WO2024066472A1 - Procédé de compensation d'erreur pour signal sinus-cosinus, et support de stockage - Google Patents

Procédé de compensation d'erreur pour signal sinus-cosinus, et support de stockage Download PDF

Info

Publication number
WO2024066472A1
WO2024066472A1 PCT/CN2023/099490 CN2023099490W WO2024066472A1 WO 2024066472 A1 WO2024066472 A1 WO 2024066472A1 CN 2023099490 W CN2023099490 W CN 2023099490W WO 2024066472 A1 WO2024066472 A1 WO 2024066472A1
Authority
WO
WIPO (PCT)
Prior art keywords
sine
cosine
signal
sin
error
Prior art date
Application number
PCT/CN2023/099490
Other languages
English (en)
Chinese (zh)
Inventor
申春明
李佰鹤
孙立强
Original Assignee
长春汇通光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春汇通光电技术有限公司 filed Critical 长春汇通光电技术有限公司
Publication of WO2024066472A1 publication Critical patent/WO2024066472A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders

Definitions

  • the present application relates to the technical field of encoders, and in particular to a sine and cosine signal error compensation method and storage medium.
  • the original sine-cosine signal is generated by the relative position change of the photocell and the code disk, which includes a set of sine-cosine signals with higher resolution, such as 2048 pulses per circle, and a sine-cosine signal with one cycle generated per rotation of the encoder.
  • This original sine-cosine signal is generally used in the subsequent circuit to adjust the amplitude and offset of the signal, such as through a potentiometer or other programmable device.
  • the disadvantage of the above scheme is that if the output signal of the encoder is adjusted by some programmable devices, the amplitude, offset and phase difference of the sine-cosine signal can generally be adjusted, but the adjustable range is also very limited. Therefore, how to accurately compensate the error of the sine-cosine signal generated by the encoder without relying on external correction equipment has become a problem to be solved.
  • the main purpose of the present application is to provide a method and storage medium for error compensation of sine and cosine signals, aiming to solve the technical problem of how to accurately compensate for the errors of sine and cosine signals generated by an encoder without relying on external correction equipment.
  • the present application provides a method for compensating errors of sine and cosine signals, and the method for compensating errors of sine and cosine signals comprises the following steps:
  • the error correction parameter set includes error correction parameters pre-determined based on incremental sine-cosine signals, zero position signals, and absolute sine-cosine signals generated by one rotation of the sine-cosine encoder;
  • the initial absolute sin-cos signal is error compensated according to the error correction parameter set to obtain a target sin-cos signal, and the target sin-cos signal is used to determine the current position information of the sin-cos encoder.
  • the method before acquiring the error correction parameter set, the method further includes:
  • the error correction parameter set is determined based on the incremental sin-cos signals, the zero position signal and the absolute sin-cos signals.
  • the step of determining the error correction parameter set according to the incremental sin-cos signals, the zero position signal and the absolute sin-cos signals comprises:
  • the error correction parameter set is generated based on the error data of the second single-turn absolute position.
  • the step of determining the first single-turn absolute position according to the incremental sine and cosine signals and the zero position signal comprises:
  • the first single-turn absolute position is determined according to the counting result.
  • the error correction parameter set includes multiple groups of error correction parameters, each group of error correction parameters includes sine and cosine signal amplitudes and corresponding angle errors, or each group of error correction parameters includes sine and cosine signal angle values and corresponding angle errors.
  • the method further comprises:
  • the error correction parameter set is stored at a preset location in a memory in the sine-cosine encoder.
  • the step of performing error compensation on the initial absolute sin-cosine signal according to the error correction parameter set to obtain a target sin-cosine signal, wherein the target sin-cosine signal is used to determine the current position information of the sin-cosine encoder comprises:
  • the initial absolute sine and cosine signals are error compensated according to the angle error to obtain target sine and cosine signals, and the target sine and cosine signals are used to determine the current position information of the sine and cosine encoder.
  • the step of performing error compensation on the initial absolute sin-cosine signal according to the error correction parameter set to obtain a target sin-cosine signal, wherein the target sin-cosine signal is used to determine the current position information of the sin-cosine encoder comprises:
  • the initial absolute sine and cosine signals are error compensated according to the angle error to obtain target sine and cosine signals, and the target sine and cosine signals are used to determine the current position information of the sine and cosine encoder.
