WO2019228076A1 - 用于通信系统中干扰指示的方法及装置 - Google Patents

用于通信系统中干扰指示的方法及装置 Download PDF

Info

Publication number
WO2019228076A1
WO2019228076A1 PCT/CN2019/082168 CN2019082168W WO2019228076A1 WO 2019228076 A1 WO2019228076 A1 WO 2019228076A1 CN 2019082168 W CN2019082168 W CN 2019082168W WO 2019228076 A1 WO2019228076 A1 WO 2019228076A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
dmrs
indication information
signal
serving cell
Prior art date
Application number
PCT/CN2019/082168
Other languages
English (en)
French (fr)
Inventor
谢信乾
郭志恒
费永强
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019228076A1 publication Critical patent/WO2019228076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a device for interference coordination.
  • Orthogonal Frequency Division Multiple Access is generally used as a multiple access method.
  • the main feature of OFDMA is to divide transmission resources into mutually orthogonal time-frequency resource elements (Resource Element, RE).
  • RE resource Element
  • the signals sent by the sender are carried on the RE and transmitted to the receiver. Because different REs are orthogonal to each other, So that the receiving end can receive the signal sent on each RE separately.
  • the signal carried on the RE will be distorted after being transmitted through the channel. This channel distortion is usually called the channel coefficient. In order to recover the signal at the receiving end, the channel coefficient needs to be estimated.
  • a reference signal-based scheme is generally used, that is, the transmitting end transmits a known signal on a specific RE, and the receiving end according to the received
  • the signal and the known signal are used to estimate channel coefficients, and the channel coefficients on other REs are obtained by interpolation based on the estimated channel coefficients, and then the estimated channel coefficients are used to receive and demodulate the data signal.
  • the transmitter and receiver can be equipped with multiple antennas to implement multiple-input multiple-output (MIMO) technology to achieve spatial multiplexed transmission, that is, multiple data streams are transmitted on the same time-frequency resource. Transmission on an independent space layer, and each space layer will be mapped to a different antenna port for transmission, in order to improve the efficiency of the use of time-frequency resources. Considering that the channel coefficients of different antenna ports to the receiving end may be different, in order for the receiving end to be able to obtain information transmitted on multiple spatial layers, the channel coefficients between each antenna port and the receiving end need to be estimated.
  • the antenna ports are configured with different demodulation reference signals (DMRS).
  • DMRS demodulation reference signals
  • Frequency Division Duplex Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • FDD duplex mode uplink and downlink communications are performed on different frequency bands, so there is no cross interference between uplink and downlink communications.
  • TDD duplex mode uplink and downlink communications are performed on the same frequency band, but are performed on different time slots, and adjacent cells generally have the same uplink and downlink ratios, so there is no cross interference between uplink and downlink.
  • the local cell interference in the cell generally occurs.
  • FIG. 1A the base station sends downlink data to two terminals simultaneously on the same frequency domain resource.
  • the signal sent by the base station to one terminal is The other terminal appears to be the local cell interference in the cell.
  • the uplink and downlink ratios between different cells may be different, and the data transmission directions between adjacent cells may be different, which may cause cross-interference between the uplink and downlink (as shown in Figure 1B), that is, the base station and the base station Interference between terminals, interference between terminals. Since the transmission power of the base stations is generally large, and the height of the base stations is high, the probability that the signals between the base stations are transmitted at line-of-sight is greater, so the interference between the base stations is large. In addition, the two terminals at the edges of adjacent cells may be closer, in which case the interference between the terminals is large.
  • the embodiments of the present application provide a method and device for wireless communication.
  • the embodiments of the present application provide a method and device for wireless communication.
  • a communication device for example, a network device or a terminal
  • a communication device for example, a terminal or a network device
  • the indication information determines that the demodulation reference signal DMRS of the interference signal is related to the serving cell; or determines that the demodulation reference signal DMRS of the interference signal is related to the non-serving cell or the non-serving cell group according to the first indication information; or according to the first indication information It is determined that the demodulation reference signal DMRS of the interference signal is related to the serving cell, and the demodulation reference signal DMRS of the interference signal is also related to the non-serving cell or the non-serving cell group.
  • the communication device at the receiving end determines that the scrambling parameter of the DMRS sequence of the interference signal is related to the serving cell identifier ID according to the first instruction information; or determines the DMRS of the interference signal according to the first instruction information
  • the sequence scrambling parameters are determined based on the serving cell identifier ID.
  • the communication device at the receiving end determines that the scrambling parameter of the DMRS sequence of the interference signal is related to a non-serving cell ID or a non-serving cell group ID according to the first indication information; or determines according to the first indication information
  • the scrambling parameters of the DMRS sequence of the interference signal are determined based on a non-serving cell ID or a non-serving cell group ID.
  • the communication device at the receiving end determines that the scrambling parameter of the DMRS sequence of the interference signal is related to the serving cell identifier ID according to the first instruction information, and the scrambling parameter of the DMRS sequence of the interference signal is also related to The non-serving cell ID or the non-serving cell group ID is related; or the scrambling parameter of the DMRS sequence for determining the interference signal according to the first indication information is determined based on the serving cell identifier ID, and the DMRS sequence of the interference signal is scrambled.
  • the parameters are also determined based on the non-serving cell ID or non-serving cell group ID.
  • the first indication information is included in downlink control information (DCI), uplink control information (UCI), side link control information (SCI), or network control information (NCI).
  • DCI downlink control information
  • UCI uplink control information
  • SCI side link control information
  • NCI network control information
  • the first indication information indicates information related to a source of the interference signal.
  • the source of the interference signal is, for example: serving cell, non-serving cell, non-serving cell group, serving cell and non-serving cell, serving cell and non-serving cell group, network, terminal, serving cell network, serving cell terminal, non-serving cell Network, or non-serving cell terminal.
  • a correspondence relationship between the first indication information and related information of the interference signal source may be configured.
  • the corresponding relationship is a corresponding relationship between parameters such as an index, a number, an identifier, and related information about the source of the interference signal.
  • the terminal or the network device determines a scrambling parameter of the DMRS sequence of the interference signal according to the corresponding relationship and the first indication information.
  • the first indication information indicates information related to an interference type of the interference signal.
  • the interference signal interference type is serving cell interference, non-serving cell interference, non-serving cell group interference, serving cell and non-serving cell interference, serving cell and non-serving cell group interference, network interference, terminal interference, service Cell network interference, serving cell terminal interference, non-serving cell network interference, or non-serving cell terminal interference, etc.
  • a correspondence relationship between the first indication information and related information of the interference signal interference type may be configured.
  • the corresponding relationship is a corresponding relationship between parameters such as an index, a number, and an identifier, and related information of the interference signal interference type.
  • the communication device at the receiving end determines a scrambling parameter of the DMRS sequence of the interference signal according to the corresponding relationship and the first indication information.
  • the first indication information further indicates a power ratio of data of the interference signal to a DMRS of the interference signal.
  • the power ratio is any one of ⁇ 0dB, 3dB, 4.77dB ⁇ .
  • a correspondence relationship between the first indication information and the “power ratio of the data of the interference signal to the DMRS of the interference signal” may be configured.
  • the communication device at the receiving end determines a power ratio of data of the interference signal to a DMRS of the interference signal according to the first instruction information.
  • the first indication information further indicates a port of the DMRS of the interference signal and / or a code division multiplexed CDM group of the DMRS of the interference signal.
  • a correspondence relationship between the first indication information and "the port of the DMRS of the interference signal and / or the code division multiplexing CDM group of the DMRS of the interference signal" may be configured.
  • the communication device at the receiving end determines a port of the DMRS of the interference signal and / or a code division multiplexed CDM group of the DMRS of the interference signal according to the first instruction information.
  • the first indication information further indicates a data modulation manner of the interference signal.
  • the modulation method is any one of ⁇ quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), 64QAM, 256QAM ⁇ .
  • QPSK quadrature phase shift keying
  • QAM 16 quadrature amplitude modulation
  • 64QAM 64QAM
  • 256QAM 256QAM ⁇ .
  • a correspondence relationship between the first indication information and the “data modulation method of the interference signal” may be configured.
  • the communication device at the receiving end determines a data modulation method of the interference signal according to the first instruction information.
  • This application jointly indicates the interference type of the interference signal and the port of the DMRS of the interference signal, the code division multiplexing CDM group of the DMRS of the interference signal, the modulation method of the data of the interference signal, or the data of the interference signal and the interference signal.
  • the power ratio of the DMRS can be indicated at the port of the DMRS that needs to indicate the interference signal, the DMRS code division multiplexing CDM group of the interference signal, the modulation method of the data of the interference signal, or the data of the interference signal and the interference signal.
  • the power ratio of the DMRS is reduced, the overhead of the indication information is reduced.
  • the communication device at the transmitting end sends second instruction information.
  • the communication device at the receiving end receives the second indication information, and determines the non-serving cell ID or non-serving cell group ID according to the second indication information.
  • the communication device at the receiving end receives a measurement signal, and determines the non-serving cell ID or non-serving cell group ID according to the measurement signal, where the measurement signal is a synchronization signal, a synchronization signal block, or a channel state information reference Signal CSI-RS.
  • the measurement signal is a synchronization signal, a synchronization signal block, or a channel state information reference Signal CSI-RS.
  • the communication device at the transmitting end sends third indication information.
  • the communication device at the receiving end receives the third indication information, and determines a correspondence relationship between the measurement signal and the non-serving cell ID or the non-serving cell group ID according to the third indication information.
  • the terminal or the network device determines the non-serving cell ID or the non-serving cell group ID according to the corresponding relationship and the received measurement signal.
  • the communication device at the transmitting end sends fourth indication information.
  • the communication device at the receiving end receives the fourth instruction information, and determines a correspondence relationship between the first instruction information and the interference signal source or interference type related information according to the fourth instruction information.
  • the fourth indication information is scheduling information or control information included in the DCI.
  • the embodiment of the present application solves the problem that the receiver cannot determine the interference signal in the scenario where the interference of the local cell and the neighboring cell coexist or alternately coexist, by enabling the receiving end to obtain accurate scrambling parameters of the DMRS sequence of the interference signal or the interference type of the interference signal.
  • the scrambling parameters of the DMRS sequence lead to the problem that the advanced receiver cannot be used for interference cancellation or interference suppression.
  • the present application provides a communication device that can implement the corresponding functions of the communication device on the transmitting end and / or the communication device on the receiving end.
  • the communication device includes a corresponding unit or component for performing the above method.
  • the units included in the communication device may be implemented by software and / or hardware.
  • the communication device may be, for example, a terminal, a network device (such as a base station), or a chip, a chip system, a processor, or the like that can support the terminal or the network device to implement the functions described above.
  • the present application provides a communication device, including: a processor and a memory, where the memory is configured to store a program, and when the program is executed by the processor, causes the communication device to implement the foregoing method.
  • the present application provides a communication device including a processing unit and a transceiving unit.
  • the transceiving unit is configured to send or receive instruction information used to indicate the corresponding relationship described in the foregoing aspect.
  • the processing unit is used for To obtain the corresponding information according to the instructions.
  • it may further include a storage unit, where the storage unit is configured to store the correspondence relationship described in the foregoing method.
  • An embodiment of the present application further provides a storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method according to any one of the foregoing is implemented.
  • An embodiment of the present application further provides a chip system, including: a processor, configured to support a communication device to implement the method described in any one of the foregoing.
  • An embodiment of the present application further provides a communication system including the communication device at the transmitting end and the communication device at the receiving end.
  • FIG. 1A is a schematic diagram of interference in a local cell
  • FIG. 1B is a schematic diagram of neighboring cell interference
  • FIG. 1C is a schematic diagram of a communication system to which the method for assisting interference cancellation provided by this application is applied;
  • FIG. 1D is a schematic diagram of an example architecture of a communication system
  • FIG. 3A is a schematic diagram of a first method for bearing first indication information
  • 3B is a schematic diagram of a second method for bearing the first indication information
  • FIG. 3C is a schematic diagram of a third method for bearing the first indication information
  • 3D is a schematic diagram of a fourth method for bearing the first indication information
  • FIG. 4 is a schematic flowchart of determining an interference DMRS sequence scrambling parameter provided by the present application
  • FIG. 5 is a schematic flowchart of determining another scrambling parameter of an interference DMRS sequence provided by the present application.
  • FIG. 6 is a schematic diagram of a DMRS port and a DMRS CDM group
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 1C shows a schematic structural diagram of a communication system.
  • the communication system includes one or more network devices (the network device 10 and the network device 20 are shown in the figure for clarity), and one or more terminal devices communicating with the one or more network devices.
  • the terminal device 11 and the terminal device 12 shown in the figure are connected to the network device 10, and the terminal device 21 and the terminal device 22 shown are connected to the network device 20.
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • LTE long-term evolution
  • new air interface newradio, NR
  • WiFi wireless-fidelity
  • WiMAX worldwide interoperability for microwave access
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3rd generation partnership project 3rd generation partnership project
  • FIG. 1D is a schematic diagram of an example architecture of a communication system.
  • the network equipment in the radio access network RAN is a base station (such as gNB) with a CU and DU separation architecture.
  • the RAN can be connected to the core network (for example, it can be the core network of LTE or the core network of 5G, etc.).
  • CU and DU can be understood as a division of the base station from the perspective of logical functions.
  • the CU and DU can be physically separate or deployed together.
  • the function of the RAN ends in the CU. Multiple DUs can share one.
  • One DU can also connect multiple CUs (not shown in the figure).
  • the CU and the DU can be connected through an interface, for example, it can be an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the packet data convergence layer protocol (PDCP) layer and the radio resource control (RRC) layer are set in the CU, while radio link control (RLC), media access control (Media Access Control (MAC) layer, physical layer and other functions are set in the DU.
  • RLC radio link control
  • MAC media access control
  • the division of the CU and DU processing functions according to this protocol layer is only an example, and it can also be divided in other ways.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into partial processing functions with a protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to the type of service or other system requirements. For example, according to the delay division, a function that needs to meet the delay requirement in processing time is set in the DU, and a function that does not need to meet the delay requirement is set in the CU.
  • the network architecture shown in FIG. 2 can be applied to a 5G communication system, and it can also share one or more components or resources with the LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally and separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, and can also set the radio frequency function remotely.
  • the function of the CU can be implemented by one entity, and the control plane (CP) and user plane (UP) can be further separated, that is, the control plane (CU-CP) and user plane (CU-UP) of the CU can have different functions.
  • the CU-CP and CU-UP may be coupled with a DU to jointly complete a function of a base station.
  • the network device may be any device having a wireless transceiver function. Including but not limited to: Global System for Mobile (GSM) or base station (BTS) in CDMA, Base Station (W) in WCDMA, Node B or eNB in LTE (NodeB or eNB or e -NodeB, evolutional NodeB), base station (gNodeB or gNB) or transmission point (TRP) in NR, base station for 3GPP subsequent evolution, access node in wireless system, wireless relay node, wireless backhaul Nodes, etc.
  • the base station can be: macro base station, pico base station, pico base station, small station, relay station, balloon station, etc.
  • the base station may include one or more co-sited or non-co-sited transmission receiving points (TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), and / or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device may also be a server, a wearable device, or a vehicle-mounted device.
  • the following description uses a network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • Terminal equipment can communicate with multiple base stations of different technologies. For example, terminal equipment can communicate with base stations supporting LTE networks, and can also communicate with base stations supporting 5G networks. Double connection.
  • a terminal is a device with wireless transceiver functions that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as a ship); it can also be deployed in the air (such as an airplane, a balloon, etc.) And satellites).
  • the terminal may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial) wireless terminal in control), vehicle terminal equipment, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety ), Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • Terminals can also be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle terminals, industrial control terminals, UE units, UE stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • the receiving end needs to know the demodulation reference signal (DMRS) sequence of the interference signal, estimate the channel of the interference signal according to the sequence, and then use the useful signal
  • DMRS demodulation reference signal
  • the demodulated channel (the channel where the useful signal is estimated based on the DMRS sequence of the useful signal) and the channel of the interfering signal are jointly demodulated to recover the useful signal.
  • DMRS sequences of interfering signals and DMRS sequences of useful signals are generally scrambled using scrambling parameters.
  • the scrambling parameters of the DMRS sequence of the interfering signal and the DMRS sequence of the useful signal are the same (for example, both use the cell identifier ID as the scrambling parameter).
  • the scrambling parameters of the DMRS sequence of the wanted signal are known, the scrambling parameters of the DMRS sequence of the interfering signal can be determined, thereby further determining the DMRS sequence of the interfering signal and performing interference channel estimation.
  • Equation 1 a c init satisfying Equation 1 may be used to initialize the DMRS sequence, where To initialize the scrambling parameters of the DMRS sequence, and It may be a cell ID, and the cell ID is generally a cell ID or a serving cell ID.
  • Equation 1 also contains other parameters, for example, l is the symbol identification in the time slot, Identifies the time slot in the radio frame.
  • the cross-interference of neighboring cells also becomes serious.
  • neighboring cell interference or non-serving cell interference can also be suppressed.
  • the receiving end still needs to estimate the interference channel according to the DMRS sequence of the interference signal.
  • the interference signals in the above interference scenarios may come from different cells (that is, the local cell or neighboring cells) at different times, or from different cells at the same time, and the scrambling parameters used in the DMRS sequences in different cells are generally not It is the same again (for example, the DMRS sequence of the useful signal uses the local cell ID as the scrambling parameter, and the DMRS sequence of the interfering signal uses the neighboring cell ID as the scrambling parameter), resulting in that the receiving end cannot identify whether the interfering signal is the local cell interference or the neighboring cell interference.
  • the receiving end cannot determine the scrambling parameters of the DMRS sequence of the interfering signal, resulting in the inability to use advanced receivers to perform interference deletion or interference suppression, thereby affecting system performance.
  • the method and device for interference indication provided by the embodiments of the present invention solve the coexistence or alternate coexistence of interference in the local cell and adjacent cell interference by enabling the receiving end to obtain accurate scrambling parameters of the DMRS sequence of the interfering signal or the interference type of the interfering signal.
  • the receiving end cannot determine the scrambling parameters of the DMRS sequence of the interference signal, which leads to the problem that the advanced receiver cannot be used for interference deletion or interference suppression.
  • Interfering signal data is sometimes called “interfering data signal” or “interfering signal” and does not affect the understanding of its technical meaning.
  • FIG. 2 is a flowchart of a method according to an embodiment of the present application. As shown in FIG. 2, the method in this embodiment may include:
  • step 200 the communication device receives the first instruction information.
  • the communication device determines an interference DMRS sequence scrambling parameter according to the first instruction information
  • the communication device determines an interference DMRS sequence scrambling parameter and an interference data signal to an interference DMRS power ratio according to the first instruction information
  • the communication device determines a power ratio of the interference data signal to the interference DMRS according to the first instruction information.
  • the communication device may be a terminal or a network device.
  • the first instruction information may be carried by downlink control information (DCI) sent by a network device; as shown in FIG. 3B,
  • the first indication information may also be carried by Sidelink Control Information (SCI) sent by other terminals, where the SCI can also be understood as control information in device-to-device (D2D) communication .
  • the first indication information may be carried by uplink control information (Uplink Control Information) (UCI) sent by the terminal; as shown in FIG.
  • UCI Uplink Control Information
  • the first The indication information may also be carried by network control information (Network Control Information (NCI)) sent by a network device, where the NCI may be information transmitted through a wired interface between network devices (such as an X2 interface or an interface similar to X2), or may be Information transmitted wirelessly through the air interface between network devices.
  • NCI Network Control Information
  • the communication device determines an interference DMRS sequence scrambling parameter according to the first indication information.
  • the communication device may determine an interference type according to the first instruction information, the interference type includes local cell interference and neighboring cell interference, and the communication device determines according to the interference type.
  • the ID may be a cell ID, a cell group ID, a UE ID, a UE group ID, a hypercell ID, a super cell group ID, a carrier ID, or a carrier group ID.
  • the super cell may include multiple cells or multiple cell groups.
  • the cell ID is used to identify a cell.
  • the cell group ID is used to identify a cell group, and the cell group may include one or more cells.
  • the UE ID is used to identify a UE (a UE).
  • the UE group ID is used to identify a UE group, and the UE group may include one or more UEs.
  • the super cell ID is used to identify a hyper cell.
  • the super cell group ID is used to identify a super cell group, and the super cell group may include one or more super cells.
  • the carrier ID is used to identify a carrier.
  • the carrier group ID is used to identify a carrier group, and the carrier group may include one or more carriers.
  • the cell ID may also be a cell ID and / or a neighboring cell ID. When the communication device is a terminal, the local cell ID may also be called a serving cell ID, and the neighboring cell ID may also be called a non-cell ID. Serving cell ID.
  • the cell group ID may also be understood as a neighboring cell group ID.
  • the neighboring cell group ID may also be referred to as a non-serving cell group ID.
  • the super cell ID may be further divided into a local super cell ID and a neighboring super cell ID.
  • the local super cell ID may also be referred to as a serving super cell ID, and the neighboring super cell ID. It may also be called a non-serving super cell ID.
  • the super cell group ID may also be understood as a neighboring super cell group ID.
  • the neighboring super cell group ID may also be referred to as a non-serving super cell group ID.
  • the “native cell” in this application may also be referred to as a “serving cell”, the “neighboring cell” in this application may also be referred to as a “non-serving cell”, and the “neighboring cell group” in this application.
  • “Can sometimes be called a” non-serving cell group "and does not affect the understanding of its technical meaning.
  • this application does not limit the relationship between network devices and cells; for example, the same network device can serve the same cell or different cells; for example, the same cell can be served by the same network Device services can also be served by different network devices.
  • the types of interference in this application can also be called interference sources, interference sources, sources of interference signals, types of interference sources, types of interference sources, interference sources, types of interference sources, or any other expressions with similar meanings. Understanding of its technical meaning.
  • the correspondence between the first indication information and the interference type may be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • the first indication information may be represented by an index, a number, an identifier, or any other parameter having a similar meaning.
  • the interference type can also be configured.
  • Table 1 gives an example of the first indication information.
  • the type of interference is: the local cell and / or the neighboring cell (can also be understood as a neighboring cell group). As shown in Table 1, “0” indicates that the interference type is “local cell interference”, “1” indicates that the interference type is “neighbor cell interference” (also can be understood as “neighbor cell group interference”), and “2” indicates the interference type It is “local cell interference” and “adjacent cell interference” (it can also be understood as “adjacent cell group interference”).
  • Interference type 0 Local cell interference 1 Neighboring cell interference 2 Local cell interference and neighboring cell interference
  • the indication information may indicate the type of interference by 1 bit, or the type of interference by two or more bits, or the type of interference by combining with other parameters.
  • the indication information and / or the source of the interference signal may be configured.
  • This application does not limit the number or kind of interference types.
  • the local cell interference can be further divided into local cell network interference and local cell terminal interference.
  • neighboring cell interference can be further divided into neighboring cell (or neighboring cell group) network interference and neighboring cell (or neighboring cell group) terminal interference.
  • a certain type of interference may not be considered. For example, the situation of common interference between the local cell and neighboring cells is not considered.
  • the interference type may further include one or more of network interference, terminal interference, local cell network interference, local cell terminal interference, neighboring cell network interference, or neighboring cell terminal interference.
  • Table 2 gives another example of the first indication information.
  • the interference type includes, as an example, network interference of the local cell, network interference of the neighboring cell, terminal interference of the local cell, and terminal interference of the neighboring cell.
  • Interference type 0 Local cell network interference 1 Neighbor cell network interference 2 Local cell terminal interference 3 Neighbor cell terminal interference
  • the neighbor cell network interference in Table 2 can also be understood as the neighbor cell group network interference, and the neighbor cell terminal interference can also be understood as the neighbor cell group terminal interference.
  • FIG. 4 illustrates that the method for the terminal to determine the interference DMRS sequence scrambling parameter according to the first indication information may include:
  • the terminal obtains the indication information in Table 1.
  • the terminal determines that the interference DMRS is related to the own cell.
  • the terminal may determine that the interference DMRS scrambling parameter is related to the local cell identifier ID. It can be understood that the interference DMRS scrambling parameter is related to the local cell ID, and it can also be understood that the interference DMRS scrambling parameter is determined based on the local cell ID. For example, in the scenario of local cell interference shown in FIG. 1A, the terminal may perform the method described in section 410, which may be applicable.
  • the terminal determines that the interference DMRS is related to a neighboring cell or a neighboring cell group.
  • the terminal may determine that the interference DMRS scrambling parameter is related to a neighboring cell ID or a neighboring cell group ID. It can be understood that the interference DMRS scrambling parameter is related to the neighbor cell ID or the neighbor cell group ID, and it can also be understood that the interference DMRS scramble parameter is determined based on the neighbor cell ID or the neighbor cell group ID. For example, in the scenario of neighboring cell interference or neighboring cell group interference shown in FIG. 1B, the terminal may execute the method described in section 420.
  • the terminal determines that the interfering DMRS is related to the local cell and the neighboring cell, or determines that the interfering DMRS is related to the local cell and the neighboring cell group.
  • the terminal may determine that the interference DMRS scrambling parameter is related to the local cell ID and a neighboring cell ID, or determine that the interference DMRS scrambling parameter is related to the local cell ID and a neighboring cell group ID.
  • the interference DMRS scrambling parameters are related to the local cell ID and the neighboring cell ID, and it can also be understood that the interference DMRS scrambling parameters are determined based on the local cell ID and the neighboring cell ID;
  • the interference parameter is related to the local cell ID and the neighboring cell group ID.
