WO2023216831A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2023216831A1
WO2023216831A1 PCT/CN2023/089485 CN2023089485W WO2023216831A1 WO 2023216831 A1 WO2023216831 A1 WO 2023216831A1 CN 2023089485 W CN2023089485 W CN 2023089485W WO 2023216831 A1 WO2023216831 A1 WO 2023216831A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
subcarriers
target
longest
carrier bandwidth
Prior art date
Application number
PCT/CN2023/089485
Other languages
English (en)
French (fr)
Inventor
王晓鲁
李榕
皇甫幼睿
乔云飞
罗禾佳
于天航
陈莹
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023216831A1 publication Critical patent/WO2023216831A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and communication device.
  • Carrier reservation (tone reservation, TR) technology can be used to suppress the peak-to-average power ratio (PAPR) of the waveform. That is, the transmitting end reserves some subcarriers for carrying signals that suppress PAPR.
  • a pattern composed of subcarrier numbers corresponding to reserved carriers used to suppress PAPR is called a TR pattern.
  • Different carrier bandwidths or the number of resource blocks (RBs) or the length of Fourier transform use different TR patterns.
  • the transmitter and receiver store corresponding TR patterns, which requires storing multiple TR patterns and requires more storage space.
  • the present application provides a communication method and communication device for saving storage space for storing TR patterns.
  • inventions of the present application provide a communication method, which can be executed by a first device.
  • the first device can be a communication device or a communication device, such as a chip system, that can support the communication device to implement the functions required by the method.
  • the following description takes the communication device as the first device as an example.
  • the first device is a first device, or a chip provided in the first device, or other components used to implement the functions of the first device.
  • the communication method includes: the first device receives first information, determines a target TR pattern according to the first information, and sends information or demodulates the received information according to the target TR pattern.
  • the target TR pattern is the sub-pattern of the longest TR pattern.
  • the longest TR pattern includes the set of subcarriers used as reserved carriers.
  • the longest TR pattern may include multiple TR sub-patterns of different lengths.
  • the first TR pattern corresponding to the first length is a sub-pattern of the longest TR pattern
  • the second TR pattern corresponding to the second length is also a subset of the longest TR pattern.
  • TR sub-patterns of different lengths can correspond to different carrier bandwidths or RB numbers, etc.
  • the device only needs to store the longest TR pattern, and can select a TR pattern of appropriate length as the target TR pattern based on the longest TR pattern. There is no need to separately store the TR patterns corresponding to each carrier bandwidth or RB number, and it is possible to avoid repeatedly storing the same part of the TR patterns of different lengths, thus saving storage space.
  • the subcarriers in the longest TR pattern are ordered according to PAPR suppression performance.
  • the subcarriers included in the longest TR pattern are sorted according to the PAPR suppression performance.
  • the longest TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first set of subcarriers corresponding to the first TR subpattern includes the second set of subcarriers corresponding to the second TR subpattern.
  • First TR The first carrier bandwidth corresponding to the sub-pattern is greater than the second carrier bandwidth corresponding to the second TR sub-pattern. That is, the TR pattern corresponding to a large carrier bandwidth is an extension of the TR pattern corresponding to a small carrier bandwidth. That is, the TR patterns corresponding to different carrier bandwidths have a nested relationship. While saving storage space, it can provide more TR patterns corresponding to different sizes and carrier bandwidths.
  • subcarriers in the first subcarrier set except the second subcarrier set are located outside the second carrier bandwidth.
  • the subcarriers in the first subcarrier set except the second subcarrier set include a first part of subcarriers and a second part of subcarriers.
  • the first part of the subcarriers is located within the second carrier bandwidth, and the second part of the subcarriers is located outside the second carrier bandwidth.
  • the first information indicates the carrier bandwidth used by the first device
  • the first device determines the target TR pattern based on the first information, including: the first device determines the target TR pattern based on the mapping relationship between the number of RBs and the TR pattern, and the corresponding carrier bandwidth.
  • the number of RBs determines the length L of the target TR pattern, and then determines the target TR pattern based on the length L and the longest TR pattern.
  • the mapping relationship between the number of RBs and the length of the TR pattern can be predefined, so that the first device can determine the length of the target TR pattern according to the used carrier bandwidth, and then determine the target TR pattern from the longest TR pattern.
  • the first device determines the length L of the target TR pattern, which further includes: the first device further determines the length L according to the PAPR suppression performance requirement. Based on the predefined longest TR pattern, when the first device determines the target TR pattern, it may also determine the target TR pattern based on the PAPR suppression performance requirements. That is, since the longest TR pattern includes a variety of TR sub-patterns of different lengths, it can satisfy the controllability of PAPR suppression and is more flexible.
  • the first information indicates the length L of the target TR pattern
  • the first device determines the target TR pattern based on the first information, including: the first device determines the target TR pattern based on the length L and the longest TR pattern.
  • the second device may determine the target TR pattern used by the first device, in which case the second device may directly provide the length of the target TR pattern to the first device. There is no need for the first device to first determine the length of the target TR pattern to be used based on the carrier bandwidth, etc., thereby reducing the processing complexity of the first device.
  • the target TR pattern is the first L subcarriers in the longest TR pattern.
  • the method further includes: the first device sending second information, the second information indicating the PAPR suppression performance requirements of the first device.
  • the first device can report PAPR suppression performance requirements to the second device to assist the second device in determining the length of the target TR pattern with better PAPR suppression performance for the first device.
  • the reference signal is carried on a subcarrier other than the subcarriers included in the target TR pattern.
  • inventions of the present application provide a communication method, which can be executed by a second device.
  • the second device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, for example, a chip system.
  • the following description takes the example that the communication device is the second device.
  • the second device is a second device, or a chip of the device in the second device, or other components used to implement the functions of the second device.
  • the communication method includes: the second device determines the first information and sends the first information to the first device.
  • the first information is used to determine the target TR pattern from the longest TR pattern, and the target TR pattern is a sub-pattern of the longest TR pattern.
  • the longest TR pattern includes the set of subcarriers used as reserved carriers.
  • the subcarriers in the longest TR pattern are ordered according to PAPR suppression performance.
  • the longest TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first subcarrier set corresponding to the first TR subpattern includes a second subcarrier set corresponding to the second TR subpattern, and the first carrier bandwidth corresponding to the first TR subpattern is greater than the second carrier corresponding to the second TR subpattern. bandwidth.
  • subcarriers in the first subcarrier set except the second subcarrier set are located outside the second carrier bandwidth.
  • the subcarriers in the first subcarrier set except the second subcarrier set include a first part of subcarriers and a second part of subcarriers, where the first part of subcarriers are located within the second carrier bandwidth, and the Two sub-carriers are located outside the bandwidth of the second carrier.
  • the first information indicates the carrier bandwidth used by the first device, and the number of RBs corresponding to the carrier bandwidth has a mapping relationship with the length of the TR pattern.
  • the first information indicates the length L of the target TR pattern.
  • the method further includes: the second device receives the second information, and determines the first information according to the second information.
  • the second information indicates the PAPR suppression performance requirement of the first device.
  • the reference signal is carried on a subcarrier other than the subcarriers included in the target TR pattern.
  • embodiments of the present application provide a communication device, which has the function of realizing the behavior in the method embodiment of any one of the above first to second aspects.
  • the beneficial effects can be found in the first to second aspects. The description of the two aspects will not be repeated here.
  • the communication device may be the first device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the first aspect.
  • the communication device includes a processing unit (sometimes also called a processing module or processor) and/or a transceiver unit (sometimes also called a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit. It can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood as a collective name for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units can perform the corresponding functions in the above-mentioned method examples of the first aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • the communication device may be the second device in the second aspect, or the communication device may be a device capable of implementing the method provided in the second aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the second aspect.
  • the communication device includes a processing unit (sometimes also called a processing module or processor) and/or a transceiver unit (sometimes also called a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit. It can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood as a collective name for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units (modules) can perform the corresponding functions in the above method examples of the second aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • inventions of the present application provide a communication device.
  • the communication device may be the communication device in any one of the above-mentioned third to fourth aspects, or be provided in any one of the third to fourth aspects.
  • the communication device may be a first device or a second device.
  • the communication device includes a communication interface and a processor, and optionally, a memory. Wherein, the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program or instructions, the communication device executes the steps executed by the first device or the second device in the above method. method.
  • embodiments of the present application provide a communication device, which includes an input-output interface and a logic circuit. Input and output interfaces are used to input and/or output information.
  • the logic circuit is used to perform the method described in any one of the first to second aspects.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor and may also include Memory and/or communication interface, used to implement the method described in any one of the first to second aspects.
  • the chip system further includes a memory for storing a computer program.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application provide a communication system, which includes a first device and a second device, wherein the first device is configured to perform the method performed by the first device in the first aspect, The second device is configured to perform the method performed by the second device in the above second aspect.
  • the communication system may include more first devices or more second devices.
  • the present application provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is run, the method of any one of the above-mentioned first to second aspects is implemented. .
  • a computer program product includes: computer program code.
  • the computer program product includes: computer program code.
  • the method of any one of the above-mentioned first to second aspects is executed. .
  • Figure 1 is a schematic architectural diagram of a communication system applicable to the embodiment of the present application.
  • Figure 2 is an architectural schematic diagram of another communication system applicable to the embodiment of the present application.
  • Figure 3 is an architectural schematic diagram of another communication system applicable to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of mapping between carrier bandwidth and TR pattern provided by the embodiment of the present application.
  • Figure 6 is another mapping schematic diagram of carrier bandwidth and TR pattern provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of determining a target TR pattern provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the relationship between the length of the TR pattern and the PAPR suppression performance provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the relationship between TR patterns of different lengths and PAPR suppression performance provided by embodiments of the present application.
  • Figure 10 is a mapping schematic diagram of PAPR inhibition performance and TR pattern provided by the embodiment of the present application.
  • Figure 11 is another mapping schematic diagram of PAPR inhibition performance and TR pattern provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is another schematic structural diagram of a communication device applicable to the embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to fifth generation (5th generation, 5G) mobile communication systems, such as new radio (new radio, NR) systems, or to long term evolution (Long term evolution, LTE) systems.
  • 5th generation, 5G fifth generation
  • Non-terrestrial networks non terrestrial networks, NTN
  • next-generation mobile communication systems or other similar communication systems.
  • V2X vehicle to everything
  • IoT Internet of things
  • NB-IoT narrowband Internet of things
  • Systems, etc. such as wireless fidelity (WiFi)-based IoT networks or wearable WiFi networks.
  • Figure 1 is a schematic diagram of the network architecture of a communication system applicable to the embodiment of the present application.
  • the communication system may include a network device and two terminal devices, which may be mobile terminal devices and/or any other suitable devices for communicating on a wireless communication system, and both may be connected to the network device. Both end devices are capable of communicating with network devices.
  • the number of terminal devices in Figure 1 is just an example, and can be less or more.
  • the terminal device in Figure 1 is also a schematic.
  • the terminal device can also be an IoT device such as a smart water meter.
  • the terminal device is a device with a wireless transceiver function, which can send signals to or receive signals from the network device.
  • Terminal equipment may include user equipment (UE), sometimes also called terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device to device (D2D), V2X, machine to machine/ Machine-to-machine/machine-type communications (M2M/MTC), IoT, virtual reality (VR), augmented reality (AR), industrial control (industrial control), driverless driving Terminal equipment in (self driving), remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • D2D device to device
  • V2X machine to machine/ Machine-to-machine/machine-type communications
  • M2M/MTC machine to machine/ Machine-to-machine/machine-type communications
  • IoT virtual reality
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • driverless driving Terminal equipment in self driving
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. wait.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • the vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method of the present application.
  • the communication device used to implement the function of the terminal device may be a terminal device, or may be a device that can support the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described, taking the device for realizing the functions of the terminal device as a terminal device as an example.
  • the network device may be an access device through which the terminal device wirelessly accesses the mobile communication system, such as an access network (AN) device, such as a base station.
  • AN access network
  • Network equipment may also refer to equipment that communicates with terminal equipment over the air interface.
  • Network equipment may include evolved base stations (evolved Node B) (also referred to as eNB or e-NodeB) in LTE systems or long term evolution-advanced (LTE-A); network equipment may also include 5G NR systems
  • eNB evolved Node B
  • e-NodeB evolved base stations
  • LTE-A long term evolution-advanced
  • network equipment may also include 5G NR systems
  • PLMN Public Land Mobile Network
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess. For example, the functions of the packet data convergence protocol (PDCP) layer and above are set in the CU and the protocol layer below PDCP, such as the wireless link.
  • road Functions such as the control (radio link control, RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU.
  • the embodiments of this application do not impose any restrictions.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • the CU control plane CU-CP also includes a further segmentation architecture, that is, the existing CU-CP is further segmented into CU-CP1 and CU-CP2.
  • CU-CP1 includes various radio resource management functions
  • CU-CP2 only includes RRC functions and PDCP-C functions (ie, the basic functions of control plane signaling at the PDCP layer).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling and transparently transmit it to the UE or CU through the protocol layer without parsing the signaling.
  • the CU is divided into network equipment on the radio access network (RAN) side.
  • the CU can also be divided into network equipment on the core network (core network, CN) side. This application describes There is no restriction on this.
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • FIG. 2 is a schematic diagram of the network architecture of another communication system applicable to the embodiment of the present application.
  • the communication system includes satellites, terminal equipment and gateways.
  • Satellites can be highly elliptical orbiting (HEO) satellites, geostationary orbiting satellites (geosynchronous earth otbit, GEO) satellites, medium earth orbiting (MEO) satellites and low-earth orbiting (LEO) satellites .
  • the NTN system can also include high altitude platform (HAPS), etc., which are not limited here.
  • Gateway or ground station, earth station, gateway station, gateway station
  • One or more satellites can be connected to one or more ground base stations through one or more gateways, without limitation.
  • Terminal equipment includes, for example, mobile phones, airplanes, etc. ( Figure 2 takes this as an example).
  • the link between the satellite and the terminal equipment is called the service link, and the link between the satellite and the gateway is called the feeder link.
  • the embodiment of the present application does not limit the working mode of the satellite.
  • the working mode of the satellite may be a transparent mode or a regenerative mode.
  • Transparent transmission mode that is, the satellite acts as an analog radio frequency repeater and has the function of relay and forwarding, which can realize wireless frequency conversion and amplification, and can transparently transmit or copy the signal between the base station and the terminal device.
  • signals sent by terminal equipment can be transparently transmitted through satellites and forwarded by gateways into ground base stations.
  • the gateway has some or all of the functions of the base station.
  • the gateway can be regarded as a base station. It can be considered that network elements and base stations can be deployed together or separately. If the gateway is deployed separately from the base station, the feeder link delay includes the delay from the satellite to the gateway and the delay from the gateway to the base station.
  • the satellite serves as a base station for wireless communication and has some or all of the functions of the base station to regenerate signals received from the ground and can understand and process these signals.
  • the satellite may be a base station mounted on an artificial earth satellite or a high-altitude aircraft.
  • the base station may be an evolved base station (eNB) or a 5G base station (gNB).
  • the gateway can forward signaling between satellites (i.e. base stations) and the core network.
  • FIG. 3 is a schematic diagram of the network architecture of another communication system to which the embodiments of the present application are applicable.
  • the communication system includes at least one network device and at least one high-altitude terminal equipment, such as high-altitude aircraft and on-board terminal equipment.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, application scenarios, priority or importance of multiple objects. Degree etc.
  • the first TR pattern and the second TR pattern can be the same TR pattern, or they can be different TR patterns, and this name does not indicate the size, content, priority, and application of the two TR patterns. Differences in scene or importance, etc.
  • Satellite equipment is limited by manufacturing and launch costs, and on-board data processing capabilities and transmission power will be limited. Specifically, satellite equipment is energy and power-limited equipment and is sensitive to on-board power efficiency, that is, it is expected to improve the power efficiency of satellite equipment as much as possible.
  • the high power amplifier (HPA) at the transmitter is required to work near the linear saturation zone to improve the power efficiency of the HPA.
  • the system uses orthogonal frequency division multiplexing (OFDM) waveforms or waveforms with high PAPR characteristics to transmit data, high PAPR will occur. Since the PAPR of the OFDM signal is large, when the HPA operates near the saturation point, the signal input to the HPA has a certain probability of entering the nonlinear region and causing nonlinear distortion. Nonlinear distortion will introduce in-band distortion and out-of-band radiation, which will not only affect the decoding accuracy of the receiving end, but also cause interference to adjacent channel users. For this reason, the nonlinear distortion of HPA can be reduced as much as possible by performing power backoff on the input HPA signal. Performing power rollback on the input HPA signal can be understood as reducing the power of the input HPA signal.
