WO2024066372A1 - 超声探头的阵元引出结构、声头及超声探头 - Google Patents

超声探头的阵元引出结构、声头及超声探头 Download PDF

Info

Publication number
WO2024066372A1
WO2024066372A1 PCT/CN2023/093093 CN2023093093W WO2024066372A1 WO 2024066372 A1 WO2024066372 A1 WO 2024066372A1 CN 2023093093 W CN2023093093 W CN 2023093093W WO 2024066372 A1 WO2024066372 A1 WO 2024066372A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
array element
layer
adapter
electrical
Prior art date
Application number
PCT/CN2023/093093
Other languages
English (en)
French (fr)
Inventor
叶百合子
何绪金
谢剑锋
贾建朋
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2023/093093 priority Critical patent/WO2024066372A1/zh
Publication of WO2024066372A1 publication Critical patent/WO2024066372A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction

Definitions

  • the present application relates to an ultrasonic probe, and in particular to an array element lead-out structure, an acoustic head and an ultrasonic probe.
  • the positive lead of a single array element of the sound head requires the use of an FPC (flexible printed circuit board).
  • FPC flexible printed circuit board
  • a multi-dimensional array transducer it usually has an array element layer (piezoelectric material layer or chip layer) and a flexible circuit board.
  • the array element layer usually has a plurality of array elements arranged in an array
  • the flexible circuit board has a transfer layer (or large gold surface) and a lead-out component (or routing layer).
  • the transfer layer has a plurality of electrical adapters, which correspond one to one with the array elements.
  • the upper part of the electrical adapter is in electrical contact with the positive electrode of the corresponding sub-array, and the lower part is electrically connected to the corresponding lead-out component in the lead-out component through a conductive through hole, so that the positive electrode of the array element is led out through the lead-out component below the electrical adapter.
  • each array element can be further cut into at least two sub-arrays, and a first gap is formed between the sub-arrays.
  • the piezoelectric material is first covered on the transfer layer of the flexible circuit board as a whole, and then the piezoelectric material and the transfer layer are cut together by equipment to form the array elements and the electrical transfer parts corresponding to the array elements, and then the array elements and the corresponding electrical transfer parts are further cut to form the separated sub-arrays and the sub-electrical transfer parts corresponding to the sub-arrays.
  • the size (i.e., width) of a single sub-array in a direction perpendicular to the extension direction of the first gap is narrower, which also causes the width of the sub-electrical adapter corresponding to the sub-array to become narrower, further limiting the width of the conductive transfer area on the sub-electrical adapter.
  • the aperture of the conductive through-hole cannot be further reduced after reaching the limit size.
  • the width of the conductive transfer area on the sub-electrical adapter is less than the setting requirement of the conductive through-hole, it is very easy to cut the conductive through-hole on the sub-electrical adapter, causing the failure of the electrical connection. Therefore, after the number of array elements in the multi-dimensional array transducer reaches the limit value, the width of the array element cannot be further reduced, and it is difficult to design a larger number of array elements, which affects the progress of the multi-dimensional array transducer.
  • the present application mainly provides an array element lead-out structure of an ultrasonic probe, an acoustic head and an ultrasonic probe, so as to demonstrate a new array element lead-out structure.
  • an array element extraction structure of an ultrasound probe including:
  • An array element layer wherein the array element layer comprises a plurality of array element groups arranged along a first direction, the array element group comprises n array elements arranged along a second direction, wherein n is an odd number greater than or equal to 3; the array elements are divided into at least two sub-arrays by a first gap; wherein the array elements in the array element group are at least divided into a first array element located at a middle position and at least one pair of second array elements, and each pair of the second array elements are relatively arranged on both sides of the first array element in the second direction;
  • a flexible circuit board having a transfer layer and a lead-out component, the array element layer, the transfer layer and the lead-out component are arranged along a third direction, and the first direction, the second direction and the third direction are perpendicular to each other;
  • the switching layer has a plurality of electrical switching component groups arranged along a first direction, and the electrical switching component groups have a plurality of electrical switching components arranged along the second direction, and the electrical switching components of each electrical switching component group are respectively in contact with and electrically connected to the positive electrodes of the array elements in the corresponding array element group;
  • the lead-out assembly has a plurality of lead-out member groups arranged along a first direction, the lead-out member group has a plurality of lead-out members, the lead-out members at least include a first lead-out member and at least one pair of second lead-out members, the first lead-out member is electrically connected to a corresponding first array element through a corresponding electrical adapter, and each pair of second lead-out members is electrically connected to a pair of second array elements through a corresponding electrical adapter; the lead-out member is used to be electrically connected to a positive signal circuit of a control unit to input a positive signal to the corresponding array element;
  • the electrical adapter is provided with a first conductive adapter portion
  • the lead-out member is provided with a second conductive adapter portion
  • the first conductive adapter portion and the corresponding second conductive adapter portion are stacked and electrically connected in the stacking direction to electrically connect the electrical adapter with the corresponding lead-out member
  • each pair of second lead-out members are electrically connected via a connecting portion, and on a reference plane perpendicular to the third direction, an orthographic projection of the first gap at least partially overlaps with an orthographic projection of the connecting portion
  • the second conductive adapter portion on the first lead-out member between each pair of second lead-out members and the orthographic projection of the corresponding first conductive adapter portion on the reference plane are distributed on both sides of the orthographic projection of the connecting portion.
  • At least one other lead-out member is arranged between at least one pair of second lead-out members, and the other lead-out member includes the first lead-out member, the first transition lead-out member and/or the second transition lead-out member, and the other lead-out member has a second gap, and the connecting portion passes through the corresponding second gap.
  • an orthographic projection of the first gap on the reference plane does not exceed an orthographic projection of the second gap on the reference plane in the first direction.
  • the position differences between the second array elements of the same pair and the first array elements are the same.
  • n is equal to 3
  • the electrical adapter of the electrical adapter group is divided into at least a first electrical adapter and a pair of second electrical adapters arranged on both sides of the first electrical adapter, the first electrical adapter and the second electrical adapter are respectively in contact with and electrically connected to the positive poles of the corresponding first array element and the second array element;
  • the lead-out members of the lead-out member group are divided into at least a first lead-out member and a pair of second lead-out members located on both sides of the first lead-out member, the first lead-out member and the second lead-out member are electrically connected to the corresponding first electrical adapter and the second electrical adapter.
  • the first electrical adapter and the second electrical adapter have conductive contact areas that are in contact with corresponding sub-arrays; in one of the electrical adapter groups, at least one of the second electrical adapters has a first extension portion located outside its conductive contact area, and the first extension portion is electrically connected to the corresponding conductive contact area; in the second electrical adapter having the first extension portion, its first extension portion is provided with a first conductive adapter portion.
  • the first electrical adapter and the second electrical adapter are divided into a plurality of sub-electrical adapters, the sub-electrical adapters correspond to the sub-arrays one by one, and the sub-electrical adapters all have the conductive contact area.
  • the first lead-out member and the second lead-out member are provided with a second conductive transition portion, and the second conductive transition portion is electrically connected to the corresponding first conductive transition portion; wherein at least one of the second lead-out members has a second extension portion corresponding to the first extension portion; and in the second lead-out member having the second extension portion, its second extension portion is provided with a second conductive transition portion.