  • the interference DMRS scrambling parameter is determined based on the local cell ID and the neighboring cell group ID. For example, for a terminal that is in the scenario shown in FIG. 1A and FIG. 1B at the same time, the terminal may be interfered by the local cell and the neighboring cell, or may be interfered by the local cell and the neighboring cell group.
  • the terminal performs the description in section 430. Methods.
  • the 410 part, the 420 part, and the 430 part in this embodiment are in a parallel relationship, that is, when the method of the present application is specifically implemented, the terminal needs to determine to implement the 410 part, 420 part according to the first instruction information. , Or one of the 430 sections.
  • the receiving end can determine appropriate interference DMRS sequence scrambling parameters according to the first instruction information, and then determine the accurate interference DMRS sequence, so that the interference channel can be estimated based on the accurate interference DMRS sequence, enabling advanced
  • the receiver performs interference cancellation or interference suppression.
  • y0 identifies local cell interference
  • y1 identifies neighboring cell interference (also can be understood as “neighbor cell group interference”)
  • y2 identifies "local cell interference” and “neighbor cell interference” (can also be understood Is “neighbor cell group interference”).
  • this application does not limit the specific relationship between the above-mentioned values, symbols, variables, or identifiers and the types of interference identified by them.
  • y2 identifies the interference of this cell
  • y1 identifies the interference of neighboring cells (Can also be understood as “neighbor cell group interference")
  • y0 identifies "own cell interference” and "neighbor cell interference” (also can be understood as “neighbor cell group interference”).
  • this application does not limit the specific value of the indication information, for example, the indication information is "3" indicates y0, the indication information is "4" indicates y1, and the indication information is "5" indicates y2.
  • the application does not limit the number of entries of the indication information.
  • Table 3 may not include a row with indication information of "2".
  • y0 indicates that the interference DMRS sequence scrambling parameter is determined based on a signal sent by a network device
  • y1 indicates that the interference DMRS sequence scrambling parameter is determined based on a signal sent by a terminal
  • y2 indicates the interference.
  • the DMRS sequence scrambling parameter is determined based on the signal sent by the network device and the terminal; or, y2 indicates that the interference DMRS sequence scrambling parameter is determined based on the signal sent by the terminal, and y1 indicates that the interference DMRS sequence scrambling parameter is based on the network device.
  • the transmitted signal is determined, and y0 indicates that the interference DMRS sequence scrambling parameter is determined based on the signal sent by the network device and the signal sent by the terminal.
  • the signal sent by the network device may be a downlink signal or a signal sent by one network device to another network device; the signal sent by the terminal may be an uplink signal or a signal sent by one terminal to another terminal.
  • the correspondence between the first indication information shown in Table 3 and the source of the interference signal may be configured.
  • the source of the interference signal may be any one of the following: ⁇ this cell, a neighboring cell (can also be understood as a neighboring cell group) ⁇ ; or the source of the interference signal may be any one of the following: ⁇ This cell, a neighboring cell (or can be understood as a neighboring cell group), this cell and a neighboring cell (or can be understood as a neighboring cell group) ⁇ .
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • configuring the correspondence between the first indication information and the source of the interference signal can also be understood as configuring the correspondence between the indication information in Table 3 and the type of interference (also can be understood as the source of the interference signal);
  • the corresponding relationship is: the indication information "0" corresponds to the interference of the local cell (that is, the indication information "0" corresponds to the source of the interference signal to the local cell), and the indication information "1" corresponds to the neighboring cell interference or Neighbor cell group interference (that is, the indication information "1" corresponds to the source of the interference signal is the neighbor cell or the neighbor cell group), and the indication information "2" corresponds to the interference of the cell and the neighbor cell, or the interference of the cell and the neighbor cell group That is, the source of the interference signal corresponding to the indication information "2" is the local cell and the neighboring cell, or the source is the local cell and the neighboring cell group).
  • Table 4 is used as an example to give another possible example of Table 2.
  • y0 represents local cell network interference
  • y1 represents neighboring cell network interference (also can be understood as neighboring cell group network interference)
  • y2 represents local cell terminal interference
  • y3 represents neighboring cell terminal interference (also Understand that the neighbor cell group terminal interferes).
  • the source of the interference signal may be any one of the following: ⁇ local cell network interference, neighboring cell network interference (also can be understood as neighboring cell group network interference), own cell terminal interference, neighboring cell terminal interference (also understand Interfering with the neighbor cell group terminal) ⁇ .
  • FIG. 5 illustrates that the method for the terminal to determine the interference DMRS sequence scrambling parameter according to the first indication information may include:
  • the terminal obtains the indication information in Table 3.
  • the terminal determines that the interfering DMRS is related to the cell; further optionally, the terminal may determine that the interfering DMRS scrambling parameter is related to the cell identifier ID. . It can be understood that the interference DMRS scrambling parameter is related to the local cell ID, and it can also be understood that the interference DMRS scrambling parameter is determined based on the local cell ID. For example, in the scenario shown in FIG. 1A, the terminal that is interfered by the local cell may execute the method described in section 510.
  • the terminal determines that the interfering DMRS is related to a neighboring cell or a neighboring cell group; further optionally, the terminal may determine that the interfering DMRS scrambling parameter is related to a neighboring cell.
  • the ID or neighbor cell group ID is related. It can be understood that the interference DMRS scrambling parameter is related to the neighbor cell ID or the neighbor cell group ID, and it can also be understood that the interference DMRS scramble parameter is determined based on the neighbor cell ID or the neighbor cell group ID. For example, in the scenario shown in FIG. 1B, the terminal may be interfered by the neighboring cell or the neighboring cell group, and the method described in section 520 may be performed.
  • the indication information is "2"
  • the terminal determines that the interfering DMRS is related to the local cell and the neighboring cell, or determines that the interfering DMRS is related to the local cell and the neighboring cell group; further optionally, all
  • the terminal may determine that the interference DMRS scrambling parameter is related to the local cell ID and the neighboring cell ID, or determine that the interference DMRS scrambling parameter is related to the local cell ID and the neighboring cell group ID.
  • the interference DMRS scrambling parameters are related to the local cell ID and the neighboring cell ID, and it can also be understood that the interference DMRS scrambling parameters are determined based on the local cell ID and the neighboring cell ID;
  • the interference parameter is related to the local cell ID and the neighboring cell group ID.
  • the interference DMRS scrambling parameter is determined based on the local cell ID and the neighboring cell group ID. For example, for a terminal in the scenario shown in FIG. 1A and FIG. 1B at the same time, the terminal may be interfered by the local cell and the neighboring cell, or may be interfered by the local cell and the neighboring cell group.
  • the terminal may perform part 530. Describe the method.
  • the 510 part, the 520 part, and the 530 part in this embodiment are in a parallel relationship, that is, when the method of the present application is specifically implemented, the terminal needs to determine to implement the 510 part and the 520 part according to the first instruction information , Or one of the 530 sections.
  • the receiving end can determine appropriate interference DMRS sequence scrambling parameters according to the value interference type information provided by the first instruction information, and then determine an accurate interference DMRS sequence, so that the accurate interference DMRS sequence can be determined according to the accurate interference DMRS sequence.
  • the application does not limit the meaning or meaning of the above y0, y1, y2, or y3, for example, the y0, y1, y2, or y3, etc. may be an index, a number, an identifier, an enumeration variable, or a Boolean Variables, etc.
  • the "local cell interference” in this application may also be referred to as “serving cell interference”, and the “neighbor cell interference” in this application may also be referred to as “non-serving cell interference”.
  • “Can also be called” non-serving cell group interference and does not affect the understanding of its technical meaning.
  • the interference DMRS sequence scrambling parameters described in FIG. 4 and FIG. 5 are related to the above ID (or can be understood that the interference DMRS sequence scrambling parameters are determined according to the above ID), which can be understood as the interference DMRS sequence scrambling
  • the parameter includes the ID, and it can also be understood that the interference DMRS sequence scrambling parameter includes an output of a function that uses the ID as an input.
  • Tables 1 to 4 are merely examples of the first indication information.
  • the interference types described in Table 1 to Table 4 may also be jointly indicated with other attributes in the first indication information.
  • the interference types in Tables 1 to 4 may be jointly indicated with the interference DMRS resource parameter in the first indication information.
  • the interfering DMRS resource parameter may be an interfering DMRS code division multiplexing (CDM) group, an interfering DMRS port parameter, or an interfering DMRS CDM group and an interfering DMRS port parameter.
  • CDM interfering DMRS code division multiplexing
  • DMRS port in this application may also be sometimes referred to as a “DMRS antenna port”, which does not affect the understanding of its technical meaning.
  • FIG. 6 shows a schematic diagram of a possible DMRS CDM group, where DMRS has 6 ports as an example, and illustrates the distribution of the 6 DMRS ports on 12 REs.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • Each small square represents a RE.
  • DMRS ports 0 and 1 occupy the same RE (ie, the top two REs). 1, + 1] and [+ 1, -1] are multiplexed, so the REs corresponding to these two DMRS ports can be called a DMRS CDM group.
  • Figure 6 illustrates three DMRS CDM groups: DMRS CDM group 0, which carries DMRS ports 0 and 1, DMRS CDM group 1, which carries DMRS ports 2 and 3, and DMRS CDM group 2, which carries DMRS ports 4 and 5.
  • Tables 5-1 to 5-3 show examples of joint indications of several types of interference types and interference DMRS port parameters in the first indication information.
  • y0 and y1 refer to the description in Table 3.
  • the first indication information is given by taking the maximum number of interfering DMRS ports equal to 1 as an example. For example, when the indication information in Table 5-1 is "1", it indicates that the interfering DMRS occupies the first DMRS port, and y0 indicates that the interfering DMRS occupying the first DMRS port is related to the cell (for example, occupying the The interference DMRS sequence scrambling parameters of one DMRS port can be related to the cell ID).
  • the indication information in Table 5-1 is "2"
  • y1 indicates that the interfering DMRS occupying the first DMRS port is related to the neighboring cell or the neighboring cell group (for example, , The interference DMRS sequence scrambling parameter occupying the first DMRS port is related to a neighboring cell ID or a neighboring cell group ID).
  • the indication information in Table 5-1 is "0" it indicates no interference.
  • the first indication information is given by taking the maximum number of interfering DMRS ports equal to two as an example. For example, when the indication information in Table 5-2 is "1", it indicates that the interfering DMRS occupies the first DMRS port, and y0 indicates that the interfering DMRS occupying the first DMRS port is related to the cell (for example, occupying the first DMRS port).
  • the interference DMRS sequence scrambling parameters of one DMRS port are related to the local cell ID).
  • the indication information in Table 5-2 is "4", it indicates that the interfering DMRS occupies the second DMRS port, and y1 indicates that the interfering DMRS occupying the second DMRS port is related to an adjacent cell or an adjacent cell group (for example, , The interference DMRS sequence scrambling parameter occupying the second DMRS port is related to a neighboring cell ID or a neighboring cell group ID).
  • the indication information in Table 5-2 is "7"
  • (y1, y0) represents the interfering DMRS occupying the first DMRS port
  • (y1, y0) represents the interfering DMRS occupying the first DMRS port
  • an interference DMRS sequence scrambling parameter occupying the first DMRS port is related to a neighboring cell ID or a neighboring cell group ID
  • the interfering DMRS occupying the second DMRS port is related to This cell is related (for example, the interference DMRS sequence scrambling parameter occupying the second DMRS port is related to this cell ID).
  • the first indication information is given by taking the maximum number of interfering DMRS ports equal to 3 as an example. For example, when the indication information in Table 5-3 is "1", it indicates that the interfering DMRS occupies the first DMRS port, and y0 indicates that the interfering DMRS occupying the first DMRS port is related to the cell (for example, occupying the first DMRS port).
  • the interference DMRS sequence scrambling parameters of one DMRS port are related to the local cell ID).
  • the indication information in Table 5-3 is "6"
  • y1 indicates that the interfering DMRS occupying the third DMRS port is related to an adjacent cell or an adjacent cell group
  • the interference DMRS sequence scrambling parameter occupying the third DMRS port is related to a neighboring cell ID or a neighboring cell group ID.
  • the indication information in Table 5-3 is "23” it indicates that the interfering DMRS occupies the first DMRS port, the second DMRS port, and the third DMRS port, and (y1, y0, y0) indicates that the occupancy is described.
  • the interference DMRS of the first DMRS port is related to the neighboring cell or the neighboring cell group (for example, the interference DMRS sequence scrambling parameter occupying the first DMRS port is related to the neighboring cell ID or the neighboring cell group ID), occupying the first DMRS port.
  • the interference DMRS of 2 DMRS ports is related to the local cell (for example, the interference DMRS sequence scrambling parameters occupying the second DMRS port are related to the local cell ID), and the interference DMRS occupying the third DMRS port is related to the local cell Correlation (for example, the interference DMRS sequence scrambling parameter occupying the third DMRS port is related to the local cell ID).
  • the correspondence between the indication information shown in Tables 5-1 to 5-3, the source of the interference signal, and the interference DMRS port can also be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • configuring the correspondence between the first indication information and the source of the interference signal, and the interference DMRS port can also be understood as configuring the indication information and interference type in Table 5-1 (also can be understood as interference Signal source), and the corresponding relationship between the interference DMRS port parameters; in a possible implementation manner, the corresponding relationship is: the indication information "1" corresponds to the local cell interference (that is, the indication information "1" corresponds to the source of the interference signal This cell), and the first DMRS port, the indication information "2" corresponds to the neighboring cell interference or the neighboring cell group interference (that is, the indication information "2" corresponds to the source of the interference signal is the neighboring cell or the neighboring cell group), and the first DMRS ports, the indication information "0" corresponds to non-interference and non-interference DMRS ports.
  • the terminal when the communication device is a terminal, the terminal will determine the scheduled DMRS port when sending or receiving data, and the scheduled DMRS port should be understood as the terminal receiving data or DMRS port required for data transmission. At the same time, the terminal can also determine all available DMRS ports, so the interfering DMRS port in this application may only be the remaining DMRS port after excluding the scheduled DMRS port from all available DMRS ports. It should be noted that the "scheduled DMRS" may sometimes be referred to as a "DMRS of useful signals", which does not affect the understanding of its technical meaning.
  • DMRS port 0 Take Table 5-1 above and all available DMRS ports include DMRS port 0 and DMRS port 1 as an example. If the terminal determines that the scheduled DMRS port is DMRS port 0, the maximum number of interfering DMRS ports is 1 (that is, interfering with DMRS The port may only be DMRS port 1), and the "first DMRS port" indicated in Table 5-1 is DMRS port 1. If the terminal determines that the scheduled DMRS port is DMRS port 1, the maximum number of interfering DMRS ports is 1 (that is, the interfering DMRS port can only be DMRS port 0), and the "first DMRS port" indicated in Table 5-1 is DMRS port 0.
  • the examples of the first indication information given in the above Tables 5-1 to 5-3 will consume more indication states when the maximum number of interfering DMRS ports is larger (can be understood as Table 5-1, Table 5-2 or The number of rows or valid rows in Table 5-3) indicates that the overhead is large.
  • the indication state can be reduced on a certain premise. For example, to further limit the DMRS ports in the same DMRS CDM group to a cell (for example, all DMRS ports in the same DMRS CDM group correspond to this cell, or the DMRS ports in the same DMRS CDM group all correspond to neighbors Cell) as an example, the indication states of Tables 5-1 to 5-3 can be reduced to achieve the purpose of reducing the indication overhead.
  • the maximum number of interfering DMRS ports is equal to 1, and DMRS ports belonging to the same DMRS CDM group correspond to only one cell as an example.
  • the first indication information is a possible example.
  • Table 5-4 reduces the indication status of the indication information in Table 5-1. This is because the DMRS port in the same DMRS CDM group corresponds to only one cell.
  • the first DMRS port in Table 5-4 can be understood as belonging to the same DMRS CDM group as the scheduled DMRS port.
  • the scheduled DMRS port generally comes from the local cell, so in this case, The first DMRS port will not come from a neighboring cell (that is, the first DMRS port will also come from this cell), so the interference DMRS sequence scrambling parameters that occupy the first DMRS port and the neighboring cell ID or Cases where the neighbor cell group ID is related. Therefore, compared with Table 5-1, the implementation of Table 5-4 reduces one indication state and reduces the instruction overhead.
  • the maximum number of interfering DMRS ports is equal to two and the DMRS ports belonging to the same DMRS CDM group correspond to only one cell as an example.
  • the first indication information is a possible example. Compared with Table 5-2, Table 5-5 reduces the indication status of the indication information in Table 5-2 as "6" and "7".
  • the DMRS ports in the same DMRS CDM group only correspond to "One cell"
  • the first DMRS port and the second DMRS port in Table 5-5 can be understood to belong to the same DMRS CDM group, so the first DMRS port and the first DMRS port
  • the two DMRS ports will only come from this cell or from neighboring cells at the same time, so the interfering DMRS sequence scrambling parameters occupying the first DMRS port and the interfering DMRS sequence scrambling parameters occupying the second DMRS port will only At the same time, it is related to the local cell ID, or at the same time to the neighboring cell ID, or both are related to the neighboring cell group ID.
  • the interference type (y0, y0) or (y1, y1) indicated by it is always the same (i.e. y0, or both y1). Therefore, compared with Table 5-2, the implementation of Table 5-5 reduces the two indication states and reduces the instruction overhead. It can be understood that when there are more than one interfering DMRS port in Table 5-5 (that is, the indication information is "5" or "6"), the interference types corresponding to the more than one interfering DMRS port can only be the same. , That is, both y0 or y1.
  • the interference types corresponding to the two interfering DMRS ports are the same, that is, the same as y0 or Same as y1.
  • the maximum number of interfering DMRS ports equal to 3 and the DMRS ports belonging to the same DMRS CDM group corresponds to only one cell is taken as an example.
  • the first indication information is a possible example.
  • the first DMRS port belongs to a DMRS CDM group
  • the second DMRS port and the third DMRS port belong to another DMRS CDM group. Therefore, the interference type corresponding to the first DMRS port indicated by any one of the instructions in Table 5-6 may be different from or the same as the interference type of the second DMRS port, or may be the same as the third DMRS port.
  • the interference type is different or the same; but the interference type corresponding to the second DMRS port indicated by any one of the instructions in Table 5-6 must be the same as the interference type of the third DMRS port, which means that the The interference DMRS sequence scrambling parameters of the second DMRS port and the interference DMRS sequence scrambling parameters occupying the third DMRS port are related to the local cell ID, or are related to the neighboring cell ID, or are related to the neighboring cell ID.
  • the cell group ID is related. Therefore, compared with Table 5-3, the implementation of Table 5-6 reduces 13 indication states and reduces the instruction overhead.
  • the interference type corresponding to the interference DMRS port corresponding to the instruction information in Table 5-6 and the scheduled DMRS port belong to the same CDM group
  • the interference type corresponding to the interference DMRS port corresponding to the instruction information is y0.
  • the number of interference DMRS ports corresponding to the indication information in Table 5-6 is 3 (when the indication information in Table 5-6 is "12" or "13")
  • the interference corresponding to the three interference DMRS ports There are only two possible states: one state is that the interference type corresponding to one and only one of the three interfering DMRS ports is y0 (that is, intra-cell interference).
  • the indication information in Table 5-6 is "13"; another state is that the interference type corresponding to all three interfering DMRS ports is y0 (that is, intra-cell interference), for example, when the indication information in Table 5-6 is "12".
  • the correspondence between the indication information shown in Table 5-4 to Table 5-6, the source of the interference signal, and the interference DMRS port can also be configured.
  • the example of the joint instruction of the interference type and the interference DMRS and the CDM group in the first instruction information may be obtained after adjustment based on the implementation manners described in the above Tables 5-1 to 5-6. For example: Replace the parameters in the second column of Table 5-1 to Table 5-6 with “Interfering DMRS CDM Group” and replace the “DMRS Port” in the second column of Table 5-1 to Table 5-6 with “DMRS CDM group”.
  • the terminal receives fourth instruction information (for example, scheduling information or control information included in DCI) from a network device, and determines the scheduled information according to the fourth instruction information.
  • fourth instruction information for example, scheduling information or control information included in DCI
  • DMRS port Table 6-1 is an example of the fourth indication information. Table 6-1 takes the number of all available DMRS ports equal to 4 as an example, that is, all available DMRS ports include DMRS ports 0, 1, 2 and 3, and DMRS ports 0 and 1 belong to the first CDM group, and DMRS ports 2 and 3 belong to the second CDM group.
  • the indication information in the first column of Table 6-1 can be understood as an index, number, or identifier, and the second column is the number of CDM groups in the first CDM group and the second CDM group that do not carry data.
  • the third column is the index of the DMRS port to which the terminal is scheduled. For example, when the indication information in Table 6-1 is "0", it means that the first CDM group does not carry data and DMRS port 0 is scheduled. As another example, when the indication information in Table 6-1 is "7", it indicates that neither the first CDM group nor the second CDM group carries data, and DMRS ports 0 and 1 are scheduled.
  • the first indication information may be as shown in Table 5-3 or Table 5-6 above; and
  • the corresponding maximum number of interfering DMRS ports is two, and at this time, the first indication information may be as shown in Table 5-2 or Table 5-5 above.
  • the terminal may have different understandings of the first instruction information according to different indication contents of the fourth instruction information, that is, the terminal may jointly determine the first instruction according to the first instruction information and the fourth instruction information.
  • the specific meaning of the information or it may also be understood that the terminal may determine a table corresponding to the first instruction information according to the fourth instruction information, and then determine the specific meaning of the first instruction information according to the determined table; or may also be understood as The terminal may determine the correspondence between the first indication information and the source of the interference signal according to the fourth indication information, and then determine the specific meaning of the first indication information according to the correspondence relationship.
  • the four items with the indication information in Table 6-1 from "12" to "15" are reserved or redundant.
  • the redundant state may be used to indicate related information of the interference DMRS port, so that the terminal can jointly determine the related information of the interference DMRS port according to the first instruction information and the fourth instruction information, thereby reducing the first Indicates the overhead required for the information.
  • the indication information in Table 6-2 is "3", which means that the first and second CDM groups do not carry data, and DMRS port 0 is scheduled, and there is no interference on DMRS port 1.
  • the indication information in Table 6-2 is "12”, it means that the first and second CDM groups do not carry data, and DMRS port 0 is scheduled, but there is interference on DMRS port 1.
  • the interference on DMRS port 1 is the cell interference.
  • the first instruction information does not need to indicate the interference type corresponding to DMRS port 1 (for example, the first DMRS port in Table 5-3 or Table 5-6), thereby reducing the indication of the first instruction information.
  • Overhead can be understood as reducing the number of rows or valid rows in Table 5-3 or Table 5-6).
  • Table 6-3 shows another example of the fourth instruction information.
  • all available DMRS ports are 6 ports of DMRS ports 0, 1, 2, 3, 4, and 5, and DMRS port 0 And 1 belongs to the first CDM group, DMRS ports 2 and 3 belong to the second CDM group, and DMRS ports 4 and 5 belong to the third CDM group.
  • the indication information in Table 6-3 is "11", which means that the first, second, and third DMRS CDM groups do not carry data, and DMRS port 0 is scheduled, and there is no interference on DMRS port 1.
  • the indication information in Table 6-3 is "24"
  • the interference types and the ⁇ interference DMRS resource parameter and modulation method of the interference data signal ⁇ in Table 1 to Table 4 are jointly indicated in the first indication information.
  • Table 7-1 illustrates an example of joint indications in Table 1 to Table 4 in the first indication information of ⁇ the interference DMRS port parameter and the modulation method of the interference data signal ⁇ . Reference may be made to the foregoing relevant parts of the expression, such as the description of Table 3.
  • the DMRS port can be taken as an example shown in FIG. 6, which is not repeated here.
  • the modulation order of the interference data signal in Table 7-1 is the modulation method of the interference data signal, where "2" represents Quadrature Phase Shift Keying (QPSK), and "4" represents 16 Quadrature Amplitude Modulation (Quadrature Amplitude Modulation, QAM), "6” means 64QAM, and "8” means 256QAM.
  • the candidate set of modulation modes indicated by the first indication information in Table 7-1 may be ⁇ 2,4,6,8 ⁇ , or ⁇ 2,4,6 ⁇ , or ⁇ 2,4, 6 or 8 ⁇ , or ⁇ 2, 4 or 6 or 8 ⁇ .
  • the candidate set of modulation modes indicated by the first indication information may include more states, such as ⁇ 2,4,6,8 ⁇ for a total of 4
  • the candidate set of modulation modes indicated by the first indication information may include fewer states, such as ⁇ 2, 4, 6, or 8 ⁇ in total 3 State, or ⁇ 2, 4 or 6 or 8 ⁇ total 2 states; or, when the number of indicated interference ports is large, the first indication information may not indicate the modulation mode.
  • the overhead required for the first indication information can be reduced on the premise of ensuring the interference deletion performance of the communication device.
  • the first indication information when the number of interfering DMRS ports indicated by the first instruction information is 1, the first indication information also indicates a modulation method of the interference data signal, and when the number of interfering DMRS ports indicated by the first instruction information is greater than 1, The first indication information does not indicate the modulation mode of the interference data signal.
  • the first indication information when the number of interfering DMRS ports indicated by the first instruction information is less than or equal to 2, the first indication information also indicates a modulation mode of the interference data signal, and when the number of interfering DMRS ports indicated by the first instruction information is greater than 2 , The first indication information does not indicate a modulation mode of the interference data signal.
  • the candidate set of modulation modes indicated by the first indication information which indicates that the corresponding interference data signal is modulated by "64QAM or 256QAM"
  • the receiving end may
  • the interference data signals are blindly detected using 64QAM and 256QAM. This design can reduce the signaling overhead of the first indication information, that is, it is not necessary to allocate two separate indication states for 64QAM and 256QAM, thereby reducing the number of entries or bits of the first indication information.
  • the above-mentioned joint indication is adopted for the high-order modulation scheme
  • the independent indication is adopted for the low-order modulation scheme, that is, separate indications are used for the low-order modulation schemes QPSK and 16QAM, and the above-mentioned joint indications are used for the high-order modulation schemes 64QAM and 256QAM.
  • Instructions This design mainly considers that for the interference data signal of the low-order modulation mode, the receiving end is easier to delete or suppress, so it can be more detailed instructions to ensure the gain of performance; while for the interference data signal of the high-order modulation mode, the receiving end is complicated. For reasons of power or power consumption, even if the instructions are accurate, it is not easy to delete or suppress them. Therefore, the instructions can be made rougher and the overhead of the instructions reduced.
  • the first indication information is given, taking the maximum number of interfering DMRS ports equal to 1. For example, when the indication information in Table 7-1 is "1", it indicates that the interference DMRS occupies the first DMRS port, the interference data signal uses QPSK modulation, and y0 indicates that the interference DMRS is related to the cell (for example, the interference DMRS sequence scrambling parameters Related to this cell ID).
  • the interfering data signal uses 64QAM or 256QAM modulation
  • y1 indicates that the interfering DMRS is related to the neighboring cell or the neighboring cell group (for example, , The interference DMRS sequence scrambling parameter is related to the neighboring cell ID).
  • Interfering DMRS port parameters Interference data signal modulation order Interference type 0 no ⁇ ⁇ 1
  • the first DMRS port 4 y1 6 The first DMRS port 6 or 8 y1
  • the first indication information may be as shown in Table 7-2, Table 7-3, or Table 7-4.
  • the indication information in Table 7-2 is "1"
  • the interfering data signal uses QPSK modulation
  • y0 indicates that the interfering DMRS is related to the cell (for example, the interfering DMRS sequence scrambling parameter Related to this cell ID).
  • the indication information in Table 7-2 is "14"
  • the first interfering data signal uses QPSK modulation
  • y0 indicates that the first interfering DMRS is related to the cell
  • the second interference DMRS occupies the second DMRS port
  • the second interference data signal uses 16QAM modulation
  • y0 indicates that the second interference DMRS is related to the cell (for example, The second interference DMRS sequence scrambling parameter is related to the local cell ID).
  • the indication information in Table 7-2 is "18"
  • the first interfering data signal uses 16QAM modulation
  • y0 indicates that the first interfering DMRS is related to the cell
  • the first interference DMRS sequence scrambling parameter is related to the cell ID
  • the second interference DMRS occupies the second DMRS port the second interference data signal is modulated by 64QAM or 256QAM
  • y0 indicates that the second interference DMRS is related to the cell (
  • the second interference DMRS sequence scrambling parameter is related to the local cell ID).
