WO2024001640A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2024001640A1
WO2024001640A1 PCT/CN2023/097119 CN2023097119W WO2024001640A1 WO 2024001640 A1 WO2024001640 A1 WO 2024001640A1 CN 2023097119 W CN2023097119 W CN 2023097119W WO 2024001640 A1 WO2024001640 A1 WO 2024001640A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
reference signal
pattern
subcarrier
density
Prior art date
Application number
PCT/CN2023/097119
Other languages
English (en)
French (fr)
Inventor
王晓鲁
乔云飞
于天航
罗禾佳
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001640A1 publication Critical patent/WO2024001640A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and communication device.
  • Carrier reservation (tone reservation, TR) technology can be used to suppress the peak-to-average power ratio (PAPR) of the waveform. That is, in addition to the subcarriers used to carry reference signals, the transmitting end also reserves some subcarriers for carrying signals that suppress PAPR. The transmitting end selects some subcarriers as reserved carriers among the subcarriers that carry reference signals to suppress PAPR. When the density of the reference signal is large, the suppression performance of PAPR may be low.
  • PAPR peak-to-average power ratio
  • the present application provides a communication method and communication device, which are used to provide a new reference signal pattern and improve the performance of suppressing PAPR through TR.
  • inventions of the present application provide a communication method that can be executed by a communication device.
  • the communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the following description takes the communication device as a communication device as an example.
  • the communication device is a terminal device, or a chip provided in the terminal device, or other components used to implement functions of the terminal device.
  • the communication device is a network device, or a chip provided in the network device, or other components used to implement the functions of the network device.
  • the communication method includes: the communication device determines to use a reserved carrier, determines a reference signal pattern and a TR pattern, and performs data transmission according to the reference signal pattern and the TR pattern.
  • the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern, and the second reference signal sub-pattern is an offset of the first reference signal sub-pattern in the time domain and/or frequency domain. That is, the reference signal pattern has a variety of different patterns, causing the reference signal to be unevenly distributed in the bandwidth. In this way, even if the density of the reference signal is large, the sub-carrier generation of the core time domain signal used as a reserved carrier can be avoided. The peak value is larger, thereby improving the suppression performance of PAPR.
  • the method further includes: the communication device determines that the reserved carrier is not used, and the reference signal pattern only includes the first reference signal sub-pattern.
  • the communication device determines not to use the reserved carrier and considers that there is no need to suppress PAPR, the communication device can determine to use a reference signal pattern that only includes one reference signal sub-pattern, and is compatible with existing reference signal patterns.
  • the bandwidth used by the communication device includes G subcarrier groups, at least one subcarrier group in the G subcarrier group adopts the first reference signal sub-pattern, and, at least one subcarrier group in the G subcarrier group Using the second reference signal sub-pattern, G is an integer greater than or equal to 2. That is, the G subcarrier group uses at least two different reference signal sub-patterns, causing the reference signal to be unevenly distributed in the bandwidth.
  • a subcarrier group corresponds to a reference signal sub-pattern, that is, the reference signals within the subcarrier group are evenly distributed, thereby ensuring the decoding performance of the receiving end.
  • the method further includes: the communication device determines G according to a first density, where the first density is the density of the reference signal in the bandwidth used by the communication device.
  • the reference signal density is large and the reference signal is evenly distributed across the bandwidth, which affects the PAPR suppression performance.
  • the communication device divides the bandwidth into reasonable G subcarrier groups according to the first density, and then determines the reference signal sub-patterns in each subcarrier group to maximize the PAPR suppression performance.
  • the communication device determines G according to the first density in the following ways.
  • Determination method 1 the communication device determines G according to the first density and the first mapping relationship.
  • the first mapping relationship is the relationship between the number of subcarrier groups and the density of the reference signal.
  • Determination method two the communication device determines G according to the first density, the first number of resources, and a second mapping relationship, where the second mapping relationship is the relationship between the number of subcarrier groups, the reference signal density, and the number of resources. .
  • the first number of resources is the number of resource blocks or the number of subcarriers included in the bandwidth used by the communication device.
  • Determination method three the communication device determines G according to the first coefficient and the first density, where G is the product of the first coefficient and the first density, and the first coefficient is predefined or preconfigured or indicated.
  • Determination method four G is predefined or agreed upon or preconfigured.
  • the above determination methods 1 to 4 can save signaling overhead as much as possible.
  • the communication device is a terminal device, and the method further includes: the communication device receives G; or, the communication device receives a second number of resources, and determines G according to the second number of resources.
  • the second number of resources is the number of resource blocks or the number of subcarriers included in a subcarrier group.
  • the communication device is a network device, and the method further includes: the communication device sends G; or, the communication device sends a second resource number, and the second resource number is used to determine G.
  • G is configured from the network device to the terminal device. Different G can be configured according to the different needs of different terminal devices, thereby optimizing the communication performance of each terminal device.
  • the method further includes: the communication device determines offset information, the offset information is used to indicate the difference between the second reference signal sub-pattern and the first reference signal sub-pattern in the time domain and/or frequency domain. offset. Based on the first reference signal sub-pattern, the second reference signal sub-pattern can be determined through the offset information.
  • the communication device determines the offset information including: the communication device determines the offset information according to the group number of the G subcarrier group; wherein, the starting position of the reference signal in the G_numth subcarrier group in the G subcarrier group
  • the offset ⁇ k of the starting position of the reference signal in the ith subcarrier group in the G subcarrier group relative to the first subcarrier in the subcarrier group is the ith in the range [0, y] a value.
  • the communication device is a terminal device, and determining the offset information by the communication device includes: the communication device receives the offset information.
  • the communication device is a network device, and the method further includes: the communication device sends offset information.
  • the network device provides offset information to the terminal device. Different offset information can be configured for different terminal devices to ensure the communication performance of each terminal device as much as possible.
  • the communication device is a terminal device, and the method further includes: the communication device receives the first request Index, determine G and offset information according to the first index and the third mapping relationship.
  • the third mapping relationship is a mapping relationship between multiple indexes and multiple sets of parameters. Multiple indexes correspond to multiple sets of parameters one-to-one, and one set of parameters includes a set of G and offset information.
  • the network device indicates G and offset information to the terminal device in an index manner, which can save signaling overhead.
  • the sequence number of the subcarriers included in the reference signal pattern is determined according to the density of the reference signal.
  • the sequence number SC_index of the subcarrier included in the reference signal pattern satisfies:
  • the communication device is a terminal device, and determining the reserved carrier by the communication device includes: the communication device receives instruction information, and the instruction information instructs the communication device to use the reserved carrier.
  • the communication device is a network device, and the method further includes: the communication device sends indication information, the indication information instructs the terminal device to use the reserved carrier.
  • embodiments of the present application provide a communication device.
  • the communication device has the function of implementing the behavior in the method embodiment of the first aspect.
  • beneficial effects please refer to the description of the first aspect and will not be described again here.
  • the communication device may be the communication device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the first aspect.
  • the communication device includes a processing unit (sometimes also called a processing module or processor) and/or a transceiver unit (sometimes also called a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit. It can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood as a collective name for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units can perform the corresponding functions in the above-mentioned method examples of the first aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • inventions of the present application provide a communication device.
  • the communication device may be the communication device of the second aspect, or a chip or chip system provided in the communication device of the second aspect.
  • the communication device includes a communication interface and a processor, and optionally, a memory. Wherein, the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program or instructions, the communication device causes the communication device to execute the method performed by the communication device in the above method.
  • embodiments of the present application provide a communication device, which includes an input-output interface and a logic circuit. Input and output interfaces are used to input and/or output information.
  • the logic circuit is used to perform the method described in the first aspect.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory and/or a communication interface for implementing the method described in the first aspect.
  • the chip system further includes a memory for storing a computer program.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • inventions of the present application provide a communication system.
  • the communication system includes a first communication device and a second communication device, wherein the first communication device is a terminal device and the second communication device is a network device.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the communication system may include more first communication devices or more second communication devices.
  • the present application provides a computer-readable storage medium that stores a computer program. When the computer program is run, the method of the first aspect is implemented.
  • a computer program product includes: computer program code.
  • the computer program product includes: computer program code.
  • the method of the first aspect is executed.
  • Figure 1 is a schematic architectural diagram of a communication system applicable to the embodiment of the present application.
  • Figure 2 is an architectural schematic diagram of another communication system applicable to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the network architecture of another communication system applicable to the embodiment of the present application.
  • Figure 4 is a schematic distribution diagram of a reference signal with a density of 1/2 provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of the corresponding PAPR suppression performance when the density of the reference signal provided by the embodiment of the present application is 1/2;
  • Figure 6 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 7 shows two reference signal patterns on the bandwidth used by the first communication device provided by the embodiment of the present application.
  • Figure 8 is a schematic distribution diagram of reference signals, data and reserved carriers provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the subcarriers and reserved carrier patterns corresponding to the reference signals on each subcarrier group provided by the embodiment of the present application.
  • Figure 10 is another schematic diagram of the subcarriers and reserved carrier patterns corresponding to the reference signals on each subcarrier group provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of the corresponding PAPR suppression performance using TR technology under the same reference signal density provided by the embodiment of the present application, in the case of uniform reference signal patterns and uneven reference signal patterns;
  • Figure 12 is a schematic diagram of the corresponding decoding performance using TR technology under the same reference signal density provided by the embodiment of the present application, in the case of uniform reference signal patterns and uneven reference signal patterns;
  • Figure 13 is a schematic diagram of a reference signal pattern within a time slot provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of this application can be applied to new radio (new radio, NR) systems, long term evolution (Long term evolution, LTE) systems, non-terrestrial networks (non terrestrial networks, NTN) systems, or can also be applied to Next generation mobile communication system or other similar communication system.
  • the technical solutions provided by the embodiments of this application can also be applied to vehicle to everything (V2X) systems, Internet of things (IoT) systems, etc.
  • V2X vehicle to everything
  • IoT Internet of things
  • Figure 1 is a schematic diagram of the network architecture of a communication system applicable to the embodiment of the present application.
  • the communication system may include a network device and two terminal devices, which may be mobile terminal devices and/or any other suitable devices for communicating on a wireless communication system, and both may be connected to the network device. Both end devices are capable of communicating with network devices.
  • the number of terminal devices in Figure 1 is just an example, and can be less or more.
  • the terminal device is a device with a wireless transceiver function, which can send signals to or receive signals from the network device.
  • Terminal equipment may include user equipment (UE), sometimes also referred to as terminals, access stations, UE stations, remote stations, wireless communication equipment, or user devices, etc.
  • UE user equipment
  • the terminal equipment Used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device to device (D2D), V2X, machine to machine/machine type communication ( machine-to-machine/machine-type communications (M2M/MTC), IoT, virtual reality (VR), augmented reality (AR), industrial control (industrial control), self-driving (self driving) , terminal equipment in scenarios such as remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots, etc.
  • D2D device to device
  • V2X machine to machine/machine type communication
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT virtual reality
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • self-driving self driving
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. wait.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • the vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method of the present application.
  • the communication device used to implement the function of the terminal device may be a terminal device, or may be a device that can support the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described, taking the device for realizing the functions of the terminal device as a terminal device as an example.
  • the network device may be an access device through which the terminal device wirelessly accesses the mobile communication system, such as an access network (AN) device, such as a base station.
  • AN access network
  • Network equipment may also refer to equipment that communicates with terminal equipment over the air interface.
  • Network equipment may include evolved base stations (evolved Node B, eNB/e-NodeB) in LTE systems or advanced long-term evolution (long term evolution-advanced, LTE-A); network equipment may also include next-generation nodes in NR systems B (next generation node B, gNB); alternatively, network equipment may also include access nodes in wireless-fidelity (Wi-Fi) systems; or network equipment may be stations, relay stations, vehicle-mounted Equipment and future evolved Public Land Mobile Network (PLMN) equipment, equipment in D2D networks, equipment in M2M networks, equipment in the Internet of Things IoT network, or network equipment in PLMN networks, etc.
  • PLMN Public Land Mobile Network
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess. For example, the functions of the packet data convergence protocol (PDCP) layer and above are set in the CU and the protocol layer below PDCP, such as the wireless link. Functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • the CU control plane CU-CP also includes a further segmentation architecture, that is, the existing CU-CP is further segmented into CU-CP1 and CU-CP2.
  • CU-CP1 includes various wireless resource management functions
  • CU-CP2 only includes radio resource control.
  • RRC radio resource control
  • PDCP-C function that is, the basic function of control plane signaling at the PDCP layer).
  • the communication device used to realize the function of the network device or the terminal device may be a network device or a terminal device, or may be a device that can support the network device or the terminal device to realize the function, such as a chip system, and the device may be Installed in network equipment or terminal equipment.
  • the technical solution provided by the embodiments of the present application is described by taking the device for realizing the functions of the network device as a network device and the device for realizing the functions of the terminal device as a terminal device as an example.
  • FIG. 2 is a schematic diagram of the network architecture of another communication system applicable to the embodiment of the present application.
  • the communication system includes satellites, terminal equipment and gateways.
  • Satellites can be highly elliptical orbiting (HEO) satellites, geostationary orbiting satellites (geosynchronous earth otbit, GEO) satellites, medium earth orbiting (MEO) satellites and low-earth orbiting (LEO) satellites .
  • the NTN system can also include high altitude platform (HAPS), etc., which are not limited here.
  • Gateway or ground station, earth station, gateway station, gateway station
  • One or more satellites can be connected to one or more ground base stations through one or more gateways, without limitation.
  • Terminal equipment includes, for example, mobile phones, airplanes, etc. ( Figure 2 takes this as an example).
  • the link between the satellite and the terminal equipment is called the service link, and the link between the satellite and the gateway is called the feeder link.
  • the embodiment of the present application does not limit the working mode of the satellite.
  • the working mode of the satellite may be a transparent mode or a regenerative mode.
  • Transparent transmission mode that is, the satellite acts as an analog radio frequency repeater and has the function of relay and forwarding, which can realize wireless frequency conversion and amplification, and can transparently transmit or copy the signal between the base station and the terminal device.
  • signals sent by terminal equipment can be transparently transmitted through satellites and forwarded by gateways into ground base stations.
  • the gateway has some or all of the functions of the base station.
  • the gateway can be regarded as a base station. It can be considered that network elements and base stations can be deployed together or separately. If the gateway is deployed separately from the base station, the feeder link delay includes the delay from the satellite to the gateway and the delay from the gateway to the base station.
  • the satellite serves as a base station for wireless communication and has some or all of the functions of the base station to regenerate signals received from the ground and can understand and process these signals.
  • the satellite may be a base station mounted on an artificial earth satellite or a high-altitude aircraft.
  • the base station may be an evolved base station (eNB) or a 5G base station (gNB).
  • the gateway can forward signaling between satellites (i.e. base stations) and the core network.
  • FIG. 3 is a schematic diagram of the network architecture of another communication system applicable to the embodiments of the present application.
  • the communication system includes at least one network device and at least one high-altitude terminal equipment, such as high-altitude aircraft and on-board terminal equipment.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, application scenarios, priority or importance of multiple objects. Degree etc.
  • first reference signal sub-pattern and “second reference signal sub-pattern” indicate that there are two sub-patterns, but do not indicate the existence of these two sub-patterns. Different priorities or levels of importance.
  • Satellite equipment is limited by manufacturing and launch costs, and on-board data processing capabilities and transmission power will be limited. Specifically, satellite equipment is energy and power-limited equipment and is sensitive to on-board power efficiency, that is, it is expected to improve the power efficiency of satellite equipment as much as possible.
  • the high power amplifier (HPA) at the transmitter is required to work near the linear saturation zone to improve the power efficiency of the HPA.
  • the system uses orthogonal frequency division multiplexing (OFDM) waveforms or waveforms with high PAPR characteristics to transmit data, high PAPR will occur. Since the PAPR of the OFDM signal is large, when the HPA operates near the saturation point, the signal input to the HPA has a certain probability of entering the nonlinear region and causing nonlinear distortion. Nonlinear distortion will introduce in-band distortion and out-of-band radiation, which will not only affect the decoding accuracy of the receiving end, but also cause interference to adjacent channel users. For this reason, the nonlinear distortion of HPA can be reduced as much as possible by performing power backoff on the input HPA signal. Performing power rollback on the input HPA signal can be understood as reducing the power of the input HPA signal.
  • OFDM orthogonal frequency division multiplexing
  • Performing power rollback on the input HPA signal can reduce the nonlinear distortion of the HPA, but it will also reduce the signal power output by the HPA, thereby reducing the transmit power and the power efficiency of the HPA, which in turn leads to a reduction in the signal receiving power at the receiving end. , reducing the signal-to-noise ratio at the receiving end.
  • TR technology can be understood as reserving a part of reserved carriers as carriers to suppress PAPR.
  • the reserved carrier used to suppress PAPR may include multiple subcarriers, also called a carrier set.
  • a pattern composed of subcarrier numbers corresponding to each subcarrier included in the carrier set is called a TR pattern. That is, the TR pattern may indicate a set of reserved carriers for suppressing PAPR.
  • Suppressing PAPR through TR technology means that reserved carriers for suppressing PAPR are reserved at the transmitting end to carry signals that suppress PAPR, and some carriers other than the reserved carriers are used to carry data signals and reference signals.
  • data signals can also be carried on reserved carriers. That is, the reserved carriers can carry both PAPR-suppressing signals and data signals.
  • the set of carriers carrying signals that suppress PAPR and the set of carriers carrying data signals and reference signals do not overlap (this article takes this as an example).
  • the reserved carrier used to suppress PAPR can be skipped or removed, that is, the signal on the reserved carrier used to suppress PAPR is not decoded.
  • the transmitter uses the reserved carrier to generate a normalized core time domain signal to suppress the PAPR of the OFDM waveform. That is, the core signal only occupies the reserved carrier in the frequency domain.
  • the OFDM time domain data is Subtracted from the kernel time domain signal after cyclic shift, phase rotation and scale transformation, an OFDM time domain signal that completes one PAPR suppression iteration is obtained. Subsequent iterations continue.
  • the principle of PAPR suppression based on TR patterns is an existing technology. This No further details will be given.
  • the transmitting end selects some subcarriers as reserved carriers among the subcarriers that carry reference signals. If the density of the reference signal is large, the PAPR suppression performance may be low. For example, assuming that the reference signal is evenly distributed, it can also be considered that the reference signal has only one sub-pattern. When the density of the reference signal is larger, the PAPR suppression performance is lower. For example, please refer to Figure 4, which is a schematic diagram of the distribution of a reference signal with a density of 1/2. It is assumed that the sequence number of the reference signal starts from the first subcarrier of the allocated resource block (RB).
