WO2022213821A1 - 物理下行控制信道重复传输的方法及通信装置 - Google Patents

物理下行控制信道重复传输的方法及通信装置 Download PDF

Info

Publication number
WO2022213821A1
WO2022213821A1 PCT/CN2022/082977 CN2022082977W WO2022213821A1 WO 2022213821 A1 WO2022213821 A1 WO 2022213821A1 CN 2022082977 W CN2022082977 W CN 2022082977W WO 2022213821 A1 WO2022213821 A1 WO 2022213821A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
search space
candidate pdcch
space set
time slot
Prior art date
Application number
PCT/CN2022/082977
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
花梦
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022213821A1 publication Critical patent/WO2022213821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a method and a communication device for repeated transmission of a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the schematic diagram of PDCCH repeated transmission based on multi-point transmission can use the joint transmission mechanism of multiple base stations to improve the reliability of downlink control information (DCI) transmission.
  • the multiple base stations here can be multiple Transmission and reception point (transmission and reception point, TRP).
  • TRP Transmission and reception point
  • the above operations can improve the signal to interference plus noise ratio (SINR) of the received signal, thereby improving the reliability of DCI transmission.
  • SINR signal to interference plus noise ratio
  • TRP1 and TRP2 serve as cooperative TRPs for one terminal at the same time.
  • the DCI sent by TRP1 corresponds to a control resource set (control resource set, CORESET) 1.
  • the DCI sent by TRP2 corresponds to CORESET2.
  • the two CORESETs may be configured to completely overlap, partially overlap or not overlap, so as to improve the flexibility of DCI transmission and increase the gain of frequency selection scheduling.
  • the DCIs issued by the two CORESETs have an associated relationship, that is, the above-mentioned soft combining operation can be performed.
  • the base station configures two search space (SS) sets (sets) for PDCCH repeated transmission through high-level parameters. relationship between.
  • the base station and the terminal can perform PDCCH repeated transmission on two candidate physical downlink control channels (PDCCH candidates) in the two SS sets located in the same time slot (slot), which is called “PDCCH repeated transmission in a time slot (intra- slot PDCCH repetition)"; PDCCH repeat transmission can also be performed on two candidate PDCCHs in two SS sets located in different time slots, which is called “inter-slot PDCCH repeat transmission (inter-slot PDCCH repetition)" .
  • SS set 1 is located on time slot 1
  • SS set 2 is located on time slot 2
  • the two SS sets are used to transmit the same PDCCH to schedule the physical downlink shared channel (PDSCH).
  • Figure 2 shows the repeated transmission of PDCCH in adjacent time slots. There may also be an interval between the time slots where two SS sets are located. For example, SS set 1 is on time slot 1, and SS set 2 is on time slot 3. , does not rule out this scenario.
  • the present application needs to solve the problem of ambiguity when the terminal determines the time domain position for transmitting the same PDCCH in the scenario of supporting the repeated transmission of PDCCH across time slots.
  • the present application provides a method and a communication device for PDCCH repeated transmission to solve the problem of ambiguity when a terminal determines the time domain position of a candidate PDCCH for transmitting the same PDCCH in a scenario of supporting PDCCH repeated transmission across time slots.
  • a first aspect provides a method for repeated PDCCH transmission, the method comprising: a terminal receiving first configuration information, the first configuration information indicating a search space set offset value, and the search space set offset value is the first The slot offset of the second candidate PDCCH in the second search space set relative to the first candidate PDCCH in the first search space set, wherein the second candidate PDCCH and the first candidate PDCCH are used to transmit the same PDCCH; and the terminal monitors the first candidate PDCCH, or monitors the first candidate PDCCH and the second candidate PDCCH.
  • the terminal can determine the time domain positions of the two candidate PDCCHs used for the repeated transmission of the PDCCH between the time slots, so that the two candidate PDCCHs can be Monitor the PDCCH. Therefore, the problem of ambiguity when the terminal determines the time domain position of the candidate PDCCH in the scenario of repeated transmission of the PDCCH between time slots is solved, and the reliability of the terminal receiving the PDCCH is improved.
  • the first configuration information further includes an index of the second search space set.
  • the index of the second set of search spaces associated with the first set of search spaces is also configured when the set of first search spaces is configured, or the index of the second set of search spaces associated with the first set of search spaces can be configured separately , so that the terminal can determine which search space set is associated with the first search space set, so that the second candidate PDCCH can be determined in the second search space set according to the first candidate PDCCH and the search space set offset value.
  • the terminal receives second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • the offset value of the search space set is a positive integer or a negative integer.
  • a method for repeated PDCCH transmission comprising: a base station sending first configuration information, where the first configuration information indicates a search space set offset value, and the search space set offset value is the first The slot offset of the second candidate PDCCH in the second search space set relative to the first candidate PDCCH in the first search space set, wherein the second candidate PDCCH and the first candidate PDCCH are used to transmit the same PDCCH; and the base station transmits the same PDCCH on the first candidate PDCCH and the second candidate PDCCH.
  • the first configuration information further includes an index of the second search space set.
  • the base station sends second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • the offset value of the search space set is a positive integer or a negative integer.
  • a method for repeated transmission of PDCCH includes: the terminal receives third configuration information and fourth configuration information, the third configuration information indicating the first part of the first search space set slot offset value, the fourth configuration information indicates the second slot offset value of the second search space set, the first search space set and the second search space set have the same period, the first The time slot offset value is the time slot offset of the first search space set relative to the start time slot of the period of the first search space set, and the second time slot offset value is the second search space set The time slot offset of the space set relative to the starting time slot of the period of the second search space set; the terminal determines the reference search space according to the first time slot offset value and the second time slot offset value set; and the terminal monitors the third candidate PDCCH in the reference search space set, or monitors the third candidate PDCCH and the fourth candidate PDCCH in the third search space set, the third search space set is the A search space set other than the reference search space set in the first search space set and the second search space
  • the terminal can determine the time domain positions of the two candidate PDCCHs used for the repeated transmission of the PDCCH between the time slots by receiving the configuration information sent by the base station and indicating the time slot offset values of the two search space sets respectively, so that the The two candidate PDCCHs are monitored. Therefore, in the scenario of repeated PDCCH transmission between time slots, the problem of ambiguity when the terminal determines the time domain position of the candidate PDCCH is solved, and the reliability of the terminal receiving the PDCCH is improved.
  • the first time slot offset value is smaller than the second time slot offset value, then the reference search space set is the first search space set; or the first time slot offset If the slot offset value is greater than the second slot offset value, the reference search space set is the second search space set.
  • the first time slot offset value is greater than the second time slot offset value, then the reference search space set is the first search space set; or the first search space set If the slot offset value is smaller than the second slot offset value, the reference search space set is the second search space set.
  • the time slot in which the fourth candidate PDCCH is located is after the time slot in which the third candidate PDCCH is located, and the fourth candidate PDCCH is a distance in the third search space set.
  • the third search space set may include multiple candidate PDCCHs, and this implementation determines that the time slot where the fourth candidate PDCCH is located is after the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is the The candidate PDCCH on the time slot closest to the time slot where the third candidate PDCCH is located in the third search space set improves the accuracy of determining the fourth candidate PDCCH.
  • a method for repeated PDCCH transmission including: a terminal receiving first index indication information and second index indication information, the first index indication information indicating a first index of a first search space set, the The second index indication information indicates the second index of the second search space set, and the period of the first search space set and the second search space set is the same; the terminal determines according to the first index and the second index a reference search space set; and the terminal monitors a third candidate PDCCH in the reference search space set, or monitors the third candidate PDCCH and a fourth candidate PDCCH in the third search space set, the third search space set is a search space set other than the reference search space set in the first search space set and the second search space set, wherein the third candidate PDCCH and the fourth candidate PDCCH are used for transmitting the same the PDCCH.
  • the terminal can determine the time domain positions of the two candidate PDCCHs used for the repeated transmission of the PDCCH between the time slots, so as to monitor the two candidate PDCCHs. Therefore, the problem of ambiguity when the terminal determines the time domain position of the candidate PDCCH in the scenario of repeated transmission of the PDCCH between time slots is solved, and the reliability of the terminal receiving the PDCCH is improved.
  • the reference search space set is the first search space set; or the first index is greater than the second index, then The reference search space set is the second search space set.
  • the reference search space set is the first search space set; or the first index is smaller than the second index, Then the reference search space set is the second search space set.
  • the first time slot offset value corresponding to the first search space set and the second time slot offset value corresponding to the second search space set are different, and the fourth candidate PDCCH The time slot where the third candidate PDCCH is located is after the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is on the time slot closest to the time slot where the third candidate PDCCH is located in the third search space set.
  • the PDCCH repeat transmission between time slots is performed, so that determining that the time slot where the fourth candidate PDCCH is located is after the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is the time closest to the time slot where the third candidate PDCCH is located in the third search space set.
  • the candidate PDCCH on the slot improves the accuracy of determining the fourth candidate PDCCH.
  • the first time slot offset value corresponding to the first search space set and the second time slot offset value corresponding to the second search space set are the same, and the method further includes: The terminal receives first configuration information, where the first configuration information instructs the third candidate PDCCH and the fourth candidate PDCCH to perform PDCCH repeated transmission between time slots; wherein, the time slot where the fourth candidate PDCCH is located is in the After the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is a candidate PDCCH on the time slot closest to the time slot where the third candidate PDCCH is located in the third search space set.
  • the base station instructs to perform repeated transmission of PDCCH between time slots through explicit configuration information, so as to determine that the time slot where the fourth candidate PDCCH is located is after the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is The candidate PDCCH in the time slot closest to the time slot where the third candidate PDCCH is located in the third search space set improves the accuracy of determining the fourth candidate PCCH.
  • a communication apparatus which can implement the method for repeated PDCCH transmission in the above-mentioned first aspect.
  • the communication device may be a chip or a terminal.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include a transceiving unit and a processing unit; wherein: the transceiving unit is configured to receive first configuration information, where the first configuration information indicates a search space set offset value , the search space set offset value is the time slot offset of the second candidate PDCCH in the second search space set relative to the first candidate PDCCH in the first search space set, wherein the second candidate PDCCH and The first candidate PDCCH is used for transmitting the same PDCCH; and the transceiver unit is further used for monitoring the first candidate PDCCH, or is further used for monitoring the first candidate PDCCH and the second candidate PDCCH.
  • the transceiver unit is further configured to receive second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • a communication apparatus which can implement the method for PDCCH repeated transmission in the second aspect.
  • the communication device may be a chip or a base station, and the above method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the communication apparatus may include a transceiving unit and a processing unit; wherein: the transceiving unit is configured to send first configuration information, where the first configuration information indicates a search space set offset value , the search space set offset value is the time slot offset of the second candidate PDCCH in the second search space set relative to the first candidate PDCCH in the first search space set, wherein the second candidate PDCCH and The first candidate PDCCH is used for transmitting the same PDCCH; and the transceiver unit is further used for transmitting the same PDCCH on the first candidate PDCCH and the second candidate PDCCH.
  • the transceiver unit is further configured to send second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • a communication apparatus which can implement the method for PDCCH repeated transmission in the third aspect.
  • the communication device may be a chip or a terminal.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to receive third configuration information and fourth configuration information, the third configuration information indicating the first A first time slot offset value of a search space set, the fourth configuration information indicates a second time slot offset value of a second search space set; the processing unit is configured to offset the first time slot according to the first time slot offset value and the second time slot offset value to determine a reference search space set, the first search space set and the second search space set have the same period, and the first time slot offset value is the first search space set The time slot offset of a search space set relative to the start time slot of the period of the first search space set, the second time slot offset value is the second search space set relative to the second search space set the time slot offset of the start time slot of the period of the space set; and the transceiver unit is further configured to monitor the third candidate PDCCH in the reference search space set, or, is further configured to monitor the third candidate PDCCH and a fourth
  • a communication apparatus which can implement the method for repeated PDCCH transmission in the fourth aspect.
