一、网络设备向终端设备发送映射关系,该映射关系用于指示至少一个TR图样与至少一个波束的对应关系。该指示方式下,终端设备在第一时刻根据第一波束以及该映射关系确定第一TR图样。在可能的实现方式中,该映射关系是预配置或者预定义或者约定的。如果网络设备向终端设备发送该映射关系,可指示终端设备使用波束级TR方案,且还向终端设备指示了终端设备使用的TR图样。
例如,该映射关系可指示至少一个TR图样与波束参数集合的对应关系。波束参数可用于指示波束,例如,波束参数可以包括波束索引、BWP、TCI、同步信号和物理广播信道(physical broadcast channel,PBCH)块(synchronization signal and PBCH block,SSB)或地理位置范围。即波束参数集合包括如下的一种或多种信息:波束索引、BWP、TCI、同步信号块索引或地理位置范围。由于波束与BWP、TCI或SSB或地理位置范围相映射,因此可通过BWP、TCI、SSB或地理位置范围来区分波束。终端设备和网络设备之间可以通过BWP号、TCI号或者SSB号来确定相应的波束。需要说明的是,本申请中所述的波束也可替换为BWP、TCI或者SSB。
以波束参数为SSB索引,该映射关系可为至少一个TR图样与至少一个SSB的对应关系。终端设备在第一时刻可根据第一波束的索引与该映射关系确定第一TR图样。或者,该映射关系可为至少一个TR图样与至少一个SSB索引(index)的对应关系。终端设备在第一时刻可根据形成第一波束的SSB的索引与该映射关系确定第一TR图样。
举例来讲,可以预定义多种TR图样,不同的TR图样对应的索引不同。例如,TR pattern index 0表示对应波束不使用预留载波,或TR pattern为空集或TR pattern为空集时表示该波束覆盖范围内网络设备与终端设备不使用TR方案。TR pattern index 1表示的子载波序号集合为{1 6 10 12},TR pattern index 2表示的子载波序号集合为{1 6 10 12 15},TR pattern index 3表示的子载波序号集合为{1 6 10 12 15 19}。网络设备可以向终端设备发送TR图样索引(pattern index)和SSB index。TR pattern index和SSB index之间的对应关系可以是约定的,例如,请参见表1,示出了TR pattern index和SSB index的一种映射关系。假设网络设备向终端设备发送TR pattern index{3,2,2,1,0,0,0,0}和SSB index{0~7},当终端设备在第一时刻的第一波束的索引为2,那么第一TR图样为{1 6 10 12 15}。
表1
指示方式二、网络设备向终端设备发送第一配置信息,该第一配置信息包括第一波束集合的配置信息。该指示方式下,如果第一波束集合包括终端设备的服务波束,那么终端设备使用的TR图样为第一波束集合中各个波束对应的TR图样。例如,第一波束属于第一波束集合,第一波束集合中的各个波束对应第三TR图样,终端设备在第一时刻确定第一TR图样为第三TR图样。该指示方式中,网络设备配置更少的内容,可节省信令开销。
在可能的实现方式中,可约定使用TR方案的波束采用相同的TR图样,且预定义或者预配置或配置该TR图样。例如,可通过波束的索引来区分使用TR方案的波束和不使用TR方案的波束,例如,将beam 0~31约定为使用TR,将beam32~63约定为不使用TR,且预定义或者预配置或配置第三TR图样。
这种情况下,网络设备可配置使用TR方案的波束,例如,使用TR方案的波束组成的集合为第一波束集合,网络设备可向终端设备发送第一波束集合的配置信息(本文中称为第一配置信息)。如果终端设备的服务波束属于第一波束集合,那么终端设备确定使用的TR图样为第一波束集合对应的TR图样。例如,可约定或预配置或配置第三TR图样,即第一波束集合中的各个波束对应的TR图样。终端设备在第一时刻的波束为第一波束,如果第一波束属于第一波束集合,那么终端设备在第一时刻确定第一波束对应的第一TR图样为第三TR图样。
举例来讲,网络设备向终端设备发送波束索引{0,1,2,3},表示索引为0,1,2,3的波束使用TR方案,未包含的波束不使用TR方案。
或者,网络设备可配置不使用TR方案的波束,例如不使用TR方案的波束组成的集合为第二波束集合,网络设备可向终端设备发送第二波束集合的配置信息。如果终端设备的服务波束不属于第二波束集合,那么终端设备确定使用的TR图样为预定义或者预配置的TR图样。例如,可约定或预配置或配置第三TR图样,终端设备在第一时刻的波束为第一波束,如果第一波束不属于第二波束集合,那么终端设备在第一时刻确定第一波束对应的第一TR图样为第三TR图样。
或者,网络设备可配置使用TR方案的波束和不使用TR方案的波束。例如,使用TR方案的波束组成的集合为第一波束集合,不使用TR方案的波束组成的集合为第二波束集合。第一波束集合中的各个波束对应的第三TR图样。终端设备在第一时刻的波束为第一波束,如果第一波束属于第一波束集合,那么终端设备在第一时刻确定第一波束对应的第一TR图样为第三TR图样。
