WO2024066458A1 - 燃气管道天然气掺氢浓度的测量方法以及设备 - Google Patents

燃气管道天然气掺氢浓度的测量方法以及设备 Download PDF

Info

Publication number
WO2024066458A1
WO2024066458A1 PCT/CN2023/098785 CN2023098785W WO2024066458A1 WO 2024066458 A1 WO2024066458 A1 WO 2024066458A1 CN 2023098785 W CN2023098785 W CN 2023098785W WO 2024066458 A1 WO2024066458 A1 WO 2024066458A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
natural gas
density
pipeline
Prior art date
Application number
PCT/CN2023/098785
Other languages
English (en)
French (fr)
Inventor
曹晖
王进
商麟隽
戴晓娇
唐坚
朱从荣
张海喆
金琦
孙洪涛
Original Assignee
上海飞奥燃气设备有限公司
上海航天能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞奥燃气设备有限公司, 上海航天能源股份有限公司 filed Critical 上海飞奥燃气设备有限公司
Publication of WO2024066458A1 publication Critical patent/WO2024066458A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/12Arrangements for supervising or controlling working operations for injecting a composition into the line

Definitions

  • the invention belongs to the technical field of gas transportation, and in particular relates to a method and equipment for measuring the hydrogen-blended concentration of natural gas in a gas pipeline.
  • Natural gas hydrogen blending refers to injecting a certain proportion of hydrogen into natural gas to form a mixed gas (HCNG), which is one of the important directions of hydrogen energy utilization.
  • HCNG mixed gas
  • the significance of natural gas-hydrogen blending is:
  • the lean combustion limit of natural gas-hydrogen mixed fuel is wide, and lean combustion can be adopted, thereby improving thermal efficiency, reducing carbon emissions, and reducing NOx emissions, with obvious environmental value.
  • the natural gas-hydrogen mixed fuel method can utilize the existing relatively complete natural gas infrastructure and has huge practical market application value.
  • Hydrogen blending in gas pipelines is an effective way to quickly open up hydrogen storage and transportation.
  • hydrogen energy's safe, efficient and economical hydrogen transportation technology is one of the main bottlenecks for the large-scale application of hydrogen energy.
  • Pipeline hydrogen transportation has a large volume and low cost, but it requires the construction of a dedicated hydrogen pipeline. Due to the material, the cost of hydrogen pipelines is high, and the construction cost greatly hinders the large-scale application of hydrogen.
  • the large-scale natural gas pipeline network that has been built worldwide will inevitably become the preferred channel for efficient transmission and distribution of hydrogen.
  • Hydrogen blending in gas pipelines is highly in line with the strategic direction of the country's dual-carbon development, and will be one of the main ways to achieve my country's 3060 carbon peak and carbon neutrality. To this end, the concentration of hydrogen blending in natural gas in gas pipelines needs to be monitored during production.
  • the principle of the online gas chromatograph is to use nitrogen as a carrier gas and a packed column or a capillary column to separate the hydrogen-doped natural gas in the measured pipeline; due to the differences in boiling points, polarities and adsorption coefficients of the various components in the natural gas, the various components are separated in the chromatographic column, and the detector detects the various components in the order of separation, and sends the converted electrical signals to the chromatographic workstation; the chromatographic workstation records the gas chromatograms of the various components. The data is analyzed and compared with the calibrated hydrogen chromatographic column data of the corresponding concentration to obtain the analysis results of the hydrogen component.
  • One embodiment of the present invention is a method for measuring the concentration of hydrogen blended in natural gas in a gas pipeline.
  • a first gas density meter is set at a sampling position before the natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 1 is obtained from the first gas density meter.
  • a second gas densitometer is arranged at a sampling position after the natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 2 is obtained from the second gas densitometer.
  • FIG1 is a schematic diagram of a system for measuring hydrogen-blended concentration of natural gas in a gas pipeline according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a system for measuring hydrogen-blended concentration of natural gas in a gas pipeline according to one embodiment of the present invention.