  • the first epitaxial portion and the second epitaxial portion are bent in a direction away from the array element layer.
  • the second extension portion has an electrical external connection structure, and the electrical external connection structure is used to be electrically connected to the positive signal circuit.
  • the first lead-out member has at least two first sub-lead-out members, a second gap is formed between the first sub-lead-out members, and the connecting portion passes through the second gap;
  • the first sub-lead-out member has a third extension portion, and the third extension portion of each first sub-lead-out member extends from the side of the second lead-out member to the outside of the end of the second extension portion and is electrically connected to each other to form an electrical external structure, and the electrical external structure is used to be electrically connected to the positive signal circuit.
  • first sub-lead-out members there are two first sub-lead-out members, and the two first sub-lead-out members are symmetrical about the second gap.
  • At least one lead-out member is a first adapter lead-out member
  • the first adapter lead-out member is arranged on a side of the first lead-out member away from the first electrical adapter member, and is electrically connected to the first lead-out member
  • the first adapter lead-out member and the second lead-out member respectively have an electrical external connection structure
  • the electrical external connection structure is used to be electrically connected to the positive signal circuit.
  • the first layer of lead-out components includes a first lead-out component, and the first lead-out component is electrically connected to a corresponding electrical adapter component;
  • each layer of lead-out components has a pair of second lead-out components, and the second lead-out components of the first layer of lead-out components are electrically connected to the first conductive transition portion of the corresponding electrical transition component; in the second layer to the (m-1)th layer, the second lead-out components in each layer are electrically connected to the corresponding electrical transition component through the corresponding second transition lead-out components of the previous layer;
  • each layer of lead-out parts has a first adapter lead-out part, which is electrically connected to each first adapter lead-out part in the lower layer, and at least one second lead-out part and at least one first adapter lead-out part in each pair of second lead-out parts can be electrically connected to the positive signal circuit.
  • a connecting portion between a pair of the second lead-out members passes through a second gap of the first lead-out member and/or the first transition lead-out member.
  • the second lead-out member has a second extension portion, an outer end portion of the second extension portion is located outside the array element layer, and the outer end portion is provided with the electrical external connection structure.
  • At least one pair of second adapter lead-out members are relatively arranged on both sides of a pair of second lead-out members, and the second extension portion of the second lead-out member passes through the corresponding second adapter lead-out member and extends outside the array element layer.
  • the second transfer lead-out component has a fourth extension portion, the fourth extension portion is located outside the array element layer, and the fourth extension portion is provided with the electrical external connection structure.
  • n 5
  • the array element group has one first array element and two pairs of second array elements
  • the first layer lead-out member comprises a first lead-out member, a pair of second lead-out members and a pair of second transfer lead-out members, the pair of second lead-out members, the second lead-out members are relatively arranged on both sides of the first lead-out member, and the second transfer lead-out members are relatively arranged on both sides of the pair of second lead-out members; the second lead-out member and the second transfer lead-out member are respectively electrically connected to a corresponding second array element;
  • the second layer lead-out member has a first transfer lead-out member and a pair of second lead-out members, and the second lead-out member is electrically connected to the second transfer lead-out member of the first layer, so as to be electrically connected to the corresponding second array element through the second transfer lead-out member;
  • the third-layer lead-out component has a first transfer lead-out component, the first transfer lead-out component of the third layer is electrically connected to the first transfer lead-out component of the second layer, and the first transfer lead-out component of the third layer has the electrical external connection structure.
  • a first insulating layer is provided between the transfer layer and the lead-out component
  • a second insulating layer is provided between each layer of the lead-out components of the lead-out assembly.
  • it further includes a negative electrode lead-out structure, wherein the negative electrode lead-out structure is electrically connected to the negative electrode of the array element, and the negative electrode lead-out member is used to electrically connect the negative electrode of the array element to the negative electrode signal circuit of the control unit.
  • the width of a single array element in the first direction is greater than or equal to 0.2 mm and less than or equal to 0.4 mm, and the width of a single sub-array in the first direction is greater than or equal to 0.07 mm and less than or equal to 0.17 mm; or, the width of a single array element in the first direction is greater than or equal to 0.2 mm and less than or equal to 0.33 mm, and the width of a single sub-array in the first direction is greater than or equal to 0.07 mm and less than or equal to 0.14 mm.
  • an embodiment of the present application provides a sound head of an ultrasound probe, including a backing, a matching layer, a lens, and an array element lead-out structure as shown in any of the above items, wherein the flexible circuit board is arranged on the backing, the matching layer is located on the array element layer, and the lens is arranged on the matching layer.
  • an embodiment of the present application provides an ultrasonic probe, including an acoustic head, wherein the acoustic head has an array element extraction structure as shown above.
  • each pair of second lead-out members is electrically connected through a connecting portion, and on a projection plane perpendicular to the third direction, the orthographic projection of the first gap between the sub-arrays overlaps at least partially with the orthographic projection of the connecting portion.
  • the connecting portion is at least partially formed to correspond to the area, so that the area on the sub-electrical adapter for providing the first conductive transition portion (referred to as the conductive transition area) can account for a larger proportion, that is, compared with the existing structure, under the condition of the same width, the electrical adapter shown in this embodiment has a wider conductive transition area, which can avoid cutting the first conductive transition portion of the electrical adapter when cutting and manufacturing the sub-array, and enable the electrical adapter to meet the lead-out requirements of the sub-array with a smaller width, thereby providing a larger number of array elements in the array element layer of the same width.
  • FIG1 is a schematic diagram of the appearance structure of an acoustic head in one embodiment of the present application.
  • FIG2 is a cross-sectional schematic diagram of an acoustic head in an embodiment of the present application.
  • FIG3 is an exploded schematic diagram of an array element layer, a transfer layer and a lead-out assembly in a stacking direction in an embodiment of the present application, and shows an insulating substrate layer in a flexible circuit board;
  • FIG4 is a schematic diagram of the structure of an array element layer, a transfer layer and a lead-out component in an embodiment of the present application.
  • the insulating substrate layer is omitted in the figure;
  • FIG5 is an exploded schematic diagram of an array element layer and a transfer layer in an embodiment of the present application, in which the insulating substrate layer is omitted;
  • FIG6 is a schematic diagram of the distribution of lead-out components in one embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of an array element layer, a transfer layer and a lead-out component in an embodiment of the present application.
  • the insulating substrate layer is omitted in the figure;
  • FIG8 is a side view of the structure of an array element layer, a switching layer and a lead-out component in an embodiment of the present application;
  • FIG9 is an exploded schematic diagram of an array element layer, a transfer layer and a lead-out assembly in a stacking direction in one embodiment of the present application, in which the insulating substrate layer is omitted;
  • FIG10 is a schematic structural diagram of a first layer lead-out member in an embodiment of the present invention.
  • FIG11 is a schematic structural diagram of a second layer lead-out member in an embodiment of the present invention.
  • FIG12 is a schematic structural diagram of a third layer lead-out member in an embodiment of the present invention.