  • the communication device may be a chip or a terminal.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include: a transceiver unit and a processing unit; wherein: the transceiver unit is configured to receive first index indication information and second index indication information, the first index indication The index indication information indicates the first index of the first search space set, the second index indication information indicates the second index of the second search space set, and the periods of the first search space set and the second search space set are the same
  • the processing unit is configured to determine a reference search space set according to the first index and the second index; and the transceiver unit is also configured to monitor the third candidate PDCCH in the reference search space set, Alternatively, the transceiver unit is further configured to monitor the third candidate PDCCH and the fourth candidate PDCCH in the third search space set, where the third search space set is the first search space set and the second search space set A search space set other than the reference search space set in the search space set, wherein the third candidate PDCCH and the fourth candidate PDCCH are used for transmitting the same PDCCH.
  • the first time slot offset value corresponding to the first search space set and the second time slot offset value corresponding to the second search space set are the same, and the transceiver unit is further configured to receive the first time slot offset value.
  • configuration information indicates that the third candidate PDCCH and the fourth candidate PDCCH perform PDCCH repeated transmission between time slots; wherein, the time slot where the fourth candidate PDCCH is located is in the third candidate PDCCH
  • the fourth candidate PDCCH is a candidate PDCCH on the time slot closest to the time slot where the third candidate PDCCH is located in the third search space set after the time slot where the PDCCH is located.
  • the communication apparatus in the fifth aspect to the eighth aspect includes a processor coupled to the memory; the processor is configured to support the apparatus to perform the corresponding PDCCH repeated transmission method in the above Function.
  • the memory is used for coupling with the processor, which holds the necessary programs (instructions) and/or data for the apparatus.
  • the communication apparatus may further include a communication interface for supporting communication between the apparatus and other network elements.
  • the memory may be located inside the communication device, or may be located outside the communication device.
  • the communication device in the fifth aspect to the eighth aspect includes a processor and a transceiver device, the processor is coupled to the transceiver device, and the processor is configured to execute a computer program or instruction , so as to control the transceiver device to receive and send information; when the processor executes the computer program or instructions, the processor is further configured to implement the above method through a logic circuit or executing code instructions.
  • the transceiver may be a transceiver, a transceiver circuit or an input/output interface, configured to receive signals from other communication devices other than the communication device and transmit to the processor or transmit signals from the processor sent to other communication devices than the communication device.
  • the transceiver device is a transceiver circuit or an input and output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a computer-readable storage medium where computer programs or instructions are stored in the computer-readable storage medium, and when the computer programs or instructions are executed, the methods described in the above aspects are implemented.
  • a computer program product comprising instructions that, when executed on a communication device, cause the communication device to perform the methods of the above aspects.
  • a communication system including the communication device of the fifth aspect and the communication device of the sixth aspect.
  • FIG. 1 is a schematic diagram of PDCCH repeated transmission based on multipoint transmission provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of repeated transmission of PDCCH between time slots provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
  • Fig. 4 is a schematic diagram of the PDCCH monitoring opportunity of an SS set in a time slot
  • FIG. 5 is a schematic diagram of PDCCH repeated transmission in a time slot provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a situation where a terminal cannot explicitly determine that the same PDCCH is transmitted between time slots;
  • FIG. 7 is a schematic diagram of a terminal that cannot explicitly determine that the same PDCCH is transmitted between time slots in another scenario
  • FIG. 8 is a schematic flowchart of a method for PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an SS set provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of repeated transmission of candidate PDCCHs in two SS sets according to an example of an embodiment of the present application
  • FIG. 11 is a schematic diagram of PDCCH repeated transmission between time slots according to an example of an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the processing flow of the PDCCH on the base station side provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of yet another method for PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another exemplary PDCCH repeated transmission provided by an embodiment of the present application.
  • 15 is a schematic flowchart of yet another method for PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another exemplary PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 3 ), and may also include at least one terminal (such as 120a-120j in FIG. 3 ).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 3 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 3 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (110a in FIG.
  • a micro base station or an indoor station 110b in FIG. 3
  • a relay node or a donor node and the like.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the following description takes a base station as an example of a radio access network device.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed in the air on aircraft, balloons, and satellites. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 3 may be configured as a mobile base station, for those terminals 120j accessing the radio access network 100 through 120i, the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station.
  • both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 3 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 3 may be referred to as communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals and terminals can be carried out through licensed spectrum, through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time;
  • the frequency spectrum below gigahertz (GHz) is used for communication, the frequency spectrum above 6GHz can also be used for communication, and the frequency spectrum below 6GHz and the frequency spectrum above 6GHz can be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the function of the base station may also be performed by a module (eg, a chip) in the base station, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, and can also be performed by a device including the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends the uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • a terminal needs to establish a wireless connection with a cell controlled by the base station.
  • the cell that has established a wireless connection with the terminal is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the PDCCH is only an example of a downlink control channel.
  • the control channels may have different names, which are not limited in the embodiments of the present application.
  • the protocol adds the following restrictions: 1) The period of the two SS sets with the association relationship is the same, and a signal of the radio resource control (RRC) is passed through the same period.
  • the time slot offset of the element configuration is the same, and the two SS sets configured by the RRC cell duration have the same number of continuous time slots; 2)
  • the number of PDCCH listening opportunities in one time slot is the same. The numbers are the same, the n-th listening opportunity of one SS set is associated with the n-th listening opportunity of another SS set, and the two associated listening opportunities are used to send the same PDCCH.
  • PDCCH monitoring occasion (PDCCH monitoring occasion, PDCCH MO) is abbreviated as "monitoring occasion”, and the PDCCH monitoring occasion of one SS set in one time slot is jointly determined by the configuration information of the SS set and its associated CORESET.
  • the SS set configuration information contains a 14-bit bitmap parameter "monitoring symbols in a slot" (monitoringSymbolsWithinSlot), each bit of the bitmap is multiplexed with 1 orthogonal frequency in 1 slot. division multiplexing, OFDM) symbols are in one-to-one correspondence, and are used to indicate the start symbol that this SS set monitors within 1 time slot.
  • Figure 4 is a schematic diagram of the PDCCH monitoring timing of an SS set in a time slot.
  • monitoringSymbolsWithinSlot 1000010000000, indicating that monitoring this SS set needs to be in the first time slot of a time slot.
  • OFDM symbols OFDM symbol, OS
  • 5th OFDM symbol starts.
  • SS set 1 and SS set 2 have an associated relationship.
  • SS set 1 and SS set 2 have two PDCCH monitoring opportunities in the time slot.
  • the first PDCCH MO of SS set 1 and SS set The first MO of SS set 2 is associated, and the second PDCCH MO of SS set 1 is associated with the second PDCCH MO of SS set 2.
  • the terminal only knows that the candidate PDCCH in the SS set corresponding to two indexes is used for the repeated transmission of PDCCH. , but since the candidate PDCCHs in the SS set appear periodically, the terminal may not be able to determine which two candidate PDCCHs in the specific time domain positions are used to transmit the same PDCCH, resulting in the terminal may not be able to correctly receive the repeatedly sent PDCCH, thus Causes merge decoding to fail.
  • the cycles of SS set1 and SS set2 are both 1 time slot, and the base station configures the association between SS set 1 and SS set 2 for the terminal through high-level signaling.
  • the terminal can determine through high layer signaling that the candidate PDCCHs in the SS set with index equal to 1 and the SS set with index equal to 2 are used for PDCCH repeated transmission. Since there are two candidate PDCCHs in the SS set that will send the same PDCCH, then the candidate PDCCH in SS set 1 on the n-2 time slot is together with the candidate PDCCH in SS set 2 on the n-1 time slot.
  • the terminal cannot determine. If the base station uses the candidate PDCCH in the SS set 1 on the n-2 time slot together with the candidate PDCCH in the SS set 2 on the n-1 time slot to send the same PDCCH, and the terminal understands it as n-2
  • the candidate PDCCH in the SS set 2 on the slot is used to transmit the same PDCCH together with the candidate PDCCH in the SS set 1 on the n-1 time slot, then the terminal will send the candidate PDCCH in the SS set 2 on the n-2 time slot.
  • the PDCCH is combined and decoded with the candidate PDCCH in the SS set 1 on the n-1 time slot, resulting in a decoding error.
  • the periods of SS set1 and SS set2 are both 2 time slots, and other configuration information is the same as the above example.
  • the terminal cannot determine whether the candidate PDCCH in the SS set 1 on the n-2 slot is used to transmit the same PDCCH together with the candidate PDCCH in the SS set 2 on the n-1 slot, or the SS on the n-1 slot
  • the candidate PDCCH in set 2 is used to transmit the same PDCCH together with the candidate PDCCH in SS set 1 on n slots. If the base station and the terminal have inconsistent understandings of the time domain position of the candidate PDCCH used for the repeated transmission of the PDCCH at this time, it will result in erroneous combined decoding of the candidate PDCCH and lead to decoding errors.
  • the base station currently only informs the terminal of the association relationship between the two associated SS sets through high-level signaling, that is, the terminal only knows that certain two SS sets are used for the repeated transmission of the PDCCH. If the terminal supports the repeated transmission of PDCCH between time slots, at this time, the terminal cannot determine which two candidate PDCCHs in specific time domain positions are used to send the same PDCCH, so the terminal may not be able to correctly receive the repeatedly sent PDCCH, resulting in Merge decoding failed.
  • the present application provides a method and a communication device for PDCCH repeated transmission.
  • the terminal can receive the first configuration information indicating the offset value of the SS set sent by the base station, or by receiving the configuration information sent by the base station indicating the time slot offset values of the two SS sets respectively, or according to the indexes of the two SS sets, can The time domain positions of the two candidate PDCCHs used for the repeated transmission of the PDCCH between the time slots are determined, so as to monitor the two candidate PDCCHs. Therefore, the problem of ambiguity when the terminal determines the time domain position of the candidate PDCCH in the scenario of repeated transmission of the PDCCH between time slots is solved, and the reliability of the terminal receiving the PDCCH is improved.
  • a schematic flowchart of a method for PDCCH repeated transmission provided by an embodiment of the present application, the method may include the following steps:
  • the base station sends second configuration information. Accordingly, the terminal receives the second configuration information.
  • the second configuration information indicates that the first candidate PDCCH in the first SS set and the second candidate PDCCH in the second SS set perform PDCCH repeated transmission between time slots.
  • PDCCH repeated transmission includes PDCCH repeated transmission within a time slot and PDCCH repeated transmission between time slots.
  • the terminal may determine that the first candidate PDCCH and the second candidate PDCCH perform repeated PDCCH transmission between time slots.
  • this step is an optional step, which is represented by a dotted line in the figure.
  • the second configuration information may be sent by the base station to the terminal through higher layer signaling.
  • the high-layer signaling may be RRC signaling or a medium access control-control element (medium access control-control element, MAC CE).
  • the base station can configure the SS set for monitoring DCI to the terminal through high-level signaling. Since the terminal does not know in advance which PDCCH or candidate PDCCHs the base station will send DCI on, the terminal can monitor the SS set in this SS set according to the configuration information. Each candidate PDCCH attempts to decode. If the cyclic redundancy check (cyclic redundancy check, CRC) check on the DCI is successful, then the terminal has successfully received the DCI. As shown in Figure 9. Among them, the SS set may include a common search space (common search space) and a terminal-specific search space (UE-specific search space). The process in which the terminal attempts to decode each candidate PDCCH to determine whether the corresponding DCI is received is called blind detection (blind detection, BD).
  • blind detection blind detection
  • this embodiment considers the repeated transmission of PDCCH. Therefore, the base station configures the terminal to monitor two SS sets with an associated relationship, namely the first SS set and the second SS set. And in order to reduce the complexity of the terminal, it is necessary to prevent the terminal from performing too many soft combining operations, so the association between the two SS sets needs to be defined.
  • the base station configures the relationship between the two SS sets used for PDCCH repeated transmission through RRC signaling, that is, SS set#i and SS set#j can be Called linked SS set.
  • SS set#i includes aggregation level (AL) 4 and AL8, the corresponding number of candidate PDCCHs is 4 and 2 respectively.
  • the repeated transmission of PDCCH of AL4 can only be realized by two candidate PDCCHs of AL4, instead of one candidate PDCCH of AL4 and one candidate PDCCH of AL8. Therefore, assuming that there is a certain predefined PDCCH repeated transmission mapping relationship, the association shown in FIG. 10 can be obtained.