  • the correspondence between the indication information shown in Tables 7-1 to 7-4, the source of the interference signal, the modulation order of the interference data signal, and the interference DMRS port can also be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • configuring the correspondence between the first indication information and the source of the interference signal, the modulation order of the interference data signal, and the interference DMRS port can also be understood as configuring the indication information in Table 7-1 and Correspondence between the type of interference (also can be understood as the source of the interference signal), the modulation order of the interference data signal, and the parameters of the interference DMRS port; for example, in a possible implementation manner, the correspondence is: instruction information " 1 "corresponds to the interference of the local cell (that is, the indication information" 1 "corresponds to the source of the interference signal is the cell), the modulation order of the interference data signal is 2, and the first DMRS port; the indication information" 2 “corresponds to the neighbor cell interference or neighbor Cell group interference (that is, the source of the interference signal corresponding to the indication information "2" is a neighboring cell or a neighboring cell group), the modulation order of the interference data signal is 4, and the first DMRS port.
  • the overhead of the indication information can be reduced when it is necessary to simultaneously instruct the interference DMRS sequence scrambling parameters, the interference DMRS resource parameters, and the modulation method of the interference data signal.
  • the terminal needs to obtain the neighbor cell ID or the neighbor cell group ID, and then determine the interference DMRS by using the neighbor cell ID or the neighbor cell group ID. Sequence scrambling parameters.
  • the terminal receives second instruction information sent by a network device, and the second instruction information may be system information sent by the network device
  • the system message includes the neighbor cell ID or the neighbor cell group ID.
  • the terminal determines the neighboring cell ID or the neighboring cell group ID according to system information sent by the network device.
  • the terminal receives second indication information sent by another terminal, and the second indication information includes the neighboring cell ID or The neighbor cell group ID, wherein the neighbor cell or the neighbor cell group is a serving cell or a serving cell group of the other terminal.
  • the terminal determines the neighbor cell ID or the neighbor cell group ID according to the second instruction information sent by the other terminal.
  • the terminal receives a synchronization signal, and determines the synchronization signal according to a correspondence between the synchronization signal and the neighbor cell or the neighbor cell group.
  • Neighbor cell ID or neighbor cell group ID For example, taking two neighbor cells ⁇ neighbor cell 1, neighbor cell 2 ⁇ as examples, their IDs are ⁇ neighbor cell ID1, neighbor cell ID2 ⁇ , and the synchronization signals corresponding to neighbor cell 1 and neighbor cell 2 are ⁇ sync signal 1 respectively. , Sync signal 2 ⁇ .
  • a correspondence relationship between the synchronization signal and a neighboring cell or a neighboring cell group may be predefined, or may be configured by third instruction information sent by the network device to the terminal.
  • the terminal obtains the neighboring cell ID or the neighboring cell group ID
  • receives a synchronization signal block and determines according to a correspondence between the synchronization signal block and the neighboring cell or the neighboring cell group.
  • the neighbor cell ID or the neighbor cell group ID For example, taking two neighbor cells ⁇ neighbor cell 1, neighbor cell 2 ⁇ as examples, their IDs are ⁇ neighbor cell ID1, neighbor cell ID2 ⁇ , and the synchronization signal blocks corresponding to neighbor cell 1 and neighbor cell 2 are ⁇ sync signals Block 1, sync signal block 2 ⁇ .
  • the terminal detects the synchronization signal block 1, it can determine that the neighbor cell ID is the neighbor cell ID1; if the terminal detects the synchronization signal block 2, it can determine that the neighbor cell ID is the neighbor cell ID2. Further, the correspondence between the synchronization signal block and a neighboring cell or a neighboring cell group may be predefined, or may be configured by third instruction information sent to the terminal by a network device.
  • the terminal obtains the neighboring cell ID or the neighboring cell group ID
  • receives a channel state information reference signal CSI-RS and communicates with the neighboring cell or the neighboring cell according to the CSI-RS.
  • the correspondence between groups determines the neighbor cell ID or the neighbor cell group ID. For example, taking two neighbor cells ⁇ neighbor cell 1, neighbor cell 2 ⁇ as examples, their IDs are ⁇ neighbor cell ID1, neighbor cell ID2 ⁇ , and the CSI-RS corresponding to neighbor cell 1 and neighbor cell 2 are ⁇ CSI- RS1, CSI-RS2 ⁇ .
  • a correspondence relationship between the CSI-RS and a neighboring cell or a neighboring cell group may be predefined, or may be configured by third instruction information sent to the terminal by a network device.
  • the foregoing detected synchronization signal, synchronization signal block, or CSI-RS can be understood as that the detected signal strength is greater than or less than a threshold, and the threshold can be predefined or configured.
  • the receiving end can obtain accurate interference DMRS sequence scrambling parameters or interference types.
  • the communication device determines the interference DMRS sequence scrambling parameter and the power ratio of the interference data signal to the interference DMRS according to the first instruction information, that is, the communication device can determine interference in addition to the first instruction information.
  • the DMRS sequence scrambling parameters can also determine the power ratio of the interfering data signal to the interfering DMRS.
  • a power ratio of the interference data signal to the interference DMRS is 4.77 dB or 3 dB
  • the communication device determines a power of the interference data signal and the interference DMRS according to the first instruction information.
  • the ratio is 4.77dB or 3dB.
  • Table 8 gives another example of the first indication information. As shown in Table 8, when the indication information is "0", the power ratio of the interference data signal to the interference DMRS is 4.77dB; when the indication information is "1", the power ratio of the interference data signal to the interference DMRS is indicated Is 3dB.
  • a power ratio of the interference data signal to the interference DMRS is 0 dB or 3 dB
  • the communication device determines a power of the interference data signal and the interference DMRS according to the first instruction information. Whether the ratio is 0dB or 3dB.
  • Table 9 gives another example of the first indication information. As shown in Table 9, when the indication information is "0", the power ratio of the interference data signal to the interference DMRS is indicated as 0dB; when the indication information is "1", the power ratio value of the interference data signal to the interference DMRS is indicated 3dB.
  • a power ratio of the interference data signal to the interference DMRS is 0 dB, 3 dB, or 4.77 dB
  • the communication device determines the interference data signal and interference according to the first instruction information.
  • DMRS power ratio is 0dB, 3dB or 4.77dB.
  • Table 9 gives another example of the first indication information. As shown in Table 10, when the indication information is "0", the power ratio of the interference data signal to the interference DMRS is indicated as 0dB; when the indication information is "1", the power ratio value of the interference data signal to the interference DMRS is indicated 3dB; when the indication information is "2", it indicates that the power ratio of the interference data signal to the interference DMRS is 4.77dB.
  • the correspondence between the indication information shown in Tables 8 to 10, the data of the interference signal, and the power ratio of the DMRS of the interference signal may be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • Table 8 the correspondence between the configuration of the first indication information and the data of the interference signal and the power ratio of the DMRS of the interference signal can also be understood as the configuration of the indication information in Table 8 and the interference data signal and interference.
  • the correspondence is: the indication information "0" corresponds to the power ratio of the interference data signal to the interference DMRS is 4.77dB; the indication information "1" corresponds to The power ratio of the interference data signal to the interference DMRS is 3 dB.
  • Tables 8 to 10 only give three forms of power ratio values of the interference data signal and the interference DMRS that may be indicated by the first indication information in this application by way of example.
  • This application does not exclude other indication forms, such as: joint indication of the above power ratio with other attributes, or pre-defined correspondence between the above power ratio and other attributes, so that it can be implicit when indicating other attributes Obtain the above power ratio.
  • the first indication information jointly indicates an interference DMRS port parameter and the foregoing power ratio.
  • Table 11 gives another example of the first indication information. For example, when the indication information in Table 11 is "1", it indicates that the interference DMRS occupies the first DMRS port, and the power ratio of the interference data signal to the interference DMRS is 0 dB. As another example, when the indication information in Table 11 is "2", it indicates that the interference DMRS occupies the second DMRS port, and the power ratio of the interference data signal to the interference DMRS is 3 dB.
  • the correspondence between the indication information shown in Table 11 and the power ratio of the interference signal data to the DMRS of the interference signal, and the interference DMRS port can also be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • configuring the power ratio between the first indication information and the data of the interfering signal and the DMRS of the interfering signal, and the corresponding relationship between the interfering DMRS port can also be understood as the configuration of the indication information in the table 11 with the interfering data signal and A power ratio of the interference DMRS and a corresponding relationship of the interference DMRS ports; in a possible implementation manner, the corresponding relationship is: the indication information “1” corresponds to a power ratio of the interference data signal to the interference DMRS of 0 dB, and The first DMRS port; the indication information "2" corresponds to the power ratio of the interfering data signal to the interfering DMRS is 3dB, and the second DMRS port; the indication information "0" corresponds to the non-interference and non-interference DMRS ports.
  • the first indication information jointly indicates the interference DMRS CDM group and the foregoing power ratio.
  • the content indicated by the first instruction information may be as shown in Table 12-1 or Table 12-2.
  • the indication information in Table 12-2 is "1"
  • the power ratio of the interference data signal to the interference DMRS is 0 dB.
  • the indication information in Table 12-2 is "4", it indicates that the first interfering DMRS occupies the first DMRS CDM group, and the power ratio of the first interfering data signal to the first interfering DMRS is 4.77dB; and The second interference DMRS occupies the second DMRS CDM group, and the power ratio of the second interference data signal to the second interference DMRS is 3 dB.
  • the data ratio of the interference signal data to the DMRS power of the interference signal, and the corresponding relationship between the interference DMRS and the CDM group can be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • the configuration of the first indication information, the data of the interference signal, and the power ratio of the DMRS of the interference signal, and the corresponding relationship between the interference DMRS and the CDM group can also be understood as the configuration table 12-1
  • the first indication information jointly indicates an interference DMRS port parameter, the foregoing power ratio, and the types of interference in Tables 1 to 4.
  • the content indicated by the first indication information may be shown in Table 13, and for descriptions of y0 and y1, reference may be made to the description of Table 3.
  • the indication information in Table 13 is "1"
  • the power ratio of the interfering data signal to the interfering DMRS is 0dB
  • y0 indicates that the interfering DMRS is related to the cell (for example, interference
  • the DMRS sequence scrambling parameters are related to the cell ID).
  • the indication information in Table 13 is "3"
  • the power ratio of the interfering data signal to the interfering DMRS is 3dB
  • y1 represents the interfering DMRS and the neighboring cell or the neighboring cell group.
  • Correlation for example, the interference DMRS sequence scrambling parameter is related to the neighbor cell ID or neighbor cell group ID).
  • the correspondence between the indication information shown in Table 13 and the power ratio of the interference signal data to the DMRS of the interference signal, the source of the interference signal, and the interference DMRS port can be configured.
  • the corresponding relationship may be predefined, stored, pre-negotiated, pre-configured, or solidified, or may be configured by a network device for a terminal.
  • configuring the first indication information and the data ratio of the interference signal to the DMRS power ratio of the interference signal, the source of the interference signal, and the correspondence between the interference DMRS ports can also be understood as the configuration of the instruction information in Table 13 and Correspondence between the power ratio of the interference data signal and the interference DMRS, the type of interference, and the interference DMRS port; in a possible implementation manner, the correspondence is: the indication information "1" corresponds to the interference of the cell, and the interference data signal The power ratio to the interfering DMRS is 0dB and the first DMRS port; the indication information "2" corresponds to neighboring cell interference or neighboring cell group interference, the power ratio of the interfering data signal to the interfering DMRS is 3dB, and the second DMRS Port; the indication information "0" corresponds to the interference-free and interference-free DMRS port.
  • the first indication information jointly indicates the interference DMRS port parameters, the modulation method of the interference data signal, the foregoing power ratio, and the values in Tables 1 to 4 The type of interference.
  • the content indicated by the first indication information may be shown in Table 14, and for descriptions of y0 and y1, reference may be made to the description of Table 3.
  • the indication information in Table 14 is "1"
  • the interfering data signal is QPSK modulated
  • the power ratio of the interfering data signal to the interfering DMRS is 0dB
  • y0 indicates the interfering DMRS and This cell is related (for example, the interference DMRS sequence scrambling parameter is related to this cell ID).
  • the interfering DMRS occupies the first DMRS port
  • the interfering data signal is modulated by 64QAM or 256QAM
  • the power ratio of the interfering data signal to the interfering DMRS is 0dB
  • y0 indicates
  • the interfering DMRS is related to the own cell (for example, the interfering DMRS sequence scrambling parameter is related to the own cell ID).
  • the correspondence between the indication information in Table 14 and the data of the interference signal and the DMRS power of the interference signal, the source of the interference signal, the modulation order of the interference data signal, and the interference DMRS port can be configured.
  • the correspondence may be pre-defined, stored, pre-negotiated, pre-configured, or solidified, or the terminal may be configured by a network device.
  • the corresponding relationship between the first indication information, the data of the interference signal, and the DMRS power ratio of the interference signal, the source of the interference signal, the modulation order of the interference data signal, and the interference DMRS port can also be understood.
  • the indication information in Table 14 corresponds to local cell interference, the power ratio of the interference data signal to the interference DMRS is 0dB, the modulation order of the interference data signal is 2, and the first DMRS port;
  • the indication The information “4” corresponds to neighboring cell interference or neighboring cell group interference, the power ratio of the interference data signal to the interference DMRS is 0 dB, the modulation order of the interference data signal is 2, and the second DMRS port.
  • the receiving end can obtain accurate interference DMRS sequence scrambling parameters or interference types, and the power ratio of the interference data signal to the interference DMRS, which solves the coexistence of interference in the cell and neighboring cell interference and the interference data signal.
  • the receiving end cannot determine the interference DMRS sequence scrambling parameters and the power ratio of the interference data signal to the interference DMRS.
  • the advanced receiver cannot be used for interference deletion or interference suppression.
  • the communication device can determine the power ratio of the interference data signal to the interference DMRS without determining the interference DMRS sequence scrambling parameters according to the first instruction information.
  • the communication device can determine the power ratio of the interference data signal to the interference DMRS without determining the interference DMRS sequence scrambling parameters according to the first instruction information.
  • the receiving end can obtain an accurate power ratio of the interference data signal to the interference DMRS, which solves the problem that the receiver cannot determine the interference data signal and the interference DMRS in a scenario where the power difference between the interference data signal and the interference DMRS is variable
  • the power ratio causes the problem that the advanced receiver cannot be used for interference cancellation or interference suppression.
  • the purpose of the exemplary tables listed in this application is to illustrate the indication information in the table and the types of interference in the table, the ports of the DMRS of the interfering signals, the code division multiplexing CDM group of the DMRS of the interfering signals, The data modulation method, or the correspondence between the data of the interference signal and the power ratio of the DMRS of the interference signal.
  • This application does not limit the types of interference, the DMRS port of the interference signal, the code division multiplexing CDM group of the DMRS of the interference signal, the modulation method of the data of the interference signal, or the data of the interference signal and the DMRS of the interference signal.
  • the specific value of the power ratio is not limit the types of interference, the DMRS port of the interference signal, the code division multiplexing CDM group of the DMRS of the interference signal, the modulation method of the data of the interference signal, or the data of the interference signal and the DMRS of the interference signal.
  • This application does not limit the number of entries in the exemplary table (such as the number of rows, or columns, or the number of valid rows, or the number of valid columns; where the number of valid rows in this application can be understood as excluding the number of rows after the reserved rows , The effective number of columns can be understood as the number of columns after the reserved columns are excluded), and the interference types in the table above, the DMRS port of the interference signal, the code division multiplexing CDM group of the DMRS of the interference signal, and the data of the interference signal Modulation method, or the specific name of the power ratio of the data of the interference signal to the DMRS of the interference signal. All manifestations that conform to the above-mentioned corresponding relationship shall belong to the protection scope of this application.
  • the foregoing embodiments of this application do not limit the maximum number of interfering DMRS ports or the specific number of DMRS CDM groups.
  • the maximum number of interfering DMRS ports is in addition to 1, 2, and 3 described in the above embodiments. In addition, it may be other non-negative integers (for example, 0, 4, 7, etc.).
  • the above-mentioned embodiment of the present application does not limit the detailed name of the instruction content in the first instruction information. As long as the substance of the instruction is consistent with the embodiment of the present application, it belongs to the protection scope of the present application.
  • the corresponding relationships shown in the above tables can be configured, and the value of the indication information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • it is not necessarily required to configure all the correspondence relationships illustrated in the tables.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the method implemented by the communication device in each of the foregoing method embodiments may also be implemented by a component (for example, an integrated circuit, a chip, etc.) that can be used for the communication device.
  • a component for example, an integrated circuit, a chip, etc.
  • the embodiments of the present application also provide corresponding communication devices (sometimes also referred to as communication devices), where the communication devices include a corresponding communication device for executing each part in the foregoing embodiments.
  • Module may be software or hardware, or a combination of software and hardware.
  • FIG. 7 is a schematic structural diagram of a communication device.
  • the communication device 700 may be the network device 10 or 20 in FIG. 1C, or may be the terminal 11, 12, 21, or 22 in FIG. 1C.
  • the communication device may be configured to implement the method corresponding to the communication device described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the communication device 700 may include one or more processors 701.
  • the processor 701 may also be referred to as a processing unit and may implement certain control functions.
  • the processor 701 may be a general-purpose processor or a special-purpose processor. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used for processing communication protocols and communication data.
  • the central processor can be used for communication devices (such as base stations, baseband chips, distributed units (DU) or centralized units (CU), etc.) ) Control, execute software programs, and process software program data.
  • the processor 701 may also store instructions and / or data 703, and the instructions and / or data 703 may be run by the processor, so that the communication device 700 executes the foregoing method embodiment The method described in corresponds to the communication device.
  • the processor 701 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit or an interface.
  • the circuits or interfaces used to implement the receive and transmit functions can be separate or integrated.
  • the communication device 700 may include a circuit that can implement the functions of sending, receiving, or communicating in the foregoing method embodiments.
  • the communication device 700 may include one or more memories 702 on which instructions 704 may be stored, and the instructions may be executed on the processor, so that the communication device 700 executes the foregoing method implementation.
  • the memory may further store data.
  • the processor may also store instructions and / or data.
  • the processor and the memory may be set separately or integrated together.
  • the various corresponding relationships described in the foregoing method embodiments may be stored in a memory or stored in a processor.
  • the communication device 700 may further include a transceiver 705 and / or an antenna 706.
  • the processor 701 may be referred to as a processing unit and controls a communication device (a terminal or a network device).
  • the transceiver 705 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, and is used to implement a transceiver function of a communication device.
  • a communication device 700 may include a processor 701 and a transceiver 705.
  • the first indication information is received by the transceiver 705; the processor 701 determines that the demodulation reference signal DMRS of the interference signal is related to the serving cell and / or the demodulation reference signal DMRS of the interference signal is Serving cell or non-serving cell group.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application-specific integrated circuits (ASICs), and printed circuit boards (ICs). printed circuit (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel, metal oxide, semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • P-type Metal oxide semiconductor positive channel, metal oxide, semiconductor, PMOS
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the communication device is described by using a network device or a terminal as an example, the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 7.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • the IC set may also include a storage component for storing data and / or instructions;
  • ASIC such as a modem (MSM)
  • FIG. 8 provides a schematic structural diagram of a terminal.
  • This terminal can be used in the system shown in FIG. 1C.
  • FIG. 8 shows only the main components of the terminal.
  • the terminal 800 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing software program data.
  • the memory is mainly used for storing software programs and data.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain the radio frequency signal and sends the radio frequency signal outward in the form of electromagnetic waves through the antenna. .
  • the RF circuit receives the RF signal through the antenna.
  • the RF signal is further converted into a baseband signal and the baseband signal is output to the processor.
  • the processor converts the baseband signal into data and processes the data. deal with.
  • FIG. 8 shows only one memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire terminal and execute software. Programs that process data from software programs.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna and a control circuit having a transmitting / receiving function may be regarded as a transmitting / receiving unit 811 of the terminal 800, and a processor having a processing function may be regarded as a processing unit 812 of the terminal 800.
  • the terminal 800 includes a transceiver unit 811 and a processing unit 812.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a device used to implement the receiving function in the transceiver unit 811 may be regarded as a receiving unit, and a device used to implement the transmitting function in the transceiver unit 811 may be regarded as a transmitting unit, that is, the transceiver unit 811 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit and the like.
  • the receiving unit and the sending unit may be a unit integrated together, or may be multiple units that are independent of each other.
  • the receiving unit and the sending unit may be located in one geographical location, or may be dispersed in multiple geographical locations.
  • the communication device may be a terminal (such as the terminal in the system shown in FIGS. 1A, 1B, 1C), or a component of the terminal (such as an integrated circuit, a chip, etc.).
  • the communication device may also be a network device (for example, the communication device is a base station device applicable to the systems of FIGS. 1A, 1B, 1C, and 1D), or may be a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the communication device may also be another communication module, and is configured to implement an operation corresponding to a communication device in the method embodiment of the present application.
  • the communication device 900 may include a processing module 902 (processing unit).
  • it may further include a transceiver module 901 (transceiver unit) and a storage module 903 (storage unit).
  • one or more modules as shown in FIG. 9 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors And a transceiver; or one or more processors, memories, and transceivers, which are not limited in the embodiments of the present application.
  • the processor, the memory, and the transceiver may be separately set or integrated.
  • the communication device is provided with functions of implementing the terminal described in the embodiment of the present application.
  • the communication device includes a module or a unit or a means corresponding to the terminal performing the steps involved in the terminal described in the embodiment of the present application.
  • the functions or units or means can be implemented by software, or by hardware, or by executing corresponding software by hardware. For details, reference may be made to the corresponding description in the foregoing corresponding method embodiment.
  • the communication device has the function of implementing the network device described in the embodiment of the present application.
  • the communication device includes the network device described in the embodiment of the application and the corresponding module or unit or means corresponding to the steps (means ),
  • the functions or units or means (means) can be implemented by software, or by hardware, and can also be implemented by hardware executing the corresponding software.
  • each module in the communication device 900 in the embodiment of the present application may be used to execute the method described in the embodiment of the present application.
  • the transceiver module 901 receives the first instruction information; the processing module 902 determines that the demodulation reference signal DMRS of the interference signal is related to the serving cell and / or the interference signal is based on the first instruction information.
  • the demodulation reference signal DMRS is related to a non-serving cell or a non-serving cell group.
  • the processing module 902 determines that the scrambling parameter of the DMRS sequence of the interference signal is related to the serving cell identifier ID.
  • the processing module 902 determines that the scrambling parameter of the DMRS sequence of the interference signal is related to a non-serving cell ID or a non-serving cell group ID.
  • the processing module 902 determines one or more of the following information according to the first instruction information: a port of the DMRS of the interference signal, a code division multiplexed CDM group of the DMRS of the interference signal, and The modulation method of the data of the interference signal, or the power ratio of the data of the interference signal to the DMRS of the interference signal.
  • the transceiver module 901 receives the second indication information, and the processing module 902 determines the non-serving cell ID or non-serving cell group ID according to the second indication information.
  • the transceiver module 901 receives a measurement signal
  • the processing module 902 determines the non-serving cell ID or non-serving cell group ID according to the measurement signal, and the measurement signal is a synchronization signal, a synchronization signal block, or a channel.
  • Status information reference signal CSI-RS is a measurement signal.
  • the transceiver module 901 receives third instruction information, and the processing module 902 determines that the measurement signal corresponds to the non-serving cell ID or the non-serving cell group ID according to the third instruction information.
  • the power ratio of the data of the interference signal to the power of the DMRS of the interference signal is any one of ⁇ 0dB, 3dB, 4.77dB ⁇ .
  • the data modulation method of the interference signal is any one of ⁇ quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), 64QAM, 256QAM ⁇ .
  • QPSK quadrature phase shift keying
  • QAM 16 quadrature amplitude modulation
  • 64QAM 64QAM
  • 256QAM ⁇ 256QAM
  • the first indication information is carried by downlink control information, uplink control information, side link control information, or network control information.
  • the processing module 902 configures a correspondence between the first indication information and the source of the interference signal; the processing module 902 determines the correspondence according to the correspondence between the first indication information and the source of the interference signal
  • the demodulation reference signal DMRS of the interference signal is related to the serving cell, and / or the demodulation reference signal DMRS of the interference signal is related to the non-serving cell or the non-serving cell group.
  • the processing module 902 determines the correspondence between the first instruction information and the source of the interference signal according to the fourth instruction information; the processing module 902 determines the correspondence between the first instruction information and the source of the interference signal
  • the demodulation reference signal DMRS of the interference signal is related to a serving cell, and / or the demodulation reference signal DMRS of the interference signal is related to a non-serving cell or a non-serving cell group.
  • the source of the interference signal is any one of the following: a serving cell; a non-serving cell; a non-serving cell group; a serving cell and a non-serving cell; a serving cell and a non-serving cell group.
  • the processing module 902 configures a correspondence between the first indication information and the data of the interference signal and a power ratio of the DMRS of the interference signal; the processing module 902 according to the first indication information and the power
  • the correspondence between the data of the interference signal and the power ratio of the DMRS of the interference signal determines the power ratio of the data of the interference signal and the DMRS of the interference signal.
  • the processing unit used to execute these technologies at a communication device can be implemented in one or more general-purpose processors, digital signal processors (DSPs), digital Signal Processing Device (DSPD), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or the above In any combination.
  • DSPs digital signal processors
  • DSPD digital Signal Processing Device
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • At least one (a, b) of a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, or c can be a single or a Multiple.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, instructions executed by a processor, or a combination of the two.
  • the memory may be a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium in the art.
  • the memory may be connected to the processor so that the processor can read information from the memory and write information to the memory.
  • the memory may also be integrated into the processor.
  • the processor and the memory may be provided in an ASIC, and the ASIC may be provided in a terminal.
  • the processor and the memory may also be provided in different components in the terminal.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data package.
  • the center transmits to another website site, computer, server or data packet center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data packet storage device such as a server, a data packet center, and the like that includes one or more available media integrations.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种干扰指示的方法及装置。该方法包括:通信设备接收第一指示信息;所述通信设备根据所述第一指示信息确定所述干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。通过所提供的实施例,接收端可以根据所述第一指示信息确定合适的干扰DMRS序列加扰参数,进而确定准确的干扰DMRS序列,从而可以根据所述准确的干扰DMRS序列估计干扰信道,使能先进接收机进行干扰删除或干扰抑制。