  • OFDM orthogonal frequency division multiplexing
  • Performing power rollback on the input HPA signal can reduce the nonlinear distortion of the HPA, but it will also reduce the signal power output by the HPA, thereby reducing the transmit power and the power efficiency of the HPA, which in turn leads to a reduction in the signal receiving power at the receiving end. , reducing the signal-to-noise ratio at the receiving end.
  • TR technology can be understood as reserving a part of reserved carriers as carriers to suppress PAPR.
  • the reserved carrier used to suppress PAPR may include multiple subcarriers, also called a carrier set.
  • a pattern composed of subcarrier numbers corresponding to each subcarrier included in the carrier set is called a TR pattern. That is, the TR pattern may indicate a set of reserved carriers for suppressing PAPR.
  • the reserved carrier for suppressing PAPR is reserved at the transmitting end to carry the signal for suppressing PAPR, and some carriers other than the reserved carrier are used to carry data signals.
  • data signals can also be carried on reserved carriers. That is, the reserved carriers can carry both PAPR-suppressing signals and data signals.
  • the set of carriers carrying signals that suppress PAPR and the set of carriers carrying data signals do not overlap (this article takes this as an example).
  • the reserved carrier used to suppress PAPR can be skipped or removed, that is, the signal on the reserved carrier used to suppress PAPR is not decoded.
  • the principle of PAPR suppression based on TR patterns is an existing technology and will not be described in detail here.
  • the first length corresponds to the first TR pattern
  • the second length corresponds to the second TR pattern
  • the first TR pattern and the second TR pattern are stored at the transmitting end and the receiving end respectively. If the first length is greater than the second length, the first TR pattern includes part of the subcarriers included in the second TR pattern. Therefore, part of the subcarriers are repeatedly stored, which wastes storage space.
  • Fourier transform can include fast Fourier transform (FFT), inverse fast fourier transform (IFFT), discrete fourier transform (DFT) ), inverse discrete Fourier transform (IDFT).
  • the embodiment of the present application provides the longest TR pattern, a TR pattern corresponding to a carrier bandwidth or the number of RBs or the length of Fourier transform, which is a sub-pattern of the longest TR pattern.
  • the longest TR pattern is stored at the transmitter and receiver.
  • the first TR pattern corresponding to the first length is a sub-pattern of the longest TR pattern
  • the second TR pattern corresponding to the second length is also a subset of the longest TR pattern.
  • the TR patterns corresponding to each length belong to the sub-patterns of the longest TR pattern, and only the largest TR pattern is stored. Compared with separately storing the first TR pattern and the second TR pattern, storage space can be saved.
  • the embodiment of the present application provides a communication method, which can be applied to any communication system, as long as the sending end and the receiving end communicate. In the following introduction, this communication method is applied to any communication system shown in Figures 1-3.
  • the communication method provided by the embodiment of the present application can be applied to uplink transmission or downlink transmission. It should be understood that uplink transmission and downlink transmission are relative. For example, if the transmission from the first device to the second device is uplink transmission, then the transmission from the second device to the first device is downlink transmission. It can be understood that in downlink transmission, the TR pattern is related to the system bandwidth, and in uplink transmission, the TR pattern is related to the carrier bandwidth used by the first device.
  • the TR pattern in uplink transmission, is mapped to the carrier bandwidth used by the first device, and in downlink transmission, the TR pattern is mapped to the system bandwidth.
  • the embodiments of the present application are not limited to using OFDM waveforms to transmit data.
  • DFT-S-OFDM waveforms can also be used to transmit data.
  • the data can be DFT precoded first and then mapped to frequency domain data subcarriers.
  • carrier bandwidth can be replaced.
  • the carrier bandwidth/system bandwidth/cell bandwidth can also be characterized by the number of RBs or the number of resource elements (REs).
  • odd-numbered rows in each table of the longest TR pattern represent the serial numbers of elements in the TR pattern (indicated in bold), and even-numbered rows represent the numbers of subcarriers included in the TR pattern.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the communication method is performed by the first device and the second device as an example.
  • the first device may be a terminal device, and the second device may be a network device.
  • the first device receives the first information sent by the second device, and accordingly, the second device sends the first information to the first device.
  • the first information may be used by the first device to determine a target TR pattern from the longest TR pattern.
  • the longest TR pattern includes multiple TR sub-patterns, and the target TR pattern is a TR sub-pattern of the multiple TR sub-patterns. It can be understood that the longest TR pattern includes a set of subcarriers used as reserved carriers. One TR subpattern corresponds to one subcarrier set.
  • the first information will be introduced later and will not be introduced here for the time being.
  • the target TR pattern is related to the carrier bandwidth used by the first device, and different carrier bandwidths correspond to different lengths L of the target TR patterns. It should be understood that the carrier bandwidth can also be said to be that the target TR pattern is related to the number of RBs corresponding to the carrier bandwidth used by the first device, and different RB numbers correspond to different lengths L of the target TR pattern.
  • the embodiments of this application may contain The wave bandwidth or the number of RBs is mapped to the length L of the TR pattern, so that the first device determines the length L of the target TR pattern based on the used carrier bandwidth or the number of RBs, and then determines the target TR pattern from the longest TR pattern based on the length L. For example, the first device uses the set of first L subcarriers in the longest TR pattern as the target TR pattern.
  • Table 1 shows a mapping relationship between the carrier bandwidth and the length L of the TR pattern. It can be understood that the carrier bandwidth is related to the sub-carrier space (SCS). Table 1 illustrates the mapping relationship between the carrier bandwidth and the TR pattern length L when the SCS is 60K and 120K respectively.
  • SCS sub-carrier space
  • the first device may determine the length L of the target TR pattern according to Table 1 and the used carrier bandwidth.
  • Table 1 may be predefined or preconfigured, or Table 1 may be agreed upon by the first device and the second device, which is not limited by the embodiment of the present application.
  • Table 1 is only an example. It can be understood that for each different SCS, the carrier bandwidth and the TR pattern length L can be mapped.
  • Table 2 shows a mapping relationship between the number of RBs and the length L of the TR pattern.
  • the first device can determine the length L of the target TR pattern according to Table 2 and the number of RBs corresponding to the used carrier bandwidth or the number of RBs of the allocated frequency domain resources.
  • Table 2 may be predefined, preconfigured, or instructed by the second device, or Table 2 may be agreed upon by the first device and the second device, which is not limited by the embodiments of this application. .
  • Table 2 is only an example, and it can be understood that the number of RBs may be related to the sub-carrier space (sub-carrier space, SCS).
  • SCS sub-carrier space
  • the number of RBs and the TR pattern length L can be mapped. For example, see Table 3.
  • Table 3 shows the mapping relationship between the number of RBs and the TR pattern length L when the SCS is 60K and 120K respectively.
  • the first device can determine the length L of the target TR pattern according to Table 2 and the number of RBs corresponding to the used carrier bandwidth.
  • Table 3 may be predefined or preconfigured, or Table 3 may be agreed upon by the first device and the second device, and this is not limited by the embodiment of the present application. In addition, Table 3 is only an example.
  • the carrier bandwidth is related to the number of RBs.
  • Tables 1 to 3 please refer to Table 4, which illustrates a mapping relationship between the carrier bandwidth, the number of RBs, and the length L of the TR pattern.
  • the carrier bandwidth in Table 4 takes SCS as 120K as an example.
  • Table 4 may be predefined, preconfigured, or instructed by the second device, or Table 4 may be agreed upon by the first device and the second device, and this is not limited by the embodiment of the present application.
  • Table 4 is only an example. It can be understood that for each different SCS, the number of RBs and the TR pattern length L can be mapped.
  • Embodiments of the present application can also map the length of the FFT/IFFT to the length L of the TR pattern, so that the length L of the target TR pattern can be determined based on the length of the FFT/IFFT.
  • Table 5 shows a mapping relationship between the length of FFT/IFFT and the length L of the TR pattern.
  • the subcarriers in the longest TR pattern can be ordered according to PAPR suppression performance. For example, see Table 6, which shows a longest TR pattern.
  • odd-numbered rows indicate the serial numbers of elements in the TR pattern (indicated in bold), and even-numbered rows indicate the numbers of subcarriers included in the TR pattern.
  • Table 6 starts with subcarrier numbering from 1.
  • the fifth element in Table 6 indicates that the number of the reserved subcarrier is 58, that is, the fifth element in Table 6 indicates that the reserved subcarrier is the 58th subcarrier in the carrier bandwidth.
  • the embodiment of the present application does not limit the starting number of subcarriers. For example, if it is agreed that 0 is used as the starting number of a subcarrier, then the number of each subcarrier in Table 6 can be reduced by 1. Following the above example, if the number of subcarriers starts from 0, then the fifth element in Table 6 indicates that the reserved subcarrier is the subcarrier with index 57 in the carrier bandwidth.
  • the subcarrier numbers in Table 6 may be valid subcarrier numbers, that is, the subcarriers corresponding to the subcarrier numbers in Table 6 are subcarriers other than the guard band. This can avoid the complexity caused by different offsets of subcarrier numbers in different bandwidths due to the existence of guard bands.
  • Table 6 shows a longest TR pattern. It can be seen from Table 6 that the length of the longest TR pattern is 96.
  • Table 6 may indicate multiple lengths of TR patterns, for example, a TR pattern of length 12, a TR pattern of length 24, a TR pattern of length 48, a TR pattern of length 96. Among them, the TR patterns of each length are sub-patterns of the longest TR pattern.
  • the first device and the second device may store TR patterns as shown in Table 6, compared to storing a TR pattern with a length of 12, a TR pattern with a length of 24, a TR pattern with a length of 48, and a TR pattern with a length of 96 In terms of patterns, it is possible to avoid storing multiple TR patterns of different lengths, thereby saving storage space.
  • the longest TR pattern includes TR sub-patterns of multiple lengths. It can also be considered that the longest TR pattern includes multiple TR sub-patterns of different sizes. Different bandwidths correspond to TR sub-patterns.
  • the subcarrier set corresponding to the TR sub-pattern corresponding to the large bandwidth includes the TR sub-pattern corresponding to the small bandwidth.
  • the longest TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first set of subcarriers corresponding to the first TR subpattern may include a second set of subcarriers corresponding to the second TR subpattern, wherein the first carrier bandwidth corresponding to the first TR subpattern is greater than the second set of subcarriers corresponding to the second TR subpattern. carrier bandwidth.
  • the TR pattern corresponding to the large carrier bandwidth is an extension of the TR pattern corresponding to the small carrier bandwidth. That is, the TR patterns corresponding to different carrier bandwidths have a nested relationship.
  • Figure 5 is a schematic diagram of the mapping between carrier bandwidth and TR pattern.
  • the longest TR pattern is the TR pattern corresponding to carrier bandwidth 4, that is, TR pattern 4.
  • carrier bandwidth 1 is smaller than carrier bandwidth 2
  • carrier bandwidth 2 is smaller than carrier bandwidth 3
  • carrier bandwidth 3 is smaller than carrier bandwidth 4.
  • the subcarrier set corresponding to TR pattern 4 includes the subcarrier set corresponding to TR pattern 3
  • the subcarrier set corresponding to TR pattern 2 includes the TR pattern. 1 corresponding subcarrier set.
  • the embodiments of this application do not limit the specific locations of newly added subcarriers in the subcarrier set corresponding to the large carrier bandwidth compared to the subcarrier set corresponding to the small carrier bandwidth.
  • the first carrier bandwidth is greater than the second carrier bandwidth
  • the first carrier bandwidth corresponds to the first subcarrier set
  • the second carrier bandwidth corresponds to the second subcarrier set.
  • This embodiment of the present application does not limit the specific locations of subcarriers in the first subcarrier set except the second subcarrier set.
  • subcarriers in the first set of subcarriers other than the second set of subcarriers may be located outside the bandwidth of the second carrier.
  • subcarriers in the first subcarrier set other than the second subcarrier set may include a first part and a second part. The first part may be located within the second carrier bandwidth, and the second part may be located within the second carrier bandwidth. outside.
  • Figure 6 is a schematic diagram of the mapping between carrier bandwidth and TR pattern.
  • Figure 6 takes TR pattern 1 and TR pattern 2 as an example. Among them, the TR pattern corresponds to the carrier bandwidth.
  • the dotted arrows in Figure 6 indicate the subcarriers included in the subcarrier set 2 corresponding to the TR pattern 2.
  • the solid arrow indicates a newly added subcarrier in subcarrier set 1 corresponding to TR pattern 1 compared to subcarrier set 2.
  • newly added subcarriers in subcarrier set 1 include subcarriers located in carrier bandwidth 2 and subcarriers outside carrier bandwidth 2.
  • the embodiment of the present application does not limit the starting position of the carrier bandwidth corresponding to each TR sub-pattern in the longest TR pattern. That is, the starting position of the carrier bandwidth corresponding to each TR sub-pattern may be the same or different. Similarly, the starting positions of different TR patterns can be the same or different. That is, the embodiment of the present application does not limit whether the numbers of the first subcarriers included in different TR patterns are the same.
  • Table 6 is only an example, and the embodiment of the present application does not limit the number of subcarriers in Table 6. It can also be understood that Table 6 is obtained by sorting according to a kind of suppression performance of PAPR. According to a kind of suppression performance of PAPR, the longest TR pattern similar to Table 6 can be obtained. The longest TR pattern similar to Table 6 can be obtained according to Table 6. As another longest TR pattern, Table 6 can be replaced. For convenience of description, the longest TR pattern in Table 6 is called the first longest TR pattern, and the longest TR pattern in the replaceable Table 6 is called the second longest TR pattern.
  • reserved_tones_index_new mod(reserved_tones_index_old+ ⁇ k-1,IFFT_length)+1.
  • reserved_tones_index_new is the number of the subcarrier in the second longest TR pattern
  • reserved_tones_index_old is the number of the subcarrier in the first longest TR pattern
  • ⁇ k represents the overall offset value or cyclic shift of the first longest TR pattern Value
  • IFFT_length represents the cyclic shift period of the number of subcarriers in the second longest TR pattern (related to the carrier bandwidth or related to the IFFT length of the generated OFDM/DFT-s-OFDM signal).
  • the second longest TR pattern may be obtained by cyclically shifting the number of subcarriers of the first longest TR pattern.
  • d circleshift(a, b, c) means that a is offset by b and then circularly shifted according to the period c to obtain d.
  • the first information may indicate the carrier bandwidth used by the first device.
  • the first device can determine the length L of the target TR pattern according to the carrier bandwidth and Table 1 (or Table 2 or Table 4), and then select the first L subcarriers from Table 6 as the target TR pattern.
  • the first device can determine the target TR pattern according to the first information and Table 1 or Table 2 or Table 4.
  • the length L is 24.
  • the first device may select the first 24 subcarriers from Table 6 as the target TR pattern, as shown in Table 7.
  • the first information may indicate that the length L of the target TR pattern is 24, and the first device may select the first 24 subcarriers from Table 6 as the target TR pattern, as shown in Table 7.
  • the first information may indicate the carrier bandwidth used by the first device.
  • the first device can determine the length L of the target TR pattern based on the number of RBs corresponding to the carrier bandwidth and Table 2 (or Table 3 or Table 4), and then select the first L subcarriers from Table 6 as the target TR pattern.
  • the first information indicates that the carrier bandwidth used by the first device is 200 MHz.
  • the first device determines that the number of RBs is 132 according to the first information.
  • the length L of the target TR pattern can be determined to be 78.
  • the first device may select the first 48 subcarriers from Table 6 as the target TR pattern, as shown in Table 8.
  • the first information may indicate that the length L of the target TR pattern is 48, and the first device may select the first 48 subcarriers from Table 6 as the target TR pattern, as shown in Table 8.
  • the target TR pattern corresponds to the subcarrier set A.
  • Subcarrier set A may be determined based on the number of subcarriers included in subcarrier set B and subcarrier set C.
  • the subcarrier set B is a set of all subcarriers within the first bandwidth
  • the subcarrier set C is a subcarrier set corresponding to the TR pattern corresponding to the second bandwidth.
  • the first device determines the number of occupied subcarriers Num_subcarrier (for example, 12 ⁇ the number of RBs) according to the used carrier bandwidth (for example, called the first bandwidth) or the number of RBs of the bandwidth or the number of RBs of the frequency domain resources used.
  • the first device selects subcarriers whose number is not greater than (Num_subcarrier-1) from the subcarrier set C to form the target TR pattern. That is, the set of subcarriers numbered ⁇ Num_subcarrier-1 in the subcarrier set C is used as the target TR pattern.
  • the first device can select subcarriers whose number is not greater than Num_subcarrier from the subcarrier set C to form the target TR pattern. That is, the set composed of subcarriers numbered ⁇ Num_subcarrier in the subcarrier set is used as the target TR pattern.
  • the carrier bandwidth used by the first device is 40 MHz or uses 25 RBs (for example, it is called the first bandwidth), which is smaller than 50 MHz or 32 RBs (for example, it is called the second bandwidth) in Table 1 or Table 2 or Table 4. ).