  • RB resource block
  • the reference signal numbers are 0, 2, 4, 6, 8..., and the reserved carriers can only start from the number 1, 3, 5 ,7,9... subcarriers are selected.
  • the kernel time domain signal generated by the reserved carrier may have multiple peaks. , and the secondary peak value is larger. In this way, the OFDM time domain data is subtracted from the kernel time domain signal after cyclic shifting, etc. Finally, there is still a large sub-peak value, that is, the PAPR inhibition performance is low, as shown in Figure 5.
  • Figure 5 is a schematic diagram of the corresponding PAPR suppression performance when the density of the reference signal is 1/2.
  • the thick line indicates the suppression performance when the reserved carrier is not used to suppress PAPR
  • the thin line indicates the suppression performance when the reserved carrier is used to suppress PAPR.
  • the solution of the embodiment of the present application is provided.
  • at least two different reference signal sub-patterns are included. It can also be considered that the reference signal is unevenly distributed in the bandwidth, which can avoid the secondary use of the core time domain signal generated by the sub-carrier of the reserved carrier. The peak value is larger, thereby improving the suppression performance of PAPR.
  • the embodiment of the present application provides a communication method, which can be applied to any communication system, as long as the sending end and the receiving end communicate. In the following introduction, this communication method is applied to any communication system shown in Figures 1-3.
  • the communication method provided by the embodiment of the present application can be applied to uplink transmission or downlink transmission. It should be understood that uplink transmission and downlink transmission are relative. For example, if the transmission from the first communication device to the second communication device is uplink transmission, then the transmission from the second communication device to the first communication device is downlink transmission.
  • the embodiments of the present application are not limited to using OFDM waveforms to transmit data. For example, DFT-S-OFDM waveforms may also be used to transmit data.
  • the data can be DFT precoded first and then mapped to frequency domain data subcarriers.
  • carrier bandwidth and “system bandwidth” below can be replaced.
  • the number of resources includes the number of frequency domain resources, which refers to the number of resource units.
  • the embodiments of this application do not limit the granularity of resource units.
  • they can be RBs, subcarriers, resource elements (resource elements, RE), or RB groups.
  • the number of RBs included in one RB group is not limited, for example, one RB group includes 6 RBs.
  • the number of resources may be the number of RBs included in the bandwidth, or the number of subcarriers included in the bandwidth.
  • the embodiments of this application do not limit the type of reference signal.
  • the reference signal can be a phase-tracking reference signal (PTRS), a demodulation reference signal (demodulation reference signal, DMRS), a channel state information reference signal ( channel-state information reference signal (CSI-RS), tracking reference signal (tracking Reference Signal, TRS), channel sounding reference signal (sounding reference signal, SRS), etc.
  • PTRS phase-tracking reference signal
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • SRS channel sounding reference signal
  • Figure 6 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the first communication device may be a terminal device, and the second communication device may be a network device; or, the first communication device is a network device, and the second communication device is a terminal device.
  • the dotted step in Figure 6 indicates that this step is optional, that is, it is not a step that must be performed.
  • the first communication device determines to use the reserved carrier.
  • the first communication device determines to use the reserved carrier, including the first communication device determining that the first communication device uses the reserved carrier, and/or the first communication device determines that the second communication device uses the reserved carrier.
  • the first communication device may determine whether to use the reserved carrier by itself, or may determine whether the first communication device uses the reserved carrier according to instructions from the second communication device.
  • the first communication device may determine whether the first communication device uses the reserved carrier based on the PAPR suppression performance requirement of the first communication device. For example, if the first communication device has a low PAPR suppression performance requirement, then the first communication device may determine that the first communication device does not use the reserved carrier; if the first communication device has a high PAPR suppression performance requirement, then the first communication device may determine that the first communication device does not use the reserved carrier. The device may determine that the first communications device uses the reserved carrier.
  • the first communication device may determine whether to use the reserved carrier according to the instruction of the second communication device. Take the first communication device as a terminal device and the second communication device as a network device as an example.
  • the second communication device may send indication information to the first communication device, the indication information instructing the first communication device to use the reserved carrier.
  • the first communication device receives the indication information and determines that the first communication device uses the reserved carrier. If the first communication device does not receive the indication information, it can be considered that the first communication device Communication devices do not need to use reserved carriers.
  • the second communication device may send indication information to the first communication device, the indication information indicating whether the first communication device uses the reserved carrier.
  • the first communication device receives the indication information, and if the indication information indicates that the first communication device does not use the reserved carrier, the first communication device determines not to use the reserved carrier when sending a signal to the second communication device. If the indication information indicates that the first communication device uses the reserved carrier, the first communication device determines to use the reserved carrier when sending a signal to the second communication device.
  • the first communication device may determine whether to use the reserved carrier according to the TR pattern instructed by the second communication device to use. That is, the second communication device may indirectly instruct the first communication device to indicate whether to use the reserved carrier by indicating the TR pattern. If the second communication device indicates to the first communication device that the TR pattern to be used is used when the second communication device sends a signal to the first communication device, or the second communication device indicates to the first communication device that the TR pattern to be used is for the second communication device. When a communication device receives a signal sent by a second communication device, the first communication device can determine that the second communication device uses the reserved carrier when sending a signal to the first communication device. The first communication device needs to use the reserved carrier to receive the second communication device. Signals sent by communication devices.
  • the first communication device may determine that the second communication device does not use the reserved carrier when sending the signal to the first communication device, and the first communication device does not need to use the reserved carrier.
  • the remaining carrier wave receives the signal sent by the second communication device. If the second communication device indicates to the first communication device that the TR pattern to be used is used when the first communication device sends a signal to the second communication device, or the second communication device indicates to the first communication device that the TR pattern to be used is for the first communication device. If the second communication device receives the signal sent by the first communication device, then the first communication device can determine that the first communication device uses the reserved carrier when sending the signal to the second communication device. If the second communication device does not indicate the TR pattern to be used to the first communication device, the first communication device may determine that the first communication device does not use the reserved carrier when transmitting the signal to the second communication device.
  • the first communication device may determine whether the second communication device uses the reserved carrier based on the PAPR suppression performance requirement of the second communication device or the instruction of the second communication device. Take the first communication device as a terminal device and the second communication device as a network device as an example.
  • the second communication device may send indication information to the first communication device, the indication information indicating the second communication device's suppression performance requirement for PAPR or whether the second communication device uses a reserved carrier.
  • the first communication device receives the indication information, and can determine whether the second communication device uses the reserved carrier according to the indication information.
  • the first communication device determines that the second communication device does not use the reserved carrier when sending a signal to the first communication device. If the indication information indicates that the second communication device has a high demand for PAPR suppression performance or instructs the second communication device to use the reserved carrier, the first communication device determines that the second communication device uses the reserved carrier when sending a signal to the first communication device. Reserved carriers.
  • the first communication device determines a reference signal pattern and a TR pattern.
  • the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern.
  • the second reference signal sub-pattern is different from the first reference signal sub-pattern.
  • the reference signal pattern refers to the pattern of the reference signal in the bandwidth used by the first communication device.
  • the reference signal pattern may include at least one reference signal sub-pattern.
  • the reference signal pattern may only include the first reference signal sub-pattern, that is, the reference signal pattern has only one pattern.
  • the reference signal pattern may also include at least two sub-patterns, and the at least two sub-patterns include at least two different sub-patterns. That is, the reference signal pattern can have many different patterns.
  • the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern, and the first reference signal sub-pattern and the second reference signal sub-pattern are different.
  • the reference signal pattern includes three different sub-patterns, a first reference signal sub-pattern, a second reference signal sub-pattern and a third reference signal sub-pattern, and the first reference signal sub-pattern, the second reference signal sub-pattern and The third reference signal sub-patterns are all different from each other.
  • the difference in the sub-patterns of the two reference signals includes the difference in the subcarrier sequence numbers and/or the number of subcarriers occupied by the two reference signals.
  • the first reference signal sub-pattern and the second reference signal sub-pattern are different, and the reference signal in the first reference signal sub-pattern The occupied subcarrier sequence number and/or number is different from the second reference signal subpattern.
  • the difference between the two reference signal sub-patterns can also be understood as that one reference signal sub-pattern is an offset of the other reference signal sub-pattern in the time domain and/or frequency domain.
  • the first reference signal sub-pattern and the second reference signal sub-pattern are different, and the first reference signal sub-pattern is an offset of the second reference signal sub-pattern in the time domain and/or frequency domain.
  • the reference signal pattern selected by the first communication device is also different. For example, if the first communication device determines not to use the reserved carrier, then it may determine that the reference signal pattern includes only one pattern, for example, the reference signal pattern only includes the first reference signal sub-pattern; the first communication device determines to use the reserved carrier, Then a reference signal pattern including at least two patterns may be determined.
  • the reference signal pattern may include a first reference signal sub-pattern and a second reference signal sub-pattern.
  • the frequency domain resources corresponding to the first reference signal sub-pattern may be adjacent to each other, or they may not be Adjacent. It can also be understood that the pattern of the reference signal on the first frequency domain resource is the first reference signal sub-pattern, the pattern of the reference signal on the second frequency domain resource is the second reference signal sub-pattern, and the first frequency domain resource and the third reference signal sub-pattern are The two frequency domain resources may be adjacent or not.
  • the frequency domain resources corresponding to one reference signal sub-pattern are called a set of frequency domain resources.
  • a group of frequency domain resources may be a group of subcarriers.
  • the bandwidth used by the first communication device includes G subcarrier groups, where G is an integer greater than or equal to 2.
  • each subcarrier in the G subcarrier group adopts the first reference signal sub-pattern.
  • at least one subcarrier group in the G subcarrier group adopts the first reference signal subpattern, and at least one subcarrier group in the G subcarrier group adopts the second reference signal subpattern.
  • the reference signal sub-patterns corresponding to two adjacent sub-carrier groups in the G sub-carrier group may be the same or different.
  • the implementation forms of the first reference signal sub-pattern and the second reference signal sub-pattern will be introduced below and will not be introduced here.
  • the first communication device determines G, that is, determines the number of subcarrier groups included in the bandwidth used by the first communication device.
  • the first communication device determines G in various ways.
  • G may be predefined or preconfigured, or G may be agreed upon by the first communication device and the second communication device. In this method, the first communication device can determine G without signaling interaction with the second communication device, which can save signaling overhead.
  • Determination method two the first communication device determines G according to the reference signal density (for example, called the first density) in the bandwidth used by the first communication device, specifically including the following situations.
  • the reference signal density for example, called the first density
  • the first communication device may determine G according to the first density and the first mapping relationship, where the first mapping relationship is the relationship between the number of subcarrier groups and the density of the reference signal.
  • the first communication device can determine G according to Table 1 and the first density.
  • the first density is 1/2 and G is 4; the first density is 1/3 and G is 3.
  • the corresponding relationship between the reference signal density and G in Table 1 is only an indication.
  • the embodiment of the present application does not limit the size of the reference signal density and the size of G in Table 1.
  • Table 1 may be predefined, preconfigured, or agreed upon by the first communication device and the second communication device; or Table 1 may be configured by the second communication device to the first communication device, More flexible.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device may send configuration information to the first communication device, and the configuration information may indicate the first mapping relationship.
  • G corresponding to a certain reference signal density may be 0 or 1, that is, the bandwidth used by the first communication device is not divided into multiple subcarrier groups.
  • G of the reference signal density is defaulted to a preset value or a default value, such as 0, 2, 3, 4 or 6, etc.
  • the first communication device can determine G according to the first density, the first number of resources, and the second mapping relationship, where the second mapping relationship is the relationship between the number of subcarrier groups, the reference signal density, and the number of resources.
  • the first number of resources is the number of resource blocks or the number of subcarriers included in the bandwidth used by the first communication device.
  • the first communication device may determine G according to Table 2 and the first density and the first number of resources. For example, the first density is 1/2, the number of RBs is 66, and the G is 4; the first density is 1/2, the number of RBs is 132, and the G is 6.
  • the correspondence between the reference signal density, the number of RBs, and G in Table 2 is only an indication.
  • the embodiment of the present application does not limit the size of the reference signal density, the number of RBs, and the size of G in Table 2.
  • Table 2 may be predefined, preconfigured, or agreed upon by the first communication device and the second communication device; or Table 2 may be configured by the second communication device to the first communication device. , more flexible.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device may send configuration information to the first communication device, and the configuration information may indicate the second mapping relationship.
  • G corresponding to a certain reference signal density may be 0 or 1, that is, the bandwidth used by the first communication device is not divided into multiple subcarrier groups.
  • G of the reference signal density is defaulted to a preset value or a default value, such as 0, 2, 3, 4 or 6, etc.
  • the communication device determines G according to the first coefficient and the first density.
  • G is the product of the first coefficient and the first density.
  • s may be predefined, or preconfigured, or agreed upon by the first communication device and the second communication device; or may be provided by the second communication device to the first communication device.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device may send instruction information to the first communication device, and the instruction information includes s.
  • the first communication device can determine G according to the first density, and can try to determine a more appropriate G to improve the PAPR suppression performance.
  • Determination method three the first communication device determines G according to the instruction of the second communication device. Specifically, there are the following situations.
  • the second communication device provides G to the first communication device.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device can send instruction information to the first communication device.
  • the instruction information Can be used to indicate G.
  • the first communication device receives the instruction information sent by the second communication device, and determines G based on the instruction information.
  • the indication information may include G; or, the indication information may include the first index.
  • the first communication device determines G according to the first index and the corresponding relationship between the number of subcarrier groups and the index. For example, please refer to Table 3, which shows the corresponding relationship between the number of subcarrier groups and the index.
  • the second communication device provides G to the first communication device through the first index, which can save signaling overhead.
  • Table 3 may be predefined, preconfigured, or agreed upon by the first communication device and the second communication device; or Table 3 may be configured by the second communication device to the first communication device, More flexible.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the second communication device can send configuration information to the first communication device, and the configuration information can indicate the corresponding relationship between the subcarrier group and the index.
  • the second communication device sends the second number of resources to the first communication device, where the second number of resources is the number of RBs or the number of subcarriers included in a subcarrier group.
  • the first communication device determines G according to the second number of resources. For example, the first communication device may determine G as a ratio of the number of resources included in the bandwidth used by the first communication device and the second number of resources.
  • the reference signal sub-patterns on different sub-carrier groups can be the same or different.
  • the G subcarrier group includes an adjacent first subcarrier group and a second subcarrier group.
  • the first subcarrier group uses a first reference signal subpattern
  • the second subcarrier group uses a second reference signal subpattern.
  • the G subcarrier group includes a first subcarrier group, a second subcarrier group, a third subcarrier group, and a fourth subcarrier group that are adjacent in sequence, wherein the first subcarrier group uses the first reference signal subpattern.
  • the second subcarrier group adopts the second reference signal subpattern
  • the third subcarrier group adopts the first reference signal subpattern
  • the fourth subcarrier group adopts the second reference signal subpattern.
  • the first subcarrier group adopts the first reference signal subpattern
  • the second subcarrier group adopts the second reference signal subpattern
  • the third subcarrier group adopts the second reference signal subpattern
  • the fourth subcarrier group adopts the first reference signal subpattern.
  • Signal subpattern Since the second reference signal sub-pattern is different from the first reference signal sub-pattern, it can be considered that the bandwidth used by the first communication device includes at least two reference signal patterns.
  • the first communication device may determine the reference signal pattern in the bandwidth used by the first communication device by determining an offset between the second reference signal sub-pattern and the first reference signal sub-pattern in the time domain and/or frequency domain.
  • the offset in the frequency domain between the second reference signal sub-pattern and the first reference signal sub-pattern refers to the difference between the sequence number of the first sub-carrier in the sub-carrier group corresponding to the second reference signal sub-pattern and the first reference signal sub-pattern.
  • the first communication device determines that the second reference signal sub-pattern is consistent with the first
  • the offset of the reference signal sub-pattern in the frequency domain can be determined in the following ways.
  • the second communication device may indicate to the first communication device the offset in the frequency domain between the second reference signal sub-pattern and the first reference signal sub-pattern.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device can send offset information to the first communication device.
  • the first communication device receives the offset information sent by the second communication device.
  • the offset information indicates the offset in the frequency domain between the second reference signal sub-pattern and the first reference signal sub-pattern, as shown in Figure 6 . It should be understood that the second communication device may not send the offset information to the first communication device, so it is illustrated with a dotted line in FIG. 6 .
  • the offset information may indicate the offset in the frequency domain between the reference signal sub-patterns used by each sub-carrier group in the G sub-carrier group and the first reference signal sub-pattern.
  • the offset information may indicate "0,1,0,1", that is, the offset between the reference signal sub-pattern adopted by the first sub-carrier group and the first reference signal sub-pattern in the frequency domain is 0 ;
  • the offset between the reference signal sub-pattern used by the first sub-carrier group and the first reference signal sub-pattern in the frequency domain is 1;
  • the offset between the reference signal sub-pattern used by the first sub-carrier group and the first reference signal sub-pattern is The offset in the frequency domain is 0;
  • the offset in the frequency domain between the reference signal subpattern adopted by the first subcarrier group and the first reference signal subpattern is 1.
  • FIG. 7 shows two reference signal patterns on the bandwidth used by the first communication device.
  • FIG. 7 takes a reference signal pattern on one symbol as an example, and assumes that the bandwidth used by the first communication device includes 4 subcarrier groups, and the reference signal density is 1/2.
  • the first reference signal sub-pattern is the reference signal pattern on sub-carrier group 0
  • the reference signal sub-patterns used by sub-carrier group 1-sub-carrier group 3 respectively are the same as the first reference signal sub-pattern.
  • the offset of the pattern in the frequency domain is all 0.
  • the first reference signal sub-pattern is the reference signal pattern on sub-carrier group 0, and the reference signal sub-pattern used in sub-carrier group 1 is the same as the first reference signal
  • the offset of the sub-pattern in the frequency domain is 1, the offset of the reference signal sub-pattern used in sub-carrier group 2 and the first reference signal sub-pattern in the frequency domain is 0, the reference signal sub-pattern used in sub-carrier group 3 is equal to The offset of the first reference signal sub-pattern in the frequency domain is 1.
  • the bandwidth used by the first communication device may include two reference signal patterns, and the first communication device may use subcarriers other than the subcarriers carrying the reference signal. Select subcarriers used as reserved carriers to improve PAPR suppression performance.