  • the candidate PDCCH sequence number 1 in SS set#i performs PDCCH repeated transmission together with the candidate PDCCH sequence number 1 in SS set#j
  • the candidate PDCCH sequence number 2 in SS set#i and the candidate PDCCH sequence number in SS set#j Sequence number 2 performs PDCCH repeated transmission together.
  • the two PDCCH candidates for repeated transmission of PDCCH are called linked PDCCH candidates (linked PDCCH candidates).
  • linked PDCCH candidates For AL16, the candidate PDCCH sequence number 1 in SS set #i and the candidate PDCCH sequence number 1 in SS set #j perform PDCCH repeated transmission. It can be seen from the above two sub-scenarios that all candidate PDCCHs in one SS set are used for PDCCH repeated transmission, and do not include candidate PDCCHs for sending independent PDCCHs. If the base station wants to send an independent PDCCH, it can only be achieved by configuring other SS sets, such as configuring SS set#k.
  • the base station sends the first configuration information. Accordingly, the terminal receives the first configuration information.
  • the first configuration information indicates an SS set offset value
  • the SS set offset value is a slot offset of the second candidate PDCCH in the second SS set relative to the first candidate PDCCH in the first SS set.
  • the time slot offset of the second candidate PDCCH relative to the first candidate PDCCH may specifically be between the start position of the time slot where the second candidate PDCCH is located relative to the start position of the time slot where the first candidate PDCCH is located , or it may be the time slot offset between the end position of the timeslot where the second candidate PDCCH is located relative to the end position of the timeslot where the first candidate PDCCH is located.
  • the second candidate PDCCH and the first candidate PDCCH are used to transmit the same PDCCH. Transmission of the same PDCCH may refer to repetition of the PDCCH, transmission of the same DCI, or the like.
  • the first configuration information may further include an index of the second SS set.
  • the terminal may determine the second candidate PDCCH in the second SS set associated with the first candidate PDCCH in the first SS set according to the configured SS set offset value.
  • the first configuration information may further include an index of the first SS set.
  • the terminal may determine the first candidate PDCCH in the first SS set associated with the second candidate PDCCH in the second SS set according to the configured SS set offset value.
  • the first configuration information may be carried in RRC signaling or MAC CE.
  • the base station informs the terminal which SS sets are associated and the time slot offset between the two associated SS sets through the "repeat transmission between time slots" information element in the RRC signaling. , where "Maximum number of associated SS sets" represents the maximum number of SS sets that can be configured for repeated transmission between time slots.
  • the “Associated SS set” information element in the “Inter-Slot Repeated Transmission Information Element” may include the following parameters: the first SS set identifier, used to indicate the index value of the reference SS set in the two SS sets with the associated relationship ;
  • the second SS set identification is used to indicate the index value of the SS set other than the reference SS set in the two SS sets with the associated relationship;
  • the time slot offset value is used to indicate the second SS set in the second SS set The slot offset of the candidate PDCCH relative to the first candidate PDCCH in the first SS set.
  • a schematic diagram of repeated transmission of PDCCH between time slots it is assumed that SS set1 and SS set2 are associated, and the periods of SS set1 and SS set2 are both 1. set1, the SS set offset value is 1, then the terminal can determine the candidate PDCCH in the SS set1 on the n-1th time slot and the candidate in the SS set2 on the nth time slot according to the SS set offset value.
  • PDCCH is used to transmit the same PDCCH.
  • the SS set offset value may be a positive integer
  • the first configuration information further includes the second SS set
  • the index of the first SS set can be called a reference SS set or an anchored SS set, and the terminal can offset the SS set backward according to the time slot where the candidate PDCCH of the first SS set is located. Shift value to determine the time slot where the candidate PDCCH of the second SS set is located.
  • the function of the reference SS set is that the terminal or the base station can determine the time domain position of the candidate PDCCH in the SS set associated with the reference SS set for PDCCH repeated transmission according to the reference SS set and the SS set offset value.
  • the SS set offset value may be a negative integer
  • the first configuration information further includes the first SS set
  • the index of the set, the second SS set can be referred to as the reference SS set or the anchored SS set
  • the terminal can offset the SS set offset value forward according to the time slot where the candidate PDCCH of the second SS set is located to determine the first The time slot in which the candidate PDCCH of an SS set is located.
  • the above-mentioned reference SS set or anchored SS set refers to an SS set with an earlier PDCCH monitoring timing or a later SS set in a pair of two SS sets used for transmitting the same PDCCH.
  • the SS set offset value is a positive integer or a negative integer, it can also be determined that the first candidate PDCCH and the second candidate PDCCH perform repeated PDCCH transmission between time slots.
  • the SS set offset value is 0, it can be determined that the first candidate PDCCH and the second candidate PDCCH perform repeated transmission of the PDCCH in the time slot.
  • the SS set offset value is configured as 0, or the SS set offset value is not configured, and the SS set offset value is configured as 0 by default.
  • the first configuration information and the above-mentioned second configuration information may be two independent information, or may be the same information, that is, the first configuration information indicates the above-mentioned SS set offset value, and also indicates that in the first SS set
  • the first candidate PDCCH in the SS set and the second candidate PDCCH in the second SS set perform PDCCH repeated transmission between time slots.
  • the base station sends the same PDCCH on the first candidate PDCCH and the second candidate PDCCH.
  • the base station transmits the same PDCCH on the first candidate PDCCH and the second candidate PDCCH based on the same configuration as the first configuration information.
  • FIG. 12 is a schematic diagram of the processing flow of the PDCCH at the base station side.
  • the DCI load in Figure 12 is the same, the bit sequence output by the coding module is also the same, and the bit sequence output by the rate matching module is also the same.
  • the AL used by the first candidate PDCCH and the second candidate PDCCH is the same, and the number of control channel elements (control channel elements, CCEs) used by the first candidate PDCCH and the second candidate PDCCH is the same.
  • the gray modules in the figure indicate that when the PDCCH is repeatedly transmitted, it is necessary to ensure that these modules transmit the same content.
  • the terminal monitors the first candidate PDCCH, or monitors the first candidate PDCCH and the second candidate PDCCH.
  • the terminal monitoring method includes: The following two.
  • One implementation is that the terminal monitors the first candidate PDCCH. In this implementation manner, if the terminal successfully monitors the first candidate PDCCH, the terminal no longer monitors the second candidate PDCCH.
  • Another implementation is that the terminal monitors the first candidate PDCCH and the second candidate PDCCH. In this implementation manner, even if the terminal successfully monitors the first candidate PDCCH, it will continue to monitor the second candidate PDCCH.
  • the terminal may perform soft combining on the first candidate PDCCH and the second candidate PDCCH before decoding.
  • monitoring the candidate PDCCH includes performing channel estimation, demodulation, decoding, and CRC check on the candidate PDCCH.
  • the successful monitoring of the candidate PDCCH may refer to the successful CRC check after the candidate PDCCH is demodulated and decoded.
  • the terminal monitoring method includes: The following two.
  • One implementation is that the terminal monitors the second candidate PDCCH. In this implementation manner, if the terminal successfully monitors the second candidate PDCCH, the terminal no longer monitors the first candidate PDCCH.
  • Another implementation is that the terminal monitors the first candidate PDCCH and the second candidate PDCCH. In this implementation manner, even if the terminal successfully monitors the second candidate PDCCH, it will continue to monitor the first candidate PDCCH.
  • the terminal may perform soft combining on the first candidate PDCCH and the second candidate PDCCH before decoding.
  • This embodiment solves the problem of ambiguity in the time domain position of the terminal when determining two candidate PDCCHs for transmitting the same PDCCH in the scenario of repeated transmission of PDCCHs between time slots, so that the terminal can determine the two candidates for transmitting the same PDCCH
  • the time-frequency position of the PDCCH enables the terminal to correctly receive the repeated transmission of the PDCCH between the time slots, thereby improving the reliability of the terminal receiving the PDCCH.
  • a schematic flowchart of another method for PDCCH repeated transmission provided by an embodiment of the present application, the method may include the following steps:
  • the base station sends third configuration information and fourth configuration information.
  • the terminal receives the third configuration information and the fourth configuration information.
  • the periods of the first SS set and the second SS set are the same.
  • the first SS set has a certain time slot offset relative to the initial time slot of the period.
  • the period is 4 time slots, and it is assumed that the initial time slot is the 0th time slot, and the initial time slot may be an absolute time slot value or a relative time slot value.
  • the first SS set may be located on the 0th to 3rd time slots. Assuming that the first SS set is located on the second time slot, the time slot offset of the first SS set relative to the initial time slot of the cycle, that is, the first time slot offset value is 2.
  • the second SS set also has a certain time slot offset relative to the initial time slot of the cycle. Assuming that the second SS set is located on the third time slot, the time slot offset of the second SS set relative to the initial time slot of the cycle, that is, the second time slot offset value is 3.
  • the base station sends the third configuration information and the fourth configuration information.
  • the third configuration information indicates the first time slot offset value of the first SS set
  • the fourth configuration information indicates the second time slot offset value of the second SS set.
  • the first time slot offset value is the time slot offset of the first SS set relative to the initial time slot of the cycle of the first SS set
  • the second time slot offset value is the time slot offset value of the second SS set relative to the second SS set.
  • the third configuration information or the fourth configuration information may specifically be an information element in the RRC signaling. Wherein, if the offset value of the first time slot and the offset value of the second time slot are different, the terminal may determine that the repeated transmission of the PDCCH between time slots is performed.
  • the base station may also send RRC signaling or MAC CE, instructing the terminal that the first SS set and the second SS set are used for PDCCH repeated transmission between time slots.
  • the base station may also configure through RRC signaling or the first SS set and the second SS set are used to transmit the same PDCCH.
  • the terminal determines the reference SS set according to the first time slot offset value and the second time slot offset value.
  • the terminal may determine the reference SS set according to the first time slot offset value and the second time slot offset value.
  • the definition of the reference SS set can refer to the previous description.
  • an SS set with a smaller slot offset value may be determined as a reference SS set. If the first slot offset value is smaller than the second slot offset value, the reference SS set is the first SS set; or, if the first slot offset value is greater than the second slot offset value, the reference SS set is the second SS set.
  • the SS set with the larger slot offset value may be determined as the reference SS set. If the first slot offset value is greater than the second slot offset value, the reference SS set is the first SS set; or, if the first slot offset value is smaller than the second slot offset value, the reference SS set is the second SS set.
  • the base station sends the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH.
  • the base station may determine to send the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH according to the association relationship between the first SS set and the second SS set.
  • the third candidate PDCCH is a candidate PDCCH in the above reference SS set
  • the fourth candidate PDCCH is a candidate PDCCH in the third SS set.
  • the third SS set is the SS set other than the reference SS set in the first SS set and the second SS set.
  • the base station sends the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH.
  • the terminal monitors the third candidate PDCCH in the reference SS set, or monitors the third candidate PDCCH and the fourth candidate PDCCH in the third SS set.
  • An implementation manner is that the terminal monitors the third candidate PDCCH in the reference SS set. In this implementation manner, if the terminal successfully monitors the third candidate PDCCH, the terminal no longer monitors the fourth candidate PDCCH. Another implementation is to monitor the third candidate PDCCH and the fourth candidate PDCCH in the third SS set. The third candidate PDCCH and the fourth candidate PDCCH are used to transmit the same PDCCH. In this implementation manner, even if the terminal successfully monitors the third candidate PDCCH, it will continue to monitor the fourth candidate PDCCH. After monitoring the fourth candidate PDCCH, the terminal may perform soft combining on the third candidate PDCCH and the fourth candidate PDCCH before decoding.
  • FIG 14 another example is a schematic diagram of PDCCH repeated transmission.
  • the base station configures SS set1 and SS set2 to have an associated relationship, the periods of SS set1 and SS set2 are both 2 time slots, and the third configuration information indicates that SS set1 is relatively
  • the time slot offset of the initial time slot of the cycle of SS set1 is 0, that is, it occurs in the first time slot of the two time slots of cycle 2; the fourth configuration information indicates the cycle of SS set2 relative to SS set2
  • the time slot offset of the initial time slot (same cycle as SS set1) is 1, that is, it occurs in the second time slot of the two time slots of cycle 2.