  • FIG. 13 and 14 are schematic diagrams of the structure at two different viewing angles when the negative electrode of the array element is led out through copper foil in one embodiment of the present application;
  • 15 and 16 are schematic diagrams of the structure at two different viewing angles when the negative electrode of the array element is led out through the copper foil in one embodiment of the present application;
  • FIG17 is a schematic diagram of a structure in which the negative electrode of an array element is led out through a conductive layer in one embodiment of the present application;
  • FIG18 is a schematic diagram of an embodiment in which the connection portion between the second lead-out members passes from the side of the first lead-out member;
  • FIG. 19 is a cross-sectional schematic diagram of an array element layer, a switching layer, and a lead-out assembly in a coordinated state in an embodiment of the present application.
  • connection and “coupling” mentioned in this application, unless otherwise specified, include direct and indirect connections (couplings).
  • the ultrasonic probe has an acoustic head 1 and a main control unit (not shown in the figure), and the acoustic head 1 is mainly used to transmit ultrasonic signals to the person being tested and receive reflected ultrasonic signals.
  • the main control unit is electrically connected to the acoustic head 1 to control the signal transmission and reception of the acoustic head 1.
  • the sound head 1 includes a lens 100, a matching layer 200, an array element layer 300, a flexible circuit board 400 and a backing layer 500.
  • the lens 100, the matching layer 200, the array element layer 300, the flexible circuit board 400 and the backing layer 500 are stacked.
  • the array element layer 300 can be used to transmit and receive ultrasonic signals.
  • the matching layer 200 is an acoustic material layer laid on the radiation surface of the array element layer 300 to achieve the matching of the acoustic characteristic impedance between the array element layer 300 and the sound transmission medium so that the sound energy can be well transmitted.
  • the lens 100 can contact the detected object and transmit ultrasonic signal waves.
  • the backing layer 500 can absorb useless sound waves radiated from the back of the array element layer 300, and can also serve as a supporting structure for other components of the sound head 1.
  • the specific structure of the sound head 1 can refer to various existing ultrasonic probes for other structures, and no further detailed introduction is given here.
  • the main control unit needs to be electrically connected to the array elements in the acoustic head 1 to achieve the transmission of electrical signals, such as sending excitation signals to the array elements and receiving signals recovered by the array elements.
  • the main control unit can adopt various main control circuits that can realize the control of the acoustic head 1.
  • the main control circuit can be set on one or more control circuit boards, and the control circuit board can be a PCB board or an FPCB board.
  • the main control unit is set separately from the acoustic head 1.
  • the acoustic head 1 leads the array elements inside it through the corresponding array element lead-out structure and is electrically connected to the main control unit.
  • the main control unit has a positive signal circuit and a negative signal circuit.
  • the positive signal circuit is used to be electrically connected to the electrical external connection structure for positive lead-out in the array element lead-out structure
  • the negative signal circuit is used to be electrically connected to the electrical external connection structure for negative lead-out in the array element lead-out structure.
  • the array element lead-out structure is used to realize the lead-out of the positive and negative electrodes of the array element.
  • the array element lead-out structure includes an array element layer 300 and a flexible circuit board 400 .
  • the array element layer 300 has a plurality of array element groups 301 arranged along the first direction.
  • array elements located in the same column in the second direction are referred to as a group of array element groups 301.
  • the number of the array element groups 301 can be set according to the actual functions and effects that the acoustic head 1 needs to achieve.
  • the array element group 301 has n array elements arranged along the second direction.
  • the number of n is different.
  • the sound head 1 is a sound head 1 of a multi-dimensional ultrasonic probe, and n is an odd number greater than or equal to 3.
  • the array elements in the array element group 301 are at least divided into a first array element 310 located in the middle sequence and at least one pair of second array elements 320, and each pair of second array elements 320 is relatively arranged on both sides of the first array element 310 in the second direction.
  • each array element group 301 may have one or more pairs of second array elements 320, wherein the size, shape or size of each second array element in each pair of second array elements may be the same or different.
  • n is equal to 3, that is, the array element group 301 has 3 array elements arranged along the second direction.
  • Each array element group 301 has a pair of second array elements 320, and the pair of second array elements 320 are located on both sides of the first array element 310 in the second direction.
  • n is greater than or equal to 5, that is, the array element group 301 has more than 5 array elements (such as 310, 320) arranged along the second direction.
  • the position difference between the second array elements 320 of the same pair and the first array element 310 is the same.
  • the position difference between the second array elements 320 of the same pair and the first array element 310 is the same, which means that the first array element 310 is the reference position, and the two second array elements 320 in the same pair have the same sequence from the first array element 310 when calculated from the first array element 310 to both sides along the second direction.
  • the array element group 301 has 5 array elements arranged along the second direction.
  • the array element located in the middle is the first array element 310, and the four array elements located on both sides of the first array element 310 are divided into two groups. Specifically, please refer to FIG.
  • the array elements of the same array element group 301 are divided into the 1st, 2nd, 3rd, 4th, and 5th positions, wherein the 3rd array element is the first array element 310, the position difference between the 2nd and 4th array elements and the first array element 310 is 1, and the two form a pair of second array elements 320, and the position difference between the 1st and 5th array elements and the first array element 310 is 2, and the two form a pair of second array elements 320.
  • the position differences between the same group of second array elements 320 and the first array elements 310 may also be different.
  • each array element is divided into at least two sub-arrays by a first gap 303, and the first gap 303 can be cut by a corresponding manufacturing device.
  • these sub-arrays can also be processed separately, and finally formed into the first gap 303 by arranging.
  • each array element has two sub-arrays 302.
  • each array element can also have three or more sub-arrays 302.
  • the flexible circuit board 400 has a transfer layer 410 and a lead-out component 420.
  • An insulating substrate layer is arranged between the transfer layer 410 and the lead-out component 420 (in order to more conveniently show the corresponding relationship between the transfer layer 410 and the lead-out component 420 in Figure 9, the insulating substrate layer is omitted), and the transfer layer 410 and the lead-out component 420 can be arranged on the corresponding insulating substrate layer by printing, coating or other processes.
  • the insulating substrate layer forms a supporting role and an insulating barrier role for the transfer layer 410 and the lead-out component 420.
  • the insulating substrate layer between the transfer layer 410 and the lead-out component 420 is a first insulating layer 430.
  • each layer of lead-out components can be arranged on the corresponding insulating substrate layer, and the lead-out components of adjacent layers are insulated and separated by the corresponding insulating substrate layer.
  • the insulating substrate layer between the lead-out components of the lead-out assembly 420 is the second insulating layer 440 .
  • the array element layer 300, the switching layer 410 and the lead-out component 420 are arranged along the third direction, wherein, please refer to FIGS. 3, 7 and 9, in some embodiments, the first direction, the second direction and the third direction are perpendicular to each other.
  • the third direction only refers to the stacking direction between the array element layer 300, the switching layer 410 and the lead-out component 420, but does not limit the array element layer 300, the switching layer 410 and the lead-out component 420 to be arranged in a form perpendicular to the third direction (i.e., the plane formed by the first direction and the second direction).
  • the third direction i.e., the plane formed by the first direction and the second direction.
  • the transfer layer 410 has a plurality of electrical transfer components 401 arranged along a first direction.
  • An electrical transfer component group 401 is arranged opposite to a corresponding array element group 301.
  • the electrical transfer component group 401 has a plurality of electrical transfer components (such as 411, 412) arranged along a second direction, and the arrangement direction thereof is consistent with the arrangement direction of the array elements in the same array element group 301.