  • a TR pattern with a length of 12 can be determined from Table 6, and the portion of the TR pattern that overlaps with the subcarriers included in 40 MHz or 25 RBs is used as the target TR pattern.
  • the bandwidth is 40MHz or 25 RBs (300 subcarriers)
  • the overlapping portion of the first 12 reserved subcarriers and 25 RBs in Table 6 can be used as the target TR pattern.
  • Table 6 starts with the number of subcarriers from 1, and obtains the combination of reserved subcarrier index numbers of the TR pattern to be used according to reserved tones index ⁇ 300, that is, the set of subcarriers corresponding to the target TR pattern is ⁇ 5, 42, 58, 294, 67, 102, 53 ⁇ .
  • an initial TR pattern may be predefined, and the initial TR pattern may be the longest TR pattern, or may be a TR pattern different from the longest TR pattern.
  • the length of the initial TR pattern is smaller than the TR pattern of the longest TR pattern.
  • the first device may use a set of overlapping subcarriers among the subcarriers included in the used carrier bandwidth and the subcarriers included in the initial TR pattern as the target TR pattern.
  • FIG. 7 shows a way of determining the target TR pattern.
  • the carrier bandwidth used by the first device is carrier bandwidth 1, carrier bandwidth 2 or carrier bandwidth 3 as an example.
  • the set of subcarriers in which the subcarriers included in the carrier bandwidth 1 overlap with the subcarrier set corresponding to the initial TR pattern is TR pattern 1; the subcarriers included in the carrier bandwidth 2 overlap with the subcarrier set corresponding to the initial TR pattern.
  • the set formed is TR pattern 2; the set formed by subcarriers included in carrier bandwidth 3 overlapping with the subcarrier set corresponding to the initial TR pattern is TR pattern 3.
  • the number of subcarriers included in the initial TR pattern belongs to the number of subcarriers included in the carrier bandwidth.
  • the first device may determine the number of occupied subcarriers Num_subcarrier based on the number of RBs corresponding to carrier bandwidth 1. For example, Num_subcarrier is 12 ⁇ number of RBs.
  • the first device may select a set of subcarriers whose number is not greater than (Num_subcarrier-1) from the initial TR pattern as the target TR pattern.
  • the first device may select a set of subcarriers whose number is no greater than Num_subcarrier from the initial TR pattern as the target TR pattern. That is, the set of subcarriers numbered ⁇ Num_subcarrier in the initial TR pattern is used as the target TR pattern, or the set of subcarriers numbered ⁇ Num_subcarrier+1 in the initial TR pattern is used as the target TR pattern. as the target TR pattern.
  • the initial TR pattern as the longest TR pattern in Table 6 as an example.
  • the carrier bandwidth used by the first device is 100 MHz or 66 RBs
  • the numbering of subcarriers in Table 6 starts from 1.
  • the first device can select a TR pattern composed of subcarriers numbered ⁇ Num_subcarrier from Table 6 as the target TR pattern, that is, the first device selects a subcarrier composed of subcarriers numbered ⁇ 792.
  • Carrier set 1 serves as the target TR pattern.
  • subcarrier set 1 is ⁇ 362,307,5,42,58,340,306,294, 67,379,102,53,646,625,751,720,758, 196,396, 215,619,87,183,112 ⁇ . It should be understood that if the number of subcarriers starts from 0, then the first device selects a TR pattern composed of subcarriers with a number ⁇ Num_subcarrier-1 as the target TR pattern, that is, the first device selects a set of subcarriers composed of subcarriers with a number ⁇ 791 2 as the target TR pattern. It should be understood that the number of each subcarrier in subcarrier set 1 is subtracted by 1 to obtain subcarrier set 2.
  • the longest TR pattern and the initial TR pattern can be predefined.
  • the first device may determine a TR pattern from the initial TR pattern according to the used carrier bandwidth or the number of RBs, which is called an initial target TR pattern, for example.
  • the length of the initial target TR pattern is, for example, L1.
  • the first device may also determine a TR pattern of length L2 according to the carrier bandwidth and Table 1 or Table 2 or Table 4.
  • the first device takes the intersection of the TR pattern of length L1 and the TR pattern of length L2 as the target TR pattern.
  • the first device determines a TR pattern with a length of 10 from the initial target TR pattern.
  • the first device determines a TR pattern with a length of 12 according to the carrier bandwidth and Table 1 or Table 2 or Table 4.
  • the first device may change the length to The first 10 subcarriers in the TR pattern of 12 are used as the target TR pattern.
  • the lengths of the TR patterns in Tables 1 to 5 are only examples, and the embodiments of the present application do not limit the lengths of the TR patterns in Tables 1 to 5. It can be understood that the length of the TR pattern is related to the suppression performance of PAPR, and when the suppression performance of PAPR is good, it may lead to lower spectral efficiency. Therefore, the embodiment of the present application can take into account both the suppression performance and spectral efficiency of PAPR. Determine the appropriate TR pattern.
  • Figure 8 is a schematic diagram of the relationship between the length of the TR pattern and the suppression performance of PAPR.
  • Figure 8 takes the PAPR suppression performance corresponding to TR patterns of different lengths as an example when the number of RBs is 132.
  • the abscissa in Figure 8 is the PAPR threshold PAPR0, and the ordinate is the complementary cumulative distribution statistic Probability of PAPR [PAPR>PAPR0].
  • PAPR PAPR threshold
  • PAPR0 the PAPR threshold
  • the ordinate is the complementary cumulative distribution statistic Probability of PAPR [PAPR>PAPR0].
  • the embodiment of the present application designs an appropriate TR pattern length according to PAPR suppression performance requirements. The longer the length of the TR pattern, the PAPR suppression gain becomes smaller and smaller, approaching convergence.
  • most of the PAPR suppression gains can be obtained. For example, for a bandwidth with an RB number of 32 and a TR pattern length of no more than 52, most of the PAPR suppression gain can be obtained. With a bandwidth of 66 RBs and a TR pattern length of no more than 102, most of the PAPR suppression gain can be obtained. With a bandwidth of 132 RBs and a TR pattern length of no more than 158, most of the PAPR suppression gain can be obtained. With a bandwidth of 264 RBs and a TR pattern length of no more than 316, most of the PAPR suppression gain can be obtained.
  • the embodiment of the present application can determine the length of the TR pattern as shown in Table 1 to Table 5, which can not only ensure the PAPR suppression performance, but also minimize the loss of spectrum efficiency. For example, it can ensure 3 % spectral efficiency loss.
  • Figure 9 is a schematic diagram of the relationship between TR patterns of different lengths and the suppression performance of PAPR.
  • Figure 9 takes as an example that the RB numbers are 32 and 264, the lengths of the TR patterns corresponding to the RB number of 32 are 8 and 12, and the lengths of the TR patterns corresponding to the RB number of 264 are 56 and 96.
  • the relationship between the length of the TR pattern, the number of RBs, PAPR suppression performance and spectral efficiency loss is shown in Table 9.
  • the abscissa of Figure 9 is the PAPR threshold PAPR0, and the ordinate is the complementary cumulative distribution statistic Probability of PAPR [PAPR>PAPR0].
  • the length of the TR pattern is 8, and when the PAPR is greater than 1e-3, the PAPR suppression gain is 3.2dB, and the spectral efficiency loss is 2.08%.
  • the PAPR suppression gain is 3.8dB and the spectrum efficiency is 3.13%.
  • the length of the TR pattern can be determined to be 8 to avoid using the TR pattern with a length of 12 and reduce the loss of spectrum efficiency.
  • Table 6 Based on the PAPR suppression performance and spectral efficiency, Table 6 is also different accordingly. The following lists the possible longest TR patterns corresponding to different RB numbers.
  • Table 10 takes the subcarrier number starting from 0 as an example.
  • Table 11 takes the subcarrier number starting from 0 as an example.
  • Table 12 takes the subcarrier number starting from 0 as an example.
  • the first device determines a target TR pattern based on the first information, and the target TR pattern is a sub-pattern of the longest TR pattern.
  • the first information can be used to determine the length L of the target TR pattern, and thereby determine the target TR pattern.
  • the first information includes the following two implementation methods.
  • the first information may indicate the carrier bandwidth used by the first device.
  • the first device may determine the length L of the target TR pattern based on the number of RBs corresponding to the carrier bandwidth and the mapping relationship between the length of the TR pattern and the number of RBs. After determining L, the first device selects the first L subcarriers from the longest TR pattern as the target TR pattern.
  • the first information may indicate the length L of the target TR pattern.
  • the first device selects the first L subcarriers from the longest TR pattern as the target TR pattern based on L.
  • the first information indicates the carrier bandwidth used by the first device.
  • a set of overlapping subcarriers among the subcarriers included in the carrier bandwidth used by the first device and the subcarriers included in the longest TR pattern is used as the final target TR pattern.
  • sending the carrier bandwidth to the first device by the second device is an optional step. That is to say, if the first information indicates the carrier bandwidth used by the first device, the second device may not send the second device to the first device. a message.
  • the PAPR inhibitory properties corresponding to TR patterns of different lengths may be different. Therefore, embodiments of the present application can also determine the target TR pattern based on the PAPR suppression performance. TR patterns of different lengths can be selected according to the demand for PAPR suppression performance, which is flexible and controllable.
  • the first device determines based on the number of RBs corresponding to the carrier bandwidth, the mapping relationship between the length of the TR pattern and the number of RBs, and the PAPR. Suppression performance requirements determine the length of the target TR pattern.
  • the first device may determine the target TR pattern from the longest TR pattern according to the length of the target TR pattern.
  • the first device determines the length of the initial target TR pattern (for example, called the first target TR pattern) based on the number of RBs corresponding to the carrier bandwidth and the mapping relationship between the length of the TR pattern and the number of RBs, and determines the length of the initial target TR pattern according to the first target TR pattern.
  • the length of the TR pattern determines the final target TR pattern (eg, called the second target TR pattern) from the longest TR target pattern.
  • the first device may use a set of overlapping subcarriers among the subcarriers included in the used carrier bandwidth and the subcarriers included in the longest TR pattern as the final target TR pattern.
  • the second target TR pattern is a sub-pattern of the first target TR pattern.
  • the TR pattern corresponding to a certain carrier bandwidth or RB number includes multiple TR sub-patterns with different PAPR suppression properties.
  • the set of subcarriers corresponding to the TR pattern sub-patterns corresponding to higher PAPR suppression performance includes the set of subcarriers corresponding to the TR pattern sub-patterns corresponding to lower PAPR suppression performance.
  • the first carrier bandwidth corresponds to a first TR pattern
  • the first TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first set of subcarriers corresponding to the first TR subpattern may include a second set of subcarriers corresponding to the second TR subpattern, wherein the first PAPR suppression performance corresponding to the first TR subpattern is greater than the first PAPR suppression performance corresponding to the second TR subpattern.
  • PAPR inhibition performance It can also be considered that the TR pattern corresponding to high PAPR suppression performance is an extension of the TR pattern corresponding to low PAPR suppression performance. That is, the TR patterns corresponding to different PAPR inhibition performances have a nested relationship.
  • Figure 10 is a schematic diagram of the mapping between PAPR inhibition performance and TR pattern.
  • Figure 10 takes the longest
  • the TR pattern is the TR pattern corresponding to carrier bandwidth 4, that is, TR pattern 4.
  • carrier bandwidth 1 is smaller than carrier bandwidth 2
  • carrier bandwidth 2 is smaller than carrier bandwidth 3
  • carrier bandwidth 3 is smaller than carrier bandwidth 4.
  • the subcarrier set corresponding to TR pattern 4 includes the subcarrier set corresponding to TR pattern 3
  • the subcarrier set corresponding to TR pattern 3 includes the subcarrier set corresponding to TR pattern 2
  • the subcarrier set corresponding to TR pattern 2 includes the subcarrier set corresponding to TR pattern 1.
  • TR pattern 1 in FIG. 10 includes a plurality of TR sub-patterns with different PAPR suppression properties.
  • PAPR suppression performance 1 corresponds to TR sub-pattern 11
  • PAPR suppression performance 2 corresponds to TR sub-pattern 12
  • PAPR suppression performance 3 corresponds to TR sub-pattern 13.
  • PAPR inhibition performance 1 is smaller than PAPR inhibition performance 2
  • PAPR inhibition performance 2 is smaller than PAPR inhibition performance 3.
  • the subcarrier set corresponding to TR subpattern 13 includes the subcarrier set corresponding to TR subpattern 12, and the subcarrier set corresponding to TR pattern 12 includes the subcarrier set corresponding to TR pattern 11.
  • the embodiments of this application do not limit the specific locations of newly added subcarriers compared to the subcarrier set corresponding to low PAPR suppression performance compared to the subcarrier set corresponding to high PAPR suppression performance.
  • the first PAPR suppression performance is greater than the second PAPR suppression performance
  • the first PAPR suppression performance corresponds to the first set of subcarriers
  • the second PAPR suppression performance corresponds to the second set of subcarriers.
  • This embodiment of the present application does not limit the specific positions of subcarriers in the first carrier set except the second subcarrier set.
  • subcarriers in the first subcarrier set except the second subcarrier set may be located within the newly added bandwidth.
  • the subcarriers in the first subcarrier set other than the second subcarrier set may include a first part and a second part. The first part may be located within the newly added bandwidth, and the second part may be located within the newly added bandwidth. outside.
  • Figure 11 is a schematic diagram of the mapping between PAPR inhibition performance and TR pattern.
  • Figure 11 takes a TR pattern 11 and a TR pattern 12 as an example.
  • TR pattern 11 corresponds to the first PAPR suppression performance
  • TR pattern 12 corresponds to the second PAPR suppression performance.
  • the first PAPR inhibition performance is lower than the second PAPR inhibition performance.
  • the dotted arrows in Figure 11 indicate the subcarriers included in the subcarrier set 1 corresponding to the TR pattern 11.
  • the solid arrow indicates a newly added subcarrier in subcarrier set 2 corresponding to TR pattern 12 compared to subcarrier set 1.
  • part of the newly added subcarriers in subcarrier set 2 are located within the newly added bandwidth (that is, outside bandwidth 1), and the other part is located in the newly added bandwidth outside (ie within bandwidth 1).
  • the embodiments of the present application do not limit the starting positions of TR sub-patterns corresponding to different PAPR suppression properties in a TR pattern. That is, the starting positions of the TR sub-patterns corresponding to different PAPR suppression properties can be the same or different. That is, the embodiment of the present application does not impose restrictions on whether the first subcarrier numbers included in the TR subpatterns corresponding to different PAPR suppression performances are the same.
  • the length of the target TR pattern indicated by the first information may be determined according to the suppression performance requirements of the PAPR.
  • the second device determines the length of the target TR pattern according to the PAPR suppression performance requirement of the first device, and provides it to the first device through the first information.
  • the first device may determine a target TR pattern that meets the PAPR suppression performance requirements based on the final target TR pattern length and the longest TR pattern.
  • the first device sends the second information to the second device, and accordingly, the second device receives the second information sent by the first device.
  • the second information may indicate the PAPR suppression performance requirements of the first device.
  • the PAPR suppression performance requirements of the first device can be characterized by the TR pattern used by the first device and the length of the TR pattern.
  • Table 13 shows a mapping relationship between the index of the TR pattern, the length of the TR pattern, the PAPR suppression gain, and the spectral efficiency loss.
  • the second information indicates that the first device's PAPR suppression performance requirements include the following two indication methods, which are more flexible.
  • the second information may include the length of the TR pattern to be used by the first device. It should be understood that different PAPR suppression performances have a corresponding relationship with the length of the TR pattern. Therefore, the suppression performance requirement of the PAPR of the first device can be indirectly indicated by the length of the TR pattern to be used.
  • the second information may include an index of the TR pattern to be used by the first device. That is, the length of the TR pattern is indicated through the index of the TR pattern to be used, thereby indirectly indicating the suppression performance requirement of the PAPR of the first device.
  • the second information may include the PAPR suppression performance requirements of the first device. For example, indicating that PAPR needs to be suppressed by 3dB.
  • the second information indicating the PAPR suppression performance requirements of the first device is not limited to the above three indication methods.
  • the second information may include a TR pattern to be used by the first device. That is, the TR pattern to be used indicates the length of the TR pattern, thereby indirectly indicating the suppression performance requirement of the PAPR of the first device.
  • the second device receives the second information and can determine the length L of the target TR pattern according to the second information. After determining the length L of the target TR pattern, the second device sends first information to the first device, indicating the length L of the target TR pattern through the first information.
  • the first information indicates that the length L of the target TR pattern also includes multiple indication methods.
  • the first information includes L.
  • the first device may select the first L subcarriers from the longest TR pattern as the target TR pattern.
  • the first information includes L, which is simple and clear, and the instruction method is relatively direct.