  • the terminal can determine that the time slot offset is smaller than the SS set1, that is, the SS set1 is the SS set with the earlier PDCCH monitoring timing in the two SS sets with the associated relationship, Then take SS set1 as the reference SS set.
  • the third candidate PDCCH is the candidate PDCCH in SS set1, assuming that the third candidate PDCCH is specifically located in the n-2th time slot, Then the terminal may need to monitor the fourth candidate PDCCH on the n-1th time slot and the n+1th time slot, which will increase the complexity of the terminal's implementation and reduce the reliability of monitoring the repeatedly transmitted PDCCH. Therefore, the protocol may specify that the time slot where the fourth candidate PDCCH is located is after the time slot where the third candidate PDCCH is located, and the fourth candidate PDCCH is the time slot in the third SS set that is closest to the time slot where the third candidate PDCCH is located. Candidate PDCCH. In this way, the terminal can determine to monitor the fourth candidate PDCCH in the SS set2 on the n-1th time slot.
  • the terminal can determine the candidate PDCCH for the repeated transmission of the PDCCH with low signaling overhead time domain location. Therefore, the base station and the terminal have a consistent understanding of the time domain positions where the two candidate PDCCHs used for repeated transmission between time slots are located. The problem of ambiguity in the same PDCCH improves the reliability of the terminal receiving the PDCCH repeatedly transmitted between the time slots.
  • a schematic flowchart of another method for repeated PDCCH transmission provided by an embodiment of the present application, the method may include the following steps:
  • the base station sends first index indication information and second index indication information.
  • the terminal receives the first index indication information and the second index indication information.
  • Each SS set has a unique index.
  • the first index indication information indicates the first index of the first SS set
  • the second index indication information indicates the second index of the second SS set.
  • the base station may also configure the first SS set and the second SS set to transmit the same PDCCH through RRC signaling. Wherein, the periods of the first SS set and the second SS set are the same.
  • the terminal determines the reference SS set according to the first index and the second index.
  • the terminal After receiving the first index indication information and the second index indication information, the terminal can determine the reference SS set according to the first index and the second index.
  • the definition of reference SS set can refer to the previous description.
  • the SS set with the smaller index may be determined as the reference SS set. If the first index is less than the second index, the reference SS set is the first SS set; or the first index is greater than the second index, the reference SS set is the second SS set.
  • the SS set with a larger index may be determined as the reference SS set. If the first index is greater than the second index, the reference SS set is the first SS set; or the first index is less than the second index, the reference SS set is the second SS set.
  • the base station sends the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH.
  • the base station may determine to send the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH according to the association relationship between the first SS set and the second SS set.
  • the third candidate PDCCH is a candidate PDCCH in the above reference SS set
  • the fourth candidate PDCCH is a candidate PDCCH in the third SS set.
  • the third SS set is the SS set other than the reference SS set in the first SS set and the second SS set.
  • the base station sends the same PDCCH on the third candidate PDCCH and the fourth candidate PDCCH.
  • the terminal monitors the third candidate PDCCH in the reference SS set, or monitors the third candidate PDCCH and the fourth candidate PDCCH in the third SS set.
  • the terminal monitors the third candidate PDCCH in the reference SS set, or monitors the third candidate PDCCH and the fourth candidate PDCCH in the third SS set.
  • the index of SS set1 is smaller than the index of SS set2, and the terminal determines SS set1 as the reference SS set.
  • the first time slot offset value corresponding to SS set1 is different from the second time slot offset value corresponding to SS set2, and the time slot offset of SS set1 relative to the initial time slot of the cycle of SS set1 is 0, that is, Occurs in the first time slot of two time slots with a period of 2;
  • the time slot offset of SS set2 relative to the start time slot of the period of SS set2 (the same period as SS set1) is 1, that is, in The second of two slots with period 2 occurs. Therefore, the terminal determines to use SS set1 as the reference SS set according to the first index and the second index.
  • the base station sends the first configuration information to the terminal, and the first configuration information indicates that the third candidate PDCCH and the fourth candidate PDCCH perform PDCCH repeated transmission between time slots, then the first time slot offset value corresponding to SS set1 and the SS The offset values of the second time slot corresponding to set2 are different.
  • FIG. 16 is a schematic diagram of yet another PDCCH repeated transmission.
  • SS set1 and SS set2 with an associated relationship have the same number of PDCCH listening opportunities in their respective time slots, for example, including two PDCCH listening opportunities respectively.
  • more monitoring opportunities may also be included, which is not limited in this application.
  • the nth PDCCH monitoring opportunity in SS set1 is associated with the nth PDCCH monitoring opportunity in SS set2, and the first candidate PDCCH on the nth PDCCH monitoring opportunity in SS set1 is associated with the nth PDCCH in SS set2.
  • the second candidate PDCCH on the listening occasion is used to transmit the same PDCCH.
  • the terminal can determine the candidate PDCCH to monitor with low signaling overhead, and monitor on the determined candidate PDCCH. Therefore, in the scenario of supporting the repeated transmission of PDCCH across time slots, the problem of ambiguity when the terminal determines to transmit the same PDCCH is solved, and the reliability of the terminal receiving the PDCCH repeatedly transmitted between time slots is improved.
  • the base station and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 17 and FIG. 18 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal or the base station in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 3, the base station 110a or 110b shown in FIG. 3, or a terminal or base station modules (eg chips).
  • the communication apparatus 1700 includes a processing unit 1710 and a transceiver unit 1720 .
  • the communication apparatus 1700 is configured to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 8 , FIG. 13 or FIG. 15 .
  • the transceiver unit 1720 is configured to receive first configuration information, where the first configuration information indicates an SS set offset value, and the SS set offset value The shift value is the slot offset of the second candidate PDCCH in the second SS set relative to the first candidate PDCCH in the first SS set, wherein the second candidate PDCCH and the first candidate PDCCH are used for transmission the same PDCCH; and the transceiver unit 1720 is further configured to monitor the first candidate PDCCH, or monitor the first candidate PDCCH and the second candidate PDCCH. Further, the transceiver unit 1720 is further configured to receive second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • the transceiver unit 1720 is configured to send first configuration information, where the first configuration information indicates an SS set offset value, the SS set offset value
  • the shift value is the slot offset of the second candidate PDCCH in the second SS set relative to the first candidate PDCCH in the first SS set, wherein the second candidate PDCCH and the first candidate PDCCH are used for transmission the same PDCCH; and the transceiver unit 1720 is further configured to transmit the same PDCCH on the first candidate PDCCH and the second candidate PDCCH.
  • the transceiver unit 1720 is further configured to send second configuration information, where the second configuration information indicates that the first candidate PDCCH and the second candidate PDCCH perform PDCCH repeated transmission between time slots.
  • the transceiver unit 1720 is used to receive third configuration information and fourth configuration information, where the third configuration information indicates the first SS set of the first SS set.
  • a slot offset value indicates a second slot offset value of the second SS set, the first SS set and the second SS set have the same period, the first slot The offset value is the time slot offset of the first SS set relative to the start time slot of the cycle of the first SS set, and the second time slot offset value is the second SS set relative to the time slot of the first SS set.
  • the processing unit 1710 is configured to determine the reference SS set according to the first time slot offset value and the second time slot offset value; and
  • the transceiver unit 1720 is further configured to monitor the third candidate PDCCH in the reference SS set, or monitor the third candidate PDCCH and the fourth candidate PDCCH in the third SS set, where the third SS set is the third candidate PDCCH.
  • the transceiver unit 1720 is configured to receive first index indication information and second index indication information, where the first index indication information indicates the first SS The first index of the set, the second index indication information indicates the second index of the second SS set, and the cycles of the first SS set and the second SS set are the same;
  • the processing unit 1710 is configured to index and the second index, determine the reference SS set;
  • the transceiver unit 1720 is further configured to monitor the third candidate PDCCH in the reference SS set, or monitor the third candidate PDCCH and the third candidate PDCCH in the third SS set Four candidate PDCCHs, the third SS set is the SS set other than the reference SS set in the first SS set and the second SS set, wherein the third candidate PDCCH and the fourth Candidate PDCCHs are used to transmit the same PDCCH.
  • the first time slot offset value corresponding to the first SS set is the same as the second time slot offset value corresponding to the second SS set
  • the transceiver unit 1720 is further configured to receive first configuration information
  • the The first configuration information indicates that the third candidate PDCCH and the fourth candidate PDCCH perform PDCCH repeated transmission between time slots; wherein the time slot where the fourth candidate PDCCH is located is in the time slot where the third candidate PDCCH is located After that, it is the candidate PDCCH in the time slot closest to the time slot where the third candidate PDCCH is located in the third SS set.
  • processing unit 1710 and the transceiver unit 1720 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 8 , FIG. 13 or FIG. 15 , and details are not repeated here.
  • the communication device 1800 includes a processor 1810 and an interface circuit 1820 .
  • the processor 1810 and the interface circuit 1820 are coupled to each other.
  • the interface circuit 1820 can be a transceiver or an input-output interface.
  • the communication apparatus 1800 may further include a memory 1830 for storing instructions executed by the processor 1810 or input data required by the processor 1810 to execute the instructions or data generated after the processor 1810 executes the instructions.
  • the processor 1810 is used to implement the function of the above-mentioned processing unit 1710
  • the interface circuit 1820 is used to implement the function of the above-mentioned transceiver unit 1720 .
  • the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules (such as radio frequency modules or antennas) in the terminal, and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), the information is The information is sent by the terminal to the base station.
  • the base station chip When the above communication device is a chip applied to a base station, the base station chip implements the functions of the base station in the above method embodiments.
  • the base station chip receives information from other modules (such as radio frequency modules or antennas) in the base station, and the information is sent by the terminal to the base station; or, the base station chip sends information to other modules in the base station (such as radio frequency modules or antennas), the information is The information is sent by the base station to the terminal.
  • modules such as radio frequency modules or antennas
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the base station or in the terminal.