  • Figure 8 shows a schematic distribution diagram of reference signals, data and reserved carriers.
  • FIG. 8 takes the reference signal pattern as shown in (b) in FIG. 7 as an example.
  • the mapping relationship between the number of subcarrier groups and the offset information may be predefined or preconfigured, or the first communication device and the second communication device may agree.
  • the first communication device determines the number of subcarrier groups, and determines the offset information based on the mapping relationship. For example, please refer to Table 4, which shows a mapping relationship between the number of subcarrier groups and offset information.
  • Table 4 is configured by the second communication device to the first communication device, which is more flexible.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the second communication device can send configuration information to the first communication device, and the configuration information can indicate the mapping relationship between the number of subcarrier groups and offset information, and more To be flexible.
  • the third mapping relationship may be predefined or preconfigured, or the first communication device and the second communication device may agree on a third mapping relationship, such as an index, a mapping relationship between the number of subcarrier groups and offset information. Taking the number of subcarrier groups and offset information as a set of parameters, it can also be considered that the third mapping relationship can be a mapping relationship of multiple indexes and multiple sets of parameters. Among them, an index corresponds to a set of parameters. For example, please refer to Table 5, which shows an illustration of the third mapping relationship.
  • the second communication device can indicate the number of subcarrier groups and offset information by sending the first index to the first communication device, thereby saving signaling overhead.
  • Table 5 is configured by the second communication device to the first communication device, which is more flexible.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the second communication device can send configuration information to the first communication device, and the configuration information can indicate a third mapping relationship, which is more flexible. It should be understood that the second communication device may not send the first index to the first communication device, so it is illustrated with a dotted line in FIG. 6 .
  • Determination method two the first communication device determines the offset information according to the group number of the G subcarrier group.
  • y1 is predefined or indicated, or y1 is equal to the difference between the subcarrier numbers of two adjacent reference signals, or y1 is equal to the difference between the maximum subcarrier numbers of two adjacent reference signals.
  • the offset ⁇ k of the starting position of the reference signal in each subcarrier group in the G subcarrier group takes values sequentially in a preset range.
  • the starting position of the reference signal in the i-th subcarrier group in the G subcarrier group is relative to the first position in the subcarrier group.
  • the offset ⁇ k of the subcarrier is the i-th value in the range [0, y2].
  • y2 is predefined or indicated, or y2 is equal to the difference between the subcarrier numbers of two adjacent reference signals, or y2 is equal to the difference between the maximum subcarrier numbers of two adjacent reference signals.
  • the first communication device can determine the reference signal pattern used by the bandwidth used by the first communication device according to the number G of subcarrier groups and the offset between the reference signal subpattern used by each subcarrier group and the first reference signal subpattern. It should be understood that the reference signal pattern adopted by the bandwidth used by the first communication device is also related to the reference signal density.
  • sequence number SC_index of the subcarrier included in the reference signal pattern satisfies:
  • the sequence number of each group of subcarriers starts from 0.
  • the sequence numbers of the subcarriers included in each group of 33 RBs are 0 to 395.
  • the subcarrier number corresponding to the reference signal on subcarrier group 0 is 0 ,2,4,6,8,10...;
  • the subcarrier number corresponding to the reference signal on subcarrier group 1 is 1,3,5,7,9...;
  • the subcarrier number corresponding to the reference signal on subcarrier group 2 are 0,2,4,6,8,10...;
  • the subcarrier numbers corresponding to the reference signal on subcarrier group 3 are 1,3,5,7,9..., as shown in Figure 8.
  • the subcarriers occupied by the offset reference signal are cyclically displaced within the corresponding subcarrier group to prevent the sequence numbers of the subcarriers occupied by the offset reference signal from exceeding the range of subcarrier numbers in the group.
  • the frequency domain resources where a group of reference signals reside are 33 RBs, and the subcarrier numbers of the frequency domain resources range from 0 to 395. If the offset sequence number of the subcarrier where the reference signal is located exceeds 395, the offset sequence number of the subcarrier can be modulated, that is, cyclically shifted within the range of 0 to 395.
  • sequence number RS_index_new of the subcarrier occupied by the final reference signal satisfies:
  • SC_index (2n+k)/ ⁇ +x+ ⁇ k, where x is the original offset of the reference signal, that is, the sequence number of the first subcarrier in the subcarrier group where the first reference signal subpattern is located.
  • the serial number is 1.
  • x 2, indicating that the sequence number of the first subcarrier in the subcarrier group where the first reference signal subpattern is located is 2.
  • Figure 10 also shows a pattern of reserved carriers.
  • SC_index (2n+k/2)/ ⁇ +x+ ⁇ k
  • x is the original offset of the reference signal, which is the first reference The offset between the sequence number of the first subcarrier in the subcarrier group where the signal subpattern is located and the defined sequence number of the first subcarrier.
  • the first communication device determines the reference signal pattern by determining G and the sequence number of the subcarrier corresponding to each subcarrier group in the G subcarrier group as an example.
  • the first communication device or the second communication device can also determine the reference signal pattern to be used based on the TR pattern to be used, and there are several determination methods as follows.
  • the TR pattern and the reference signal pattern can be mapped. For example, see Table 6, which shows the corresponding relationship between the TR pattern and the reference signal pattern.
  • the first communication device or the second communication device determines the reference signal pattern to be used based on the TR pattern to be used.
  • the mapping relationship between the TR pattern and the reference signal pattern may be predefined, preconfigured, or agreed upon.
  • the second communication device configures the TR pattern to be used as TR pattern 1 to the first communication device.
  • the first communication device and the second communication device can determine the reference signal pattern to be used as reference signal pattern 1 based on TR pattern 1 and Table 6 .
  • the second communication device configures the TR pattern to be used as TR pattern 3 to the first communication device.
  • the first communication device and the second communication device can determine that the reference signal pattern to be used is the reference signal based on TR pattern 3 and Table 6. Pattern 3.
  • the TR pattern to be used indicated by the second communication device to the first communication device is not in the mapping relationship between the TR pattern and the reference signal pattern, that is, the TR pattern to be used does not have a mapped reference signal pattern.
  • the first communication device and/or the second communication device use a default reference signal pattern, or use a reference signal pattern configured in other ways (or an existing way of configuring a reference signal pattern, which may also be called an original reference signal pattern).
  • the mapping relationship shown in Table 6 is only an example.
  • the reference signal pattern in Table 6 can be any reference signal pattern shown in Figures 8 to 10. Table 6 can also be indicated by the second communication device to the first communication device.
  • the mapping relationship between the number of frequency domain resources, TR patterns, and reference signal patterns may be predefined, preconfigured, or agreed upon.
  • the first communication device and/or the second communication device determine the reference signal pattern to be used based on the number of frequency domain resources and the TR pattern to be used.
  • Table 7 shows a mapping relationship between the number of frequency domain resources, TR patterns and reference signal patterns.
  • the second communication device configures the RB number for the first communication device to be 66, and the second communication device configures the TR pattern to be used for the first communication device as TR pattern 1.
  • the first communication device and the second communication device can Determine whether to use reference signal pattern 1 to transmit or receive signals.
  • the mapping relationship shown in Table 7 is only an example.
  • the reference signal pattern in Table 7 can be any reference signal pattern shown in Figures 8 to 10. Table 7 can also be indicated by the second communication device to the first communication device.
  • the mapping relationship between the TR pattern and the reference signal pattern can be predefined, agreed upon, or preconfigured, and an index can be established for the TR pattern and the reference signal pattern.
  • Table 8 shows the mapping relationship between indexes, TR patterns and reference signal patterns.
  • the second communication device configures the TR pattern and the reference signal pattern by sending the index number to the first communication device.
  • the second communication device configures the first communication device with an index number of 1
  • the first communication device and/or the second communication device can determine to use TR pattern 2 and reference signal pattern 2 to send or receive signals according to Table 8.
  • the mapping relationship shown in Table 8 is only an example.
  • the reference signal pattern in Table 8 can be any reference signal pattern shown in Figures 8 to 10. Table 8 can also be indicated by the second communication device to the first communication device.
  • the second communication device may separately configure the TR pattern and the corresponding reference signal pattern to the first communication device.
  • the reference signal pattern may be, for example, any reference signal pattern shown in FIGS. 8-10.
  • the second communication device may configure the TR pattern to the first communication device in an index manner. For example, see Table 9, which shows the mapping relationship between indexes and TR patterns.
  • Table 9 which shows the mapping relationship between indexes and TR patterns.
  • Table 10 which shows the mapping relationship between indexes and reference signal patterns.
  • the first communication device and/or the second communication device may determine to use the reference signal pattern 2 according to Table 10 . Since TR patterns and reference signal patterns can be indicated by indexes respectively, different combinations of TR patterns and reference signal patterns can be flexibly indicated to optimize system spectrum efficiency. It should be noted that the mapping relationships shown in Table 9 and Table 10 are only examples.
  • the reference signal pattern in Table 10 can be any reference signal pattern shown in Figures 8 to 10. Table 9 and/or Table 10 can be predefined. Or as agreed, it may also be indicated by the second communication device to the first communication device.
  • Determination method 5 The mapping relationship between the TR pattern, the reference signal density, and/or the original reference signal pattern and the reference signal pattern can be predefined, agreed upon, or preconfigured. That is, the TR pattern, the reference signal density and/or the original reference signal pattern, and the reference signal pattern are mapped.
  • the original reference signal pattern refers to the reference signal pattern configured through the existing technology, or the reference signal pattern configured through the existing technology when adapting the TR pattern is not considered, or for other communication functions in the system (for example, to resist Phase noise effect) configured reference signal pattern.
  • Table 11 shows the mapping relationship between TR patterns, reference signal densities and/or original reference signal patterns, and reference signal patterns.
  • the first communication device and/or the second communication device may determine the reference signal pattern to be used according to the TR pattern to be used, the reference signal density and/or the original reference signal pattern, and the mapping relationship.
  • the mapping relationship shown in Table 11 is only an example.
  • the reference signal pattern in Table 11 can be any reference signal pattern shown in Figures 8 to 10.
  • Table 11 can also be the second communication device indicating to the first communication device.
  • the first communication device and/or the second communication device uses TR pattern 1 and the reference signal density is 1/2 (and/or the original reference signal pattern 1), according to Table 11, the first communication device and/or the second communication device determines to use TR pattern 1 and reference signal pattern 1 to send or receive signals; when the first communication device and/or the second communication device uses TR pattern 3, the reference signal density is 1/4 (and/ or the original reference signal pattern 3), according to Table 11, the first communication device and/or the second communication device determines to use the TR pattern 3 and the reference signal pattern 3 to transmit or receive signals.
  • the first communication device and/or the second communication device can be agreed Use the default reference signal pattern, or use a reference signal pattern configured in other ways (such as the original reference signal pattern).
  • the mapping relationship between the number of frequency domain resources, TR patterns, reference signal densities, and/or original reference signal patterns and reference signal patterns may be predefined, agreed upon, or preconfigured. That is, the frequency domain resource number, TR pattern, reference signal density and/or original reference signal pattern are mapped to the reference signal pattern.
  • the reference signal pattern can be any reference signal pattern shown in Figures 8-10.
  • Table 12 shows the mapping relationship between the RB number, TR pattern, reference signal density and/or original reference signal pattern, and reference signal pattern.
  • the first communication device and/or the second communication device may determine the reference signal pattern to be used according to the number of RBs to be used, the TR pattern, the reference signal density and/or the original reference signal pattern, and the mapping relationship. It should be noted that the mapping relationship shown in Table 12 is only an example, and Table 12 can also be indicated by the second communication device to the first communication device.
  • the TR pattern used is TR pattern 1, and the reference signal density is 1/2 (and/or the original reference signal pattern 1)
  • the first communication device and/or the second communication device determine to use the reference signal pattern 1 to send a signal or receive a signal; when the first communication device and/or the second communication device Or when the number of RBs of the second communication device is 66, the TR pattern used is TR pattern 3, and the reference signal density is 1/4 (and/or the original reference signal pattern 3), according to Table 12, the first communication device and/or the The two communication devices determine to use the reference signal pattern 3 to transmit or receive signals.
  • the number of frequency domain resources and/or TR patterns to be used indicated by the second communication device to the first communication device are not included in Table 12, that is, the number of frequency domain resources and/or the TR pattern to be used does not have a mapped reference signal pattern, It may be agreed that the first communication device and/or the second communication device use a default reference signal pattern, or use a reference signal pattern configured in other ways (eg, an original reference signal pattern).
  • Determination method six the first communication device/second communication device determines the number of subcarrier groups G and/or offset information to be used according to the TR pattern to be used, that is, the TR pattern and the number of subcarrier groups G and/or offset information Do the mapping. After the first communication device/second communication device obtains the subcarrier group number G and/or the offset information, the preset number to be used may be determined according to any one of determination methods one to three in the above embodiments. Leave a reference signal pattern that is compatible with the carrier.
  • mapping relationship between the TR pattern and the subcarrier group number G and/or offset information may be predefined, preconfigured, or agreed upon, as shown in Table 13. It should be noted that the mapping relationship shown in Table 13 is only an example, and Table 13 can also be indicated by the second communication device to the first communication device.
  • the second communication device configures the TR pattern to be used to the first communication device, and the first communication device and the second communication device determine the number of subcarrier groups G and/or the bias to be used based on the TR pattern and the mapping relationship shown in Table 13. shift information, and then determine the reference signal pattern based on the subcarrier group number G and/or offset information.
  • the number of frequency domain resources and the TR pattern can be mapped to the number of subcarrier groups G and/or offset information.
  • the mapping relationship between the number of RBs, the TR pattern, and the number of subcarrier groups G and/or offset information may be predefined, preconfigured, or agreed upon, as shown in Table 14. It should be noted that the mapping relationship shown in Table 14 is only an example, and Table 14 can also be the second communication device. setting instructions to the first communication device.
  • the second communication device configures the number of frequency domain resources and/or the TR pattern to be used to the first communication device and is not in the mapping relationship shown in Table 14, that is, the number of domain resources and/or the TR pattern to be used does not have a mapped sub-relationship.
  • the carrier group number G and/or the offset information may stipulate that the first communication device and/or the second communication device use a default reference signal pattern, or use a reference signal pattern configured in other ways (for example, an original reference signal pattern).
  • the TR pattern, reference signal density and/or original reference signal pattern, subcarrier group number G and/or offset information can be mapped.
  • the mapping relationship between the TR pattern, the reference signal density and/or the original reference signal pattern, the subcarrier group number G and/or the offset information may be predefined or preconfigured or agreed upon, as shown in Table 15. It should be noted that the mapping relationship shown in Table 15 is only an example, and Table 15 may also be indicated by the second communication device to the first communication device.
  • the first communication device/second communication device can determine the number of subcarrier groups G and/or offset information to be used based on the TR pattern to be used, the reference signal density and/or the original reference signal pattern, and then further The reference signal pattern adapted to the reserved carrier to be used is determined according to the subcarrier group number G and/or the offset information.
  • the first communication device and/or the second communication device determines to use TR pattern 1
  • the reference signal density is 1/2
  • the shift information ⁇ 0,1,0,1,0,1,0,1 ⁇ determines the reference signal pattern that is adapted to the reserved carrier to be used.
  • the reference signal density (and/or original reference signal pattern) and/or TR pattern configured by the second communication device to the first communication device is not in the mapping relationship as shown in Table 15, that is, the reference signal density to be used (and/or the original reference signal pattern) and/or the TR pattern does not have the mapped subcarrier group number G and/or offset information, it can be agreed that the first communication device and/or the second communication device use the default reference signal pattern, or An otherwise configured reference signal pattern (eg, an original reference signal pattern) is used.
  • the number of frequency domain resources, TR pattern, reference signal density and/or original reference signal pattern, subcarrier group number G and/or offset information may be predefined, agreed upon or preconfigured, as shown in Table 16. It should be noted that the mapping relationship shown in Table 16 is only an example, and Table 16 can also be indicated by the second communication device to the first communication device.
  • the first communication device and the second communication device may determine the number of subcarrier groups G and/or offset information according to the number of frequency domain resources, TR pattern and reference signal density (and/or original reference signal pattern) and Table 16 .
  • the second communication device configures the number of frequency domain resources and/or TR pattern and/or reference signal density (original reference signal pattern) to be used by the first communication device not in the mapping relationship shown in Table 16, that is, to use If the number of domain resources and/or the TR pattern does not have the number of mapped subcarrier groups G and/or the offset information, the first communication device and/or the second communication device can be agreed to use the default reference signal pattern, or configured in other ways.
  • the reference signal pattern (such as the original reference signal pattern).
  • Table 8 and Table 12 are combined to realize the implementation of indicating the number of RBs, TR patterns, reference signal density, and reference signal patterns through index numbers.
  • the table 8 can be combined with the above-mentioned configuration of the mapping relationship to the first communication device, that is, the second communication device configures the table 8 to the first communication device, and then the second communication device sends the index number to the first communication device. Indicates the TR pattern and reference signal pattern used. Other combination methods are not listed one by one.
  • the numerical values of the mapping relationships in the above embodiments are only used as examples and do not limit specific numerical values. The mapping relationships, index relationships, etc.
  • the second communication device in the above embodiments can be obtained through the first communication device and the second communication device in a protocol agreement, preconfiguration, and agreed manner, which can save signaling overhead; or the second communication device sends a message to the first communication device.
  • the communication device sends the data in a way that facilitates flexible configuration and real-time changes in mapping relationships.
  • the bandwidth used by the first communication device uses at least two reference signal sub-patterns. It can be considered that the distribution of the reference signals in the bandwidth used by the first communication device is uneven. Avoid excessive sub-peak value of the core time domain signal generated by the sub-carriers used as reserved carriers to improve PAPR suppression performance.
  • the reference signals within each subcarrier group are evenly distributed to ensure the decoding performance of the receiving end.
  • Figure 11 is a schematic diagram of the corresponding PAPR suppression performance using TR technology under the same reference signal density, uniform reference signal pattern and uneven reference signal pattern.
  • the thick line indicates the PAPR suppression performance when the reserved carrier is not used
  • the thin line indicates the PAPR suppression performance when the reserved carrier is used under the uniform reference signal pattern
  • the dotted line indicates the PAPR suppression performance when the reserved carrier is used under the uneven reference signal pattern.
  • PAPR inhibition performance As can be seen from Figure 11, the PAPR suppression performance that can be achieved by using TR technology for uneven reference signal patterns is higher than the PAPR suppression performance that can be achieved by using TR technology for uniform reference signal patterns, with a performance improvement of about 3dB.