  • the electrical transfer components of each electrical transfer component group 401 are respectively in contact with and electrically connected to the positive electrode of the array element in the corresponding array element group 301.
  • the electrical transfer component is made of a conductive material, for example, it can be a metal surface printed, coated or set on the corresponding insulating substrate layer by other processes.
  • the electrical transfer component is directly attached to the corresponding array element to achieve a conductive connection.
  • other methods in the prior art can also be used to achieve a conductive connection between the electrical transfer component and the corresponding array element.
  • the electrical adapter may have multiple sub-electrical adapters 413.
  • the sub-electrical adapters 413 correspond to the sub-array 302 one by one.
  • the sub-electrical adapters 413 all have a conductive contact area, and are in conductive contact with the positive electrode of the corresponding sub-array 302 through the conductive contact area.
  • the multiple refers to more than two.
  • each electrical adapter has two sub-electrical adapters 413. Adjacent sub-electrical adapters 413 may be separated by a third gap 415.
  • the third gap 415 may penetrate the electrical adapter or may not penetrate the electrical adapter.
  • the lead assembly 420 has a plurality of lead-out member groups 402 arranged along the first direction.
  • the lead-out member group 402 has a plurality of lead-out members (such as 421, 422, 428, 429, etc.), and these lead-out members can be arranged in one layer or in multiple layers.
  • the lead-out members are at least divided into a first lead-out member 421 and at least one pair of second lead-out members 422.
  • the first lead-out member 421 is electrically connected to the corresponding first array element 310 through a corresponding electrical adapter, and each pair of second lead-out members 422 is electrically connected to a pair of second array elements 320 through a corresponding electrical adapter.
  • the lead-out member is used to be electrically connected to the positive signal circuit of the main control unit to input a positive signal to the corresponding array element.
  • the electrical adapter is provided with a first conductive adapter portion 414
  • the lead-out member is provided with a second conductive adapter portion 423.
  • the first conductive adapter portion 414 and the corresponding second conductive adapter portion 423 are stacked and aligned in the stacking direction and electrically connected to electrically connect the electrical adapter with the corresponding lead-out member.
  • a third conductive adapter portion 431 may also be provided on the corresponding insulating substrate layer to realize the electrical connection between the first conductive adapter portion 414 and the second conductive adapter portion 423 and the electrical connection between the second conductive adapter portions 423 in different layers of lead-out members.
  • the stacking direction thereof is also different.
  • the first conductive adapter portion 414 and the second conductive adapter portion 423 are stacked along the third direction.
  • a portion of the first conductive transition portion 414 and the second conductive transition portion 423 are stacked along the third direction, and a portion of the first conductive transition portion 414 and the second conductive transition portion 423 are stacked along the second direction.
  • the first conductive transition portion 414, the second conductive transition portion 423, and the third conductive transition portion 431 are conductive through holes, and the conductive through holes corresponding to the first conductive transition portion 414, the second conductive transition portion 423, and the third conductive transition portion 431 are coaxially arranged, and conductive connection is achieved by filling conductive materials therein.
  • first conductive transition portion 414, the second conductive transition portion 423, and the third conductive transition portion 431 may also adopt other structures that can achieve electrical conduction between stacked objects, for example, the first conductive transition portion 414, the second conductive transition portion 423, and the third conductive transition portion 431 are columnar conductive structures.
  • each pair of second lead-out members 422 are electrically connected through a connecting portion 424.
  • at least one other lead-out member is arranged between at least one pair of second lead-out members 422.
  • the other lead-out member may include a first lead-out member 421, a first transfer lead-out member 428 and/or a second transfer lead-out member 429.
  • FIG. 6 please refer to FIG. 6.
  • first lead-out member 421 between the pair of second lead-out members 422, and the connecting portion 424 between the pair of second lead-out members 422 passes through the first lead-out member 421.
  • other pairs of second lead-out members 422, first transfer lead-out members 428 and/or second transfer lead-out members 429 may be disposed between a pair of second lead-out members 422, and the connecting portion 424 between a pair of second lead-out members 422 passes through the other lead-out members.
  • the first lead-out member 421, the first transfer lead-out member 428 and/or the second transfer lead-out member 429 may be disposed between a pair of second lead-out members 422.
  • the area on the electrical adapter where the first conductive transition portion 414 can be effectively set is called a conductive transition area.
  • the conductive transition area should avoid the cutting position (i.e., the position directly opposite the first gap 303).
  • the first conductive transition portion 414 of the electrical adapter and the second conductive transition portion 423 of the corresponding lead-out member need to be aligned in the stacking direction, so the first conductive transition portion 414 on the electrical adapter can only be set in the area that completely overlaps with the corresponding lead-out member.
  • the position of the lead-out member also affects the position and width of the conductive transition area on the electrical adapter (in this embodiment, the width refers to the dimension in the first direction, the length is the dimension in the second direction, and the thickness refers to the dimension in the third direction).
  • the sub-electrical adapter has conductive through holes and the conductive through holes need to avoid the cutting position (i.e., the position directly opposite to the first gap) to prevent the conductive through holes from being damaged during the cutting process and affecting the electrical connection between the sub-electrical adapter and the corresponding lead-out member below.
  • the conductive through holes of the sub-electrical adapter and the corresponding lead-out member must be aligned in the stacking direction, so the conductive through holes on the sub-electrical adapter can only be set in the area that completely overlaps with the corresponding lead-out member, that is, the area on the sub-electrical adapter where the conductive through holes can be set (called the conductive transfer area) is limited by the position of the first gap and the area of the lead-out member.
  • the size (i.e., width) of a single sub-array in a direction perpendicular to the extension direction of the first gap is narrower, which also causes the width of the sub-electrical adapter corresponding to the sub-array to become narrower, further limiting the width of the conductive transfer area on the sub-electrical adapter.
  • the aperture of the conductive through hole cannot be further reduced after reaching the limit size.
  • connection portion 424 of a pair of second lead-out members 422 detours from one side of the first lead-out member 421 located in the middle.
  • the first lead-out member 421 deviates to one side in the first direction, thereby causing the conductive transfer area on the electrical adapter to deviate to the same side.
  • the conductive transfer area on the sub-electrical adapter 413 corresponding to the side where the connection portion 424 is located is compressed, and the first conductive transfer portion 414 can only be set in the dotted box A.
  • the area outside the dotted box A on the sub-electrical adapter 413 cannot be set with the first conductive transfer portion 414, resulting in waste. Due to process limitations, the width of the first conductive transfer portion 414 cannot be further reduced after reaching the limit size. When the sub-array 302 and the sub-electrical adapter 413 corresponding to the sub-array 302 are wide enough, it can also be ensured that the first conductive transfer portion 414 has enough space.
  • the orthographic projection of the first gap 303 and the orthographic projection of the connecting portion 424 at least partially overlap.
  • the area on the electrical adapter corresponding to the first gap 303 and the area corresponding to the connecting portion 424 are both areas where the first conductive transition portion 414 cannot be set.