  • the processor and the storage medium may also exist in the base station or terminal as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, base station, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种PDCCH重复传输的方法及通信装置。终端通过接收基站发送的指示搜索空间集合偏移值的第一配置信息,或者通过接收基站发送的分别指示两个搜索空间集合的时隙偏移值的配置信息,或者根据两个搜索空间集合的索引,可以确定用于时隙间PDCCH重复传输的两个候选PDCCH的时域位置,从而对这两个候选PDCCH进行监听。从而,解决了在时隙间PDCCH重复传输场景下,终端在确定候选PDCCH的时域位置时的模糊问题,提高了终端接收PDCCH的可靠性。

Description

物理下行控制信道重复传输的方法及通信装置
本申请要求于2021年04月06日提交中国国家知识产权局、申请号为202110371412.6、发明名称为“物理下行控制信道重复传输的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及物理下行控制信道(physical downlink control channel,PDCCH)重复传输的方法及通信装置。
背景技术
如图1所示的基于多点传输的PDCCH重复传输的示意图,可以利用多个基站联合发送机制提升下行控制信息(downlink control information,DCI)传输的可靠性,这里的多个基站可以是多个传输接收点(transmission and reception point,TRP)。具体地,对于同一个DCI,经过编码形成编码比特后,由多个TRP分别在相同或不同的时频资源上发送,终端可以分别在上述时频资源上接收多份编码比特,然后进行联合译码获取DCI。上述操作可以提升接收信号的信干噪比(signal to interference plus noise ratio,SINR),从而可以提升DCI传输的可靠性。同时,考虑到终端到某一个TRP的传输链路可能由于信道变化而发生中断,该传输方案可以防止这个情况的发生。如图1所示,TRP1和TRP2作为协作TRP同时为一个终端服务。TRP1发送的DCI对应控制资源集合(control resource set,CORESET)1。TRP2发送的DCI对应CORESET2。两个CORESET可能配置完全重叠、部分重叠或不重叠,以提升DCI发送的灵活性,提高频选调度增益。两个CORESET上下发的DCI存在关联关系,即可以执行上述软合并操作。
为了降低终端的复杂度,需防止终端执行过多的软合并操作,因此,对于PDCCH重复传输,基站通过高层参数配置用于PDCCH重复传输的两个搜索空间(search space,SS)集合(set)之间的关联关系。
基站和终端可以在位于同一时隙(slot)内的两个SS set中的两个候选物理下行控制信道(PDCCH candidate)上进行PDCCH重复传输,称为“时隙内的PDCCH重复传输(intra-slot PDCCH repetition)”;也可以在位于不同的时隙内的两个SS set中的两个候选PDCCH上进行PDCCH重复传输,称为“时隙间的PDCCH重复传输(inter-slot PDCCH repetition)”。如图2所示,SS set 1位于时隙1上,SS set 2位于时隙2上,两个SS set用于传输相同的PDCCH,来调度物理下行共享信道(physical downlink shared channel,PDSCH)。图2所示的是相邻时隙的PDCCH重复传输,也可能存在两个SS set分别所在的时隙之间有间隔,例如SS set 1在时隙1上,SS set 2在时隙3上,不排除这种场景。
本申请需要解决在支持跨时隙的PDCCH重复传输场景下,终端在确定用于传输相同的PDCCH时的时域位置时的模糊问题。
发明内容
本申请提供了一种PDCCH重复传输的方法及通信装置,以解决在支持跨时隙的PDCCH重复传输场景下,终端在确定用于传输相同的PDCCH的候选PDCCH的时域位置时的模糊问题。
第一方面,提供了一种PDCCH重复传输的方法,所述方法包括:终端接收第一配置信 息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及终端监听所述第一候选PDCCH,或者,监听所述第一候选PDCCH和所述第二候选PDCCH。在该方面中,终端通过接收基站发送的指示搜索空间集合偏移值的第一配置信息,可以确定用于时隙间PDCCH重复传输的两个候选PDCCH的时域位置,从而对这两个候选PDCCH进行监听。从而,解决了在时隙间PDCCH重复传输场景下,终端在确定候选PDCCH的时域位置时的模糊问题,提高了终端接收PDCCH的可靠性。
在一种可能的实现中,所述第一配置信息还包括所述第二搜索空间集合的索引。在该实现中,在配置第一搜索空间集合时还配置与第一搜索空间集合关联的第二搜索空间集合的索引,或者可以单独配置与第一搜索空间集合关联的第二搜索空间集合的索引,从而,使得终端可以确定哪个搜索空间集合与第一搜索空间集合关联,从而可以根据第一候选PDCCH以及上述搜索空间集合偏移值在该第二搜索空间集合中确定第二候选PDCCH。
在另一种可能的实现中,终端接收第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
在又一种可能的实现中,所述搜索空间集合偏移值为正整数或负整数。
第二方面,提供了一种PDCCH重复传输的方法,所述方法包括:基站发送第一配置信息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及基站在所述第一候选PDCCH和所述第二候选PDCCH上发送相同的PDCCH。
在一种可能的实现中,所述第一配置信息还包括所述第二搜索空间集合的索引。
在另一种可能的实现中,基站发送第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
在又一种可能的实现中,所述搜索空间集合偏移值为正整数或负整数。
第三方面,提供了一种PDCCH重复传输的方法,其特征在于,所述方法包括:终端接收第三配置信息和第四配置信息,所述第三配置信息指示第一搜索空间集合的第一时隙偏移值,所述第四配置信息指示第二搜索空间集合的第二时隙偏移值,所述第一搜索空间集合和所述第二搜索空间集合的周期相同,所述第一时隙偏移值为所述第一搜索空间集合相对于所述第一搜索空间集合的周期的起始时隙的时隙偏移,所述第二时隙偏移值为所述第二搜索空间集合相对于所述第二搜索空间集合的周期的起始时隙的时隙偏移;终端根据所述第一时隙偏移值和所述第二时隙偏移值,确定参考搜索空间集合;以及终端监听所述参考搜索空间集合中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。在该方面中,终端通过接收基站发送的分别指示两个搜索空间集合的时隙偏移值的配置信息,可以确定用于时隙间PDCCH重复传输的两个候选PDCCH的时域位置,从而对这两个候选PDCCH进行监听。从而,解决了在时隙间的PDCCH重复传输场景下,终端在确定候选PDCCH的时域位置时的模糊问题,提高了终端接收PDCCH的可靠性。
在一种可能的实现中,所述第一时隙偏移值小于所述第二时隙偏移值,则所述参考搜索 空间集合为所述第一搜索空间集合;或所述第一时隙偏移值大于所述第二时隙偏移值,则所述参考搜索空间集合为所述第二搜索空间集合。
在另一种可能的实现中,所述第一时隙偏移值大于所述第二时隙偏移值,则所述参考搜索空间集合为所述第一搜索空间集合;或所述第一时隙偏移值小于所述第二时隙偏移值,则所述参考搜索空间集合为所述第二搜索空间集合。
在又一种可能的实现中,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。在该实现中,第三搜索空间集合中可以包括多个候选PDCCH,本实现确定第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH,提高了确定第四候选PDCCH的准确性。
第四方面,提供了一种PDCCH重复传输的方法,包括:终端接收第一索引指示信息和第二索引指示信息,所述第一索引指示信息指示第一搜索空间集合的第一索引,所述第二索引指示信息指示第二搜索空间集合的第二索引,所述第一搜索空间集合和所述第二搜索空间集合的周期相同;终端根据所述第一索引和所述第二索引,确定参考搜索空间集合;以及终端监听所述参考搜索空间集合中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。在该方面中,终端根据两个搜索空间集合的索引,可以确定用于时隙间PDCCH重复传输的两个候选PDCCH的时域位置,从而对这两个候选PDCCH进行监听。从而,解决了在时隙间PDCCH重复传输场景下,终端在确定候选PDCCH的时域位置时的模糊问题,提高了终端接收PDCCH的可靠性。
在一种可能的实现中,所述第一索引小于所述第二索引,则所述参考搜索空间集合为所述第一搜索空间集合;或所述第一索引大于所述第二索引,则所述参考搜索空间集合为所述第二搜索空间集合。
在另一种可能的实现中,所述第一索引大于所述第二索引,则所述参考搜索空间集合为所述第一搜索空间集合;或所述第一索引小于所述第二索引,则所述参考搜索空间集合为所述第二搜索空间集合。
在又一种可能的实现中,所述第一搜索空间集合对应的第一时隙偏移值和所述第二搜索空间集合对应的第二时隙偏移值不同,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。在该实现中,第一搜索空间集合对应的第一时隙偏移值和第二搜索空间集合对应的第二时隙偏移值不同,则可以确定是进行时隙间的PDCCH重复传输,从而确定第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH,提高了确定第四候选PDCCH的准确性。
在又一种可能的实现中,所述第一搜索空间集合对应的第一时隙偏移值和所述第二搜索空间集合对应的第二时隙偏移值相同,所述方法还包括:终端接收第一配置信息,所述第一配置信息指示所述第三候选PDCCH和所述第四候选PDCCH进行时隙间的PDCCH重复传输;其中,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最 近的时隙上的候选PDCCH。在该实现中,基站通过明确的配置信息指示进行时隙间的PDCCH重复传输,从而确定第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH,提高了确定第四候选PCCH的准确性。
第五方面,提供了一种通信装置,可以实现上述第一方面中的PDCCH重复传输的方法。例如所述通信装置可以是芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元,用于接收第一配置信息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及所述收发单元,还用于监听所述第一候选PDCCH,或者,还用于监听所述第一候选PDCCH和所述第二候选PDCCH。
可选地,所述收发单元,还用于接收第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
第六方面,提供了一种通信装置,可以实现上述第二方面中的PDCCH重复传输的方法。例如所述通信装置可以是芯片或者基站,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元,用于发送第一配置信息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及所述收发单元,还用于在所述第一候选PDCCH和所述第二候选PDCCH上发送相同的PDCCH。
可选地,所述收发单元,还用于发送第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
第七方面,提供了一种通信装置,可以实现上述第三方面中的PDCCH重复传输的方法。例如所述通信装置可以是芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元,用于接收第三配置信息和第四配置信息,所述第三配置信息指示第一搜索空间集合的第一时隙偏移值,所述第四配置信息指示第二搜索空间集合的第二时隙偏移值;所述处理单元,用于根据所述第一时隙偏移值和所述第二时隙偏移值,确定参考搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合的周期相同,所述第一时隙偏移值为所述第一搜索空间集合相对于所述第一搜索空间集合的周期的起始时隙的时隙偏移,所述第二时隙偏移值为所述第二搜索空间集合相对于所述第二搜索空间集合的周期的起始时隙的时隙偏移;以及所述收发单元,还用于监听所述参考搜索空间集合中的第三候选PDCCH,或者,还用于监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。
第八方面,提供了一种通信装置,可以实现上述第四方面中的PDCCH重复传输的方法。 例如所述通信装置可以是芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在另一种可能的实现方式中,所述通信装置,可以包括:收发单元和处理单元;其中:所述收发单元,用于接收第一索引指示信息和第二索引指示信息,所述第一索引指示信息指示第一搜索空间集合的第一索引,所述第二索引指示信息指示第二搜索空间集合的第二索引,所述第一搜索空间集合和所述第二搜索空间集合的周期相同;所述处理单元,用于根据所述第一索引和所述第二索引,确定参考搜索空间集合;以及所述收发单元,还用于监听所述参考搜索空间集合中的第三候选PDCCH,或者,所述收发单元,还用于监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。
可选地,所述第一搜索空间集合对应的第一时隙偏移值和所述第二搜索空间集合对应的第二时隙偏移值相同,所述收发单元,还用于接收第一配置信息,所述第一配置信息指示所述第三候选PDCCH和所述第四候选PDCCH进行时隙间的PDCCH重复传输;其中,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。
在一种可能的实现方式中,上述第五方面至第八方面中的通信装置包括与存储器耦合的处理器;所述处理器被配置为支持所述装置执行上述PDCCH重复传输的方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。可选的,该存储器可以位于该通信装置内部,也可以位于该通信装置外部。
在又一种可能的实现方式中,上述第五方面至第八方面中的通信装置包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于通过逻辑电路或执行代码指令实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口,用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当上述第五方面至第八方面中的通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为终端时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令在通信装置上运行时,使得通信装置执行上述各方面所述的方法。