  • the reference signals within each subcarrier group are evenly distributed, which can ensure the decoding performance of the receiving end.
  • Figure 12 shows the case of uniform reference signal pattern (i.e., the reference signal pattern provided by this application) and uneven reference signal pattern (i.e., the reference signal pattern provided by this application) under the same reference signal density.
  • TR is used A schematic diagram of the decoding performance corresponding to each technology.
  • Figure 12 takes the modulation and coding scheme (MCS) indexes as 0, 13, 19 and 20 as an example, the number of RBs is 132, and the subcarrier spacing is 120KHz.
  • MCS modulation and coding scheme
  • the reference signal pattern provided by the embodiment of the present application can not only improve the PAPR suppression performance, but also ensure the decoding performance of the receiving end.
  • the reference signals within a subcarrier group can also be unevenly distributed.
  • the second reference signal sub-pattern may also be an offset in the time domain of the first reference signal sub-pattern.
  • the embodiments of this application do not limit whether the reference signal patterns and reference signal densities used between different symbols are the same.
  • the reference signal patterns and/or reference signal densities used by different symbols may be the same or different.
  • Figure 13 shows a reference signal pattern within a time slot.
  • Figure 13 takes a time slot including 14 symbols, namely symbols 0 to 13, as an example.
  • the DMRS density of symbols 0 ⁇ 1 is 1/4
  • the reference signal density of symbol 2 and symbol 11 is 1/2
  • the PTRS density of the remaining symbols 3 ⁇ 10, 12 ⁇ 13 is 1/24.
  • Different symbols can use different reference signal densities, and the corresponding TR patterns can also be different.
  • the first communication device performs data transmission according to the reference signal pattern and the TR pattern.
  • the first communication device When the first communication device performs data transmission, it can select which reference signal pattern and TR pattern to use. For example, when the first communication device determines not to use the reserved carrier, the first communication device determines that the reference signal pattern only includes the first reference signal sub-pattern. When the reference signal pattern only includes the first reference signal sub-pattern, the first communication device may continue to use the current reference signal pattern. When the first communication device determines to use the reserved carrier, the first communication device determines that the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern. When the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern, the first communication device may determine the TR pattern to be used according to the reference signal density and/or the number of frequency domain resources.
  • a subcarrier for the reserved carrier is selected among subcarriers other than the subcarriers occupied by the reference signal.
  • each symbol can adaptively determine the reference signal pattern to be used based on one or more information of whether to use a reserved carrier, the corresponding original reference signal pattern, the reference signal density, and the number of frequency domain resources, or Determine the number G of subcarrier groups, offset information of the reference signal sub-pattern corresponding to each sub-carrier group, and then determine the reference signal pattern and/or TR pattern.
  • Table 17 shows a corresponding relationship between RB number, reference signal density and TR pattern.
  • the information sent by the network device to the terminal device may be carried in a system message, such as system information.
  • a system message such as system information.
  • the network device may send G, the offset information, the first mapping relationship, the second mapping relationship or the third mapping relationship to the terminal device through broadcast or multicast.
  • the system can avoid the need to schedule different resources for different devices, thus saving the signaling overhead of scheduling resources and reducing the complexity of system scheduling.
  • the network device can use RRC signaling (for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC recovery signaling (RRCResume, etc.), downlink control information (DCI), group DCI, media access control (media access control, MAC) control element (control element, CE), sent to the first communication device said information.
  • RRC signaling for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC recovery signaling (RRCResume, etc.
  • DCI downlink control information
  • group DCI media access control (media access control, MAC) control element (control element, CE)
  • the information sent by the network device to the terminal device can be transmitted to the terminal device along with the data.
  • the information sent by the network device to the terminal device can be carried in a physical downlink shared channel (PDSCH) allocated separately for the terminal device.
  • PDSCH physical downlink shared channel
  • corresponding information can be sent to different terminal devices, such as G, offset information, etc., thereby flexibly controlling the parameter values of each terminal device.
  • different G, offset information and other parameters can be configured to the terminal equipment, that is, different reference signal patterns can be configured to optimize the system transmission power efficiency and optimize the terminal Device communication performance/system communication performance purposes.
  • different G and offset information and TR reserved subcarriers can be configured to optimize each/each group.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the first communication device, the second communication device, and the interaction between the first communication device and the second communication device.
  • the first communication device and the second communication device may include a hardware structure and/or a software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module. Implement the above functions. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG 14 is a schematic block diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may include a processing module 1410 and a transceiver module 1420.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 1410 and the transceiver module 1420 can be coupled with the storage unit.
  • the processing module 1410 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above modules can be set up independently or partially or fully integrated.
  • the communication device 1400 can correspondingly implement the behaviors and functions of the communication device in the above method embodiments.
  • the communication device 1400 can be a communication device or a component (such as a chip or circuit) used in the communication device. It may also be a chip or chipset in the communication device or a part of the chip used to perform related method functions.
  • the communication device 1400 implements the method performed by the communication device in the embodiment of the present application.
  • the processing module 1410 may be used to determine the use of reserved carriers, and determine reference signal patterns and carrier reserved TR patterns.
  • the reference signal pattern includes a first reference signal sub-pattern and a second reference signal sub-pattern, and the second reference signal sub-pattern is an offset of the first reference signal sub-pattern in the time domain and/or frequency domain.
  • the transceiver module 1420 is used for data transmission according to the reference signal pattern and the TR pattern.
  • the processing module 1410 is also configured to determine not to use the reserved carrier, and the reference signal pattern only includes the first reference signal sub-pattern.
  • the bandwidth used by the communication device 1400 includes G subcarrier groups. At least one subcarrier group in the wave group adopts the first reference signal subpattern, and at least one subcarrier group in the G subcarrier group adopts the second reference signal subpattern, where G is an integer greater than or equal to 2.
  • the processing module 1410 is also configured to determine G according to the first density, which is the density of the reference signal in the bandwidth used by the communication device 1400; wherein, the processing module 1410 is specifically configured to determine G according to the first density.
  • Determine G with the first mapping relationship which is the relationship between the number of subcarrier groups and the reference signal density; or, the processing module 1410 is specifically configured to determine G according to the first density, the first number of resources, and the second mapping relationship.
  • the second mapping relationship is the relationship between the number of subcarrier groups, the reference signal density, and the number of resources, and the first number of resources is the number of resource blocks or the number of subcarriers included in the bandwidth used by the communication device; or , the processing module 1410 is specifically configured to determine G according to the first coefficient and the first density, G is the product of the first coefficient and the first density, the first coefficient is predefined or preconfigured or indicated; or, G is a preset Defined or agreed upon or preconfigured.
  • the communication device 1400 is a terminal device, and the transceiver module 1420 is also used to receive G; or the transceiver module 1420 is also used to receive the second resource number, and the processing module 1410 is also used to calculate the second resource number according to the second resource number. Determine G, where the second number of resources is the number of resource blocks or the number of subcarriers included in a subcarrier group.
  • the communication device 1400 is a network device, and the transceiver module 1420 is also used to send G, or the transceiver module 1420 is also used to send a second resource number, and the second resource number is used to determine G.
  • the processing module 1410 is also configured to determine offset information, which is used to indicate whether the second reference signal sub-pattern and the first reference signal sub-pattern are in the time domain and/or offset in the frequency domain.
  • the processing module 1410 is specifically configured to: determine the offset information according to the group number of the G subcarrier group; wherein, the starting position of the reference signal in the G_numth subcarrier group in the G subcarrier group
  • the offset ⁇ k of the starting position of the reference signal in the i-th subcarrier group in the G subcarrier group relative to the first subcarrier in the subcarrier group is in the range [0, y] The i-th value.
  • the communication device 1400 is a terminal device, and the transceiver module 1420 is also used to receive offset information.
  • the communication device 1400 is a network device, and the transceiver module 1420 is also used to send offset information.
  • the communication device 1400 is a terminal device, the transceiver module is further configured to receive the first index, and the processing module is further configured to determine G and the offset information according to the first index and the third mapping relationship, where ,
  • the third mapping relationship is the mapping relationship between multiple indexes and multiple sets of parameters. Multiple indexes and multiple sets of parameters correspond one to one.
  • One set of parameters includes a set of G and offset information.
  • sequence numbers of subcarriers included in the reference signal pattern are determined according to the density of the reference signal.
  • the sequence number SC_index of the subcarrier included in the reference signal pattern satisfies:
  • the communication device 1400 is a terminal device, and the transceiver module 1420 is also used to receive instructions.
  • the indication information instructs the communication device 1400 to use the reserved carrier.
  • the communication device 1400 is a network device, and the transceiver module 1420 is also configured to send indication information, where the indication information instructs the terminal device to use the reserved carrier.
  • processing module 1410 in the embodiment of the present application can be implemented by a processor or processor-related circuit components
  • transceiver module 1420 can be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • FIG. 15 is a schematic block diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may be a communication device capable of realizing the functions of the first communication device or the second communication device in the method provided by the embodiments of the present application.
  • the communication device 1500 may also be a device that can support the first communication device or the second communication device to implement the corresponding functions in the method provided by the embodiment of the present application, wherein the communication device 1500 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the communication device 1500 may also be a first communication device or a second communication device, and can implement the functions of the first communication device or the second communication device in the method provided by the embodiments of the present application.
  • the communication device 1500 may also be a device that can support the first communication device or the second communication device to implement the corresponding functions in the method provided by the embodiment of the present application, wherein the communication device 1500 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the communication device 1500 includes one or more processors 1501, which can be used to implement or support the communication device 1500 to implement the functions of the first communication device or the second communication device in the method provided by the embodiment of this application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • One or more processors 1501 may also be used to implement or support the communication device 1500 in implementing the functions of the first communication device or the second communication device in the method provided by the embodiments of this application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • the processor 1501 can also be called a processing unit or processing module, and can implement certain control functions.
  • the processor 1501 may be a general-purpose processor or a special-purpose processor, or the like.
  • central processing unit For example, include: central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or neural network processor wait.
  • the central processing unit may be used to control the communication device 1500, execute software programs and/or process data.
  • Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated on one or more application specific integrated circuits.
  • the communication device 1500 includes one or more memories 1502 to store instructions 1504, which can be executed on the processor 1501, so that the communication device 1500 executes the method described in the above method embodiment.
  • the memory 1502 and the processor 1501 may be provided separately or integrated together, or the memory 1502 and the processor 1501 may be considered coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 1501 may cooperate with memory 1502. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1502 is not necessary, so it is illustrated with a dotted line in FIG. 15 .
  • the memory 1502 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the memory 1502 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing storage.
  • the communication device 1500 may include instructions 1503 (sometimes also referred to as codes or programs), and the instructions 1503 may be executed on the processor, causing the communication device 1500 to perform the methods described in the above embodiments.
  • Data may be stored in processor 1501.
  • the communication device 1500 may also include a transceiver 1505 and an antenna 1506.
  • the transceiver 1505 may be called a transceiver unit, transceiver module, transceiver, transceiver circuit, transceiver, input/output interface, etc., and is used to realize the transceiver function of the communication device 1500 through the antenna 1506.
  • the processor 1501 and transceiver 1505 described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency identification (RFID), mixed signal ICs, ASICs, printed circuit boards (printed circuit boards) board, PCB), or electronic equipment, etc.
  • the communication device that implements the communication described in this article can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • ICs integrated circuits
  • RFID radio frequency identification
  • ASICs integrated circuits
  • PCB printed circuit boards
  • the communication device 1500 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, and an antenna. Speakers, microphones, input and output modules, sensor modules, motors, cameras, or displays, etc. It can be understood that in some embodiments, the communication device 1500 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiments may be a first communication device (or a second communication device) or a circuit, or may be a chip or chip applied in the first communication device (or the second communication device).
  • Other combined devices, components, etc. having the function of the above-mentioned first communication device (or second communication device).
  • the transceiver module may be a transceiver, which may include an antenna, a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (system on chip) , SoC), it can also be a CPU, it can be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (micro controller unit, MCU) , it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the processing module may be a processor of a chip system.
  • the transceiver module or communication interface may be the input/output interface or interface circuit of the chip system.
  • the interface circuit may be a code/data read and write interface circuit.
  • the interface circuit can be used to receive code instructions (code instructions are stored in the memory and can be read directly from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor can be used to run all The code instructions are used to execute the methods in the above method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and/or a communication interface;
  • the processing unit may be an integrated processor or microprocessor or an integrated circuit.
  • An embodiment of the present application also provides a communication system.
  • the communication system includes at least one first communication device and at least one second communication device.
  • the communication system includes a first communication channel for implementing the related functions of Figure 6 above.
  • communication device and a second communication device.
  • the relevant descriptions in the above method embodiments which will not be described again here.
  • An embodiment of the present application also provides a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the first communication device in Figure 6 . Or, when it is run on the computer, the computer is caused to perform the method performed by the second communication device in FIG. 6 .
  • An embodiment of the present application also provides a computer program product, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the first communication device in FIG. 6 . Or, when it is run on the computer, the computer is caused to perform the method performed by the second communication device in FIG. 6 .