Description

用于通信系统中干扰指示的方法及装置
本申请要求在2018年5月28日提交中国国家知识产权局、申请号为201810525022.8、发明名称为“用于通信系统中干扰指示的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种干扰协调的方法及装置。
背景技术
在无线通信网络中,例如5G新空口(New radio interface,NR)中,通常采用正交频分多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)作为多址接入方式。OFDMA的主要特点是将传输资源划分为相互正交的时频资源单元(Resource Element,RE),发送端发送的信号都承载在RE上传输给接收端,由于不同的RE之间相互正交,使得接收端可以对每个RE上发送的信号进行单独接收。考虑到无线信道的衰落特性,RE上承载的信号经过信道传输后将产生畸变,通常将该信道畸变称为信道系数。为了能够在接收端对信号进行恢复,需要对由信道系数进行估计,现有技术中通常采用基于参考信号的方案,即发送端在特定的RE上传输已知的信号,接收端根据接收到的信号和该已知信号对信道系数进行估计,并根据估计获得的信道系数插值获得其他RE上的信道系数,进而利用估计获得的信道系数对数据信号进行接收解调。
发送端和接收端可以配备多根天线以采用多输入多输出(Multiple Input Multiple Output,MIMO)技术实现空间复用传输,即在相同的时频资源上传输多个数据流,每个数据流在一个独立的空间层上传输,并且每个空间层将映射到不同的天线端口上进行发送,以提高时频资源的使用效率。考虑到不同天线端口到接收端的信道系数可能不同,为了接收端能够获取多个空间层上传输的信息,需要对每个天线端口与接收端之间的信道系数都进行估计,所以需要为每个天线端口配置不同的解调参考信号(Demodulation Reference Signal,DMRS),不同天线端口对应的DMRS可采用时分、频分及码分等方式进行复用。
传统无线通信系统一般有两种常用的双工方式:频分双工(Frequency Domain Duplex,FDD)和时分双工(Time Domain Duplex,TDD)。FDD双工方式是上下行通信在不同的频段上进行,因此上下行通信之间不存在交叉干扰。TDD双工方式是上下行通信是在相同频段上,但是在不同的时隙上进行,并且相邻小区间一般上下行配比相同,因此也不存在上下行之间的交叉干扰。在这两种双工方式下一般会产生小区内的本小区干扰,以图1A为例,基站在相同的频域资源上给两个终端同时发送下行数据,则基站给一个终端发送的信号在另一个终端看来就是小区内的本小区干扰。
为了更加灵活的适配上下行业务、提高系统的吞吐量,无线通信网络的演进过程中会引入动态TDD、灵活双工甚至全双工技术。动态TDD系统中,不同小区之间的上下行配比可能不同,相邻小区之间数据的传输方向不同,可能导致出现上下行之间的交叉干扰(如图1B所示),即基站与基站之间的干扰、终端与终端之间的干扰。由于基站的发射功率一般较大,并且基站的高度较高,基站之间信号为视距传输的概率更大,因此基站之间的干 扰较大。此外,相邻小区边缘处的两个终端可能距离较近,这种情况下终端之间的干扰较大。
针对上述干扰,如何使得接收端正确获知干扰信号,从而进一步提取有用信号成为亟需解决的问题。
发明内容
本申请实施例提供一种用于无线通信的方法及装置。
本申请实施例提供一种用于无线通信中的方法和装置。发射端的通信装置(例如,网络设备或终端)发送包含第一指示信息的信息,接收端的通信装置(例如终端或网络设备)接收包含该第一指示信息的信息,所述接收端根据该第一指示信息确定干扰信号的解调参考信号DMRS与服务小区相关;或者根据该第一指示信息确定干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关;或者根据该第一指示信息确定干扰信号的解调参考信号DMRS与服务小区相关,且该干扰信号的解调参考信号DMRS也与非服务小区或非服务小区组相关。
在一种设计中,所述接收端的通信装置根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数与服务小区标识符ID相关;或者根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数是基于服务小区标识符ID确定的。
在一种设计中,所述接收端的通信装置根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数与非服务小区ID或者非服务小区组ID相关;或者根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数是基于非服务小区ID或者非服务小区组ID确定的。
在一种设计中,所述接收端的通信装置根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数与服务小区标识符ID相关,并且该干扰信号的DMRS序列的加扰参数也与非服务小区ID或者非服务小区组ID相关;或者根据上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数是基于服务小区标识符ID确定的,并且该干扰信号的DMRS序列的加扰参数也是基于非服务小区ID或者非服务小区组ID确定的。
上述第一指示信息被包含在下行控制信息(DCI)、上行控制信息(UCI)、边链路控制信息(SCI)、或网络控制信息中(NCI)。
在一种设计中,上述第一指示信息指示与上述干扰信号的来源相关的信息。该干扰信号的来源例如为:服务小区、非服务小区、非服务小区组、服务小区和非服务小区、服务小区和非服务小区组、网络、终端、服务小区网络、服务小区终端、非服务小区网络、或者非服务小区终端等。可选地,可以配置上述第一指示信息与上述干扰信号来源的相关信息的对应关系。可选地,上述对应关系为索引、编号、标识符等参数与上述干扰信号来源的相关信息的对应关系。可选地,上述终端或网络设备根据该对应关系和上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数。
在另一种设计中,上述第一指示信息指示与上述干扰信号的干扰类型相关的信息。可选地,该干扰信号的干扰类型为服务小区干扰、非服务小区干扰、非服务小区组干扰、服务小区和非服务小区干扰、服务小区和非服务小区组干扰、网络干扰、终端干扰、服务小区网络干扰、服务小区终端干扰、非服务小区网络干扰、或者非服务小区终端干扰等。可选地,可以配置上述第一指示信息与上述干扰信号干扰类型的相关信息的对应关系。可选 地,上述对应关系为索引、编号、标识符等参数与上述干扰信号干扰类型的相关信息的对应关系。可选地,所述接收端的通信装置根据该对应关系和上述第一指示信息确定上述干扰信号的DMRS序列的加扰参数。
可选地,上述第一指示信息还指示上述干扰信号的数据与上述干扰信号的DMRS的功率比值。可选地,该功率比值为{0dB,3dB,4.77dB}中的任意一个。可选地,可以配置上述第一指示信息与“上述干扰信号的数据与上述干扰信号的DMRS的功率比值”的对应关系。可选地,所述接收端的通信装置根据该第一指示信息确定上述干扰信号的数据与上述干扰信号的DMRS的功率比值。
可选地,上述第一指示信息还指示上述干扰信号的DMRS的端口和/或上述干扰信号的DMRS的码分复用CDM组。可选地,可以配置上述第一指示信息与“上述干扰信号的DMRS的端口和/或上述干扰信号的DMRS的码分复用CDM组”的对应关系。可选地,所述接收端的通信装置根据该第一指示信息确定上述干扰信号的DMRS的端口和/或上述干扰信号的DMRS的码分复用CDM组。
可选地,上述第一指示信息还指示上述干扰信号的数据的调制方式。可选地,该调制方式为{正交相移键控(QPSK),16正交振幅调制(QAM),64QAM,256QAM}中的任意一个。可选地,可以配置上述第一指示信息与“上述干扰信号的数据的调制方式”的对应关系。可选地,所述接收端的通信装置根据该第一指示信息确定上述干扰信号的数据的调制方式。
本申请通过联合指示干扰信号的干扰类型和干扰信号的DMRS的端口、干扰信号的DMRS的码分复用CDM组、干扰信号的数据的调制方式、或所述干扰信号的数据与所述干扰信号的DMRS的功率比值,可以在需要同时指示干扰信号的DMRS的端口、干扰信号的DMRS的码分复用CDM组、干扰信号的数据的调制方式、或所述干扰信号的数据与所述干扰信号的DMRS的功率比值时降低指示信息的开销。
可选地,所述发射端的通信装置发送第二指示信息。所述接收端的通信装置接收所述第二指示信息,并根据所述第二指示信息确定所述非服务小区ID或非服务小区组ID。
可选地,所述接收端的通信装置接收测量信号,并根据所述测量信号确定所述非服务小区ID或非服务小区组ID,所述测量信号为同步信号、同步信号块或信道状态信息参考信号CSI-RS。
可选地,所述发射端的通信装置发送第三指示信息。所述接收端的通信装置接收所述第三指示信息,根据所述第三指示信息确定所述测量信号与所述非服务小区ID或所述非服务小区组ID的对应关系。可选地,上述终端或网络设备根据该对应关系和上述接收的测量信号确定所述非服务小区ID或非服务小区组ID。
可选地,所述发射端的通信装置发送第四指示信息。所述接收端的通信装置接收所述第四指示信息,并根据该第四指示信息确定上述第一指示信息与上述干扰信号来源或干扰类型相关信息的对应关系。可选地,该第四指示信息为调度信息或是包含在DCI中的控制信息。
本申请实施例通过使接收端获得准确的干扰信号的DMRS序列的加扰参数或干扰信号的干扰类型,解决了本小区干扰和邻小区干扰共存或交替共存的场景下接收端无法确定干扰信号的DMRS序列的加扰参数从而导致的无法采用先进接收机进行干扰删除或干扰抑制的问题。
在一种设计中,本申请提供一种通信装置,可以实现上述发射端的通信装置,和/ 或接收端的通信装置的相应功能。所述通信装置包括用于执行上述方法的相应的单元或部件。所述通信装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为终端、或网络设备(如基站)、或者为可支持终端或网络设备实现上述功能的芯片、芯片系统、处理器等。
在另一种设计中,本申请提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以实现上述方法。
在又一种设计中,本申请提供一种通信装置,包括处理单元和收发单元,所述收发单元用于发送或接收用以指示上述方面所描述的对应关系的指示信息,所述处理单元用以根据指示信息获取相应的信息。可选的,还可以包括存储单元,所述存储单元用以存储上述方法所描述的对应关系。
本申请实施例还提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法。
本申请实施例还提供一种芯片系统,包括:处理器,用于支持通信装置实现上述任一项所描述的方法。
本申请实施例还提供一种通信系统,包括上述发射端的通信装置和上述接收端的通信装置。
附图说明
图1A为一种本小区干扰示意图;
图1B为一种邻小区干扰示意图;
图1C为本申请提供的辅助干扰删除的方法应用的通信系统的示意图;
图1D示出了通信系统的一种架构举例示意图;
图2为本申请提供的一种辅助干扰删除的方法的流程示意图;
图3A为第一种第一指示信息的承载方法示意图;
图3B为第二种第一指示信息的承载方法示意图;
图3C为第三种第一指示信息的承载方法示意图;
图3D为第四种第一指示信息的承载方法示意图;
图4为本申请提供的一种确定干扰DMRS序列加扰参数的流程示意图;
图5为本申请提供的另一种确定干扰DMRS序列加扰参数的流程示意图;
图6为DMRS端口和DMRS CDM组的示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的一种通信设备示意图。
具体实施方式
本发明实施例提供的干扰指示方法及装置可以应用于通信系统中。如图1C示出了一种通信系统结构示意图。该通信系统中包括一个或多个网络设备(清楚起见,图中示出网络设备10和网络设备20),以及与该一个或多个网络设备通信的一个或多个终端设备。图中所示终端设备11和终端设备12与网络设备10连接,所示终端设备21和终端设备22与网络设备20连接。
本发明实施例描述的技术可用于各种通信系统,例如2G,3G,4G,4.5G,5G通信系统,多种通信系统融合的系统,或者未来演进网络。例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA),长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等,以及其他此类通信系统。
图1D示出的通信系统的一种架构举例示意图,如图1D所示无线接入网RAN中的网络设备是CU和DU分离架构的基站(如gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。RAN的功能终止于CU。多个DU可以共用一个。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(Media Access Control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:全球移动通信系统(Global System for Mobile,GSM)或CDMA中的基站(base transceiver station,BTS),WCDMA中的基站(NodeB),LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备还可以 是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
在基于先进接收机在接收端进行干扰删除或干扰抑制时,接收端需要知道干扰信号的解调参考信号(Demodulation Reference Signal,DMRS)序列,根据该序列估计出干扰信号的信道,再根据有用信号的信道(根据有用信号的DMRS序列估计出有用信号的信道)和干扰信号的信道进行联合解调恢复出有用信号。干扰信号的DMRS序列和有用信号的DMRS序列一般都使用加扰参数加扰。在仅存小区内干扰的场景下,干扰信号的DMRS序列的加扰参数和有用信号的DMRS序列的加扰参数相同(例如,都使用本小区标识符ID作为加扰参数),因此接收端在已知有用信号的DMRS序列的加扰参数的情况下,便能确定干扰信号的DMRS序列的加扰参数,从而进一步确定干扰信号的DMRS序列进行干扰信道估计。
上述对DMRS序列的加扰一般是在初始化DMRS序列时引入相应的加扰参数完成。例如,在一种可能的初始化DMRS序列的方式中,可采用满足式1的c init初始化DMRS序列,其中
Figure PCTCN2019082168-appb-000001
为初始化DMRS序列的加扰参数,且
Figure PCTCN2019082168-appb-000002
可以为小区ID,所述小区ID一般为本小区ID或服务小区ID。当然,式1中还包含有其他的参数,例如l为时隙中的符号标识、
Figure PCTCN2019082168-appb-000003
为无线帧中的时隙标识。
Figure PCTCN2019082168-appb-000004
引入动态TDD、灵活双工甚至全双工技术后,邻小区的交叉干扰也变得严重,会出现本小区干扰和邻小区干扰共存或交替共存的干扰场景,因此希望先进接收机在抑制本小区干扰或服务小区干扰的同时,也可以抑制邻小区干扰或非服务小区干扰。此时接收端仍需要根据干扰信号的DMRS序列进行干扰信道的估计。但是,考虑到上述的干扰场景中干扰信号可能在不同时刻来自于不同小区(即本小区或邻小区),或者同时来自于不同小区,且由于不同小区内的DMRS序列采用的加扰参数一般不再相同(例如,有用信号的DMRS 序列使用本小区ID作为加扰参数,干扰信号的DMRS序列使用邻小区ID作为加扰参数),导致接收端无法识别干扰信号是本小区干扰还是邻小区干扰,所以在所述本小区干扰和邻小区干扰共存或交替共存的场景下接收端无法确定干扰信号的DMRS序列的加扰参数,导致无法使用先进接收机进行干扰删除或干扰抑制,进而影响系统性能。
本发明实施例提供的干扰指示的方法及装置,通过使接收端获得准确的干扰信号的DMRS序列的加扰参数或干扰信号的干扰类型,解决了本小区干扰和邻小区干扰共存或交替共存的场景下接收端无法确定干扰信号的DMRS序列的加扰参数从而导致的无法采用先进接收机进行干扰删除或干扰抑制的问题。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和被耦合到处理器的存储器中实现。
需要说明的是,本申请中“干扰信号的DMRS”有时也称为“干扰DMRS”。“干扰信号的数据”有时也称为“干扰数据信号”或“干扰信号”,并不影响对其技术含义的理解。
图2为本申请实施例提供的一种方法流程图。如图2所示,本实施例的方法可以包括:
200部分,通信设备接收第一指示信息;
210部分,所述通信设备根据所述第一指示信息确定干扰DMRS序列加扰参数;
220部分,所述通信设备根据所述第一指示信息确定干扰DMRS序列加扰参数和干扰数据信号与干扰DMRS的功率比值;
230部分,所述通信设备根据所述第一指示信息确定干扰数据信号与干扰DMRS的功率比值。
需要说明的是,210部分、220部分和230部分之间是并列的关系,即在实现本申请方法时,可以实现210部分、220部分、或230部分中的一个。下面具体介绍本申请的各个实施例。
本实施例中,通信设备可以是终端,也可以是网络设备。以所述通信设备为终端为例,如图3A所示,在200部分,所述第一指示信息可以由网络设备发送的下行控制信息(Downlink Control Information,DCI)承载;如图3B所示,所述第一指示信息也可以由其他终端发送的边链路控制信息(Sidelink Control Information,SCI)承载,其中所述SCI也可以理解为终端到终端(Device to Device,D2D)通信中的控制信息。以所述通信设备为网络设备为例,如图3C所示,所述第一指示信息可以由终端发送的上行控制信息(Uplink Control Information,UCI)承载;如图3D所示,所述第一指示信息也可以由网络设备发送的网络控制信息(Network Control Information,NCI)承载,其中所述NCI可以是通过网络设备间的有线接口(例如X2接口或类似X2的接口)传输的信息,也可以是通过网络设备间的空中接口无线传输的信息。
在210部分,所述通信设备根据所述第一指示信息确定干扰DMRS序列加扰参数。
在210部分一种可能的实施方式中,所述通信设备可以根据所述第一指示信息确定干扰类型,所述干扰类型包含本小区干扰和邻小区干扰,所述通信设备根据所述干扰类 型确定所述干扰DMRS序列加扰参数对应的标识符ID或信号。其中,所述ID可以是小区ID、小区组ID、UE ID、UE组ID、超小区(hypercell)ID、超小区组ID、载波ID或载波组ID等。所述超小区可以包含多个小区或多个小区组。所述小区ID用于标识一个小区(a cell)。所述小区组ID用于标识一个小区组(a cell group),所述小区组可以包括一个或多个小区。所述UE ID用于标识一个UE(a UE)。所述UE组ID用于标识一个UE组(a UE group),所述UE组可以包括一个或多个UE。所述超小区ID用于标识一个超小区(a hypercell)。所述超小区组ID用于标识一个超小区组(a hypercell group),所述超小区组可以包括一个或多个超小区。所述载波ID用于标识一个载波(a carrier)。所述载波组ID用于标识一个载波组(a carrier group),所述载波组可以包括一个或多个载波。所述小区ID还可以为本小区ID,和/或邻小区ID,当所述通信设备为终端时,所述本小区ID也可以称为服务小区ID,所述邻小区ID也可以称为非服务小区ID。所述小区组ID也可以理解为邻小区组ID,当所述通信设备为终端时,所述邻小区组ID也可以称为非服务小区组ID。所述超小区ID还可以进一步分为本超小区ID和邻超小区ID,当所述通信设备为终端时,所述本超小区ID也可以称为服务超小区ID,所述邻超小区ID也可以称为非服务超小区ID。所述超小区组ID也可以理解为邻超小区组ID,当所述通信设备为终端时,所述邻超小区组ID也可以称为非服务超小区组ID。
可以理解的是,本申请中的“本小区”有时也可以称为“服务小区”,本申请中的“邻小区”有时也可以称为“非服务小区”,本申请中的“邻小区组”有时也可以称为“非服务小区组”,并不影响对其技术含义的理解。另外可以理解的是,本申请并不限制网络设备与小区之间的关系;例如,相同的网络设备可以服务相同的小区,也可以服务不同的小区;又例如,相同的小区可以被相同的网络设备服务,也可以被不同的网络设备服务。本申请中的干扰类型也可以称为干扰源、干扰来源、干扰信号的来源、干扰源类型、干扰来源类型、干扰来向、干扰来向类型或其他任何具有类似含义的表达,并不影响对其技术含义的理解。
可以配置第一指示信息与干扰类型的对应关系。所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。所述第一指示信息可以通过索引、编号、标识符或其他任何具有类似含义的参数来表示。所述干扰类型也可以被配置。
表1给出了第一指示信息的一个举例。干扰类型为:本小区、和/或邻小区(也可以理解为邻小区组)。如表1所示,“0”指示干扰类型为“本小区干扰”,“1”指示干扰类型为“邻小区干扰”(也可以理解为“邻小区组干扰”),“2”指示干扰类型为“本小区干扰”和“邻小区干扰”(也可以理解为“邻小区组干扰”)。
表1
指示信息 干扰类型
0 本小区干扰
1 邻小区干扰
2 本小区干扰和邻小区干扰
本申请对指示信息的表现形式或取值可以配置。例如指示信息可以通过1bit来表示干扰类型,也可以通过两个或多个bit来表示干扰类型、或者通过和其他参数联合来表示干 扰类型。
所述指示信息和/或干扰信号的来源可以被配置。本申请并不限定干扰类型的数量或种类。例如本小区干扰也可以进一步分为本小区网络干扰和本小区终端干扰。又例如邻小区干扰也可以进一步分为邻小区(或邻小区组)网络干扰和邻小区(或邻小区组)终端干扰。再例如,在某些情形下,可以不考虑某一种类型的干扰。例如不考虑本小区和邻小区共同干扰的情况。
可选地,所述干扰类型还可以包含网络干扰、终端干扰、本小区网络干扰、本小区终端干扰、邻小区网络干扰或邻小区终端干扰中的一种或多种。表2给出了第一指示信息的另一个举例,所述干扰类型包含本小区网络干扰、邻小区网络干扰、本小区终端干扰和邻小区终端干扰为例。
表2
指示信息 干扰类型
0 本小区网络干扰
1 邻小区网络干扰
2 本小区终端干扰
3 邻小区终端干扰
表2中邻小区网络干扰也可理解为邻小区组网络干扰、邻小区终端干扰也可理解为邻小区组终端干扰。
以表1和所述通信设备为终端为例,结合图4具体说明确定所述干扰DMRS序列加扰参数的过程。图4示意所述终端根据所述第一指示信息确定所述干扰DMRS序列加扰参数的方法可以包括:
400部分,终端获取表1中的指示信息。
410部分,所述指示信息为“0”,则所述终端确定所述干扰DMRS与本小区相关。可选地,所述终端可以确定所述干扰DMRS加扰参数与本小区标识符ID相关。可以理解的是,所述干扰DMRS加扰参数与本小区ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID确定的。例如,在图1A所示的本小区干扰的场景,终端可以执行410部分描述的方法可以适用。
420部分,所述指示信息为“1”,则所述终端确定所述干扰DMRS与邻小区或邻小区组相关。可选地,所述终端可以确定所述干扰DMRS加扰参数与邻小区ID或邻小区组ID相关。可以理解的是,所述干扰DMRS加扰参数与邻小区ID或邻小区组ID相关,也可以理解为所述干扰DMRS加扰参数是基于邻小区ID或邻小区组ID确定的。例如,在图1B所示的邻小区干扰或邻小区组干扰的场景,终端可以执行420部分描述的方法。
430部分,所述指示信息为“2”,则所述终端确定所述干扰DMRS与本小区和邻小区相关,或者确定所述干扰DMRS与本小区和邻小区组相关。可选地,所述终端可以确定所述干扰DMRS加扰参数与本小区ID和邻小区ID相关,或者确定所述干扰DMRS加扰参数与本小区ID和邻小区组ID相关。可以理解的是,所述干扰DMRS加扰参数与本小区ID和邻小区ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID和邻小区ID确定的;所述干扰DMRS加扰参数与本小区ID和邻小区组ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID和邻小区组ID确定的。例如, 对于同时处于图1A和图1B所示的场景中的终端,所述终端会受到本小区干扰和邻小区干扰,或者会受到本小区干扰和邻小区组干扰,所述终端执行430部分描述的方法。
可以理解的是,本实施例中的410部分、420部分和430部分之间是并列的关系,即在具体实现本申请方法时,所述终端需要根据第一指示信息确定实现410部分、420部分、或430部分中的一个。通过所提供的实施例,接收端可以根据第一指示信息确定合适的干扰DMRS序列加扰参数,进而确定准确的干扰DMRS序列,从而可以根据所述准确的干扰DMRS序列估计干扰信道,使能先进接收机进行干扰删除或干扰抑制。
可以理解的是,也可以采用其他的取值、符号、变量或标识符来标识上述表1中的“本小区干扰”、“邻小区干扰”、和“本小区干扰和邻小区干扰”。例如,表3给出了表1的一种可能变形举例。
表3
指示信息 干扰类型
0 y0
1 y1
2 y2
在一种可能的实施方式中,y0标识本小区干扰,y1标识邻小区干扰(也可以理解为“邻小区组干扰”),y2标识“本小区干扰”和“邻小区干扰”(也可以理解为“邻小区组干扰”)。
可以理解的是,本申请并不限制上述取值、符号、变量或标识符与其标识的干扰类型的具体关系,例如在一种可能的实施方式中,y2标识本小区干扰,y1标识邻小区干扰(也可以理解为“邻小区组干扰”),y0标识“本小区干扰”和“邻小区干扰”(也可以理解为“邻小区组干扰”)。可以理解的是,本申请也不限制该指示信息具体的取值,例如指示信息为“3”指示y0,指示信息为“4”指示y1,指示信息为“5”指示y2。另外可以理解的是,本申请并不限制该指示信息的条目数量,例如表3中可以不包含指示信息为“2”的行。
在另一种可能的实施方式中,y0表示所述干扰DMRS序列加扰参数基于网络设备发送的信号确定,y1表示所述干扰DMRS序列加扰参数基于终端发送的信号确定,y2表示所述干扰DMRS序列加扰参数基于网络设备发送的信号和终端发送的信号确定;或者,y2表示所述干扰DMRS序列加扰参数基于终端发送的信号确定,y1表示所述干扰DMRS序列加扰参数基于网络设备发送的信号确定,y0表示所述干扰DMRS序列加扰参数基于网络设备发送的信号和终端发送的信号确定。其中,所述网络设备发送的信号可以是下行信号,或者是一个网络设备给另一个网络设备发送的信号;终端发送的信号可以是上行信号,或者是一个终端给另一个终端发送的信号。
