WO2023185433A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023185433A1
WO2023185433A1 PCT/CN2023/081043 CN2023081043W WO2023185433A1 WO 2023185433 A1 WO2023185433 A1 WO 2023185433A1 CN 2023081043 W CN2023081043 W CN 2023081043W WO 2023185433 A1 WO2023185433 A1 WO 2023185433A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sib1
indication information
indicate
msg3
Prior art date
Application number
PCT/CN2023/081043
Other languages
English (en)
French (fr)
Inventor
石蒙
廖树日
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185433A1 publication Critical patent/WO2023185433A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and a communication device.
  • satellites have the advantage of not being easily affected by natural disasters or external damage, research is currently underway on using satellites as access network equipment (such as base stations) for mobile communication systems to provide communication services in some areas such as oceans and forests.
  • access network equipment such as base stations
  • Embodiments of the present application provide a communication method and communication device, which can improve the reliability of communication messages.
  • a communication method is provided.
  • the communication method can be executed by a terminal device, or the communication method can be executed by a device (such as a chip, etc.) configured in the terminal device.
  • the method includes: receiving first information from a network device. , the first information is used to schedule the first system message SIB1, and the first information is also used to indicate that the SIB1 is repeatedly transmitted in one time slot or in multiple consecutive time slots. And, according to the first information, receive the SIB1 repeatedly transmitted from the network device.
  • the network device can notify the terminal device through a scheduling indication of SIB1 in the first information that the network device repeatedly transmits SIB1 in one or more consecutive time slots.
  • the transmission delay of SIB1 can be reduced.
  • the first information includes first indication information
  • the first indication information is used to indicate that the SIB1 is repeatedly transmitted within a time slot, or is used Indicates that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the network device when the transmission delay requirement of SIB1 is high, the network device can repeatedly transmit SIB1 within a time slot and notify the terminal device through the first indication information, which can improve the reliability of SIB1 when the transmission delay is small. .
  • the network device can repeatedly transmit SIB1 in multiple time slots and notify the terminal device through the first indication information. This enables the network device to flexibly select the repeated transmission mode of SIB1 based on the transmission delay requirement and reach a consensus on the transmission mode of SIB1 with the terminal device through the first indication information.
  • the first information includes second indication information, so The second indication information is used to indicate that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot, or the second indication information is used to indicate that the SIB1 is transmitted on different time domain resources within a time slot. are repeatedly transmitted.
  • the network device chooses to repeatedly transmit SIB1 on different frequency domain resources or repeatedly transmit SIB1 on different time domain resources according to channel conditions, and multiplexes the resources of SIB1 with the terminal device through the second instruction information in the first information.
  • the method reaches a consensus and improves the flexibility of SIB1 repeated transmission.
  • the number of transmissions of SIB1 is predefined, or the first information includes third indication information, and the third indication information is used to indicate the Describe the number of transmissions of SIB1.
  • the network device determines the number of SIB1 transmissions according to channel conditions and notifies the terminal device through the third indication information, which improves the flexibility of SIB1 transmission.
  • SIB1 may be transmitted only once, and the third indication information may indicate that the number of transmissions is 1.
  • network equipment with poor signal coverage conditions such as satellite base stations, etc.
  • the first information includes third indication information
  • the third indication information is used to indicate the number of transmissions of SIB1
  • the method further includes: according to the The third indication information determines that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the network device can implicitly instruct SIB1 to be repeatedly transmitted in multiple consecutive time slots through the third indication information, which can reduce signaling overhead.
  • the first information includes fourth indication information, the fourth indication information is used to indicate a first coefficient, and the first coefficient is used to determine SIB1 Information bits, the first coefficient is less than or equal to 1, and the method further includes: obtaining the information bits of the SIB1 according to the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, and the number of transmission layers.
  • the network equipment can flexibly adjust the first coefficient according to the transmission requirements to adjust the spectrum efficiency.
  • the spectrum efficiency of SIB1 can meet the transmission requirements, and the network device notifies the terminal device of the first coefficient to use through the fourth instruction information, so that the terminal device and the network device reach a consensus on the first coefficient.
  • the network equipment can reduce the spectrum efficiency through the first coefficient and improve the error correction capability of SIB1's channel coding, thereby improving the transmission reliability of SIB1.
  • the first information further includes fifth indication information
  • the fifth indication information is used to indicate the resource carrying the SIB1, and, according to the According to the first coefficient, the modulation and coding scheme MCS adopted by the SIB1 and the number of transmission layers, obtaining the information bits of the SIB1 includes: according to the first coefficient, the resource, the modulation coding scheme MCS adopted by the SIB1 and The number of transmission layers, and obtain the information bits of SIB1.
  • the method further includes: receiving sixth indication information from the network device, the sixth indication information being used to indicate repeated transmission of random access in one time slot.
  • the sixth instruction information repeatedly transmit the Msg3 to the network device.
  • the network device can flexibly configure the random access message of the terminal device to be repeatedly transmitted in one time slot or in multiple time slots according to the transmission requirements, such as during the transmission of the random access message.
  • delay requirements are high, for example, satellite base stations can configure terminal equipment to repeatedly transmit random access messages within a time slot.
  • transmission delay requirements for random access messages are high, for example, terrestrial base stations can configure terminal equipment. in multiple time slots Random access messages are repeatedly transmitted within.
  • the method further includes: receiving second information, the second information being used to schedule the Msg3; and, according to the sixth indication information Repeatingly transmitting the Msg3 to the network device includes: repeatedly transmitting the Msg3 to the network device according to the second information and the sixth instruction information.
  • the sixth indication information is carried in the SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • a communication method is provided.
  • the communication method can be executed by a network device, or the communication method can be executed by a device (such as a chip, etc.) configured in the network device.
  • the method includes: sending first information, said The first information is used to schedule the first system message SIB1, and the first information is also used to indicate that the SIB1 is repeatedly transmitted in one time slot or in multiple consecutive time slots. And, the SIB1 is repeatedly transmitted.
  • the first information includes first indication information
  • the first indication information is used to indicate that the SIB1 is repeatedly transmitted within a time slot, or is used Indicates that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the first information includes second indication information
  • the second indication information is used to indicate that the SIB1 is on different frequency domain resources within a time slot. be repeatedly transmitted, or the second indication information is used to indicate that the SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the number of transmissions of SIB1 is predefined, or the first information includes third indication information, and the third indication information is used to indicate the Describe the number of transmissions of SIB1.
  • the first information includes fourth indication information
  • the fourth indication information is used to indicate a first coefficient
  • the first coefficient is used to determine the Information bits of SIB1
  • the first coefficient is less than or equal to 1
  • the method further includes: according to the first coefficient, the modulation and coding scheme MCS adopted by SIB1, the number of transmission layers and the information bits of SIB1 , determine the resource carrying the SIB1.
  • the first information further includes fifth indication information, and the fifth indication information is used to indicate the resource.
  • the method further includes: sending sixth indication information, the sixth indication information being used to indicate repeated transmission of the random access message Msg3 within a time slot, Or used to indicate repeated transmission of Msg3 in multiple time slots. According to the sixth indication information, the Msg3 repeatedly transmitted from the terminal device is received.
  • the method further includes: sending second information, the second information being used to schedule the Msg3; and receiving the message repeatedly transmitted from the terminal device.
  • the Msg3 includes: receiving and repeatedly transmitting the Msg3 from the terminal device according to the second information and the sixth indication information.
  • the sixth indication information is carried in the first system message SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • a communication method can be executed by a terminal device, or the communication method can To be executed by a device (such as a chip, etc.) configured in the terminal device, the method includes: receiving first information from the network device, the first information is used to schedule the first system message SIB1, and the first information includes a fourth Indication information, the fourth indication information is used to indicate the first coefficient, the first coefficient is used to determine the information bits of SIB1, and the first coefficient is less than or equal to 1. And, receive the SIB1 from the network device, and determine the information bits of the SIB1 according to the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, and the number of transmission layers.
  • the first information further includes fifth indication information
  • the fifth indication information is used to indicate the resource carrying the SIB1, and, according to the According to the first coefficient, the modulation and coding scheme MCS and the number of transmission layers adopted by the SIB1, obtaining the information bits of the SIB1 includes: according to the first coefficient, the resource, the MCS and the number of transmission layers adopted by the SIB1 , obtain the information bits of the system message.
  • a communication method is provided.
  • the communication method can be executed by a network device, or the communication method can be executed by a device (such as a chip, etc.) configured on the network device.
  • the method includes: sending first information, said The first information is used to schedule the first system message SIB1, the first information includes fourth indication information, the fourth indication information is used to indicate the first coefficient, the first coefficient is used to determine the information bits of SIB1, so The first coefficient is less than or equal to 1. And, send the SIB1.
  • the network equipment can flexibly adjust the first coefficient according to the transmission requirements to adjust the spectrum efficiency.
  • the spectrum efficiency of SIB1 can meet the transmission requirements, and the network device notifies the terminal device of the first coefficient to use through the fourth instruction information, so that the terminal device and the network device reach a consensus on the first coefficient.
  • the network equipment can reduce the spectrum efficiency through the first coefficient and improve the error correction capability of SIB1's channel coding, thereby improving the transmission reliability of SIB1.
  • the method further includes: based on the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, the number of transmission layers and the information bits of the SIB1, Determine the resource carrying the SIB1, wherein the first information further includes fifth indication information, and the fifth indication information is used to indicate the resource.
  • a communication method is provided.
  • the communication method can be executed by a terminal device, or the communication method can be executed by a device (such as a chip, etc.) configured in the terminal device.
  • the method includes: receiving a sixth instruction from a network device. information, the sixth indication information is used to indicate repeated transmission of the random access message Msg3 in one time slot, or used to indicate repeated transmission of Msg3 in multiple time slots. And, according to the sixth instruction information, repeatedly transmit the Msg3 to the network device.
  • the network device can flexibly configure the random access message of the terminal device to be repeatedly transmitted in one time slot or in multiple time slots according to the transmission requirements, such as during the transmission of the random access message.
  • delay requirements are high, for example, satellite base stations can configure terminal equipment to repeatedly transmit random access messages within a time slot.
  • transmission delay requirements for random access messages are high, for example, terrestrial base stations can configure terminal equipment. Random access messages are transmitted repeatedly over multiple time slots.
  • the method further includes: receiving second information, the second information being used to schedule Msg3. And, repeatedly transmitting the Msg3 to the network device according to the sixth instruction information includes: repeatedly transmitting the Msg3 to the network device according to the second information and the sixth instruction information.
  • the sixth indication information is carried in the first system message SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a random access process.
  • a communication method is provided.
  • the communication method can be executed by a network device, or the communication method can be executed by a device (such as a chip, etc.) configured in the network device.
  • the method includes: sending sixth indication information, so The sixth indication information is used to indicate repeated transmission of the random access message Msg3 in one time slot, or to indicate repeated transmission of Msg3 in multiple time slots. And, according to the sixth indication information, receive the Msg3 repeatedly transmitted from the terminal device.
  • the method further includes: sending second information, the second information being used to schedule Msg3; and receiving the repeatedly transmitted message from the terminal device.
  • Msg3 includes: receiving repeated transmission of Msg3 from the terminal device according to the second information and the sixth indication information.
  • the sixth indication information is carried in the first system message SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • the seventh aspect provides a communication device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a transceiver unit, configured to receive first information from a network device, where the first information is used to schedule a first system message SIB1, and where the first information is also used to indicate when the SIB1 Repeated transmission within one time slot or multiple consecutive time slots.
  • a processing unit configured to receive the SIB1 repeatedly transmitted from the network device according to the first information.
  • the first information includes first indication information
  • the first indication information is used to indicate that the SIB1 is repeatedly transmitted in a time slot, or is used Indicates that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the first information includes second indication information
  • the second indication information is used to indicate that the SIB1 is on different frequency domain resources within a time slot. be repeatedly transmitted, or the second indication information is used to indicate that the SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the number of transmissions of SIB1 is predefined, or the first information includes third indication information, and the third indication information is used to indicate the Describe the number of transmissions of SIB1.
  • the first information includes third indication information
  • the third indication information is used to indicate the number of transmissions of the SIB1
  • the processing unit is further configured to According to the third indication information, it is determined that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the first information includes fourth indication information, the fourth indication information is used to indicate a first coefficient, and the first coefficient is used to determine SIB1 Information bits, the first coefficient is less than or equal to 1, and the processing unit is also configured to obtain the information bits of the SIB1 according to the first coefficient, the modulation and coding scheme MCS adopted by the SIB1 and the number of transmission layers. .
  • the first information further includes fifth indication information, the fifth indication information is used to indicate resources carrying the SIB1, and the processing unit It is also used to obtain the information bits of the SIB1 according to the first coefficient, the resource, the modulation and coding scheme MCS adopted by the SIB1, and the number of transmission layers.
  • the transceiver unit is further configured to receive sixth indication information from the network device, where the sixth indication information is used to indicate repeated transmission of random information within a time slot.
  • the access message Msg3 may be used to instruct repeated transmission of Msg3 in multiple time slots; the transceiver unit is further configured to repeatedly transmit the Msg3 to the network device according to the sixth indication information.
  • the transceiver unit is further configured to receive second information, and the second information is used to schedule the Msg3; and, the transceiver unit is further configured to receive the Msg3 according to the The second information and the sixth indication information are used to repeatedly transmit the Msg3 to the network device.
  • the sixth indication information is carried in the SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • the eighth aspect provides a communication device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a processing unit configured to determine repeated transmission of the SIB1.
  • a transceiver unit configured to send first information. The first information is used to schedule the first system message SIB1. The first information is also used to indicate that the SIB1 is sent in one time slot or in multiple consecutive time slots. Repeat the transfer.
  • the transceiver unit is also used to repeatedly transmit the SIB1.
  • the first information includes first indication information
  • the first indication information is used to indicate that the SIB1 is repeatedly transmitted in a time slot, or is used Indicates that the SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the first information includes second indication information
  • the second indication information is used to indicate that the SIB1 is on different frequency domain resources within a time slot. be repeatedly transmitted, or the second indication information is used to indicate that the SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the number of transmissions of SIB1 is predefined, or the first information includes third indication information, and the third indication information is used to indicate the Describe the number of transmissions of SIB1.
  • the first information includes fourth indication information, the fourth indication information is used to indicate a first coefficient, and the first coefficient is used to determine the The information bits of SIB1, the first coefficient is less than or equal to 1, and the processing unit is also configured to use the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, the number of transmission layers and the information of the SIB1 bits to determine the resource carrying the SIB1.
  • the first information further includes fifth indication information, and the fifth indication information is used to indicate the resource.
  • the transceiver unit is further configured to send sixth indication information, where the sixth indication information is used to indicate repeated transmission of the random access message Msg3 within a time slot. , or used to indicate repeated transmission of Msg3 in multiple time slots; the transceiver unit is further configured to receive the Msg3 repeatedly transmitted from the terminal device according to the sixth indication information.
  • the transceiver unit is further configured to send second information, and the second information is used to schedule the Msg3; and, the transceiver unit is specifically configured to send according to The second information and the sixth indication information are received from the terminal device to repeatedly transmit the Msg3.
  • the sixth indication information is carried in the first system System message SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • a ninth aspect provides a communication device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the third aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a transceiver unit, configured to receive first information from a network device, where the first information is used to schedule the first system message SIB1, where the first information includes fourth indication information, and the The fourth indication information is used to indicate the first coefficient, the first coefficient is used to determine the information bits of SIB1, and the first coefficient is less than or equal to 1.
  • the transceiver unit is also used to receive SIB1 from the network device.
  • a processing unit configured to determine the information bits of the SIB1 based on the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, and the number of transmission layers.
  • the first information further includes fifth indication information, the fifth indication information is used to indicate resources carrying the SIB1, and the processing unit It is also used to obtain the information bits of the system message according to the first coefficient, the resource, the MCS adopted by the SIB1, and the number of transmission layers.
  • a communication device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the fourth aspect.
  • the module may be a hardware circuit, or However, software can also be implemented by hardware circuits combined with software.
  • the device includes: a processing unit, used to determine the first coefficient; a transceiver unit, used to send first information, the first information is used to schedule the first system message SIB1, and the first information includes the first system message SIB1.
  • the fourth indication information is used to indicate the first coefficient, the first coefficient is used to determine the information bits of SIB1, and the first coefficient is less than or equal to 1.
  • the transceiver unit is also used to send the SIB1.
  • the processing unit is further configured to use the first coefficient, the modulation and coding scheme MCS adopted by the SIB1, the number of transmission layers, and the information bits of the SIB1 , determine the resource carrying the SIB1, wherein the first information also includes fifth indication information, and the fifth indication information is used to indicate the resource.
  • a communication device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the fifth aspect.
  • the module may be a hardware circuit, It can also be software, or it can be implemented by hardware circuit combined with software.
  • the device includes: a transceiver unit, configured to receive sixth indication information from the network device, where the sixth indication information is used to indicate repeated transmission of the random access message Msg3 within a time slot, or to indicate Msg3 is transmitted repeatedly over multiple time slots.