  • the carrier bandwidth used by the first device is 50 MHz.
  • the second device took into account the PAPR suppression performance requirements of the first device and determined that the first device should use a TR pattern with a length of 8.
  • the first information sent by the second device to the first device may include 8, which is the length of the target TR pattern.
  • the first information includes ⁇ L.
  • the first device receives the first information to determine the length L of the target TR pattern. For example, the first device determines that the length of the TR pattern corresponding to the carrier bandwidth is TR_L according to the number of RBs corresponding to the used carrier bandwidth and the mapping relationship between the length of the TR pattern and the number of RBs.
  • the second device took into account the PAPR suppression performance requirements of the first device and determined that the first device should use a TR pattern with a length of 8.
  • the first information may include a TR pattern.
  • the first device includes the TR pattern, the length L of the target TR pattern can be determined, thereby selecting the first L subcarriers from the longest TR pattern as the target TR pattern.
  • the first information can be carried in a system message, for example, system information block (SIB) 1, other system information (OSI), main system information block (MIB) ) and other broadcast information.
  • SIB system information block
  • OSI system information
  • MIB main system information block
  • the second device can send the first information to the first device through broadcast or multicast, which can avoid scheduling different resources for different devices in order to send the first information, thereby saving the signaling overhead of scheduling resources and reducing the complexity of system scheduling. Spend.
  • the longest TR pattern can also be sent to the first device through a system message.
  • the second device can use RRC signaling (for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration) , RRC recovery signaling (RRCResume, etc.), at least one of downlink control information (DCI), group DCI, media access control (media access control, MAC) control element (control element, CE), to The first device sends the first information.
  • RRC signaling for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration) , RRC recovery signaling (RRCResume, etc.
  • DCI downlink control information
  • group DCI media access control
  • MAC media access control element
  • CE control element
  • first information can be sent to different first devices, thereby achieving better PARP suppression performance for each first device.
  • different TR patterns can be configured to the first device according to differences in link budgets in different locations or regions of the first device to optimize system transmission power efficiency, optimize PAPR suppression performance, and improve the overall communication performance of the UE and the system.
  • the first device sends information to the second device according to the target TR pattern, or the first device demodulates the received information according to the target TR pattern.
  • the first device may use the target TR pattern to send information to the second device.
  • the first device may use subcarriers included in the target TR pattern to carry a signal for suppressing PAPR, and use part of the carriers except the reserved carrier to carry the data signal.
  • data signals may also be carried on subcarriers included in the target TR pattern.
  • the first device can skip or remove the reserved carrier used to suppress PAPR during demodulation, that is, the signal on the reserved carrier used to suppress PAPR No decoding is performed.
  • Embodiments of the present application provide the longest TR pattern, which includes multiple TR patterns with different lengths, that is, TR patterns corresponding to multiple carrier bandwidths or RB numbers.
  • TR patterns corresponding to different carrier bandwidths have a nested relationship.
  • the TR pattern corresponding to a large carrier bandwidth is an extension of the TR pattern corresponding to a small carrier bandwidth.
  • the TR patterns corresponding to each carrier bandwidth belong to the sub-patterns of the longest TR pattern.
  • the device only stores the maximum TR pattern. Compared with the TR patterns corresponding to each carrier bandwidth, it can avoid storing TR patterns of different lengths, thereby saving storage space.
  • the performance of determining the target TR pattern based on the longest TR pattern in the embodiment of the present application will not be impaired. That is, the method provided by the embodiments of this application can save storage space while ensuring that system performance is not damaged.
  • a TR pattern of appropriate length can be selected based on the requirement for PAPR suppression performance, and flexible controllability of PAPR suppression performance can be achieved. This can take into account the PAPR suppression performance and the loss of frequency efficiency.
  • the first device and the second device can respectively store multiple TR patterns suitable for different bandwidths or different RB numbers or different IFFT lengths. These TR patterns have nesting characteristics, that is, these TR patterns satisfy the above requirements. TR pattern nesting properties described in Examples.
  • the first device and the second device respectively store the nested data corresponding to Table 6. All or part of the tables in TR Pattern 1 (Table 14), TR Pattern 2 (Table 15), TR Pattern 3 (Table 16), and TR Pattern 4 (Table 17) of the characteristics, where TR Pattern 1, TR Pattern 2, and TR Pattern There is a nesting feature between 3 and TR pattern 4.
  • the first device and the second device can also be configured according to different bandwidths or different RB numbers or different IFFT lengths as shown in Table 1, Table 2, Table 3, Table 4 or Table 5. For the corresponding relationship with the TR pattern length, choose TR pattern 1, TR pattern 2, TR pattern 3 or TR pattern 4.
  • the embodiment of the present application designs the TR pattern to avoid the subcarriers carrying the reference signal. That is to say, the reference signal is carried on subcarriers other than the subcarriers included in the target TR pattern.
  • Table 18 shows several parameters for designing a TR pattern considering the reference signal, namely carrier bandwidth, number of RBs, SCS and reference signal density.
  • the reference signal density is 1/4, that is, 1 subcarrier in every 4 subcarriers is placed with a reference signal. Therefore, when designing the TR pattern, the subcarrier position of the reference signal can be avoided. That is, the subcarrier positions of the reference signal and the subcarrier positions in the TR pattern are prevented from overlapping with each other.
  • the designed longest TR pattern can be as shown in Table 19. Compared with Table 6, Table 19 avoids the subcarrier positions of the reference signal.
  • the longest TR pattern below avoids the subcarrier positions of the reference signal.
  • the longest TR pattern includes the TR patterns corresponding to different carrier bandwidths.
  • the longest TR pattern includes the TR patterns corresponding to different carrier bandwidths.
  • the longest TR pattern includes the TR patterns corresponding to different carrier bandwidths.
  • the longest TR pattern with a length of 88 can be designed. If the density of the reference signal is 1/2, then the longest TR pattern can be as shown in Table 23.
  • the longest TR pattern with a length of 88 can be designed. If the density of the reference signal is 1/4, then the longest TR pattern can be as shown in Table 24.
  • the longest TR pattern with a length of 88 can be designed. like If the density of the reference signal is 1/24, then the longest TR pattern can be as shown in Table 25.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the first device, the second device, and the interaction between the first device and the second device.
  • the first device and the second device may include a hardware structure and/or a software module to implement the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a hardware structure and/or a software module to implement the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Each function Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 may include a processing module 1210 and a transceiver module 1220.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 1210 and the transceiver module 1220 can be coupled with the storage unit.
  • the processing module 1210 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above modules can be set up independently or partially or fully integrated.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the first device in the above method embodiments.
  • the communication device 1200 can be the first device, or can be a component (such as a chip or a device) used in the first device. circuit), or it may be a chip or a chipset in the first device or a part of the chip used to perform related method functions.
  • the communication device 1200 implements the method executed by the first device in the embodiment of the present application.
  • the transceiver module 1220 can be used to receive the first information.
  • the processing module 1210 is configured to determine a target TR pattern according to the first information, and send information or demodulate the received information according to the target TR pattern.
  • the target TR pattern is the sub-pattern of the longest TR pattern.
  • the longest TR pattern includes the set of subcarriers used as reserved carriers.
  • the subcarriers in the longest TR pattern are sorted according to PAPR suppression performance.
  • the longest TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first set of subcarriers corresponding to the first TR subpattern includes the second set of subcarriers corresponding to the second TR subpattern.
  • the first carrier bandwidth corresponding to the first TR sub-pattern is greater than the second carrier bandwidth corresponding to the second TR sub-pattern.
  • subcarriers in the first subcarrier set except the second subcarrier set are located outside the second carrier bandwidth.
  • the subcarriers in the first subcarrier set except the second subcarrier set include a first part of subcarriers and a second part of subcarriers.
  • the first part of the subcarriers is located within the second carrier bandwidth, and the second part of the subcarriers is located outside the second carrier bandwidth.
  • the first information indicates the carrier bandwidth used by the first device
  • the processing module 1210 is specifically configured to: determine the target TR pattern according to the mapping relationship between the number of block RBs and the TR pattern, and the number of RBs corresponding to the carrier bandwidth. length L, and then determine the target TR pattern based on the length L and the longest TR pattern.
  • the processing module 1210 is used to determine the length L of the target TR pattern, including the processing module 1210 also determining the length L according to the PAPR suppression performance requirements.
  • the first information indicates the length L of the target TR pattern
  • the processing module 1210 is specifically configured to determine the target TR pattern based on the length L and the longest TR pattern.
  • the target TR pattern is the first L subcarriers in the longest TR pattern.
  • the transceiver module 1220 is also configured to send second information indicating the PAPR suppression performance requirements of the first device.
  • the reference signal is carried on subcarriers other than the subcarriers included in the target TR pattern.
  • the communication device 1200 implements the method executed by the second device in any embodiment of this application.
  • the processing module 1210 is used to determine first information, which is used to determine a target TR pattern from the longest TR pattern, and the target TR pattern is a sub-pattern of the longest TR pattern.
  • the longest TR pattern includes the set of subcarriers used as reserved carriers.
  • the transceiver module 1220 is used to send the first information to the first device.
  • the subcarrier PAPRs in the longest TR pattern are sorted by their suppression performance.
  • the longest TR pattern includes a first TR sub-pattern and a second TR sub-pattern.
  • the first subcarrier set corresponding to the first TR subpattern includes a second subcarrier set corresponding to the second TR subpattern, wherein the first carrier bandwidth corresponding to the first TR subpattern is greater than the second carrier corresponding to the second TR subpattern. bandwidth.
  • subcarriers in the first subcarrier set except the second subcarrier set are located outside the second carrier bandwidth.
  • the subcarriers in the first subcarrier set except the second subcarrier set include a first part of subcarriers and a second part of subcarriers.
  • the first part of the subcarriers is located within the second carrier bandwidth, and the second part of the subcarriers is located outside the second carrier bandwidth.
  • the first information indicates the carrier bandwidth used by the first device, and the length of the TR pattern has a mapping relationship with the number of RBs corresponding to the carrier bandwidth.
  • the first information indicates the length L of the target TR pattern.
  • the transceiver module 1220 is also configured to receive second information indicating the PAPR suppression performance requirements of the first device.
  • the reference signal is carried on subcarriers other than the subcarriers included in the target TR pattern.
  • processing module 1210 in the embodiment of the present application can be implemented by a processor or processor-related circuit components
  • transceiver module 1220 can be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • FIG 13 is a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • the communication device 1300 may be a first device, capable of realizing the functions of the first device in the method provided by the embodiments of the present application.
  • the communication device 1300 may also be a device that can support the first device to implement the corresponding function in the method provided by the embodiment of the present application, wherein the communication device 1300 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1300 may also be a second device, capable of realizing the functions of the second device in the method provided by the embodiments of this application.
  • the communication device 1300 may also be a device that can support the second device to implement the corresponding function in the method provided by the embodiment of the present application, wherein the communication device 1300 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the communication device 1300 includes one or more processors 1301, which can be used to implement or support the communication device 1300 to implement the function of the first device in the method provided by the embodiment of the present application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • One or more processors 1301 may also be used to implement or support the communication device 1300 in implementing the functions of the second device in the method provided by the embodiments of this application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • the processor 1301 can also be called a processing unit or processing module, and can implement certain control functions.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor, or the like.
  • central processing unit For example, include: central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or neural network processor wait.
  • the central processing unit may be used to control the communication device 1300, execute software programs and/or process data.
  • Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated on one or more application specific integrated circuits.
  • the communication device 1300 includes one or more memories 1302 to store instructions 1304, which can be executed on the processor 1301, so that the communication device 1300 executes the method described in the above method embodiment.
  • the memory 1302 and the processor 1301 may be provided separately or integrated together, or the memory 1302 and the processor 1301 may be considered coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 1301 may cooperate with memory 1302. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1302 is not necessary, so it is illustrated with a dotted line in FIG. 13 .
  • the memory 1302 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the memory 1302 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the communication device 1300 may include instructions 1303 (sometimes also referred to as codes or programs), and the instructions 1303 may be executed on the processor, causing the communication device 1300 to perform the methods described in the above embodiments.
  • Data may be stored in processor 1301.
  • the communication device 1300 may also include a transceiver 1305 and an antenna 1306.
  • the transceiver 1305 may be called a transceiver unit, transceiver module, transceiver, transceiver circuit, transceiver, input/output interface, etc., and is used to realize the transceiver function of the communication device 1300 through the antenna 1306.
  • the processor 1301 and transceiver 1305 described in this application can be implemented in an integrated circuit (IC), Analog IC, radio frequency identification (RFID), mixed signal IC, ASIC, printed circuit board (PCB), or electronic equipment, etc.
  • the communication device that implements the communication described in this article can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • IC integrated circuit
  • RFID radio frequency identification
  • ASIC integrated circuit board
  • PCB printed circuit board
  • the communication device 1300 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, and an antenna. Speakers, microphones, input and output modules, sensor modules, motors, cameras, or displays, etc. It can be understood that in some embodiments, the communication device 1300 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiments may be a first device (or a second device) or a circuit, or may be a chip applied in the first device (or the second device) or other devices having the above-mentioned third device.
  • the transceiver module may be a transceiver, which may include an antenna, a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (system on chip) , SoC), it can also be a CPU, it can be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (micro controller unit, MCU) , it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the processing module may be a processor of a chip system.
  • the transceiver module or communication interface may be the input/output interface or interface circuit of the chip system.
  • the interface circuit may be a code/data read and write interface circuit.
  • the interface circuit can be used to receive code instructions (code instructions are stored in the memory and can be read directly from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor can be used to run all The code instructions are used to execute the methods in the above method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and/or a communication interface;
  • the processing unit may be an integrated processor or microprocessor or an integrated circuit.
  • An embodiment of the present application also provides a communication system.
  • the communication system includes at least one first device and at least one second device.
  • the communication system includes a first device and a second device for implementing the related functions of Figure 4 mentioned above.
  • the relevant descriptions in the above method embodiments which will not be described again here.
  • An embodiment of the present application also provides a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the second device in Figure 4 . Or, when it is run on the computer, the computer is caused to execute the method executed by the first device in FIG. 4 .
  • An embodiment of the present application also provides a computer program product, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the second device in Figure 4 . Or, when it is run on the computer, the computer is caused to execute the method executed by the first device in FIG. 4 .
  • Embodiments of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory, for realizing the functions of the second device in the foregoing method; or for realizing the functions of the first device in the foregoing method.