  • the method further includes:
  • the error correction parameter set is updated according to the current error correction parameter set.
  • the present application also proposes a storage medium, on which an error compensation program for sine and cosine signals is stored.
  • the error compensation program for sine and cosine signals is executed by a processor, the steps of the error compensation method for sine and cosine signals as described above are implemented.
  • the present application acquires the initial absolute sine-cosine signal generated by the sine-cosine encoder at the current moment, and then acquires the error correction parameter set, the error correction parameter set includes the error correction parameters determined in advance according to the incremental sine-cosine signal, the zero position signal and the absolute sine-cosine signal generated by the sine-cosine encoder rotating one circle, and then performs error compensation on the initial absolute sine-cosine signal according to the error correction parameter set to obtain the target sine-cosine signal, which is used to determine the current position information of the sine-cosine encoder.
  • the present application acquires the initial absolute sine-cosine signal generated by the sine-cosine encoder at the current moment, and then acquires the error correction parameter set, the error correction parameter set may include parameters for error correction of the absolute sine-cosine signal, and then performs error compensation on the initial absolute sine-cosine signal according to the parameters in the error correction parameter set.
  • the above-mentioned method of the present application can perform error compensation on the initial absolute sine-cosine signal according to the error correction parameter set, so that the sine-cosine signal generated by the encoder can be accurately compensated for without relying on external correction equipment, and the fixed error of the sine-cosine encoder can be corrected.
  • FIG1 is a flow chart of a first embodiment of a method for compensating errors of sine and cosine signals of the present application
  • FIG2 is a waveform diagram of sine and cosine signals according to an embodiment of a method for compensating sine and cosine signals of the present application
  • FIG3 is a flow chart of a second embodiment of a method for compensating errors of sine and cosine signals of the present application
  • FIG4 is a schematic diagram of the internal structure of a sine-cosine encoder according to an embodiment of a method for error compensation of sine-cosine signals of the present application;
  • FIG. 5 is a flow chart of a third embodiment of a method for compensating errors of sine and cosine signals of the present application.
  • FIG. 1 is a flow chart of a first embodiment of the method for compensating errors of sine and cosine signals of the present application.
  • the error compensation method of the sine and cosine signals includes the following steps:
  • Step S10 collecting the initial absolute sine and cosine signals generated by the sine and cosine encoder at the current moment.
  • the execution subject of this embodiment can be a computing service device with data processing, network communication and program running functions, such as a central processing unit (CPU), a personal computer, etc., or an electronic device capable of realizing the above functions or a sine and cosine signal error compensation device.
  • the CPU is taken as an example to illustrate this embodiment and the following embodiments.
  • the sine-cosine encoder is an incremental encoder with analog output, and its output is a sine-cosine signal.
  • Figure 2 is a waveform diagram of the sine-cosine signal of an embodiment of the error compensation method of the sine-cosine signal of the present application.
  • the sine-cosine signal in this embodiment may include an incremental sine-cosine signal (A, B) that generates multiple cycles (for example, 2048 cycles) in one circle, a zero position signal (Z) that generates a pulse in one circle, and an absolute sine-cosine signal (C, D) that generates one cycle in one circle.
  • the A, B, C, D, and Z signals output by the sine-cosine encoder are generated by corresponding code channels engraved on the corresponding code disk and equipped with corresponding photocell chips.
  • the sine-cosine encoder in this embodiment may include a photocell chip and a code disk.
  • the sine-cosine signal refers to the signal generated by the photocell chip.
  • the sine-cosine signal may include an incremental sine-cosine signal, a zero-position signal and an absolute sine-cosine signal.
  • the initial absolute sine-cosine signal refers to the absolute sine-cosine signal generated by the photocell chip inside the sine-cosine encoder at the current moment, and the initial absolute sine-cosine signal is collected after the sine-cosine encoder leaves the factory.
  • Step S20 Acquire an error correction parameter set, wherein the error correction parameter set includes error correction parameters that are pre-determined based on incremental sine-cosine signals, zero position signals, and absolute sine-cosine signals generated when the sine-cosine encoder rotates one circle.