  • the area on the electrical adapter corresponding to the first gap 303 and the area corresponding to the connecting portion 424 at least partially overlap in the width direction, so that the conductive transition area on the sub-electrical adapter 413 can account for a larger proportion, that is, relative to the embodiment shown in Figure 18, under the same width condition, the electrical adapter has a wider conductive transition area, which can avoid cutting the first conductive transition portion 414 of the electrical adapter when cutting and manufacturing the sub-array 302, and enable the electrical adapter to meet the lead-out requirements of the sub-array 302 with a smaller width, thereby arranging a larger number of array elements in the array element layer 300 with the same width.
  • the width of a single array element in the first direction is greater than or equal to 0.2 mm and less than or equal to 0.4 mm, that is, the value interval is [0.2 mm, 0.4 mm]
  • the width of a single sub-array 302 in the first direction is greater than or equal to 0.07 mm and less than or equal to 0.17 mm, that is, the value interval is [0.07 mm, 0.17 mm]
  • the width of a single array element in the first direction is greater than or equal to 0.2 mm and less than or equal to 0.33 mm, that is, the value interval is [0.2 mm, 0.33 mm]
  • the width of a single sub-array 302 in the first direction is greater than or equal to 0.07 mm and less than or equal to 0.14 mm, that is, the value interval is [0.07 mm, 0.14 mm].
  • the width of the sub-electrical adapter 413 in the first direction is greater than or equal to 0.07 mm and less than or equal to 0.17 mm, that is, the value interval is [0.07 mm, 0.17 mm]; or the width of the sub-electrical adapter 413 in the first direction is greater than or equal to 0.107 mm and less than or equal to 0.14 mm, that is, the value interval is [0.107 mm, 0.14 mm].
  • the orthographic projections of the second conductive transition portion 423 and the corresponding first conductive transition portion 414 on the lead-out member between each pair of second lead-out members 422 on the reference plane are distributed on both sides of the orthographic projection of the connecting portion 424 of the lead-out member, thereby ensuring reliable electrical connection between the second conductive transition portion 423 and the corresponding first conductive transition portion 414.
  • the orthographic projections of the second conductive transition portion 423 and the corresponding first conductive transition portion 414 on the lead-out member between each pair of second lead-out members 422 on the reference plane are distributed on both sides of the orthographic projection of the first gap 303 on the electrical transition member corresponding to the lead-out member, thereby avoiding cutting the corresponding first conductive transition portion 414 when cutting the first gap 303.
  • the first gap 303 is usually cut by the array element, and correspondingly, the connecting portion 424 of a pair of second lead-out members 422 usually needs to pass through the middle of other lead-out members located between the pair of second lead-out members 422, so please refer to Figure 6.
  • the other lead-out members usually have a second gap 425, and the connecting portion 424 passes through the corresponding second gap 425.
  • the other lead-out member is a first lead-out member 421
  • the first lead-out member 421 has a second gap 425
  • a pair of connecting portions 424 of the second lead-out members 422 pass through the second gap 425 of the first lead-out member 421 .
  • the other lead-out member between a pair of second lead-out members 422 is a first lead-out member 421
  • the first lead-out member 421 has a second gap 425
  • the connecting portion 424 of the pair of second lead-out members 422 passes through the second gap 425 of the first lead-out member 421.
  • the other lead-out member between another pair of second lead-out members 422 is a first transfer lead-out member 428
  • the first transfer lead-out member 428 has a second gap 425
  • the connecting portion 424 of the pair of second lead-out members 422 passes through the second gap 425 of the first transfer lead-out member 428.
  • lead-out members between a pair of second lead-out members 422 may also be other second lead-out members.
  • the orthographic projection of the first gap 303 on the reference plane in the first direction does not exceed the orthographic projection of the second gap 425 on the reference plane. That is, the first gap 303 falls into the area corresponding to the second gap 425 in the third direction, thereby maximizing the proportion of the conductive transfer area on the electrical transfer.
  • n is equal to 3, that is, each array element group 301 has 3 array elements arranged along the second direction.
  • the electrical adapter of the electrical adapter group 401 is at least divided into a first electrical adapter 411 and a pair of second electrical adapters 412 arranged on both sides of the first electrical adapter 411.
  • the first electrical adapter 411 and the second electrical adapter 412 are respectively in contact with and electrically connected to the positive electrodes of the corresponding first array element 310 and the second array element 320.
  • the electrical connection method can adopt direct conductive contact or other electrical connection methods in the prior art.
  • the lead of the lead group 402 is at least divided into a first lead 421 and a pair of second lead 422 located on both sides of the first lead 421.
  • the first lead 421 and the second lead 422 are electrically connected to the corresponding first electrical adapter 411 and the second electrical adapter 412. That is, the first lead-out member 421 is electrically connected to the first electrical adapter 411 , and one second lead-out member 422 is electrically connected to one second electrical adapter 412 .
  • the first electrical adapter 411 and the second electrical adapter 412 have conductive contact areas that are in contact with the corresponding sub-array 302 .
  • the first electrical adapter 411 and the second electrical adapter 412 can be electrically connected to the corresponding sub-array 302 through the conductive contact areas.
  • the first lead-out member 421 since the second lead-out member 422 passes through the middle of the first lead-out member 421, the first lead-out member 421 has at least two first sub-lead-out members 427, and a second gap 425 is provided between the first sub-lead-out members 427, and the connecting portion 424 passes through the second gap 425.
  • first sub-lead-out parts 427 there are two first sub-lead-out parts 427, and the two first sub-lead-out parts 427 are symmetrical about the second gap 425, so that the widths of the conductive transfer areas on the two first sub-electrical adapters 413 corresponding to the first sub-lead-out parts 427 are equal or close, so that each conductive transfer area can be utilized to the maximum extent to set the first conductive transfer part 414.
  • the two first sub-lead-out members 427 extend from both sides of a second lead-out member 422.
  • the first sub-lead-out member 427 has a third extension portion 4211, and the third extension portion 4211 of each first sub-lead-out member 427 extends from the side of the second lead-out member 422.
  • the second lead-out member 422 located between the two third extensions 4211 has a narrower width due to the influence of the third extension 4211.
  • the second lead-out member 422 located between the two third extensions 4211 has a second extension 4221.
  • the second extension 4221 is electrically connected to the body of the second lead-out member 422.
  • the two can be integrally formed (for example, they can be printed or coated as an integrally formed structure), or they can be manufactured separately and then electrically connected together. Please refer to FIGS. 3 and 6.
  • the second electrical adapter 412 corresponding to the second lead-out member 422 having the second extension 4221 has a first extension 4121 located outside its conductive contact area, and the first extension 4121 corresponds to the second extension 4221 of the second adapter.
  • the first extension part 4121 is electrically connected to the corresponding conductive contact area, and the two can be integrally formed (for example, they can be printed or coated into an integrally formed structure), or they can be manufactured separately and then electrically connected together.
  • the first extension part 4121 is provided with a first conductive transition part 414, and the second extension part 4221 has a second conductive connection part 423, so as to achieve the conductive connection between the first extension part 4121 and the second extension part 4221, so that the second lead-out member 422 located between the two third extension parts 4211 can meet the smaller width requirement to adapt to the narrower sub-array 302 design.