第十一方面,提供了一种通信系统,该通信系统包括第五方面的通信装置和第六方面的通信装置。
附图说明
图1为本申请实施例提供的基于多点传输的PDCCH重复传输的示意图;
图2为本申请实施例提供的时隙间PDCCH重复传输的示意图;
图3为本申请的实施例应用的通信系统的架构示意图;
图4为一个SS set在一个时隙内的PDCCH监听时机的示意图;
图5为本申请实施例提供的时隙内的PDCCH重复传输的示意图;
图6为一种场景下终端不能明确地确定时隙间传输相同的PDCCH的示意图;
图7为又一种场景下终端不能明确地确定时隙间传输相同的PDCCH的示意图;
图8为本申请实施例提供的一种PDCCH重复传输的方法的流程示意图;
图9为本申请实施例提供的SS set的示意图;
图10为本申请实施例示例的两个SS set中的候选PDCCH重复传输的示意图;
图11为本申请实施例示例的一种时隙间的PDCCH重复传输的示意图;
图12为本申请实施例提供的PDCCH在基站侧的处理流程示意图;
图13为本申请实施例提供的又一种PDCCH重复传输的方法的流程示意图;
图14为本申请实施例提供的另一个示例的PDCCH重复传输的示意图;
图15为本申请实施例提供的又一种PDCCH重复传输的方法的流程示意图;
图16为本申请实施例提供的又一个示例的PDCCH重复传输的示意图;
图17为本申请实施例提供的一种通信装置的结构示意图;
图18为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
图3是本申请的实施例应用的通信系统1000的架构示意图。如图3所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图3中的110a和110b),还可以包括至少一个终端(如图3中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图3只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图3中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图3中的110a),也可以是微基站或室内站(如图3中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet  of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图3中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图3中的110a和110b可以称为具有基站功能的通信装置,图3中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
本申请的实施例中,PDCCH只是作为下行控制信道的一种举例,在不同的系统和不同的场景中,控制信道可能有不同的名称,本申请的实施例对此并不做限定。
对于时隙内的PDCCH重复传输,考虑到简化终端的实现,协议增加了如下限制:1)具有关联关系的两个SS set的周期相同,通过无线资源控制(radio resource control,RRC)的一个信元配置的时隙偏移相同,通过RRC信元duration配置的两个SS set的持续时隙个数相同;2)对于两个关联的SS set,在1个时隙内的PDCCH监听时机的个数是相同的,1个SS set的第n个监听时机与另一个SS set的第n个监听时机是关联的,这两个关联的监听时机用于发送相同的PDCCH。
其中,PDCCH监听时机(PDCCH monitoring occasion,PDCCH MO)简称为“监听时机”,1个SS set在1个时隙内的PDCCH监听时机是通过SS set和与其关联的CORESET的配置信息联合确定的。SS set配置信息中包含一个14比特的位图参数“时隙中的监听符号”(monitoringSymbolsWithinSlot),该位图的每一个比特与1个时隙内的1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)是一一对应的,用于指示这个SS set在1个时隙内监听的起始符号。图4为一个SS set在一个时隙内的PDCCH监听时机的示意图,假设这个SS set关联一个持续3个OFDM长度的CORESET, monitoringSymbolsWithinSlot=1000010000000,表示监听这个SS set需要在1个时隙的第1个OFDM符号(OFDM symbol,OS)和第5个OFDM符号开始。
如图5所示,SS set 1和SS set 2具有关联关系,SS set 1和SS set 2在时隙内均有两个PDCCH监听时机,根据协议SS set 1的第一个PDCCH MO与SS set 2的第一个MO关联,SS set 1的第二个PDCCH MO与SS set 2的第二个PDCCH MO关联。
然而,对于时隙间的PDCCH重复传输,根据目前仅配置两个关联的SS set的关联关系(linkage),终端只知道某两个索引对应的SS set中的候选PDCCH是用于PDCCH重复传输的,但由于SS set中的候选PDCCH是周期出现,终端可能无法确定哪两个具体的时域位置上的候选PDCCH是用于发送相同的PDCCH,导致终端可能不能正确地接收重复发送的PDCCH,从而导致合并译码失败。
如图6所示,SS set1和SS set2的周期均为1个时隙,基站通过高层信令为终端配置SS set 1与SS set 2的关联关系。终端通过高层信令可以确定索引等于1的SS set与索引等于2的SS set中的候选PDCCH是用于PDCCH重复传输的。由于有2个SS set内中的候选PDCCH会发送相同的PDCCH,那么到底是n-2时隙上的SS set 1中的候选PDCCH与n-1时隙上的SS set 2中的候选PDCCH一起用于发送相同的PDCCH,还是n-2时隙上的SS set 2中的候选PDCCH与n-1时隙上的SS set 1中的候选PDCCH一起用于发送相同的PDCCH,终端无法确定。如果此时基站是用n-2时隙上的SS set 1中的候选PDCCH与n-1时隙上的SS set 2中的候选PDCCH一起用于发送相同PDCCH,而终端理解为n-2时隙上的SS set 2中的候选PDCCH与n-1时隙上的SS set 1中的候选PDCCH一起用于发送相同的PDCCH,那么终端会将n-2时隙上的SS set 2中的候选PDCCH与n-1时隙上的SS set 1中的候选PDCCH进行合并译码,导致译码错误。
又如图7所示,SS set1和SS set2的周期均为2个时隙,其它配置信息同上例。终端无法确定是n-2时隙上的SS set 1中的候选PDCCH与n-1时隙上的SS set 2中的候选PDCCH一起用于发送相同的PDCCH,还是n-1时隙上的SS set 2中的候选PDCCH与n时隙上的SS set 1中的候选PDCCH一起用于发送相同的PDCCH。如果此时基站与终端对于PDCCH重复传输所用的候选PDCCH的时域位置的理解不一致,将导致对候选PDCCH的错误合并译码,并导致译码错误。
因此,在PDCCH重复传输时,目前基站仅通过高层信令通知终端两个关联的SS set的关联关系,即终端只知道某两个SS set是用于PDCCH重复传输的。如果终端支持时隙间的PDCCH重复传输,此时存在终端无法确定哪两个具体的时域位置上的候选PDCCH是用于发送相同的PDCCH,导致终端可能不能正确接收重复发送的PDCCH,从而导致合并译码失败。
本申请提出一种PDCCH重复传输的方法及通信装置。终端通过接收基站发送的指示SS set偏移值的第一配置信息,或者通过接收基站发送的分别指示两个SS set的时隙偏移值的配置信息,或者根据两个SS set的索引,可以确定用于时隙间PDCCH重复传输的两个候选PDCCH的时域位置,从而对这两个候选PDCCH进行监听。从而,解决了在时隙间PDCCH重复传输场景下,终端在确定候选PDCCH的时域位置时的模糊问题,提高了终端接收PDCCH的可靠性。
如图8所示,为本申请实施例提供的一种PDCCH重复传输的方法的流程示意图,该方法可以包括以下步骤:
S101.基站发送第二配置信息。相应地,终端接收该第二配置信息。
其中,该第二配置信息指示第一SS set中的第一候选PDCCH和第二SS set中的第二候 选PDCCH进行时隙间的PDCCH重复传输。
PDCCH重复传输包括时隙内的PDCCH重复传输和时隙间的PDCCH重复传输。终端根据该第二配置信息,可以确定第一候选PDCCH和第二候选PDCCH进行的是时隙间的PDCCH重复传输。当然,也可以通过后续的步骤确定第一候选PDCCH和第二候选PDCCH进行的是时隙间的PDCCH重复传输。因此,该步骤为可选的步骤,图中以虚线表示。
该第二配置信息可以是基站通过高层信令发送给终端的。在本申请的实施例中,高层信令可以为RRC信令或介质接入控制-控制元素(medium access control-control element,MAC CE)。
在步骤S101之前,基站可以通过高层信令给终端配置监听DCI的SS set,由于终端事先并不知道基站会在哪个或哪些候选PDCCH上发送DCI,但是终端可以根据配置信息对这个SS set中的每一个候选PDCCH尝试解码。如果对DCI的循环冗余校验(cyclic redundancy check,CRC)校验成功,那么终端就成功接收到了该DCI。如图9所示。其中,SS set又可以包括公共搜索空间(common search space)和终端特定的搜索空间(UE-specific search space)。终端尝试对每个候选PDCCH进行解码来确定是否接收到对应DCI的处理过程就叫盲检测(blind detection,BD)。
为了提高DCI传输的可靠性,本实施例考虑PDCCH重复传输。因此,基站给终端配置监听DCI的两个具有关联关系的SS set,即第一SS set和第二SS set。并且为了降低终端的复杂度,需要防止终端执行过多的软合并操作,从而需要定义两个SS set的关联关系。
对于PDCCH重复传输,支持1个SS set内的所有候选PDCCH都用于PDCCH重复传输,不包含发送独立PDCCH的候选PDCCH。如图10所示的两个SS set中的候选PDCCH重复传输的示意图,基站通过RRC信令配置用于PDCCH重复传输的两个SS set的关联关系,即SS set#i和SS set#j可以称为linked SS set。用于PDCCH重复传输的候选PDCCH分属于两个SS set。假设1个SS set#i包含聚合级别(aggregation level,AL)4和AL8,分别对应的候选PDCCH个数为4个和2个。根据PDCCH重复传输的定义,那么AL4的PDCCH重复传输只能通过两个AL4的候选PDCCH来实现,而不能是1个AL4的候选PDCCH和1个AL8的候选PDCCH。因此,假设存在某种预定义的PDCCH重复传输映射关系,可以得到图10中所示的关联关系。对于AL8而言,SS set#i中的候选PDCCH序号1与SS set#j的候选PDCCH序号1一起进行PDCCH重复传输,SS set#i中的候选PDCCH序号2与SS set#j中的候选PDCCH序号2一起进行PDCCH重复传输。用于重复传输PDCCH的两个候选PDCCH称为关联的候选PDCCH(linked PDCCH candidates)。对于AL16而言,SS set#i中的候选PDCCH序号1与SS set#j中的候选PDCCH序号1一起进行PDCCH重复传输。从上述两个子场景可以看出,1个SS set内的所有候选PDCCH都是用于PDCCH重复传输的,而不包含用于发送独立PDCCH的候选PDCCH。如果基站要发送独立PDCCH,只能通过配置其他SS set来实现,例如配置SS set#k。
S102.基站发送第一配置信息。相应地,终端接收该第一配置信息。
该第一配置信息指示SS set偏移值,该SS set偏移值为第二SS set中的第二候选PDCCH相对于第一SS set中的第一候选PDCCH的时隙偏移量。其中,第二候选PDCCH相对于第一候选PDCCH的时隙偏移量,具体可以是第二候选PDCCH所在的时隙的起始位置相对于第一候选PDCCH所在的时隙的起始位置之间的时隙偏移量,或可以是第二候选PDCCH所在的时隙的结束位置相对于第一候选PDCCH所在的时隙的结束位置之间的时隙偏移量。其中,第二候选PDCCH与第一候选PDCCH用于传输相同的PDCCH。传输相同的PDCCH可以是 指PDCCH重复,或者传输相同的DCI等。
当第一配置信息与配置第一SS set的信息位于同一个消息中时或者第一配置信息还用于配置第一SS set时,第一配置信息还可以包括第二SS set的索引。终端在接收到第一配置信息时,可以根据配置的SS set偏移值确定与该第一SS set中的第一候选PDCCH关联的第二SS set中的第二候选PDCCH。当第一配置信息与配置第二SS set的信息位于同一个消息中时或者第一配置信息还用于配置第二SS set时,第一配置信息还可以包括第一SS set的索引。终端在接收到第一配置信息时,可以根据配置的SS set偏移值确定与该第二SS set中的第二候选PDCCH关联的第一SS set中的第一候选PDCCH。
该第一配置信息可以携带在RRC信令或MAC CE中。一种可能的实现方式,基站通过RRC信令中的“时隙间重复传输”信元通知终端哪些SS set是具有关联关系的,以及具有关联关系的两个SS set之间的时隙偏移,其中,“关联的SS set的最大数量”表示可以配置用于时隙间重复传输的SS set的最大组数。“时隙间重复传输信元”中的“关联的SS set”信元中可以包括以下参数:第一SS set标识,用于指示具有关联关系的两个SS set中的参考SS set的索引值;第二SS set标识,用于指示具有关联关系的两个SS set中除了参考SS set之外的SS set的索引值;时隙偏移值,用于指示为第二SS set中的第二候选PDCCH相对于第一SS set中的第一候选PDCCH的时隙偏移量。
如图11示例的一种时隙间的PDCCH重复传输的示意图,假设SS set1与SS set2关联,SS set1与SS set2的周期均为1,其中,对于位于第n-1个时隙上的SS set1,SS set偏移值为1,则终端可以根据该SS set偏移值,确定第n-1个时隙上的SS set1中的候选PDCCH与第n个时隙上的SS set2中的候选PDCCH用于传输相同的PDCCH。
在一个实现中,假设第一SS set的候选PDCCH相对于第二SS set的候选PDCCH在时隙上靠前,该SS set偏移值可以为正整数,第一配置信息还包括第二SS set的索引,第一SS set可以称为参考(reference)SS set或锚定的(anchored)SS set,则终端可以根据第一SS set的候选PDCCH所在的时隙,向后偏移该SS set偏移值,确定第二SS set的候选PDCCH所在的时隙。参考SS set的作用是,终端或基站可以根据该参考SS set和SS set偏移值确定出用于PDCCH重复传输的与该参考SS set关联的SS set中的候选PDCCH的时域位置。
在另一个实现中,假设第一SS set的候选PDCCH相对于第二SS set的候选PDCCH在时隙上靠前,该SS set偏移值可以为负整数,第一配置信息还包括第一SS set的索引,第二SS set可以称为参考SS set或锚定的SS set,则终端可以根据第二SS set的候选PDCCH所在的时隙,向前偏移该SS set偏移值,确定第一SS set的候选PDCCH所在的时隙。