  • the error correction parameters can be determined and stored before the sine-cosine encoder leaves the factory, or can be determined and stored after the sine-cosine encoder leaves the factory.
  • the specific parameters can be selected according to actual needs, and this embodiment does not impose specific restrictions on this.
  • the error correction parameter set can be determined in advance based on the incremental sin-cosine signal, zero position signal and absolute sin-cosine signal generated by one rotation of the sin-cosine encoder.
  • the error correction parameter set may include error correction parameters corresponding to the absolute sin-cosine signal, so that the initial absolute sin-cosine signal can be error compensated according to the error correction parameters corresponding to the absolute sin-cosine signal.
  • Step S30 performing error compensation on the initial absolute sin-cosine signal according to the error correction parameter set to obtain a target sin-cosine signal, wherein the target sin-cosine signal is used to determine the current position information of the sin-cosine encoder.
  • the error correction parameter set may include the error correction parameters corresponding to the absolute sin-cosine signal to perform error compensation on the initial absolute sin-cosine signal.
  • a specific error compensation method may be to obtain the error correction parameters corresponding to the absolute sin-cosine signal from the error correction parameter set, and then adjust the initial absolute sin-cosine signal according to the error correction parameters to obtain the target sin-cosine signal.
  • the corrected target sin-cosine signal can be used to determine the current position information of the sin-cosine encoder, thereby making the determined position information more accurate.
  • a target sin-cosine signal can be obtained.
  • the target sin-cosine signal can include an incremental sin-cosine signal generated by the sin-cosine encoder at the current moment, a zero-position sin-cosine signal, and a compensated absolute sin-cosine signal.
  • the above-mentioned target sin-cosine signal may also only include the corrected absolute sin-cosine signal, which can be determined based on actual needs, and the embodiments of this specification are not limited to this.
  • the initial absolute sin-cosine signal generated by the sin-cosine encoder at the current moment is collected, and then an error correction parameter set is obtained, wherein the error correction parameter set includes error correction parameters determined in advance according to the incremental sin-cosine signal, the zero position signal and the absolute sin-cosine signal generated by the sin-cosine encoder rotating one circle, and then the initial absolute sin-cosine signal is error compensated according to the error correction parameter set to obtain the target sin-cosine signal, which is used to determine the current position information of the sin-cosine encoder.
  • the initial absolute sin-cosine signal generated by the sin-cosine encoder at the current moment is collected, and then an error correction parameter set is obtained, wherein the error correction parameter set may include parameters for error correction of the absolute sin-cosine signal, and then the initial absolute sin-cosine signal is error compensated according to the parameters in the error correction parameter set.
  • the above method of this embodiment can perform error compensation on the initial absolute sin-cosine signal according to the error correction parameter set, so that the sin-cosine signal generated by the encoder can be accurately error compensated without relying on external correction equipment, and the fixed error of the sin-cosine encoder can be corrected.
  • FIG. 4 is a flow chart of a second embodiment of a method for compensating errors of sine and cosine signals of the present application.
  • step S20 the following is further included:
  • Step S01 Acquire incremental sine and cosine signals, zero position signals and absolute sine and cosine signals generated by one rotation of the sine and cosine encoder;
  • the error correction parameter set can be obtained before the sine-cosine encoder leaves the factory.
  • the incremental sine-cosine signal, the zero position signal and the absolute sine-cosine signal generated by one rotation of the sine-cosine encoder can be obtained.
  • the incremental sine and cosine signals, the zero position signal and the absolute sine and cosine signals can be generated by the photocell chip inside the sine and cosine encoder.
  • the incremental sine and cosine signals are the sine and cosine signals (A, B) in Figure 2
  • the zero position signal is the Z signal in Figure 2
  • the absolute sine and cosine signals are the sine and cosine signals (C, D) in Figure 2.
  • Step S02 determining an error correction parameter set according to the incremental sin-cos signals, the zero position signal and the absolute sin-cos signals.
  • the error correction parameter set can be determined based on the incremental sin-cosine signal (A, B), the zero-position sin-cosine signal (Z) and the absolute sin-cosine signal (C, D).