  • first extension portion 4121 and the second extension portion 4221 are both bent and extended along the third direction and in a direction away from the array element layer 300, and extend to the peripheral side of the backing layer 500, so as to fully utilize the space around the backing layer 500 and not affect the thickness of the lens 100, the matching layer 200, the array element layer 300, the flexible circuit board 400 and the backing layer 500 in the stacking direction.
  • At least one second electrical adapter 412 may have a first extension 4121 outside its conductive contact region, and correspondingly at least one second lead 422 may have a second extension 4221.
  • a second lead 422 that is away from a side of the first lead 421 on which the third extension 4211 is provided may also be provided with a second extension 4221, and a second electrical adapter 412 corresponding to the second lead 422 may also have a first extension 4121, and the second lead 422 and the second electrical adapter 412 are electrically connected via the first extension 4121 and the second extension 4221.
  • the second lead-out member 422 without the second extension portion 4221 may be provided with an electrical external structure 4222, and the electrical external structure 4222 is used to be electrically connected to the positive signal circuit, so as to electrically connect the sub-array 302 of the second array element 320 corresponding to the two second lead-out members 422 to the positive signal circuit.
  • the electrical external connection structure for electrically connecting the second lead-out member 422 may also be disposed on the second extension portion 4221 .
  • the third extension portion 4211 may extend beyond the end of the second extension portion 4221 and be electrically connected to each other to form an electrical external connection structure, and the electrical external connection structure is used to be electrically connected to the positive signal circuit, so as to electrically connect the sub-array 302 of the first array element 310 corresponding to the first lead-out member 421 to the positive signal circuit.
  • the two third extension portions 4211 may not be connected together, but are separated from each other, and each has an electrical external connection structure to be electrically connected to the positive signal circuit.
  • the first lead 421 may not have the third extension 4211, that is, the first lead 421 is isolatedly disposed between a pair of second lead 422, and does not extend from one side of the second lead 422 on the same layer.
  • at least one lead is a first adapter lead 428
  • the first adapter lead 428 is disposed on a side of the first lead 421 away from the first electrical adapter 411, and is electrically connected to the first lead 421
  • the first adapter lead 428 has an electrical external connection structure, and the electrical external connection structure is used to be electrically connected to the positive signal circuit.
  • at least one layer of first adapter lead-out member 428 (similar to the structure shown in FIG.
  • the first adapter lead-out member 428 is electrically connected to the first lead-out member 421 in the third direction via the second conductive adapter portion 423, and the first adapter lead-out member 428 has a fifth extension portion 4281, which extends from below the first lead-out member 421 and the second lead-out member 422, for example, to the peripheral side of the backing layer 500, and the fifth extension portion 4281 has an electrical external connection structure, which is used to be electrically connected to the positive signal circuit, thereby electrically connecting the subarray 302 of the first array element 310 corresponding to the first lead-out member 421 to the positive signal circuit.
  • n is greater than or equal to 5, that is, each array element group 301 has more than 5 array elements arranged along the second direction.
  • the electrical adapters of each electrical adapter group 401 correspond one-to-one to the array elements of a group of array element groups 301, that is, the number of electrical adapters of each electrical adapter group 401 is equal to the number of array elements of each array element group 301.
  • the first lead-out component 421 is provided in the first layer of lead-out components, and the first lead-out component 421 is electrically connected to the corresponding electrical adapter component, and the electrical connection can be carried out in the manner shown in the above embodiments.
  • each layer of lead-out components has a pair of second lead-out components 422, and the second lead-out components 422 of the first layer of lead-out components are electrically connected to the first conductive transition portion 414 of the corresponding electrical transition component.
  • the second lead-out components 422 in each layer are electrically connected to the corresponding electrical transition component through the corresponding second transition lead-out components 429 of the previous layer.
  • each layer of lead-out components has a first adapter lead-out component 428, and the first lead-out component 421 is electrically connected to each first adapter lead-out component 428 in the lower layer.
  • At least one second lead-out component 422 and at least one first adapter lead-out component 428 in each pair of second lead-out components 422 can be electrically connected to the positive signal circuit of the main control unit, thereby realizing the lead-out of the positive electrode of the sub-array 302.
  • the connecting portion 424 between a pair of second lead-out members 422 passes through the second gap 425 of the first lead-out member 421 and/or the first transition lead-out member 428 .
  • the second lead-out member 422 has a second extension portion 4221, and the outer end portion of the second extension portion 4221 is located outside the array element layer 300.
  • the outer end portion is provided with an electrical external connection structure, and the electrical external connection structure can be conductively connected to the positive signal circuit of the main control unit.
  • At least one pair of second adapter lead-out members 429 are relatively arranged on both sides of a pair of second lead-out members 422 , and the second extension portion 4221 of the second lead-out member 422 passes through the corresponding second adapter lead-out member 429 and extends outside the array element layer 300 .
  • the second adapter lead-out component 429 has a fourth extension portion 4291, the fourth extension portion 4291 is located outside the array element layer 300, and the fourth extension portion 4291 is provided with an electrical external connection structure, which can be conductively connected to the positive signal circuit of the main control unit.
  • each array element group 301 has 5 array elements (such as 310, 320) arranged along the second direction.
  • Each group of electrical adapters 401 has 5 electrical adapters (such as 411, 412), and each electrical adapter is electrically connected to a corresponding array element.
  • the lead-out parts in each lead-out part group 402 are arranged in 3 layers along the third direction. In order to clearly show the corresponding relationship between the lead-out component 420 and the adapter layer 410 and between the lead-out parts of each layer, the insulating substrate layer is omitted in the figure.
  • the layer of lead-out parts closest to the electrical adapter group 401 is the first layer
  • the layer of lead-out parts farthest from the electrical adapter group is the third layer.
  • the first layer lead-out 420a includes a first lead-out 421, a pair of second lead-outs 422 located on both sides of the first lead-out 421, and a pair of second adapter lead-outs 429 located on both sides of the pair of second lead-outs 422.
  • the first lead-out 421, the second lead-out 422, and the second adapter lead-out 429 are conductively connected to the corresponding electrical adapters, and further conductively connected to the corresponding sub-array 302.
  • the specific connection method can refer to the conductive connection method shown in the above embodiments.
  • the first lead-out member 421 is conductively connected to the corresponding electrical adapter, and the connecting portion 424 of the pair of second lead-out members 422 passes through the first lead-out member 421 to electrically connect the pair of second lead-out members 422 as a whole.
  • the pair of second transfer lead-out members 429 is used to conductively connect the corresponding electrical adapter to the second lead-out member 422 or the second transfer lead-out member 429 of the next layer.
  • the pair of second lead-out members 422 are provided with a second extension portion 4221 , and are conductively connected to the main control unit via the second extension portion 4221 .
  • the second extension portion 4221 may be bent and extended along the third direction and away from the transfer layer 410 .
  • the second extension portion 4221 of the second lead-out member 422 passes through the corresponding second adapter lead-out member 429 and extends outside the array element layer 300, for example, extends to the peripheral space of the backing layer 500, so as to facilitate conductive connection with the main control unit.
  • the second-layer lead-out member 420b has a first transfer lead-out member 428 and a pair of second lead-out members 422.
  • the first transfer lead-out member 428 is conductively connected to the first-layer first lead-out member 421.
  • the pair of second lead-out members 422 are conductively connected to a pair of second transfer lead-out members 429 of the first layer to conductively connect the pair of second lead-out members 422 to the corresponding array elements.