举例来讲,网络设备通过bit map方式指示使用TR方案的波束。例如,网络设备向终端设备发送{1,1,1,1,0,0,0,0}分别对应波束索引0~8,指示波束0~8是否使用TR。其中,“1”表示使用TR方案,“0”表示不使用TR方案,即索引为0,1,2,3的波束使用TR方案,索引为4,5,6,7的波束不使用TR方案。例如,预定义使用TR方案的波束使用的TR图样为TR图样1,TR pattern index 0表示对应波束不使用预留载波,则有波束0~8与TR pattern的映射关系如表2。
表2

可选地,网络设备可在终端设备初始接入阶段向终端设备发送第一配置信息,也可以在终端设备接收系统信息块(system information block,SIB)之后,向终端设备发送第一配置信息。这样终端设备在接收SSB之后,在接收SIB之前就可以确定服务波束是否使用TR。
指示方式三、可预定义或者预配置一个基础TR图样,网络设备可通过指示在基础TR图样上的增量来指示各个波束使用的TR图样。例如,网络设备可向终端设备发送至少一个波束的配置信息,该配置信息包括至少一个波束的信息以及至少一个波束分别对应的增量。
举例来讲,基础TR图样包括的子载波的序号组成的集合为{1 6 10 12}。网络设备向终端设备发送波束索引1~2,以及这2个波束对应的增量{8 9}、{7 8}。终端设备可确定波束1对应的TR pattern为{1 6 10 12 8 9},波束2的TR pattern为{1 6 10 12 7 8}。
指示方式四、可预定义或者预配置一个基础TR图样,网络设备可通过指示在基础TR图样上的减量来指示各个波束使用的TR图样。例如,网络设备可向终端设备发送至少一个波束的配置信息,该配置信息包括至少一个波束的信息以及至少一个波束分别对应的减量。
举例来讲,基础TR图样包括的子载波的序号组成的集合为{1 6 10 12}。网络设备向终端设备发送波束索引1~2,以及这2个波束对应的减量{6}、{6 10}。终端设备可确定波束1对应的TR pattern为{110 12},波束2的TR pattern为{1 12}。
指示方式五、可预定义或者预配置一个基础TR图样,网络设备通过指示波束选择该基础TR图样中的部分子载波作为预留载波。例如,网络设备指示波束1使用基础TR图样的前55个子载波,波束2使用基础TR图样的前65个子载波;或指示波束3使用基础TR图样的第14至70的子载波等等。
可选地,该基础TR图样指示的子载波可为波束所在频带或BWP包括的子载波。
指示方式六、网络设备可在每个波束向终端设备指示该波束对应的TR图样,以及与该波束相邻的波束对应的TR图样。如果两个波束覆盖区域存在重叠部分,或者两个波束覆盖区域相邻,那么这两个波束相邻。
以第一波束为例,网络设备可向终端设备发送第二配置信息,该第二配置信息可指示第一波束对应的第一TR图样以及至少一个第三波束分别对应的TR图样。终端设备根据第二配置信息在第一时刻确定第一波束对应的TR图样为第一TR图样。终端设备从服务波束切换到与服务波束相邻的波束,可以根据网络设备指示的相邻波束对应的TR图样确定要使用的TR图样。例如,第二波束与第一波束相邻,即至少一个第三波束可包括第二波束,终端设备在第二时刻可确定至少一个第三波束中第二波束对应的TR图样为第二TR图样。其中,网络设备在每个波束向终端设备指示该波束对应的TR图样,以及与该波束相邻的波束对应的TR图样的方式可参考前述指示方式一至指示方式五中的任意指示方式。该指示方式六中,网络设备无需广播小区内所有波束的TR图样,可节省信令开销。
举例来说,请参见图9,为一个小区下多个波束的示意图。假设终端设备当前的服务波束为第一波束,该第一波束对应的第一TR图样为TR图样4。第一波束相邻的多个波束分别对应的TR图样包括TR图样0、TR图样1、TR图样3、TR图样5、TR图样8和TR图样9。其中,TR图样5对应第二波束。当终端设备从第一波束切换到第二波束,终端设备可确定第二TR图样为TR图样5。
本申请实施例中,上述六种指示方式中的一个指示方式或多种指示方式中的方案可以相互结合,得到不同的方案。本申请的方案和各实施例中的信令,例如指示信息、第一配置信息、第二配置信息、映射关系等,可以在包括SIB1、其他系统消息(other system information,OSI)、MIB等的广播信息中的至少一种,由网络设备向终端设备广播或组播发送。向终端设备广播或组播发送以上信令可以避免为了发送上述信令而对不同终端设备调度不同资源,节省调度资源的信令开销和降低系统调度复杂度。
此外,如果在RRC建立连接阶段以及后续通信过程中发送,网络设备可以通过RRC信令(例如,RRC建立(RRC setup)消息、RRC重配信令(RRC Reconfiguration)、RRC恢复信令(RRC Resume)等)、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element,CE)中的至少一种信息中携带以上信令或通过表格方式向终端设备指示以上信令/参数值,或者随数据传输或在单独分配的PDSCH承载中向终端设备单播或组播发送。向终端设备单独或成组发送以上信令的好处是可以灵活控制每个/每组终端设备的参数值,根据终端设备所在不 同位置或不同区域等对链路预算的不同,向终端设备配置不同参数值达到优化系统发送功率效率、优化终端设备通信性能/系统通信性能的目的。例如,可以根据终端设备所在地理位置不同,所需链路预算不同,对发射信号的功率或功率效率需求不同,可以配置使用不同的TR图样(例如配置TR图样包含不同的子载波数量),以优化每个/每组终端设备的PAPR抑制性能与频谱效率,避免过度浪费频谱资源,提高终端设备和系统的整体通信性能。