  • the specific method can be to determine the error of the absolute sin-cosine signal based on the incremental sin-cosine signal and the zero-position signal to obtain the error correction parameter set.
  • Figure 4 is a schematic diagram of the internal structure of a sine-cosine encoder according to an embodiment of the error compensation method for sine-cosine signals of the present application.
  • the A, B, C, D, and Z signals output by the sine-cosine encoder are generated by corresponding code channels engraved on the corresponding code disk and equipped with corresponding photocell chips.
  • the original signals (A+, A-, B+, B-, Z+, Z-, C+, C-, D+, and D-) output by the photocell chip can be input into an external CPU, and then after error compensation, the corresponding A1+, A1-, B1+, B1-, Z1+, Z1-, C1+, C1-, D1+, and D 1-, then convert C1+, C1-, D1+, D1- into differential signals through C and D to get C2+, C2-, D2+, D2-.
  • the method may further include: storing the error correction parameter set at a preset position of a memory in the sine-cosine encoder.
  • the error correction parameter set can be stored in a preset position of the memory in the sine-cosine encoder, such as the EEPROM in FIG4 , or can be stored in other memories, such as flash ROM, CPU internal memory, NVRAN and other memories.
  • the external CPU can be replaced by other operation processing units for sampling, calculation and output, such as FPGA, CPLD, MCU and other units capable of data acquisition and processing.
  • step S30 it can also include: when the current position information does not meet the preset position condition, obtaining the current incremental sin-cosine signal, the current zero position signal and the current absolute sin-cosine signal generated by the sin-cosine encoder rotating one circle at the current moment; determining the current error correction parameter set according to the current incremental sin-cosine signal, the current zero position signal and the current absolute sin-cosine signal; and updating the error correction parameter set according to the current error correction parameter set.
  • this embodiment also needs to update the error correction parameter set after the sine-cosine encoder leaves the factory, that is, after use, so as to compensate for the error of the absolute sine-cosine signal generated by the sine-cosine encoder according to the updated error correction parameter set.
  • the preset position condition may be a pre-set position condition, for example: when there is a large difference between the absolute sine-cosine signal generated by the sine-cosine encoder at the current moment and the absolute sine-cosine signal generated by the sine-cosine encoder for the first time, or when the actual error of the absolute sine-cosine signal of the sine-cosine encoder at the current moment is greater than a certain threshold than the theoretical error recorded in the error correction parameter set, the error correction parameter set needs to be updated.
  • the above-mentioned preset position condition may also be other possible conditions, which may be determined according to actual needs and actual conditions, and the embodiments of this specification do not limit this.
  • the sine-cosine encoder when the error correction parameter set is updated, can be controlled to rotate at a low speed for one circle. At this time, it is necessary to obtain the current incremental sine-cosine signal, the current zero-position signal and the current absolute sine-cosine signal generated by the sine-cosine encoder at the current moment, and then determine the current error correction parameter set based on the current incremental sine-cosine signal, the zero-position signal and the current absolute sine-cosine signal.
  • the specific determination of the current error correction parameter set is basically consistent with the above-mentioned method of determining the error correction parameter set, and this embodiment will not elaborate on this.
  • the error correction parameter set is updated according to the current error correction parameter set, that is, the error correction parameter set is replaced with the current error correction parameter set, and error compensation can be performed according to the current error correction parameter set during the subsequent use of the sine-cosine encoder.
  • This embodiment obtains the incremental sine-cosine signal, the zero position signal and the absolute sine-cosine signal generated by one rotation of the sine-cosine encoder, and then determines the error correction parameter set according to the incremental sine-cosine signal, the zero position signal and the absolute sine-cosine signal.
  • This embodiment determines the error correction parameter set according to the incremental sine-cosine signal, the zero position signal and the absolute sine-cosine signal, and can determine the error correction parameter set without relying on an external correction device, and then performs error compensation on the initial absolute sine-cosine signal, so that the error compensation of the sine-cosine signal generated by the encoder can be accurately performed.
  • FIG. 5 is a flow chart of a third embodiment of a method for compensating errors of sine and cosine signals of the present application.
  • step S02 includes:
  • Step S021 determining a first single-turn absolute position according to the incremental sine and cosine signals and the zero position signal.
  • the first single-turn absolute position can be determined according to the incremental sine and cosine signals and the zero position signal, the incremental sine and cosine signals refer to A+, A-, B+, B- signals, and the zero position signal refers to Z+, Z- signals.
  • the step S021 may include: determining the single-turn zero position signal of the sine-cosine encoder according to the zero position signal; performing period counting of the incremental signal according to the single-turn zero position signal to obtain a counting result; and determining the first single-turn absolute position according to the counting result.
  • the zero position signal that is, the Z signal, can generate a pulse when the sine-cosine encoder rotates one circle. Therefore, the single-turn zero position signal can be used to determine whether the sine-cosine encoder will perform the next circle.
  • the incremental sine and cosine signals between one single-turn zero position signal and the next single-turn zero position signal i.e., A+, A-, B+, and B- signals
  • A+, A-, B+, and B- signals can be obtained, and then the A signal and the B signal are obtained, where the A signal is the A+ signal minus the A- signal, and the B signal is the B+ signal minus the B- signal.
  • the incremental sine and cosine signals can be cycle counted, that is, the number of cycles in the A signal and the B signal.
  • Step S022 Determine a second single-turn absolute position according to the absolute sine and cosine signals.
  • the second single-turn absolute position may be an absolute position determined by using the absolute sine and cosine signals output by the encoder, that is, C+, C ⁇ , D+, and D ⁇ signals.
  • the second single-turn absolute position can be determined according to the sine value and cosine value in the absolute sine and cosine signals.
  • the C signal and the D signal can be determined according to the C+, C-, D+, and D- signals.
  • the C signal is the C+ signal minus the C- signal
  • the D signal is the D+ signal minus the D- signal.
  • the cosine value in the absolute sine and cosine signals is the value in the C signal;
  • the cosine value in the absolute sine and cosine signals is the value in the D signal, and the tangent value is the sine value/cosine value.
  • Step S023 Determine error data of the second single-turn absolute position based on the first single-turn absolute position.
  • the first single-turn absolute position can be used as the theoretical value, and based on this, the error compensation of the second single-turn position is performed, so that the error data can be determined more conveniently.
  • the error data corresponding to the second single-turn absolute position can be determined based on the first single-turn absolute position.
  • the first single-turn absolute position corresponding to the same voltage amplitude (such as 0V) is 180 degrees, and the second single-turn absolute position is 181 degrees.
  • the error data is determined to be -1 degree.
  • the error correction parameter set can store: when the second single-turn absolute position is 181 degrees, the corresponding error data is -1 degree; or, the error at 0V is -1 degree; or, the error curve or error formula obtained by fitting the single-turn error data can be stored in the error correction parameter set for correction.
  • the specific can be determined according to the actual situation, and this specification does not limit this.
  • Step S024 generating the error correction parameter set based on the error data of the second single-turn absolute position.
  • the error correction parameter set in this embodiment may include position deviations corresponding to all second single-turn absolute positions.
  • the error correction parameter set includes multiple groups of error correction parameters, each group of error correction parameters includes the amplitude of the sine and cosine signals and the corresponding angle error, or each group of error correction parameters includes the angle value of the sine and cosine signals and the corresponding angle error.
  • the error correction parameter set may include the sine and cosine signal angle values and the corresponding angle errors, that is, the above-mentioned second single-turn absolute position and the corresponding error data.
  • each set of error correction parameter sets may also include the sine and cosine signal amplitudes and corresponding angular errors, that is, each signal amplitude will have a corresponding angular error.
  • the corresponding angle should be 90 degrees.
  • the sine and cosine encoder is produced before leaving the factory, when the signal amplitude is 4, the measured angle is 89 degrees. At this time, the angular error corresponding to the sine and cosine signal amplitude is +1 degree.
  • the step S30 may include: obtaining the signal angle corresponding to the initial absolute sin-cosine signal; selecting the angle error corresponding to the signal angle from the error correction parameter set; performing error compensation on the initial absolute sin-cosine signal according to the angle error to obtain a target sin-cosine signal, and the target sin-cosine signal is used to determine the current position information of the sin-cosine encoder.