  • the connecting portion 424 between the pair of second lead-out members 422 passes through the first transfer lead-out member 428.
  • the pair of second lead-out members 422 have a second extension portion 4221, which extends outside the array element layer 300, for example, to the peripheral space of the backing layer 500, so as to facilitate conductive connection with the main control unit.
  • the second transfer lead-out member 429 of the first layer can be conductively connected to the second lead-out member 422 of the second layer through the second conductive transfer portion 423 thereon.
  • the second transfer lead-out member 429 of the first layer can also have a fourth extension portion 4291, and the fourth extension portion 4291 extends outside the array element layer 300, for example, extends to the peripheral space of the backing layer 500, so as to be conductively connected to the second extension portion 4221.
  • the electrical external connection structure for leading out the second lead-out member 422 of the second layer can be arranged on the second extension portion 4221 of the second lead-out member 422, and can also be arranged on the fourth extension portion 4291 of the second transfer lead-out member 429 of the first layer.
  • the second transfer lead-out member 429 of the first layer is divided into two parts by the second extension part 4221 of the second lead-out member 422, and the two parts respectively have a fourth extension part 4291, and the two fourth extension parts 4291 can be connected as a whole or separately arranged.
  • the fourth extension part 4291 is provided, the second extension part 4221 of the second lead-out member 422 of the first layer can be led out through the sixth extension part 4292 arranged on the third layer, and the second extension part 4221 and the sixth extension part 4292 can be conductively connected through the second conductive transfer part 423, and then conductively connected to the main control unit through the sixth extension part 4292.
  • the third-layer lead-out component 420 c includes a first transfer lead-out component 428 , which is conductively connected to the first transfer lead-out component 428 of the second layer to ultimately lead out the first lead-out component 421 .
  • the first transfer lead-out member 428 of the third layer lead-out member has a fifth extension portion 4281 , which extends beyond the array element layer 300 , for example, to the peripheral space of the backing layer 500 , to facilitate conductive connection with the main control unit.
  • the array element lead-out structure also includes a negative electrode lead-out structure, the negative electrode lead-out structure is electrically connected to the negative electrode of the array element, and the negative electrode lead-out member is used to electrically connect the negative electrode of the array element to the negative electrode signal circuit of the main control unit.
  • the negative electrode lead-out structure can be implemented using existing technologies or some new structures.
  • the negative electrode lead-out structure 600 is a conductive sheet 610, such as copper foil, and the conductive sheet 610 is conductively connected to the negative electrode signal circuit of the main control unit.
  • the conductive sheet 610 covers the negative electrode side of the array element of the array element layer 300 (the side of the array element away from the flexible circuit board 400).
  • the conductive sheet 610 is conductively connected to the negative electrode of the array element and extends to the side of the flexible circuit board 400 where the first extension part 4121 is not provided, so as to prevent the conductive contact with the first extension part 4121 from causing a short circuit.
  • the negative electrode lead-out structure 600 is a conductive sheet 610, such as a copper foil, and the conductive sheet 610 covers the negative electrode side of the array element of the array element layer 300 (the side of the array element away from the flexible circuit board 400).
  • the conductive sheet 610 is conductively connected to the negative electrode of the array element.
  • an insulating layer 630 is covered on the first extension portion 4121. At this time, the conductive sheet 610 can extend to the side of the flexible circuit board 400 where the first extension portion 4121 is not provided, and can also extend to the side where the insulating layer 630 is provided.