  • This chip is The system can be composed of chips, or it can include chips and other discrete devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), RAM, magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及通信装置,所述方法包括:第一设备接收第一信息,根据第一信息确定目标TR图样,并根据目标TR图样发送信息或解调所接收的信息。其中,目标TR图样为最长TR图样的子图样。最长TR图样包括用作预留载波的子载波的集合。最长TR图样可包括多个不同长度的TR子图样。例如,第一长度对应的第一TR图样为最长TR图样的子图样,第二长度对应第二TR图样也为最长TR图样的子集。不同长度的TR子图样可对应不同的载波带宽或RB数等。这样设备只需要存储最长TR图样,就可以根据最长TR图样选择合适长度的TR图样作为目标TR图样。无需单独存储各个载波带宽或RB数分别对应的TR图样,可避免重复存储不同长度的TR图样的相同部分,从而节省存储空间。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2022年05月13日提交中华人民共和国知识产权局、申请号为202210524035.X、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
载波预留(tone reservation,TR)技术可用作抑制波形的峰均功率比(peak-to-average power ratio,PAPR)。即,发送端预留一些子载波用于承载抑制PAPR的信号。用作抑制PAPR的预留载波所对应的子载波编号组成的图样(pattern),称为TR图样。不同的载波带宽或资源块(resources block,RB)数或傅里叶变换的长度,使用的TR图样不同。目前,针对不同的载波带宽或RB数或傅里叶变换的长度,发送端和接收端存储相应的TR图样,这就需要存储多个TR图样,需要较多的存储空间。
发明内容
本申请提供一种通信方法及通信装置,用于节省存储TR图样的存储空间。
第一方面,本申请实施例提供一种通信方法,该方法可由第一设备执行,第一设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备是第一设备为例进行描述。示例性地,所述第一设备为第一设备,或者为设置在第一设备中的芯片,或者为用于实现第一设备的功能的其他部件。
所述通信方法包括:第一设备接收第一信息,根据第一信息确定目标TR图样,并根据目标TR图样发送信息或解调所接收的信息。其中,目标TR图样为最长TR图样的子图样。最长TR图样包括用作预留载波的子载波的集合。最长TR图样可包括多个不同长度的TR子图样。例如,第一长度对应的第一TR图样为最长TR图样的子图样,第二长度对应第二TR图样也为最长TR图样的子集。不同长度的TR子图样可对应不同的载波带宽或RB数等。这样设备只需要存储最长TR图样,就可以根据最长TR图样选择合适长度的TR图样作为目标TR图样。无需单独存储各个载波带宽或RB数分别对应的TR图样,可避免重复存储不同长度的TR图样的相同部分,从而节省存储空间。
在可能的实现方式中,最长TR图样中的子载波按照PAPR的抑制性能排序。按照PAPR的抑制性能对最长TR图样包括的子载波进行排序。在选择目标TR图样时,从最长TR图样中的第一个子载波开始选择固定长度的TR子图样作为目标TR图样,可达到较优的PAPR的抑制性能。
在可能的实现方式中,最长TR图样包括第一TR子图样和第二TR子图样。其中,第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合。第一TR 子图样对应的第一载波带宽大于第二TR子图样对应的第二载波带宽。即大载波带宽对应的TR图样是小载波带宽对应的TR图样的扩展,也就是,不同载波带宽对应的TR图样具有嵌套关系。在节约存储空间的同时,可以提供更多大小不同载波带宽对应的TR图样。
在可能的实现方式中,第一子载波集合中除第二子载波集合之外的子载波位于第二载波带宽之外。
在可能的实现方式中,第一子载波集合中除第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波。其中,第一部分子载波位于第二载波带宽内,第二部分子载波位于第二载波带宽外。
在可能的实现方式中,第一信息指示第一设备使用的载波带宽,第一设备根据第一信息确定目标TR图样,包括:第一设备根据RB数与TR图样的映射关系,以及载波带宽对应的RB数确定目标TR图样的长度L,再根据长度L和最长TR图样确定目标TR图样。可预定义RB数和TR图样的长度的映射关系,从而第一设备可根据使用的载波带宽确定目标TR图样的长度,进而从最长TR图样中确定目标TR图样。
在可能的实现方式中,第一设备确定目标TR图样的长度L,还包括:第一设备还根据PAPR的抑制性能需求确定长度L。基于预定义的最长TR图样,第一设备确定目标TR图样时,还可以根据对PAPR的抑制性能需求确定目标TR图样。即由于最长TR图样包括多种不同长度的TR子图样,因此,可满足对PAPR抑制的可控性,更为灵活。
在可能的实现方式中,第一信息指示目标TR图样的长度L,第一设备根据第一信息确定目标TR图样,包括:第一设备根据长度L和最长TR图样确定目标TR图样。第二设备可确定第一设备使用的目标TR图样,这种情况下,第二设备可直接向第一设备提供目标TR图样的长度。无需第一设备先根据载波带宽等确定要使用的目标TR图样的长度,降低第一设备的处理复杂度。
在可能的实现方式中,目标TR图样为最长TR图样中前L个子载波。
在可能的实现方式中,所述方法还包括:第一设备发送第二信息,该第二信息指示第一设备对PAPR的抑制性能需求。第一设备可将对PAPR的抑制性能需求上报给第二设备,以辅助第二设备为第一设备确定较优PAPR抑制性能的目标TR图样的长度。
在可能的实现方式中,参考信号承载于目标TR图样包括的子载波之外的子载波。
第二方面,本申请实施例提供一种通信方法,该方法可由第二设备执行,第二设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如,芯片系统。下面以所述通信设备是第二设备为例进行描述。示例性地,所述第二设备为第二设备,或者为设备在第二设备中的芯片,或者为用于实现第二设备的功能的其他部件。
所述通信方法包括:第二设备确定第一信息,并向第一设备发送第一信息。其中,第一信息用于从最长TR图样中确定目标TR图样,该目标TR图样为最长TR图样的子图样。最长TR图样包括用作预留载波的子载波的集合。
在可能的实现方式中,最长TR图样中的子载波按照PAPR的抑制性能排序。
在可能的实现方式中,最长TR图样包括第一TR子图样和第二TR子图样。其中,第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,第一TR子图样对应的第一载波带宽大于第二TR子图样对应的第二载波带宽。
在可能的实现方式中,第一子载波集合中除第二子载波集合之外的子载波位于第二载波带宽之外。
在可能的实现方式中,第一子载波集合中除第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波,其中,第一部分子载波位于第二载波带宽内,第二部分子载波位于第二载波带宽外。
在可能的实现方式中,第一信息指示第一设备使用的载波带宽,所述载波带宽对应的RB数与TR图样的长度具有映射关系。
在可能的实现方式中,第一信息指示目标TR图样的长度L。
在可能的实现方式中,所述方法还包括:第二设备接收第二信息,并根据第二信息确定第一信息。该第二信息指示第一设备对PAPR的抑制性能需求。
在可能的实现方式中,参考信号承载于目标TR图样包括的子载波之外的子载波。
关于第二方面以及第二方面的各个可能的实施方式所带来的技术效果,可以参考对第一方面以及第一方面的各个可能的实施方式的技术效果的介绍。
第三方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面至第二方面中任意一方面方法实施例中行为的功能,有益效果可以参见第一方面至第二方面的描述,此处不再赘述。
该通信装置可以是第一方面中的第一设备,或者该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片系统。在一个可能的设计中,该通信装置包括用于执行第一方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
该通信装置可以是第二方面中的第二设备,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片系统。在一个可能的设计中,该通信装置包括用于执行第二方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面至第四方面中的任意一方面的通信装置,或者为设置在第三方面至第四方面中的任意一方面中的通信装置中的芯片或芯片系统。该通信装置可以为第一设备或第二设备。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法中由第一设备或第二设备所执行的方法。
第五方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面至第二方面中的任意一个方面中所述的方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括 存储器和/或通信接口,用于实现第一方面至第二方面中的任意一个方面中所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存计算机程序。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例提供了一种通信系统,所述通信系统包括第一设备和第二设备,其中,第一设备用于执行上述第一方面中由第一设备所执行的方法,第二设备用于执行上述第二方面中由第二设备所执行的方法。当然,所述通信系统可以包括更多第一设备或更多第二设备。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面至第二方面中任意一方面的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面至第二方面中任意一方面的方法被执行。
上述第三方面至第九方面及其实现方式的有益效果可以参考对第一方面至第二方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种通信系统的架构示意图;
图2为本申请实施例适用的另一种通信系统的架构示意图;
图3为本申请实施例适用的又一种通信系统的架构示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的载波带宽与TR图样的一种映射示意图;
图6为本申请实施例提供的载波带宽与TR图样的另一种映射示意图;
图7为本申请实施例提供的确定目标TR图样的示意图;
图8为本申请实施例提供的TR图样的长度和PAPR的抑制性能的一种关系示意图;
图9为本申请实施例提供的不同长度的TR图样与PAPR的抑制性能的一种关系示意图;
图10为本申请实施例提供的PAPR抑制性能与TR图样的一种映射示意图;
图11为本申请实施例提供的PAPR抑制性能与TR图样的另一种映射示意图;
图12为本申请实施例提供的通信装置的一种结构示意图;
图13为本申请实施例适用的通信装置的另一种结构示意图。
具体实施方式
本申请的实施例提供的技术方案可以应用于第五代(5th generation,5G)移动通信系统,例如新无线(new radio,NR)系统,或者应用于长期演进(Long term evolution,LTE)系统,非陆地网络(non terrestrial networks,NTN)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统。本申请的实施例提供的技术方案也可以应用于车到万物(vehicle to everything,V2X)系统,物联网(internet of things,IoT)系统,窄带物联网(narrow band internet of things,NB-IoT)系统等,例如基于无线保真(wireless fidelity,WiFi)的IoT网络或可穿戴式WiFi网络。
作为一种示例,请参见图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统可包括网络设备和两个终端设备,这两个终端设备可以是移动终端设备和/或用于在无线通信系统上通信的任意其它适合设备,且均可以与网络设备连接。这两个终端设备均能够与网络设备通信。当然图1中的终端设备的数量只是举例,还可以更少或更多。另外,图1中的终端设备也是示意,例如终端设备也可以是智能水表等物联网设备。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备(device to device,D2D)、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景中的终端设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,用于实现终端设备功能的通信装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。在本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,网络设备可以是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B)(也简称为eNB或e-NodeB);网络设备也可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为站点(station)、中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、机器到机器(machine to machine,M2M)网络中的设备、物联网IoT网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路 控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。CU的控制面CU-CP还包括一种进一步切分的架构,即把现有的CU-CP进一步切分为CU-CP1和CU-CP2。其中CU-CP1包括各种无线资源管理功能,CU-CP2仅包括RRC功能和PDCP-C功能(即控制面信令在PDCP层的基本功能)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为无线接入网(radio access network,RAN)侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
作为另一种示例,请参见图2,为本申请实施例适用的另一种通信系统的网络架构示意图。该通信系统包括卫星、终端设备和网关。卫星可以是高椭圆轨道(highly elliptical orbiting,HEO)卫星、地球静止轨道卫星(geosynchronous earth otbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。此外,NTN系统还可以包括高空平台(high altitude platform station,HAPS)等,这里不作限制。网关(或称地面站、地球站、信关站、关口站)(gateway),可用于连接卫星和地面基站关口站/信关站(gateway)。一个或多个卫星可以通过一个或多个网关连接到一个或多个地面基站,在此不做限制。终端设备,例如包括手机、飞机等(图2以此为例)。卫星与终端设备间的链路称作服务链路(service link),卫星与网关间的链路称作馈电链路(feeder link)。
本申请实施例对卫星的工作模式不作限制,例如,卫星的工作模式可以是透传(transparent)模式,也可以是再生(regenerative)模式。
透传模式,即,卫星作为一个模拟射频中继器,具有中继转发的功能,可以实现无线频率转换和放大,可透传或复制基站与终端设备之间的信号。例如,终端设备发送的信号可用过卫星透传,网关转发进入地面基站。网关具有基站的部分功能或全部功能,此时可以将网关看作为基站。可以认为,网元与基站可以部署在一起,也可以分开部署。如果网关与基站分开部署,那么馈电链路的时延包括卫星到网关的时延和网关到基站的时延。
再生模式,即卫星作为无线通信的基站,具有基站的部分功能或全部功能,实现从地面接收的信号的再生,可以理解并处理这些信号。例如,卫星可以是搭载在人造地球卫星或高空飞行器上的基站,例如基站可以为演进型基站(eNB)或5G基站(gNB)等。网关可转发卫星(即基站)与核心网之间的信令。
可以理解的是,本申请实施例也可以适用于空地(air to ground,ATG)通信系统,作为示例,请参见图3,为本申请实施例适用的又一种通信系统的网络架构示意图。该通信系统包括至少一个网络设备和至少一个高空终端设备,例如高空飞机和机上终端设备。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,第一TR图样和第二TR图样,可以是同一个TR图样,也可以是不同的TR图样,且,这种名称也并不是表示这两种TR图样的大小、内容、优先级、应用场景或者重要程度等的不同。
如上介绍了本申请实施例适用的通信系统,下面介绍本申请实施例主要涉及的相关技术内容。
卫星设备受限于制造与发射成本,星上数据处理能力与发射功率都会受到限制。具体来说,卫星设备属于能量和功率受限设备,对星上功率效率敏感,即期望尽可能提高卫星设备的功率效率。在陆地蜂窝网通信或NTN通信中均要求发射端的高功率放大器(high power amplifier,HPA)工作在线性饱和区附近,以提高HPA的功率效率。
如果系统采用正交频分复用(orthogonal frequency division multiplexing,OFDM)波形或具有高PAPR特性的波形来传输数据,会出现高PAPR。由于OFDM信号的PAPR较大,因此当HPA工作在饱和点附近时,输入HPA的信号有较一定概率进入非线性区域而产生非线性失真。非线性失真会引入带内失真和带外辐射,既会影响接收端的解码正确率,也会给相邻信道用户带来干扰。为此,可通过对输入的HPA信号做功率回退,尽量减少HPA的非线性失真。对输入的HPA信号做功率回退,可以理解为是,降低输入HPA信号的功率。对输入的HPA信号做功率回退,虽然可以减少HPA的非线性失真,但是会降低HPA输出的信号功率,从而降低了发射功率、降低了HPA的功率效率,进而导致接收端的信号接收功率的降低,降低了接收端的信噪比。为此,提出通过TR技术抑制OFDM等波形的PAPR。TR技术,可以理解为,保留一部分预留载波作为抑制PAPR的载波。用于抑制PAPR的预留载波可以包括多个子载波,也称为载波集合。该载波集合包括的各个子载波分别对应的子载波编号组成的图样(pattern),称为TR图样。即TR图样可指示用于抑制PAPR的预留载波的集合。
可以理解的是,在发送端保留用于抑制PAPR的预留载波,承载抑制PAPR的信号,除去预留载波之外的部分载波用于承载数据信号。当然,为了提高频谱效率,也可以在预留载波上承载数据信号,即预留载波既可以承载抑制PAPR的信号,又可以承载数据信号。可选地,承载抑制PAPR的信号的载波集合和承载数据信号的载波集合不重叠(本文以此为例)。对于接收端来说,在解调从发送端接收的信息时,可跳过或去除用于抑制PAPR的预留载波,也就是对用于抑制PAPR的预留载波上的信号不进行译码。关于基于TR图样抑制PAPR的原理为现有技术,此处不作赘述。