  • the corresponding second single-turn absolute position can be obtained according to the C and D signals in the absolute sine and cosine signals.
  • the corresponding angle error can be selected from the error correction parameter set according to the second single-turn absolute position. For example, when the second single-turn absolute position is 181 degrees, the angle error is -1 degree.
  • the initial absolute sine and cosine signals can be error compensated. For example, when the angle error is -1 degree, the C signal and D signal corresponding to the angle error are both processed by -1 degree. After error compensation is performed on each signal angle, the entire initial absolute sine and cosine signal can be error compensated to obtain the target sine and cosine signals.
  • the step S30 may include: obtaining the signal amplitude corresponding to the initial absolute sin-cosine signal; selecting the angle error corresponding to the signal amplitude from the error correction parameter set; performing error compensation on the initial absolute sin-cosine signal according to the angle error to obtain a target sin-cosine signal, and the target sin-cosine signal is used to determine the current position information of the sin-cosine encoder.
  • error compensation can also be performed based on the amplitude of the sine and cosine signals.
  • the corresponding angle error is selected from the error correction parameter set. For example, when the signal amplitude is 4, the angle error is +1 degree.
  • the initial absolute sine and cosine signals can be error compensated. For example, when the angle error is +1 degree, the C signal and D signal corresponding to the angle error are both processed by +1 degree. After the error compensation is performed on the amplitude of each signal, the error compensation can be performed on the entire initial absolute sine and cosine signal to obtain the target sine and cosine signals.
  • this embodiment can also be applied to output signals (A+, A-, B+, B-) that are square waves, and the above solution can also be used to improve the accuracy of the encoder.
  • This embodiment determines the first single-turn absolute position according to the incremental sine-cosine signal and the zero-position signal, and then determines the second single-turn absolute position according to the absolute sine-cosine signal, and then determines the error data of the second single-turn absolute position based on the first single-turn absolute position, and then generates an error correction parameter set based on the error data of the second single-turn absolute position.
  • This embodiment determines the error correction parameter set according to the first single-turn absolute position and the second single-turn absolute position, and can perform error compensation on the second single-turn absolute position based on the first single-turn absolute position, so that the error compensation of the sine-cosine signal generated by the encoder can be accurately performed without relying on external correction equipment.
  • an embodiment of the present application further proposes a storage medium, on which an error compensation program for sine and cosine signals is stored.
  • the error compensation program for sine and cosine signals is executed by a processor, the steps of the error compensation method for sine and cosine signals described above are implemented.
  • the technical solution of the present application can be embodied in the form of a software product, which is stored in a storage medium (such as a read-only memory/random access memory, a disk, or an optical disk), and includes a number of instructions for a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as a read-only memory/random access memory, a disk, or an optical disk
  • a terminal device which can be a mobile phone, a computer, a server, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention concerne un procédé de compensation d'erreur pour un signal sinus-cosinus, lequel procédé est appliqué à un codeur sinus-cosinus. Le procédé consiste à : collecter un signal sinus-cosinus absolu initial, qui est généré par un codeur sinus-cosinus au moment actuel (S10) ; acquérir un ensemble de paramètres de correction d'erreur, l'ensemble de paramètres de correction d'erreur comprenant des paramètres de correction d'erreur déterminés à l'avance selon un signal sinus-cosinus incrémentiel, un signal de position zéro et un signal sinus-cosinus absolu, qui sont générés au moyen d'une rotation du codeur sinus-cosinus (S20) ; et réaliser une compensation d'erreur sur le signal sinus-cosinus absolu initial selon l'ensemble de paramètres de correction d'erreur, de façon à obtenir un signal sinus-cosinus cible, le signal sinus-cosinus cible étant utilisé pour déterminer des informations de position actuelle du codeur sinus-cosinus (S30). L'invention divulgue en outre un support de stockage.
PCT/CN2023/099490 2022-09-28 2023-06-09 Procédé de compensation d'erreur pour signal sinus-cosinus, et support de stockage WO2024066472A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211194356.4 2022-09-28
CN202211194356.4A CN115388930A (zh) 2022-09-28 2022-09-28 正余弦信号的误差补偿方法及存储介质