表3所示的第一指示信息与干扰信号的来源的对应关系可以被配置。所述干扰信号的来源可以为下述的任意一项:{本小区、邻小区(也可理解为邻小区组)};或者,所述干扰信号的来源可以为下述的任意一项:{本小区、邻小区(或可理解为邻小区组)、本小区和邻小区(或可理解为邻小区组)}。所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。以表3为例,配置所述第一指示信息与干扰信号的来源的对应关系也可以理解为配置表3中的指示信息与干扰类型(也可以理解为干扰信号的来源)的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“0”对应本小区干扰(即指示信息“0”对应干扰信号的来源为本小区),指示信 息“1”对应邻小区干扰或邻小区组干扰(即指示信息“1”对应干扰信号的来源为邻小区或邻小区组),指示信息“2”对应本小区干扰和邻小区干扰,或者对应本小区干扰和邻小区组干扰(即指示信息“2”对应干扰信号的来源为本小区和邻小区,或者来源为本小区和邻小区组)。
可以理解的是,也可以采用其他的取值、符号、变量或标识符来标识上述表2中的“本小区网络干扰”、“邻小区网络干扰”、“本小区终端干扰”和“邻小区终端干扰”。
例如,以表4为例给出了表2的另一种可能的举例。在一种可能的实施方式中,y0表示本小区网络干扰,y1表示邻小区网络干扰(也可理解为邻小区组网络干扰),y2表示本小区终端干扰,y3表示邻小区终端干扰(也可理解为邻小区组终端干扰)。
表4.
指示信息 干扰类型
0 y0
1 y1
2 y2
3 y3
与表3类似,表4所示的第一指示信息与干扰信号的来源的对应关系可以被配置。所述干扰信号的来源可以为下述的任意一项:{本小区网络干扰、邻小区网络干扰(也可理解为邻小区组网络干扰)、本小区终端干扰、邻小区终端干扰(也可理解为邻小区组终端干扰)}。
以表3和所述通信设备为终端为例,结合图5具体说明确定所述干扰DMRS序列加扰参数的过程。图5示意所述终端根据所述第一指示信息确定所述干扰DMRS序列加扰参数的方法可以包括:
500部分,终端获取表3中的指示信息。
510部分,所述指示信息为“0”,则所述终端确定所述干扰DMRS与本小区相关;进一步可选地,所述终端可以确定所述干扰DMRS加扰参数与本小区标识符ID相关。可以理解的是,所述干扰DMRS加扰参数与本小区ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID确定的。例如,图1A所示的场景中受到本小区干扰的终端,可以执行510部分描述的方法。
520部分,所述指示信息为“1”,则所述终端确定所述干扰DMRS与邻小区或邻小区组相关;进一步可选地,所述终端可以确定所述干扰DMRS加扰参数与邻小区ID或邻小区组ID相关。可以理解的是,所述干扰DMRS加扰参数与邻小区ID或邻小区组ID相关,也可以理解为所述干扰DMRS加扰参数是基于邻小区ID或邻小区组ID确定的。例如图1B所示的场景中,终端会受到邻小区干扰或邻小区组干扰,可以执行520部分描述的方法。
530部分,所述指示信息为“2”,则所述终端确定所述干扰DMRS与本小区和邻小区相关,或者确定所述干扰DMRS与本小区和邻小区组相关;进一步可选地,所述终端可以确定所述干扰DMRS加扰参数与本小区ID和邻小区ID相关,或者确定所述干扰DMRS加扰参数与本小区ID和邻小区组ID相关。可以理解的是,所述干扰DMRS加扰参数与本小区ID和邻小区ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID和邻小区ID确定的;所述干扰DMRS加扰参数与本小区ID和邻小区组ID相关,也可以理解为所述干扰DMRS加扰参数是基于本小区ID和邻小区组ID确 定的。例如,对于同时处于图1A和图1B所示的场景中的终端,所述终端会受到本小区干扰和邻小区干扰,或者会受到本小区干扰和邻小区组干扰,所述终端可以执行530部分描述的方法。
需要说明的是,本实施例中的510部分、520部分和530部分之间是并列的关系,即在具体实现本申请方法时,所述终端需要根据第一指示信息确定实现510部分、520部分、或530部分中的一个。通过所提供的实施例,接收端可以根据第一指示信息提供的取值干扰类型信息确定合适的干扰DMRS序列加扰参数,进而确定准确的干扰DMRS序列,从而可以根据所述准确的干扰DMRS序列估计干扰信道,使能先进接收机进行干扰删除或干扰抑制。
可以理解的是,本申请对上述y0、y1、y2或y3等的含义或意义不做限定,例如所述y0、y1、y2或y3等可以是索引、编号、标识符、枚举变量或布尔变量等。
本申请中的“本小区干扰”有时也可以称为“服务小区干扰”,本申请中的“邻小区干扰”有时也可以称为“非服务小区干扰”,本申请中的“邻小区组干扰”有时也可以称为“非服务小区组干扰”,并不影响对其技术含义的理解。
可以理解的是,图4和图5中描述的干扰DMRS序列加扰参数与上述ID相关(或可理解为干扰DMRS序列加扰参数根据上述ID确定),可以理解为所述干扰DMRS序列加扰参数包含上述ID,也可以理解为所述干扰DMRS序列加扰参数包含以上述ID作为输入的函数的输出。
可以理解的是,表1-表4仅仅是对第一指示信息的举例。可选地,表1-表4中所述的干扰类型还可以与其他属性在第一指示信息中联合指示。
在上述联合指示的一种可能的实施方式中,表1-表4中的所述干扰类型可以与干扰DMRS资源参数在第一指示信息中联合指示。所述干扰DMRS资源参数可以是干扰DMRS码分复用(Code division multiplexing,CDM)组,也可以是干扰DMRS端口参数,还可以是干扰DMRS CDM组和干扰DMRS端口参数。可以理解的是,本申请中的“DMRS端口”有时也可以称为“DMRS天线端口”,并不影响对其技术含义的理解。
图6给出了一种可能的DMRS CDM组的示意,其中以DMRS有6个端口为例,示意了所述6个DMRS端口在12个RE上的分布。图6中水平方向代表时域,竖直方向代表频域,每个小方块代表一个RE,其中DMRS端口0和1占用相同的RE(即最上面的两个RE),通过正交码[+1,+1]和[+1,-1]进行复用,所以这两个DMRS端口对应的RE可以称为一个DMRS CDM组。图6中共示意了三个DMRS CDM组:DMRS CDM组0,承载DMRS端口0和1;DMRS CDM组1,承载DMRS端口2和3;DMRS CDM组2,承载DMRS端口4和5。
表5-1~表5-3示意了几种所述干扰类型与干扰DMRS端口参数在第一指示信息中联合指示的举例,其中y0和y1的含义可参考对表3的描述。
以表5-1为例,给出了以干扰DMRS端口最大个数等于1为例,所述第一指示信息一种可能的示例。例如,表5-1中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口,且y0表示占用所述第1个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第1个DMRS端口的干扰DMRS序列加扰参数可与本小区ID相关)。再例如,表5-1中指示信息为“2”时,指示干扰DMRS占用第1个DMRS端口,且y1表示占用所述第1个DMRS端口的干扰DMRS与邻小区或邻小区组相关(例如,占用所述 第1个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关)。又例如,表5-1中指示信息为“0”时,指示无干扰。
表5-1
指示信息 干扰DMRS端口参数 干扰类型
0 \
1 第1个DMRS端口 y0
2 第1个DMRS端口 y1
以表5-2为例,给出了以干扰DMRS端口最大个数等于2为例,所述第一指示信息一种可能的举例。例如,表5-2中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口,且y0表示占用所述第1个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第1个DMRS端口的干扰DMRS序列加扰参数与本小区ID相关)。再例如,表5-2中指示信息为“4”时,指示干扰DMRS占用第2个DMRS端口,且y1表示占用所述第2个DMRS端口的干扰DMRS与邻小区或邻小区组相关(例如,占用所述第2个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关)。又例如,表5-2中指示信息为“7”时,指示干扰DMRS占用第1个DMRS端口和第2个DMRS端口,且(y1,y0)表示占用所述第1个DMRS端口的干扰DMRS与邻小区或邻小区组相关(例如,占用所述第1个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关),占用所述第2个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第2个DMRS端口的干扰DMRS序列加扰参数与本小区ID相关)。
表5-2
Figure PCTCN2019082168-appb-000005
以表5-3为例,给出了以干扰DMRS端口最大个数等于3为例,所述第一指示信息一种可能的举例。例如,表5-3中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口,且y0表示占用所述第1个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第1个DMRS端口的干扰DMRS序列加扰参数与本小区ID相关)。再例如,表5-3中指示信息为“6”时,指示干扰DMRS占用第3个DMRS端口,且y1表示占用所述第3个DMRS端口的干扰DMRS与邻小区或邻小区组相关(例如,占用所述第3 个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关)。又例如,表5-3中指示信息为“23”时,指示干扰DMRS占用第1个DMRS端口、第2个DMRS端口和第3个DMRS端口,且(y1,y0,y0)表示占用所述第1个DMRS端口的干扰DMRS与邻小区或邻小区组相关(例如,占用所述第1个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关),占用所述第2个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第2个DMRS端口的干扰DMRS序列加扰参数与本小区ID相关),占用所述第3个DMRS端口的干扰DMRS与本小区相关(例如,占用所述第3个DMRS端口的干扰DMRS序列加扰参数与本小区ID相关)。
表5-3
Figure PCTCN2019082168-appb-000006
Figure PCTCN2019082168-appb-000007
与表3类似,表5-1~表5-3所示的指示信息与干扰信号的来源、以及干扰DMRS端口的对应关系也可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。以表5-1为例,配置所述第一指示信息与干扰信号的来源、以及干扰DMRS端口的对应关系也可以理解为配置表5-1中的指示信息与干扰类型(也可以理解为干扰信号的来源)、以及干扰DMRS端口参数的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“1”对应本小区干扰(即指示信息“1”对应干扰信号的来源为本小区)、以及第一个DMRS端口,指示信息“2”对应邻小区干扰或邻小区组干扰(即指示信息“2”对应干扰信号的来源为邻小区或邻小区组)、以及第一个DMRS端口,指示信息“0”对应无干扰、以及无干扰DMRS端口。
可以理解的是,当所述通信设备为终端时,则所述终端在发送或接收数据时,会确定被调度的DMRS端口,所述被调度的DMRS端口应理解为所述终端进行数据接收或数据发送时需要使用的DMRS端口。同时所述终端也能够确定所有可用的DMRS端口,所以本申请中的干扰DMRS端口只可能是所有可用的DMRS端口中除去被调度的DMRS端口之后剩余的DMRS端口。需要说明的是,所述“被调度的DMRS”有时也可以称为“有用信号的DMRS”,并不影响对其技术含义的理解。
以上述表5-1、且所有可用的DMRS端口包括DMRS端口0和DMRS端口1为例,若终端确定被调度的DMRS端口为DMRS端口0,则干扰DMRS端口最大个数为1(即干扰DMRS端口只可能为DMRS端口1),且表5-1中指示的“第1个DMRS端口”为DMRS端口1;若终端确定被调度的DMRS端口为DMRS端口1,则干扰DMRS端口最大个数为1(即干扰DMRS端口只可能为DMRS端口0),且表5-1中指示的“第1个DMRS端口”为DMRS端口0。再以上述表5-2、且所有可用的DMRS端口包括DMRS端口0、DMRS端口1、DMRS端口2和DMRS端口3为例,若终端确定被调度的DMRS端口为DMRS端口0和1,则干扰DMRS端口最大个数为2(即干扰DMRS端口只可能为DMRS端口2和/或DMRS端口3),且表5-2中指示的“第1个DMRS端口”和“第2个DMRS端口”分别为DMRS端口2和DMRS端口3,或者表5-2中指示的“第1个DMRS端口”和“第2个DMRS端口”分别为DMRS端口3和DMRS端口2。上述描述同样适用于上述表5-3以及后续出现的表5-4~表5-6,后续将不再赘述。
上述表5-1~表5-3给出的第一指示信息的示例在干扰DMRS端口最大个数较多时,会消耗较多的指示状态(可理解为表5-1、表5-2或表5-3的行数或有效行数),指示开销较大。为了降低指示开销,可以在一定的前提下缩减指示状态。例如,进一步地,以限制同一个DMRS CDM组内的DMRS端口都对应一个小区(例如,同一个DMRS CDM组内的DMRS端口都对应本小区,或者同一个DMRS CDM组内的DMRS端口都对应邻小区)为例,可以缩减上述表5-1~表5-3的指示状态,达到降低指示开销的目的。
以表5-4为例,给出了以干扰DMRS端口最大个数等于1、且属于同一个DMRS CDM组的DMRS端口只对应一个小区为例,所述第一指示信息一种可能的举例。表5-4与表5-1相比,减少了对表5-1中指示信息为“2”的指示状态,这是因为在“同一个DMRS CDM组内的DMRS端口只对应一个小区”的限制下,表5-4中的所述第1个DMRS端口可以理解为与被调度的DMRS端口属于同一个DMRS CDM组,由于被调度的DMRS端口一般来自本小区,因此在这种情况下所述第1个DMRS端口不会来自邻小区(即所述第1个DMRS端口也来自本小区),所以不会出现占用所述第1个DMRS端口的干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关的情况。因此表5-4的实施方式与表5-1相比,减少了1种指示状态,降低了指示开销。
表5-4
指示信息 干扰DMRS端口参数 干扰类型
0 \
1 第1个DMRS端口 y0
以表5-5为例,给出了以干扰DMRS端口最大个数等于2、且属于同一个DMRS CDM组的DMRS端口只对应一个小区为例,所述第一指示信息一种可能的举例。表5-5与表5-2相比,减少了对表5-2中指示信息为“6”和“7”的指示状态,这是因为在“同一个DMRS CDM组内的DMRS端口只对应一个小区”的限制下,表5-5中的所述第1个DMRS端口和所述第2个DMRS端口可以理解为属于同一个DMRS CDM组,因此所述第1个DMRS端口和所述第2个DMRS端口只会同时来自本小区或同时来自邻小区,所以占用所述第1个DMRS端口的干扰DMRS序列加扰参数和占用所述第2个DMRS端口的干扰DMRS序列加扰参数只会同时与本小区ID相关,或者同时与邻小区ID相关,或者都是与邻小区组ID相关。因此在表5-5的示例的指示信息为“5”或“6”对应的内容中,其指示的干扰类型(y0,y0)或(y1,y1)始终是相同的(即括号内都是y0,或都是y1)。因此表5-5的实施方式与表5-2相比,减少了2种指示状态,降低了指示开销。可以理解的是,表5-5中的干扰DMRS端口多于1个时(即指示信息为“5”或“6”),所述多于1个的干扰DMRS端口对应的干扰类型只能相同,即同为y0或同为y1。更进一步的,表5-5中指示信息对应2个干扰DMRS端口时(即指示信息为“5”或“6”),所述2个干扰DMRS端口对应的干扰类型相同,即同为y0或同为y1。
表5-5
Figure PCTCN2019082168-appb-000008
Figure PCTCN2019082168-appb-000009
以表5-6为例,给出了以干扰DMRS端口最大个数等于3、且属于同一个DMRS CDM组的DMRS端口只对应一个小区为例,所述第一指示信息一种可能的举例。在表5-6中,可以理解为所述第1个DMRS端口属于一个DMRS CDM组,所述第2个DMRS端口和第3个DMRS端口属于另一个DMRS CDM组。因此表5-6中的任意一个指示信息指示的对应所述第1个DMRS端口的干扰类型可以与所述第2个DMRS端口的干扰类型不同或相同,也可以与所述第3个DMRS端口的干扰类型不同或相同;但是表5-6中的任意一个指示信息指示的对应所述第2个DMRS端口的干扰类型与所述第3个DMRS端口的干扰类型必须相同,即说明占用所述第2个DMRS端口的干扰DMRS序列加扰参数和占用所述第3个DMRS端口的干扰DMRS序列加扰参数都是与本小区ID相关,或者都是与邻小区ID相关,或者都是与邻小区组ID相关。因此表5-6的实施方式与表5-3相比,减少了13种指示状态,降低了指示开销。可以理解的是,表5-6中指示信息对应的干扰DMRS端口与被调度的DMRS端口属于同一个CDM组时,该指示信息对应的所述干扰DMRS端口对应的干扰类型为y0。进一步地,表5-6中指示信息对应的干扰DMRS端口的个数为3时(表5-6中指示信息为“12”或“13”时),所述3个干扰DMRS端口对应的干扰类型只有两种可能的状态:一种状态是所述3个干扰DMRS端口中有且仅有一个干扰DMRS端口对应的干扰类型为y0(即小区内干扰),例如表5-6中指示信息为“13”时;另一种状态是所有3个干扰DMRS端口对应的干扰类型都为y0(即小区内干扰),例如表5-6中指示信息为“12”时。
表5-6
Figure PCTCN2019082168-appb-000010
Figure PCTCN2019082168-appb-000011
与表5-1~表5-3类似,表5-4~表5-6所示的指示信息与干扰信号的来源、以及干扰DMRS端口的对应关系也可以被配置。
可以理解的是,所述干扰类型与干扰DMRS CDM组在第一指示信息中联合指示的示例可基于上述表5-1~表5-6描述的实施方式调整后得到。例如:将表5-1~表5-6第二列的参数替换为“干扰DMRS CDM组”,将表5-1~表5-6第二列中的“DMRS端口”替换为“DMRS CDM组”。
以所述通信设备为终端为例,终端会接收来自网络设备的第四指示信息(例如,调度信息,或是包含在DCI中的控制信息),并根据所述第四指示信息确定被调度的DMRS端口。表6-1为第四指示信息的一种举例,表6-1以所有可用的DMRS端口的个数等于4为例,即所有可用的DMRS端口包括DMRS端口0、1、2和3,并且DMRS端口0和1属于第1个CDM组,DMRS端口2和3属于第2个CDM组。表6-1的第一列的指示信息可理解为索引、编号或标识符,第二列为所述第1个CDM组和所述第2个CDM组中不承载数据的CDM组的个数,第三列为所述终端被调度的DMRS端口的索引。例如,表6-1中指示信息为“0”时,表示第1个CDM组不承载数据,且DMRS端口0被调度了。又例如,表6-1中指示信息为“7”时,表示第1个和第2个CDM组都不承载数据,且DMRS端口0和1被调度了。可以理解的是,当所述终端被调度了1个DMRS端口时,相应的干扰DMRS端口最大个数为3,此时第一指示信息可以如上表5-3或表5-6所示;而当所述终端被调度了2个DMRS端口时,相应的干扰DMRS端口最大个数为2,此时第一指示信息可以如上表5-2或表5-5所示。
应理解,所述终端会根据第四指示信息指示内容的不同而对第一指示信息有不同的理解,也就是说,所述终端可以根据第一指示信息和第四指示信息共同确定第一指示信息的具体含义;或者也可以理解为,所述终端可以根据第四指示信息确定第一指示信息对应的表格,再根据所述确定的表格确定第一指示信息的具体含义;或者也可以理解为,所述终端可以根据第四指示信息确定第一指示信息与干扰信号来源的对应关系,再根据所述对应关系确定第一指示信息的具体含义。例如,以所有可用的DMRS端口的个数等于4为例,若表6-1中指示信息为“0”、“1”、“3”、“4”、“5”或“6”中的任意一个,则可以确定上述第一指示信息指示的内容是在上述表5-3或表5-6中;若表6-1中指示信息为“2”、“7”、“8”或“11”中的任意一个,则可以确定上述第一指示信息指示的内容是在上述表5-2或表5-5中;若表6-1中指示信息为“9”,则可以确定上述第一指示信息指示的内容是在上述表5-1或表5-4中。
表6-1
Figure PCTCN2019082168-appb-000012
Figure PCTCN2019082168-appb-000013
表6-1中指示信息为“12”-“15”的4项是预留或冗余的。可选的,可以利用该冗余状态指示干扰DMRS端口的相关信息,这样能够使终端可以根据上述第一指示信息和所述第四指示信息联合确定干扰DMRS端口的相关信息,从而减小第一指示信息所需的开销。
以第四指示信息如表6-2为例。例如,表6-2中指示信息为“3”,表示第1个和第2个CDM组不承载数据,且DMRS端口0被调度了,同时DMRS端口1上无干扰。又例如,表6-2中指示信息为“12”时,表示第1和第2个CDM组上都不承载数据,且DMRS端口0被调度了,但DMRS端口1上有干扰;可选的,还可以进一步确定DMRS端口1上的干扰为本小区干扰。此时,上述第一指示信息就不再需要指示DMRS端口1(例如表5-3或表5-6中的第1个DMRS端口)对应的干扰类型了,从而减少了第一指示信息的指示开销(可以理解为减少了表5-3或表5-6的行数或有效行数)。
表6-2
Figure PCTCN2019082168-appb-000014
Figure PCTCN2019082168-appb-000015
表6-3给出了第四指示信息的另一种举例,其中,以所有可用的DMRS端口为DMRS端口0、1、2、3、4和5共6个端口为例,且DMRS端口0和1属于第1个CDM组,DMRS端口2和3属于第2个CDM组,DMRS端口4和5属于第3个CDM组。例如,表6-3中指示信息为“11”,表示第1个、第2个和第3个DMRS CDM组不承载数据,且DMRS端口0被调度了,且DMRS端口1上无干扰。又例如,表6-3中指示信息为“24”时,表示第1个、第2个和第3个CDM组不承载数据,且DMRS端口0被调度了,DMRS端口1上有干扰;可选的,还可以进一步确定DMRS端口1上的干扰为本小区干扰。
表6-3
Figure PCTCN2019082168-appb-000016
Figure PCTCN2019082168-appb-000017
在上述联合指示的另一种可能的实施方式中,表1-表4中的所述干扰类型与{干扰DMRS资源参数和干扰数据信号的调制方式}在第一指示信息中联合指示。
表7-1示意了一种表1-表4中的所述干扰类型与{干扰DMRS端口参数和干扰数据信号的调制方式}在第一指示信息中联合指示的示例,其中y0和y1的含义可参考前述相关部分表述,例如对表3的描述。DMRS端口可以图6所示意的为例,此处不再赘述。表7-1中的干扰数据信号调制阶数即为干扰数据信号的调制方式,其中“2”表示正交相移键控(Quadrature Phase Shift Keying,QPSK),“4”表示16正交振幅调制(Quadrature Amplitude Modulation,QAM),“6”表示64QAM,“8”表示256QAM。示例性地,所述表7-1中的第一指示信息指示的调制方式的候选集合可以是{2,4,6,8},或者{2,4,6},或者{2,4,6或8},也可以是{2,4或6或8}。优选的,当所述第一指示信息指示的干扰DMRS端口数量较少时,第一指示信息指示的调制方式的候选集合可以包括较多的状态,如{2,4,6,8}共4个状态;当所述第一指示信息指示的干扰DMRS端口数较 多时,第一指示信息指示的调制方式的候选集合可以包括较少的状态,如{2,4,6或8}共3个状态,或者{2,4或6或8}共2个状态;又或者,当指示的干扰端口数较多时,第一指示信息还可以不指示调制方式。这样可以在保证通信设备进行干扰删除性能的前提下,降低第一指示信息所需的开销。例如,当第一指示信息指示的干扰DMRS端口的个数为1时,第一指示信息还指示干扰数据信号的调制方式,而当第一指示信息指示的干扰DMRS端口个数大于1时,所述第一指示信息则不指示干扰数据信号的调制方式。又例如,当第一指示信息指示的干扰DMRS端口的个数小于或等于2时,第一指示信息还指示干扰数据信号的调制方式,而当第一指示信息指示的干扰DMRS端口个数大于2时,所述第一指示信息则不指示干扰数据信号的调制方式。
需要说明的是,上述第一指示信息指示的调制方式的候选集合中存在的例如“6或8”,指示的是其对应的干扰数据信号采用“64QAM或256QAM”调制,接收端根据该信息可以采用64QAM和256QAM盲检所述干扰数据信号。这样设计可以减少第一指示信息的信令开销,即不必为64QAM和256QAM分配两条单独的指示状态,从而减少第一指示信息的条目数量或比特数量。优选地,对高阶调制方式采用上述联合指示,对低阶调制方式采用独立指示,即对于低阶调制方式QPSK和16QAM均采用单独的指示,而对于高阶调制方式64QAM和256QAM采用上述联合的指示。这样设计主要考虑对于低阶调制方式的干扰数据信号,接收端更容易删除或抑制,因此可以指示的更精细,保证性能增益的获得;而对于高阶调制方式的干扰数据信号,接收端由于复杂度或功耗的原因,即使指示的精确,也不容易删除或抑制,因此可以指示的更粗略,降低指示的开销。
以表7-1为例,给出了以干扰DMRS端口最大个数等于1为例,所述第一指示信息一种可能的举例。例如,表7-1中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口、干扰数据信号采用QPSK调制,且y0表示干扰DMRS与本小区相关(例如,干扰DMRS序列加扰参数与本小区ID相关)。再例如,表7-1中指示信息为“6”时,指示干扰DMRS占用第1个DMRS端口、干扰数据信号采用64QAM或256QAM调制,且y1表示干扰DMRS与邻小区或邻小区组相关(例如,干扰DMRS序列加扰参数与邻小区ID相关)。
表7-1
指示信息 干扰DMRS端口参数 干扰数据信号调制阶数 干扰类型
0 \ \
1 第1个DMRS端口 2 y0
2 第1个DMRS端口 4 y0
3 第1个DMRS端口 6或8 y0
4 第1个DMRS端口 2 y1
5 第1个DMRS端口 4 y1
6 第1个DMRS端口 6或8 y1
当干扰DMRS端口最大个数为2时,所述第一指示信息可以如表7-2、表7-3或表7-4所示。例如,表7-2中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口、干扰数据信号采用QPSK调制,且y0表示干扰DMRS与本小区相关(例如,干扰DMRS序列加扰参数与本小区ID相关)。再例如,表7-2中指示信息为“14”时,指示 第一干扰DMRS占用第1个DMRS端口、第一干扰数据信号采用QPSK调制,y0表示第一干扰DMRS与本小区相关(例如,第一干扰DMRS序列加扰参数与本小区ID相关);且指示第二干扰DMRS占用第2个DMRS端口、第二干扰数据信号采用16QAM调制,y0表示第二干扰DMRS与本小区相关(例如,第二干扰DMRS序列加扰参数与本小区ID相关)。又例如,表7-2中指示信息为“18”时,指示第一干扰DMRS占用第1个DMRS端口、第一干扰数据信号采用16QAM调制,y0表示第一干扰DMRS与本小区相关(例如,第一干扰DMRS序列加扰参数与本小区ID相关);且指示第二干扰DMRS占用第2个DMRS端口、第二干扰数据信号采用64QAM或256QAM调制,y0表示第二干扰DMRS与本小区相关(例如,第二干扰DMRS序列加扰参数与本小区ID相关)。
表7-2