  • Embodiments of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory for implementing the functions of the first communication device or the second communication device in the foregoing method; or for implementing the communication device in the foregoing method. function.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), RAM, magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及通信装置,该通信方法包括:通信装置确定使用预留载波,确定参考信号图样和TR图样,并根据参考信号图样以及TR图样进行数据传输。其中,参考信号图样包括第一参考信号子图样和第二参考信号子图样,第二参考信号子图样为第一参考信号子图样在时域和/或频域的偏移。通过该方法可提供具有多种不同子图样的参考信号图样,使得参考信号在带宽上的分布不均匀,这样即使参考信号的密度较大,也可避免用作预留载波的子载波生成的内核时域信号的次峰值较大,从而提高PAPR的抑制性能。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2022年06月29日提交中国国家知识产权局、申请号为202210759905.1、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
载波预留(tone reservation,TR)技术可用于抑制波形的峰均功率比(peak-to-average power ratio,PAPR)。即,发送端除了用于承载参考信号的子载波之外,还预留一些子载波用于承载抑制PAPR的信号。发送端在除了承载参考信号之外的子载波中选择部分子载波作为预留载波来抑制PAPR。当参考信号的密度较大时,存在PAPR的抑制性能较低的情况。
因此,在参考信号的密度较大的情况下,如何提高PAPR的抑制性能是亟需解决的问题。
发明内容
本申请提供一种通信方法及通信装置,用于提供新的参考信号的图样,提高通过TR抑制PAPR的性能。
第一方面,本申请实施例提供一种通信方法,该方法可由通信装置执行,通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备是通信装置为例进行描述。示例性地,所述通信装置为终端设备,或者为设置在终端设备中的芯片,或者为用于实现终端设备的功能的其他部件。示例性的,所述通信装置为网络设备,或者为设置在网络设备中的芯片,或者为用于实现网络设备的功能的其他部件。
所述通信方法包括:通信装置确定使用预留载波,确定参考信号图样和TR图样,并根据参考信号图样以及TR图样进行数据传输。其中,参考信号图样包括第一参考信号子图样和第二参考信号子图样,第二参考信号子图样为第一参考信号子图样在时域和/或频域的偏移。即参考信号图样具有多种不同的图样,使得参考信号在带宽上的分布不均匀,这样即使参考信号的密度较大,也可避免用作预留载波的子载波生成的内核时域信号的次峰值较大,从而提高PAPR的抑制性能。
在可能的实现方式中,所述方法还包括:通信装置确定不使用预留载波,参考信号图样只包括第一参考信号子图样。当通信装置确定不使用预留载波,认为对PAPR没有抑制需求,那么该通信装置可确定要使用参考信号图样只包括一种参考信号子图样,兼容现有参考信号图样。
在可能的实现方式中,通信装置使用的带宽包括G个子载波组,该G个子载波组中至少一个子载波组采用第一参考信号子图样,且,该G个子载波组中至少一个子载波组采用第二参考信号子图样,G为大于或等于2的整数。即G个子载波组至少采用两种不同的参考信号子图样,使得参考信号在带宽上分布不均匀。同时,一个子载波组对应一种参考信号子图样,即子载波组内的参考信号分布均匀,从而保证接收端的译码性能。
在可能的实现方式中,所述方法还包括:通信装置根据第一密度确定G,第一密度为通信装置使用的带宽中参考信号的密度。参考信号密度较大,参考信号在带宽上均匀分布,影响PAPR的抑制性能。本申请实施例中,通信装置根据第一密度将带宽划分为合理的G个子载波组,进而确定各个子载波组内的参考信号子图样,以尽量提高PAPR的抑制性能。其中,通信装置根据第一密度确定G包括如下几种方式。
确定方式一,通信装置根据第一密度和第一映射关系确定G,第一映射关系为子载波组的个数和参考信号密度之间的关系。
确定方式二,通信装置根据所述第一密度、第一资源数以及第二映射关系确定G,其中,第二映射关系为子载波组的个数、参考信号密度,以及资源数之间的关系。第一资源数为通信装置使用的带宽包括的资源块数或子载波数。
确定方式三,通信装置根据第一系数和第一密度确定G,其中,G为第一系数与第一密度的乘积,第一系数是预定义的或者预配置的或者指示的。
确定方式四,G是预定义的或者约定的或者预配置的。
如上的确定方式一到确定方式四,可尽量节约信令开销。
在可能的实现方式中,通信装置为终端设备,所述方法还包括:通信装置接收G;或者,通信装置接收第二资源数,并根据第二资源数确定G。其中,第二资源数为一个子载波组包括的资源块数或者子载波数。相应的,通信装置为网络设备,所述方法还包括:通信装置发送G;或者,通信装置发送第二资源数,该第二资源数用于确定G。由网络设备向终端设备配置G,根据不同的终端设备的需要的不同,可配置不同的G,从而优化各个终端设备的通信性能。
在可能的实现方式中,所述方法还包括:通信装置确定偏移信息,该偏移信息用于指示第二参考信号子图样与第一参考信号子图样在时域和/或频域上的偏移。以第一参考信号子图样为基础,通过偏移信息可确定第二参考信号子图样。
在可能的实现方式中,通信装置确定偏移信息包括:通信装置根据G个子载波组的组号确定偏移信息;其中,G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移Δk与G_num之间满足:Δk=mod(G_num,y)或Δk=G_num,y是预定义的或指示的,或者,y等于相邻两个参考信号的子载波序号的差值,或者,y等于相邻两个参考信号的最大子载波序号的差值。
在可能的实现方式中,G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一子载波的偏移Δk为[0,y]范围中的第i个取值。
在可能的实现方式中,通信装置为终端设备,通信装置确定偏移信息包括:通信装置接收偏移信息。相应的,通信装置为网络设备,所述方法还包括:通信装置发送偏移信息。由网络设备向终端设备提供偏移信息,针对不同的终端设备,可配置不同的偏移信息,以尽量保证各个终端设备的通信性能。
在可能的实现方式中,通信装置为终端设备,所述方法还包括:通信装置接收第一索 引,根据第一索引和第三映射关系确定G和偏移信息。其中,第三映射关系为多个索引和多组参数之间的映射关系,多个索引和多组参数一一对应,一组参数包括一组G和偏移信息。由网络设备通过索引的方式向终端设备指示G和偏移信息,可节约信令开销。
在可能的实现方式中,参考信号图样包括的子载波的序号根据参考信号的密度确定。
在可能的实现方式中,参考信号图样包括的子载波的序号SC_index满足:
SC_index=(2n+k)/ρ+Δk,SC_index=(2n+k)/ρ+x+Δk,SC_index=(2n+k/2)/ρ+Δk,或者,SC_index=(2n+k/2)/ρ+x+Δk,其中,ρ为通信装置使用的带宽中的参考信号的密度,n=0,1...,N×ρ/2,N为通信装置使用的带宽包括的资源块数或子载波数,k=0,1,x为参考信号的原始偏移。
在可能的实现方式中,通信装置为终端设备,通信装置确定预留载波包括:通信装置接收指示信息,该指示信息指示通信装置使用预留载波。相应的,通信装置为网络设备,所述方法还包括:通信装置发送指示信息,该指示信息指示终端设备使用预留载波。
第二方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面方法实施例中行为的功能,有益效果可以参见第一方面的描述,此处不再赘述。
该通信装置可以是第一方面中的通信装置,或者该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片系统。在一个可能的设计中,该通信装置包括用于执行第一方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面的通信装置,或者为设置在第二方面中的通信装置中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法中由通信装置所执行的方法。
第四方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面所述的方法。
第五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器和/或通信接口,用于实现第一方面所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存计算机程序。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请实施例提供了一种通信系统,所述通信系统包括第一通信装置和第二通信装置,其中,第一通信装置为终端设备,第二通信装置为网络设备,用于执行上述第一方面中由通信装置所执行的方法,或者,第一通信装置为网络设备,第二通信装置为终端设备,用于执行上述第一方面中由通信装置所执行的方法。当然,所述通信系统可以包括更多第一通信装置或更多第二通信装置。
第七方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面的方法被执行。
上述第二方面至第八方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种通信系统的架构示意图;
图2为本申请实施例适用的另一种通信系统的架构示意图;
图3为本申请实施例适用的又一种通信系统的网络架构示意图;
图4为本申请实施例提供的密度为1/2的参考信号的分布示意图;
图5为本申请实施例提供的参考信号的密度为1/2时对应的PAPR抑制性能的示意图;
图6为本申请实施例提供的通信方法的流程示意图;
图7为本申请实施例提供的第一通信装置使用的带宽上的两种参考信号图样;
图8为本申请实施例提供的参考信号、数据以及预留载波的一种分布示意图;
图9为本申请实施例提供的各个子载波组上的参考信号对应的子载波以及预留载波的图样的一种示意图;
图10为本申请实施例提供的各个子载波组上的参考信号对应的子载波以及预留载波的图样的另一种示意图;
图11为本申请实施例提供的相同参考信号密度下,均匀参考信号图样和不均匀参考信号图样的情况下,采用TR技术分别对应的PAPR抑制性能的示意图;
图12为本申请实施例提供的相同参考信号密度下,均匀参考信号图样和不均匀参考信号图样的情况下,采用TR技术分别对应的译码性能的示意图;
图13为本申请实施例提供的一个时隙内的参考信号图样的示意图;
图14为本申请实施例提供的通信装置的一种结构示意图;
图15为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
本申请的实施例提供的技术方案可以应用于新无线(new radio,NR)系统、长期演进(Long term evolution,LTE)系统、非陆地网络(non terrestrial networks,NTN)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统。本申请的实施例提供的技术方案也可以应用于车到万物(vehicle to everything,V2X)系统,物联网(internet of things,IoT)系统等。
作为一种示例,请参见图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统可包括网络设备和两个终端设备,这两个终端设备可以是移动终端设备和/或用于在无线通信系统上通信的任意其它适合设备,且均可以与网络设备连接。这两个终端设备均能够与网络设备通信。当然图1中的终端设备的数量只是举例,还可以更少或更多。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备 用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备(device to device,D2D)、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景中的终端设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,用于实现终端设备功能的通信装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。在本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,网络设备可以是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B,eNB/e-NodeB);网络设备也可以包括NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为站点(station)、中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、M2M网络中的设备、物联网IoT网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。CU的控制面CU-CP还包括一种进一步切分的架构,即把现有的CU-CP进一步切分为CU-CP1和CU-CP2。其中CU-CP1包括各种无线资源管理功能,CU-CP2仅包括无线资源控制(radio resource control, RRC)功能和PDCP-C功能(即控制面信令在PDCP层的基本功能)。
本申请实施例中,用于实现网络设备或终端设备功能的通信装置可以是网络设备或终端设备,也可以是能够支持网络设备或终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备或终端设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
作为另一种示例,请参见图2,为本申请实施例适用的另一种通信系统的网络架构示意图。该通信系统包括卫星、终端设备和网关。卫星可以是高椭圆轨道(highly elliptical orbiting,HEO)卫星、地球静止轨道卫星(geosynchronous earth otbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。此外,NTN系统还可以包括高空平台(high altitude platform station,HAPS)等,这里不作限制。网关(或称地面站、地球站、信关站、关口站)(gateway),可用于连接卫星和地面基站关口站/信关站(gateway)。一个或多个卫星可以通过一个或多个网关连接到一个或多个地面基站,在此不做限制。终端设备,例如包括手机、飞机等(图2以此为例)。卫星与终端设备间的链路称作服务链路(service link),卫星与网关间的链路称作馈电链路(feeder link)。
本申请实施例对卫星的工作模式不作限制,例如,卫星的工作模式可以是透传(transparent)模式,也可以是再生(regenerative)模式。
透传模式,即,卫星作为一个模拟射频中继器,具有中继转发的功能,可以实现无线频率转换和放大,可透传或复制基站与终端设备之间的信号。例如,终端设备发送的信号可用过卫星透传,网关转发进入地面基站。网关具有基站的部分功能或全部功能,此时可以将网关看作为基站。可以认为,网元与基站可以部署在一起,也可以分开部署。如果网关与基站分开部署,那么馈电链路的时延包括卫星到网关的时延和网关到基站的时延。
再生模式,即卫星作为无线通信的基站,具有基站的部分功能或全部功能,实现从地面接收的信号的再生,可以理解并处理这些信号。例如,卫星可以是搭载在人造地球卫星或高空飞行器上的基站,例如基站可以为演进型基站(eNB)或5G基站(gNB)等。网关可转发卫星(即基站)与核心网之间的信令。
可以理解的是,本申请实施例也可以适用于空地(air to ground,ATG)通信系统,作为示例,请参见图3,为本申请实施例适用的又一种通信系统的网络架构示意图。该通信系统包括至少一个网络设备和至少一个高空终端设备,例如高空飞机和机上终端设备。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,“第一参考信号子图样”和“第二参考信号子图样”是表示存在两种子图样,并不表示这两种子图样的 优先级或者重要程度等不同。
如上介绍了本申请实施例适用的通信系统,下面介绍本申请实施例主要涉及的相关技术内容。
卫星设备受限于制造与发射成本,星上数据处理能力与发射功率都会受到限制。具体来说,卫星设备属于能量和功率受限设备,对星上功率效率敏感,即期望尽可能提高卫星设备的功率效率。在陆地蜂窝网通信或NTN通信中均要求发射端的高功率放大器(high power amplifier,HPA)工作在线性饱和区附近,以提高HPA的功率效率。
如果系统采用正交频分复用(orthogonal frequency division multiplexing,OFDM)波形或具有高PAPR特性的波形来传输数据,会出现高PAPR。由于OFDM信号的PAPR较大,因此当HPA工作在饱和点附近时,输入HPA的信号有较一定概率进入非线性区域而产生非线性失真。非线性失真会引入带内失真和带外辐射,既会影响接收端的解码正确率,也会给相邻信道用户带来干扰。为此,可通过对输入的HPA信号做功率回退,尽量减少HPA的非线性失真。对输入的HPA信号做功率回退,可以理解为是,降低输入HPA信号的功率。对输入的HPA信号做功率回退,虽然可以减少HPA的非线性失真,但是会降低HPA输出的信号功率,从而降低了发射功率、降低了HPA的功率效率,进而导致接收端的信号接收功率的降低,降低了接收端的信噪比。为此,提出通过TR技术抑制OFDM等波形的PAPR。TR技术,可以理解为,保留一部分预留载波作为抑制PAPR的载波。用于抑制PAPR的预留载波可以包括多个子载波,也称为载波集合。该载波集合包括的各个子载波分别对应的子载波编号组成的图样(pattern),称为TR图样。即TR图样可指示用于抑制PAPR的预留载波的集合。
通过TR技术抑制PAPR指的是,在发送端保留用于抑制PAPR的预留载波,承载抑制PAPR的信号,除去预留载波之外的部分载波用于承载数据信号和参考信号。当然,为了提高频谱效率,也可以在预留载波上承载数据信号,即预留载波既可以承载抑制PAPR的信号,又可以承载数据信号。可选地,承载抑制PAPR的信号的载波集合和承载数据信号以及参考信号的载波集合不重叠(本文以此为例)。对于接收端来说,在解调从发送端接收的信息时,可跳过或去除用于抑制PAPR的预留载波,也就是对用于抑制PAPR的预留载波上的信号不进行译码。具体的,发送端使用预留载波生成归一化的内核时域信号用于抑制OFDM波形的PAPR,即内核信号在频域上只占用预留载波,在具体抑制PAPR时,将OFDM时域数据与经过循环移位、相位旋转和尺度变换后的内核时域信号相减,得到完成一次PAPR抑制迭代的OFDM时域信号,后续继续迭代,关于基于TR图样抑制PAPR的原理为现有技术,此处不作赘述。
发送端在除了承载参考信号之外的子载波中选择部分子载波作为预留载波。如果参考信号的密度较大,存在PAPR的抑制性能较低的情况。例如,假设参考信号分布均匀,也可以认为,参考信号只有一种子图样,当参考信号的密度较大,PAPR的抑制性能较低。举例来说,请参见图4,图4为密度为1/2的参考信号的分布示意图。假设参考信号的序号从分配的资源块(resource block,RB)的第一个子载波开始编号。以第一个子载波的编号从0开始为例,假设参考信号均匀分布,那么参考信号的序号为0,2,4,6,8…,预留载波只能从序号为1,3,5,7,9…的子载波中选择。相应的,在序号为1,3,5,7,9…的子载波中选择某些子载波作为预留载波用于抑制PAPR,可能会出现预留载波生成的内核时域信号有多个峰值,且次峰值较大。如此,OFDM时域数据与经过循环移位等的内核时域信号相减之 后,还是存在较大的次峰值,即PAPR抑制性能较低,如图5所示。图5为参考信号的密度为1/2时对应的PAPR抑制性能的示意图。其中,图5中,粗线示意不使用预留载波抑制PAPR时的抑制性能,细线示意使用预留载波抑制PAPR时的抑制性能。
鉴于此,提供本申请实施例的方案。在本申请实施例中,至少包括两种不同的参考信号子图样,也可以认为,参考信号在带宽上的分布不均匀,可避免用作预留载波的子载波生成的内核时域信号的次峰值较大,从而提高PAPR的抑制性能。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供了一种通信方法,该方法可应用任意通信系统,只要发送端和接收端通信即可。下文的介绍中,以该通信方法应用于图1-图3所示的任意通信系统。本申请实施例提供的通信方法,可以应用于上行传输,也可以应用于下行传输。应理解,上行传输和下行传输是相对而言的,例如,从第一通信装置到第二通信装置的传输为上行传输,那么从第二通信装置到第一通信装置的传输为下行传输。本申请实施例不限于采用OFDM波形传输数据,例如,也可以采用DFT-S-OFDM波形传输数据。即可将数据先进行DFT预编码,然后映射到频域数据子载波上。如无特殊说明,下文中的“载波带宽”和“系统带宽”可替换。资源数包括频域资源数,指的是资源单元的个数,本申请实施例对资源单元的粒度不作限制,例如,可以是RB、子载波、资源元素(resource element,RE),或者RB组,其中一个RB组包括的RB个数不作限定,例如,一个RB组包括6个RB。例如,资源数可以是带宽包括的RB数,也可以是带宽包括的子载波数。本申请实施例对参考信号的类型不作限制,例如,参考信号可以为相位跟踪参考信号(Phase-tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel-state information reference signal,CSI-RS)、跟踪参考信号(tracking Reference Signal,TRS)、信道探测参考信号(sounding reference signal,SRS)等。在下文的描述中,“当….时”和“在…情况下”属于同一概念,如无特殊说明,二者可替换。本文中,mod(a,b)表示mod运算,即求余运算,表示a对b求余数运算。