  • FIG3 is a schematic diagram of a system for measuring hydrogen-blended concentration of natural gas in a gas pipeline according to one embodiment of the present invention.
  • test results of existing online gas chromatographs are relatively reliable, the test speed is still slow.
  • the general test cycle is more than 3-5 minutes, and the fastest chromatograph also takes more than 1 minute. This brings a certain lag to the automatic control of the natural gas hydrogen blending process, which may cause the hydrogen concentration in the natural gas to exceed the limit for a short time.
  • the gas chromatograph measurement method has a relatively high cost threshold, which is not conducive to the large-scale promotion of hydrogen energy utilization and hydrogen doping in the future.
  • the density ⁇ 1 and the density ⁇ 2 are obtained by:
  • a first gas densitometer is set at a sampling position before natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 1 is obtained from the first gas densitometer.
  • a second gas densitometer is set at a sampling position after natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 2 is obtained from the second gas densitometer.
  • a static mixer is provided at the gas pipeline where natural gas is mixed with hydrogen, and the input natural gas and hydrogen are input into the static mixer and mixed in the static mixer.
  • a gas chromatograph is also provided at the sampling position after natural gas is mixed with hydrogen in the gas pipeline.
  • the ⁇ H plan uses a hydrogen density database, which can automatically match relevant data based on the actual temperature data measured on site, improve measurement accuracy, and reduce calculation errors.
  • the disclosed embodiment adopts an indirect measurement method to determine the hydrogen concentration of natural gas in pipeline gas.
  • the specific method is to use a high-precision instrument to quickly measure the physical quantity or physical property change of the gas, combined with computer technology, and calculate the hydrogen concentration in the pipeline natural gas through a high-performance microprocessor calculation program, thereby shortening the cycle of hydrogen concentration measurement and improving the safety level of the pipeline gas hydrogen blending process.
  • pipeline natural gas is not a mixture of stable components, but in a certain period of time, before and after hydrogen blending, in addition to the addition of hydrogen, under normal temperature conditions, the natural gas components are relatively stable, the total mass and molar amount are conserved, and no chemical reaction occurs.
  • the actual concentration of hydrogen blended in the natural gas can be quickly calculated.
  • the measurement speed of the hydrogen concentration of natural gas can be greatly improved.
  • the feedback time can be achieved in seconds, which improves the self-control efficiency of the hydrogen blending process, reduces the probability of excessive hydrogen concentration in the natural gas hydrogen blending process, and reduces the safety risk of operating pipelines.
  • the control efficiency of the hydrogen blending process can be quickly provided, and the measurement cycle is reduced from no less than 2 minutes (60 seconds) to seconds, providing accurate gas density values, greatly improving the safety and reliability of the gas pipeline hydrogen blending process, and ensuring the feasibility of hydrogen transportation in existing gas pipelines.
  • a device for measuring the hydrogen blending concentration of natural gas in a gas pipeline comprising a first gas density meter, a second gas density meter and an electronic device.
  • a first gas density meter is set at a sampling position before natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 1 is obtained from the first gas density meter.
  • a second gas density meter is set at a sampling position after natural gas is mixed with hydrogen in the gas pipeline, and the density ⁇ 2 is obtained from the second gas density meter.
  • the electronic device includes a memory; and a processor coupled to the memory, the processor being configured to execute instructions stored in the memory, the processor performing the following operations:
  • the gas density meter here can be Emerson Micro Motion's gas density meter GDM5AAAC2Z1MZZZ.