Figure PCTCN2019082168-appb-000018
Figure PCTCN2019082168-appb-000019
表7-3
Figure PCTCN2019082168-appb-000020
Figure PCTCN2019082168-appb-000021
表7-4
Figure PCTCN2019082168-appb-000022
Figure PCTCN2019082168-appb-000023
表7-1~表7-4所示的指示信息与干扰信号的来源、干扰数据信号的调制阶数、以及干扰DMRS端口的对应关系也可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。以表7-1为例,配置所述第一指示信息与干扰信号的来源、干扰数据信号的调制阶数、以及干扰DMRS端口的对应关系也可以理解为配置表7-1中的指示信息与干扰类型(也可以理解为干扰信号的来源)、干扰数据信号的调制阶数、以及干扰DMRS端口参数的对应关系;例如,在一种可能的实施方式中,所述对应关系为:指示信息“1”对应本小区干扰(即指示信息“1”对应干扰信号的来源为本小区)、干扰数据信号调制阶数为2、以及第一个DMRS端口;指示信息“2”对应邻小区干扰或邻小区组干扰(即指示信息“2”对应干扰信号的来源为邻小区或邻小区组)、干扰数据信号调制阶数为4、以及第一个DMRS端口。
可以理解的是,表1-表4中所述干扰类型与干扰DMRS CDM组、和上述干扰数据信号的调制方式在第一指示信息中联合指示的示例可基于上述表7-1~表7-4描述的实施方式调整后得到。例如,将表7-1~表7-4第二列的标题替换为“干扰DMRS CDM组”,将表7-1~表7-4第二列中的“DMRS端口”替换为“DMRS CDM组”。详细实施方式的表格在此不再赘述。
通过上述几种示例的联合指示方法,可以在需要同时指示干扰DMRS序列加扰参数、干扰DMRS资源参数和干扰数据信号的调制方式时降低指示信息的开销。
本申请前述实施例举例的各表格仅是以举例的方式给出了几种本申请中第一指示信息可能的具体指示内容,可以理解的是,本申请并不排除其他的具体指示内容,只要指示的实质内容与本申请实施例一致,均属于本申请的保护范围。
可选地,图4和图5描述的本申请实施例中,所述终端需要获得所述邻小区ID或邻小区组ID,再通过所述邻小区ID或邻小区组ID确定所述干扰DMRS序列加扰参数。
所述终端获得所述邻小区ID或邻小区组ID的一种可能的实施方式中,所述终端接收网络设备发送的第二指示信息,所述第二指示信息可以是网络设备发送的系统信息,所述系统消息包含所述邻小区ID或邻小区组ID。所述终端根据所述网络设备发送的系统信息确定所述邻小区ID或邻小区组ID。
所述终端获得所述邻小区ID或邻小区组ID的另一种可能的实施方式中,所述终端接收其他终端发送的第二指示信息,所述第二指示信息包含所述邻小区ID或邻小区组ID,其中所述邻小区或邻小区组为所述其他终端的服务小区或服务小区组。所述终端根据 所述其他终端发送的第二指示信息确定所述邻小区ID或邻小区组ID。
所述终端获得所述邻小区ID或邻小区组ID的另一种可能的实施方式中,所述终端接收同步信号,并根据所述同步信号与邻小区或邻小区组的对应关系确定所述邻小区ID或邻小区组ID。例如,以两个邻小区{邻小区1,邻小区2}为例,其ID分别为{邻小区ID1,邻小区ID2},邻小区1和邻小区2对应的同步信号分别为{同步信号1,同步信号2}。若所述终端检测到同步信号1,则可以确定邻小区ID为邻小区ID1;若所述终端检测到同步信号2,则可以确定邻小区ID为邻小区ID2。进一步地,所述同步信号与邻小区或邻小区组的对应关系可以是预定义的,也可以是由网络设备发送给所述终端的第三指示信息配置的。
所述终端获得所述邻小区ID或邻小区组ID的另一种可能的实施方式中,所述终端接收同步信号块,并根据所述同步信号块与邻小区或邻小区组的对应关系确定所述邻小区ID或邻小区组ID。例如,以两个邻小区{邻小区1,邻小区2}为例,其ID分别为{邻小区ID1,邻小区ID2},邻小区1和邻小区2对应的同步信号块分别为{同步信号块1,同步信号块2}。若所述终端检测到同步信号块1,则可以确定邻小区ID为邻小区ID1;若所述终端检测到同步信号块2,则可以确定邻小区ID为邻小区ID2。进一步地,所述同步信号块与邻小区或邻小区组的对应关系可以是预定义的,也可以是由网络设备发送给所述终端的第三指示信息配置的。
所述终端获得所述邻小区ID或邻小区组ID的另一种可能的实施方式中,所述终端接收信道状态信息参考信号CSI-RS,并根据所述CSI-RS与邻小区或邻小区组的对应关系确定所述邻小区ID或邻小区组ID。例如,以两个邻小区{邻小区1,邻小区2}为例,其ID分别为{邻小区ID1,邻小区ID2},邻小区1和邻小区2对应的CSI-RS分别为{CSI-RS1,CSI-RS2}。若所述终端检测到CSI-RS1,则可以确定邻小区ID为邻小区ID1;若所述终端检测到CSI-RS2,则可以确定邻小区ID为邻小区ID2。进一步地,所述CSI-RS与邻小区或邻小区组的对应关系可以是预定义的,也可以是由网络设备发送给所述终端的第三指示信息配置的。
可以理解的是,上述检测到同步信号、同步信号块或CSI-RS可以理解为检测到的信号强度大于或不小于阈值,所述阈值可以是预定义或配置的。
通过上述210部分可能的实施方式,接收端可以获得准确的干扰DMRS序列加扰参数或干扰类型,解决了本小区干扰和邻小区干扰共存的场景下接收端无法确定干扰DMRS序列加扰参数从而导致的无法采用先进接收机进行干扰删除或干扰抑制的问题。
在220部分中,所述通信设备根据所述第一指示信息确定干扰DMRS序列加扰参数和干扰数据信号与干扰DMRS的功率比值,即所述通信设备根据所述第一指示信息除了可以确定干扰DMRS序列加扰参数,还可以确定干扰数据信号与干扰DMRS的功率比值。其中所述通信设备根据所述第一指示信息确定干扰DMRS序列加扰参数的方法可参见上述对210部分的描述,此处不再赘述。这里仅描述所述通信设备根据所述第一指示信息确定干扰数据信号与干扰DMRS的功率比值的具体实施方式。
在220部分一种可能的实施方式中,所述干扰数据信号与干扰DMRS的功率比值为4.77dB或3dB,所述通信设备根据所述第一指示信息确定所述干扰数据信号与干扰DMRS的功率比值是4.77dB还是3dB。表8给出了第一指示信息的另一种举例。如表8所示,指示信息为“0”时,指示所述干扰数据信号与干扰DMRS的功率比值为4.77dB;指 示信息为“1”时,指示所述干扰数据信号与干扰DMRS的功率比值为3dB。
表8
指示信息 干扰数据信号与干扰DMRS的功率比值
0 4.77dB
1 3dB
在220部分另一种可能的实施方式中,所述干扰数据信号与干扰DMRS的功率比值为0dB或3dB,所述通信设备根据所述第一指示信息确定所述干扰数据信号与干扰DMRS的功率比值是0dB还是3dB。表9给出了第一指示信息的又一种举例。如表9所示,指示信息为“0”时,指示所述干扰数据信号与干扰DMRS的功率比值为0dB;指示信息为“1”时,指示所述干扰数据信号与干扰DMRS的功率比值为3dB。
表9
指示信息 干扰数据信号与干扰DMRS的功率比值
0 0dB
1 3dB
在220部分又一种可能的实施方式中,所述干扰数据信号与干扰DMRS的功率比值为0dB、3dB或4.77dB,所述通信设备根据所述第一指示信息确定所述干扰数据信号与干扰DMRS的功率比值是0dB、3dB还是4.77dB。表9给出了第一指示信息的又一种举例。如表10所示,指示信息为“0”时,指示所述干扰数据信号与干扰DMRS的功率比值为0dB;指示信息为“1”时,指示所述干扰数据信号与干扰DMRS的功率比值为3dB;指示信息为“2”时,指示所述干扰数据信号与干扰DMRS的功率比值为4.77dB。
表10
指示信息 干扰数据信号与干扰DMRS的功率比值
0 0dB
1 3dB
2 4.77dB
表8~表10所示的指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值的对应关系可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。以表8为例,配置所述第一指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值的对应关系也可以理解为配置表8中的指示信息与干扰数据信号与干扰DMRS的功率比值的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“0”对应所述干扰数据信号与干扰DMRS的功率比值为4.77dB;指示信息“1”对应所述干扰数据信号与干扰DMRS的功率比值为3dB。
可以理解的是,上述表8~表10仅是以举例的方式给出了本申请中第一指示信息可能指示的干扰数据信号与干扰DMRS的功率比值的三种形式。本申请并不排除其他的指示形式,例如:将上述功率比值与其他属性一起进行联合指示,或者预定义上述功率比值与其他属性之间的对应关系,以使得在指示其他属性时即可隐式获得上述功率比值。
上述功率比值与其他属性一起进行联合指示的一种可能的实施方式中,第一指示信息联合指示干扰DMRS端口参数和上述功率比值。表11给出了第一指示信息的又一种举例。例如,表11中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口,且干扰数据信号与所述干扰DMRS的功率比值为0dB。再例如,表11中指示信息为“2”时,指示 干扰DMRS占用第2个DMRS端口,且干扰数据信号与所述干扰DMRS的功率比值为3dB。
表11
Figure PCTCN2019082168-appb-000024
表11所示的指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、以及干扰DMRS端口的对应关系也可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。例如,配置所述第一指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、以及干扰DMRS端口的对应关系也可以理解为配置表11中的指示信息与干扰数据信号与干扰DMRS的功率比值、以及干扰DMRS端口的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“1”对应所述干扰数据信号与干扰DMRS的功率比值为0dB、以及第一个DMRS端口;指示信息“2”对应所述干扰数据信号与干扰DMRS的功率比值为3dB、以及第二个DMRS端口;指示信息“0”对应无干扰、以及无干扰DMRS端口。
上述功率比值与其他属性一起进行联合指示的另一种可能的实施方式中,第一指示信息联合指示干扰DMRS CDM组和上述功率比值。例如,所述第一指示信息指示的内容可以如表12-1或表12-2所示。例如,表12-2中指示信息为“1”时,指示干扰DMRS占用第1个DMRS CDM组,且干扰数据信号与所述干扰DMRS的功率比值为0dB。再例如,表12-2中指示信息为“4”时,指示第一干扰DMRS占用第1个DMRS CDM组,第一干扰数据信号与所述第一干扰DMRS的功率比值为4.77dB;且指示第二干扰DMRS占用第2个DMRS CDM组,第二干扰数据信号与所述第二干扰DMRS的功率比值为3dB。
表12-1
Figure PCTCN2019082168-appb-000025
表12-2
Figure PCTCN2019082168-appb-000026
表12-1和表12-2所示的指示信息与干扰信号的数据与干扰信号的DMRS的功率比值、以及干扰DMRS CDM组的对应关系可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。以表12-1为例,配置所述第一指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、以及干扰DMRS CDM组的对应关系也可以理解为配置表12-1中的指示信息与干扰数据信号与干扰DMRS的功率比值、以及干扰DMRS CDM组的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“1”对应所述干扰数据信号与干扰DMRS的功率比值为3dB、以及第一个DMRS CDM组;指示信息“2”对应所述干扰数据信号与干扰DMRS的功率比值为4.77dB、以及第二个DMRS CDM组;指示信息“0”对应无干扰、以及无干扰DMRS端口。
上述功率比值与其他属性一起进行联合指示的另一种可能的实施方式中,第一指示信息联合指示干扰DMRS端口参数、上述功率比值和表1-表4中的所述干扰类型。示例性的,所述第一指示信息指示的内容可以如表13所示,其中y0和y1的描述可参考对表3的描述。例如,表13中指示信息为“1”时,指示干扰DMRS占用第1个DMRS端口,干扰数据信号与所述干扰DMRS的功率比值为0dB,且y0表示干扰DMRS与本小区相关(例如,干扰DMRS序列加扰参数与本小区ID相关)。再例如,表13中指示信息为“3”时,指示干扰DMRS占用第2个DMRS端口,干扰数据信号与所述干扰DMRS的功率比值为3dB,且y1表示干扰DMRS与邻小区或邻小区组相关(例如,干扰DMRS序列加扰参数与邻小区ID或邻小区组ID相关)。
表13
Figure PCTCN2019082168-appb-000027
表13所示的指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、干扰信号的来源以及干扰DMRS端口的对应关系可以被配置。例如,所述对应关系可以是预定义的、存储的、预先协商的、预配置的或固化的,也可以是由网络设备为终端配置的。例如,配置所述第一指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、干扰信号的来源以及干扰DMRS端口的对应关系也可以理解为配置表13中的指示信息与干扰数据信号与干扰DMRS的功率比值、干扰类型以及干扰DMRS端口的对应关系;在一种可能的实施方式中,所述对应关系为:指示信息“1”对应本小区干扰、所述干扰数据信号与干扰DMRS的功率比值为0dB、以及第一个DMRS端口;指示信息“2”对应邻小区干扰或邻小区组干扰、所述干扰数据信号与干扰DMRS的功率比值为3dB、以及第二个DMRS端口;指示信息“0”对应无干扰、以及无干扰DMRS端口。
上述功率比值与其他属性一起进行联合指示的又一种可能的实施方式中,第一指示信息联合指示干扰DMRS端口参数、干扰数据信号的调制方式、上述功率比值和表1-表4中的所述干扰类型。示例性的,所述第一指示信息指示的内容可以如表14所示,其中y0和y1的描述可参考对表3的描述。例如,表14中指示信息为“1”时,指示干扰DMRS 占用第1个DMRS端口,干扰数据信号采用QPSK调制,干扰数据信号与所述干扰DMRS的功率比值为0dB,且y0表示干扰DMRS与本小区相关(例如,干扰DMRS序列加扰参数与本小区ID相关)。再例如,表14中指示信息为“3”时,指示干扰DMRS占用第1个DMRS端口,干扰数据信号采用64QAM或256QAM调制,干扰数据信号与所述干扰DMRS的功率比值为0dB,且y0表示干扰DMRS与本小区相关(例如,干扰DMRS序列加扰参数与本小区ID相关)。
表14
Figure PCTCN2019082168-appb-000028
表14中指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、干扰信号的来源、干扰数据信号的调制阶数、以及干扰DMRS端口的对应关系可以被配置。例如通过预定义的、存储的、预先协商的、预配置的或固化所述对应关系,也可以是由网络设备为终端配置所述对应关系。例如,配置所述第一指示信息与所述干扰信号的数据与所述干扰信号的DMRS的功率比值、干扰信号的来源、干扰数据信号的调制阶数、以及干扰DMRS端口的对应关系也可以理解为配置表14中的指示信息与干扰数据信号与干扰DMRS的功率比值、干扰类型、干扰数据信号调制阶数、以及干扰DMRS端口的对应关系;在一种可能的实施方式中,所述对应关系为:例如在表14中,指示信息“1”对应本小区干扰、所述干扰数据信号与干扰DMRS的功率比值为0dB、干扰数据信号的调制阶数为2、以及第一个DMRS端口;指示信息“4”对应邻小区干扰或邻小区组干扰、所述干扰数据信号与干扰DMRS的功率比值为0dB、干扰数据信号的调制阶数为2、以及第二个DMRS端口。
通过上述220部分可能的实施方式,接收端可以获得准确的干扰DMRS序列加扰参数或干扰类型,以及干扰数据信号与干扰DMRS的功率比值,解决了本小区干扰和邻小区干扰共存以及干扰数据信号与干扰DMRS功率差异可变的场景下,接收端无法确定干扰DMRS序列加扰参数以及干扰数据信号与干扰DMRS的功率比值,从而导致的无法采用先进接收机进行干扰删除或干扰抑制的问题。
在230部分中,所述通信设备根据所述第一指示信息可以在不确定干扰DMRS序列加扰参数的情况下确定干扰数据信号与干扰DMRS的功率比值,其具体的实施方法可参考220部分的描述,此处不再赘述。
通过上述230部分可能的实施方式,接收端可以获得准确的干扰数据信号与干扰DMRS的功率比值,解决了干扰数据信号与干扰DMRS功率差异可变场景下接收端无法确定干扰数据信号与干扰DMRS的功率比值从而导致的无法采用先进接收机进行干扰删除或干扰抑制的问题。
可以理解的是,本申请列举的示例性表格目的是为了示意表格中的指示信息与表格中的干扰类型、干扰信号的DMRS的端口、干扰信号的DMRS的码分复用CDM组、干扰信号的数据的调制方式、或干扰信号的数据与干扰信号的DMRS的功率比值的对应关系。本申请并不限定表格中的干扰类型、干扰信号的DMRS的端口、干扰信号的DMRS的码分复用CDM组、干扰信号的数据的调制方式,、或干扰信号的数据与干扰信号的DMRS的功率比值的具体取值。本申请并不限定示例性表格中的条目数量(例如行数,或列数,或有效行数,或有效列数;其中本申请中的有效行数可以理解为排除预留行之后的行数,有效列数可以理解为排除预留列之后的列数),也不限定表格中上述干扰类型、干扰信号的DMRS的端口、干扰信号的DMRS的码分复用CDM组、干扰信号的数据的调制方式,、或干扰信号的数据与干扰信号的DMRS的功率比值的具体名称。所有符合上述对应关系的表现形式,都应属于本申请的保护范畴。
可以理解的是,本申请上述的实施例并不限制干扰DMRS端口最大个数或DMRS CDM组的具体数量,例如,所述干扰DMRS端口最大个数除了上述实施例中描述的1、2和3以外,还可以为其他非负整数(例如0、4、7等)。本申请上述的实施例也不限制第一指示信息中指示内容的详细名称,只要指示的实质内容与本申请实施例一致,都属于本申请的保护范围。
上述各表所示的对应关系可以被配置,各表中的指示信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置指示信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,上述表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信设备可理解的其他名称,其参数的取值或表示方式也可以通信设备可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
可以理解的是,上述各个方法实施例中由通信设备实现的方法,也可以由可用于通信设备的部件(例如,集成电路,芯片等等)实现。
相应于上述方法实施例给出的无线通信方法,本申请实施例还提供了相应的通信装置(有时也称为通信设备),所述通信装置包括用于执行上述实施例中每个部分相应 的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图7给出了一种通信装置的结构示意图。所述通信装置700可以是图1C中的网络设备10或20,也可以是图1C中的终端11、12、21或22。通信装置可用于实现上述方法实施例中描述的对应于通信设备的方法,具体可以参见上述方法实施例中的说明。
所述通信装置700可以包括一个或多个处理器701,所述处理器701也可以称为处理单元,可以实现一定的控制功能。所述处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器701也可以存有指令和/或数据703,所述指令和/或数据703可以被所述处理器运行,使得所述通信装置700执行上述方法实施例中描述的对应于通信设备的方法。
在一个中可选的设计中,处理器701中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的电路或接口可以是分开的,也可以集成在一起。
在又一种可能的设计中,通信装置700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置700中可以包括一个或多个存储器702,其上可以存有指令704,所述指令可在所述处理器上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的各种对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述通信装置700还可以包括收发器705和/或天线706。所述处理器701可以称为处理单元,对通信装置(终端或者网络设备)进行控制。所述收发器705可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一种可能的设计中,一种通信装置700(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器701和收发器705。由收发器705接收第一指示信息;由处理器701根据所述第一指示信息确定干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、 双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图8提供了一种终端的结构示意图。该终端可适用于图1C所示出的系统中。为了便于说明,图8仅示出了终端的主要部件。如图8所示,终端800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端800的收发单元811,将具有处理功能的处理器视为终端800的处理单元812。如图8所示,终端800 包括收发单元811和处理单元812。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元811中用于实现接收功能的器件视为接收单元,将收发单元811中用于实现发送功能的器件视为发送单元,即收发单元811包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图9所示,本申请又一实施例提供了一种通信装置(通信设备)900。该通信装置可以是终端(例如图1A,1B,1C所示系统中的终端),也可以是终端的部件(例如,集成电路,芯片等等)。该通信装置还可以是网络设备(例如,该通信装置是可以应用到图1A,1B,1C,1D系统的基站设备),也可以是网络设备的部件(例如,集成电路,芯片等等)。该通信装置也可以是其他通信模块,用于实现本申请方法实施例中对应于通信设备的操作。该通信装置900可以包括:处理模块902(处理单元)。可选的,还可以包括收发模块901(收发单元)和存储模块903(存储单元)。
在一种可能的设计中,如图9中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置具备实现本申请实施例描述的终端的功能,比如,所述通信装置包括所述终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
或者所述通信装置具备实现本申请实施例描述的网络设备的功能,比如,所述通信装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的通信装置900中各个模块可以用于执行本申请实施例描述的方法。
在一种可能的实施方式中,收发模块901接收第一指示信息;处理模块902根据所述第一指示信息确定干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
可选地,所述处理模块902确定所述干扰信号的DMRS序列的加扰参数与服务小区标识符ID相关。
可选地,所述处理模块902确定所述干扰信号的DMRS序列的加扰参数与非服务小区ID或者非服务小区组ID相关。
可选地,所述处理模块902根据所述第一指示信息确定以下信息的一项或多项:所述干扰信号的DMRS的端口,所述干扰信号的DMRS的码分复用CDM组,所述干扰信号的数据的调制方式,或所述干扰信号的数据与所述干扰信号的DMRS的功率比值。
可选地,所述收发模块901接收第二指示信息,所述处理模块902根据所述第二指示信息确定所述非服务小区ID或非服务小区组ID。
可选地,所述收发模块901接收测量信号,所述处理模块902根据所述测量信号确定所述非服务小区ID或非服务小区组ID,所述测量信号为同步信号、同步信号块或信道状态信息参考信号CSI-RS。
可选地,所述收发模块901接收第三指示信息,所述处理模块902根据所述第三指示信息确定所述测量信号与所述非服务小区ID或所述非服务小区组ID对应。
可选地,所述干扰信号的数据与所述干扰信号的DMRS的功率比值为{0dB,3dB,4.77dB}中的任意一个。
可选地,所述干扰信号的数据的调制方式为{正交相移键控(QPSK),16正交振幅调制(QAM),64QAM,256QAM}中的任意一个。
可选地,所述第一指示信息由下行控制信息、上行控制信息、边链路控制信息、或网络控制信息承载。
可选地,所述处理模块902配置所述第一指示信息与干扰信号的来源的对应关系;所述处理模块902根据所述第一指示信息与所述干扰信号的来源的对应关系确定所述干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
可选地,所述处理模块902根据第四指示信息确定第一指示信息与干扰信号来源的对应关系;所述处理模块902根据所述第一指示信息与所述干扰信号的来源的对应关系确定所述干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
可选地,所述干扰信号的来源为下述的任意一项:服务小区;非服务小区;非服务小区组;服务小区和非服务小区;服务小区和非服务小区组。
可选地,所述处理模块902配置所述第一指示信息与所述干扰信号的数据与干扰信号的DMRS的功率比值的对应关系;所述处理模块902根据所述第一指示信息与所述干扰信号的数据与干扰信号的DMRS的功率比值的对应关系确定所述干扰信号的数据与干扰信号的DMRS的功率比值。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号 处理器核,或任何其它类似的配置来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储器也可以设置于终端中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据包中心等数据包存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。上面的组合也应当包括在计算机可读介质的保护范围之内。
本说明书中各个实施例之间相同或相似的部分可以互相参考。以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (19)