  • a processing unit configured to repeatedly transmit the Msg3 to the network device according to the sixth indication information.
  • the transceiver unit is further configured to receive second information, and the second information is used to schedule Msg3; and, the transceiver unit is specifically configured to according to The second information and the sixth indication information are used to repeatedly transmit the Msg3 to the network device.
  • the sixth indication information is carried in the first system message SIB1.
  • the Msg3 is the Msg3 in the 4-step random access process, or the Msg3 is the Msg3 in MsgA in the random access process.
  • a communication device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the sixth aspect.
  • the module may be a hardware circuit, It can also be software, or It can be implemented by hardware circuit combined with software.
  • the device includes: a transceiver unit, configured to send sixth indication information, where the sixth indication information is used to indicate repeated transmission of the random access message Msg3 in one time slot, or to indicate repeated transmission of the random access message Msg3 in multiple time slots. Msg3 is transmitted repeatedly within the slot.
  • a processing unit configured to receive the Msg3 repeatedly transmitted from the terminal device according to the sixth indication information.
  • the transceiver unit is further configured to send second information, and the second information is used to schedule Msg3; and, the transceiver unit is specifically configured to send according to The second information and the sixth indication information are received from the terminal device to repeatedly transmit the Msg3.
  • the sixth indication information is carried in the first system message SIB1.
  • the Msg3 is Msg3 in a 4-step random access process, or the Msg3 is Msg3 in MsgA in a 2-step random access process.
  • a communication device including a processor.
  • the processor can implement the method in any of the above first aspect, third aspect or fifth aspect and any possible implementation manner of the first aspect, third aspect or fifth aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory and can be used to execute instructions in the memory to implement the above-mentioned first aspect, third aspect or fifth aspect and the first aspect, third aspect or A method in any possible implementation manner of the fifth aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module, or other types of communication interfaces, and is not limited thereto.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor can implement the method in any of the above second aspect, fourth aspect or sixth aspect and any possible implementation manner of the second aspect, fourth aspect or sixth aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory and can be used to execute instructions in the memory to implement the above-mentioned second, fourth or sixth aspect and the second, fourth or sixth aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor performs any of the possible implementations of the first to sixth aspects and the first to sixth aspects. method.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the input signal input by the output circuit may be, for example, but not limited to, a receiver.
  • the output signal may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • a computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the above-mentioned first to sixth aspects. aspect and the method in any possible implementation manner of the first to sixth aspects.
  • a computer-readable storage medium stores a computer program (which can also be called a code, or an instruction), and when run on a computer, causes the computer to execute the above-mentioned first aspect. to the sixth aspect and the method in any possible implementation manner of the first to sixth aspects.
  • a computer program which can also be called a code, or an instruction
  • An eighteenth aspect provides a communication system, including at least one communication device provided by the aforementioned seventh, ninth or eleventh aspect and at least one provided by the eighth, tenth or twelfth aspect Communication device.
  • Figure 1 is a system architecture diagram suitable for the communication system according to the embodiment of the present application.
  • Figure 1a is a system architecture diagram of a non-terrestrial network suitable for embodiments of the present application
  • Figure 2 is a schematic flow chart of the initial access process provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of the communication method 300 provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of resources carrying SIB1 provided by the embodiment of the present application.
  • Figure 5 is another schematic diagram of resources carrying SIB1 provided by the embodiment of the present application.
  • Figure 6 is another schematic diagram of resources carrying SIB1 provided by the embodiment of the present application.
  • Figure 7 is a schematic flow chart of the communication method 700 provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of the communication method 800 provided by the embodiment of the present application.
  • Figure 9 is a schematic block diagram of an example of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another example of a communication device provided by an embodiment of the present application.
  • At least one (item) can also be described as one (item) or multiple (items), and the plurality (items) can be two (items), three (items), four (items), or more Multiple (items) are not limited.
  • “/" can indicate that the related objects are in an "or” relationship, for example, A/B can mean A or B;
  • "and/or" can be used to describe the existence of three relationships between associated objects, for example, A and/ or B, can mean: A alone, A and B exist simultaneously, and B alone, where A and B can be singular or plural.
  • words such as “first”, “second”, “A”, or “B” may be used to distinguish technical features with the same or similar functions.
  • the words “first”, “second”, “A”, or “B” do not limit the quantity and order of execution.
  • the words “first”, “second”, “A”, or “B” are not necessarily different.
  • the words “exemplary” or “such as” are used to mean examples, illustrations, or illustrations. Any design solution described as “exemplary” or “such as” should not be construed as being more preferred or more favorable than other design solutions.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • FIG. 1 is a schematic architectural diagram of a communication system 100 suitable for an embodiment of the present application.
  • the communication The system 100 may include at least one access network device (110a, 110b, 110c in Figure 1), and may also include at least one terminal (120a-120j in Figure 1). Access network equipment and access network equipment can be connected to each other through wired or wireless means.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices.
  • FIG 1a is an architectural schematic diagram of non-terrestrial networks (NTN) suitable for embodiments of the present application.
  • satellites have some or all functions of access network equipment and can be called satellite base stations. It can provide wireless access services and schedule wireless resources for terminal devices that access the network through the satellite base station.
  • the satellite base station communicates with the UE through the user-universal terrestrial radio access network-user (Uu) interface.
  • the satellite base station and the core network core network, CN
  • NG next generation network
  • the satellite base station and the core network can interact with the non-access layer (non-access layer) of the core network through the NG interface.
  • the satellite radio interface (SRI) interface is the feeder link between the NTN gateway and the satellite.
  • the SRI interface can be used as part of the NG interface to implement communication interaction between the satellite and the core network.
  • the network equipment provided by the embodiments of this application may be a base station, a Node B, an evolved Node B (eNodeB or eNB), a transmission reception point (TRP), a fifth-generation The next generation NodeB (gNB) in the (5th generation, 5G) mobile communication system, the access network equipment in the open radio access network (open radio access network, O-RAN or open RAN), the sixth
  • the next generation base stations and network equipment in the 6th generation (6G) mobile communication system can be satellite base stations in non-terrestrial networks (NTN) (the satellite base station in Figure 1a), or future mobile communications Base stations in the system, or access nodes in wireless fidelity (WiFi) systems, etc.
  • NTN non-terrestrial networks
  • WiFi wireless fidelity
  • the network device can be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU), a distributed unit (distributed unit, DU), a centralized unit control plane (CU-control plane, CU- CP) module, or centralized unit user plane (CU user plane, CU-UP) module, etc.
  • the access network equipment can be a satellite base station (110a in Figure 1) or a macro base station (110b in Figure 1).
  • the access network equipment can also be a micro base station or an indoor station (110c in Figure 1). ), it can also be a relay node or a donor node, etc.
  • This application does not limit the specific technologies and specific equipment forms used in access network equipment.
  • the 5G system can also be called a new radio (NR) system.
  • the access network node in this application may be an access network device, or may be a module or unit configured in the access network device.
  • the terminal equipment provided in the embodiment of the present application may also be called a terminal, user equipment (UE), mobile station, or mobile terminal, etc.
  • Terminals can be widely used in various scenarios for communication.
  • This scenario includes, for example, but is not limited to at least one of the following scenarios: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), large-scale machine type communication ( massive machine-type communications (mMTC), device-to-device (D2D), vehicle to everything (V2X), machine-type communication (MTC), Internet of things , IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, or smart city, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communications
  • D2D device-to-device
  • V2X vehicle to everything
  • MTC Internet of things
  • IOT Internet of things
  • virtual reality augmented reality
  • the terminal can be a mobile phone (mobile phones 120a, 120d, 120f in Figure 1), a tablet computer, a computer with wireless transceiver function (computer 120g in Figure 1), a wearable device, or a vehicle (120b as shown in Figure 1 ), drones, helicopters, airplanes (120c in Figure 1), ships, robots, robotic arms, or smart home devices (printer 120e in Figure 1), etc.
  • This application does not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and/or terminals may be fixed-location or mobile.
  • Base stations and/or terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; or can be deployed on water; or can be deployed on aircraft, balloons and satellites in the air.
  • This application does not limit the environment/scenario in which the base station and the terminal are located.
  • the base station and the terminal can be deployed in the same or different environments/scenarios. For example, the base station and the terminal are deployed on land at the same time; or the base station is deployed on land and the terminal is deployed on the water, etc. No examples will be given one by one.
  • the terminal device connects to the network through the initial access process.
  • the initial access process mainly includes initial synchronization and random access processes.
  • the terminal device searches for the synchronization signal (SS) and physical broadcast channel (PBCH) block (SS and PBCH block, SSB) sent by the network device to obtain frequency synchronization and downlink symbol synchronization.
  • the PBCH carries the master information block (MIB).
  • MIB master information block
  • the terminal device obtains the relative position relationship between the control resource set 0 (CORESET 0) and the SSB based on the MIB, thereby determining the CORESET 0 based on the position of the SSB.
  • CORESET 0 includes a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the PDCCH in CORESET 0 carries downlink control information (DCI) used to schedule system information block 1 (SIB 1). .
  • the terminal device detects the DCI within CORESET 0 and receives SIB1 based on the DCI.
  • SIB1 is also called the remaining minimum system information (RMSI).
  • SIB1 includes cell selection information and cell access-related configuration information. The terminal device can perform a random access process based on the cell access-related configuration information.
  • the terminal device can perform the four-step random access process as shown in Figure 2 based on the cell access-related configuration information in SIB1.
  • the terminal device can obtain the physical random access of the cell based on the cell access-related configuration information in SIB1.
  • the physical random access channel (PRACH) is configured to send a random access preamble (i.e., random access message 1 (Msg1)) to the network device on the PRACH to request access to the network through the random access preamble. Enter this community. If the network device receives Msg1 from the terminal device, it can send a random access response (RAR) message to the terminal device.
  • Msg1 random access message 1
  • the Msg2 may include time advance (TA) information for adjusting time synchronization, cell temporary wireless network temporary identifier (temporary cell-RNTI, TC-RNTI), power adjustment information and scheduling random access message 3 (Msg3 )’s uplink scheduling (UL grant) information.
  • TA time advance
  • Msg3 scheduling random access message 3
  • the terminal device can send Msg3 to the network device based on the uplink scheduling information in Msg2.
  • the Msg3 includes the identity information of the terminal device and radio resource control (RRC) connection establishment information.
  • RRC radio resource control
  • the network device can send Msg4 to the terminal device.
  • the Msg4 is used for contention resolution.
  • the network device can notify the terminal device through Msg4 that the random access process is completed.
  • Figure 2 illustrates the example of the terminal device performing a 4-step random access process after the terminal device obtains initial synchronization.
  • the terminal device can also perform a 2-step random access process based on the cell access related configuration information in SIB1.
  • the 2-step random access process completes the random access process of the terminal device through two steps: the terminal device sends a random access message A (MsgA) to the network device, and the network device sends a random access message B (MsgB) to the terminal device.
  • the network device uses SIB1 to configure the PRACH for carrying Msg1 in MsgA and the physical uplink shared channel (PUSCH) used to carry Msg3 in MsgA for the terminal device in the 2-step random access process.
  • PUSCH physical uplink shared channel
  • the terminal device sends MsgA to the network device according to SIB1. After successfully receiving MsgA, the network device can send MsgB to the terminal device to notify the terminal device that the random access process is completed. Alternatively, if the network device detects the random access preamble in MsgA but fails to obtain the information in Msg3, the network device can send MsgB to the terminal device to instruct the terminal device to fall back to the 4-step random access process.
  • the initial access process in mobile communication systems is designed for communication between land base stations and terminal equipment, and can overcome the path loss and transmission delay of distance estimation between land base stations and terminal equipment.
  • the distance between the satellite base station and the terminal equipment is much greater than the distance between the terrestrial base station and the terminal equipment, making the path loss and transmission delay between the satellite base station and the terminal equipment much greater than the signal path loss between the terrestrial base station and the terminal equipment.
  • transmission delay For example, the distance between a land base station and a terminal device is at most tens of kilometers (kilometer, km), and the transmission delay is at most a few milliseconds (milliseconds, ms).
  • the transmission delay is as high as tens of milliseconds.
  • the initial access process in the mobile communication system cannot overcome the path loss and transmission delay caused by the long distance between the satellite base station and the terminal equipment, and cannot meet the reliability requirements of the communication services provided by the satellite base station.
  • Figure 3 is a schematic flow chart of the communication method provided by the embodiment of the present application.
  • Figure 3 illustrates a network device and a terminal device.
  • the network device and/or the terminal device can also be replaced by a chip, module, etc. for executing the method, which is not limited by this application.
  • the network device sends first information to the terminal device.
  • the first information is used to schedule SIB1.
  • the first information is also used to indicate that SIB1 is repeatedly transmitted in one time slot or multiple consecutive time slots.
  • the terminal device receives the first information from the network device.
  • the first information is DCI
  • the first information can be carried on the PDCCH in CORESET 0.
  • the terminal device determines according to the first information whether SIB1 is in a time slot or multiple consecutive time slots. Repeatedly transmitted within the slot.
  • SIB1 is repeatedly transmitted within a time slot
  • the terminal device and the network device determine that SIB1 is repeatedly transmitted within a time slot according to predefined rules.
  • SIB1 may be predefined to be repeatedly transmitted in multiple consecutive time slots, and the terminal device and the network device may determine to be repeatedly transmitted in multiple consecutive time slots according to predefined rules.
  • S301 can be replaced by: the network device sends the first information to the terminal device, the first information is used to schedule SIB1, and the network device determines that SIB1 is in one time slot or multiple consecutive time slots based on predefined rules or configuration information. is repeatedly transmitted; accordingly, the terminal device determines that SIB1 is repeatedly transmitted in one time slot or multiple consecutive time slots based on predetermined rules or configuration information, and the terminal device receives the first information.
  • the first information includes first indication information, which is used to indicate that the SIB1 is repeatedly transmitted in one time slot or in multiple consecutive time slots.
  • the network device notifies the terminal device that SIB1 is repeatedly transmitted in one time slot through the first indication information, or notifies the terminal device that SIB1 is repeatedly transmitted in multiple consecutive time slots through the first indication information.
  • the terminal device receives the repeatedly transmitted SIB1 according to the instruction of the first indication information.
  • the first indication information is a bit in the first information.
  • the one bit indicates "0", indicating that SIB1 is repeatedly transmitted in one time slot; the one bit indicates "1", indicating that SIB1 is transmitted in multiple time slots. Repeat transmission within.
  • the one bit indicates "1", indicating that SIB1 is repeatedly transmitted in one time slot; the one bit indicates "0", indicating that SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the terminal device may determine that SIB1 is repeatedly transmitted in one time slot according to the first indication information of one bit in the first information, or determine that SIB1 is repeatedly transmitted in multiple consecutive time slots. .
  • the network device when the transmission delay requirement of SIB1 is high, can repeatedly transmit SIB1 within a time slot and notify the terminal device through the first indication information, which can improve the reliability of SIB1 when the transmission delay is small. .
  • the network device can repeatedly transmit SIB1 in multiple time slots and notify the terminal device through the first indication information. It can use the resources of multiple time slots to transmit more SIB1 information bits and can reduce the need for re-scheduling.
  • the network device can enhance the coverage of SIB1 by repeatedly transmitting SIB1 after one scheduling of the first information, so that the repeatedly transmitted SIB1 can overcome the signal path loss between the satellite base station and the terminal equipment, and can reduce the loss of SIB1 compared with multiple scheduled transmissions. Transmission delay.
  • SIB1 is repeatedly transmitted within a time slot.
  • the terminal device may determine that the SIB1 scheduled by the first information is repeatedly transmitted within a time slot.
  • the first information includes the above-mentioned first indication information, and the first indication information indicates that SIB1 is repeatedly transmitted within a time slot.
  • the first information includes second indication information
  • the second indication information is used to indicate that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot
  • the second indication information is used to indicate that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot.
  • SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the second indication information may be a bit in the first information.
  • the bit indicates "0" or "1" respectively to indicate that SIB1 is repeatedly transmitted on different frequency domain resources within a time slot, that is, the network device adopts Frequency division multiplexing (FDM) is used to repeatedly transmit SIB1, or it means that SIB1 is repeatedly transmitted on different time domain resources within a time slot, that is, the network equipment adopts time division multiplexing (TDM). Repeat transmission of SIB1.
  • FDM Frequency division multiplexing
  • TDM time division multiplexing
  • the second indication information may be called repetition type indication information or resource multiplexing mode indication information, but the present application is not limited thereto.
  • the first information includes second indication information, and the number of transmissions of SIB1 is predefined.
  • the first information includes resource allocation information, and the resource allocation information is used to indicate resources carrying one SIB1 in one time slot.
  • the resources carrying one SIB1 may include time domain resources and/or frequency domain resources carrying the SIB1.
  • the resource allocation information may include or be specifically time domain resource allocation information and/or frequency domain resource allocation information.