请参见图6,为本申请实施例提供的通信方法的流程示意图。在下文的描述中,以该通信方法通过第一通信装置和第二通信装置执行为例。第一通信装置可以是终端设备,第二通信装置可以是网络设备;或者,第一通信装置是网络设备,第二通信装置是终端设备。图6中虚线步骤表示该步骤是可选地,即不是必须执行的步骤。
S601、第一通信装置确定使用预留载波。
第一通信装置确定使用预留载波包括第一通信装置确定第一通信装置使用预留载波,和/或,第一通信装置确定第二通信装置使用预留载波。其中,第一通信装置可以自己判断是否使用预留载波,也可以根据第二通信装置的指示确定第一通信装置是否使用预留载波。
例如,第一通信装置可根据第一通信装置对PAPR的抑制性能需求确定第一通信装置是否使用预留载波。例如,第一通信装置对PAPR的抑制性能需求较低,那么第一通信装置可确定第一通信装置不使用预留载波;如果第一通信装置对PAPR的抑制性能需求较高,那么第一通信装置可确定第一通信装置使用预留载波。
又例如,第一通信装置可根据第二通信装置的指示确定是否使用预留载波。以第一通信装置是终端设备,第二通信装置是网络设备为例。第二通信装置可向第一通信装置发送指示信息,该指示信息指示第一通信装置使用预留载波。第一通信装置接收该指示信息,确定第一通信装置使用预留载波。如果第一通信装置没有接收该指示信息,可认为第一通 信装置无需使用预留载波。或者,第二通信装置可向第一通信装置发送指示信息,该指示信息指示第一通信装置是否使用预留载波。第一通信装置接收该指示信息,如果该指示信息指示第一通信装置不使用预留载波,则第一通信装置确定向第二通信装置发送信号时不使用预留载波。如果该指示信息指示第一通信装置使用预留载波,则第一通信装置确定向第二通信装置发送信号时使用预留载波。
再例如,第一通信装置可根据第二通信装置指示使用的TR图样来确定是否使用预留载波。也就是,第二通信装置可通过指示TR图样间接指示第一通信装置指示是否使用预留载波。如果第二通信装置向第一通信装置指示使用的TR图样用于第二通信装置向第一通信装置发送信号时使用,或者,第二通信装置向第一通信装置指示使用的TR图样用于第一通信装置接收第二通信装置发送的信号时使用,那么第一通信装置可以确定第二通信装置向第一通信装置发送信号时使用预留载波,第一通信装置需要使用预留载波接收第二通信装置发送的信号。如果第二通信装置未向第一通信装置指示使用的TR图样,那么第一通信装置可以确定第二通信装置向第一通信装置发送信号时不使用预留载波,第一通信装置不需要使用预留载波接收第二通信装置发送的信号。如果第二通信装置向第一通信装置指示使用的TR图样用于第一通信装置向第二通信装置发送信号时使用,或者,第二通信装置向第一通信装置指示使用的TR图样用于第二通信装置接收第一通信装置发送的信号时使用,那么第一通信装置可以确定第一通信装置向第二通信装置发送信号时使用预留载波。如果第二通信装置未向第一通信装置指示使用的TR图样,那么第一通信装置可以确定第一通信装置向第二通信装置发送信号时不使用预留载波。
同理,第一通信装置可根据第二通信装置对PAPR的抑制性能需求或第二通信装置的指示确定第二通信装置是否使用预留载波。以第一通信装置是终端设备,第二通信装置是网络设备为例。第二通信装置可向第一通信装置发送指示信息,该指示信息指示第二通信装置对PAPR的抑制性能需求或第二通信装置是否使用预留载波。第一通信装置接收该指示信息,根据该指示信息可确定第二通信装置是否使用预留载波。如果该指示信息指示第二通信装置对PAPR的抑制性能需求较低或指示第二通信装置不使用预留载波,则第一通信装置确定第二通信装置向第一通信装置发送信号时不使用预留载波;如果该指示信息指示第二通信装置对PAPR的抑制性能需求较高或指示第二通信装置使用预留载波,则第一通信装置确定第二通信装置向第一通信装置发送信号时使用预留载波。
S602、第一通信装置确定参考信号图样和TR图样,该参考信号图样包括第一参考信号子图样和第二参考信号子图样,该第二参考信号子图样与第一参考信号子图样不同。
参考信号图样指的是参考信号在第一通信装置使用的带宽中的图样。在本申请实施例中,参考信号图样可以包括至少一个参考信号子图样。例如,参考信号图样可以仅包括第一参考信号子图样,也就是说,参考信号图样只有一种图样。参考信号图样也可包括至少两个子图样,且至少两个子图样至少包含两种不同的子图样。也就是说,参考信号图样可以具有多种不同的图样。例如,参考信号图样包括第一参考信号子图样和第二参考信号子图样,且第一参考信号子图样和第二参考信号子图样不同。又例如,参考信号图样包括三种不同的子图样,第一参考信号子图样、第二参考信号子图样和第三参考信号子图样,且第一参考信号子图样、第二参考信号子图样和第三参考信号子图样之间都不同。
两种参考信号子图样不同包括两种参考信号占用的子载波序号和/或子载波数量不同。例如,第一参考信号子图样和第二参考信号子图样不同,第一参考信号子图样中参考信号 占用的子载波序号和/或数量与第二参考信号子图样不同。两种参考信号子图样不同也可以理解为,一种参考信号子图样是另一种参考信号子图样在时域和/或频域上的偏移。例如,第一参考信号子图样和第二参考信号子图样不同,第一参考信号子图样为第二参考信号子图样在时域和/或频域上的偏移。
根据第一通信装置确定是否使用预留载波的结果的不同,第一通信装置所选择的参考信号图样也有所不同。例如,第一通信装置确定不使用预留载波,那么可确定仅包括一种图样的参考信号图样,例如,参考信号图样仅包括第一参考信号子图样;第一通信装置确定使用预留载波,那么可确定至少包括两种图样的参考信号图样,例如,参考信号图样可以包括第一参考信号子图样和第二参考信号子图样。
第一参考信号子图样对应的频域资源(例如称为第一频域资源)与第二参考信号子图样对应的频域资源(例如称为第二频域资源)可以相邻,也可以不相邻。也可以理解为,第一频域资源上的参考信号的图样为第一参考信号子图样,第二频域资源上的参考信号的图样为第二参考信号子图样,第一频域资源和第二频域资源可以相邻,也可以不相邻。为方便描述,在下文的介绍中,将一个参考信号子图样对应的频域资源称为一组频域资源。一组频域资源可为一组子载波,以第一通信装置使用的带宽包括G个子载波组为例,其中,G为大于或等于2的整数。相应的,当第一通信装置确定不使用预留载波,G个子载波组中各个子载波均采用第一参考信号子图样。当第一通信装置确定使用预留载波,G个子载波组中至少一个子载波组采用第一参考信号子图样,且,该G个子载波组中至少一个子载波组采用第二参考信号子图样。其中,G个子载波组中相邻两个子载波组对应的参考信号子图样可以相同,也可以不相同。关于第一参考信号子图样和第二参考信号子图样的实现形式将在下文中介绍,此处暂不作介绍。
第一通信装置确定G,即确定第一通信装置使用的带宽包括的子载波组数。第一通信装置确定G有多种方式。
确定方式一,G可以是预定义的,或者预配置的,或者G是第一通信装置和第二通信装置约定的。该方式中,第一通信装置无需和第二通信装置之间的信令交互即可确定G,可节约信令开销。
确定方式二,第一通信装置根据第一通信装置使用的带宽中的参考信号密度(例如称为第一密度)确定G,具体包括如下情况。
情况一,第一通信装置可根据第一密度和第一映射关系确定G,其中,第一映射关系为子载波组的个数和参考信号密度之间的关系。
例如,请参见表1,示出了子载波组的个数和参考信号密度之间的关系。第一通信装置根据表1和第一密度即可确定G。举例来说,第一密度为1/2,G为4;第一密度为1/3,G为3。
表1
其中,表1中参考信号密度和G的对应关系仅是一种示意,本申请实施例对表1中参考信号密度的大小和G的大小不作限制。表1可以是预定义的,也可以是预配置的,或者,也可以第一通信装置和第二通信装置约定的;或者,表1也可以是第二通信装置配置给第一通信装置的,更为灵活。例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可以向第一通信装置发送配置信息,该配置信息可指示第一映射关系。可选地,某个参考信号密度对应的G可以为0或1,即第一通信装置使用的带宽不划分成多个子载波组。可选地,如果未约定某个参考信号密度对应的G,那么默认该参考信号密度的G为预设值或者默认值,例如0、2、3、4或6等。
情况二,第一通信装置可根据第一密度、第一资源数以及第二映射关系确定G,其中,第二映射关系为子载波组的个数、参考信号密度,以及资源数之间的关系。第一资源数为第一通信装置使用的带宽包括的资源块数或子载波数。
例如,请参见表2,示出了子载波组的个数、参考信号密度和RB数之间的关系。第一通信装置根据表2和第一密度以及第一资源数可确定G。举例来说,第一密度为1/2,RB数为66,G为4;第一密度为1/2,RB数为132,G为6。
表2
表2中参考信号密度、RB数和G的对应关系仅是一种示意,本申请实施例对表2中参考信号密度的大小、RB数和G的大小不作限制。表2可以是预定义的,也可以是预配置的,或者,也可以是第一通信装置和第二通信装置约定的;或者,表2也可以是第二通信装置配置给第一通信装置的,更为灵活。例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可以向第一通信装置发送配置信息,该配置信息可指示第二映射关系。可选地,某个参考信号密度对应的G可以为0或1,即第一通信装置使用的带宽不划分成多个子载波组。可选地,如果未约定某个参考信号密度对应的G,那么默认该参考信号密度的G为预设值或者默认值,例如0、2、3、4或6等。
情况三,所述通信装置根据第一系数和第一密度确定G,G为第一系数与第一密度的乘积,第一系数是预定义的或者预配置的或者指示的。例如,G满足:G=s×RS_density,s为第一系数,RS_density为第一密度。s可以是预定义的,或者,预配置的,或者第一通信装置和第二通信装置约定的;或者,由第二通信装置提供给第一通信装置。例如,第一通信装置为终端设备,第二通信装置为网络设备,第二通信装置可向第一通信装置发送指示信息,该指示信息包括s。
在确定方式二中,第一通信装置可根据第一密度确定G,可尽量确定较为合适的G,以提高PAPR抑制性能。
确定方式三,第一通信装置根据第二通信装置的指示确定G,具体有如下几种情况。
情况一,第二通信装置向第一通信装置提供G,例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可向第一通信装置发送指示信息,该指示信息可用于指示G。第一通信装置接收第二通信装置发送的指示信息,根据该指示信息确定G。
例如,该指示信息可包括G;或者,该指示信息可包括第一索引。第一通信装置根据第一索引以及子载波组数和索引的对应关系确定G。举例来说,请参见表3,示出了子载波组数和索引的对应关系。第二通信装置通过第一索引向第一通信装置提供G,可节约信令开销。
表3
表3可以是预定义的,也可以是预配置的,或者,也可以第一通信装置和第二通信装置约定的;或者,表3也可以是第二通信装置配置给第一通信装置的,更为灵活。例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可以向第一通信装置发送配置信息,该配置信息可指示子载波组和索引的对应关系。
情况二,第二通信装置向第一通信装置发送第二资源数,其中,第二资源数为一个子载波组包括的RB数或子载波数。第一通信装置根据第二资源数确定G,例如,第一通信装置可确定G为第一通信装置使用的带宽包括的资源数与第二资源数的比值。
不同子载波组上的参考信号子图样可以相同,也可以不同。例如,G个子载波组包括相邻的第一子载波组和第二子载波组,第一子载波组采用第一参考信号子图样,第二子载波组采用第二参考信号子图样。又例如,G个子载波组包括依次相邻的第一子载波组、第二子载波组、第三子载波组和第四子载波组,其中,第一子载波组采用第一参考信号子图样,第二子载波组采用第二参考信号子图样,第三子载波组采用第一参考信号子图样,第四子载波组采用第二参考信号子图样。或者,第一子载波组采用第一参考信号子图样,第二子载波组采用第二参考信号子图样,第三子载波组采用第二参考信号子图样,第四子载波组采用第一参考信号子图样。由于第二参考信号子图样与第一参考信号子图样不同,对于第一通信装置使用的带宽来说,可认为,至少包括两种参考信号图样。例如,第一通信装置可通过确定第二参考信号子图样与第一参考信号子图样在时域和/或频域上的偏移,来确定第一通信装置使用的带宽上的参考信号图样。
第二参考信号子图样与第一参考信号子图样在频域上的偏移,指的是,第二参考信号子图样所对应的子载波组中的第一个子载波的序号,与第一参考信号子图样所对应的子载波组中的第一个子载波的序号之间的偏移。第一通信装置确定第二参考信号子图样与第一 参考信号子图样在频域上的偏移,有如下多种确定方式。
确定方式一,第二通信装置可向第一通信装置指示第二参考信号子图样与第一参考信号子图样在频域上的偏移。例如,第一通信装置为终端设备,第二通信装置为网络设备,第二通信装置可向第一通信装置发送偏移信息,相应的,第一通信装置接收第二通信装置发送的偏移信息,该偏移信息指示第二参考信号子图样与第一参考信号子图样在频域上的偏移,如图6所示。应理解,第二通信装置可以不向第一通信装置发送偏移信息,因此在图6中以虚线进行示意。
示例的,有G个子载波组,第一参考信号子图样对应的子载波组为G个子载波组中的第一个子载波组。该偏移信息可指示G子载波组中各个子载波组分别采用的参考信号子图样与第一参考信号子图样在频域上的偏移。例如,G=4,偏移信息可指示“0,1,0,1”,即第一个子载波组采用的参考信号子图样与第一参考信号子图样在频域上的偏移为0;第一个子载波组采用的参考信号子图样与第一参考信号子图样在频域上的偏移为1;第一个子载波组采用的参考信号子图样与第一参考信号子图样在频域上的偏移为0;第一个子载波组采用的参考信号子图样与第一参考信号子图样在频域上的偏移为1。又例如,G=6,偏移信息可指示“0,1,2,0,1,2”。
为方便理解,请参见图7,示出了第一通信装置使用的带宽上的两种参考信号图样。图7以一个符号上参考信号图样为例,且以第一通信装置使用的带宽包括4个子载波组,参考信号密度是1/2为例。如图7中的(a)所示,第一参考信号子图样为子载波组0上的参考信号图样,子载波组1-子载波组3分别采用的参考信号子图样与第一参考信号子图样在频域上的偏移均为0。而在本申请实施例,如图7中的(b)所示,第一参考信号子图样为子载波组0上的参考信号图样,子载波组1采用的参考信号子图样与第一参考信号子图样在频域上的偏移为1,子载波组2采用的参考信号子图样与第一参考信号子图样在频域上的偏移为0,子载波组3采用的参考信号子图样与第一参考信号子图样在频域上的偏移为1。从图7中的(b)可以看出,本申请实施例中,第一通信装置使用带宽可包括两种参考信号图样,第一通信装置可在除承载参考信号的子载波之外的子载波中选择用作预留载波的子载波,以提高PAPR抑制性能。例如,请参见图8,示出了参考信号、数据以及预留载波的一种分布示意图。图8以参考信号图样以图7中的(b)所示为例。
在可能的实现方式中,可预定义或者预配置,或者第一通信装置和第二通信装置约定子载波组数和偏移信息的映射关系。第一通信装置确定子载波组数,根据该映射关系也就确定了偏移信息。例如,请参见表4,示出了子载波组数和偏移信息的一种映射关系。
表4

可选地,表4是第二通信装置配置给第一通信装置的,更为灵活。例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可以向第一通信装置发送配置信息,该配置信息可指示子载波组数和偏移信息的映射关系,更为灵活。
在可能的实现方式中,可预定义或者预配置,或者第一通信装置和第二通信装置约定第三映射关系,例如,索引以及子载波组数和偏移信息的映射关系。将子载波组数和偏移信息作为一组参数,也可以认为是第三映射关系可以是多个索引和多组参数的映射关系。其中,一个索引对应一组参数。例如,请参见表5,示出了第三映射关系的一种示意。
表5
这种情况下,第二通信装置通过向第一通信装置发送第一索引,就可指示子载波组数以及偏移信息,从而可节约信令开销。可选地,表5是第二通信装置配置给第一通信装置的,更为灵活。例如,第一通信装置是终端设备,第二通信装置是网络设备,第二通信装置可以向第一通信装置发送配置信息,该配置信息可指示第三映射关系,更为灵活。应理解,第二通信装置可以不向第一通信装置发送第一索引,因此在图6中以虚线进行示意。
确定方式二,第一通信装置根据G个子载波组的组号确定偏移信息。
例如,G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移Δk与G_num之间满足:Δk=mod(G_num,y1),G_num=0,1,2,…G-1;或者,Δk=mod(G_num-1,y1),G_num=1,2,…G。其中,y1是预定义的或指示的,或者,y1等于相邻两个参考信号的子载波序号的差值,或者,y1等于相邻两个参考信号的最大子载波序号的差值。
举例来说,G=4,G_num=0,1,2,…G-1,Δk=mod(G_num,y1),y1=2,那么有第0个子载波组采用的参考信号子图样的起始位置的偏移Δk=0,第1个子载波组采用的参考信号子图样的起始位置的偏移Δk=1,第2个子载波组采用的参考信号子图样的起始位置的偏移Δk=0,第3个子载波组采用的参考信号子图样的起始位置的偏移Δk=1。
又例如,G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移Δk与G_num之间满足:Δk=G_num。
确定方式三,可以约定G子载波组中各个子载波组中的参考信号的起始位置的偏移Δk在预设范围顺序取值。
例如,G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一 子载波的偏移Δk为[0,y2]范围中的第i个取值。例如,G个子载波组内参考信号的起始位置的偏移Δk=0,1,2,….y2。其中,y2是预定义的或指示的,或者,y2等于相邻两个参考信号的子载波序号的差值,或者,y2等于相邻两个参考信号的最大子载波序号的差值。
又例如,G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一子载波的偏移Δk顺序取值,例如,Δk=0,1,2,…。
第一通信装置根据子载波组数G和各个子载波组采用的参考信号子图样与第一参考信号子图样之间的偏移可以确定第一通信装置使用的带宽采用的参考信号图样。应理解,第一通信装置使用的带宽采用的参考信号图样还与参考信号密度相关。
作为一种示例,参考信号图样包括的子载波的序号SC_index满足:
SC_index=(2n+k)/ρ+Δk,其中,其中,ρ为第一通信装置使用的带宽中的参考信号的密度,n=0,1...,N×ρ/2,N为第一通信装置使用的带宽包括的资源块数或子载波数,k=0,1。
以第一通信装置使用的带宽有132个RB,分为4个子载波组,即G=4。每组子载波的序号从0开始编号,例如,每组33个RB包括的子载波的序号为0~395。以ρ=1/2为例,Δk=[0,1,0,1],根据SC_index=(2n+k)/ρ+Δk可知,子载波组0上的参考信号对应的子载波号为0,2,4,6,8,10…;子载波组1上的参考信号对应的子载波号为1,3,5,7,9…;子载波组2上的参考信号对应的子载波号为0,2,4,6,8,10…;子载波组3上参考信号对应的子载波号为1,3,5,7,9…,如图8所示。以ρ=1/3,G=3为例,Δk=[0,1,2]为例,根据SC_index=(2n+k)/ρ+Δk可知,子载波组0上的参考信号对应的子载波号为0,3,6,9…;子载波组1上的参考信号对应的子载波号为1,4,7,10…;子载波组2上的参考信号对应的子载波号为2,5,8,11…,如图9所示。图9还示出了预留载波的图样。
可选地,可以约定偏移后的参考信号所占子载波在对应子载波组内循环位移,以避免偏移后的参考信号所占子载波的序号超出组内的子载波号范围。例如,一组参考信号所在频域资源为33个RB,频域资源的子载波序号的范围为0~395。如果参考信号所在子载波偏移后的序号超过395,可对偏移后的子载波的序号进行取模,即在0~395内循环移位。
例如,最终参考信号所占子载波的序号RS_index_new满足:
RS_index_new=mod(RS_index_shifted,RE_num),其中,RS_index_shifted为第一通信装置初始确定的子载波的序号,RE_num表示子载波组内的资源数。例如,RS_index_shifted为397,RE_num为396,那么RS_index_new=mod(397,396)=1,则最终参考信号所占子载波的序号为1。
可选地,SC_index=(2n+k)/ρ+x+Δk,其中,x为参考信号的原始偏移,也就是第一参考信号子图样所在子载波组中的第一个子载波的序号与定义的第一个子载波的序号之间的偏移。例如,定义一个子载波组内的子载波符号从0开始编号,那么第一个子载波的序号为0,x=1,表示第一参考信号子图样所在子载波组中的第一个子载波的序号为1。x=2,表示第一参考信号子图样所在子载波组中的第一个子载波的序号为2。
作为又一种示例,SC_index=(2n+k/2)/ρ+Δk,与前述示例类似,以ρ=1/3,G=3为例,Δk=[0,1,2]为例,根据SC_index=(2n+k)/ρ+Δk可知,子载波组0上的参考信号对应的子载波号为0,1,4,5…;子载波组1上的参考信号对应的子载波号为1,2,5,6…;子载波组2上的参考信号对应的子载波号为2,3,6,7…,如图10所示。图10还示出了预留载波的图样。
可选地,SC_index=(2n+k/2)/ρ+x+Δk,x为参考信号的原始偏移,也就是第一参考 信号子图样所在子载波组中的第一个子载波的序号与定义的第一个子载波的序号之间的偏移。
上述以第一通信装置确定G以及G个子载波组中各个子载波组对应的子载波的序号的方式来确定参考信号图样为例。在可能的实现方式中,第一通信装置或第二通信装置也可以根据要使用的TR图样来确定要使用的参考信号图样,有如下几种确定方式。
确定方式四,可将TR图样与参考信号图样进行映射,例如,请参见表6,示出了TR图样与参考信号图样的对应关系。第一通信装置或第二通信装置根据要使用的TR图样确定要使用的参考信号图样。