  1. 一种用于无线通信的方法,包括:
    接收第一指示信息;
    根据所述第一指示信息确定干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息确定所述干扰信号的DMRS与服务小区相关,包括:确定所述干扰信号的DMRS序列的加扰参数与服务小区标识符ID相关。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一指示信息确定所述干扰信号的DMRS与非服务小区或非服务小区组相关,包括:确定所述干扰信号的DMRS序列的加扰参数与非服务小区ID或者非服务小区组ID相关。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一指示信息确定以下信息的一项或多项:所述干扰信号的DMRS的端口,所述干扰信号的DMRS的码分复用CDM组,所述干扰信号的数据的调制方式,或所述干扰信号的数据与所述干扰信号的DMRS的功率比值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,根据所述第二指示信息确定所述非服务小区ID或非服务小区组ID。
  6. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    接收测量信号,根据所述测量信号确定所述非服务小区ID或非服务小区组ID,所述测量信号为同步信号、同步信号块或信道状态信息参考信号CSI-RS。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,根据所述第三指示信息确定所述测量信号与所述非服务小区ID或所述非服务小区组ID的对应关系。
  8. 根据权利要求4-7任意一项所述的方法,其特征在于,所述方法还包括:所述干扰信号的数据与所述干扰信号的DMRS的功率比值为{0dB,3dB,4.77dB}中的任意一个。
  9. 根据权利要求4-8任意一项所述的方法,其特征在于,所述方法还包括:所述干扰信号的数据的调制方式为{正交相移键控(QPSK),16正交振幅调制(QAM),64QAM,256QAM}中的任意一个。
  10. 根据权利要求1-9所述的任一方法,其特征在于,所述方法还包括:所述第一指示信息包含在下行控制信息DCI、上行控制信息UCI、边链路控制信息SCI、或网络控制信息NCI中。
  11. 根据权利要求1-10所述的任一方法,其特征在于,所述方法还包括:
    配置所述第一指示信息与干扰信号的来源的对应关系;
    根据所述第一指示信息与所述干扰信号的来源的对应关系确定所述干扰信号的解调参考信号DMRS与服务小区相关,和/或所述干扰信号的解调参考信号DMRS与非服务小区或非服务小区组相关。
  12. 一种用于无线通信的方法,包括:
    配置第一指示信息与干扰信号的来源的对应关系;
    发送所述第一指示信息,所述第一指示信息用于指示干扰信号的来源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述干扰信号的来源为下述的一项或多项:
    服务小区、非服务小区、非服务小区组、服务小区和非服务小区、服务小区和非服务小区组、网络、终端、服务小区网络、服务小区终端、非服务小区网络、非服务小区终端。
  14. 根据权利要求12或13所述的方法,其特征在于,所述配置第一指示信息与干扰信号的来源的对应关系,包括:
    配置第一指示信息与干扰信号的来源、以及干扰信号的以下一项或多项参数之间的对应关系:
    解调参考信号DMRS的端口,DMRS的码分复用CDM组,调制方式,或所述干扰信号的数据与所述干扰信号的DMRS的功率比值。
  15. 如权利要求12-14任一项所述的方法,其特征在于,所述第一指示信息用以指示所述干扰信号来源,以及干扰信号的以下一项或多项参数:解调参考信号DMRS的端口,DMRS的码分复用CDM组,调制方式,或所述干扰信号的数据与所述干扰信号的DMRS的功率比值。
  16. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-11任一项所述的方法、或者如权利要求12至15任一项所述的方法。
  17. 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以执行权利要求1-11任一项所述的方法,或者如权利要求12至15任一项所述的方法。
  18. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-11任一项所述的方法、或者如权利要求12至15任一项所述的方法。
  19. 一种通信系统,包括:用于执行如权利要求1至11任一项所述方法的通信装置,以及用于执行如权利要求12至15任一项所述方法的通信装置。
PCT/CN2019/082168 2018-05-28 2019-04-11 用于通信系统中干扰指示的方法及装置 WO2019228076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810525022.8 2018-05-28
CN201810525022.8A CN110545164B (zh) 2018-05-28 2018-05-28 用于通信系统中干扰指示的方法及装置