  • a static mixer is provided at the place where natural gas is mixed with hydrogen in the gas pipeline, and the input natural gas and hydrogen are input into the static mixer and mixed in the static mixer to obtain a mixed gas.
  • a gas chromatograph is also provided at the sampling position after the natural gas is mixed with hydrogen in the gas pipeline, and the output result of the gas chromatograph is input into the electronic device.
  • the density of the gas in the pipeline is tested once before and after the natural gas is blended with hydrogen.
  • a gas density meter is installed directly on the gas pipeline for taking gas, and the natural gas in the gas pipeline is taken online for density testing.
  • a certain pipe volume is reserved after the gas static mixer to fully mix the hydrogen and natural gas, thereby ensuring that the parameters of the samples taken after hydrogen blending are true and stable.
  • Two different mixing methods can be designed here, one with a static mixer and one without a static mixer, in order to test the effect of the static mixer.
  • Sampling is done by testing the two high-precision gas density meters in front and behind to obtain the corresponding operating data.
  • the latter gas density also takes into account the test positions at different heights of the pipeline.
  • the sampling tube can be inserted into the pipeline at different depths to compare the differences in the test results, thereby verifying whether gas stratification will occur after mixing. As shown in Figure 1 or Figure 2
  • the pipeline system also reserves an interface at the outlet, which can be equipped with a traditional gas chromatograph to verify the reliability of the test method of calculating the hydrogen concentration after mixing by using the test gas density by comparing the data of multiple points, as shown in Figure 3.
  • the beneficial effects of the present invention include:
  • the disclosed measurement method regards the natural gas in the pipeline as a relatively stable mixture. Under normal temperature and pressure, the gas components are relatively stable, no chemical reaction occurs, and the mass and molar amount remain the same before and after mixing. However, the physical quantity or physical property changes before and after hydrogen addition. A high-efficiency detection instrument is selected to quickly test the corresponding change value. Based on the summarized formula (1) or formula (2) and other relevant hydrogen concentration calculation formulas, the actual hydrogen mixing concentration is calculated in seconds through a local high-performance microprocessor combined with the hydrogen density database data. This is an innovative detection method that takes a different approach and effectively solves the safety problems hidden in the previous hydrogen addition automatic control.
  • the measurement method disclosed in the present invention is based on an indirect measurement method. Compared with the traditional gas chromatograph, the gas density meter and other instruments used have reduced system complexity and have the advantage of relatively low cost. This improves the replicability of the solution and reduces the cost threshold for equipment adoption. It has certain market promotion value and also points out the direction for the future development of lower-cost mechanical instruments for detecting hydrogen concentration in natural gas, which will promote the development of hydrogen energy utilization.
  • the disclosed measurement method provides a new exploration path for the optimization of hydrogen doping process.
  • Hydrogen has special gas properties due to its small molecular weight and atomic weight.
  • Most hydrogen detection instruments have poor reliability and easy drift of detection data.
  • some hydrogen concentration sensors related to electrochemical reactions (such as silver ion sensors) are susceptible to contamination and soft failure, and have a relatively short lifespan. If some indirect measurement methods of physical quantities are used, the adverse effects of the strong reducing property of hydrogen on the metal oxide medium in the sensor can be significantly avoided, thereby improving the effective period and safety reliability of the entire system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种燃气管道天然气掺氢浓度的测量方法,包括:获得燃气管道中天然气掺混氢气前的密度ρ1;获得燃气管道中天然气掺混氢气后的密度ρ2;设氢气密度为ρH,天然气掺氢后氢气的浓度为x,x=(ρ1-ρ2)/(ρ1-ρH)。在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1,在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2。