例如,可预定义或者预配置或者约定TR图样与参考信号图样的映射关系。第二通信装置向第一通信装置配置要使用的TR图样为TR图样1,第一通信装置和第二通信装置根据TR图样1和表6可确定要使用的参考信号图样为参考信号图样1。又例如,第二通信装置向第一通信装置配置要使用的TR图样为TR图样3,第一通信装置和第二通信装置根据TR图样3和表6可确定要使用的参考信号图样为参考信号图样3。如果第二通信装置向第一通信装置指示的要使用的TR图样不在TR图样与参考信号图样的映射关系中,即要使用的TR图样没有映射的参考信号图样。这种情况下,可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(或现有配置参考信号图样的方式,也可称为原始参考信号图样)。需要说明的是,表6示意的映射关系仅是举例,表6中参考信号图样可以为图8-图10所示的任意参考信号图样,表6也可以是第二通信装置指示给第一通信装置的。
表6
又例如,可预定义或者预配置或者约定频域资源数、TR图样和参考信号图样的映射关系。第一通信装置和/或第二通信装置根据频域资源数、要使用的TR图样确定要使用的参考信号图样。例如,请参见表7,示出了频域资源数、TR图样和参考信号图样之间的一种映射关系。根据表7,第二通信装置为第一通信装置配置RB数为66,且第二通信装置为第一通信装置配置要使用的TR图样为TR图样1,第一通信装置和第二通信装置可以确定使用参考信号图样1发送信号或接收信号。需要说明的是,表7示意的映射关系仅是举例,表7中参考信号图样可以为图8-图10所示的任意参考信号图样,表7也可以是第二通信装置指示给第一通信装置的。
表7
又例如,可预定义或者约定或者预配置TR图样与参考信号图样之间的映射关系,并为TR图样与参考信号图样建立索引。例如,请参见表8,示出了索引、TR图样与参考信号图样之间的映射关系。第二通信装置通过向第一通信装置发送索引号来配置TR图样与参考信号图样。例如,第二通信装置向第一通信装置配置索引号为1时,第一通信装置和/或第二通信装置根据表8,可确定要使用TR图样2和参考信号图样2发送信号或接收信号。需要说明的是,表8示意的映射关系仅是举例,表8中参考信号图样可以为图8-图10所示的任意参考信号图样,表8也可以是第二通信装置指示给第一通信装置的。
表8
可选地,第二通信装置可以向第一通信装置分别配置TR图样与对应的参考信号图样,该参考信号图样,例如为图8-图10所示的任意参考信号图样。在可能的实现方式中,第二通信装置可以通过索引的方式向第一通信装置配置TR图样。例如,请参见表9,示出了索引和TR图样之间的映射关系。当第二通信装置向第一通信装置配置TR图样的索引号为1时,第一通信装置和/或第二通信装置根据表9可确定使用TR图样2。例如,请参见表10,示出了索引和参考信号图样之间的映射关系。当第二通信装置向第一通信装置配置参考信号图样的索引号为1时,第一通信装置和/或第二通信装置根据表10可确定使用参考信号图样2。由于TR图样和参考信号图样可以分别通过索引指示,因此,可以灵活指示不同的TR图样与参考信号图样组合,优化系统频谱效率。需要说明的是,表9和表10示意的映射关系仅是举例,表10中参考信号图样可以为图8-图10所示的任意参考信号图样,表9和/或表10可以是预定义或者约定的,也可以是第二通信装置指示给第一通信装置的。
表9
表10
确定方式五,可预定义或者约定或者预配置TR图样、参考信号密度和/或原始参考信号图样、参考信号图样之间的映射关系。即将TR图样、参考信号密度和/或原始参考信号图样、与参考信号图样进行映射。原始参考信号图样,指的是通过现有技术配置的参考信号图样,或者在未考虑适配TR图样时,通过现有技术配置的参考信号图样,或者系统中为了其它通信功能(例如,为了抵抗相位噪声影响)配置的参考信号图样。
例如,请参见表11,示出了TR图样、参考信号密度和/或原始参考信号图样、参考信号图样之间的映射关系。第一通信装置和/或第二通信装置根据要使用的TR图样、参考信号密度和/或原始参考信号图样以及该映射关系可确定要使用的参考信号图样。需要说明的是,表11示意的映射关系仅是举例,表11中参考信号图样可以为图8-图10所示的任意参考信号图样,表11也可以是第二通信装置指示给第一通信装置的。
表11

如表11所示,当第一通信装置和/或第二通信装置使用TR图样1、参考信号密度为1/2(和/或原始参考信号图样1)时,根据表11,第一通信装置和/或第二通信装置确定使用TR图样1和参考信号图样1发送信号或接收信号;当第一通信装置和/或第二通信装置使用TR图样3、参考信号密度为1/4(和/或原始参考信号图样3)时,根据表11,第一通信装置和/或第二通信装置确定使用TR图样3和参考信号图样3发送信号或接收信号。如果第二通信装置向第一通信装置指示的要使用的TR图样没有包含在表11中,即要使用的TR图样没有映射的参考信号图样,可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
可选地,可预定义或者约定或者预配置频域资源数、TR图样、参考信号密度和/或原始参考信号图样、参考信号图样之间的映射关系。即将频域资源数、TR图样、参考信号密度和/或原始参考信号图样、与参考信号图样进行映射。参考信号图样可以为图8-图10所示的任意参考信号图样。例如,请参见表12,示出了RB数、TR图样、参考信号密度和/或原始参考信号图样、参考信号图样之间的映射关系。第一通信装置和/或第二通信装置根据要使用的RB数、TR图样、参考信号密度和/或原始参考信号图样以及该映射关系可确定要使用的参考信号图样。需要说明的是,表12示意的映射关系仅是举例,表12也可以是第二通信装置指示给第一通信装置的。
表12
如表12所示,当第一通信装置和/或第二通信装置的RB数为66、使用的TR图样为TR图样1、参考信号密度为1/2(和/或原始参考信号图样1)时,根据表12,第一通信装置和/或第二通信装置确定使用参考信号图样1发送信号或接收信号;当第一通信装置和/ 或第二通信装置RB数为66、使用的TR图样为TR图样3、参考信号密度为1/4(和/或原始参考信号图样3)时,根据表12,第一通信装置和/或第二通信装置确定使用参考信号图样3发送信号或接收信号。如果第二通信装置向第一通信装置指示的要使用的频域资源数和/或TR图样没有包含在表12中,即要使用的域资源数和/或TR图样没有映射的参考信号图样,可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
确定方式六,第一通信装置/第二通信装置根据要使用的TR图样确定要使用的子载波组数G和/或偏移信息,即将TR图样与子载波组数G和/或偏移信息进行映射。当第一通信装置/第二通信装置获得子载波组数G和/或偏移信息后,可根据上述实施例中,例如确定方式一至确定方式三中任意一种确定方式确定与要使用的预留载波相适配的参考信号图样。
例如,可预定义或预配置或约定TR图样与子载波组数G和/或偏移信息的映射关系,如表13所示。需要说明的是,表13示意的映射关系仅是举例,表13也可以是第二通信装置指示给第一通信装置的。
表13
第二通信装置向第一通信装置配置要使用的TR图样,第一通信装置和第二通信装置根据TR图样以及如表13所示的映射关系确定要使用的子载波组数G和/或偏移信息,再根据子载波组数G和/或偏移信息确定参考信号图样。当第一通信装置和/或第二通信装置使用的TR图样为TR图样1时,根据表13,第一通信装置和/或第二通信装置可确定子载波组数G=4,偏移信息{0,1,0,1},进一步确定参考信号图样后发送信号或接收信号。当第一通信装置和/或第二通信装置使用的TR图样为TR图样3时,根据表13,第一通信装置和/或第二通信装置确定子载波组数G=8,偏移信息{0,1,0,1,0,1,0,1},进一步确定参考信号图样后发送信号或接收信号。如果第二通信装置向第一通信装置配置的要使用的TR图样不在如表13所示的映射关系中,即要使用的TR图样没有映射的子载波组数G和/或偏移信息,那么可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
可选地,可将频域资源数、TR图样与子载波组数G和/或偏移信息进行映射。例如,可预定义或预配置或约定RB数、TR图样与子载波组数G和/或偏移信息的映射关系,如表14所示。需要说明的是,表14示意的映射关系仅是举例,表14也可以是第二通信装 置指示给第一通信装置的。
表14
如表14所示,当第一通信装置和/或第二通信装置的RB数为66、使用的TR图样为TR图样1时,根据表14,第一通信装置和/或第二通信装置可确定子载波组数G=4,偏移信息{0,1,0,1},进一步确定参考信号图样后发送信号或接收信号;当第一通信装置和/或第二通信装置RB数为66、使用的TR图样为TR图样3时,根据表14,第一通信装置和/或第二通信装置可确定使用的子载波组数G=8,偏移信息{0,1,0,1,0,1,0,1},进一步确定参考信号图样后发送信号或接收信号。如果第二通信装置向第一通信装置配置要使用的频域资源数和/或TR图样不在如表14所示的映射关系中,即要使用的域资源数和/或TR图样没有映射的子载波组数G和/或偏移信息,可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
确定方式七,可将TR图样、参考信号密度和/或原始参考信号图样、子载波组数G和/或偏移信息进行映射。例如,可预定义或预配置或约定TR图样、参考信号密度和/或原始参考信号图样、子载波组数G和/或偏移信息之间的映射关系,如表15所示。需要说明的是,表15示意的映射关系仅是举例,表15也可以是第二通信装置指示给第一通信装置的。
表15

根据表15,第一通信装置/第二通信装置根据要使用的TR图样、参考信号密度和/或原始参考信号图样,可以确定要使用的子载波组数G和/或偏移信息,进而再根据子载波组数G和/或偏移信息确定与要使用的预留载波相适配的参考信号图样。例如,根据表15,当第一通信装置和/或第二通信装置确定使用TR图样1、参考信号密度为1/2和/或原始参考信号图样1时,第一通信装置和/或第二通信装置可确定子载波组数G=4,偏移信息{0,1,0,1},再根据子载波组数G=4,偏移信息{0,1,0,1}确定与要使用的预留载波相适配的参考信号图样;当第一通信装置和/或第二通信装置使用TR图样3、参考信号密度为1/4和/或原始参考信号图样3时,第一通信装置和/或第二通信装置可确定子载波组数G=8,偏移信息{0,1,0,1,0,1,0,1},再根据子载波组数G=8,偏移信息{0,1,0,1,0,1,0,1}确定与要使用的预留载波相适配的参考信号图样。如果第二通信装置向第一通信装置配置的要使用的参考信号密度(和/或原始参考信号图样)和/或TR图样不在如表15所示的映射关系中,即要使用的参考信号密度(和/或原始参考信号图样)和/或TR图样没有映射的子载波组数G和/或偏移信息,可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
可选地,可预定义或者约定或者预配置频域资源数、TR图样、参考信号密度和/或原始参考信号图样、子载波组数G和/或偏移信息,如表16所示。需要说明的是,表16示意的映射关系仅是举例,表16也可以是第二通信装置指示给第一通信装置的。
表16
根据表16,第一通信装置和第二通信装置根据频域资源数、TR图样和参考信号密度(和/或原始参考信号图样)以及表16可确定子载波组数G和/或偏移信息。例如,当第一通信装置和/或第二通信装置的RB数为66、使用TR图样1、参考信号密度为1/2(和/或原始参考信号图样1)时,根据表16,第一通信装置和/或第二通信装置确定子载波组数G=4,偏移信息{0,1,0,1},进而可确定与要使用的预留载波相适配的参考信号图样;当第一通信装置和/或第二通信装置RB数为66、使用TR图样3、参考信号密度为1/4(和/或原始参考信号图样3)时,根据表16,第一通信装置和/或第二通信装置确定子载波组数G=8,偏移信息{0,1,0,1,0,1,0,1},进而确定与要使用的预留载波相适配的参考信号图样。如果第二通信装置向第一通信装置配置要使用的频域资源数和/或TR图样和/或参考信号密度(原始参考信号图样)没在如表16所示的映射关系中,即要使用的域资源数和/或TR图样没有映射的子载波组数G和/或偏移信息,则可以约定第一通信装置和/或第二通信装置使用默认的参考信号图样,或者使用其它方式配置的参考信号图样(例如原始参考信号图样)。
上述实施例可以相互结合使用,组合出不同的实现方式。例如将表8与表12相结合实现通过索引号指示RB数、TR图样、参考信号密度、参考信号图样的实现方式。又例如,可以将表8与上述将映射关系配置给第一通信装置相结合,即第二通信装置将表8配置给第一通信装置,然后第二通信装置通过发送索引号向第一通信装置指示使用的TR图样、参考信号图样。其它组合方式不再一一列举。此外,上述实施例中映射关系的数值仅用作举例,并不限定具体数值。上述实施例中的映射关系、索引关系等均可以通过第一通信装置与第二通信装置以协议约定、预配置、约定的方式获取,这样可以节省信令开销;或者第二通信装置向第一通信装置发送的方式获取,这样为灵活配置、实时改变映射关系提供便利。
如图8-图10所示,在本申请实施例中,第一通信装置使用的带宽采用至少两种参考信号子图样,可以认为第一通信装置使用的带宽上个参考信号分布不均匀,可以避免用作预留载波的子载波生成的内核时域信号的次峰值过大从而提高PAPR的抑制性能。但是每个子载波组内的参考信号均匀分布,以保证接收端的译码性能。例如,请参见图11,为相同参考信号密度下,均匀参考信号图样和不均匀参考信号图样的情况下,采用TR技术分别对应的PAPR抑制性能的示意图。图11中,粗线示意不使用预留载波时对应的PAPR抑制性能,细线示意均匀参考信号图样下使用预留载波对应的PAPR抑制性能,虚线示意不均匀参考信号图样下使用预留载波对应的PAPR抑制性能。从图11中可以看出,不均匀参考信号图样采用TR技术可以达到的PAPR抑制性能高于均匀参考信号图样采用TR技术可以达到的PAPR抑制性能,约有3dB的性能提升。
同时,每个子载波组内的参考信号均匀分布,可以保证接收端的译码性能。例如,请参见图12,为相同参考信号密度下,均匀参考信号图样(即本申请提供的参考信号图样)和不均匀参考信号图样(即本申请提供的参考信号图样)的情况下,采用TR技术分别对应的译码性能的示意图。图12以调制和编码策略(modulation and coding scheme,MCS)的索引分别为0、13、19和20为例,以RB的个数是132,子载波间隔是120KHz为例从图12中可以看出,不均匀参考信号图样和均匀参考图样的情况下,采用TR技术抑制PAPR对接收端的译码性能影响不大。即通过本申请实施例提供的参考信号图样,既可以提高PAPR的抑制性能,又可以保证接收端的译码性能。可选地,如果接收端允许少部分译码 性能损失,一个子载波组内的参考信号也可以不均匀分布。
第二参考信号子图样还可以是第一参考信号子图样在时域上的偏移。本申请实施例对不同符号间使用的参考信号图样、参考信号密度是否相同不作限制。例如,不同符号所使用的参考信号图样和/或参考信号密度可以相同,也可以不相同。例如,请参见图13,示出了一个时隙内的参考信号图样。图13以一个时隙包括14个符号,即符号0~符号13为例。如图13所示,symbol 0~1的DMRS密度为1/4,symbol 2和symbol 11的参考信号密度为1/2,其余symbol 3~10、12~13的PTRS密度为1/24。不同符号可以使用不同参考信号密度,以及对应的TR图样也可以不同。
S603、第一通信装置根据参考信号图样以及TR图样进行数据传输。
第一通信装置进行数据传输时,可选择使用何种参考信号图样以及TR图样。例如,当第一通信装置确定不使用预留载波,那么第一通信装置确定参考信号图样仅包括第一参考信号子图样。当参考信号图样仅包括第一参考信号子图样时,第一通信装置可沿用目前的参考信号图样。当第一通信装置确定使用预留载波,那么第一通信装置确定参考信号图样包括第一参考信号子图样和第二参考信号子图样。当参考信号图样包括第一参考信号子图样和第二参考信号子图样时,第一通信装置可根据参考信号密度和/或频域资源数确定使用的TR图样。或者,在除参考信号所占子载波以外的子载波中选择用于预留载波的子载波。在时域上,各个符号可根据是否使用预留载波、相应的原始参考信号图样、参考信号密度和频域资源数中的一种或多种信息自适应地确定要使用的参考信号图样,或者确定子载波组数G、各个子载波组所对应的参考信号子图样的偏移信息,进而确定参考信号图样和/或TR图样。例如,请参见表17,示出了RB数、参考信号密度和TR图样的一种对应关系。第一通信装置使用TR技术抑制PAPR时,可根据表17选择合适的TR图样,即尽量达到较高的PAPR抑制性能和较优的频谱效率。
表17
在本申请实施例中,网络设备向终端设备发送的信息,例如G、偏移信息、第一映射关系、第二映射关系、以及第三映射关系等可承载于系统消息中,例如,系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种。可选地,网络设备可以通过广播或组播向终端设备发送G、偏移信息、第一映射关系、第二映射关系或第三映射关 系,可避免需要对不同设备调度不同资源,从而节省调度资源的信令开销,降低系统调度复杂度。
如果网络设备向终端设备发送的信息在RRC建立连接阶段以及后续通信过程中发送,网络设备可以通过RRC信令(例如,RRC建立(RRCsetup)消息、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等)、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element,CE)中的至少一种,向第一通信装置发送所述信息。或者,网络设备向终端设备发送的信息可以随数据传输给终端设备。或者网络设备向终端设备发送的信息可承载于为终端设备单独分配的物理下行共享信道(physical downlink shared channel,PDSCH)中。这样针对不同的终端设备,可以发送各自相应的信息,例如,G、偏移信息等,从而灵活控制各个终端设备的参数值。进一步地,可根据终端设备所在位置或区域等对链路预算的不同,向终端设备不同的G、偏移信息等参数,即配置不同的参考信号图样,以达到优化系统发送功率效率、优化终端设备通信性能/系统通信性能的目的。例如,可以根据终端设备所在地理位置不同,所需链路预算不同,对发射信号的功率需求不同,可以配置使用不同的G和偏移信息以及TR预留子载波,以优化每个/每组终端设备的PAPR抑制性能,避免浪费频谱资源和发射效率,提高终端设备和系统的整体通信性能。
所述本申请提供的实施例中,分别从第一通信装置、第二通信装置以及第一通信装置和第二通信装置之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一通信装置和第二通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图14为本申请实施例提供的通信装置1400的示意性框图。该通信装置1400可以包括处理模块1410和收发模块1420。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1410和收发模块1420可以与该存储单元耦合,例如,处理模块1410可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1400能够对应实现上述方法实施例中通信装置的行为和功能,通信装置1400可以为通信装置,也可以为应用于通信装置中的部件(例如芯片或者电路),也可以是通信装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,通信装置1400实现本申请实施例中通信装置执行的方法。其中,处理模块1410可用于确定使用预留载波,以及确定参考信号图样以及载波预留TR图样。其中,参考信号图样包括第一参考信号子图样和第二参考信号子图样,第二参考信号子图样为第一参考信号子图样在时域和/或频域的偏移。收发模块1420用于根据参考信号图样以及TR图样进行数据传输。
作为一种可选的实现方式,处理模块还1410用于确定不使用预留载波,所述参考信号图样只包括第一参考信号子图样。
作为一种可选的实现方式,通信装置1400使用的带宽包括G个子载波组,G个子载 波组中至少一个子载波组采用第一参考信号子图样,G个子载波组中至少一个子载波组采用第二参考信号子图样,G为大于或等于2的整数。
作为一种可选的实现方式,处理模块1410还用于根据第一密度确定G,第一密度为通信装置1400使用的带宽中参考信号的密度;其中,处理模块1410具体用于根据第一密度和第一映射关系确定G,第一映射关系为子载波组的个数和参考信号密度之间的关系;或者,处理模块1410具体用于根据第一密度、第一资源数以及第二映射关系确定G,第二映射关系为子载波组的个数、参考信号密度,以及资源数之间的关系,第一资源数为所述通信装置使用的带宽包括的资源块数或子载波数;或者,处理模块1410具体用于根据第一系数和第一密度确定G,G为第一系数与第一密度的乘积,第一系数是预定义的或者预配置的或者指示的;或者,G是预定义的或者约定的或者预配置的。
作为一种可选的实现方式,通信装置1400为终端设备,收发模块1420还用于接收G;或者,收发模块1420还用于接收第二资源数,处理模块1410还用于根据第二资源数确定G,其中,第二资源数为一个子载波组包括的资源块数或者子载波数。
作为一种可选的实现方式,通信装置1400为网络设备,收发模块1420还用于发送G,或者,收发模块1420还用于发送第二资源数,第二资源数用于确定G。
作为一种可选的实现方式,处理模块1410还用于确定偏移信息,该偏移信息用于指示所述第二参考信号子图样与所述第一参考信号子图样在时域和/或频域上的偏移。
作为一种可选的实现方式,处理模块1410具体用于:根据G个子载波组的组号确定偏移信息;其中,G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移Δk与所述G_num之间满足:Δk=mod(G_num,y)或Δk=G_num,y是预定义的或指示的,或者,y等于相邻两个参考信号的子载波序号的差值,或者,y等于相邻两个参考信号的最大子载波序号的差值。
作为一种可选的实现方式,G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一子载波的偏移Δk为[0,y]范围中的第i个取值。
作为一种可选的实现方式,通信装置1400为终端设备,收发模块1420还用于接收偏移信息。
作为一种可选的实现方式,通信装置1400为网络设备,收发模块1420还用于发送偏移信息。
作为一种可选的实现方式,通信装置1400为终端设备,收发模块还用于接收第一索引,处理模块还用于根据第一索引和第三映射关系确定G和所述偏移信息,其中,第三映射关系为多个索引和多组参数之间的映射关系,多个索引和多组参数一一对应,一组参数包括一组G和偏移信息。
作为一种可选的实现方式,参考信号图样包括的子载波的序号根据参考信号的密度确定。
作为一种可选的实现方式,参考信号图样包括的子载波的序号SC_index满足:
SC_index=(2n+k)/ρ+Δk,SC_index=(2n+k)/ρ+x+Δk,SC_index=(2n+k/2)/ρ+Δk,或者,SC_index=(2n+k/2)/ρ+x+Δk,其中,ρ为通信装置1400使用的带宽中的参考信号的密度,n=0,1...,N×ρ/2,N为通信装置1400使用的带宽包括的资源块数或子载波数,k=0,1,x为参考信号的原始偏移。
作为一种可选的实现方式,通信装置1400为终端设备,收发模块1420还用于接收指 示信息,该指示信息指示通信装置1400使用预留载波。
作为一种可选的实现方式,通信装置1400为网络设备,收发模块1420还用于发送指示信息,该指示信息指示终端设备使用预留载波。
应理解,本申请实施例中的处理模块1410可以由处理器或处理器相关电路组件实现,收发模块1420可以由收发器或收发器相关电路组件或者通信接口实现。
图15为本申请实施例提供的通信装置1500的示意性框图。其中,该通信装置1500可以是通信装置,能够实现本申请实施例提供的方法中第一通信装置或第二通信装置的功能。通信装置1500也可以是能够支持第一通信装置或第二通信装置实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。该通信装置1500也可以是第一通信装置或第二通信装置,能够实现本申请实施例提供的方法中第一通信装置或第二通信装置的功能。通信装置1500也可以是能够支持第一通信装置或第二通信装置实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置1500包括一个或多个处理器1501,可用于实现或用于支持通信装置1500实现本申请实施例提供的方法中第一通信装置或第二通信装置的功能。具体参见方法示例中的详细描述,此处不做赘述。一个或多个处理器1501也可以用于实现或用于支持通信装置1500实现本申请实施例提供的方法中第一通信装置或第二通信装置的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器1501也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器1501可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置1500进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置1500中包括一个或多个存储器1502,用以存储指令1504,所述指令可在所述处理器1501上被运行,使得通信装置1500执行上述方法实施例中描述的方法。存储器1502和处理器1501可以单独设置,也可以集成在一起,也可以认为存储器1502和处理器1501耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1501可能和存储器1502协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1502不是必须的,所以在图15中以虚线进行示意。
可选地,所述存储器1502中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器1502可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存 储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置1500可以包括指令1503(有时也可以称为代码或程序),所述指令1503可以在所述处理器上被运行,使得所述通信装置1500执行上述实施例中描述的方法。处理器1501中可以存储数据。
可选地,通信装置1500还可以包括收发器1505以及天线1506。所述收发器1505可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线1506实现通信装置1500的收发功能。
本申请中描述的处理器1501和收发器1505可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,通信装置1500还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1500可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是第一通信装置(或第二通信装置)也可以是电路,也可以是应用于第一通信装置(或第二通信装置)中的芯片或者其他具有上述第一通信装置功能(或第二通信装置)的组合器件、部件等。当通信装置是第一通信装置(或第二通信装置)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述通信装置(或第二通信装置)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括至少一个第一通信装置和至少一个第二通信装置。示例性的,通信系统包括用于实现上述图6的相关功能的第一通 信装置和第二通信装置。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图6中第一通信装置执行的方法。或者,当其在计算机上运行时,使得计算机执行图6中第二通信装置执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图6中第一通信装置执行的方法。或者,当其在计算机上运行时,使得计算机执行图6中第二通信装置执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一通信装置或第二通信装置的功能;或者用于实现前述方法中通信装置的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    通信装置确定使用预留载波;
    所述通信装置确定参考信号图样以及载波预留TR图样,所述参考信号图样包括第一参考信号子图样和第二参考信号子图样,所述第二参考信号子图样为所述第一参考信号子图样在时域和/或频域的偏移;
    所述通信装置根据所述参考信号图样以及TR图样进行数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述通信装置确定不使用预留载波,所述参考信号图样只包括第一参考信号子图样。
  3. 如权利要求1或2所述的方法,其特征在于,所述通信装置使用的带宽包括G个子载波组,所述G个子载波组中至少一个子载波组采用所述第一参考信号子图样,所述G个子载波组中至少一个子载波组采用所述第二参考信号子图样,G为大于或等于2的整数。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:所述通信装置根据第一密度确定所述G,所述第一密度为所述通信装置使用的带宽中参考信号的密度;其中,
    所述通信装置根据所述第一密度和第一映射关系确定所述G,所述第一映射关系为子载波组的个数和参考信号密度之间的关系;
    所述通信装置根据所述第一密度、第一资源数以及第二映射关系确定所述G,所述第二映射关系为子载波组的个数、参考信号密度,以及资源数之间的关系,所述第一资源数为所述通信装置使用的带宽包括的资源块数或子载波数;
    所述通信装置根据第一系数和所述第一密度确定所述G,所述G为所述第一系数与所述第一密度的乘积,所述第一系数是预定义的或者预配置的或者指示的;或者,
    所述G是预定义的或者约定的或者预配置的。
  5. 如权利要求3所述的方法,其特征在于,所述通信装置为终端设备,所述方法还包括:
    所述通信装置接收所述G;或者,
    所述通信装置接收第二资源数,并根据所述第二资源数确定所述G,其中,所述第二资源数为一个子载波组包括的资源块数或者子载波数。
  6. 如权利要求3或4所述的方法,其特征在于,所述通信装置为网络设备,所述方法还包括:
    所述通信装置发送所述G;或者,所述通信装置发送第二资源数,所述第二资源数用于确定所述G。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:所述通信装置确定偏移信息,所述偏移信息用于指示所述第二参考信号子图样与所述第一参考信号子图样在时域和/或频域上的偏移。
  8. 如权利要求7所述的方法,其特征在于,所述通信装置确定偏移信息,包括:
    所述通信装置根据所述G个子载波组的组号确定所述偏移信息;其中,所述G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移△k与所述G_num之间满足:△k=mod(G_num,y)或△k=G_num,y是预定义的或指示的,或者,y等于相邻两个参考信号的子载波序号的差值,或者,y等于相邻两个参考信号的最大子载波序号的差值。
  9. 如权利要求7所述的方法,其特征在于,所述G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一子载波的偏移△k为[0,y]范围中的第i个取值。
  10. 如权利要求7-9任一项所述的方法,其特征在于,所述通信装置为终端设备,所述通信装置确定偏移信息,包括:所述通信装置接收所述偏移信息。
  11. 如权利要求7-9任一项所述的方法,其特征在于,所述通信装置为网络设备,所述方法还包括:所述通信装置发送所述偏移信息。
  12. 如权利要求7-9任一项所述的方法,其特征在于,所述通信装置为终端设备,所述方法还包括:
    所述通信装置接收第一索引;
    所述通信装置根据所述第一索引和第三映射关系确定所述G和所述偏移信息,其中,所述第三映射关系为多个索引和多组参数之间的映射关系,所述多个索引和所述多组参数一一对应,一组参数包括一组G和偏移信息。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述参考信号图样包括的子载波的序号根据参考信号的密度确定。
  14. 如权利要求1-13任一项所述的方法,其特征在于,所述参考信号图样包括的子载波的序号SC_index满足:
    SC_index=(2n+k)/ρ+△k,SC_index=(2n+k)/ρ+x+△k,SC_index=(2n+k/2)/ρ+△k,或者,SC_index=(2n+k/2)/ρ+x+△k,其中,ρ为所述通信装置使用的带宽中的参考信号的密度,n=0,1...,N×ρ/2,N为所述通信装置使用的带宽包括的资源块数或子载波数,k=0,1,x为参考信号的原始偏移。
  15. 如权利要求1-14任一项所述的方法,其特征在于,所述通信装置为终端设备,通信装置确定预留载波,包括:
    所述通信装置接收指示信息,所述指示信息指示所述通信装置使用预留载波。
  16. 如权利要求1-14任一项所述的方法,其特征在于,所述通信装置为网络设备,所述方法还包括:
    所述通信装置发送指示信息,所述指示信息指示终端设备使用预留载波。
  17. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块用于确定使用预留载波,以及确定参考信号图样以及载波预留TR图样,所述参考信号图样包括第一参考信号子图样和第二参考信号子图样,所述第二参考信号子图样为所述第一参考信号子图样在时域和/或频域的偏移;
    所述收发模块用于根据所述参考信号图样以及TR图样进行数据传输。
  18. 如权利要求17所述的装置,其特征在于,所述处理模块还用于确定不使用预留载波,所述参考信号图样只包括第一参考信号子图样。
  19. 如权利要求17或18所述的装置,其特征在于,所述通信装置使用的带宽包括G个子载波组,所述G个子载波组中至少一个子载波组采用所述第一参考信号子图样,所述G个子载波组中至少一个子载波组采用所述第二参考信号子图样,G为大于或等于2的整数。
  20. 如权利要求19所述的装置,其特征在于,所述处理模块还用于根据第一密度确定所述G,所述第一密度为所述通信装置使用的带宽中参考信号的密度;其中,
    所述处理模块具体用于根据所述第一密度和第一映射关系确定所述G,所述第一映射 关系为子载波组的个数和参考信号密度之间的关系;
    所述处理模块具体用于根据所述第一密度、第一资源数以及第二映射关系确定所述G,所述第二映射关系为子载波组的个数、参考信号密度,以及资源数之间的关系,所述第一资源数为所述通信装置使用的带宽包括的资源块数或子载波数;
    所述处理模块具体用于根据第一系数和所述第一密度确定所述G,所述G为所述第一系数与所述第一密度的乘积,所述第一系数是预定义的或者预配置的或者指示的;或者,
    所述G是预定义的或者约定的或者预配置的。
  21. 如权利要求19所述的装置,其特征在于,所述通信装置为终端设备,所述收发模块还用于接收所述G;或者,
    所述收发模块还用于接收第二资源数,所述处理模块还用于根据所述第二资源数确定所述G,其中,所述第二资源数为一个子载波组包括的资源块数或者子载波数。
  22. 如权利要求19或20所述的装置,其特征在于,所述通信装置为网络设备,所述收发模块还用于发送所述G,或者,所述收发模块还用于发送第二资源数,所述第二资源数用于确定所述G。
  23. 如权利要求17-22任一项所述的装置,其特征在于,所述处理模块还用于确定偏移信息,所述偏移信息用于指示所述第二参考信号子图样与所述第一参考信号子图样在时域和/或频域上的偏移。
  24. 如权利要求23所述的装置,其特征在于,所述处理模块具体用于:根据所述G个子载波组的组号确定所述偏移信息;其中,所述G个子载波组中的第G_num个子载波组中参考信号的起始位置的偏移△k与所述G_num之间满足:△k=mod(G_num,y)或△k=G_num,y是预定义的或指示的,或者,y等于相邻两个参考信号的子载波序号的差值,或者,y等于相邻两个参考信号的最大子载波序号的差值。
  25. 如权利要求23所述的装置,其特征在于,所述G个子载波组中的第i子载波组中参考信号的起始位置相对于子载波组内第一子载波的偏移△k为[0,y]范围中的第i个取值。
  26. 如权利要求23-25任一项所述的装置,其特征在于,所述通信装置为终端设备,所述收发模块还用于接收所述偏移信息。
  27. 如权利要求23-25任一项所述的装置,其特征在于,所述通信装置为网络设备,所述收发模块还用于发送所述偏移信息。
  28. 如权利要求23-25任一项所述的装置,其特征在于,所述通信装置为终端设备,所述收发模块还用于接收第一索引,所述处理模块还用于根据所述第一索引和第三映射关系确定所述G和所述偏移信息,其中,所述第三映射关系为多个索引和多组参数之间的映射关系,所述多个索引和所述多组参数一一对应,一组参数包括一组G和偏移信息。
  29. 如权利要求17-28任一项所述的装置,其特征在于,所述参考信号图样包括的子载波的序号根据参考信号的密度确定。
  30. 如权利要求17-29任一项所述的装置,其特征在于,所述参考信号图样包括的子载波的序号SC_index满足:
    SC_index=(2n+k)/ρ+△k,SC_index=(2n+k)/ρ+x+△k,SC_index=(2n+k/2)/ρ+△k,或者,SC_index=(2n+k/2)/ρ+x+△k,其中,ρ为所述通信装置使用的带宽中的参考信号的密度,n=0,1...,N×ρ/2,N为所述通信装置使用的带宽包括的资源块数或子载波数,k=0,1,x为参考信号的原始偏移。
  31. 如权利要求17-30任一项所述的装置,其特征在于,所述通信装置为终端设备,所述收发模块还用于接收指示信息,所述指示信息指示所述通信装置使用预留载波。
  32. 如权利要求17-30任一项所述的装置,其特征在于,所述通信装置为网络设备,所述收发模块还用于发送指示信息,所述指示信息指示终端设备使用预留载波。
  33. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述通信装置执行如权利要求1~16中任一项所述的方法。
  34. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1~5、7-10以及12-15中任一项所述的方法,所述网络设备用于执行如权利要求1~4、6-9、11以及13-14和16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~16中任一项所述的方法。
PCT/CN2023/097119 2022-06-29 2023-05-30 一种通信方法及通信装置 WO2024001640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210759905.1 2022-06-29
CN202210759905.1A CN117354109A (zh) 2022-06-29 2022-06-29 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024001640A1 true WO2024001640A1 (zh) 2024-01-04

Family

ID=89369823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097119 WO2024001640A1 (zh) 2022-06-29 2023-05-30 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117354109A (zh)
WO (1) WO2024001640A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624671A (zh) * 2012-04-28 2012-08-01 武汉邮电科学研究院 一种降低lte系统下行信号峰均功率比的方法以及装置
CN103634243A (zh) * 2008-11-20 2014-03-12 先进微装置公司 多载波调制接收器的信道估计与峰均功率比降低
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN109787685A (zh) * 2019-03-21 2019-05-21 东南大学 基于子载波预留的可见光ofdm系统自适应低峰比方法
CN111313968A (zh) * 2020-01-17 2020-06-19 东南大学 一种基于led非线性特性的速率自适应可见光传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634243A (zh) * 2008-11-20 2014-03-12 先进微装置公司 多载波调制接收器的信道估计与峰均功率比降低
CN102624671A (zh) * 2012-04-28 2012-08-01 武汉邮电科学研究院 一种降低lte系统下行信号峰均功率比的方法以及装置
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN109787685A (zh) * 2019-03-21 2019-05-21 东南大学 基于子载波预留的可见光ofdm系统自适应低峰比方法
CN111313968A (zh) * 2020-01-17 2020-06-19 东南大学 一种基于led非线性特性的速率自适应可见光传输方法

Also Published As

Publication number Publication date
CN117354109A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
TWI731383B (zh) 在無線通訊系統中的節點操作方法及使用該方法的節點
CN103583006B (zh) 用于配置扩展载波的增强型节点b和方法
CN111727651A (zh) Nr v2x的2步sci发送
CN107950065A (zh) 无线系统中的成帧、调度和同步
WO2021012824A1 (zh) 资源配置的确定方法及装置、资源配置的指示方法及装置、电子装置、存储介质
WO2019104685A1 (zh) 通信方法和通信设备
CN113544991A (zh) 用于在nr v2x中发送psfch的方法和设备
US11197223B2 (en) Method and apparatus for determining transmission path of packet in wireless communication
JP7493682B2 (ja) Nr v2xにおけるリソースを決定する方法及び装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN111756497B (zh) 通信方法及装置
WO2020019871A1 (zh) 数据发送的方法及装置
TW202245506A (zh) 在多波束pusch重複上的增強的非週期性或半持久性通道狀態資訊報告
KR102585062B1 (ko) Nr v2x에서 sl 슬롯과 관련된 정보를 전송하는 방법 및 장치
JP7357786B2 (ja) 端末のダウンリンク制御情報受信方法及び前記方法を適用する装置
WO2023185433A1 (zh) 通信方法和通信装置
WO2024001640A1 (zh) 一种通信方法及通信装置
WO2023140944A1 (en) Dynamic postponement of periodic resources and drx active times in mode 1 sidelink
US20220240261A1 (en) Group-common dynamic indication of physical uplink control channel repetition factor
JP2024518512A (ja) Nr v2xにおけるsl drx設定を決定する方法及び装置
WO2020192360A1 (zh) 通信方法及装置
WO2024041170A1 (zh) 一种通信方法及通信装置
WO2024066563A1 (zh) 一种通信方法及通信装置
WO2023216831A1 (zh) 一种通信方法及通信装置
WO2024131782A1 (zh) 一种通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829825

Country of ref document: EP

Kind code of ref document: A1