  • the time domain resource allocation information and frequency domain resource allocation information are used to indicate time domain resources and frequency domain resources respectively.
  • the terminal device determines the resources corresponding to each SIB1 in the repeatedly transmitted SIB1 according to the resources used to carry one SIB1 indicated by the resource allocation information and the predefined resource arrangement.
  • the predefined number of SIB1 transmissions is 2.
  • the second indication information indicates that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot.
  • the first information also includes frequency domain resource assignment (FDRA) information.
  • FDRA frequency domain resource assignment
  • the FDRA information is used to indicate the frequency domain resource carrying one SIB1.
  • the frequency domain resource carrying another SIB1 can be predefined to have a frequency higher than or The frequency domain resources are lower than those indicated by FDRA, and the frequency domain resources carrying two SIB1 are continuous in the frequency domain. As shown in Figure 4, the network device needs to repeatedly transmit SIB1 twice on resource 1 and resource 2.
  • the frequency domain resource of one SIB1 can be predefined to be higher than the frequency domain resource indicated by the FDRA information and carry two SIB1 Frequency domain resources are continuous in the frequency domain. Then, the FDRA information in the first information is used to indicate resource 1.
  • the FDRA information may indicate the starting RB kK of resource 1 and the number of consecutive RBs included in resource 1 is K.
  • the terminal equipment can determine that the frequency domain resources carrying one SIB1 are RB kK to RB k-1 according to the FDRA information.
  • the terminal device can determine that the frequency domain resource carrying another SIB1 is K consecutive RBs with a frequency higher than RB k-1 , that is, RB k to RB k+K-1 .
  • the first information also includes time domain resource assignment (TDRA) information.
  • the TDRA information is used to indicate the time domain resource carrying SIB1.
  • the TDRA information indicates the starting symbol of the time domain resource and the included consecutive The number of symbols. Since the second indication information indicates that SIB1 is repeatedly transmitted on different frequency domain resources within a time slot, the time domain resources carrying the two SIB1 are the same. As shown in Figure 4, resource 1 and resource 2 occupy the same time domain resources.
  • the terminal device can determine resource 1 based on the TDRA information and the time domain resources occupied by resource 2, combined with the indication of the FDRA information, the terminal device can determine the time and frequency positions of resource 1 and resource 2 for repeated transmission of SIB1.
  • the predefined number of SIB1 transmissions is 2.
  • the second indication information indicates that the SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the first information includes TDRA information.
  • the TDRA information is used to indicate the time domain resource carrying one SIB1.
  • the time domain resource carrying another SIB1 can be predefined earlier or later than the time domain resource indicated by the TDRA information, and
  • the time domain resources carrying two SIB1s are continuous in the time domain. As shown in Figure 5, the network device needs to repeatedly transmit SIB1 twice on resource 3 and resource 4 in a time slot.
  • the time domain resource of a predefined SIB1 is later than the time domain resource indicated by the TDRA information, and the time domain resource carries The time domain resources of the two SIB1s are continuous in the time domain.
  • the TDRA information in the first information is used to indicate resource 1.
  • the TDRA information may indicate the starting symbol 1L of resource 1 (symbol 1L is denoted as S 1L in Figure 5) and the number of consecutive symbols it contains is L.
  • the terminal equipment can determine according to TDRA that the time domain resources carrying one SIB1 are symbols 1L to 1-1 (symbol 1-1 is denoted as S 1-1 in Figure 5).
  • the terminal device can determine that the time domain resource carrying another SIB1 is the consecutive L symbols later than the symbol l-1 in time, that is, the symbol l (the symbol lL is recorded as S lL in Figure 5) to Symbol l+L-1 (symbol l+L-1 is denoted as S l+L-1 in Figure 5 ).
  • the first information also includes FDRA information, which indicates frequency domain resources carrying SIB1. Since the second indication information indicates that SIB1 is repeatedly transmitted on different time domain resources within a time slot, the frequency domain resources carrying the two SIB1 are the same.
  • the terminal device can determine the time-frequency location of resource 3 and resource 4 used for repeated transmission of SIB1 based on the TDRA information and FDRA information.
  • one or more bits among the reserved bits in the current SIB1 scheduling information can be used as the second indication information to indicate the resource multiplexing method (frequency division multiplexing) of SIB1 repeated transmission. mode or time division multiplexing mode), which can avoid changing the indication field in the current first information and has good forward compatibility.
  • the last N bits in the first information are currently reserved bits.
  • M bits among the N bits can be specified as the second indication information, and N and M are positive integers.
  • a low-version terminal equipment for example, a low-version terminal equipment can be a terminal equipment produced before the second indication information is added to the scheduling information stipulating SIB1
  • the N bits can continue to be considered as reserved bits, according to the FDRA information and TDRA information. , determine the resource carrying a SIB1, and receive SIB1 on the resource.
  • the second indication information of M bits among the N bits will be obtained, according to The multiplexing mode and predefined transmission times of SIB1 indicated by the second indication information determine the resources carrying each SIB1.
  • the resource allocation information in the first information is used to indicate resources used to carry multiple SIB1s for repeated transmission within one time slot.
  • the terminal device determines the resources corresponding to each SIB1 in the repeatedly transmitted SIB1 according to the predefined resource arrangement of the resources corresponding to each SIB1 within the resources indicated by the resource allocation information.
  • the predefined number of SIB1 transmissions is 2.
  • the second indication information indicates that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot.
  • the FDRA information in the first information is used to indicate frequency domain resources carrying two SIB1s. It is predefined that the two SIB1s respectively occupy half of the frequency domain resources indicated by the FDRA information. As shown in Figure 4, the network device needs to repeatedly transmit SIB1 twice on resource 1 and resource 2.
  • the FDRA information in the first information indicates that the starting RB of the frequency domain resource carrying two SIB1 is RB kK and contains consecutive The number of RBs is 2K.
  • the terminal equipment can determine based on the FRDA information that the frequency domain resources from RB kK to RB k+K-1 carry 2 SIB1s, and the two SIB1s each occupy 1/2 of the frequency domain resources, then the terminal equipment can determine a SIB1 is carried on RB kK to RB k- 1 , and the other SIB1 is carried on RB k to RB k+K-1 .
  • the TDRA information in the first information indicates the time domain resources that carry two SIB1s.
  • the terminal device can determine that the two SIB1s are carried based on the TDRA information and FDRA information. of Resource1 and Resource2.
  • the TDRA information in the first information is used to indicate time domain resources carrying two SIB1s, and the two SIB1s are predefined to occupy half of the time domain resources indicated by the TDRA information.
  • the network device needs to repeatedly transmit SIB1 twice on resource 3 and resource 4 in time slot n.
  • the TDRA information in the first information is used to indicate the starting symbols l-L of the time domain resources carrying 2 SIB1 And the number of consecutive symbols contained is 2L.
  • the terminal device can determine according to TDRA that the time domain resources from symbol l-L to symbol l+L-1 carry two SIB1s, and the two SIB1s each occupy 1/2 of the time domain resources, then the terminal device can determine a SIB1 is carried on symbols l-L to l-1 and another SIB1 is carried on symbols l to l+L-1. And the FDRA information in the first information indicates the frequency domain resources that carry two SIB1s. The terminal device can determine resource 3 and resource 4 that carry two SIB1s based on the TDRA information and FDRA information.
  • the first information includes second indication information and third indication information
  • the third indication information is used to indicate the number of transmissions of SIB1.
  • the second indication information indicates that the SIB1 is repeatedly transmitted on different frequency domain resources within a time slot.
  • the resource allocation information in the first information (for example, the resource allocation information includes FDRA information) is used to indicate the frequency domain resources carrying one SIB1.
  • the frequency domain resources carrying other SIB1 are predefined to be higher or lower than the frequency indicated by FDRA.
  • domain resources, and the frequency domain resources carrying repeatedly transmitted SIB1 are continuous in the frequency domain.
  • the terminal device may determine the resources used to carry N SIB1s repeatedly transmitted by the network device based on the FDRA information, the number of SIB1 transmissions N indicated by the third indication information, and predefined rules, so that the terminal device receives SIB1 on the corresponding resources.
  • the FDRA information in the first information is used to indicate frequency domain resources that carry multiple SIB1s that are repeatedly transmitted.
  • the terminal device can determine the frequency domain that is used to carry one SIB1 based on the number of transmissions N of SIB1 indicated by the third indication information.
  • the resources are 1/N of the frequency domain resources indicated by the FDRA information, and each resource carrying SIB1 is arranged in frequency order on the frequency domain resources indicated by the FDRA information.
  • the frequency domain resources of the repeatedly transmitted N SIB1 are different, but the time domain resources are the same.
  • the resource allocation information (for example, the resource allocation information also includes TDRA information) is also used to indicate the time domain resources carrying SIB1.
  • the terminal device can determine the time domain resources for carrying each SIB1 repeatedly transmitted according to the resource configuration information. frequency location.
  • the second indication information indicates that the SIB1 is repeatedly transmitted on different time domain resources within a time slot.
  • the resource allocation information in the first information (for example, the resource allocation information includes TDRA information) is used to indicate the time domain resources carrying one SIB1.
  • the time domain resources carrying other SIB1 are predefined earlier or later than the time indicated by TDRA.
  • domain resources, and the time domain resources carrying repeatedly transmitted SIB1 are continuous in the time domain.
  • the terminal device may determine resources for carrying N SIB1s repeatedly transmitted by the network device based on the TDRA information, the number of SIB1 transmissions N indicated by the third indication information, and predefined rules, so that the terminal device receives SIB1 on the corresponding resources.
  • the TDRA information in the first information is used to indicate time domain resources for carrying multiple SIB1s that are repeatedly transmitted.
  • the terminal device can determine the time domain for carrying one SIB1 based on the number of transmissions N of SIB1 indicated by the third indication information.
  • the resources are 1/N of the time domain resources indicated by the TDRA information, and each resource carrying SIB1 is arranged in time order on the time domain resources indicated by the TRDA information.
  • the time domain resources of the repeatedly transmitted N SIB1 resources are different, but the frequency domain resources are the same.
  • the resource allocation information (for example, the resource allocation information also includes FDRA information) is also used to indicate the frequency domain resources carrying SIB1.
  • the terminal device can determine the time to carry the resources of each SIB1 that is repeatedly transmitted based on the resource configuration information. frequency Location.
  • the indication information (such as the first indication information, the second indication information, the third indication information) in the above-mentioned first information can be implemented by using the reserved bits in the current SIB1 scheduling information, that is, adding Indication fields and named accordingly implement the functions of the above indication information.
  • this application is not limited to this.
  • the existing indication fields in SIB1 can also be reused to realize the function of the above indication information. That is, an indication field can not only realize the function of the indication field itself, but also can realize one or more of the above indications. information function.
  • the predefined information can also be notified by the network device to the terminal device through instruction information so that the terminal device and the network device can reach a consensus. Not limited.
  • the network device can notify the terminal device through a scheduling instruction of SIB1 through the first information that the network device repeatedly transmits SIB1 within a time slot, thereby enhancing the signal coverage of SIB1 and improving the transmission reliability of SIB1.
  • the transmission delay of SIB1 can be reduced, allowing SIB1 to meet the transmission delay requirements of the satellite base station.
  • SIB1 is repeatedly transmitted in one time slot.
  • SIB1 is repeatedly transmitted in multiple consecutive time slots.
  • the first information includes the above-mentioned third indication information, and the third indication information is used to indicate the number of transmissions of SIB1.
  • the first information may be predefined that SIB1 is repeatedly transmitted in multiple consecutive time slots, or the first information includes the above-mentioned first indication information, and the first indication information indicates that SIB1 is repeatedly transmitted in multiple consecutive time slots. .
  • the terminal device determines that SIB1 is repeatedly transmitted in multiple consecutive time slots according to the predefined rule or the first indication information in the first information.
  • the third indication information in the first information indicates the transmission number N of SIB1, and the terminal device can determine that SIB1 is repeatedly transmitted in N consecutive time slots.
  • the first information also includes resource allocation information (such as FDRA information and TDRA information).
  • the resource allocation information may indicate the resources used to carry SIB1 in a time slot.
  • the location of the resources carrying SIB1 in each time slot can be predefined to be the same, for example, the RB numbers used to carry SIB1 in each time slot are the same, and the symbols carrying SIB1 have the same number in the time slot.
  • the network device needs to transmit SIB1 twice in two consecutive time slots.
  • the network device needs to transmit SIB1 twice in time slot n and time slot n+1.
  • the network device sends the first information to the terminal device, and the third indication information in the first information indicates that the number of repeated transmissions N of SIB1 is 2.
  • the terminal device can determine that SIB1 is repeatedly transmitted in 2 consecutive time slots.
  • the FDRA information in the first information indicates that the frequency domain resources carrying SIB1 are RB k to RB k+K-1
  • the TDRA information indicates that the time domain resources carrying SIB1 are symbols 1 in one time slot (noted in Figure 6 denoted as S l ) to the symbol l+L (the symbol l+L is denoted as S l+L in Figure 6 ).
  • the first information also indicates that the starting time slot carrying SIB1 is time slot n.
  • the terminal equipment can determine that the resource 5 carrying SIB1 in the time slot n occupies RB k to RB k+K in the frequency domain, and occupies the symbol l in the time slot n in the time domain (the symbol l is denoted as S in Figure 6 l ) to symbol l+L, and resource 6 carrying SIB1 in time slot n+1 occupies RB k to RB k+K-1 in the frequency domain, and occupies symbol l in time slot n+1 in the time domain (denoted as S l in Figure 6 ) to the symbol l+L. That is, the resources used to carry SIB1 can be predefined to have the same location of the resources carrying SIB1 in each time slot.
  • the RB number of the resource used to carry SIB1 in each time slot and the number of the symbol in the time slot are the same.
  • the terminal device can receive SIB1 on the resources used to carry SIB1 in each time slot, and perform combined demodulation and decoding on multiple SIB1 to obtain the information bits of SIB1.
  • the network device can notify the terminal device of a scheduling instruction for SIB1 through the first information.
  • Network equipment repeatedly transmits SIB1 in multiple consecutive time slots.
  • On the basis of enhancing the signal coverage of SIB1 and improving the transmission reliability of SIB1, compared with the method of re-scheduling SIB1 to retransmit SIB1 after a transmission failure. can reduce the transmission delay of SIB1 and meet the transmission delay requirements of satellite base stations; and, multiple consecutive time slots can provide more resources for repeated transmission of SIB1.
  • the number of transmissions indicated by the third indication information in the foregoing embodiments may be a positive integer.
  • the number of transmissions indicated by the third indication information may be 1, 2, 4 or 8, which is not limited in this application.
  • SIB1 can be transmitted only once, and the third indication information can indicate that the number of transmissions is 1.
  • the network equipment can determine the number of SIB1 transmissions based on the channel conditions and notify the terminal equipment through the third instruction message to enhance the coverage of SIB1 and improve transmission reliability. sex.
  • the above solution is suitable for network equipment in different environments, allowing the network equipment to flexibly adjust the number of SIB1 transmissions according to the channel conditions of the environment.
  • S302 The network device repeatedly transmits the SIB1.
  • the network device uses the multiplexing method (FDM or TDM) indicated by the first information to repeatedly transmit the SIB1 in one time slot.
  • the terminal device determines the multiplexing mode adopted by the network device according to the first information, thereby determining the resources used to carry each SIB1 in one time slot, and receives multiple SIB1s on the corresponding resources, and responds to the received multiple SIB1s.
  • Each SIB1 is combined, demodulated, decoded and processed to obtain the information bits of SIB1.
  • the network device If the first information indicates that SIB1 is repeatedly transmitted in multiple consecutive time slots, the network device repeatedly transmits the SIB1 in multiple consecutive time slots.
  • the terminal device determines the number of transmission times N of SIB1 according to the third indication information in the first information, receives SIB1 in consecutive N time slots, and combines the multiple received SIB1 Demodulation, decoding and other processes obtain the information bits of SIB1.
  • the network device can notify the terminal device through a scheduling instruction of SIB1 through the first information that the network device repeatedly transmits SIB1 in one or more consecutive time slots, thereby enhancing the signal coverage of SIB1 and improving the transmission of SIB1 reliability.
  • Figure 7 is a schematic flow chart of the communication method 700 provided by the embodiment of the present application.
  • the network device sends first information.
  • the first information is used to schedule SIB1.
  • the first information includes fourth indication information.
  • the fourth indication information is used to indicate the first coefficient.
  • the first coefficient is used to determine the information of SIB1. bits.
  • the first coefficient is less than or equal to 1.
  • the terminal device receives the first information from the network device and determines the first coefficient according to the fourth indication information in the first information.
  • the network device can determine the first coefficient according to the transmission requirements. For example, the network device can determine the spectrum efficiency of SIB1 that can overcome the influence of channel fading according to the channel conditions, thereby determining the first coefficient.
  • the network device notifies the terminal device of the first coefficient through the fourth indication information in the first information.
  • S702 The network device sends SIB1 to the terminal device.