Description

燃气管道天然气掺氢浓度的测量方法以及设备 技术领域
本发明属于燃气输送技术领域,特别涉及一种燃气管道天然气掺氢浓度的测量方法以及设备。
背景技术
天然气掺氢,是指将一定比例的氢气注入到天然气中与天然气混合形成的一种混合气体(HCNG),是氢能利用的重要方向之一。天然气-氢气掺混的意义在于:
(1)天然气掺氢混合燃料稀燃极限宽,可以采用稀薄燃烧,从而提高热效率,降低了碳排放量,降低NOx排放,环保价值明显。
(2)天然气掺氢混合燃料方式可以利用现有比较完善的天然气基础设施,具有巨大的实际市场应用价值。
燃气管道掺氢是快速打通氢能储存和运输的一种有效方法。氢能作为一种清洁的二次能源载体,其安全、高效、经济的氢气运输技术是氢能规模化应用的主要瓶颈之一。管道运氢运量大、成本低,但需建设专用氢气管道,而氢气管道因材质的原因,造价高昂,建设成本极大阻碍了氢气的大规模应用。世界范围已建成的规模庞大的天然气管网必然成为氢气高效输配的首选渠道,如果大批量付诸以实践,可以大大加速氢能与现有能源系统的融合速度,快速提高社会对清洁能源的利用水平,让氢气应用走入千家万户的生活,实践从低碳到零碳的减排目标,为世界能源战略的转型做出不可替代的贡献。燃气管道掺氢高度符合国家双碳发展的战略方向,将是我国3060碳达峰碳中和的主要实现路径之一。为此,在生产中需要对燃气管道中的天然气掺氢浓度进行监控。
在采用在线气体色谱分析仪测量燃气管道中天然气的掺氢浓度时,在线气 体色谱分析仪的原理是,以氮气为载气,采用填充柱毛细管柱对被测管道中掺氢天然气进行分离;由于天然气中各组份的沸点、极性及吸附系数的差异,使各种组份在色谱柱中得到分离,由检测器将各种组份按分离顺序检测出来,将转换后的电信号送至色谱工作站;由色谱工作站将各组份的气相色谱图记录 并进行分析,与标定好的对应浓度的氢气色谱柱数据进行比对,从而得到氢气组份的分析结果。
发明内容
本发明实施例之一,一种燃气管道中天然气掺氢浓度的测量方法,
在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1
在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2
设氢气密度为ρH
天然气掺氢后氢气的摩尔浓度为x,x=(ρ12)/(ρ1H)。
附图说明
通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:
图1根据本发明实施例之一的燃气管道天然气掺氢浓度测量系统示意图。
图2根据本发明实施例之一的燃气管道天然气掺氢浓度测量系统示意图。
图3根据本发明实施例之一的燃气管道天然气掺氢浓度测量系统示意图。
具体实施方式
现有的在线气相色谱仪的检测结果虽然相对可靠,但测试速度仍然较慢,一般测试周期是3-5分钟以上,最快的色谱分析仪也需要1分钟以上,给天然气掺氢工艺自控带来一定的滞后性,可能形成短时间的氢气浓度在天然气中的超限问题。
由于氢气对碳钢管道有氢蚀的风险,目前认为20%以内的掺氢浓度是安全的。如果掺氢浓度超过管道材质所能承受上限20%的浓度范围,会给燃气管道天然气掺氢工艺实施带来一定的长期运行安全风险。
此外,由于气相色谱分析仪价格较贵,燃气供应领域认可的型号产品尤其 昂贵。并且,由于气相色谱分析仪测量系统需要使用标准气定期对色谱柱进行标定,还需要消耗价格昂贵的高纯载气,系统运行费用比较高。同时,测定后的燃气还需要解决排放的安全问题。因此,气相色谱分析仪测量方法有比较高的成本门槛,不利于未来氢能利用掺氢的大规模推广。
根据一个或者多个实施例,一种燃气管道天然气掺氢浓度的测量方法,获得燃气管道中天然气掺混氢气前的密度ρ1;获得燃气管道中天然气掺混氢气后的密度ρ2;设氢气密度为ρH,天然气掺氢后氢气的浓度为x,x=(ρ12)/(ρ1H)。其中,获取密度ρ1和密度ρ2的方式是,
在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1,在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2
进一步的,在燃气管道中天然气掺混氢气处设置静态混合器,输入的天然气和氢气输入所述静态混合器,在所述静态混合器内混合。在燃气管道中天然气掺混氢气后的取样位置处还设置有气体色谱分析仪。
以1个标准大气压,环境温度为20℃为例,设天然气掺混前的密度为ρ1,天然气掺混后的密度为ρ2,查氢气的密度表,对应氢气的20℃密度按0.082658×103kg/Nm3,天然气掺氢后氢气的摩尔浓度设为x,对应公示为ρ1(1-x)+0.082658x=ρ2,掺氢后天然气的密度下降,ρ2〈ρ1
则x=(ρ12)/(ρ1-0.082658)……公式(1)
考虑氢气的密度也是随环境温度变化,设氢气密度为ρH
则公式(1)改为x=(ρ12)/(ρ1H)……公式(2)
其中ρH计划采用氢气的密度数据库,可以根据现场实测温度的数据自动匹配相关的数据,提升测量的精确度,降低计算误差。