S503、终端设备在第一时刻和第二时刻之间使用第一波束根据第一TR图样发送或接收信息,从第二时刻开始使用第二波束根据第二TR图样发送或接收信息。
终端设备确定与服务波束对应的TR图样之后,使用服务波束以及该服务波束对应的TR图样向网络设备发送信息或者从网络设备接收信息。例如,终端设备在第一时刻和第二时刻之间使用第一波束根据第一TR图样发送或接收信息,从第二时刻开始使用第二波束根据第二TR图样发送或接收信息。由于使用预留载波会产生干扰,因此,在本申请实施例中,可将抑制PAPR时产生的噪声干扰不指向有用信号的波束方向,从而降低干扰。具体的,可在终端设备和/或网络设备设置功能模块,例如称为“reserving partial tones”模块,该模块可控制使用TR图样的波束产生的噪声不指向不使用TR的波束。
请参见图10,为本申请实施例提供的多波束PAPR抑制的原理框图。如图10所示,可在发送端预编码(precoding)模块、IDFT模块基础上增加PAPR抑制(PAPR reduction TR scheme)模块、TR噪声空间分离(TR noise spatial separation)模块。基于图10的框架,数据处理流程可为:基带信号(QAM symbol)映射到数据载波上,用于抑制PAPR的预留载波不映射传输的数据,映射后的信号依次经过预编码模块、IDFT模块、PAPR抑制模块、TR噪声空间分离模块、循环移位模块、数字模拟转换器(digital to analog converter,DAC)、HPA(高功率放大器)等,将信号通过天线进行发送。
例如,假设Sk为子载波k上的B(B≥1)个波束频域星座映射信号向量(B×1向量)。Sk信号向量经过“reserving partial tones”模块,对存在预留载波的波束上的子载波进行空置,即置零,不放置数据。子载波k上数据的预编码矩阵Wk是P×B矩阵,P表示天线数,B表示波束数量。原始星座映射信号向量Sk经过预编码后的数据为:
对Sk进行PAPR抑制,且在抑制过程中对由于TR产生的TR噪声进行空间分离处理,具体包括如下步骤(1)~(7)。
(1)将预编码后的数据经过离散傅里叶逆变换(Inverse discrete fourier transform,IDFT)变换到时域。以其中一个天线上的频域数据为例,表示经过预编码后的某个天线的频域数据向量满足:
(2)将各天线时域数据使用TR进行PAPR抑制。以其中一个天线数据x为例,PAPR抑制后的时域信号满足:
xTR=TR(x)
(3)将经过PAPR抑制的时域信号输入到TR噪声空间分离模块,也称为“TR noise spatial separation”模块。该模块可将抑制PAPR产生的噪声进行空间滤波或者空间分离。该模块首先将PAPR抑制后的数据与PAPR抑制前的数据相减,得到时域TR噪声满足:
NoiseTR_TD=xTR-x
(4)将时域TR噪声变换到频域,则有:
NoiseTR_FD=DFT(NoiseTR_TD)
(5)将多个天线上的TR噪声映射到存在TR预留载波的波束方向和/或无有用信号的波束方向,该过程也称为空间分离,经过该过程TR噪声满足:
其中,I表示单位阵,WnonTR,k表示为子载波k上无TR预留载波的波束预编码矩阵,WnonTR,k为P×BnonTR矩阵,BnonTR表示无TR预留载波的波束数量,表示WnonTR,k的伪逆矩阵,为BnonTR×P矩阵。
或者,经过空间分离过程TR噪声满足:
其中,I表示单位阵,WTR,k表示TR预留载波的子载波k的波束和/或无有用信号波束方向的波束预编码矩阵,WTR,k为P×BTR矩阵,BTR表示存在TR预留载波和/或无有用信号波束的波束数量,表示WTR,k的伪逆矩阵,为BTR×P矩阵。
(6)将经过空间分离处理后的频域TR噪声变换到时域,以其中一个天线上的频域TR噪声Noiseproject_FD为例:
Noiseproject_TD=IDFT(Noiseproject_FD)
(7)将经过空间分离处理后的时域TR噪声与xTR相加,得到更新后的PAPR抑制信号;以其中一个天线数据x为例,更新后的PAPR抑制信号的时域信号表示为:
步骤(1)~(7)的过程称作一次迭代,当迭代次数达到阈值或PAPR抑制效果达到要求,可以停止继续迭代,即将得到的更新后的PAPR抑制信号输出,例如输出给循环前缀(cyclic prefix,CP)模块。如果一次迭代之后,PAPR抑制效果没有达到要求,将更新后的PAPR抑制信号的时域信号替换步骤(2)中的数据x,重复执行步骤(2)~(7),即进行下一次迭代处理。
本申请实施例中,在终端设备或网络设备增加TR noise spatial separation模块,将抑制PAPR产生的干扰噪声进行空间(方向)控制,不指向不使用预留载波的波束方向。这样就可以降低干扰,还可以提高系统的频谱利用率。
例如,请参见图11,为通过本申请实施例提供的方案达到的PAPR抑制效果示意图。图11以8个波束为例,其中,这8个波束中的4个波束使用TR,其余4个波束不使用TR进行PAPR抑制。从图8中可以看出,相较于这8个波束不使用本方案进行PAPR抑制,本申请实施例提供的方案,PAPR抑制性能较好。可见,本申请实施例提供的方案在保证PAPR抑制性能的前提下,还可以提高频谱利用率。