不同载波带宽或RB数或傅里叶变换的长度,使用的TR图样不同。目前,因此针对 不同载波带宽或RB数或傅里叶变换的长度,需要存储对应的TR图样,这就需要发送端和接收端保存较多的TR图样,占用较多的存储空间。且需要更多的信令开销来指示使用某个TR图样。例如,第一长度对应第一TR图样,第二长度对应第二TR图样,在发送端和接收端分别存储第一TR图样和第二TR图样。如果第一长度大于第二长度,第一TR图样包括第二TR图样包括的部分子载波,因此,重复存储了部分子载波,较为浪费存储空间。需要说明的是,傅里叶变换可以包括快速傅里叶变化(fast fourier transform,FFT)、快速傅里叶逆变换(inverse fast fourier transform,IFFT)、离散傅里叶变换(discrete fourier transform,DFT)、离散傅里叶逆变换(inverse discrete fourier transform,IDFT)。
鉴于此,提供本申请实施例的方案。本申请实施例提供最长TR图样,一个载波带宽或RB数或傅里叶变换的长度对应的TR图样,为最长TR图样的子图样。例如,在发送端和接收端存储最长TR图样。第一长度对应的第一TR图样为最长TR图样的子图样,第二长度对应第二TR图样也为最长TR图样的子集。各个长度对应的TR图样都属于最长TR图样的子图样,只存储最大TR图样,相较于单独存储第一TR图样和第二TR图样来说,可节省存储空间。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供了一种通信方法,该方法可应用任意通信系统,只要发送端和接收端通信即可。下文的介绍中,以该通信方法应用于图1-图3所示的任意通信系统。本申请实施例提供的通信方法,可以应用于上行传输,也可以应用于下行传输。应理解,上行传输和下行传输是相对而言的,例如,从第一设备到第二设备的传输为上行传输,那么从第二设备到第一设备的传输为下行传输。可以理解的是,下行传输中TR图样与系统带宽相关,上行传输中,TR图样与第一设备使用的载波带宽相关。也可以理解为,上行传输中,将TR图样与第一设备使用的载波带宽映射,下行传输中,将TR图样与系统带宽映射。另外,本申请实施例不限于采用OFDM波形传输数据,例如,也可以采用DFT-S-OFDM波形传输数据。即可将数据先进行DFT预编码,然后映射到频域数据子载波上。如无特殊说明,下文中的“载波带宽”、“系统带宽”和“小区带宽”可替换。另外,载波带宽/系统带宽/小区带宽也可以通过RB个数或资源元素(resources element,RE)个数来表征。本申请实施例中,最长TR图样的各个表中奇数行表示TR图样中的元素的序号(用黑体示意),偶数行表示TR图样包括的子载波的编号。
请参见图4,为本申请实施例提供的通信方法的流程示意图。在下文的描述中,以该通信方法通过第一设备和第二设备执行为例。第一设备可以是终端设备,第二设备可以是网络设备。
S401、第一设备接收第二设备发送的第一信息,相应的,第二设备向第一设备发送第一信息。
第一信息可用于第一设备从最长TR图样中确定目标TR图样。最长TR图样包括多个TR子图样,目标TR图样为这多个TR子图样的一个TR子图样。可以理解的是,最长TR图样包括用作预留载波的子载波的集合。一个TR子图样对应一个子载波集合。关于第一信息将在后文中介绍,此处暂不作介绍。
目标TR图样与第一设备使用的载波带宽相关,不同的载波带宽对应的目标TR图样的长度L不同。应理解,载波带宽也可以说,目标TR图样与第一设备使用的载波带宽对应的RB数相关,不同的RB数对应的目标TR图样的长度L不同。本申请实施例可将载 波带宽或RB数与TR图样的长度L进行映射,从而第一设备根据使用的载波带宽或RB数确定目标TR图样的长度L,再根据长度L从最长TR图样中确定目标TR图样。例如,第一设备将最长TR图样中前L个子载波的集合作为目标TR图样。
请参见表1,示出了载波带宽与TR图样的长度L的一种映射关系。可以理解的是,载波带宽与子载波间隔(sub-carrier space,SCS)相关。表1示意了SCS分别为60K和120K的情况下,载波带宽与TR图样长度L的映射关系。
表1
从表1中可以看出,当子载波间隔为120K、载波带宽为50MHz时,TR图样长度L为12。当子载波间隔为120K、载波带宽为100MHz时,TR图样长度L为24。当子载波间隔为60K、载波带宽为25MHz时,TR图样长度L为12,等等。因此,第一设备根据表1以及使用的载波带宽可确定目标TR图样的长度L。其中,表1可以是预定义的,也可以是预配置的,或者表1可以是第一设备和第二设备约定的,对此本申请实施例不作限制。另外,表1仅是举例,可以理解的是,针对各个不同的SCS,可将载波带宽与TR图样长度L作映射。
请参见表2,示出了RB数与TR图样的长度L的一种映射关系。
表2
从表2中可以看出,当RB数为32时,TR图样长度L为12。当RB数为66时,TR图样长度L为24,等等。因此,第一设备根据表2以及使用的载波带宽对应的RB数或分配的频域资源的RB数可确定目标TR图样的长度L。其中,表2可以是预定义的,也可以是预配置的,也可以是第二设备指示的,或者,表2可以是第一设备和第二设备约定的,对此本申请实施例不作限制。
另外,表2仅是举例,可以理解的是,RB数可以与子载波间隔(sub-carrier space,SCS)相关。针对各个不同的SCS,可将RB数与TR图样长度L作映射。例如,请参见表3。表3示意了SCS分别为60K和120K的情况下,RB数与TR图样长度L的映射关系。
表3
从表3中可以看出,当子载波间隔为120K、RB数为32时TR图样长度L为12。当子载波间隔为120K、RB数为66时,TR图样长度L为24。当子载波间隔为60K、RB数为65时,TR图样长度L为12,等等。因此,第一设备根据表2以及使用的载波带宽对应的RB数可确定目标TR图样的长度L。其中,表3可以是预定义的,也可以是预配置的,或者表3可以是第一设备和第二设备约定的,对此本申请实施例不作限制。另外,表3仅是举例。
可以理解的是,载波带宽与RB数相关。作为表1-表3的可替换表,请参见表4,示意了载波带宽、RB数以及TR图样的长度L的一种映射关系。其中,表4中的载波带宽以SCS为120K为例。
表4
表4可以是预定义的,也可以是预配置的,也可以是第二设备指示的,或者表4可以是第一设备和第二设备约定的,对此本申请实施例不作限制。另外,表4仅是举例,可以理解的是,针对各个不同的SCS,可将RB数与TR图样长度L作映射。
本申请实施例也可以将FFT/IFFT的长度与TR图样的长度L作映射,从而基于FFT/IFFT的长度可确定目标TR图样的长度L。示例性的,请参见表5,示出了FFT/IFFT的长度与TR图样的长度L的一种映射关系。
表5
最长TR图样中的子载波可按照PAPR的抑制性能排序。示例性的,请参见表6,示出了一种最长TR图样。
表6
表6中,奇数行表示TR图样中的元素的序号(用黑体示意),偶数行表示TR图样包括的子载波的编号。表6以子载波的编号从1开始。例如,表6中第5个元素表示预留的子载波的编号为58,即表6中的第5个元素表示预留的子载波为载波带宽中索引为第58个子载波。需要说明的是,本申请实施例对子载波的起始编号不作限制。例如,如果约定以0作为子载波的起始编号,那么可将表6中各个子载波的编号减1。沿用上述的例子,如果子载波的编号从0开始,那么表6中第5个元素表示预留的子载波为载波带宽中索引为57的子载波。
可以理解的是,表6中的子载波编号可为有效子载波编号,也就是,表6中子载波编号对应的子载波为除保护带之外的子载波。这样可避免由于保护带的存在,不同带宽下的子载波的编号的偏移不同带来的复杂度。
表6示意了一种最长TR图样,从表6可以看出,最长TR图样的长度为96。表6可指示多个长度的TR图样,例如,长度为12的TR图样、长度为24的TR图样、长度为48的TR图样,长度为96的TR图样。其中,各个长度的TR图样均为最长TR图样的子图样。第一设备和第二设备可存储如表6所示的TR图样,相较于,存储长度为12的TR图样、长度为24的TR图样、长度为48的TR图样,以及长度为96的TR图样来说,可避免存储多个不同长度的TR图样,从而节省存储空间。
最长TR图样包括多个长度的TR子图样,也可以认为,最长TR图样包括多个大小不 同的带宽分别对应的TR子图样。且,大带宽对应的TR子图样对应的子载波集合包括小带宽对应的TR图样子图样。例如,最长TR图样包括第一TR子图样和第二TR子图样。第一TR子图样对应的第一子载波集合可包括第二TR子图样对应的第二子载波集合,其中,第一TR子图样对应的第一载波带宽大于第二TR子图样对应的第二载波带宽。也可以认为,大载波带宽对应的TR图样是小载波带宽对应的TR图样的扩展。即不同载波带宽对应的TR图样具有嵌套关系。
为了方便理解,请参见图5,为载波带宽与TR图样的映射示意图。图5以最长TR图样为载波带宽4对应的TR图样,即TR图样4。从图5可以看出,载波带宽1小于载波带宽2,载波带宽2小于载波带宽3,载波带宽3小于载波带宽4。相应的,TR图样4对应的子载波集合包括TR图样3对应的子载波集合,TR图样3对应的子载波集合包括TR图样2对应的子载波集合,TR图样2对应的子载波集合包括TR图样1对应的子载波集合。
需要说明的是,本申请实施例对大载波带宽对应的子载波集合相较于小载波带宽对应的子载波集合,新增加的子载波的具体位置不作限制。举例来说,第一载波带宽大于第二载波带宽,第一载波带宽对应的第一子载波集合,第二载波带宽对应第二子载波集合。本申请实施例对第一子载波集合中除第二子载波集合之外的子载波的具体位置不作限制。例如,第一子载波集合中除第二子载波集合之外的子载波可以位于第二载波带宽之外。又例如,第一子载波集合中除第二子载波集合之外的子载波可以包括第一部分和第二部分,第一部分可以位于第二载波带宽之内,第二部分可以位于第二载波带宽之外。
为了方便理解,请参见图6,为载波带宽与TR图样的映射示意图。图6以包括TR图样1和TR图样2为例。其中,TR图样与载波带宽对应。图6中虚线箭头表示TR图样2对应的子载波集合2包括的子载波。实线箭头表示相较于子载波集合2,TR图样1对应的子载波集合1中新增加的子载波。从图6中可以看出,相较于子载波集合2,子载波集合1中新增加的子载波包括位于载波带宽2中的子载波和载波带宽2之外的子载波。
需要说明的是,本申请实施例对最长TR图样中各个TR子图样对应的载波带宽的起始位置不作限制。也就是,各个TR子图样对应的载波带宽的起始位置可以是相同的,也可以是不同的。类似地,不同TR图样的起始位置可以相同,也可以是不同的。即本申请实施例对不同TR图样包括的第一个子载波的编号是否相同不作限制。
需要说明的是,表6仅是举例,本申请实施例对表6中的子载波的编号不作限制。也可以理解为,表6是根据PAPR的一种抑制性能排序得到的,根据PAPR的一种抑制性能排序可得到类似表6的最长TR图样。类似表6的最长TR图样可根据表6得到,作为另一最长TR图样,可替换表6。为方便描述,将表6的最长TR图样称为第一最长TR图样,将可替换表6的最长TR图样称为第二最长TR图样。
作为一种示例,以子载波的编号从1开始,第二最长TR图样中的子载波的编号和第一最长TR图样中的子载波的编号之间的关系可满足:
reserved_tones_index_new=mod(reserved_tones_index_old+△k-1,IFFT_length)+1。
其中,reserved_tones_index_new为第二最长TR图样中的子载波的编号,reserved_tones_index_old为第一最长TR图样中的子载波的编号,△k表示第一最长TR图样整体的偏移值或循环移位值,IFFT_length表示第二最长TR图样中的子载波的编号的循环移位周期(与载波带宽相关或与生成OFDM/DFT-s-OFDM信号的IFFT长度相关)。
可以理解的是,以子载波的编号从0开始,第二最长TR图样中的子载波的编号和第 一最长TR图样中的子载波的编号之间的关系可满足:
reserved_tones_index_new=mod(reserved_tones_index_old+△k,IFFT_length)。
作为另一种示例,可以通过对第一最长TR图样的子载波的编号进行循环移位获得第二最长TR图样。例如,第二最长TR图样中的子载波的编号和第一最长TR图样中的子载波的编号之间的关系可满足:
reserved_tones_index_new=circleshift(reserved_tones_index_old,△k,IFFT_length)。
其中,d=circleshift(a,b,c)表示对a偏移b后按照周期c做循环移位得到d。
可以理解的是,如果预定义表1-表4,那么第一信息可指示第一设备所使用的载波带宽。这种情况下,第一设备可根据载波带宽以及表1(或表2或表4)确定目标TR图样的长度L,进而从表6中选择前L个子载波作为目标TR图样。举例来说,第一信息指示第一设备所使用的载波带宽为100MHz(SCS=120KHz)或RB数为66,第一设备根据第一信息和表1或表2或表4可确定目标TR图样的长度L为24。第一设备可从表6中选择前24个子载波作为目标TR图样,如表7所示。或者,第一信息可指示目标TR图样的长度L为24,第一设备可从表6中选择前24个子载波作为目标TR图样,如表7所示。
表7
或者,如果预定义表2或表3或表4,那么第一信息可指示第一设备所使用的载波带宽。这种情况下,第一设备可根据载波带宽对应的RB数,以及表2(或表3或表4)确定目标TR图样的长度L,进而从表6中选择前L个子载波作为目标TR图样。举例来说,第一信息指示第一设备所使用的载波带宽为200MHz,第一设备根据第一信息确定RB数为132,根据表2或表3或表4可确定目标TR图样的长度L为78。第一设备可从表6中选择前48个子载波作为目标TR图样,如表8所示。或者,第一信息可指示目标TR图样的长度L为48,第一设备可从表6中选择前48个子载波作为目标TR图样,如表8所示。
表8

可选地,如果第一设备使用的载波带宽(例如称为第一带宽)小于表1或表2或表3对应映射的载波带宽(例如称为第二带宽),目标TR图样对应子载波集合A,子载波集合A可根据子载波集合B包括的子载波个数和子载波集合C确定。其中,子载波集合B为第一带宽内的所有子载波集合,子载波集合C为与第二带宽对应的TR图样所对应的子载波集合。具体的,第一设备根据使用的载波带宽(例如称为第一带宽)或带宽的RB数或使用的频域资源的RB数确定占用的子载波数量Num_subcarrier(例如,为12×RB数)。当载波带宽内的子载波编号从0开始,第一设备从子载波集合C中,选择编号不大于(Num_subcarrier-1)的子载波组成目标TR图样。即将子载波集合C中编号≤Num_subcarrier-1的子载波组成的集合作为目标TR图样。当载波带宽内的子载波编号从1开始,第一设备可从子载波集合C中选择编号不大于Num_subcarrier的子载波组成目标TR图样。即将子载波集合中编号≤Num_subcarrier的子载波组成的集合作为目标TR图样。
举例来说,第一设备使用的载波带宽为40MHz或使用25个RB(例如称为第一带宽),小于表1或表2或表4中的50MHz或32个RB(例如称为第二带宽)。这种情况下,可从表6中确定长度为12的TR图样,将该TR图样中与40MHz或25个RB包含的子载波重叠的部分作为目标TR图样。例如,40MHz带宽或25个RB(300个子载波),那么可将表6中的前12个预留子载波与25个RB相重叠的部分作为目标TR图样。表6以子载波的编号从1开始,根据reserved tones index≤300得到要使用的TR图样的预留子载波索引号的组合,即目标TR图样对应的子载波集合为{5,42,58,294,67,102,53}。
作为一种可替换的方案,也可以不定义如表1-表5。这种情况下,可预定义初始TR图样,该初始TR图样可以为最长TR图样,也可以是不同于最长TR图样的TR图样。例如初始TR图样的长度小于最长TR图样的TR图样。第一设备可将使用的载波带宽包括的子载波与初始TR图样包括的子载波中相重叠的子载波组成的集合作为目标TR图样。为了便于理解,请参见图7,示出了确定目标TR图样的一种方式。图7中以第一设备使用的载波带宽为载波带宽1、载波带宽2或载波带宽3为例。其中,载波带宽1包括的子载波与初始TR图样对应的子载波集合重叠的子载波组成的集合为TR图样1;载波带宽2包括的子载波与初始TR图样对应的子载波集合重叠的子载波组成的集合为TR图样2;载波带宽3包括的子载波与初始TR图样对应的子载波集合重叠的子载波组成的集合为TR图样3。
或者,也可以理解为,初始TR图样包括的子载波的编号属于载波带宽包括的子载波的编号。当第一设备使用的载波带宽为载波带宽1时,第一设备可根据载波带宽1对应的RB数确定占用的子载波数量Num_subcarrier。例如,Num_subcarrier为12×RB数。当载波带宽内的子载波的编号从0开始时,第一设备可从初始TR图样中选择编号不大于(Num_subcarrier-1)的子载波组成的集合作为目标TR图样。即,将初始TR图样中编号≤Num_subcarrier-1的子载波组成的集合作为目标TR图样,或者,将初始TR图样中编号≤Num_subcarrier的子载波组成的集合作为目标TR图样。当载波带宽内的子载波的编号从1开始时,第一设备可从初始TR图样中选择编号不大于Num_subcarrier的子载波组成的集合作为目标TR图样。即,将初始TR图样中编号≤Num_subcarrier的子载波组成的集合作为目标TR图样,或者,将初始TR图样中编号≤Num_subcarrier+1的子载波组成的集合 作为目标TR图样。
为方便理解,以初始TR图样为表6中的最长TR图样为例。当第一设备使用的载波带宽为100MHz或66个RB时,对应的Num_subcarrier=66*12=792。表6中的子载波的编号从1开始,第一设备可从表6中选择编号≤Num_subcarrier的子载波组成的TR图样作为目标TR图样,即第一设备选择编号≤792的子载波组成的子载波集合1作为目标TR图样。对应表6,可知子载波集合1为{362,307,5,42,58,340,306,294,67,379,102,53,646,625,751,720,758,196,396,215,619,87,183,112}。应理解,如果子载波的编号从0开始,那么第一设备选择编号≤Num_subcarrier-1的子载波组成的TR图样作为目标TR图样,即第一设备选择编号≤791的子载波组成的子载波集合2作为目标TR图样。应理解,子载波集合1中各个子载波的编号减1得到子载波集合2。
在可能的实现方式中,可以预定义最长TR图样和初始TR图样。这种情况下,第一设备可根据使用的载波带宽或RB数从初始TR图样中确定一个TR图样,例如称为初始目标TR图样。该初始目标TR图样的长度例如为L1。第一设备也可以根据载波带宽和表1或表2或表4确定长度为L2的TR图样。第一设备将长度为L1的TR图样和长度为L2的TR图样的交集作为目标TR图样。举例来说,第一设备从初始目标TR图样中确定长度为10的TR图样,第一设备根据载波带宽和表1或表2或表4确定长度为12的TR图样,第一设备可将长度为12的TR图样中的前10个子载波作为目标TR图样。
需要说明的是,表1-表5中TR图样的长度仅是举例,本申请实施例对表1-表5中TR图样的长度不作限制。可以理解的是,TR图样的长度和与PAPR的抑制性能相关,而PAPR的抑制性能较好时,可能导致较低的频谱效率,因此,本申请实施例可兼顾PAPR的抑制性能和频谱效率来确定合适的TR图样。
例如,请参见图8,为TR图样的长度和PAPR的抑制性能的一种关系示意图。图8以RB数为132时,不同长度的TR图样对应的PAPR的抑制性能为例。图8横坐标为PAPR阈值PAPR0,纵坐标为PAPR的互补累积分布统计Probability[PAPR>PAPR0]。从图8中可以看出,随着TR图样长度的增大,PAPR抑制性能更好,但是频谱效率也会越来越低。因此,考虑频谱效率的降低,本申请实施例根据PAPR抑制性能需求设计合适的TR图样长度。TR图样的长度越长,PAPR抑制增益越来越小,趋近于收敛。保持一定范围内的频谱效率,经过实验确定TR图样的长度不大于数据带宽(或IFFT长度)的10%,可得到大部分PAPR抑制增益。例如,RB数为32的带宽,TR图样的长度不超过52,可获得大部分的PAPR抑制增益。RB数为66的带宽,TR图样的长度不超过102,可获得大部分的PAPR抑制增益。RB数为132的带宽,TR图样的长度不超过158,可获得大部分的PAPR抑制增益。RB数为264的带宽,TR图样长度不超过316,可获得大部分的PAPR抑制增益。因此,考虑到实际频谱效率的损失,本申请实施例可确定如表1-表5中的TR图样的长度,既可以保证PAPR的抑制性能,又可以尽量减少频谱效率的损失,例如可保证3%左右的频谱效率损失。