Publications (1)

Publication Number Publication Date
WO2024066472A1 true WO2024066472A1 (fr) 2024-04-04

Family

ID=84129258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099490 WO2024066472A1 (fr) 2022-09-28 2023-06-09 Procédé de compensation d'erreur pour signal sinus-cosinus, et support de stockage

Country Status (2)

Country Link
CN (1) CN115388930A (fr)
WO (1) WO2024066472A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388930A (zh) * 2022-09-28 2022-11-25 长春汇通光电技术有限公司 正余弦信号的误差补偿方法及存储介质
CN116046044B (zh) * 2022-12-29 2024-02-23 苏州汇川技术有限公司 误差校正方法、终端设备及计算机可读存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709983A (zh) * 2009-10-30 2010-05-19 大连光洋科技工程有限公司 正余弦编码器在线实际误差补偿系统
CN101718976A (zh) * 2009-10-30 2010-06-02 大连科德数控有限公司 一种加工中心实现双主轴同步的结构
CN101726320A (zh) * 2009-10-30 2010-06-09 大连光洋科技工程有限公司 正余弦输出型编码器本身精度补偿系统
CN201548256U (zh) * 2009-10-30 2010-08-11 大连光洋科技工程有限公司 正余弦编码器精度补偿装置
CN102564462A (zh) * 2011-12-27 2012-07-11 华中科技大学 一种正余弦编码器的误差补偿装置
JP2014013209A (ja) * 2012-07-05 2014-01-23 Keihin Corp 角度検出装置
CN109945819A (zh) * 2019-04-08 2019-06-28 中国科学院电工研究所 一种永磁同步电机转子位置测量方法
RU2741075C1 (ru) * 2020-05-26 2021-01-22 Общество с Ограниченной Ответственностью "ИДМ-Плюс" Следящий синусно-косинусный преобразователь угла в код со встроенной цифровой коррекцией ошибки преобразования
CN112985325A (zh) * 2021-04-21 2021-06-18 天津飞旋科技股份有限公司 正余弦编码器的位置解码方法、装置及计算机可读介质
CN113091774A (zh) * 2021-03-17 2021-07-09 陈权 一种基于绝对值编码器的正余弦编码方法
US20220024517A1 (en) * 2019-01-22 2022-01-27 Mitsubishi Electric Corporation Rotation angle detection device, and electric power steering device including same rotation angle detection device
CN114396967A (zh) * 2021-11-30 2022-04-26 浙江西子富沃德电机有限公司 正余弦编码器及其信号处理方法、电梯控制系统
CN217424403U (zh) * 2021-11-30 2022-09-13 浙江西子富沃德电机有限公司 正余弦编码器的误差补偿电路和正余弦编码器
CN115388930A (zh) * 2022-09-28 2022-11-25 长春汇通光电技术有限公司 正余弦信号的误差补偿方法及存储介质