需要说明的是,本申请实施例提供的方案也适用于多颗卫星的场景。当多颗卫星信号覆盖区域有重叠区域时,卫星与卫星之间可以通过信令(例如通过Xn接口信令)互相传输使用PAPR抑制的波束或波位号、使用的TR pattern和/或PAPR抑制的时间。各卫星根据其它卫星使用的TR pattern对干扰噪声进行空间(方向)分离,避免干扰噪声对其它卫星波束的干扰。
例如,请参见图12,示出了两颗卫星覆盖示意图。图12以两颗卫星是卫星1和卫星2为例,其中,卫星1覆盖小区1,卫星2覆盖小区2,小区1内波束有波束0~波束3,对应覆盖波位0~波位3,小区2内波束有波束0~波束3,对应覆盖波位4~波位7。波位可以理解为将卫星覆盖区域或地球上一部分区域或整个地球地面区域以单波束覆盖区域为单位进行划分,每个波束的覆盖区域称作波位。如图12所示,所有波位组成一个卫星的覆盖区域。从图12可以看出,卫星1的信号会覆盖到卫星2的波位4和波位5。卫星1的PAPR抑制噪声(干扰噪声)会干扰到卫星2的波位4和波位5,那么卫星1根据卫星2的波位4和波位5的TR图样对PAPR抑制噪声(干扰噪声)的方向进行控制,避免干扰。
所述本申请提供的实施例中,分别从网络设备、终端设以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图13为本申请实施例提供的通信装置1300的示意性框图。该通信装置1300可以包括处理模块1310和收发模块1320。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1310和收发模块1320可以与该存储单元耦合,例如,处理模块1310可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中终端设备的行为和功能,通信装置1300可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,处理模块1310可用于在第一时刻确定与第一波束对应的第一TR图样,在第二时刻确定与第二波束对应的第二TR图样。其中,第一波束为通信装置1300在第一时刻的服务波束,第二波束为通信装置1300在第二时刻的服务波束,第一TR图所述第二TR图样不同。收发模块1320用于根据确定的波束发送或接收信息。
作为一种可选的实现方式,收发模块1320具体用于在第一时刻和第二时刻之间使用第一波束发送或接收信息,从第二时刻开始使用第二波束发送或接收信息。
作为一种可选的实现方式,收发模块1320还用于接收来自网络设备的映射关系,该映射关系用于指示至少一个TR图样与至少一个波束的对应关系;处理模块1310具体用于根据第一波束以及该映射关系确定第一TR图样。
作为一种可选的实现方式,映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:映射关系用于至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:BWP、TCI、SSB索引或地理位置范围。
作为一种可选的实现方式,收发模块1320还用于接收来自网络设备的第一配置信息,该第一配置信息包括第一波束集合的配置信息,其中,第一波束集合中的各个波束对应第三TR图样;第一波束属于第一波束集合,处理模块1310具体用于确定第一TR图样为第三TR图样。
作为一种可选的实现方式,收发模块1320还用于接收来自网络设备的第二配置信息,该第二配置信息用于指示第一波束对应的所述第一TR图样和/或至少一个第三波束对应的TR图样。其中,至少一个第三波束是与第一波束相邻的波束;处理模块1310具体用于根据第二配置信息确定第一TR图样。
作为一种可选的实现方式,收发模块1320还用于:接收来自网络设备的指示信息,该指示信息用于指示不抑制PAPR,或者,该指示信息用于指示TR图样与小区关联;或者,该指示信息用于指示TR图样与波束关联。
一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中网络设备的行为和功能,通信装置1300可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路),也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,处理模块1310可用于确定至少两个波束对应的至少一个TR图样,其中,至少两个波束包括第一波束和第二波束,第一波束对应的第一TR图样和第二波束对应的第二TR图样不同;收发模块1320用于向终端设备指示至少两个波束对应的至少一个TR图样。
作为一种可选的实现方式,收发模块1320具体用于:向终端设备发送映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系。
作为一种可选的实现方式,映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:映射关系用于指示至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:BWP、TCI、SSB索引或地理位置范围。
作为一种可选的实现方式,收发模块1320具体用于:向终端设备发送第一配置信息,该第一配置信息包括第一波束集合的配置信息。