上述参考SS set或锚定的SS set表示一对用于传输相同的PDCCH的两个SS set中PDCCH监听时机较早的SS set或较晚的SS set。
可以理解的是,本实施例中,SS set偏移值为正整数或负整数,则也可以确定第一候选PDCCH和第二候选PDCCH进行的是时隙间的PDCCH重复传输。
在一个示例中,SS set偏移值为0,则可以确定第一候选PDCCH和第二候选PDCCH进行的是时隙内的PDCCH重复传输。对于不支持时隙间的PDCCH重复传输的终端,该SS set偏移值配置为0,或不配置该SS set偏移值,默认该SS set偏移值配置为0。
举例说明,该第一配置信息可以与上述第二配置信息是两个独立的信息,也可以是同一个信息,即该第一配置信息指示上述SS set偏移值,还指示第一SS set中的第一候选PDCCH和第二SS set中的第二候选PDCCH进行时隙间的PDCCH重复传输。
S103.基站在第一候选PDCCH和第二候选PDCCH上发送相同的PDCCH。
具体的,基站基于上述第一配置信息相同的配置,在第一候选PDCCH和第二候选PDCCH上发送相同的PDCCH。
具体地,如图12所示的PDCCH在基站侧的处理流程示意图。对于两次重复传输的PDCCH的处理流程,图12中的DCI负载相同,编码模块输出的比特序列也相同,速率匹配模块输出的比特序列也相同,这些比特序列经过加扰和调制后映射到第一SS set中的第一候选PDCCH和第二SS set中的第二候选PDCCH上发送出去。其中,第一候选PDCCH和第二候选PDCCH所采用的AL相同,第一候选PDCCH和第二候选PDCCH所采用的控制信道单元(control channel element,CCE)个数相同。图中灰色的模块表示PDCCH重复传输时需要保证这些模块传输相同的内容。
S104.终端监听第一候选PDCCH,或者,监听第一候选PDCCH和第二候选PDCCH。
终端确定第一候选PDCCH和第二候选PDCCH传输相同的PDCCH后,假设上述SS set偏移值为正整数,即第二候选PDCCH相对于第一候选PDCCH时隙上靠后,则终端监听方式包括如下两种。一种实现为,终端监听第一候选PDCCH。在这种实现方式中,如果终端成功监听到第一候选PDCCH,则终端不再对第二候选PDCCH进行监听。另一种实现为,终端监听第一候选PDCCH和第二候选PDCCH。在这种实现方式中,终端即便成功监听到第一候选PDCCH,也会继续对第二候选PDCCH进行监听。终端监听到第二候选PDCCH之后,可以对第一候选PDCCH和第二候选PDCCH进行软合并后再译码。
在本申请的实施例中,对候选PDCCH进行监听包括对候选PDCCH进行信道估计,解调,译码,CRC校验等处理。成功监听到候选PDCCH可以是指对候选PDCCH解调译码后进行CRC校验成功。
终端确定第一候选PDCCH和第二候选PDCCH传输相同的PDCCH后,假设上述SS set偏移值为负整数,即第二候选PDCCH相对于第一候选PDCCH时隙上靠前,则终端监听方式包括如下两种。一种实现为,终端监听第二候选PDCCH。在这种实现方式中,如果终端成功监听到第二候选PDCCH,则终端不再对第一候选PDCCH进行监听。另一种实现为,终端监听第一候选PDCCH和第二候选PDCCH。在这种实现方式中,终端即便成功监听到第二候选PDCCH,也会继续对第一候选PDCCH进行监听。终端监听到第一候选PDCCH之后,可以对第一候选PDCCH和第二候选PDCCH进行软合并后再译码。
本实施例解决了在时隙间PDCCH重复传输场景下,终端在确定用于传输相同PDCCH的两个候选PDCCH时的时域位置模糊的问题,使得终端能确定用于传输相同PDCCH的两个候选PDCCH的时频位置,使得终端能够正确接收时隙间的PDCCH重复传输,提高了终端接收PDCCH的可靠性。
如图13所示,为本申请实施例提供的又一种PDCCH重复传输的方法的流程示意图,该方法可以包括以下步骤:
S201.基站发送第三配置信息和第四配置信息。相应地,终端接收该第三配置信息和第四配置信息。
本实施例中,第一SS set和第二SS set的周期相同。对于某个周期内的第一SS set,该第一SS set相对于该周期的起始时隙有一定的时隙偏移。例如,该周期为4个时隙,假设起始时隙为第0个时隙,该起始时隙可以是绝对的时隙值,也可以是相对的时隙值。第一SS set可以位于第0个~第3个时隙上。假设第一SS set位于第2个时隙上,则第一SS set相对于该周期的起始时隙的时隙偏移,即第一时隙偏移值为2。同理,第二SS set相对于该周期的起始时隙也有一定的时隙偏移。假设第二SS set位于第3个时隙上,则第二SS set相对于该周 期的起始时隙的时隙偏移,即第二时隙偏移值为3。
本实施例中,基站发送第三配置信息和第四配置信息。其中,该第三配置信息指示第一SS set的第一时隙偏移值,该第四配置信息指示第二SS set的第二时隙偏移值。第一时隙偏移值为第一SS set相对于第一SS set的周期的起始时隙的时隙偏移,第二时隙偏移值为第二SS set相对于第二SS set的周期的起始时隙的时隙偏移。该第三配置信息或第四配置信息具体可以是RRC信令中的一个信元。其中,第一时隙偏移值和第二时隙偏移值不同,则终端可以确定是进行时隙间的PDCCH重复传输。
进一步地,在步骤S201之前,基站还可以发送RRC信令或MAC CE,指示终端第一SS set和第二SS set用于时隙间的PDCCH重复传输。
进一步地,在步骤S201之前,基站还可以通过RRC信令配置或者第一SS set和第二SS set用于传输相同的PDCCH。
S202.终端根据第一时隙偏移值和第二时隙偏移值,确定参考SS set。
终端在接收到第三配置信息和第四配置信息后,根据第一时隙偏移值和第二时隙偏移值,可以确定参考SS set。其中,参考SS set的定义可参考前面的描述。
具体地,在一个实现中,可以确定时隙偏移值较小的SS set为参考SS set。如果第一时隙偏移值小于第二时隙偏移值,则参考SS set为第一SS set;或者,如果第一时隙偏移值大于第二时隙偏移值,则参考SS set为第二SS set。
在另一个实现中,可以确定时隙偏移值较大的SS set为参考SS set。如果第一时隙偏移值大于第二时隙偏移值,则参考SS set为第一SS set;或者,如果第一时隙偏移值小于第二时隙偏移值,则参考SS set为第二SS set。
S203.基站在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。
基站可以根据第一SS set和第二SS set的关联关系,确定在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。其中,第三候选PDCCH为上述参考SS set中的候选PDCCH,第四候选PDCCH为第三SS set中的候选PDCCH。其中,第三SS set为第一SS set和所述第二SS set中除参考SS set之外的SS set。
但不论哪个是参考SS set,基站均在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。
S204.终端监听参考SS set中的第三候选PDCCH,或者,监听第三候选PDCCH和第三SS set中的第四候选PDCCH。
终端确定参考SS set后,可以有两种监听方式。一种实现方式是,终端监听参考SS set中的第三候选PDCCH。在这种实现方式中,如果终端成功监听到第三候选PDCCH,则终端不再对第四候选PDCCH进行监听。另一种实现方式是,监听第三候选PDCCH和第三SS set中的第四候选PDCCH。其中,第三候选PDCCH和第四候选PDCCH用于传输相同的PDCCH。在这种实现方式中,终端即便成功监听到第三候选PDCCH,也会继续对第四候选PDCCH进行监听。终端监听到第四候选PDCCH之后,可以对第三候选PDCCH和第四候选PDCCH进行软合并后再译码。
如图14所示的另一个示例的PDCCH重复传输的示意图,基站配置SS set1与SS set2具有关联关系,SS set1与SS set2的周期均为2个时隙,且第三配置信息指示SS set1相对于SS set1的周期的起始时隙的时隙偏移为0,即在周期为2的两个时隙中的第一个时隙出现;第四配置信息指示SS set2相对于SS set2的周期(与SS set1为同一个周期)的起始时隙的时隙偏移为1,即在周期为2的两个时隙中的第二个时隙出现。从而,终端根据第三配置信息和第 四配置信息,可以确定时隙偏移较小的是SS set1,即SS set1是具有关联关系的两个SS set中PDCCH监听时机出现较早的SS set,则将SS set1作为参考SS set。
进一步地,由于第一SS set和第二SS set是周期性的,仍参考图14,第三候选PDCCH为SS set1中的候选PDCCH,假设第三候选PDCCH具体位于第n-2个时隙,那么终端可能需要在第n-1个时隙、第n+1个时隙上监听第四候选PDCCH,这会增加终端实现的复杂度,降低监听重复传输的PDCCH的可靠性。因此,协议可以规定第四候选PDCCH所在的时隙在第三候选PDCCH所在的时隙之后、且第四候选PDCCH为第三SS set中距离第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。这样,终端可以确定监听第n-1个时隙上的SS set2中的第四候选PDCCH。
根据本申请实施例提供的一种PDCCH重复传输的方法,根据配置信息分别指示的两个SS set的时隙偏移值,终端可以以较低的信令开销确定用于PDCCH重复传输的候选PDCCH的时域位置。从而,使得基站和终端对于用于时隙间重复传输的两个候选PDCCH所在的时域位置有了一致的理解,解决了在支持跨时隙的PDCCH重复传输场景下,终端在确定用于传输相同的PDCCH时的模糊问题,提高了终端接收时隙间重复传输的PDCCH的可靠性。
如图15所示,为本申请实施例提供的又一种PDCCH重复传输的方法的流程示意图,该方法可以包括以下步骤:
S301.基站发送第一索引指示信息和第二索引指示信息。相应地,终端接收该第一索引指示信息和第二索引指示信息。
每个SS set具有唯一的一个索引。其中,该第一索引指示信息指示第一SS set的第一索引,该第二索引指示信息指示第二SS set的第二索引。
进一步地,在步骤S301之前,基站还可以通过RRC信令配置第一SS set和第二SS set用于传输相同的PDCCH。其中,第一SS set和所述第二SS set的周期相同。
S302.终端根据第一索引和第二索引,确定参考SS set。
终端接收到第一索引指示信息和第二索引指示信息后,可以根据第一索引和第二索引,确定参考SS set。其中,参考SS set的定义可以参考前面的描述。
在一种实现方式中,可以确定索引较小的SS set为参考SS set。若第一索引小于所述第二索引,则参考SS set为第一SS set;或第一索引大于第二索引,则参考SS set为第二SS set。
在又一种实现方式中,可以确定索引较大的SS set为参考SS set。若第一索引大于所述第二索引,则参考SS set为第一SS set;或第一索引小于第二索引,则参考SS set为第二SS set。
S303.基站在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。
基站可以根据第一SS set和第二SS set的关联关系,确定在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。其中,第三候选PDCCH为上述参考SS set中的候选PDCCH,第四候选PDCCH为第三SS set中的候选PDCCH。其中,第三SS set为第一SS set和所述第二SS set中除参考SS set之外的SS set。
但不论哪个是参考SS set,基站均在第三候选PDCCH和第四候选PDCCH上发送相同的PDCCH。
S304.终端监听参考SS set中的第三候选PDCCH,或者,监听第三候选PDCCH和第三SS set中的第四候选PDCCH。具体描述可以参考S204。
仍参考图14,SS set1的索引比SS set2的索引小,终端确定SS set1为参考SS set。进一步地,SS set1对应的第一时隙偏移值和SS set2对应的第二时隙偏移值不同,SS set1相对于SS set1的周期的起始时隙的时隙偏移为0,即在周期为2的两个时隙中的第一个时隙出现; SS set2相对于SS set2的周期(与SS set1为同一个周期)的起始时隙的时隙偏移为1,即在周期为2的两个时隙中的第二个时隙出现。从而,终端根据第一索引和第二索引,确定将SS set1作为参考SS set。
进一步地,基站给终端发送第一配置信息,该第一配置信息指示第三候选PDCCH和第四候选PDCCH进行时隙间的PDCCH重复传输,则SS set1对应的第一时隙偏移值和SS set2对应的第二时隙偏移值不同。
图16为又一种PDCCH重复传输的示意图,在该示例中,具有关联关系的SS set1和SS set2在各自的时隙内的PDCCH监听时机个数相同,例如分别包括两个PDCCH监听时机。当然还可以包括更多的监听时机,本申请对此不作限制。则SS set1中的第n个PDCCH监听时机与SS set2中的第n个PDCCH监听时机相关联,SS set1中的第n个PDCCH监听时机上的第一候选PDCCH与SS set2中的第n个PDCCH监听时机上的第二候选PDCCH用于传输相同的PDCCH。
根据本申请实施例提供的一种PDCCH重复传输的方法,根据两个SS set的索引,终端可以以较低的信令开销确定监听的候选PDCCH,并在确定的候选PDCCH上监听。从而,解决了在支持跨时隙的PDCCH重复传输场景下,终端在确定用于传输相同的PDCCH时的模糊问题,提高了终端接收时隙间重复传输的PDCCH的可靠性。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图17和图18为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图3所示的终端120a-120j中的一个,也可以是如图3所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图17所示,通信装置1700包括处理单元1710和收发单元1720。通信装置1700用于实现上述图8、图13或图15中所示的方法实施例中终端或基站的功能。
当通信装置1700用于实现图8所示的方法实施例中终端的功能时:收发单元1720用于接收第一配置信息,所述第一配置信息指示SS set偏移值,所述SS set偏移值为第二SS set中的第二候选PDCCH相对于第一SS set中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及收发单元1720还用于监听所述第一候选PDCCH,或者,监听所述第一候选PDCCH和所述第二候选PDCCH。进一步地,收发单元1720还用于接收第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
当通信装置1700用于实现图8所示的方法实施例中基站的功能时:收发单元1720用于发送第一配置信息,所述第一配置信息指示SS set偏移值,所述SS set偏移值为第二SS set中的第二候选PDCCH相对于第一SS set中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;以及收发单元1720还用于在所述第一候选PDCCH和所述第二候选PDCCH上发送相同的PDCCH。进一步地,收发单元1720还用于发送第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