本公开实施例采用间接测量的方法来测定管道燃气中天然气的掺氢浓度。具体方法是采用高精度仪表快速测量气体物理量或物理性质变化的方法,结合计算机技术,通过高性能微处理器计算程序来计算管道天然气中的掺氢浓度,缩短氢气浓度测量的周期,提升管道燃气掺氢工艺的安全水平。考虑管道天然气并非一种稳定组分的混合物,但一定时间内在掺氢前后除了增加氢气外,常温条件下,天然气组分相对稳定,总质量和摩尔量守恒,不会发生化学反应。 例如,通过直接测量掺混氢气天然气的密度变化,结合本地的高性能微处理器,快速计算出天然气中掺混氢气的实际浓度。
通过上述方法,根据气体密度计仪表的本身反馈时间,天然气掺氢浓度的测量速度可以大幅度提升,理论上可以做到秒级反馈时间,提升掺氢工艺的自控效率,减少天然气掺氢工艺中氢气浓度超标的情况发生几率,降低运行管道的安全风险。
通过本公开实施例的燃气管道中天然气掺氢浓度的测量方法,可以快速提供掺氢工艺的控制效率,测量周期从之前的不少于2分钟(60秒)降低到以秒为单位,提供精确的气体密度值,极大的提高了燃气管道掺氢工艺的安全性和可靠性,确保现有燃气管道输送氢气的可行性。
根据一个或者多个实施例,一种燃气管道天然气掺氢浓度的测量设备,所述测量设备包括第一气体密度计、第二气体密度计和电子设备。
在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1。在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2
所述电子设备包括包括存储器;以及耦合到所述存储器的处理器,该处理器被配置为执行存储在所述存储器中的指令,所述处理器执行以下操作:
获得燃气管道中天然气掺混氢气前的密度ρ1;获得燃气管道中天然气掺混氢气后的密度ρ2;设氢气密度为ρH,设天然气掺氢后氢气的摩尔浓度为x,x=(ρ12)/(ρ1H)。这里的气体密度计可以采用艾默生Micro Motion的气体密度计GDM5AAAC2Z1MZZZ。
在燃气管道中天然气掺混氢气处设置有静态混合器,输入的天然气和氢气输入所述静态混合器,在所述静态混合器内混合获得混合气。在燃气管道中天然气掺混氢气后的取样位置处还设置有气体色谱分析仪,该气体色谱分析仪的输出结果输入所述电子设备。
本公开实施例,是在天然气掺氢前后各测试一次管道内气体的密度,取气直接在燃气管路上安装气体密度计,在线取燃气管道的天然气进行密度的测试,考虑天然气掺混氢气的混合效果,在气体静态混合器后保留一定的管容,使氢气和天然气充分混合,确保掺氢后取样的参数真实稳定。
这里可以设计两路不同的混合方法,一路有静态混合器,一路不设静态混合器,是为了测试静态混合器的效果。取样都是在前后两个高精度的气体密度计各自测试,获取相应的运行数据。其中后一个气体密度还同时考虑到管道不同高度的测试位置,取样管可对应插入管道内不同的深度,比对测试的结果的差异,从而验证是否会出现掺混后气体分层的情况。如图1或图2所示
同时管道系统也在出口处预留了接口,可以加设传统的气体色谱分析仪,通过选取多个点的数据比对,来验证采用测试气体密度计算掺混后氢气浓度测试方法的可靠性。如图3所示。
综上所述,本发明的有益效果包括:
(1)本公开测量方法把管道中的天然气作为一种相对稳定的混合物来看待,常温常压状态下,气体组分相对稳定的,未发生化学反应,质量和摩尔量混合前后保持一致,但掺氢前后其物理量或物理性能发生了变化,选择高效率的检测仪表通过快速测试出相应的变化量值,依据已总结出的公式(1)或公式(2)等相关氢气浓度的计算公式,通过本地的高性能微处理器,结合氢气的密度数据库数据,秒级计算出氢气的实际掺混浓度,是检测方式另辟蹊径的创新,高效解决了之前掺氢自控中隐藏的安全问题。
(2)本公开测量方法是依据通过间接测量的方法,所采用的气体密度计等仪表对比传统的气体色谱分析仪,系统的复杂度也有所降低,有相对低成本的优势,提高了方案的可复制性,降低了设备采用的成本门槛,具有一定的市场推广价值,同时也为今后更低成本的天然气掺氢浓度检测机械仪表开发指明了方向,将对氢能利用的发展起到推动作用。
(3)本公开测量方法更是为掺氢工艺的优化提供了新的探索路径。氢气因分子量、原子量小的因素,气体性质比较特殊,涉氢检测仪表多数都有可靠性差、检测数据容易飘移的问题。尤其是一些有关电化学反应的氢气浓度传感器(如银离子传感器),易受污染和软失效,寿命都比较短,如采用一些物理量的间接测量方式,可显著避免氢气较强的还原性对传感器中金属氧化物介质的不利影响,提升整个系统的有效周期和安全可靠性。
值得说明的是,虽然前述内容已经参考若干具体实施方式描述了本发明创造的精神和原理,但是应该理解,本发明并不限于所公开的具体实施方式,对 各方面的划分也不意味着这些方面中的特征不能组合,这种划分仅是为了表述的方便。本发明旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (7)