作为一种可选的实现方式,收发模块1320具体用于:向终端设备发送第二配置信息,该第二配置信息用于指示所述第一波束对应的第一TR图样和/或至少一个第三波束对应的TR图样,该至少一个第三波束是与第一波束相邻的波束。
作为一种可选的实现方式,收发模块1320具体用于:向终端设备发送指示信息,该指示信息用于指示不抑制PAPR,或者,该指示信息用于指示TR图样与小区关联;或者,该指示信息用于指示TR图样与波束关联。
应理解,本申请实施例中的处理模块1310可以由处理器或处理器相关电路组件实现,收发模块1320可以由收发器或收发器相关电路组件或者通信接口实现。
图14为本申请实施例提供的通信装置1400的示意性框图。其中,该通信装置1400可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能。通信装置1400也可以是能够支持终端设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1400可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。该通信装置1400也可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能。通信装置1400也可以是能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置, 其中,该通信装置1400可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置1400包括一个或多个处理器1401,可用于实现或用于支持通信装置1400实现本申请实施例提供的方法中终端设备的功能。具体参见方法示例中的详细描述,此处不做赘述。一个或多个处理器1401也可以用于实现或用于支持通信装置1400实现本申请实施例提供的方法中网络设备的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器1401也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器1401可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置1400进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置1400中包括一个或多个存储器1402,用以存储指令1404,所述指令可在所述处理器1401上被运行,使得通信装置1400执行上述方法实施例中描述的方法。存储器1402和处理器1401可以单独设置,也可以集成在一起,也可以认为存储器1402和处理器1401耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1401可能和存储器1402协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1402不是必须的,所以在图14中以虚线进行示意。
可选地,所述存储器1402中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器1402可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置1400可以包括指令1403(有时也可以称为代码或程序),所述指令1403可以在所述处理器上被运行,使得所述通信装置1400执行上述实施例中描述的方法。处理器1401中可以存储数据。
可选地,通信装置1400还可以包括收发器1405以及天线1406。所述收发器1405可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线1406实现通信装置1400的收发功能。
本申请中描述的处理器1401和收发器1405可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,通信装置1400还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1400可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是终端设备(或网络设备)也可以是电路,也可以是应用于终端设备(或网络设备)中的芯片或者其他具有上述终端设备功能(或网络设备)的组合器件、部件等。当通信装置是终端设备(或网络设备)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端设备(或网络设备)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器 (programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括至少一个终端设备和至少一个网络设备。示例性的,通信系统包括用于实现上述图5的相关功能的终端设备和网络设备。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图5中终端设备或网络设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图5中终端设备或网络设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端设备的功能;或者用于实现前述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置在第一时刻确定与第一波束对应的第一载波预留TR图样,其中,所述第一波束为所述第一通信装置在所述第一时刻的服务波束;