  • the terminal device receives the SIB1 from the network device.
  • the network device can determine the modulation and coding scheme (MCS) used by SIB1 based on the number of information bits N info of SIB1 to be transmitted and the required spectrum efficiency, that is, determine the modulation order used by SIB1.
  • MCS modulation and coding scheme
  • the network equipment determines the needs based on the number of information bits N info , the first coefficient f scaling , the modulation order Q m , the code rate R and the number of transmission layers (or the number of information flows) for transmitting SIB1.
  • the number of resource elements (RE) transmitted N RE .
  • the network device After the network device performs channel coding, rate matching, and modulation on the information bits, it maps the modulation symbols of SIB1 to the resource carrying SIB1, and sends SIB1 on the resource.
  • the fourth indication information may be 2 bits in the first information, and the corresponding relationship between the state value indicated by the 2 bits and the value of the first coefficient may be as shown in Table 1.
  • network equipment determines the first coefficient to be 0.5 based on transmission requirements, such as spectrum efficiency requirements. That is, with the same number of information bits, MCS, and number of layers, the ratio of information bits to transmission bits needs to be reduced by half, which can improve The error correction capability of SIB1's channel coding improves the transmission reliability of SIB1.
  • the network device notifies the terminal device that the first coefficient is 0.5 through the fourth indication information indication "01".
  • the network device may determine that the first coefficient is 0.25, and notify the terminal device that the first coefficient is 0.25 through the fourth indication information indicating "10".
  • the network device may not use the first coefficient to reduce the spectrum efficiency of SIB1, and the 2 bits of the fourth indication information indicate "00".
  • the values of the first coefficient corresponding to specific bits can be interchanged. Table 1 is only an example and is not limited by this application. For example, 01 indicates that the first coefficient is 0.25, 10 indicates that the first coefficient is 0.5, 00 indicates that the first coefficient is 1, and so on. All transformations based on Table 1 are within the protection scope of this application.
  • the terminal device determines the information bits of SIB1 based on the first coefficient, the MCS used by SIB1, and the number of transmission layers.
  • the terminal device After receiving the SIB1 in S702, the terminal device determines the information bits of SIB1 based on the first coefficient, the MCS used by SIB1, and the number of transmission layers.
  • the first information is also used to indicate the number of MCS and transmission layers adopted by SIB1.
  • the first information also indicates the resource carrying the SIB1.
  • the terminal device specifically determines the information bits of the SIB1 based on the first coefficient, the resource, the MCS used by the SIB1, and the number of transmission layers.
  • the terminal device After the terminal device performs demodulation, rate matching, channel coding and other processing on the received SIB1, it obtains N info information bits of SIB1.
  • the network equipment can flexibly adjust the first coefficient according to the transmission requirements to adjust the spectrum efficiency.
  • the spectrum efficiency of SIB1 can meet the transmission requirements, and the network device notifies the terminal device of the first coefficient to use through the fourth instruction information, so that the terminal device and the network device reach a consensus on the first coefficient.
  • the channel conditions are relatively In the case of poor communication (such as communication between terminal equipment and satellite base stations), the network equipment can reduce the spectrum efficiency through the first coefficient and improve the error correction capability of SIB1 channel coding, thereby improving the transmission reliability of SIB1.
  • the communication methods provided by the embodiments of the present application can be implemented in combination with each other.
  • the embodiments shown in Figure 3 and Figure 7 can be implemented in combination with each other.
  • the network device indicates through the first information that the scheduled SIB1 is in one or more time slots. The transmission is repeated, and the first information notifies the terminal device of the first coefficient corresponding to SIB1 through the fourth indication information.
  • the network device repeatedly transmits SIB1 that meets the spectrum efficiency corresponding to the first coefficient, and the terminal device receives the SIB1 that is repeatedly transmitted from the network device according to the first information. It can be achieved that the reliability of SIB1 is improved by repeated transmission, and the reliability of SIB1 is improved by adjusting the coding error correction capability.
  • the present application is not limited thereto.
  • the embodiment shown in FIG. 3 and/or FIG. 7 can also be implemented in combination with the following embodiment shown in FIG. 8 .
  • Embodiments of the present application provide a random access message transmission method, which enables the network device to flexibly configure the random access message transmission mode of the terminal device, so that the random access message meets the transmission requirements.
  • Figure 8 is a schematic flow chart of the communication method 800 provided by the embodiment of the present application.
  • the network device sends sixth indication information, which is used to instruct repeated transmission of the random access message Msg3 in one time slot or multiple time slots.
  • the terminal device receives the sixth indication information, and determines to repeatedly transmit Msg3 in one time slot according to the sixth indication information, or determines to repeatedly transmit Msg3 in multiple time slots according to the sixth indication information.
  • the sixth indication information may use 1 bit to instruct the terminal device to repeatedly transmit Msg3 in one time slot or multiple time slots.
  • one bit of the sixth indication information indicates “0" to indicate that Msg3 is transmitted in one time slot, and "1" indicates that Msg3 is transmitted in multiple time slots.
  • the 1 bit indicates “1” to indicate that Msg3 is transmitted in one time slot, and indicates "0" to indicate that Msg3 is transmitted in multiple time slots. This application does not limit this.
  • the sixth indication information is carried in SIB1.
  • the network device notifies the terminal device to repeatedly transmit Msg3 in one or more time slots through SIB1. This can avoid increasing the signaling overhead of Msg3 scheduling information and realize the repeated transmission method of notifying Msg3, so that the Msg3 transmitted by the terminal device meets transmission requirements.
  • the sixth indication information may also be included in the scheduling information of Msg3, so that the network device can notify the repeated transmission mode of Msg3, so that the Msg3 transmitted by the terminal device meets the transmission requirements.
  • S802 The terminal device repeatedly transmits Msg3 according to the sixth instruction information.
  • the Msg3 is the Msg3 in MsgA in the 2-step random access process.
  • the sixth instruction information can be carried in SIB1.
  • the terminal device After receiving the SIB1, the terminal device sends MsgA to the network device according to the relevant information of the random access process configured in SIB1 and the sixth instruction information.
  • the MsgA includes random access.
  • the preamble, as well as MsgA also includes Msg3, which is repeatedly transmitted by the terminal device. Specifically, the terminal device may repeatedly transmit the Msg3 in one time slot or repeatedly transmit the Msg3 in multiple time slots according to the instruction of the sixth indication information.
  • the relevant information of the random access process configured by SIB1 can refer to the existing technology, and will not be described in detail here in this application.
  • the Msg3 is Msg3 in a 4-step random access process.
  • the network device sends second information to the terminal device, and the second information is used to schedule Msg3.
  • This second information is also used to indicate the number of transmissions of Msg3.
  • the terminal device repeatedly transmits Msg3 according to the sixth instruction information and the second information.
  • the sixth instruction information instructs the terminal device to repeatedly transmit Msg3 within a time slot
  • the terminal device receives the After the second information, the number of transmission times P of Msg3 is indicated according to the second information, and P is an integer greater than 0.
  • the terminal device can determine that the number of times Msg3 is transmitted in a time slot is P times. Then the terminal device transmits Msg3 P times in one time slot, which can improve the reliability of Msg3 while reducing the retransmission delay of Msg3.
  • the satellite base station may instruct the terminal device to repeatedly transmit Msg3 within a time slot through the sixth indication information.
  • the sixth instruction information instructs the terminal device to repeatedly transmit Msg3 in multiple time slots.
  • the terminal device After receiving the second information, the terminal device indicates the number of transmission times P of Msg3 according to the second information, where P is an integer greater than 0.
  • the terminal device can determine that the number of times Msg3 is transmitted in a time slot is P times. Then the terminal device transmits Msg3 P times in consecutive P time slots, which can improve the reliability of Msg3.
  • the land base station can instruct the terminal device to repeatedly transmit Msg3 in multiple time slots.
  • the second information includes MCS indication information, and the MCS indication information may indicate the number of transmission times P of Msg3.
  • the MCS indication information includes Y bits, and the range of MCS that Msg3 can use is small.
  • the MCS used by Msg3 can be indicated by the lower X bits among the Y bits, and the higher Y-X bits among the Y bits. It refers to the number of repeated transmissions of Msg3 P.
  • the second information may be carried in Msg2 from the random access process of the network device, that is, in the RAR message.
  • the second information may be uplink grant (UL grant) information in the RAR message.
  • the MCS indication information includes 5 bits, and the lower 2 bits of the 5 bits may indicate one of the four types of MCS.
  • the high 2 bits of the 5 bits can indicate one of the 4 transmission times of Msg3.
  • the status values "00", "01", "10", and "11" of the upper 2 bits can respectively indicate one of the transmission times of ⁇ 1, 2, 3, 4 ⁇ in sequence.
  • the network device can configure the candidate MCS corresponding to the four status values ("00", "01”, “10”, “11") of the lower 2 bits of the MCS indication information in the second information through SIB1, or if the network device fails SIB1 configures the candidate MCS corresponding to the status value of the lower 2 bits of the MCS indication information. Then the terminal device considers that the 4 status values of the lower 2 bits of the MCS indication information in the second information respectively correspond to the identifiers in the predefined MCS set ranging from 0 to 3 of 4 MCS (i.e. MCS0, MCS1, MCS2 and MCS3).
  • the terminal device determines the candidate MCS identified by Msg3 using "10" according to the lower 2 bits of the 5-bit indication indicating "10", or if the network device does not After configuring the candidate MCS, the terminal device thinks that Msg3 uses the MCS with the identifier 2 in the predefined MCS set, that is, MCS2. And the terminal device determines that the number of transmissions of Msg3 is 2 according to the bit indication "10" in the upper 2 bits of the 5 bits.
  • the second information may be downlink control information used to schedule Msg3 retransmission.
  • the network device successfully receives the Msg3 sent by the terminal device.
  • the network device can send downlink control information to the terminal device and schedule the terminal device to send Msg3 again (or schedule the terminal device to retransmit Msg3).
  • the network device can use the downlink control information to schedule the terminal device to repeatedly transmit Msg3 when retransmitting Msg3 to improve the reliability of Msg3.
  • the MCS indication information in the second information includes 5 bits. The lower 3 bits of the 5 bits can instruct Msg3 to use one of the 8 MCSs.
  • the 8 MCSs can be the 8 candidates for network device configuration.
  • the high 2 bits of the 5 bits can indicate one of the 4 transmission times of Msg3.
  • the status values of the upper 2 bits "00", "01", "10", and "11" can respectively indicate one of the transmission times ⁇ 1, 2, 3, 4 ⁇ , such as 5 MCS indication information.
  • the terminal device determines the candidate MCS identified by Msg3 using "110" according to the lower 3 bits of the 5-bit indication "110", or Otherwise, if the network device is not configured with a candidate MCS, the terminal device considers that Msg3 uses the MCS with the identifier 6 in the predefined MCS set (that is, MCS6). And the terminal device determines that the number of transmissions of Msg3 is 2 according to the bit indication "10" in the upper 2 bits of the 5 bits. The number of transmissions indicated by the status value of the bit can be interchanged and is not limited by this application.
  • the terminal device can determine the method of repeatedly transmitting the resources of Msg3 in one time slot or multiple time slots. This can be implemented by referring to the method of determining the resources of the repeatedly transmitted SIB1 in the embodiment shown in Figure 3. In order to I won’t go into details here briefly.
  • the network device can flexibly configure the random access message of the terminal device to be repeatedly transmitted in one time slot or in multiple time slots according to the transmission requirements, such as during the transmission of the random access message.
  • terminal equipment can be configured to repeatedly transmit random access messages within a time slot.
  • the transmission delay requirements of random access messages are low or resource requirements are large, such as on land
  • the base station can configure the terminal device to repeatedly transmit random access messages in multiple time slots.
  • each network element may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Figure 9 is a schematic block diagram of a communication device provided by this application.
  • the communication device 900 may include a transceiver unit 920 .
  • the communication device 900 may correspond to the terminal equipment in the above method, or a chip configured in (or used for) the terminal equipment, or other devices, modules, or other devices that can implement the method of the terminal equipment. circuit or unit, etc.
  • the communication device 900 may include a unit for performing the method performed by the terminal device in the methods shown in FIG. 3, FIG. 7, and FIG. 8. Moreover, each unit in the communication device 900 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the methods shown in FIG. 3, FIG. 7, and FIG. 8.
  • the communication device 900 may also include a processing unit 910, which may be used to process instructions or data to implement corresponding operations.
  • a processing unit 910 which may be used to process instructions or data to implement corresponding operations.
  • the transceiver unit 920 in the communication device 900 may be an input/output interface or circuit of the chip, and the processing in the communication device 900 Unit 910 may be a processor in a chip.
  • the communication device 900 may also include a storage unit 930, which may be used to store instructions or data, and the processing unit 910 may execute the instructions or data stored in the storage unit to enable the communication device to implement corresponding operations. .
  • the transceiver unit 920 in the communication device 900 can be implemented through a communication interface (such as a transceiver, a transceiver circuit, an input/output interface, or a pin, etc.), and can, for example, correspond to the communication device 1000 shown in FIG. 10 transceiver 1010.
  • the processing unit 910 in the communication device 900 may be implemented by at least one processor, for example, may correspond to the processor 1020 in the communication device 1000 shown in FIG. 10 .
  • the processing unit 910 in the communication device 900 can also be implemented by at least one logic circuit.
  • the storage unit 930 in the communication device 900 may correspond to the memory 1030 in the terminal device 1000 shown in FIG. 10 .
  • the communication device 900 may correspond to the network device in the above method, for example, or a chip configured in (or used for) the network device, or other devices capable of implementing the method of the network device. , module, circuit or unit, etc.
  • the communication device 900 may include a unit for performing the method performed by the network device in the methods shown in FIG. 3, FIG. 7, and FIG. 8. Moreover, each unit in the communication device 900 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the methods shown in FIG. 3, FIG. 7, and FIG. 8.
  • the communication device 900 may also include a processing unit 910, which may be used to process instructions or data to implement corresponding operations.
  • a processing unit 910 which may be used to process instructions or data to implement corresponding operations.
  • the transceiver unit 920 in the communication device 900 may be an input/output interface or circuit of the chip, and the processing in the communication device 900 Unit 910 may be a processor in a chip.
  • the communication device 900 may also include a storage unit 930, which may be used to store instructions or data, and the processing unit 910 may execute the instructions or data stored in the storage unit to enable the communication device to implement corresponding operations. .
  • the transceiver unit 920 in the communication device 900 can be implemented through a communication interface (such as a transceiver, a transceiver circuit, an input/output interface, or a pin, etc.), for example, it can correspond to Transceiver 1110 in communication device 1100 shown in FIG. 11 .
  • the processing unit 1110 in the communication device 1100 may be implemented by at least one processor, for example, may correspond to the processor 1120 in the communication device 1100 shown in FIG. 11
  • the processing unit 910 in the communication device 900 may be implemented by at least one logic circuit implementation.
  • the storage unit 930 in the communication device 900 may correspond to the memory 1130 in the communication device 1100 shown in FIG. 11 .
  • Figure 10 is a schematic structural diagram of the communication device 1000 provided by this application.
  • the communication device 1000 can be applied in the system as shown in Figure 1 to perform the functions of the terminal device in the above method.
  • the communication device 1000 may be a terminal device, or the communication device 1000 may be configured in a terminal device.
  • the communication device 1000 includes a processor 1020 and a transceiver 1010 .
  • the communication device 1000 further includes a memory 1030.
  • the processor 1020, the transceiver 1010 and the memory 1030 can communicate with each other through internal connection paths to transmit control signals and/or data signals.
  • the memory 1030 is used to store computer programs, and the processor 1020 is used to execute the computer program in the memory 1030 to control the transceiver 1010 to send and receive signals.
  • the above-mentioned processor 1020 can be used to perform the actions implemented by the terminal device described in the previous method, and the transceiver 1010 can be used to perform the actions of sending or receiving by the terminal device described in the previous method.
  • the transceiver 1010 can be used to perform the actions of sending or receiving by the terminal device described in the previous method.
  • the description in the previous method please refer to the description in the previous method and will not be repeated here.
  • the above-mentioned communication device 1000 may also include a power supply for providing power to various devices or circuits in the communication device.
  • Figure 11 is a schematic structural diagram of the communication device 1100 provided by this application.
  • the communication device 1100 can be applied in the system as shown in Figure 1 to perform the functions of the network device in the above method.
  • the communication device 1000 may be a network device, or the communication device 1000 may be configured on a network device.
  • the communication device 1100 includes a processor 1120 and a transceiver 1110 .
  • the communication device 1100 further includes a memory 1030.
  • the processor 1120, the transceiver 1110 and the memory can communicate with each other through internal connection paths to transmit control and/or data signals.
  • the memory 1030 is used to store computer programs, and the processor 1120 is used to execute the computer program in the memory 1030 to control the transceiver 1110 to send and receive signals.
  • the above-mentioned processor 1120 can be used to perform the actions implemented by the network device described in the previous method, and the transceiver 1110 can be used to perform the actions of sending or receiving by the network device described in the previous method.