  1. 一种燃气管道天然气掺氢浓度的测量方法,其特征在于,
    获得燃气管道中天然气掺混氢气前的密度ρ1
    获得燃气管道中天然气掺混氢气后的密度ρ2
    设氢气密度为ρH
    天然气掺氢后氢气的浓度为x,
    x=(ρ12)/(ρ1H)。
  2. 根据权利要求1所述的燃气管道天然气掺氢浓度的测量方法,其特征在于,
    在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1
    在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2
  3. 根据权利要求2所述的燃气管道天然气掺氢浓度的测量方法,其特征在于,
    在燃气管道中天然气掺混氢气处设置静态混合器,输入的天然气和氢气输入所述静态混合器,在所述静态混合器内混合。
  4. 根据权利要求2所述的燃气管道天然气掺氢浓度的测量方法,其特征在于,
    在燃气管道中天然气掺混氢气后的取样位置处还设置有气体色谱分析仪。
  5. 一种燃气管道天然气掺氢浓度的测量设备,其特征在于,所述测量设备包括第一气体密度计、第二气体密度计和电子设备,
    在燃气管道中天然气掺混氢气前的取样位置设置第一气体密度计,从第一气体密度计处获得所述密度ρ1
    在燃气管道中天然气掺混氢气后的取样位置设置第二气体密度计,从第二气体密度计处获得所述密度ρ2
    所述电子设备包括包括存储器;以及
    耦合到所述存储器的处理器,该处理器被配置为执行存储在所述存储器中的指令,所述处理器执行以下操作:
    获得燃气管道中天然气掺混氢气前的密度ρ1
    获得燃气管道中天然气掺混氢气后的密度ρ2
    设氢气密度为ρH
    天然气掺氢后氢气的摩尔浓度为x,
    x=(ρ12)/(ρ1H)。
  6. 根据权利要求5所述的燃气管道天然气掺氢浓度的测量设备,其特征在于,
    在燃气管道中天然气掺混氢气处设置有静态混合器,输入的天然气和氢气输入所述静态混合器,在所述静态混合器内混合获得混合气。
  7. 根据权利要求6所述的燃气管道天然气掺氢浓度的测量设备,其特征在于,
    在燃气管道中天然气掺混氢气后的取样位置处还设置有气体色谱分析仪,该气体色谱分析仪的输出结果输入所述电子设备。
PCT/CN2023/098785 2022-09-30 2023-06-07 燃气管道天然气掺氢浓度的测量方法以及设备 WO2024066458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211206239.5 2022-09-30
CN202211206239.5A CN115774086A (zh) 2022-09-30 2022-09-30 燃气管道天然气掺氢浓度的测量方法以及设备