    第一通信装置在第二时刻确定与第二波束对应的第二载波预留TR图样,其中,所述第二波束为所述第一通信装置在所述第二时刻的服务波束,所述第一TR图样和所述第二TR图样不同。
  2. 如权利要求1所述的方法,其特征在于,所述第一通信装置在所述第一时刻和所述第二时刻之间使用所述第一波束发送或接收信息,从所述第二时刻开始使用所述第二波束发送或接收信息。
  3. 如权利要求1或2所述的方法,其特征在于,第一通信装置在第一时刻确定与第一波束对应的第一TR图样,包括:
    所述第一通信装置接收来自第二通信装置的映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系;
    所述第一通信装置根据第一波束以及所述映射关系确定所述第一TR图样。
  4. 如权利要求3所述的方法,其特征在于,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:
    所述映射关系用于指示所述至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:部分带宽BWP、传输配置指示TCI、同步信号块索引或地理位置范围。
  5. 如权利要求1或2所述的方法,其特征在于,第一通信装置在第一时刻确定与第一波束对应的第一TR图样,包括:
    所述第一通信装置接收来自第二通信装置的第一配置信息,所述第一配置信息包括第一波束集合的配置信息,其中,所述第一波束集合中的各个波束对应第三TR图样;
    所述第一波束属于所述第一波束集合,所述第一通信装置确定所述第一TR图样为所述第三TR图样。
  6. 如权利要求1或2所述的方法,其特征在于,第一通信装置在第一时刻确定与第一波束对应的第一TR图样,包括:
    所述第一通信装置接收来自第二通信装置的第二配置信息,所述第二配置信息用于指示所述第一波束对应的所述第一TR图样和/或至少一个第三波束对应的TR图样,所述至少一个第三波束是与所述第一波束相邻的波束;
    所述第一通信装置根据所述第二配置信息确定所述第一TR图样。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自第二通信装置的指示信息,所述指示信息用于指示不抑制PAPR,或者,所述指示信息用于指示TR图样与小区关联;或者,所述指示信息用于指示TR图样与波束关联。
  8. 一种通信方法,其特征在于,包括:
    第二通信装置确定至少两个波束对应的至少一个载波预留TR图样,其中,所述至少两个波束包括第一波束和第二波束,所述第一波束对应的第一TR图样和所述第二波束对应的第二TR图样不同;
    所述第二通信装置向第一通信装置指示至少两个波束对应的至少一个TR图样。
  9. 如权利要求8所述的方法,其特征在于,所述第二通信装置向第一通信装置指示至少两个波束对应的至少一个TR图样,包括:
    所述第二通信装置向所述第一通信装置发送映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系。
  10. 如权利要求9所述的方法,其特征在于,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:
    所述映射关系用于指示所述至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:部分带宽BWP、传输配置指示TCI、同步信号块索引或地理位置范围。
  11. 如权利要求8所述的方法,其特征在于,所述第二通信装置向第一通信装置指示至少两个波束对应的至少一个TR图样,包括:
    所述第二通信装置向所述第一通信装置发送第一配置信息,所述第一配置信息包括第一波束集合的配置信息。
  12. 如权利要求8所述的方法,其特征在于,所述第二通信装置向第一通信装置指示至少两个波束对应的至少一个TR图样,包括:
    所述第二通信装置向所述第一通信装置发送第二配置信息,所述第二配置信息用于指示所述第一波束对应的所述第一TR图样和/或至少一个第三波束对应的TR图样,所述至少一个第三波束是与所述第一波束相邻的波束。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送指示信息,所述指示信息用于指示不抑制PAPR,或者,所述指示信息用于指示TR图样与小区关联;或者,所述指示信息用于指示TR图样与波束关联。
  14. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块用于在第一时刻确定与第一波束对应的第一载波预留TR图样,在第二时刻确定与第二波束对应的第二载波预留TR图样;其中,所述第一波束为所述第一通信装置在所述第一时刻的服务波束,所述第二波束为所述第一通信装置在所述第二时刻的服务波束,所述第一TR图样和所述第二TR图样不同;