  • the transceiver 1110 can be used to perform the actions of sending or receiving by the network device described in the previous method.
  • the above-mentioned communication device 1100 may also include a power supply for providing power to various devices or circuits in the communication device.
  • the processor and the memory can be combined into one processing device, and the processor is used to execute the program code stored in the memory to implement the above functions.
  • the memory can also be integrated in the processor or independent of the processor.
  • This processor may correspond to the processing unit in Figure 9.
  • the transceiver may correspond to the transceiver unit in Figure 9.
  • a transceiver may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the processor can be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or execute this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps combined with the method of this application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it can be a volatile memory (volatile memory), such as random access Memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • This application also provides a processing device, which includes a processor and a (communication) interface.
  • the processor uses the communication interface to execute the method in the embodiments shown in FIG. 3, FIG. 7, and FIG. 8.
  • the processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When executed by one or more processors, it causes a device including the processor to execute The method in the embodiment shown in Figure 3, Figure 7 and Figure 8
  • the technical solutions provided in this application can be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or partially produce processes or functions according to the present invention.
  • the above computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may contain One or more data storage devices such as servers and data centers integrated with available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media, etc.
  • this application also provides a computer-readable storage medium, which stores program code.
  • the program code When the program code is run by one or more processors, the program code includes the processor.
  • the device is shown in Figure 3, Figure 7, and Figure 8. The method in the embodiment
  • this application also provides a system, which includes one or more of the aforementioned terminal devices.
  • the system may further include one or more of the aforementioned network devices.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the devices described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of this solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:终端设备接收来自网络设备的第一信息,该第一信息用于调度第一系统消息SIB1,该第一信息还用于指示该SIB1在一个时隙内或连续的多个时隙内被重复传输。以及,终端设备根据该第一信息,接收来自该网络设备重复传输的该SIB1。能够提高通信消息的可靠性。

Description

通信方法和通信装置
本申请要求于2022年03月31日提交中国专利局、申请号为202210336361.8、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
由于卫星具有不容易受到自然灾害或外力破坏的影响等优点,目前,正在研究将卫星作为移动通信系统的接入网设备(如基站),以实现为海洋、森林等一些区域提供通信服务。
与地面基站不同,卫星相对地面移动速度较大且信号传播距离更远,使得卫星作为基站的信号路径损耗更大。当前移动通信系统中针对终端设备与地面基站设计的通信机制无法直接应用于终端设备与卫星基站之间,因此,为了实现卫星作为基站为终端设备提供通信服务,终端设备与卫星基站之间的通信信号如何克服信号路径损耗是目前亟待解决的问题。
发明内容
本申请实施例提供一种通信方法和通信装置,能够提高通信消息的可靠性。
第一方面,提供了一种通信方法,该通信方法可以由终端设备执行,或者通信方法可以由配置于终端设备的装置(如芯片等)执行,该方法包括:接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输。以及,根据所述第一信息,接收来自所述网络设备重复传输的所述SIB1。
根据上述方案,网络设备可以通过第一信息对SIB1的一次调度指示,向终端设备通知网络设备在连续的一个或多个时隙内重复传输SIB1,相对于通过重调度再次发送SIB1的方式,在实现增强SIB1的信号覆盖范围,提高SIB1的传输可靠性的基础上,能够减小SIB1的传输时延。
结合第一方面,在第一方面的某些实施方式中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
根据上述方案,网络设备可以在SIB1的传输时延要求较高时,在一个时隙内重复传输SIB1并通过第一指示信息通知终端设备,能够在传输时延较小的情况下提高SIB1可靠性。而在SIB1的传输时延要求较低时,网络设备可以在多个时隙内重复传输SIB1并通过第一指示信息通知终端设备。使得网络设备能够基于传输时延要求灵活地选择SIB1的重复传输方式并通过第一指示信息与终端设备对SIB1的传输方式达成共识。
结合第一方面,在第一方面的某些实施方式中,所述第一信息包括第二指示信息,所 述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
根据上述方案,网络设备根据信道条件,选择在不同频域资源上重复传输SIB1或在不同时域资源上重复传输SIB1,通过第一信息中的第二指示信息与终端设备对SIB1的资源复用方式达成共识,提高了SIB1重复传输的灵活性。
结合第一方面,在第一方面的某些实施方式中,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
根据上述方案,适用于多种信道环境,能够使得网络设备可以根据信道条件,确定SIB1的传输次数并通过第三指示信息通知终端设备,提高了SIB1传输的灵活性。例如,对于信号覆盖条件较好的网络设备(如空旷环境中的地面基站),可以仅传输1次SIB1,第三指示信息可以指示传输次数为1。以及,对于信号覆盖条件较差的网络设备(如卫星基站等),以增强SIB1的覆盖范围,提高传输可靠性。
结合第一方面,在第一方面的某些实施方式中,所述第一信息包括第三指示信息,所述第三指示信息用于指示SIB1的传输次数,所述方法还包括:根据所述第三指示信息,确定所述SIB1在连续的多个时隙内被重复传输。
根据上述方案,网络设备能够通过第三指示信息隐式地指示SIB1在连续的多个时隙内被重复传输,能够减小信令开销。
结合第一方面,在第一方面的某些实施方式中,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1,以及,所述方法还包括:根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
根据上述方案,网络设备可以根据传输需求,灵活地调整第一系数实现频谱效率的调整。从而使得SIB1的频谱效率能够满足传输需求,并且网络设备通过第四指示信息通知终端设备使用的第一系数,使得终端设备与网络设备对第一系数达成共识。在信道条件较差(如终端设备与卫星基站通信)的情况下,网络设备可以通过第一系数降低频谱效率,提高SIB1的信道编码的纠错能力,从而提高SIB1的传输可靠性。
结合第一方面,在第一方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特,包括:根据所述第一系数、所述资源、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
结合第一方面,在第一方面的某些实施方式中,所述方法还包括:接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。以及,根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
根据上述方案,能够使得网络设备可以根据传输需求,灵活地配置终端设备的随机接入消息的在一个时隙内重复传输或在多个时隙内重复传输,如在随机接入消息的传输时延需求较高的情况下,如卫星基站可以配置终端设备在一个时隙内重复传输随机接入消息,在随机接入消息的传输时延需求较高的情况下,如陆地基站可以配置终端设备在多个时隙 内重复传输随机接入消息。
结合第一方面,在第一方面的某些实施方式中,所述方法还包括:接收第二信息,所述第二信息用于调度所述Msg3;以及,所述根据所述第六指示信息,向所述网络设备重复传输所述Msg3,包括:根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第一方面,在第一方面的某些实施方式中,所述第六指示信息承载在所述SIB1中。
结合第一方面,在第一方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第二方面,提供了一种通信方法,该通信方法可以由网络设备执行,或者该通信方法可以由配置于网络设备的装置(如芯片等)执行,该方法包括:发送第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输。以及,重复传输所述SIB1。
结合第二方面,在第二方面的某些实施方式中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
结合第二方面,在第二方面的某些实施方式中,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
结合第二方面,在第二方面的某些实施方式中,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
结合第二方面,在第二方面的某些实施方式中,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定所述SIB1的信息比特,所述第一系数小于或等于1,以及,所述方法还包括:根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源。
结合第二方面,在第二方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
结合第二方面,在第二方面的某些实施方式中,所述方法还包括:发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
结合第二方面,在第二方面的某些实施方式中,所述方法还包括:发送第二信息,所述第二信息用于调度所述Msg3;以及,所述接收来自终端设备重复传输的所述Msg3,包括:根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
结合第二方面,在第二方面的某些实施方式中,所述第六指示信息承载在所述第一系统消息SIB1中。
结合第二方面,在第二方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第三方面,提供了一种通信方法,该通信方法可以由终端设备执行,或者通信方法可 以由配置于终端设备的装置(如芯片等)执行,该方法包括:接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1。以及,接收来自所述网络设备的SIB1,并根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,确定所述SIB1的信息比特。
结合第三方面,在第三方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特,包括:根据所述第一系数、所述资源、所述SIB1采用的MCS和传输层数,获取所述系统消息的信息比特。
第四方面,提供了一种通信方法,该通信方法可以由网络设备执行,或者该通信方法可以由配置于网络设备的装置(如芯片等)执行,该方法包括:发送第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1。以及,发送所述SIB1。
根据上述方案,网络设备可以根据传输需求,灵活地调整第一系数实现频谱效率的调整。从而使得SIB1的频谱效率能够满足传输需求,并且网络设备通过第四指示信息通知终端设备使用的第一系数,使得终端设备与网络设备对第一系数达成共识。在信道条件较差(如终端设备与卫星基站通信)的情况下,网络设备可以通过第一系数降低频谱效率,提高SIB1的信道编码的纠错能力,从而提高SIB1的传输可靠性。
结合第四方面,在第四方面的某些实施方式中,所述方法还包括:根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源,其中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
第五方面,提供了一种通信方法,该通信方法可以由终端设备执行,或者通信方法可以由配置于终端设备的装置(如芯片等)执行,该方法包括:接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。以及,根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
根据上述方案,能够使得网络设备可以根据传输需求,灵活地配置终端设备的随机接入消息的在一个时隙内重复传输或在多个时隙内重复传输,如在随机接入消息的传输时延需求较高的情况下,如卫星基站可以配置终端设备在一个时隙内重复传输随机接入消息,在随机接入消息的传输时延需求较高的情况下,如陆地基站可以配置终端设备在多个时隙内重复传输随机接入消息。
结合第五方面,在第五方面的某些实施方式中,所述方法还包括:接收第二信息,所述第二信息用于调度Msg3。以及,所述根据所述第六指示信息,向所述网络设备重复传输所述Msg3,包括:根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第五方面,在第五方面的某些实施方式中,所述第六指示信息承载在第一系统消息SIB1中。
结合第五方面,在第五方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为随机接入过程中MsgA中的Msg3。
第六方面,提供了一种通信方法,该通信方法可以由网络设备执行,或者该通信方法可以由配置于网络设备的装置(如芯片等)执行,该方法包括:发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。以及,根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
结合第六方面,在第六方面的某些实施方式中,所述方法还包括:发送第二信息,所述第二信息用于调度Msg3;以及,所述接收来自终端设备重复传输的所述Msg3,包括:根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
结合第六方面,在第六方面的某些实施方式中,所述第六指示信息承载在所述第一系统消息SIB1中。
结合第六方面,在第六方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第七方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输。处理单元,用于根据所述第一信息,接收来自所述网络设备重复传输的所述SIB1。
结合第七方面,在第七方面的某些实施方式中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
结合第七方面,在第七方面的某些实施方式中,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
结合第七方面,在第七方面的某些实施方式中,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
结合第七方面,在第七方面的某些实施方式中,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数,所述处理单元还用于根据所述第三指示信息,确定所述SIB1在连续的多个时隙内被重复传输。
结合第七方面,在第七方面的某些实施方式中,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1,以及,所述处理单元还用于根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
结合第七方面,在第七方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述处理单元还用于根据所述第一系数、所述资源、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
结合第七方面,在第七方面的某些实施方式中,所述收发单元还用于接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3;所述收发单元还用于根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第七方面,在第七方面的某些实施方式中,所述收发单元还用于接收第二信息,所述第二信息用于调度所述Msg3;以及,所述收发单元还用于根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第七方面,在第七方面的某些实施方式中,所述第六指示信息承载在所述SIB1中。
结合第七方面,在第七方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第八方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定重复传输所述SIB1。收发单元,用于发送第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输。该收发单元还用于重复传输所述SIB1。
结合第八方面,在第八方面的某些实施方式中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
结合第八方面,在第八方面的某些实施方式中,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
结合第八方面,在第八方面的某些实施方式中,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
结合第八方面,在第八方面的某些实施方式中,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定所述SIB1的信息比特,所述第一系数小于或等于1,以及,所述处理单元还用于根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源。
结合第八方面,在第八方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