Publications (1)

Publication Number Publication Date
WO2024066458A1 true WO2024066458A1 (zh) 2024-04-04

Family

ID=85388538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098785 WO2024066458A1 (zh) 2022-09-30 2023-06-07 燃气管道天然气掺氢浓度的测量方法以及设备

Country Status (2)

Country Link
CN (1) CN115774086A (zh)
WO (1) WO2024066458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115774086A (zh) * 2022-09-30 2023-03-10 上海飞奥燃气设备有限公司 燃气管道天然气掺氢浓度的测量方法以及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034711A1 (de) * 2010-08-18 2012-02-23 Karl-Werner Dietrich Selbstausförderung von Erdgas
KR101284281B1 (ko) * 2011-12-29 2013-07-08 한국기계연구원 수소와 천연 가스 혼합연료의 수소 함유량 측정방법
US20150143873A1 (en) * 2013-11-27 2015-05-28 Robert Bosch Gmbh Device for Determining The H2 Content of H2/Natural Gas Mixtures
CN207882105U (zh) * 2018-01-30 2018-09-18 沈阳腾龙玻璃仪器制造有限公司 一种石油液化气密度计
CN112382423A (zh) * 2020-12-03 2021-02-19 深圳中广核工程设计有限公司 耐高温高压高湿辐射的氢气浓度测量装置及氢气测量探头
CN112415059A (zh) * 2020-11-24 2021-02-26 广西玉柴机器股份有限公司 一种混合气体中氢气浓度传感装置、检测装置及检测方法
EP4047260A1 (de) * 2021-02-18 2022-08-24 Linde GmbH Verfahren zur steuerung oder regelung eines wasserstoffgehaltes eines durch ein erdgasnetz transportierten erdgases
CN115046139A (zh) * 2022-05-13 2022-09-13 中国核能电力股份有限公司 一种利用天然气管道混合送氢装置、掺氢装置及分配系统
CN115585401A (zh) * 2022-09-30 2023-01-10 上海飞奥燃气设备有限公司 燃气管道天然气掺氢浓度控制方法、系统
CN115774086A (zh) * 2022-09-30 2023-03-10 上海飞奥燃气设备有限公司 燃气管道天然气掺氢浓度的测量方法以及设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034711A1 (de) * 2010-08-18 2012-02-23 Karl-Werner Dietrich Selbstausförderung von Erdgas
KR101284281B1 (ko) * 2011-12-29 2013-07-08 한국기계연구원 수소와 천연 가스 혼합연료의 수소 함유량 측정방법
US20150143873A1 (en) * 2013-11-27 2015-05-28 Robert Bosch Gmbh Device for Determining The H2 Content of H2/Natural Gas Mixtures
CN207882105U (zh) * 2018-01-30 2018-09-18 沈阳腾龙玻璃仪器制造有限公司 一种石油液化气密度计
CN112415059A (zh) * 2020-11-24 2021-02-26 广西玉柴机器股份有限公司 一种混合气体中氢气浓度传感装置、检测装置及检测方法
CN112382423A (zh) * 2020-12-03 2021-02-19 深圳中广核工程设计有限公司 耐高温高压高湿辐射的氢气浓度测量装置及氢气测量探头
EP4047260A1 (de) * 2021-02-18 2022-08-24 Linde GmbH Verfahren zur steuerung oder regelung eines wasserstoffgehaltes eines durch ein erdgasnetz transportierten erdgases
CN115046139A (zh) * 2022-05-13 2022-09-13 中国核能电力股份有限公司 一种利用天然气管道混合送氢装置、掺氢装置及分配系统
CN115585401A (zh) * 2022-09-30 2023-01-10 上海飞奥燃气设备有限公司 燃气管道天然气掺氢浓度控制方法、系统
CN115774086A (zh) * 2022-09-30 2023-03-10 上海飞奥燃气设备有限公司 燃气管道天然气掺氢浓度的测量方法以及设备

Also Published As

Publication number Publication date
CN115774086A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024066458A1 (zh) 燃气管道天然气掺氢浓度的测量方法以及设备
CN201811870U (zh) 一种自启动式用于安全壳内氢气浓度测量的取样分析装置
CN102607990A (zh) 一种煤样瓦斯解吸速度全程自动测试方法和装置
CN106289433B (zh) 一种二次电池内部各组分气体体积的测定方法
CN112730519A (zh) 一种便携式的甲烷微量泄漏量化检测仪及其检测方法
CN109884263B (zh) 一种溶解氧传感器试验装置及其试验方法
Xu et al. Evaluating the measurement interference of wet rotating-denuder–ion chromatography in measuring atmospheric HONO in a highly polluted area
CN103674756B (zh) 测定高压液相烃类物质中水分含量的方法
CN201532387U (zh) 一种用于测试烟气中二氧化硫含量的装置
CN206657012U (zh) 基于比对分析的油中气体监测装置现场检验系统
CN101696890A (zh) 一种气体燃烧性试验的流量标定方法及装置
CN112539978A (zh) 一种获得核电站核岛烟囱c-14取样装置吸收效率的方法
CN105675698A (zh) 一种高温水解-溴离子选择电极测定煤中溴的方法
CN110045058A (zh) 电解液中氟化氢含量测试方法
CN201622258U (zh) 油气浓度自动检测仪
CN111007112B (zh) 一种基于电导率法的在线测量蒸汽湿度的系统及方法
JP2006145341A (ja) ガスサンプリング方法及び装置
CN209513754U (zh) 一种高纯正硅酸乙酯中微量水分的检测系统
CN217484237U (zh) 一种用于igcc燃气合成气含水量的测量系统
Sperlich et al. A combustion setup to precisely reference δ 13 C and δ 2 H isotope ratios of pure CH 4 to produce isotope reference gases of δ 13 C-CH 4 in synthetic air
CN209821181U (zh) 一种溶解氧传感器试验装置
Laudal Conducting a RATA of continuous mercury monitors using EPA Method 30B
CN203881388U (zh) 一种油气流量计
CN203287361U (zh) 一种脱硫效率测试装置
Lee et al. A study on methane and nitrous oxide emissions characteristics from anthracite circulating fluidized bed power plant in Korea