    所述收发模块用于根据确定的波束发送或接收信息。
  15. 如权利要求14所述的装置,其特征在于,所述收发模块具体用于:
    在所述第一时刻和所述第二时刻之间使用所述第一波束发送或接收信息,从所述第二时刻开始使用所述第二波束发送或接收信息。
  16. 如权利要求14或15所述的装置,其特征在于,所述收发模块还用于接收来自第二通信装置的映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系;
    所述处理模块具体用于根据第一波束以及所述映射关系确定所述第一TR图样。
  17. 如权利要求16所述的装置,其特征在于,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:
    所述映射关系用于指示所述至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:部分带宽BWP、传输配置指示TCI、同步信号块索引或地理位置范围。
  18. 如权利要求14或15所述的装置,其特征在于,所述收发模块还用于接收来自第二通信装置的第一配置信息,所述第一配置信息包括第一波束集合的配置信息,其中,所述第一波束集合中的各个波束对应第三TR图样;
    所述第一波束属于所述第一波束集合,所述处理模块具体用于确定所述第一TR图样为所述第三TR图样。
  19. 如权利要求14或15所述的装置,其特征在于,所述收发模块还用于接收来自第二通信装置的第二配置信息,所述第二配置信息用于指示所述第一波束对应的所述第一TR图样和/或至少一个第三波束对应的TR图样,所述至少一个第三波束是与所述第一波束相邻的波束;
    所述处理模块具体用于根据所述第二配置信息确定所述第一TR图样。
  20. 如权利要求14-19任一项所述的装置,其特征在于,所述收发模块还用于:
    接收来自第二通信装置的指示信息,所述指示信息用于指示不抑制PAPR,或者,所述指示信息用于指示TR图样与小区关联;或者,所述指示信息用于指示TR图样与波束关联。
  21. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块用于确定至少两个波束对应的至少一个载波预留TR图样,其中,所述至少两个波束包括第一波束和第二波束,所述第一波束对应的第一TR图样和所述第二波束对应的第二TR图样不同;
    所述收发模块用于向第一通信装置指示至少两个波束对应的至少一个TR图样。
  22. 如权利要求21所述的装置,其特征在于,所述收发模块具体用于:
    向所述第一通信装置发送映射关系,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系。
  23. 如权利要求22所述的装置,其特征在于,所述映射关系用于指示至少一个TR图样与至少一个波束的对应关系,包括:
    所述映射关系用于指示所述至少一个TR图样与波束参数集合的对应关系,所述波束参数集合包括如下的一种或多种信息:部分带宽BWP、传输配置指示TCI、同步信号块索引或地理位置范围。
  24. 如权利要求21所述的装置,其特征在于,所述收发模块具体用于:
    向所述第一通信装置发送第一配置信息,所述第一配置信息包括第一波束集合的配置信息。
  25. 如权利要求21所述的装置,其特征在于,所述收发模块具体用于:
    向所述第一通信装置发送第二配置信息,所述第二配置信息用于指示所述第一波束对应的所述第一TR图样和/或至少一个第三波束对应的TR图样,所述至少一个第三波束是与所述第一波束相邻的波束。
  26. 如权利要求22-25任一项所述的装置,其特征在于,所述收发模块具体用于:
    所述第二通信装置向所述第一通信装置发送指示信息,所述指示信息用于指示不抑制PAPR,或者,所述指示信息用于指示TR图样与小区关联;或者,所述指示信息用于指示TR图样与波束关联。
  27. 一种通信装置,其特征在于,包括:所述通信装置包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算机程序,使得所述通信装置实现如权利要求1~7中任一项所述的方法,或者,使得所述通信装置实现如权利要求8~13中任一项所述的方法。
  28. 一种通信系统,其特征在于,所述通信系统包括如权利要求14~20中任一项所述的通信装置,以及如权利要求21~26任一项所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7中任一项所述的方法,或者,使所述计算机执行如权利要求8~13中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1~7中任一项所述的方法,或者,使所述计算机执行如权利要求8~13中任一项所述的方法。
PCT/CN2023/103453 2022-09-26 2023-06-28 一种通信方法及通信装置 WO2024066563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211175283.4 2022-09-26