Publications (1)

Publication Number Publication Date
WO2019228076A1 true WO2019228076A1 (zh) 2019-12-05

Family

ID=68696619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082168 WO2019228076A1 (zh) 2018-05-28 2019-04-11 用于通信系统中干扰指示的方法及装置

Country Status (2)

Country Link
CN (1) CN110545164B (zh)
WO (1) WO2019228076A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208068A1 (en) 2020-04-17 2021-10-21 Qualcomm Incorporated Coordinated sidelink resource allocation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374985B (zh) * 2020-10-14 2023-09-19 Oppo广东移动通信有限公司 超带宽信号的接收信号强度修正方法与装置、电子设备
WO2022099611A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 一种通信方法及装置
CN118283682A (zh) * 2022-12-30 2024-07-02 华为技术有限公司 测量方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249134A (zh) * 2012-02-13 2013-08-14 中兴通讯股份有限公司 小区间上行干扰的协调方法及系统
WO2014121432A1 (zh) * 2013-02-05 2014-08-14 华为技术有限公司 信号接收方法、发送方法及设备
CN105308889A (zh) * 2013-06-19 2016-02-03 Lg电子株式会社 在无线通信系统中干扰消除的方法及其设备
CN107018571A (zh) * 2017-06-07 2017-08-04 广东工业大学 一种部分频率复用的小区间干扰抑制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036301B (zh) * 2009-09-29 2015-05-20 中兴通讯股份有限公司 中继链路下行解调参考信号的传输方法、装置及中继系统
US10348432B2 (en) * 2013-06-11 2019-07-09 Texas Instruments Incorporated Network signaling for network-assisted interference cancellation and suppression
CN105025519B (zh) * 2014-04-30 2019-06-14 电信科学技术研究院 干扰信号测量方法及相关设备
WO2016187890A1 (en) * 2015-05-28 2016-12-01 Qualcomm Incorporated Methods and apparatus for performing jointly synchronized single-cell point to multipoint (sc-ptm) transmissions
CN106664695B (zh) * 2015-07-22 2019-12-06 华为技术有限公司 一种配置下行解调参考信号dmrs端口的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249134A (zh) * 2012-02-13 2013-08-14 中兴通讯股份有限公司 小区间上行干扰的协调方法及系统
WO2014121432A1 (zh) * 2013-02-05 2014-08-14 华为技术有限公司 信号接收方法、发送方法及设备
CN105308889A (zh) * 2013-06-19 2016-02-03 Lg电子株式会社 在无线通信系统中干扰消除的方法及其设备
CN107018571A (zh) * 2017-06-07 2017-08-04 广东工业大学 一种部分频率复用的小区间干扰抑制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208068A1 (en) 2020-04-17 2021-10-21 Qualcomm Incorporated Coordinated sidelink resource allocation
EP4136932A4 (en) * 2020-04-17 2024-01-03 Qualcomm Incorporated COORDINATED SIDELINK RESOURCE ALLOCATION

Also Published As

Publication number Publication date
CN110545164A (zh) 2019-12-06
CN110545164B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
EP3706353B1 (en) Carrier switching method, device and system for multi-carrier communication
US10681635B2 (en) Wireless communication device and wireless communication method
WO2019228076A1 (zh) 用于通信系统中干扰指示的方法及装置
WO2018082670A1 (zh) 通信方法、装置、网络设备及终端
WO2017050153A1 (zh) 用户设备、基站及相关方法
TW201724791A (zh) 裝置、方法及程式
WO2021106837A1 (ja) 端末装置、基地局装置および通信方法
WO2020030254A1 (en) Joint channel estimation
CN110351032B (zh) 资源配置方法及装置
WO2017174034A1 (zh) 一种功率配置方法及设备
EP3902178B1 (en) Capacity configuration method and apparatus
CN111756497B (zh) 通信方法及装置
US11949507B2 (en) Data sending method and apparatus
WO2020078182A1 (zh) 数据发送的方法及装置
TW201733297A (zh) 裝置及方法
EP3840281A1 (en) Communication method and apparatus
WO2020030255A1 (en) Reducing dmrs overhead
WO2024197440A1 (zh) 被用于无线通信的节点的方法和装置
US11895538B2 (en) Improving Wi-Fi spectrum efficiency
WO2022087970A1 (zh) 无线通信的方法和通信设备
WO2024168703A1 (zh) 用于无线通信的节点中的方法和装置
WO2023216831A1 (zh) 一种通信方法及通信装置
WO2023011372A1 (zh) 数据传输方法及装置
CN111757479B (zh) 通信的方法及装置
CN117501791A (zh) 用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810416

Country of ref document: EP

Kind code of ref document: A1