结合第八方面,在第八方面的某些实施方式中,所述收发单元还用于发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3;所述收发单元还用于根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
结合第八方面,在第八方面的某些实施方式中,所述收发单元还用于发送第二信息,所述第二信息用于调度所述Msg3;以及,所述收发单元具体用于根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
结合第八方面,在第八方面的某些实施方式中,所述第六指示信息承载在所述第一系 统消息SIB1中。
结合第八方面,在第八方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第九方面,提供了一种通信装置,一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1。该收发单元还用于接收来自所述网络设备的SIB1。处理单元,用于根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,确定所述SIB1的信息比特。
结合第九方面,在第九方面的某些实施方式中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述处理单元还用于根据所述第一系数、所述资源、所述SIB1采用的MCS和传输层数,获取所述系统消息的信息比特。
第十方面,提供了一种通信装置,一种设计中,该装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定第一系数;收发单元,用于发送第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1。以及,该收发单元还用于发送所述SIB1。
结合第十方面,在第十方面的某些实施方式中,所述处理单元还用于根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源,其中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
第十一方面,提供了一种通信装置,一种设计中,该装置可以包括执行第五方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。处理单元,用于根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第十一方面,在第十一方面的某些实施方式中,所述收发单元还用于接收第二信息,所述第二信息用于调度Msg3;以及,所述收发单元具体用于根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
结合第十一方面,在第十一方面的某些实施方式中,所述第六指示信息承载在第一系统消息SIB1中。
结合第十一方面,在第十一方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为随机接入过程中MsgA中的Msg3。
第十二方面,提供了一种通信装置,一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也 可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3。处理单元,用于根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
结合第十一方面,在第十一方面的某些实施方式中,所述收发单元还用于发送第二信息,所述第二信息用于调度Msg3;以及,所述收发单元具体用于根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
结合第十一方面,在第十一方面的某些实施方式中,所述第六指示信息承载在第一系统消息SIB1中。
结合第十一方面,在第十一方面的某些实施方式中,所述Msg3为4步随机接入过程中的Msg3,或者所述Msg3为2步随机接入过程中MsgA中的Msg3。
第十三方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面、第三方面或第五方面以及第一方面、第三方面或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面或第五方面以及第一方面、第三方面或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十四方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第二方面、第四方面或第六方面以及第二方面、第四方面或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面或第六方面以及第二方面、第四方面或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于第一网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十五方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输 出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
第十七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
第十八方面,提供了一种通信系统,包括前述的第七方面、第九方面或第十一方面提供的至少一个通信装置和第八方面、第十方面或第十二方面提供的至少一个通信装置。
附图说明
图1是适用于本申请实施例通信系统的一个系统架构图;
图1a是适用于本申请实施例的非陆地网络的一个系统架构图;
图2是本申请实施例提供的初始接入过程的示意性流程图;
图3是本申请实施例提供的通信方法300的示意性流程图;
图4是本申请实施例提供的承载SIB1的资源的一个示意图;
图5是本申请实施例提供的承载SIB1的资源的另一个示意图;
图6是本申请实施例提供的承载SIB1的资源的另一个示意图;
图7是本申请实施例提供的通信方法700的示意性流程图;
图8是本申请实施例提供的通信方法800的示意性流程图;
图9是本申请实施例提供的通信装置的一例的示意性框图;
图10是本申请实施例提供的通信装置的另一例的示意性结构图;
图11是本申请实施例提供的通信装置的另一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请中,至少一个(项)还可以描述为一个(项)或多个(项),多个(项)可以是两个(项)、三个(项)、四个(项)或者更多个(项),不予限制。“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请的技术方案,可以采用“第一”、“第二”、“A”、或“B”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”、“A”、或“B”等字样并不对数量和执行次序进行限定。并且,“第一”、“第二”、“A”、或“B”等字样也并不限定一定不同。“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何设计方案不应被解释为比其它设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1是适用于本申请实施例的通信系统100的一个架构示意图。如图1所示,该通信 系统100可以包括至少一个接入网设备(如图1中的110a、110b、110c),还可以包括至少一个终端(如图1中的120a-120j)。接入网设备和接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等。
图1a是适用于本申请实施例的非陆地网络(non-terrestrial networks,NTN)的一个架构示意图,如图1a所示,卫星具有接入网设备的部分或全部功能,可以称为卫星基站,可以提供无线接入服务,为通过该卫星基站接入网络的终端设备调度无线资源。卫星基站与UE通过用户-通用陆地无线接入网络(universal terrestrial radio access network-user,Uu)接口进行通信。其中,卫星基站和核心网(core network,CN)之间可以通过下一代网络(next generation,NG)接口通信,卫星基站和核心网可以通过NG接口交互核心网的非接入层(non-access stratum,NAS)信令,以及用户的业务数据。卫星无线接口(satellite radio interface,SRI)接口为NTN网关与卫星之间的馈线链路,在图1a中,SRI接口可以作为NG接口的一部分实现卫星与核心网之间的通信交互。
本申请实施例提供的网络设备可以是基站(base station)、节点B(Node B)、演进型节点B(evolved NodeB,eNodeB或eNB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代节点B(next generation NodeB,gNB)、开放无线接入网(open radio access network,O-RAN或open RAN)中的接入网设备、第六代(6th generation,6G)移动通信系统中的下一代基站、以及网络设备可以是非陆地网络(non-terrestrial networks,NTN)中的卫星基站(如图1a中的卫星基站)、或者是未来移动通信系统中的基站、或无线保真(wireless fidelity,WiFi)系统中的接入节点等。或者,网络设备可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU)、分布式单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)模块、或集中单元用户面(CU user plane,CU-UP)模块等。接入网设备可以是卫星基站(如图1中的110a),也可以是宏基站(如图1中的110b),接入网设备还可以是微基站或室内站(如图1中的110c),还可以是中继节点或施主节点等。本申请中对接入网设备所采用的具体技术和具体设备形态不做限定。其中,5G系统还可以被称为新无线(new radio,NR)系统。本申请中的接入网节点可以是接入网设备,或者可以是配置于接入网设备的模块或单元。
本申请实施例提供的终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、或移动终端等。终端可以广泛应用于各种场景进行通信。该场景例如包括但不限于以下至少一个场景:增强移动宽带(enhanced mobile broadband,eMBB)、超高可靠性超低时延通信(ultra-reliable low-latency communication,URLLC)、大规机器类型通信(massive machine-type communications,mMTC)、设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)、机器类型通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、或智慧城市等。终端可以是手机(如图1中的手机120a、120d、120f)、平板电脑、带无线收发功能的电脑(如图1中的电脑120g)、可穿戴设备、车辆(如图1所示的120b)、无人机、直升机、飞机(如图1中的120c)、轮船、机器人、机械臂、或智能家居设备(如图1中的打印机120e)等。本申请对终端所采用的具体技术和具体设备形态不做限定。
基站和/或终端可以是固定位置的,也可以是可移动的。基站和/或终端可以部署在陆地上,包括室内或室外、手持或车载;或者可以部署在水面上;或者可以部署在空中的飞机、气球和人造卫星上。本申请对基站和终端所处的环境/场景不做限定。基站和终端可以部署在相同的或不同的环境/场景,例如,基站和终端同时部署在陆地上;或者,基站部署在陆地上,终端部署在水面上等,不再一一举例。
下面结合图2对本申请实施例涉及的初始接入过程进行介绍。
终端设备通过初始接入过程连接到网络。如图2所示,初始接入过程主要包括初始同步和随机接入过程。终端设备搜索网络设备发送的同步信号(synchronization signal,SS)及物理广播信道(physical broadcast channel,PBCH)块(SS and PBCH block,SSB)获取频率同步和下行符号同步。PBCH中携带有主信息块(master information block,MIB),终端设备根据MIB,获取控制资源集合0(control resource set 0,CORESET 0)和SSB的相对位置关系,从而基于SSB的位置确定CORESET 0的位置。CORESET 0中包括物理下行控制信道(physical downlink control channel,PDCCH),CORESET 0中的PDCCH承载有用于调度系统消息块1(system information block 1,SIB 1)的下行控制信息(downlink control information,DCI)。终端设备在CORESET 0内检测该DCI,根据该DCI接收SIB1。SIB1又称为剩余最小系统消息(remaining minimum system information,RMSI),SIB1中包括小区选择信息以及小区接入相关配置信息等,终端设备可以根据小区接入相关配置信息执行随机接入过程。
例如,终端设备可以根据SIB1中的小区接入相关配置信息执行如图2所示的4步随机接入过程,终端设备可以根据SIB1中的小区接入相关配置信息,获取该小区的物理随机接入信道(physical random access channel,PRACH)配置,在PRACH上向网络设备发送随机接入前导码,即随机接入消息1(message 1,Msg1)),以通过随机接入前导码向网络请求接入该小区。若网络设备接收到来自终端设备的Msg1后,可以向终端设备发送随机接入响应(random access response,RAR)消息。该Msg2中可以包括用于调整时间同步的时间提前(time advance,TA)信息、小区临时无线网络临时标识(temporary cell-RNTI,TC-RNTI)、功率调整信息以及调度随机接入消息3(Msg3)的上行调度(UL grant)信息。终端设备接收到Msg2后,可以基于Msg2中的上行调度信息向网络设备发送Msg3,该Msg3中包括该终端设备的身份信息以及无线资源控制(radio resource control,RRC)连接建立信息等。网络设备接收到来自终端设备的Msg3后可以向终端设备发送Msg4,该Msg4用于竞争解决,网络设备可以通过Msg4向终端设备通知随机接入过程完成。
图2以终端设备获取初始同步后终端设备执行4步随机接入过程为例进行了说明,终端设备还可以根据SIB1中的小区接入相关配置信息执行2步随机接入过程。2步随机接入过程通过终端设备向网络设备发送随机接入消息A(MsgA),以及网络设备向终端设备发送随机接入消息B(MsgB)两个步骤,完成终端设备的随机接入过程。网络设备通过SIB1为终端设备配置2步随机接入过程中承载MsgA中的Msg1的PRACH以及用于承载MsgA中的Msg3的物理上行共享信道(physical shared uplink channel,PUSCH)。终端设备根据SIB1向网络设备发送MsgA。网络设备成功接收到MsgA后可以向终端设备发送MsgB,通知终端设备随机接入过程完成。或者,若网络设备检测到MsgA中的随机接入前导码,但未成功获取到Msg3中的信息,网络设备可以向终端设备发送MsgB指示终端设备回退至4步随机接入过程。
目前,针对移动通信系统中的初始接入过程是针对陆地基站与终端设备通信设计的,能够克服陆地基站与终端设备之间的距离估计的路径损耗以及传输时延。而卫星基站与终端设备之间的距离远大于陆地基站与终端设备之间的距离,使得卫星基站与终端设备之间的路径损耗、传输时延远大于陆地基站与终端设备之间的信号路径损耗、传输时延。例如,陆地基站与终端设备之间的距离最大在几十千米(kilometer,km)左右,传输时延最多为几毫秒(millisecond,ms)。而对于低轨卫星与地面之间的距离在500km至2000km,传输时延高达几十ms。移动通信系统中的初始接入过程不能够克服卫星基站与终端设备之间的远距离带来的路径损耗及传输时延,无法满足卫星基站提供通信服务的可靠性需求。
图3是本申请实施例提供的通信方法的一个示意性流程图。图3以网络设备和终端设备进行示意,网络设备和/或终端设备也可以替换为用于执行该方法的芯片,模块等,本申请不予限定。
S301,网络设备向终端设备发送第一信息,该第一信息用于调度SIB1,该第一信息还用于指示SIB1在一个时隙或连续的多个时隙内被重复传输。
相应地,终端设备接收来自网络设备的该第一信息。
例如,该第一信息为DCI,该第一信息可以承载在CORESET 0中的PDCCH上,终端设备接收到该第一信息后,根据该第一信息确定SIB1在一个时隙或连续的多个时隙内被重复传输。
可选地,可以预定义SIB1在一个时隙内被重复传输,终端设备和网络设备根据预定义的规则确定在一个时隙内被重复传输。或者,可以预定义SIB1在连续的多个时隙内被重复传输,终端设备和网络设备可以根据预定义的规则确定在连续的多个时隙内被重复传输。可以理解的是,在预定义的这种实现方式下,无需第一信息指示SIB1的重复传输。相应的,S301可以替换为:网络设备向终端设备发送第一信息,该第一信息用于调度SIB1,网络设备基于预定义规则或配置信息确定SIB1在一个时隙或连续的多个时隙内被重复传输;相应的,终端设备基于预定于规则或配置信息确定SIB1在一个时隙或连续的多个时隙内被重复传输,终端设备接收第一信息。
可选的,第一信息包括第一指示信息,该第一指示信息用于指示该SIB1在一个时隙或连续的多个时隙内被重复传输。网络设备通过第一指示信息通知终端设备SIB1在一个时隙内被重复传输,或者通过第一指示信息通知终端设备SIB1在连续的多个时隙内被重复传输。相应地,终端设备根据第一指示信息的指示,接收被重复传输的SIB1。
例如,该第一指示信息为该第一信息中的一个比特,该一个比特指示“0”,表示SIB1在一个时隙内重复传输;该一个比特指示“1”,表示SIB1在多个时隙内重复传输。或者,该一个比特指示“1”,表示SIB1在一个时隙内被重复传输;该一个比特指示“0”,表示SIB1在连续的多个时隙内被重复传输。终端设备接收到该第一信息后,根据该第一信息中的一个比特的第一指示信息可以确定SIB1在一个时隙内被重复传输,或者确定SIB1在连续的多个时隙内被重复传输。
根据上述方案,网络设备可以在SIB1的传输时延要求较高时,在一个时隙内重复传输SIB1并通过第一指示信息通知终端设备,能够在传输时延较小的情况下提高SIB1可靠性。而网络设备可以在多个时隙内重复传输SIB1并通过第一指示信息通知终端设备,能够利用多个时隙的资源传输更多的SIB1的信息比特,能够减小通过重调度的方式再次发送SIB1带来的传输时延。使得网络设备能够基于传输时延要求灵活地选择SIB1的重复传 输方式并通过第一指示信息与终端设备对SIB1的传输方式达成共识。网络设备通过第一信息的一次调度后重复传输SIB1,能够增强SIB1的覆盖,使得重复传输的SIB1能够克服卫星基站与终端设备之间的信号路径损耗,相较于多次调度传输SIB1能够减小传输时延。
下面首先示例性地介绍SIB1在一个时隙内被重复传输的实施方式。
例如,可以预定义SIB1在一个时隙内被重复传输。终端设备接收到该第一信息后,可以确定第一信息调度的该SIB1在一个时隙内被重复传输。
再例如,该第一信息包括上述第一指示信息,且该第一指示信息指示SIB1在一个时隙内被重复传输。
可选地,该第一信息包括第二指示信息,该第二指示信息用于指示该SIB1在一个时隙内的不同频域资源上被重复传输,或者,该第二指示信息用于指示该SIB1在一个时隙内的不同时域资源上被重复传输。
例如,该第二指示信息可以是第一信息中的一个比特,该一个比特通过指示“0”或“1”分别表示SIB1在一个时隙内不同频域资源上被重复传输,即网络设备采用频分复用(frequency division multiplexing,FDM)的方式重复传输SIB1,或者表示SIB1在一个时隙内不同时域资源上被重复传输,即网络设备采用时分复用(time division multiplexing,TDM)的方式重复传输SIB1。该第二指示信息可以称为重复类型指示信息或资源复用方式指示信息,但本申请不限于此。
一种实施方式,该第一信息包括第二指示信息,SIB1的传输次数为预定义的。
可选地,该第一信息包括资源分配信息,该资源分配信息用于指示一个时隙内承载一个SIB1的资源。其中,承载一个SIB1的资源可以包括承载该SIB1的时域资源和/或频域资源。资源分配信息可以包括或者具体为时域资源分配信息和/或频域资源分配信息,时域资源分配信息和频域资源分配信息分别用于指示时域资源和频域资源。终端设备根据资源分配信息指示的用于承载一个SIB1的资源以及预定义的资源排列方式,确定重复传输的SIB1中的每个SIB1对应的资源。
一个示例中,预定义SIB1的传输次数为2次。该第二指示信息指示该SIB1在一个时隙内的不同频域资源上被重复传输。该第一信息还包括频域资源分配(frequency domain resource assignment,FDRA)信息,该FDRA信息用于指示承载一个SIB1的频域资源,可以预定义承载另一个SIB1的频域资源的频率高于或低于FDRA指示的频域资源,且承载两个SIB1的频域资源在频域上连续。如图4所示,网络设备需要在资源1和资源2上重复传输2次SIB1,如可以预定义一个SIB1的频域资源的频率高于FDRA信息指示的频域资源,且承载两个SIB1的频域资源在频域上连续。则第一信息中的FDRA信息用于指示资源1,FDRA信息可以指示资源1的起始RBk-K以及资源1包含的连续的RB个数为K。终端设备可以根据FDRA信息确定承载一个SIB1的频域资源为RBk-K至RBk-1。以及终端设备根据预定义的规则,可以确定承载另一个SIB1的频域资源为频率高于RBk-1的连续K个RB,即RBk至RBk+K-1。第一信息还包括时域资源分配(time domain resource assignment,TDRA)信息,该TDRA信息用于指示承载SIB1的时域资源,例如,该TDRA信息指示时域资源的起始符号以及包含的连续的符号的个数。由于第二指示信息指示SIB1在一个时隙内的不同频域资源上重复传输,因此,承载两个SIB1的时域资源相同,如图4所示的资源1和资源2占用的时域资源相同,终端设备根据TDRA信息可以确定资源1 和资源2占用的时域资源,结合FDRA信息的指示,终端设备可以确定用于重复传输SIB1的资源1和资源2的时频位置。