CN202211175283.4A CN117768963A (zh) 2022-09-26 2022-09-26 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024066563A1 true WO2024066563A1 (zh) 2024-04-04

Family

ID=90320505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103453 WO2024066563A1 (zh) 2022-09-26 2023-06-28 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117768963A (zh)
WO (1) WO2024066563A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
CN108737010A (zh) * 2017-04-19 2018-11-02 中兴通讯股份有限公司 一种信息交互的方法及装置
CN109728890A (zh) * 2013-06-27 2019-05-07 华为技术有限公司 载波切换方法、基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728890A (zh) * 2013-06-27 2019-05-07 华为技术有限公司 载波切换方法、基站和用户设备
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
CN108737010A (zh) * 2017-04-19 2018-11-02 中兴通讯股份有限公司 一种信息交互的方法及装置

Also Published As

Publication number Publication date
CN117768963A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
EP3783960A1 (en) Method for allocating sidelink resource, device, and system
JP7098650B2 (ja) スロット内周波数ホッピングのためのサポートを有するシングルスロットショートpucch
JP2022522836A (ja) Nr v2xにおけるpsfchを送信する方法、及び装置
US11558921B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
CN106899527A (zh) 一种数据符号传输方法及无线网络设备
EP4117374A1 (en) Operation method of du of parent node communicating with mt of iab node in wireless communication system, and device using method
CN115362707A (zh) 用于在nr v2x中执行csi报告的方法和设备
KR102535608B1 (ko) 전력 제어 방법 및 장치
WO2019228076A1 (zh) 用于通信系统中干扰指示的方法及装置
EP4106468A1 (en) Operating method for iab node in wireless communication system, and apparatus using same
KR20220152247A (ko) 무선 통신 시스템에서 iab 노드가 mt 동작 및 du 동작을 수행하는 방법 및 이를 위한 장치
CN114128384A (zh) 用于在nr v2x中发送与sl时隙相关的信息的方法和装置
CN111953593A (zh) 无线通信系统中用于确定分组的发送路径的方法及其装置
CN113396550A (zh) 在nr v2x中进行基于数据链路的副链路通信的方法和设备
WO2024066563A1 (zh) 一种通信方法及通信装置
WO2023005731A1 (zh) 通信处理方法和通信处理装置
Garg et al. 5g network advanced techniques: A literature review
WO2024001640A1 (zh) 一种通信方法及通信装置
WO2023216831A1 (zh) 一种通信方法及通信装置
WO2024041170A1 (zh) 一种通信方法及通信装置
CN114303398A (zh) 在nr v2x中发送s-ssb的方法和设备
WO2024012145A1 (zh) 一种通信方法及装置
EP4373187A1 (en) Operation method of terminal in wireless communication system and device using same method
WO2023011372A1 (zh) 数据传输方法及装置
WO2023216842A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869811

Country of ref document: EP

Kind code of ref document: A1