当通信装置1700用于实现图13所示的方法实施例中终端的功能时:收发单元1720用于接收第三配置信息和第四配置信息,所述第三配置信息指示第一SS set的第一时隙偏移值,所述第四配置信息指示第二SS set的第二时隙偏移值,所述第一SS set和所述第二SS set的周期相同,所述第一时隙偏移值为所述第一SS set相对于所述第一SS set的周期的起始时隙的时隙偏移,所述第二时隙偏移值为所述第二SS set相对于所述第二SS set的周期的起始时隙的时隙偏移;处理单元1710用于根据所述第一时隙偏移值和所述第二时隙偏移值,确定参考SS set;以及收发单元1720还用于监听所述参考SS set中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三SS set中的第四候选PDCCH,所述第三SS set为所述第一SS set和所述第二SS set中除所述参考SS set之外的SS set,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。
当通信装置1700用于实现图15所示的方法实施例中终端的功能时:收发单元1720用于接收第一索引指示信息和第二索引指示信息,所述第一索引指示信息指示第一SS set的第一索引,所述第二索引指示信息指示第二SS set的第二索引,所述第一SS set和所述第二SS set的周期相同;处理单元1710用于根据所述第一索引和所述第二索引,确定参考SS set;以及收发单元1720还用于监听所述参考SS set中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三SS set中的第四候选PDCCH,所述第三SS set为所述第一SS set和所述第二SS set中除所述参考SS set之外的SS set,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。进一步地,所述第一SS set对应的第一时隙偏移值和所述第二SS set对应的第二时隙偏移值相同,收发单元1720还用于接收第一配置信息,所述第一配置信息指示所述第三候选PDCCH和所述第四候选PDCCH进行时隙间的PDCCH重复传输;其中,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且为所述第三SS set中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。
有关上述处理单元1710和收发单元1720更详细的描述可以直接参考图8、图13或图15所示的方法实施例中相关描述直接得到,这里不加赘述。
如图18所示,通信装置1800包括处理器1810和接口电路1820。处理器1810和接口电路1820之间相互耦合。可以理解的是,接口电路1820可以为收发器或输入输出接口。可选的,通信装置1800还可以包括存储器1830,用于存储处理器1810执行的指令或存储处理器1810运行指令所需要的输入数据或存储处理器1810运行指令后产生的数据。
当通信装置1800用于实现图8、图13或图15所示的方法时,处理器1810用于实现上述处理单元1710的功能,接口电路1820用于实现上述收发单元1720的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的芯片时,该基站芯片实现上述方法实施例中基站的功能。该基站芯片从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站芯片向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable  Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (18)

  1. 一种物理下行控制信道PDCCH重复传输的方法,其特征在于,所述方法包括:
    接收第一配置信息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;
    监听所述第一候选PDCCH,或者,监听所述第一候选PDCCH和所述第二候选PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息还包括所述第二搜索空间集合的索引。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
  4. 根据权利要求1至3中的任一项所述的方法,其特征在于,所述搜索空间集合偏移值为正整数。
  5. 一种物理下行控制信道PDCCH重复传输的方法,其特征在于,所述方法包括:
    发送第一配置信息,所述第一配置信息指示搜索空间集合偏移值,所述搜索空间集合偏移值为第二搜索空间集合中的第二候选PDCCH相对于第一搜索空间集合中的第一候选PDCCH的时隙偏移量,其中,所述第二候选PDCCH与所述第一候选PDCCH用于传输相同的PDCCH;
    在所述第一候选PDCCH和所述第二候选PDCCH上发送相同的PDCCH。
  6. 根据权利要求5所述的方法,其特征在于,所述第一配置信息还包括所述第二搜索空间集合的索引。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    发送第二配置信息,所述第二配置信息指示所述第一候选PDCCH和所述第二候选PDCCH进行时隙间的PDCCH重复传输。
  8. 根据权利要求5至7中的任一项所述的方法,其特征在于,所述搜索空间集合偏移值为正整数。
  9. 一种物理下行控制信道PDCCH重复传输的方法,其特征在于,所述方法包括:
    接收第三配置信息和第四配置信息,所述第三配置信息指示第一搜索空间集合的第一时隙偏移值,所述第四配置信息指示第二搜索空间集合的第二时隙偏移值,所述第一搜索空间集合和所述第二搜索空间集合的周期相同,所述第一时隙偏移值为所述第一搜索空间集合相对于所述第一搜索空间集合的周期的起始时隙的时隙偏移,所述第二时隙偏移值为所述第二搜索空间集合相对于所述第二搜索空间集合的周期的起始时隙的时隙偏移;
    根据所述第一时隙偏移值和所述第二时隙偏移值,确定参考搜索空间集合;
    监听所述参考搜索空间集合中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时隙偏移值小于所述第二时隙偏移值,则所述参考搜索空间集合为所述第一搜索空间集合;或
    所述第一时隙偏移值大于所述第二时隙偏移值,则所述参考搜索空间集合为所述第二搜索空间集合。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。
  12. 一种物理下行控制信道PDCCH重复传输的方法,其特征在于,所述方法包括:
    接收第一索引指示信息和第二索引指示信息,所述第一索引指示信息指示第一搜索空间集合的第一索引,所述第二索引指示信息指示第二搜索空间集合的第二索引,所述第一搜索空间集合和所述第二搜索空间集合的周期相同;
    根据所述第一索引和所述第二索引,确定参考搜索空间集合;
    监听所述参考搜索空间集合中的第三候选PDCCH,或者,监听所述第三候选PDCCH和第三搜索空间集合中的第四候选PDCCH,所述第三搜索空间集合为所述第一搜索空间集合和所述第二搜索空间集合中除所述参考搜索空间集合之外的搜索空间集合,其中,所述第三候选PDCCH和所述第四候选PDCCH用于传输相同的PDCCH。
  13. 根据权利要求12所述的方法,其特征在于,所述第一索引小于所述第二索引,则所述参考搜索空间集合为所述第一搜索空间集合;或
    所述第一索引大于所述第二索引,则所述参考搜索空间集合为所述第二搜索空间集合。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一搜索空间集合对应的第一时隙偏移值和所述第二搜索空间集合对应的第二时隙偏移值不同,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。
  15. 根据权利要求12或13所述的方法,其特征在于,所述第一搜索空间集合对应的第一时隙偏移值和所述第二搜索空间集合对应的第二时隙偏移值相同,所述方法还包括:
    接收第一配置信息,所述第一配置信息指示所述第三候选PDCCH和所述第四候选PDCCH进行时隙间的PDCCH重复传输;
    其中,所述第四候选PDCCH所在的时隙在所述第三候选PDCCH所在的时隙之后、且所述第四候选PDCCH为所述第三搜索空间集合中距离所述第三候选PDCCH所在的时隙最近的时隙上的候选PDCCH。
  16. 一种通信装置,包括用于执行如权利要求1至15中的任一项所述方法的模块。
  17. 一种通信装置,包括与存储器耦合的处理器,所述处理器用于执行如权利要求1至15中任一项所述方法。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至15中的任一项所述的方法。
PCT/CN2022/082977 2021-04-06 2022-03-25 物理下行控制信道重复传输的方法及通信装置 WO2022213821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110371412.6A CN115189852A (zh) 2021-04-06 2021-04-06 物理下行控制信道重复传输的方法及通信装置
CN202110371412.6 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213821A1 true WO2022213821A1 (zh) 2022-10-13

Family

ID=83511438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082977 WO2022213821A1 (zh) 2021-04-06 2022-03-25 物理下行控制信道重复传输的方法及通信装置

Country Status (2)

Country Link
CN (1) CN115189852A (zh)
WO (1) WO2022213821A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092697A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质
CN111757435A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种无线通信的方法、终端设备及网络设备
WO2021007759A1 (zh) * 2019-07-15 2021-01-21 Oppo广东移动通信有限公司 控制信道的传输方法、装置及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757435A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种无线通信的方法、终端设备及网络设备
WO2021007759A1 (zh) * 2019-07-15 2021-01-21 Oppo广东移动通信有限公司 控制信道的传输方法、装置及存储介质
CN111092697A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP for reliability and robustness in Rel-17", 3GPP DRAFT; R1-2100209, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970841 *
MODERATOR (QUALCOMM): "Discussion Summary for mTRP PDCCH Reliability Enhancements", 3GPP DRAFT; R1-2101838, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 29 January 2021 (2021-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975934 *

Also Published As

Publication number Publication date
CN115189852A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
US11296855B2 (en) Communication method, terminal device, and network device
US20230038936A1 (en) Control information transmission method
JP2022511201A (ja) 信号の送信に関与するユーザ機器およびネットワークノード
US20230328704A1 (en) Method and apparatus for allocating frequency resources in wireless communication system
TW201517674A (zh) 控制通道配置方法與控制通道搜尋方法及其通信裝置
US11139912B2 (en) Method and apparatus for repetition-based data transmission for network cooperative communication
WO2020143558A1 (zh) 信道测量方法和装置
US12088527B2 (en) Communication method and apparatus
WO2020164116A1 (zh) 下行数据传输方法及相关产品
TWI758126B (zh) 延遲減少之多傳輸及接收點(trp)冗餘及軟結合
US20220394743A1 (en) Method and apparatus for transmitting data for wireless communication
US20220330291A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
US12063648B2 (en) Data transmission method and communication apparatus
CN112218375A (zh) 确定资源分配的方法和装置
CN110035524B (zh) 一种通信方法及上行资源确定方法
WO2023185433A1 (zh) 通信方法和通信装置
KR20220136788A (ko) 네트워크 협력 통신에서 하향링크 제어정보 반복 전송 방법 및 장치
WO2020143813A1 (zh) 传输信息的方法和装置
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
JP2022511202A (ja) Nrにおけるマルチtrp送信における複数のpucchを用いたharq-ack処理
WO2022213821A1 (zh) 物理下行控制信道重复传输的方法及通信装置
KR20230160396A (ko) 통신 방법 및 통신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783888

Country of ref document: EP

Kind code of ref document: A1