另一个示例中,预定义SIB1的传输次数为2次。该第二指示信息指示该SIB1在一个时隙内的不同时域资源上被重复传输。该第一信息中包含TDRA信息,该TDRA信息用于指示承载一个SIB1的时域资源,可以预定义承载另一个SIB1的时域资源的时间早于或晚于TDRA信息指示的时域资源,且承载两个SIB1的时域资源在时域连续。如图5所示,网络设备需要在一个时隙内的资源3和资源4上重复传输2次SIB1,如预定义一个SIB1的时域资源的时间晚于TDRA信息指示的时域资源,且承载两个SIB1的时域资源在时域连续。则第一信息中的TDRA信息用于指示资源1,TDRA信息可以指示资源1的起始符号l-L(符号l-L在图5中记作Sl-L)以及包含的连续的符号个数为L。终端设备可以根据TDRA确定承载一个SIB1的时域资源为符号l-L至符号l-1(符号l-1在图5中记作Sl-1)。以及终端设备根据预定义的规则,可以确定承载另一个SIB1的时域资源是时间上晚于符号l-1的连续L个符号,即符号l(符号l-L在图5中记作Sl-L)至符号l+L-1(符号l+L-1在图5中记作Sl+L-1)。第一信息中还包括FDRA信息,该FDRA信息指示承载SIB1的频域资源。由于第二指示信息指示SIB1在一个时隙内的不同时域资源上重复传输,因此,承载两个SIB1的频域资源相同。终端设备根据TDRA信息和FDRA信息,可以确定用于重复传输SIB1的资源3和资源4的时频位置。
在上述方案中,可以利用目前SIB1的调度信息(即第一信息)中的预留比特中的一个或多个比特作为该第二指示信息指示SIB1重复传输的资源复用方式(频分复用方式或时分复用方式),能够避免改变目前第一信息中的指示域,具有良好的前向兼容性。例如,目前第一信息中最后N个比特为预留比特。根据本申请的方案,可以规定该N个比特中的M个比特作为第二指示信息,N、M为正整数。对于低版本终端设备(如低版本终端设备可以是在规定SIB1的调度信息中增加第二指示信息之前生产的终端设备),可以继续认为该N个比特为预留比特,根据FDRA信息和TDRA信息,确定承载一个SIB1的资源,在该资源上接收SIB1。对于高版本终端设备(如高版本终端设备可以是在规定SIB1的调度信息中增加第二指示信息之后生产的终端设备),将获取该N个比特中的M个比特的第二指示信息,根据第二指示信息指示的SIB1的复用方式和预定义的传输次数,确定承载每个SIB1的资源。
可选地,该第一信息中的资源分配信息用于指示一个时隙内用于承载重复传输的多个SIB1的资源。终端设备根据预定义的每个SIB1对应的资源在资源分配信息指示的资源内的资源排列方式,确定重复传输的SIB1中的每个SIB1对应的资源。
一个示例中,预定义SIB1的传输次数为2次。该第二指示信息指示该SIB1在一个时隙内的不同频域资源上被重复传输。该第一信息中的FDRA信息用于指示承载两个SIB1的频域资源,预定义2个SIB1分别占用FDRA信息指示的频域资源的一半频域资源。如图4所示,网络设备需要在资源1和资源2上重复传输2次SIB1,则第一信息中的FDRA信息指示承载两个SIB1的频域资源的起始RB为RBk-K以及包含的连续的RB个数为2K。终端设备可以根据FRDA信息确定RBk-K至RBk+K-1的频域资源承载了2个SIB1,且2个SIB1各占该频域资源的1/2频域资源,则终端设备可以确定一个SIB1承载在RBk-K至RBk- 1上,另一个SIB1承载在RBk至RBk+K-1上。以及该第一信息中的TDRA信息指示了承载2个SIB1的时域资源,终端设备可以根据TDRA信息和FDRA信息,确定承载2个SIB1 的资源1和资源2。
另一个示例中,该第一信息中的TDRA信息用于指示承载两个SIB1的时域资源,预定义2个SIB1分别占用TDRA信息指示的时域资源的一半时域资源。如图5所示,网络设备需要在时隙n内的资源3和资源4上重复传输2次SIB1,第一信息中的TDRA信息用于指示承载2个SIB1的时域资源的起始符号l-L以及包含的连续的符号个数为2L。终端设备可以根据TDRA确定符号l-L至符号l+L-1的时域资源承载了2个SIB1,且该2个SIB1各占该时域资源的1/2时域资源,则终端设备可以确定一个SIB1承载在符号l-L至符号l-1上,另一个SIB1承载在符号l至符号l+L-1上。以及该第一信息中的FDRA信息指示了承载2个SIB1的频域资源,终端设备可以根据TDRA信息和FDRA信息,确定承载2个SIB1的资源3和资源4。
应理解,以上以预定义的SIB1的传输次数为2为例进行了说明,但本申请不限于此,SIB1的传输次数可以大于2,具体实施方式可以参考前文中的描述,为了简要在此不再赘述。
另一种实施方式中,该第一信息包括第二指示信息和第三指示信息,该第三指示信息用于指示SIB1的传输次数。其中,关于第二指示信息的相关描述可以参考前述实施例,此处不进行一一赘述。
例如,该第二指示信息指示该SIB1在一个时隙内的不同频域资源上被重复传输。该第一信息中的资源分配信息(如:资源分配信息包括FDRA信息)用于指示承载一个SIB1的频域资源,预定义承载其他SIB1的频域资源的频率高于或低于FDRA指示的频域资源,且承载重复传输的SIB1的频域资源在频域上连续。终端设备可以根据FDRA信息、第三指示信息指示的SIB1的传输次数N以及预定义的规则,确定用于承载网络设备重复传输的N个SIB1的资源,以便终端设备在相应的资源上接收SIB1。或者,该第一信息中的FDRA信息用于指示承载重复传输的多个SIB1的频域资源,终端设备可以根据第三指示信息指示的SIB1的传输次数N,确定用于承载一个SIB1的频域资源为FDRA信息指示的频域资源的1/N,且每个承载SIB1的资源在FDRA信息指示的频域资源上按照频率顺序依次排列。重复传输的N个SIB1的频域资源不同,时域资源相同。进一步可选的,该资源分配信息(如:资源分配信息还包括TDRA信息)还用于指示承载SIB1的时域资源,终端设备可以根据资源配置信息确定承载重复传输的每个SIB1的资源的时频位置。
再例如,该第二指示信息指示该SIB1在一个时隙内的不同时域资源上被重复传输。该第一信息中的资源分配信息(如:资源分配信息包括TDRA信息)用于指示承载一个SIB1的时域资源,预定义承载其他SIB1的时域资源的时间早于或晚于TDRA指示的时域资源,且承载重复传输的SIB1的时域资源在时域上连续。终端设备可以根据TDRA信息、第三指示信息指示的SIB1的传输次数N以及预定义的规则,确定用于承载网络设备重复传输的N个SIB1的资源,以便终端设备在相应的资源上接收SIB1。或者,该第一信息中的TDRA信息用于指示承载重复传输的多个SIB1的时域资源,终端设备可以根据第三指示信息指示的SIB1的传输次数N,确定用于承载一个SIB1的时域资源为TDRA信息指示的时域资源的1/N,且每个承载SIB1的资源在TRDA信息指示的时域资源上按照时间顺序依次排列。重复传输的N个SIB1的资源的时域资源不同,频域资源相同。进一步可选的,该资源分配信息(如:资源分配信息还包括FDRA信息)还用于指示承载SIB1的频域资源,终端设备可以根据资源配置信息确定承载重复传输的每个SIB1的资源的时频 位置。
需要说明的是,上述第一信息中的指示信息(如第一指示信息、第二指示信息、第三指示信息)可以利用目前SIB1的调度信息中的预留比特实现,即在目前SIB1中增加指示域并相应地命名实现上述指示信息的功能。但本申请不限于此,还可以复用目前SIB1中已有的指示域实现上述指示信息的功能,即一个指示域可以既实现该指示域本身的功能,又能够实现上述一种或多种指示信息的功能。
需要说明的是,本申请实施例中,预定义的信息(和/或预定义的规则)也可以由网络设备通过指示信息通知终端设备的方式使得终端设备与网络设备达成共识,本申请对此不作限定。
根据上述方案,网络设备可以通过第一信息对SIB1的一次调度指示,通知终端设备网络设备在一个时隙内重复传输SIB1,在实现增强SIB1的信号覆盖范围,提高SIB1的传输可靠性的基础上,相较于SIB1在一次传输失败后再次调度重传SIB1的方式,能够减小SIB1的传输时延,使得SIB1满足卫星基站的传输时延需求。
以上示例性地介绍SIB1在一个时隙内被重复传输的实施方式,下面示例性地介绍SIB1在连续的多个时隙内被重复传输的实施方式。
可选地,该第一信息包括上述第三指示信息,该第三指示信息用于指示SIB1的传输次数。
例如,可以预定义SIB1在连续的多个时隙内被重复传输,或者,该第一信息包括上述第一指示信息,且该第一指示信息指示SIB1在连续的多个时隙内被重复传输。终端设备接收到该第一信息后,根据预定义规则或者第一信息中的第一指示信息,确定SIB1在连续的多个时隙内被重复传输。该第一信息中的第三指示信息指示了SIB1的传输次数N,终端设备可以确定SIB1在连续的N个时隙内被重复传输。进一步的,该第一信息还包括资源分配信息(如FDRA信息和TDRA信息),该资源分配信息可以指示在一个时隙内用于承载SIB1的资源,关于承载SIB1的资源描述可以参考前述实施例,此处不进行赘述。可选的,可以预定义每个时隙内承载SIB1的资源位置相同,如每个时隙内用于承载SIB1的资源的RB编号相同,以及承载SIB1的符号在时隙内的编号也相同。
示例性地,如图6所示,网络设备需要在连续的2个时隙传输2次SIB1,如网络设备需要在时隙n和时隙n+1内传输2次SIB1。则网络设备向终端设备发送第一信息,该第一信息中的第三指示信息指示SIB1的重复传输次数N为2。则终端设备可以确定SIB1在连续的2个时隙内被重复传输。且该第一信息中的FDRA信息指示承载SIB1的频域资源为RBk至RBk+K-1,以及TDRA信息指示承载SIB1的时域资源为一个时隙内的符号l(图6中记作Sl)至符号l+L(符号l+L在图6中记作Sl+L)。以及第一信息还指示了承载SIB1的起始时隙为时隙n。则终端设备可以确定在时隙n内承载SIB1的资源5在频域上占用RBk至RBk+K,在时域上占用时隙n中的符号l(符号l在图6中记作Sl)至符号l+L,以及在时隙n+1内承载SIB1的资源6在频域上占用RBk至RBk+K-1,在时域上占用时隙n+1中的符号l(图6中记作Sl)至符号l+L。即用于承载SIB1的资源,可以预定义每个时隙内承载SIB1的资源位置相同,如每个时隙内用于承载SIB1的资源的RB编号以及符号在时隙内的编号均相同。终端设备可以在每个时隙内用于承载SIB1的资源上接收SIB1,对多个SIB1进行合并解调、解码等处理得到SIB1的信息比特。
根据上述方案,网络设备可以通过第一信息对SIB1的一次调度指示,通知终端设备 网络设备在连续的多个时隙内重复传输SIB1,在实现增强SIB1的信号覆盖范围,能够提高SIB1的传输可靠性的基础上,相较于SIB1在一次传输失败后再次调度重传SIB1的方式,能够减小SIB1的传输时延,满足卫星基站的传输时延需求;并且,连续的多个时隙能够提供更多的资源用于重复传输SIB1。
示例性地,前述实施例中的第三指示信息指示传输次数可以是正整数,例如,第三指示信息指示的传输次数可以是1、2、4或8,本申请对此不作限定。对于信号覆盖条件较好的网络设备(如空旷环境中的地面基站),可以仅传输1次SIB1,第三指示信息可以指示传输次数为1。以及,对于信号覆盖条件较差的网络设备(如卫星基站等),网络设备可以根据信道条件,确定SIB1的传输次数并通过第三指示信息通知终端设备,以增强SIB1的覆盖范围,提高传输可靠性。上述方案适用于处于不同环境的网络设备,使得网络设备根据所处环境的信道条件,能够灵活地调整SIB1的传输次数。
S302,网络设备重复传输该SIB1。
若第一信息指示SIB1在一个时隙内被重复传输,网络设备采用第一信息指示的复用方式(FDM或TDM)在一个时隙内重复传输该SIB1。相应地,终端设备根据第一信息,确定网络设备采用的复用方式,从而确定一个时隙内用于承载每个SIB1的资源,并在相应的资源上接收多个SIB1,对接收到的多个SIB1进行合并解调、解码等处理得到SIB1的信息比特。
若第一信息指示SIB1在连续的多个时隙内被重复传输,网络设备在连续的多个时隙内重复传输该SIB1。相应地,终端设备接收到第一信息后,根据第一信息中的第三指示信息确定SIB1的传输次数N,并在连续的N个时隙内接收SIB1,对接收到的多个SIB1进行合并解调、解码等处理得到SIB1的信息比特。
根据上述方案,网络设备可以通过第一信息对SIB1的一次调度指示,通知终端设备网络设备在连续的一个或多个时隙内重复传输SIB1,增强了SIB1的信号覆盖范围,能够提高SIB1的传输可靠性。
以上介绍了本申请实施例提出的通过一个时隙或连续的多个时隙重复发送SIB1的方式在增强SIB1的信号覆盖范围,提高SIB1的传输可靠性的基础上减小SIB1传输时延的方案。进一步的,本申请还提出可以通过降低SIB1的频谱效率(spectral efficiency)的方式提高SIB1的纠错能力,从而提高SIB1的可靠性。
图7是本申请实施例提供的通信方法700的一个示意性流程图。
S701,网络设备发送第一信息,该第一信息用于调度SIB1,该第一信息包括第四指示信息,该第四指示信息用于指示第一系数,该第一系数用于确定SIB1的信息比特。
其中,该第一系数小于或等于1。相应地,终端设备接收来自网络设备的该第一信息,根据该第一信息中的第四指示信息确定第一系数。
网络设备可以根据传输需求,确定第一系数,如网络设备可以根据信道条件,确定能够克服信道衰落影响的SIB1的频谱效率,从而确定该第一系数。网络设备通过该第一信息中的第四指示信息通知终端设备该第一系数。
S702,网络设备向终端设备发送SIB1。
相应地,终端设备接收来自网络设备的该SIB1。
网络设备可以根据待传输的SIB1的信息比特数Ninfo以及所需的频谱效率,确定SIB1采用的调制编码方式(modulation and coding scheme,MCS),即确定SIB1采用的调制阶 数Qm以及码率(code rate)R。
网络设备再根据信息比特数Ninfo、第一系数fscaling、调制阶数Qm、码率(code rate)R以及传输SIB1的传输层(layer)数(或者称为信息流数),确定需要传输的资源元素(resource element,RE)的个数NRE。从而基于资源元素的个数,确定承载SIB1的时频资源。示例性的,可以参考如下公式进行计算:
NRE=Ninfo/fscaling*R*Qm*vlayer
网络设备对信息比特进行信道编码、速率匹配以及调制等处理后,将SIB1的调制符号映射在承载SIB1的资源上,在该资源上发送SIB1。
例如,第四指示信息可以是第一信息中的2个比特,该2个比特指示的状态值与第一系数的取值的对应关系可以如表1所示。如网络设备基于传输需求,如频谱效率需求,确定第一系数为0.5,即在相同的信息比特个数、MCS以及层数的情况下,信息比特与传输比特的比值需要减小一半,能够提高SIB1的信道编码的纠错能力,提高SIB1的传输可靠性。网络设备通过第四指示信息指示“01”通知终端设备第一系数为0.5。或者在信道条件更差时,网络设备可以确定第一系数为0.25,通过第四指示信息指示“10”通知终端设备第一系数为0.25。而当网络设备认为信道条件可以满足传输需求时,网络设备可以不使用第一系数降低SIB1的频谱效率,该第四指示信息的2个比特指示“00”。需要说明的是,具体比特对应的第一系数取值可以互换,表1仅是一种示例,本申请不进行限定。例如,01指示第一系数为0.25,10指示第一系数为0.5,00指示第一系数为1等。基于表1进行的变换都应在本申请的保护范围内。
表1
S703,终端设备根据第一系数、SIB1采用的MCS和传输层数,确定SIB1的信息比特。
终端设备在S702中接收到该SIB1后,根据第一系数、SIB1采用的MCS和传输层数,确定SIB1的信息比特。可选地,该第一信息还用于指示SIB1采用的MCS和传输层数。以及第一信息还指示了承载该SIB1的资源,终端设备具体根据第一系数、该资源、SIB1采用的MCS和传输层数,确定SIB1的信息比特。如第一信息包括FDRA信息指示该资源占用的频域资源,以及第一信息包括TDRA指示该时频资源占用的时域资源,终端设备根据FDRA信息和TDRA信息可以确定承载SIB1的RE个数NEE。从而终端设备可以确定SIB1的信息比特Ninfo,Ninfo满足:
Ninfo=TBscaling*NRE*R*Qm*vlayer
终端设备对接收到的SIB1进行解调制、解速率匹配、解信道编码等处理后,得到SIB1的Ninfo个信息比特。
根据上述方案,网络设备可以根据传输需求,灵活地调整第一系数实现频谱效率的调整。从而使得SIB1的频谱效率能够满足传输需求,并且网络设备通过第四指示信息通知终端设备使用的第一系数,使得终端设备与网络设备对第一系数达成共识。在信道条件较 差(如终端设备与卫星基站通信)的情况下,网络设备可以通过第一系数降低频谱效率,提高SIB1的信道编码的纠错能力,从而提高SIB1的传输可靠性。
需要说明的是,本申请实施例提供的通信方法可以相互结合实施,如图3和图7所示实施例可以相互结合实施,网络设备通过第一信息指示调度的SIB1在一个或多个时隙重复传输,以及该第一信息通过第四指示信息通知终端设备SIB1对应的第一系数。相应地,网络设备重复传输满足第一系数对应的频谱效率的SIB1,终端设备根据第一信息接收来自网络设备重复传输的SIB1。能够实现即重复传输的方式提高SIB1的可靠性,又通过调整编码纠错能力的方式,提高SIB1的可靠性。但本申请不限于此,图3和/或图7所示实施例还可以与以下图8所示实施例相结合实施。
以上介绍了通过本申请实施例提供的提高SIB1的可靠性的通信方法,能够提高终端设备正确接收到SIB1的概率,提高SIB1的可靠性的基础上减小传输时延。然而,目前随机接入过程中终端设备发送的随机接入消息也不能满足一些场景(如与卫星基站通信的场景)下的传输需求。本申请实施例提供了一种随机接入消息的传输方法,能够使得网络设备灵活地配置终端设备的随机接入消息的传输方式,使得随机接入消息满足传输需求。
图8是本申请实施例提供的通信方法800的一个示意性流程图。
S801,网络设备发送第六指示信息,该第六指示信息用于指示在一个时隙或多个时隙重复传输随机接入消息Msg3。
相应地,终端设备接收第六指示信息,根据第六指示信息确定在一个时隙重复传输Msg3,或者根据第六指示信息确定在多个时隙重复传输Msg3。
例如,第六指示信息可以通过1个比特指示终端设备在一个时隙或多个时隙重复传输Msg3。如第六指示信息的1个比特指示“0”表示在一个时隙内传输Msg3,指示“1”表示在多个时隙内传输Msg3。或者反之,该1个比特指示“1”表示在一个时隙内传输Msg3,指示“0”表示在多个时隙内传输Msg3。本申请对此不作限定。
作为示例非限定,该第六指示信息承载在SIB1中。网络设备通过SIB1通知终端设备在一个或多个时隙内重复传输Msg3,能够避免增加Msg3的调度信息的信令开销的情况下,实现通知Msg3的重复传输方式,使得终端设备的传输的Msg3满足传输需求。但本申请不限于此,该第六指示信息也可以包含在Msg3的调度信息中,使得网络设备能够通知Msg3的重复传输方式,使得终端设备的传输的Msg3满足传输需求。
S802,终端设备根据第六指示信息,重复传输Msg3。
一种实施方式中,该Msg3为2步随机接入过程中MsgA中的Msg3。
该第六指示信息可以承载在SIB1中,终端设备接收到该SIB1后,根据SIB1配置的随机接入过程的相关信息,以及第六指示信息,向网络设备发送MsgA,该MsgA中包括随机接入前导码,以及MsgA还包括终端设备重复传输的Msg3。具体地终端设备可以根据第六指示信息的指示,在一个时隙内重复传输该Msg3,或者在多个时隙内重复传输该Msg3。需要说明的是,SIB1配置的随机接入过程的相关信息可以参考现有技术,本申请在此不进行赘述。
另一种实施方式中,该Msg3为4步随机接入过程中的Msg3。
可选地,网络设备向终端设备发送第二信息,该第二信息用于调度Msg3。该第二信息还用于指示Msg3的传输次数。终端设备根据第六指示信息和第二信息,重复传输Msg3。
例如,第六指示信息指示终端设备在一个时隙内重复传输Msg3,终端设备接收到第 二信息后,根据第二信息指示Msg3的传输次数P,P为大于0的整数。终端设备可以确定在一个时隙内传输Msg3的次数为P次。则终端设备在一个时隙内传输P次Msg3,能够在减小Msg3的重传时延的情况下,提高Msg3的可靠性。比如卫星基站可以通过第六指示信息指示终端设备在一个时隙内重复传输Msg3。
再例如,第六指示信息指示终端设备在多个时隙内重复传输Msg3,终端设备接收到第二信息后,根据第二信息指示Msg3的传输次数P,P为大于0的整数。终端设备可以确定在一个时隙内传输Msg3的次数为P次。则终端设备在连续的P个时隙内传输P次Msg3,能够提高Msg3的可靠性。比如,陆地基站在时延需求不高的情况下,可以指示终端设备在多个时隙内重复传输Msg3。
可选地,该第二信息包括MCS指示信息,该MCS指示信息可以指示Msg3的传输次数P。
例如,MCS指示信息包括Y个比特,Msg3能够使用的MCS的范围较小,可以通过该Y个比特中的低X位的比特指示Msg3使用的MCS,该Y个比特中的高Y-X位的比特是指Msg3的重复传输次数P。
一个示例中,该第二信息可以承载在来自网络设备的随机接入过程的Msg2中,即承载在RAR消息中。该第二信息具体可以是RAR消息中的上行授权(uplink grant,UL grant)信息。MCS指示信息包括5个比特,该5个比特的低2位的比特可以指示4种MCS中的一种MCS。该5个比特中的高2位比特可以指示Msg3的4种传输次数中的一种。该高2位比特的状态值“00”、“01”“10”、“11”可以依次分别指示{1,2,3,4}中的一种传输次数。网络设备可以通过SIB1配置第二信息中MCS指示信息的低2比特的4个状态值(“00”、“01”“10”、“11”)分别对应的候选MCS,或者若网络设备未通过SIB1配置MCS指示信息的低2比特的状态值对应的候选MCS,则终端设备认为第二信息中MCS指示信息的低2比特的4个状态值分别对应预定义的MCS集合中的标识为0至3的4种MCS(即MCS0、MCS1、MCS2和MCS3)。如MCS指示信息的5个比特指示“10110”,则终端设备根据该5个比特指示中的低2位的比特指示“10”,确定Msg3使用“10”标识的候选MCS,或者若网络设备未配置候选MCS,则终端设备认为Msg3使用预定义的MCS集合中的标识为2的MCS,即MCS2。以及终端设备根据该5个比特中的高2位的比特指示“10”,确定Msg3的传输次数为2。