举例来说,请参见图9,为不同长度的TR图样与PAPR的抑制性能的一种关系示意图。图9以RB数为32和264,与32的RB数对应的TR图样的长度为8和12,与为264的RB数对应的TR图样的长度为56和96为例。相应的,TR图样的长度、RB数、PAPR抑制性能和频谱效率损失的关系如表9所示。图9横坐标为PAPR阈值PAPR0,纵坐标为PAPR的互补累积分布统计Probability[PAPR>PAPR0]。
表9
从表9中可以看出,RB数为32时,TR图样的长度为8、PAPR大于1e-3时,PAPR抑制增益为3.2dB,频谱效率损失为2.08%。当TR图样的长度为12、PAPR大于1e-3时,PAPR抑制增益为3.8dB,频谱效率为3.13%。当PAPR抑制性能需求为3.1dB时,可确定TR图样的长度为8,避免使用长度为12的TR图样,降低频谱效率损失。
基于PAPR的抑制性能和频谱效率,相应的,表6也有所不同。下面列举不同RB数对应的可能最长TR图样。
示例性的,请参见表10,示出了RB=132对应的最长TR图样。表10以子载波的编号从0开始为例。
表10

示例性的,请参见表11,示出了RB=264对应的最长TR图样。表11以子载波的编号从0开始为例。
示例性的,请参见表12,示出了RB=106对应的最长TR图样。表12以子载波的编号从0开始为例。

S402、第一设备根据第一信息确定目标TR图样,该目标TR图样为最长TR图样的子图样。
第一信息可用于确定目标TR图样的长度L,进而确定目标TR图样。在本申请实施例中,第一信息包括如下两种实现方式。
实现方式一,第一信息可指示第一设备所使用的载波带宽。这种情况下,第一设备可根据与载波带宽对应的RB数,以及TR图样的长度与RB数的映射关系,确定目标TR图样的长度L。第一设备确定L之后,从最长TR图样中选择前L个子载波作为目标TR图样。
实现方式二,第一信息可指示目标TR图样的长度L。这种情况下,第一设备根据L,从最长TR图样中选择前L个子载波作为目标TR图样。
实现方式三,第一信息指示第一设备所使用的载波带宽。这种情况下,第一设备使用的载波带宽包括的子载波与最长TR图样包括的子载波中相重叠的子载波组成的集合作为最终的目标TR图样。
需要说明的是,第二设备向第一设备发送载波带宽是可选的步骤,也就是说,如果第一信息指示第一设备所使用的载波带宽,第二设备可以不向第一设备发送第一信息。
如前述,不同长度的TR图样对应的PAPR的抑制性能可能不同。因此,本申请实施例还可以基于PAPR的抑制性能确定目标TR图样。即可根据对PAPR的抑制性能的需求选择不同长度的TR图样,灵活可控。
例如,在实现方式一中,第一信息指示第一设备所使用的载波带宽的情况下,第一设备根据与载波带宽对应的RB数,以及TR图样的长度与RB数的映射关系和PAPR的抑制性能需求确定目标TR图样的长度。这种情况下,第一设备可确定根据目标TR图样的长度从最长TR图样中确定目标TR图样。或者,第一设备根据与载波带宽对应的RB数,以及TR图样的长度与RB数的映射关系确定初始的目标TR图样(例如称为第一目标TR图样)的长度,并根据该第一目标TR图样的长度从最长TR目标图样中确定最终的目标TR图样(例如称为第二目标TR图样)。或者,第一设备可将使用的载波带宽包括的子载波与最长TR图样包括的子载波中相重叠的子载波组成的集合作为最终的目标TR图样。可以理解的是,第二目标TR图样为第一目标TR图样的子图样。
也可以理解为,与某一载波带宽或RB数对应的TR图样包括多个PAPR抑制性能不同的TR子图样。其中,较高PAPR抑制性能对应的TR图样子图样所对应的子载波集合包括较低PAPR抑制性能对应的TR图样子图样所对应的子载波集合。例如,第一载波带宽对应第一TR图样,该第一TR图样包括第一TR子图样和第二TR子图样。第一TR子图样对应的第一子载波集合可包括第二TR子图样对应的第二子载波集合,其中,第一TR子图样对应的第一PAPR抑制性能大于第二TR子图样对应的第二PAPR抑制性能。也可以认为,高PAPR抑制性能对应的TR图样是低PAPR抑制性能对应的TR图样的扩展。即不同PAPR抑制性能对应的TR图样具有嵌套关系。
为方便理解,请参见图10,为PAPR抑制性能与TR图样的映射示意图。图10以最长 TR图样为载波带宽4对应的TR图样,即TR图样4。在图10中,载波带宽1小于载波带宽2,载波带宽2小于载波带宽3,载波带宽3小于载波带宽4。TR图样4对应的子载波集合包括TR图样3对应的子载波集合,TR图样3对应的子载波集合包括TR图样2对应的子载波集合,TR图样2对应的子载波集合包括TR图样1对应的子载波集合。且,图10以TR图样1包括多个PAPR抑制性能不同的TR子图样。例如,PAPR抑制性能1对应TR子图样11、PAPR抑制性能2对应TR子图样12,PAPR抑制性能3对应TR子图样13。其中,PAPR抑制性能1小于PAPR抑制性能2,PAPR抑制性能2小于PAPR抑制性能3。相应的,TR子图样13对应的子载波集合包括TR子图样12对应的子载波集合,TR图样12对应的子载波集合包括TR图样11对应的子载波集合。
需要说明的是,本申请实施例对高PAPR抑制性能对应的子载波集合相较于低PAPR抑制性能对应的子载波集合,新增加的子载波的具体位置不作限制。举例来说,第一PAPR抑制性能大于第二PAPR抑制性能,第一PAPR抑制性能对应的第一子载波集合,第二PAPR抑制性能对应第二子载波集合。本申请实施例对第一载波集合中除第二子载波集合之外的子载波的具体位置不作限制。例如,第一子载波集合中除第二子载波集合之外的子载波可以位于新增加的带宽内。又例如,第一子载波集合中除第二子载波集合之外的子载波可以包括第一部分和第二部分,第一部分可以位于新增加的带宽之内,第二部分可以位于新增加的带宽之外。
为了方便理解,请参见图11,为PAPR抑制性能与TR图样的映射示意图。图11以包括TR图样11和TR图样12为例。TR图样11对应第一PAPR抑制性能,TR图样12对应第二PAPR抑制性能。第一PAPR抑制性能低于第二PAPR抑制性能。图11中虚线箭头表示TR图样11对应的子载波集合1包括的子载波。实线箭头表示相较于子载波集合1,TR图样12对应的子载波集合2中新增加的子载波。从图11中可以看出,相较于子载波集合1,子载波集合2中新增加的子载波中的一部分位于新增加的带宽内(即带宽1之外),另一部分位于新增加的带宽之外(即带宽1之内)。
需要说明的是,本申请实施例对一个TR图样中的各个不同PAPR抑制性能分别对应的TR子图样的起始位置不作限制。也就是,各个不同PAPR抑制性能分别对应的TR子图样的起始位置可以是相同的,也可以是不同的。即本申请实施例对不同PAPR抑制性能分别对应的TR子图样包括的第一个子载波的编号是否相同不作限制。
在实现方式二中,第一信息所指示的目标TR图样的长度可以是根据PAPR的抑制性能需求确定的。例如,第二设备根据第一设备对PAPR的抑制性能需求确定目标TR图样的长度,并通过第一信息提供给第一设备。第一设备可以根据最终的目标TR图样长度和最长TR图样确定满足PAPR的抑制性能需求的目标TR图样。
S403、第一设备向第二设备发送第二信息,相应的,第二设备接收第一设备发送的第二信息。
该第二信息可指示第一设备对PAPR的抑制性能需求。在本申请实施例中,第一设备对PAPR的抑制性能需求可通过第一设备使用的TR图样、TR图样的长度来表征。例如,请参见表13,示出了TR图样的索引、TR图样的长度、PAPR抑制增益和频谱效率损失的一种映射关系。
表13
相应的,第二信息指示第一设备对PAPR的抑制性能需求包括如下两种指示方式,较为灵活。
指示方式一,第二信息可包括第一设备要使用的TR图样的长度。应理解,不同的PAPR抑制性能与TR图样的长度具有对应关系,因此,可通过要使用的TR图样的长度间接指示第一设备PAPR的抑制性能需求。
指示方式二,第二信息可包括第一设备要使用的TR图样的索引。即通过要使用的TR图样的索引,指示TR图样的长度,从而间接指示第一设备PAPR的抑制性能需求。
指示方式三,第二信息可包括第一设备对PAPR的抑制性能需求。例如,指示需要抑制PAPR 3dB。
应理解,第二信息指示第一设备对PAPR的抑制性能需求不限于如上三种指示方式。例如,第二信息可包括第一设备要使用的TR图样。即通过要使用的TR图样,指示TR图样的长度,从而间接指示第一设备PAPR的抑制性能需求。
第二设备接收到第二信息,可根据第二信息确定目标TR图样的长度L。第二设备确定目标TR图样的长度L之后,向第一设备发送第一信息,通过第一信息指示目标TR图样的长度L。第一信息指示目标TR图样的长度L也包括多种指示方式。
指示方式一,第一信息包括L。这种情况下,第一设备可从最长TR图样选择前L个子载波作为目标TR图样。第一信息包括L,简单明了,指示方式较为直接。举例来说,第一设备使用的载波带宽为50MHz,根据TR图样的长度和RB数的映射关系,可确定与50MHz对应的TR图样的长度为12。但是,第二设备考虑到第一设备对PAPR的抑制性能需求,确定第一设备应该使用长度为8的TR图样。这种情况下,第二设备向第一设备发送的第一信息可包括8,即目标TR图样的长度。
指示方式二,第一信息包括ΔL。第一设备接收第一信息确定目标TR图样的长度L。例如,第一设备根据使用的载波带宽对应的RB数,以及TR图样的长度和RB数的映射关系,确定与载波带宽对应的TR图样的长度为TR_L。第一设备根据第一信息和TR_L可确定目标TR图样的长度L=TR_L+ΔL,或者,L=TR_L-ΔL。从而第一设备从最长TR图样选择前L个子载波作为目标TR图样。举例来说,第一设备使用的载波带宽为50MHz,根据TR图样的长度和RB数的映射关系,可确定与50MHz对应的TR图样的长度TR_L为12。但是,第二设备考虑到第一设备对PAPR的抑制性能需求,确定第一设备应该使用长度为8的TR图样。这种情况下,第二设备向第一设备发送的第一信息包括4,即ΔL=4。第一设备接收第一信息,可确定L=TR_L-ΔL=8。
指示方式三,第一信息可包括TR图样。这种情况下,第一设备根据第一信息包括的 TR图样,可确定目标TR图样的长度L,从而从最长TR图样选择前L个子载波作为目标TR图样。
可以理解的是,第一信息可承载于系统消息中,例如,系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种。可选地,第二设备可以通过广播或组播向第一设备发送第一信息,可避免为了发送第一信息而对不同设备调度不同资源,从而节省调度资源的信令开销,降低系统调度复杂度。类似的,最长TR图样也可以通过系统消息发送给第一设备。
如果第一信息在无线资源控制(radio resource control,RRC)建立连接阶段以及后续通信过程中发送,第二设备可以通过RRC信令(例如,RRC建立(RRCsetup)消息、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等)、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element,CE)中的至少一种,向第一设备发送第一信息。或者,第一信息可以随数据传输给第一设备。或者第一信息可承载于为第一设备单独分配的物理下行共享信道(physical downlink shared channel,PDSCH)中。这样针对不同的第一设备,可以发送各自相应的第一信息,从而实现各个第一设备对PARP抑制性能都较优。例如,可根据第一设备所在不同位置或不同区域等对链路预算的不同,向第一设备配置不同TR图样达到优化系统发送功率效率、优化PAPR抑制性能,提高UE和系统的整体通信性能。
S404、第一设备根据目标TR图样向第二设备发送信息,或者,第一设备根据目标TR图样解调所接收的信息。
第一设备确定目标TR图样之后,可使用目标TR图样向第二设备发送信息。例如,第一设备可使用目标TR图样包括的子载波承载用于抑制PAPR的信号,在除去预留载波之外的部分载波承载数据信号。当然,为了提高频谱效率,也可以在目标TR图样包括的子载波上承载用于数据信号。或者,第一设备也可以解调从第二设备接收的信息时,在解调时,跳过或去除用于抑制PAPR的预留载波,也就是对用于抑制PAPR的预留载波上的信号不进行译码。
本申请实施例提供了最长TR图样,该最长TR图样包括多个长度不同的TR图样,即包括与多个载波带宽或RB数对应的TR图样。不同载波带宽对应的TR图样具有嵌套关系。例如,大载波带宽对应的TR图样是小载波带宽对应的TR图样的扩展。这样各个载波带宽对应的TR图样都属于最长TR图样的子图样。通过本申请实施例提供的方法,设备只存储最大TR图样,相较于单独各个载波带宽分别对应的TR图样来说,可避免存储不同长度的TR图样,从而节省存储空间。且本申请实施例基于最长TR图样确定目标TR图样相较于基于各个载波带宽确定对应的TR图样来说,性能不会受损。即本申请实施例提供的方法,在保证系统性能不受损的情况下,可节约存储空间。
另外,本申请实施例由于存储最长TR图样,因此,可基于对PAPR的抑制性能需求选择合适长度的TR图样,可以实现PAPR抑制性能的灵活可控。从而可兼顾PAPR的抑制性能和频率效率的损失。
可选的,第一设备和第二设备可分别存储适用于不同带宽或不同RB数或不同IFFT长度的多个TR图样,这些TR图样之间具有嵌套特性,即这些TR图样之间满足上述实施例中所述的TR图样嵌套特性。例如,第一设备与第二设备分别存储与表6对应的具有嵌套 特性的TR图样1(表14、TR图样2(表15)、TR图样3(表16)、TR图样4(表17)中的全部或者部分表格,其中TR图样1、TR图样2、TR图样3与TR图样4之间具有嵌套特性。第一设备与第二设备同样可以根据不同带宽或不同RB数或不同IFFT长度以及表1、表2、表3、表4或表5所示的与TR pattern长度之间的对应关系选择使用TR图样1、TR图样2、TR图样3或TR图样4。
表14
表15
表16
表17

特别地,考虑到参考信号的子载波的位置,本申请实施例设计TR图样可避开承载参考信号的子载波。也就是说,参考信号承载于目标TR图样包括的子载波之外的子载波。
请参见表18,示出了考虑参考信号设计TR图样的几种参数,即载波带宽、RB数、SCS以及参考信号密度。
表18
参考信号密度为1/4,即每4个子载波中有1个子载波放置参考信号。因此,在设计TR图样时,可避开参考信号的子载波位置。也就是,避免参考信号的子载波位置与TR图样中的子载波的位置相互重叠。举例来说,根据表18,设计的最长TR图样可如表19,表19相较于表6避开了参考信号的子载波位置。
表19

下面列举几种可能的最长TR图样,如下的最长TR图样相较于表6避开了参考信号的子载波位置。
示例性的,请参见表20,以参考信号密度为1/2,包括不同载波带宽分别对应的TR图样的最长TR图样。
表20
示例性的,请参见表21,以参考信号密度为1/4,包括不同载波带宽分别对应的TR图样的最长TR图样。
表21

示例性的,请参见表22,以参考信号密度为1/24,包括不同载波带宽分别对应的TR图样的最长TR图样。
表22
考虑到PAPR抑制性能,针对RB=132的情况,可设计长度为88的最长TR图样。如果参考信号的密度为1/2,那么该最长TR图样可比如表23所示。
表23
考虑到PAPR抑制性能,针对RB=132的情况,可设计长度为88的最长TR图样。如果参考信号的密度为1/4,那么该最长TR图样可比如表24所示。
表24
考虑到PAPR抑制性能,针对RB=132的情况,可设计长度为88的最长TR图样。如 果参考信号的密度为1/24,那么该最长TR图样可比如表25所示。
表25
所述本申请提供的实施例中,分别从第一设备、第二设备以及第一设备和第二设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备和第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图12为本申请实施例提供的通信装置1200的示意性框图。该通信装置1200可以包括处理模块1210和收发模块1220。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1210和收发模块1220可以与该存储单元耦合,例如,处理模块1210可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中第一设备的行为和功能,通信装置1200可以为第一设备,也可以为应用于第一设备中的部件(例如芯片或者电路),也可以是第一设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,通信装置1200实现本申请实施例中第一设备执行的方法。其中,收发模块1220可用于接收第一信息。处理模块1210用于根据第一信息确定目标TR图样,并根据目标TR图样发送信息或解调所接收的信息。其中,目标TR图样为最长TR图样的子图样。最长TR图样包括用作预留载波的子载波的集合。
作为一种可选的实现方式,最长TR图样中的子载波按照PAPR的抑制性能排序。
作为一种可选的实现方式,最长TR图样包括第一TR子图样和第二TR子图样。其中,第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合。第一TR子图样对应的第一载波带宽大于第二TR子图样对应的第二载波带宽。
作为一种可选的实现方式,第一子载波集合中除第二子载波集合之外的子载波位于第二载波带宽之外。
作为一种可选的实现方式,第一子载波集合中除第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波。其中,第一部分子载波位于第二载波带宽内,第二部分子载波位于第二载波带宽外。
作为一种可选的实现方式,第一信息指示第一设备使用的载波带宽,处理模块1210具体用于:根据块RB数与TR图样的映射关系,以及载波带宽对应的RB数确定目标TR图样的长度L,再根据长度L和最长TR图样确定目标TR图样。
作为一种可选的实现方式,处理模块1210用于确定目标TR图样的长度L,包括处理模块1210还根据PAPR的抑制性能需求确定长度L。
作为一种可选的实现方式,第一信息指示目标TR图样的长度L,处理模块1210具体用于根据长度L和最长TR图样确定目标TR图样。
作为一种可选的实现方式,目标TR图样为最长TR图样中前L个子载波。
作为一种可选的实现方式,收发模块1220还用于发送第二信息,该第二信息指示第一设备对PAPR的抑制性能需求。
作为一种可选的实现方式,参考信号承载于目标TR图样包括的子载波之外的子载波。
又例如,通信装置1200实现本申请任意实施例中第二设备执行的方法。其中,处理模块1210用于确定第一信息,该第一信息用于从最长TR图样中确定目标TR图样,目标TR图样为最长TR图样的子图样。最长TR图样包括用作预留载波的子载波的集合。收发模块1220用于向第一设备发送第一信息。
作为一种可选的实现方式,最长TR图样中的子载波PAPR的抑制性能排序。
作为一种可选的实现方式,最长TR图样包括第一TR子图样和第二TR子图样。第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,其中,第一TR子图样对应的第一载波带宽大于第二TR子图样对应的第二载波带宽。
作为一种可选的实现方式,第一子载波集合中除第二子载波集合之外的子载波位于第二载波带宽之外。
作为一种可选的实现方式,第一子载波集合中除第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波。其中,第一部分子载波位于第二载波带宽内,第二部分子载波位于第二载波带宽外。
作为一种可选的实现方式,第一信息指示所述第一设备使用的载波带宽,TR图样的长度与载波带宽对应的RB数具有映射关系。
作为一种可选的实现方式,第一信息指示目标TR图样的长度L。
作为一种可选的实现方式,收发模块1220还用于接收第二信息,该第二信息指示第一设备对PAPR的抑制性能需求。
作为一种可选的实现方式,参考信号承载于目标TR图样包括的子载波之外的子载波。
应理解,本申请实施例中的处理模块1210可以由处理器或处理器相关电路组件实现,收发模块1220可以由收发器或收发器相关电路组件或者通信接口实现。