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718976A (zh) * 2009-10-30 2010-06-02 大连科德数控有限公司 一种加工中心实现双主轴同步的结构
CN101726320A (zh) * 2009-10-30 2010-06-09 大连光洋科技工程有限公司 正余弦输出型编码器本身精度补偿系统
CN201548256U (zh) * 2009-10-30 2010-08-11 大连光洋科技工程有限公司 正余弦编码器精度补偿装置
CN101709983A (zh) * 2009-10-30 2010-05-19 大连光洋科技工程有限公司 正余弦编码器在线实际误差补偿系统
CN102564462A (zh) * 2011-12-27 2012-07-11 华中科技大学 一种正余弦编码器的误差补偿装置
JP2014013209A (ja) * 2012-07-05 2014-01-23 Keihin Corp 角度検出装置
US20220024517A1 (en) * 2019-01-22 2022-01-27 Mitsubishi Electric Corporation Rotation angle detection device, and electric power steering device including same rotation angle detection device
CN109945819A (zh) * 2019-04-08 2019-06-28 中国科学院电工研究所 一种永磁同步电机转子位置测量方法
RU2741075C1 (ru) * 2020-05-26 2021-01-22 Общество с Ограниченной Ответственностью "ИДМ-Плюс" Следящий синусно-косинусный преобразователь угла в код со встроенной цифровой коррекцией ошибки преобразования
CN113091774A (zh) * 2021-03-17 2021-07-09 陈权 一种基于绝对值编码器的正余弦编码方法
CN112985325A (zh) * 2021-04-21 2021-06-18 天津飞旋科技股份有限公司 正余弦编码器的位置解码方法、装置及计算机可读介质
CN114396967A (zh) * 2021-11-30 2022-04-26 浙江西子富沃德电机有限公司 正余弦编码器及其信号处理方法、电梯控制系统
CN217424403U (zh) * 2021-11-30 2022-09-13 浙江西子富沃德电机有限公司 正余弦编码器的误差补偿电路和正余弦编码器
CN115388930A (zh) * 2022-09-28 2022-11-25 长春汇通光电技术有限公司 正余弦信号的误差补偿方法及存储介质

Also Published As

Publication number Publication date
CN115388930A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024066472A1 (fr) Procédé de compensation d'erreur pour signal sinus-cosinus, et support de stockage
US7496462B2 (en) Encoding signal processing device and signal processing method therefor
CN104038134B (zh) 一种基于线性霍尔的永磁同步电机转子位置误差校正方法
US9857203B2 (en) Resolver device
CN103837169A (zh) 用于磁电编码器的自校正装置和方法以及磁电编码器
CN1712889A (zh) 编码器及其信号调整方法
CN109000702A (zh) 编码器校正系统及方法
CN115355937B (zh) 磁性编码器的自校准方法及电机
JP2005257565A (ja) レゾルバディジタル角度変換装置および方法ならびにプログラム
CN114003045A (zh) 一种光电跟踪仪的目标跟踪方法、终端、可读存储介质
CN116358619B (zh) 信号误差修调方法、磁性编码器及光学编码器
US10761507B2 (en) Instant correction method for encoder and system thereof
Linxiang et al. Full-harmonic error separation technique
JP2839341B2 (ja) 位置信号の校正装置
CN111089610A (zh) 一种编码器的信号处理方法、装置及相关组件
CN115940726A (zh) 改善电机参数辨识动态性能的方法、系统、设备及介质
CN115459773A (zh) 一种旋转变压器vadc采样信号处理方法及模型
Shen et al. High-precision magnetic encoder module design based on real-time error compensation algorithm
CN112873209A (zh) 定位传感器时延标定方法、装置、计算机设备及存储介质
JP3092100B2 (ja) 誤差補正機能付き位置検出装置
CN111207723B (zh) 一种差分式圆感应同步器的解调方法
CN112067218B (zh) 一种光学防抖振动发生器的实现方法、装置及设备
JPS62172218A (ja) レゾルバ/デジタル・コンバ−タによる位置検出方法
CN117885136A (zh) 舵机的位置校准方法、装置及可转动设备
TWI664823B (zh) 用於編碼器之即時校正方法及其系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869721

Country of ref document: EP

Kind code of ref document: A1