另一个示例中,该第二信息可以是用于调度Msg3重传的下行控制信息,如网络设备通过RAR消息中的UL grant调度终端设备发送Msg3后,但网络设备成功接收到终端设备发送的Msg3,网络设备可以向终端设备发送下行控制信息再次调度终端设备发送发送Msg3(或者说调度终端设备重传Msg3)。网络设备可以通过该下行控制信息调度终端设备在重传Msg3时,重复传输Msg3以提高Msg3的可靠性。该第二信息中的MCS指示信息包括5个比特,该5个比特的低3位的比特可以指示Msg3使用8种MCS中的一种MCS,该8种MCS可以是网络设备配置的8种候选MCS或者在网络设备未配置候选MCS的情况下该8种MCS可以是预定义的MCS集合中的标识为0至7的8种MCS(即MCS0、MCS1、MCS2至MCS7)。该5个比特中的高2位比特可以指示Msg3的4种传输次数中的一种。如该高2位比特的状态值“00”、“01”“10”、“11”可以依次分别指示{1,2,3,4}中的一种传输次数,如MCS指示信息的5个比特指示“10110”,则终端设备根据该5个比特指示中的低3位的比特指示“110”,确定Msg3使用“110”标识的候选MCS,或 者若网络设备未配置候选MCS,则终端设备认为Msg3使用预定义的MCS集合中的标识为6的MCS(即MCS6)。以及终端设备根据该5个比特中的高2位的比特指示“10”,确定Msg3的传输次数为2。其中,比特的状态值指示的传输次数可以互换,本申请不进行限制。
需要说明的是,终端设备可以确定在一个时隙或多个时隙内重复传输Msg3的资源的方式,可以参考图3所示实施例中终端设备确定重复传输的SIB1的资源的方式实施,为了简要在此不再赘述。
根据上述方案,能够使得网络设备可以根据传输需求,灵活地配置终端设备的随机接入消息的在一个时隙内重复传输或在多个时隙内重复传输,如在随机接入消息的传输时延需求较高的情况下,如卫星基站可以配置终端设备在一个时隙内重复传输随机接入消息,在随机接入消息的传输时延需求较低或资源需求较大的情况下,如陆地基站可以配置终端设备在多个时隙内重复传输随机接入消息。相较于Msg3在一次传输失败后再次调度重传Msg3的方式,能够减小Msg3的传输时延,满足卫星基站的传输时延需求。
以上详细说明了本申请提供的方法。以下附图说明本申请提供的通信装置和通信设备。为了实现上述本申请提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图9是本申请提供的通信装置的示意性框图。如图9所示,该通信装置900可以包括收发单元920。
在一种可能的设计中,该通信装置900可对应于上文方法中的终端设备,或者配置于(或用于)终端设备中的芯片,或者其他能够实现终端设备的方法的装置、模块、电路或单元等。
应理解,该通信装置900可以包括用于执行图3、图7、图8所示的方法中终端设备执行的方法的单元。并且,该通信装置900中的各单元和上述其他操作和/或功能分别为了实现图3、图7、图8所示的方法的相应流程。
可选地,通信装置900还可以包括处理单元910,该处理单元910可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置900为配置于(或用于)终端设备中的芯片时,该通信装置900中的收发单元920可以为芯片的输入/输出接口或电路,该通信装置900中的处理单元910可以为芯片中的处理器。
可选地,通信装置900还可以包括存储单元930,该存储单元930可以用于存储指令或者数据,处理单元910可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置900中的收发单元920为可通过通信接口(如收发器、收发电路、输入/输出接口、或管脚等)实现,例如可对应于图10中示出的通信装置1000中的收发器1010。该通信装置900中的处理单元910可通过至少一个处理器实现,例如可对应于图10中示出的通信装置1000中的处理器1020。该通信装置900中的处理单元910还可以通过至少一个逻辑电路实现。该通信装置900中的存储单元930可对应于图10中示出的终端设备1000中的存储器1030。
还应理解,各单元执行上述相应步骤的具体过程在上述方法中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置900可对应于上文方法中的网络设备,例如,或者配置于(或用于)网络设备中的芯片,或者其他能够实现网络设备的方法的装置、模块、电路或单元等。
应理解,该通信装置900可以包括用于执行图3、图7、图8所示的方法中网络设备执行的方法的单元。并且,该通信装置900中的各单元和上述其他操作和/或功能分别为了实现图3、图7、图8所示的方法的相应流程。
可选地,通信装置900还可以包括处理单元910,该处理单元910可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置900为配置于(或用于)网络设备中的芯片时,该通信装置900中的收发单元920可以为芯片的输入/输出接口或电路,该通信装置900中的处理单元910可以为芯片中的处理器。
可选地,通信装置900还可以包括存储单元930,该存储单元930可以用于存储指令或者数据,处理单元910可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置900为网络设备时,该通信装置900中的收发单元920为可通过通信接口(如收发器、收发电路、输入/输出接口、或管脚等)实现,例如可对应于图11中示出的通信装置1100中的收发器1110。该通信装置1100中的处理单元1110可通过至少一个处理器实现,例如可对应于图11中示出的通信装置1100中的处理器1120,该通信装置900中的处理单元910可通过至少一个逻辑电路实现。该通信装置900中的存储单元930可对应于图11中示出的通信装置1100中的存储器1130。
还应理解,各单元执行上述相应步骤的具体过程在上述方法中已经详细说明,为了简洁,在此不再赘述。
图10是本申请提供的通信装置1000的结构示意图。该通信装置1000可应用于如图1所示的系统中,执行上述方法中终端设备的功能。该通信装置1000可以是终端设备,或者该通信装置1000可以配置于终端设备。
如图10所示,该通信装置1000包括处理器1020和收发器1010。可选地,该通信装置1000还包括存储器1030。其中,处理器1020、收发器1010和存储器1030之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。该存储器1030用于存储计算机程序,该处理器1020用于执行该存储器1030中的该计算机程序,以控制该收发器1010收发信号。
上述处理器1020可以用于执行前面方法中描述的由终端设备内部实现的动作,而收发器1010可以用于执行前面方法中描述的终端设备发送或接收的动作。具体请见前面方法中的描述,此处不再赘述。
可选地,上述通信装置1000还可以包括电源,用于给通信装置中的各种器件或电路提供电源。
图11是本申请提供的通信装置1100的结构示意图。该通信装置1100可应用于如图1所示的系统中,执行上述方法中网络设备的功能。该通信装置1000可以是网络设备,或者该通信装置1000可以配置于网络设备。
如图11所示,该通信装置1100包括处理器1120和收发器1110。可选地,该通信装置1100还包括存储器1030。其中,处理器1120、收发器1110和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器1030用于存储计算机程序,该处理器1120用于执行该存储器1030中的该计算机程序,以控制该收发器1110收发信号。
上述处理器1120可以用于执行前面方法中描述的由网络设备内部实现的动作,而收发器1110可以用于执行前面方法中描述的网络设备发送或接收的动作。具体请见前面方法中的描述,此处不再赘述。
可选地,上述通信装置1100还可以包括电源,用于给通信装置中的各种器件或电路提供电源。
图10和图11所示的通信装置中,处理器可以和存储器可以合成一个处理装置,处理器用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器中,或者独立于处理器。该处理器可以与图9中的处理单元对应。收发器可以与图9中的收发单元对应。收发器可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请还提供了一种处理装置,包括处理器和(通信)接口,该处理器利用该通信接口,执行上述如图3、图7、图8所示实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
根据本申请提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行如图3、图7、图8所示实施例中的方法
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部 或部分地产生按照本发明所述的流程或功能。上述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,该计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
根据本申请提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置如图3、图7、图8所示实施例中的方法
根据本申请提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备。还系统还可以进一步包括前述的一个或多个网络设备。
在本申请所提供的几个中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种信息传输方法,其特征在于,包括:
    接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输;
    根据所述第一信息,接收来自所述网络设备重复传输的所述SIB1。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
  5. 根据权利要求1、3或4所述的方法,其特征在于,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数,所述方法还包括:
    根据所述第三指示信息,确定所述SIB1在连续的多个时隙内被重复传输。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1,以及,所述方法还包括:
    根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特,包括:
    根据所述第一系数、所述资源、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3;
    根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于调度所述Msg3;以及,
    所述根据所述第六指示信息,向所述网络设备重复传输所述Msg3,包括:
    根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
  10. 一种信息传输方法,其特征在于,包括:
    发送第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输;
    重复传输所述SIB1。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定所述SIB1的信息比特,所述第一系数小于或等于1,以及,所述方法还包括:
    根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3;
    根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息用于调度所述Msg3;以及,
    所述接收来自终端设备重复传输的所述Msg3,包括:
    根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
  18. 一种通信装置,其特征在于,包括:收发单元,用于接收来自网络设备的第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输;
    处理单元,用于根据所述第一信息,接收来自所述网络设备重复传输的所述SIB1。
  19. 根据权利要求18所述的装置,其特征在于,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
  21. 根据权利要求18至20中任一项所述的装置,其特征在于,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
  22. 根据权利要求18、20或21所述的装置,其特征在于,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数,所述处理单元还用于根据所述 第三指示信息,确定所述SIB1在连续的多个时隙内被重复传输。
  23. 根据权利要求18至22中任一项所述的装置,其特征在于,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定SIB1的信息比特,所述第一系数小于或等于1,以及,所述装置还包括:
    根据所述第一系数、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
  24. 根据权利要求18至23中任一项所述的装置,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示承载所述SIB1的资源,以及,所述处理单元具体用于根据所述第一系数、所述资源、所述SIB1采用的调制编码方式MCS和传输层数,获取所述SIB1的信息比特。
  25. 根据权利要求18至24中任一项所述的装置,其特征在于,所述收发单元还用于接收来自网络设备的第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3,或用于指示在多个时隙内重复传输Msg3;所述处理单元还用于根据所述第六指示信息,向所述网络设备重复传输所述Msg3。
  26. 根据权利要求25所述的装置,其特征在于,所述收发单元还用于接收第二信息,所述第二信息用于调度所述Msg3;以及,所述处理单元具体用于根据所述第二信息和所述第六指示信息,向所述网络设备重复传输所述Msg3。
  27. 一种信息传输装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于调度第一系统消息SIB1,所述第一信息还用于指示所述SIB1在一个时隙内或连续的多个时隙内被重复传输;
    收发单元,用于发送所述第一信息;
    所述收发单元还用于重复传输所述SIB1。
  28. 根据权利要求27所述的装置,其特征在于,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述SIB1在一个时隙内被重复传输,或者用于指示所述SIB1在连续的多个时隙内被重复传输。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一信息包括第二指示信息,所述第二指示信息用于指示所述SIB1在一个时隙内的不同频域资源上被重复传输,或者,所述第二指示信息用于指示所述SIB1在一个时隙内的不同时域资源上被重复传输。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述SIB1的传输次数为预定义的,或者,所述第一信息包括第三指示信息,所述第三指示信息用于指示所述SIB1的传输次数。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述第一信息包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于确定所述SIB1的信息比特,所述第一系数小于或等于1,以及,所述处理单元还用于根据所述第一系数、所述SIB1采用的调制编码方式MCS、传输层数和所述SIB1的信息比特,确定承载所述SIB1的资源。
  32. 根据权利要求31所述的装置,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示所述资源。
  33. 根据权利要求27至32中任一项所述的装置,其特征在于,所述收发单元还用于发送第六指示信息,所述第六指示信息用于指示在一个时隙内重复传输随机接入消息Msg3, 或用于指示在多个时隙内重复传输Msg3;所述处理单元还用于根据所述第六指示信息,接收来自终端设备重复传输的所述Msg3。
  34. 根据权利要求33所述的装置,其特征在于,所述收发单元还用于发送第二信息,所述第二信息用于调度所述Msg3;以及,所述收发单元具体用于根据所述第二信息和所述第六指示信息,接收来自所述终端设备重复传输所述Msg3。
  35. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至9中任一项所述的方法,或以使得所述通信装置执行如权利要求10至17中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述的方法,或执行如权利要求10至17中任一项所述的方法。
PCT/CN2023/081043 2022-03-31 2023-03-13 通信方法和通信装置 WO2023185433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336361.8 2022-03-31
CN202210336361.8A CN116939844A (zh) 2022-03-31 2022-03-31 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023185433A1 true WO2023185433A1 (zh) 2023-10-05

Family

ID=88199000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081043 WO2023185433A1 (zh) 2022-03-31 2023-03-13 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116939844A (zh)
WO (1) WO2023185433A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021030943A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种确定重复传输资源的方法及装置
CN112449425A (zh) * 2019-08-31 2021-03-05 华为技术有限公司 一种通信方法和装置
WO2021207975A1 (zh) * 2020-04-15 2021-10-21 Oppo广东移动通信有限公司 时域资源确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021030943A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种确定重复传输资源的方法及装置
CN112449425A (zh) * 2019-08-31 2021-03-05 华为技术有限公司 一种通信方法和装置
WO2021207975A1 (zh) * 2020-04-15 2021-10-21 Oppo广东移动通信有限公司 时域资源确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Discussion on enhanced PUSCH repetition type A", 3GPP DRAFT; R1-2104330, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010765 *

Also Published As

Publication number Publication date
CN116939844A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN108476521B (zh) 用于在无线通信系统中发送或接收控制信息的方法和设备
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
US11191123B2 (en) Method and device for performing uplink transmission
KR20210126607A (ko) 전송 및 수신 동작을 수행하는 사용자 장비 및 시스템
WO2021204300A1 (zh) 控制信息传输方法
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2018202193A1 (zh) 一种数据传输方法、装置和系统
US20200178248A1 (en) Method and device for receiving and sending control information
WO2020143558A1 (zh) 信道测量方法和装置
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
WO2022143195A1 (zh) 确定终端的特性的方法和通信装置
WO2021204107A1 (zh) 一种通信方法及装置
WO2021197109A1 (zh) 一种通信方法和通信装置
WO2024032287A1 (zh) 寻呼方法和通信装置
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2023185433A1 (zh) 通信方法和通信装置
WO2020143713A1 (zh) 通信方法、装置和存储介质
WO2022213821A1 (zh) 物理下行控制信道重复传输的方法及通信装置
WO2022151380A1 (zh) 传输pucch的方法及装置
WO2023216927A2 (zh) 资源确定方法和通信装置
WO2024001832A1 (zh) 通信方法及通信装置
WO2023011372A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777810

Country of ref document: EP

Kind code of ref document: A1