图13为本申请实施例提供的通信装置1300的示意性框图。其中,该通信装置1300可以是第一设备,能够实现本申请实施例提供的方法中第一设备的功能。通信装置1300也可以是能够支持第一设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1300可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。该通信装置1300也可以是第二设备,能够实现本申请实施例提供的方法中第二设备的功能。通信装置1300也可以是能够支持第二设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1300可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置1300包括一个或多个处理器1301,可用于实现或用于支持通信装置1300实现本申请实施例提供的方法中第一设备的功能。具体参见方法示例中的详细描述,此处不做赘述。一个或多个处理器1301也可以用于实现或用于支持通信装置1300实现本申请实施例提供的方法中第二设备的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器1301也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器1301可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置1300进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置1300中包括一个或多个存储器1302,用以存储指令1304,所述指令可在所述处理器1301上被运行,使得通信装置1300执行上述方法实施例中描述的方法。存储器1302和处理器1301可以单独设置,也可以集成在一起,也可以认为存储器1302和处理器1301耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1301可能和存储器1302协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1302不是必须的,所以在图13中以虚线进行示意。
可选地,所述存储器1302中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器1302可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置1300可以包括指令1303(有时也可以称为代码或程序),所述指令1303可以在所述处理器上被运行,使得所述通信装置1300执行上述实施例中描述的方法。处理器1301中可以存储数据。
可选地,通信装置1300还可以包括收发器1305以及天线1306。所述收发器1305可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线1306实现通信装置1300的收发功能。
本申请中描述的处理器1301和收发器1305可实现在集成电路(integrated circuit,IC)、 模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,通信装置1300还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1300可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是第一设备(或第二设备)也可以是电路,也可以是应用于第一设备(或第二设备)中的芯片或者其他具有上述第一设备功能(或第二设备)的组合器件、部件等。当通信装置是第一设备(或第二设备)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述第一设备(或第二设备)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括至少一个第一设备和至少一个第二设备。示例性的,通信系统包括用于实现上述图4的相关功能的第一设备和第二设备。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图4中第二设备执行的方法。或者,当其在计算机上运行时,使得计算机执行图4中第一设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图4中第二设备执行的方法。或者,当其在计算机上运行时,使得计算机执行图4中第一设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第二设备的功能;或者用于实现前述方法中第一设备的功能。该芯片系 统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种通信方法,其特征在于,包括:
    第一设备接收第一信息;
    所述第一设备根据所述第一信息确定目标载波预留TR图样,所述目标TR图样为最长TR图样的子图样,所述最长TR图样包括用作预留载波的子载波的集合;
    所述第一设备根据所述目标TR图样发送信息或解调所接收的信息。
  2. 如权利要求1所述的方法,其特征在于,所述最长TR图样中的子载波按照峰均功率比PAPR的抑制性能排序。
  3. 如权利要求1或2所述的方法,其特征在于,所述最长TR图样包括第一TR子图样和第二TR子图样,所述第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,所述第一TR子图样对应的第一载波带宽大于所述第二TR子图样对应的第二载波带宽。
  4. 如权利要求3所述的方法,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波位于所述第二载波带宽之外。
  5. 如权利要求3所述的方法,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波,所述第一部分子载波位于所述第二载波带宽内,所述第二部分子载波位于所述第二载波带宽外。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一信息指示所述第一设备使用的载波带宽,所述第一设备根据第一信息确定目标TR图样,包括:
    所述第一设备根据资源块RB数与TR图样的长度的映射关系和所述载波带宽对应的RB数确定所述目标TR图样的长度L;
    所述第一设备根据所述长度L和所述最长TR图样确定所述目标TR图样。
  7. 如权利要求6所述的方法,其特征在于,所述第一设备确定所述目标TR图样的长度L,还包括:
    所述第一设备还根据所述PAPR的抑制性能需求确定所述L。
  8. 如权利要求1-5任一项所述的方法,其特征在于,所述第一信息指示所述目标TR图样的长度L,所述第一设备根据第一信息确定目标TR图样,包括:
    所述第一设备根据所述长度L和所述最长TR图样确定所述目标TR图样。
  9. 如权利要求6-8任一项所述的方法,其特征在于,所述目标TR图样为所述最长TR图样中前所述L个子载波。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备发送第二信息,所述第二信息指示所述第一设备对PAPR的抑制性能需求。
  11. 如权利要求1-10任一项所述的方法,其特征在于,参考信号承载于所述目标TR图样包括的子载波之外的子载波。
  12. 一种通信方法,其特征在于,包括:
    第二设备确定第一信息,所述第一信息用于从最长载波预留TR图样中确定目标TR图样,所述目标TR图样为最长TR图样的子图样,所述最长TR图样包括用作预留载波的子载波的集合;
    第二设备向第一设备发送所述第一信息。
  13. 如权利要求12所述的方法,其特征在于,所述最长TR图样中的子载波按照峰均功率比PAPR的抑制性能排序。
  14. 如权利要求12或13所述的方法,其特征在于,所述最长TR图样包括第一TR子图样和第二TR子图样,所述第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,所述第一TR子图样对应的第一载波带宽大于所述第二TR子图样对应的第二载波带宽。
  15. 如权利要求14所述的方法,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波位于所述第二载波带宽之外。
  16. 如权利要求14所述的方法,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波,所述第一部分子载波位于所述第二载波带宽内,所述第二部分子载波位于所述第二载波带宽外。
  17. 如权利要求12-16任一项所述的方法,其特征在于,所述第一信息指示所述第一设备使用的载波带宽,其中,TR图样的长度与载波带宽对应的资源块RB数具有映射关系。
  18. 如权利要求12-16任一项所述的方法,其特征在于,所述第一信息指示所述目标TR图样的长度L。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收第二信息,所述第二信息指示所述第一设备对PAPR的抑制性能需求;
    根据所述第二信息确定所述第一信息。
  20. 如权利要求12-19任一项所述的方法,其特征在于,参考信号承载于所述目标TR图样包括的子载波之外的子载波。
  21. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述收发模块用于接收第一信息;
    所述处理模块用于根据所述第一信息确定目标预留载波TR图样,并根据所述目标TR图样发送信息或解调所接收的信息,所述目标TR图样为最长TR图样的子图样,所述最长TR图样包括用作预留载波的子载波的集合。
  22. 如权利要求21所述的装置,其特征在于,所述最长TR图样中的子载波按照峰均功率比PAPR的抑制性能排序。
  23. 如权利要求21或22所述的装置,其特征在于,所述最长TR图样包括第一TR子图样和第二TR子图样,所述第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,所述第一TR子图样对应的第一载波带宽大于所述第二TR子图样对应的第二载波带宽。
  24. 如权利要求23所述的装置,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波位于所述第二载波带宽之外。
  25. 如权利要求24所述的装置,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波,所述第一部分子载波位于所述第二载波带宽内,所述第二部分子载波位于所述第二载波带宽外。
  26. 如权利要求21-25任一项所述的装置,其特征在于,所述第一信息指示所述通信装置使用的载波带宽,所述处理模块具体用于:
    根据资源块RB数与TR图样的长度的映射关系和所述载波带宽对应的RB数确定所述目标TR图样的长度L;
    根据所述长度L和所述最长TR图样确定所述目标TR图样。
  27. 如权利要求26所述的装置,其特征在于,所述处理模块还根据峰均功率比PAPR的抑制性能需求确定所述长度L。
  28. 如权利要求21-25任一项所述的装置,其特征在于,所述第一信息指示所述目标TR图样的长度L,所述处理模块具体用于根据所述长度L和所述最长TR图样确定所述目标TR图样。
  29. 如权利要求26-28任一项所述的装置,其特征在于,所述目标TR图样为所述最长TR图样中前所述L个子载波。
  30. 如权利要求21-29任一项所述的装置,其特征在于,所述收发模块还用于发送第二信息,所述第二信息指示所述通信装置对PAPR的抑制性能需求。
  31. 如权利要求21-30任一项所述的装置,其特征在于,参考信号承载于所述目标TR图样包括的子载波之外的子载波。
  32. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块用于确定第一信息,所述第一信息用于从最长预留载波TR图样中确定目标TR图样,所述目标TR图样为最长TR图样的子图样,所述最长TR图样包括用作预留载波的子载波的集合;
    所述收发模块用于向第一设备发送所述第一信息。
  33. 如权利要求32所述的装置,其特征在于,所述最长TR图样中的子载波按照峰均功率比PAPR的抑制性能排序。
  34. 如权利要求32或33所述的装置,其特征在于,所述最长TR图样包括第一TR子图样和第二TR子图样,所述第一TR子图样对应的第一子载波集合包括第二TR子图样对应的第二子载波集合,所述第一TR子图样对应的第一载波带宽大于所述第二TR子图样对应的第二载波带宽。
  35. 如权利要求34所述的装置,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波位于所述第二载波带宽之外。
  36. 如权利要求34所述的装置,其特征在于,所述第一子载波集合中除所述第二子载波集合之外的子载波包括第一部分子载波和第二部分子载波,所述第一部分子载波位于所述第二载波带宽内,所述第二部分子载波位于所述第二载波带宽外。
  37. 如权利要求32-36任一项所述的装置,其特征在于,所述第一信息指示所述第一设备使用的载波带宽,所述载波带宽对应的RB数与TR图样的长度具有映射关系。
  38. 如权利要求32-36任一项所述的装置,其特征在于,所述第一信息指示所述目标TR图样的长度L。
  39. 如权利要求38所述的装置,其特征在于,所述收发模块还用于接收第二信息,所述第二信息指示所述第一设备对PAPR的抑制性能需求。
  40. 如权利要求32-39任一项所述的装置,其特征在于,参考信号承载于所述目标TR图样包括的子载波之外的子载波。
  41. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述通信 装置执行如权利要求1~11中任一项所述的方法,或者,使得所述通信装置执行如权利要求12~20中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~11中任一项所述的方法,或者,使所述计算机执行如权利要求12~20中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~11中任一项所述的方法,或者,使所述计算机执行如权利要求12~20中任一项所述的方法。
  44. 一种通信系统,其特征在于,包括用于执行如权利要求1~11中任一项所述的方法的第一设备和用于执行如权利要求12~20中任一项所述的方法的第二设备。
PCT/CN2023/089485 2022-05-13 2023-04-20 一种通信方法及通信装置 WO2023216831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210524035.X 2022-05-13
CN202210524035.XA CN117098194A (zh) 2022-05-13 2022-05-13 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023216831A1 true WO2023216831A1 (zh) 2023-11-16

Family

ID=88729655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089485 WO2023216831A1 (zh) 2022-05-13 2023-04-20 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117098194A (zh)
WO (1) WO2023216831A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536446A (zh) * 2006-11-02 2009-09-16 Lm爱立信电话有限公司 用于降低papr的子载波激活和去激活
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
WO2018098692A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种降低无线信号的papr的方法及相关装置
CN112291174A (zh) * 2020-10-24 2021-01-29 青岛鼎信通讯股份有限公司 一种应用于中压载波通信的峰均比抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536446A (zh) * 2006-11-02 2009-09-16 Lm爱立信电话有限公司 用于降低papr的子载波激活和去激活
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
WO2018098692A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种降低无线信号的papr的方法及相关装置
CN112291174A (zh) * 2020-10-24 2021-01-29 青岛鼎信通讯股份有限公司 一种应用于中压载波通信的峰均比抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETSI: "ETSI EN 302 755 V1.3.1 Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)", FINAL DRAFT ETSI EN 302 755 V1.3.1, vol. 302 755, no. v1.3.1, 1 November 2011 (2011-11-01), pages 17 - 21, XP002728444 *

Also Published As

Publication number Publication date
CN117098194A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2019201165A1 (zh) 实现边链路资源配置的方法、装置及系统
WO2019104685A1 (zh) 通信方法和通信设备
CN107070596A (zh) 信息发送方法及装置
WO2021043137A1 (zh) 信号传输方法及通信装置
CN110167143A (zh) 电子设备、无线通信方法和计算机可读存储介质
CN113544991A (zh) 用于在nr v2x中发送psfch的方法和设备
CN110267227A (zh) 一种数据传输方法、相关设备及系统
CN114402638A (zh) 在nr v2x中发信号通知与tdd时隙配置相关的信息的方法和装置
CN110166189A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
CN114586308A (zh) 发送用于与nr v2x相关的pscch的dmrs的方法和同步
CN114586387A (zh) 在nr v2x中发送用于pssch的dmrs的方法和装置
WO2019228076A1 (zh) 用于通信系统中干扰指示的方法及装置
CN113475148A (zh) 用于控制lte副链路通信的dci
WO2020019871A1 (zh) 数据发送的方法及装置
KR102585062B1 (ko) Nr v2x에서 sl 슬롯과 관련된 정보를 전송하는 방법 및 장치
EP4106468A1 (en) Operating method for iab node in wireless communication system, and apparatus using same
KR20230091098A (ko) Nr v2x에서 sl lch 별 sl drx 설정을 구성하는 방법 및 장치
CN111435880B (zh) 一种能力配置方法及装置
WO2023216831A1 (zh) 一种通信方法及通信装置
WO2024001640A1 (zh) 一种通信方法及通信装置
WO2024041170A1 (zh) 一种通信方法及通信装置
WO2024066563A1 (zh) 一种通信方法及通信装置
TW201733297A (zh) 裝置及方法
CN114303398A (zh) 在nr v2x中发送s-ssb的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802606

Country of ref document: EP

Kind code of ref document: A1