  • the array element layer 300 may further include a waste array element 330 disposed on the outermost side, and the waste array element 330 is conductively connected to the negative electrode side of other array elements through a conductive coating 620 (such as a gold-plated layer).
  • the negative electrode lead-out structure 600 is conductively connected to the negative electrode signal circuit of the main control unit through the waste array element 330 and the conductive coating 620.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种超声探头的阵元引出结构、声头及超声探头,该阵元引出结构中每对第二引出件之间通过连接部电连接,在垂直于第三方向的参考面上,子阵之间的第一间隙与连接部在该参考面上的正投影至少部分重叠,可以使子电转接件上用于设置第一导电转接部的区域(称为导电转接区域)占比更大,即相对现有结构来说,在相同宽度条件下,本实施例所示电转接件具有更宽的导电转接区域,既可避免切割制造子阵时切割到电转接件的第一导电转接部,又可使电转接件能够满足更小宽度的子阵的引出要求,进而在相同宽度的阵元层中可设置更多数量的阵元。

Description

超声探头的阵元引出结构、声头及超声探头 技术领域
本申请涉及超声探头,具体涉及超声探头的阵元引出结构、声头及超声探头。
背景技术
在超声探头的换能器中,声头的单个阵元的正极引出需要使用FPC(柔性电路板)。例如,在多维阵列式换能器中,其通常具有阵元层(压电材料层或晶片层)和柔性电路板。该阵元层通常具有呈阵列排布的多个阵元,该柔性电路板具有转接层(或称为大金面)和引出组件(或称为走线层)。该转接层具有多个电转接件,该电转接件与阵元之间一一对应,电转接件的上方与对应子阵的正极电接触,下方与引出组件中对应的引出件通过导电通孔电连接,从而通过电转接件下方的引出件将阵元的正极引出。
若需要提高超声换能器的性能,每个阵元还可进一步被切割成至少两个子阵,子阵之间形成第一间隙。通常在加工子阵时,先将压电材料整体覆盖到柔性电路板的转接层上,然后再通过设备将压电材料连同转接层一起切割,形成阵列的阵元和与阵元对应的电转接件,然后进一步切割阵元和对应的电转接件,从而形成被分隔开的子阵和与子阵对应的子电转接件。
随着高分辨率换能器的发展,相同面积的阵元层下需要设置更多数量的阵元,进而使得单个阵元尺寸逐渐减小,尤其是当阵元具有两个子阵时,单个子阵在与第一间隙延伸方向垂直的方向上的尺寸(即宽度)更加狭窄,这也导致子阵对应的子电转接件的宽度也变得狭窄,进一步限缩了子电转接件上导电转接区域的宽度。加上受加工工艺的影响,导电通孔的孔径在达到极限尺寸后,无法再进一步缩小。一旦子电转接件上导电转接区域的宽度小于导通通孔的设置要求时,非常容易切割到子电转接件上的导电通孔,造成电连接的失效,因此导致多维阵列式换能器中阵元数量达到极限值后,无法再进一步缩小阵元宽度,难以设计更多数量的阵元,从而影响了多维阵列式换能器的进步。
技术问题
本申请主要提供一种超声探头的阵元引出结构、声头及超声探头,用以展示一种新的阵元引出结构。
技术解决方案
基于上述目的,本申请一种实施例中提供了一种超声探头的阵元引出结构,包括:
阵元层,所述阵元层具有多个沿第一方向排列的阵元组,所述阵元组具有n个沿第二方向排列的阵元,所述n为大于或等于3的奇数;所述阵元通过第一间隙分割为至少两个子阵;其中,所述阵元组中的阵元至少分为位于最中间序位的第一阵元和至少一对第二阵元,每对所述第二阵元在所述第二方向上相对地设置在所述第一阵元的两侧;
以及柔性电路板,所述柔性电路板具有转接层和引出组件,所述阵元层、转接层和引出组件沿第三方向排布,所述第一方向、第二方向和第三方向两两垂直;  
所述转接层具有多个沿第一方向排列的电转接件组,所述电转接件组具有多个沿所述第二方向排列的电转接件,每组所述电转接件组的电转接件分别与对应阵元组中所述阵元的正极接触并电连接;
所述引出组件具有多个沿第一方向排列的引出件组,所述引出件组具有多个引出件,所述引出件至少包括第一引出件和至少一对第二引出件,所述第一引出件通过对应电转接件与对应的第一阵元电连接,每对第二引出件分别通过对应电转接件与一对第二阵元电连接;所述引出件用于与控制单元的正极信号电路电连接,以向对应阵元输入正极信号;
所述电转接件上设有第一导电转接部,所述引出件设有第二导电转接部,所述第一导电转接部与对应第二导电转接部层叠设置,且在层叠方向上形成电连接,以将所述电转接件与对应的引出件电连接;每对第二引出件之间通过连接部电连接,在垂直于所述第三方向的参考面上,所述第一间隙的正投影与所述连接部的正投影至少部分重叠,每对第二引出件之间的所述第一引出件上的第二导电转接部及对应的第一导电转接部在所述参考面上的正投影均分布在所述连接部的正投影两侧。
一种实施例中,至少一对第二引出件之间间隔设有至少一个其他引出件,所述其他引出件包括所述第一引出件、第一转接引出件和/或第二转接引出件,所述其他引出件具有第二间隙,所述连接部从对应的第二间隙中穿过。
一种实施例中,所述第一间隙在所述参考面的正投影在所述第一方向上不超出所述第二间隙在所述参考面的正投影。
一种实施例中,同一对第二阵元各自距离第一阵元的位差相同。
一种实施例中,所述n等于3,所述电转接件组的电转接件至少分为第一电转接件和一对分设在所述第一电转接件两侧的第二电转接件,所述第一电转接件和所述第二电转接件分别与对应的第一阵元和第二阵元的正极接触并电连接;所述引出件组的引出件至少分为第一引出件和一对位于所述第一引出件两侧的第二引出件,所述第一引出件和第二引出件与对应的第一电转接件和所述第二电转接件电连接。
一种实施例中,所述第一电转接件和第二电转接件具有与对应子阵接触的导电接触区;一个所述电转接件组中,至少一个所述第二电转接件具有位于其导电接触区之外的第一外延部,所述第一外延部与对应导电接触区电连接;具有所述第一外延部的第二电转接件中,其第一外延部设有第一导电转接部。
一种实施例中,所述第一电转接件和第二电转接件被分隔为多个子电转接件,所述子电转接件与所述子阵一一对应,所述子电转接件均具有所述导电接触区。
一种实施例中,所述第一引出件和第二引出件设有第二导电转接部,所述第二导电转接部与对应的第一导电转接部电连接;其中,至少一个所述第二引出件具有与所述第一外延部对应的第二外延部;具有所述第二外延部的第二引出件中,其第二外延部设有第二导电转接部。
一种实施例中,所述第一外延部和所述第二外延部向背离所述阵元层的方向弯折设置。
一种实施例中,所述第二外延部具有电外接结构,所述电外接结构用于与所述正极信号电路电连接。
一种实施例中,所述第一引出件具有至少两个第一子引出件,所述第一子引出件之间具有第二间隙,所述连接部穿过所述第二间隙;所述第一子引出件具有第三外延部,各第一子引出件的第三外延部从所述第二引出件的侧方延伸至第二外延部的端部之外并相互电连接成电外接结构,所述电外接结构用于与所述正极信号电路电连接。
一种实施例中,所述第一子引出件为两个,两个所述第一子引出件关于所述第二间隙对称。
一种实施例中,在所述引出件组中,至少一个引出件为第一转接引出件,所述第一转接引出件设于所述第一引出件背离所述第一电转接件的一侧,并与所述第一引出件电连接,所述第一转接引出件和所述第二引出件分别具有电外接结构,所述电外接结构用于与所述正极信号电路电连接。
一种实施例中,所述n大于或等于5,每组所述电转接件组的电转接件与一组所述阵元组的阵元一一对应;所述引出件组中的引出件沿所述第三方向至少排列为m层,所述m=(n+1)/2;其中最靠近所述电转接件组的一层引出件为第1层,最远离所述电转接组的一层引出件为第m层;
第1层引出件中具有第一引出件,所述第一引出件与对应的电转接件电连接;
在第1层至第(m-1)层中,每层引出件均具有一对第二引出件,所述第1层引出件的第二引出件与对应电转接件的第一导电转接部电连接;在第2层至第(m-1)层中,各层中的第二引出件通过上一层对应的第二转接引出件,与对应的电转接件电连接;
在第2层至第m层中,每层引出件均具有第一转接引出件,所述第一引出件与下层中各第一转接引出件电连接,每对第二引出件中的至少一个第二引出件和至少一个第一转接引出件能够与所述正极信号电路电连接。
一种实施例中,至少一层引出件中,一对所述第二引出件之间的连接部从第一引出件和/或第一转接引出件的第二间隙中穿过。
一种实施例中,至少一层引出件中,所述第二引出件具有第二外延部,所述第二外延部的外端部位于所述阵元层之外,所述外端部设有所述电外接结构。
一种实施例中,至少一层引出件中,至少一对第二转接引出件相对地设置在一对第二引出件的两侧,所述第二引出件的第二外延部穿过对应的第二转接引出件,并延伸至所述阵元层之外。
一种实施例中,至少一层引出件中,所述第二转接引出件具有第四外延部,所述第四外延部位于所述阵元层之外,所述第四外延部设有所述电外接结构。
一种实施例中,所述n=5,所述阵元组具有一个第一阵元和两对第二阵元;
所述m=3,第1层引出件具有一个第一引出件、一对第二引出件以及一对第二转接引出件,一对所述第二引出件,所述第二引出件相对地设于所述第一引出件两侧,所述第二转接引出件相对地设于一对所述第二引出件的两侧;所述第二引出件和所述第二转接引出件分别与一个对应的第二阵元电连接;
第2层引出件具有一个第一转接引出件和一对第二引出件,所述第二引出件与第1层的所述第二转接引出件电连接,以通过所述第二转接引出件与对应的第二阵元电连接;
第3层引出件具有一个第一转接引出件,第3层的第一转接引出件与第2层的第一转接引出件电连接,所述第3层的第一转接引出件具有所述电外接结构。
一种实施例中,所述转接层和所述引出组件之间设有第一绝缘层;
和/或,所述引出组件的各层引出件之间设有第二绝缘层。
一种实施例中,还包括负极引出结构,所述负极引出结构与所述阵元的负极电连接,所述负极引出件用于将所述阵元的负极与控制单元的负极信号电路电连接。
一种实施例中,在所述阵元组中,单个所述阵元在所述第一方向上的宽度大于或等于0.2mm且小于或等于0.4mm且单个所述子阵在所述第一方向上的宽度大于或等于0.07mm且小于或等于0.17mm;或者,单个所述阵元在所述第一方向上的宽度大于或等于0.2mm且小于或等于0.33mm且单个所述子阵在所述第一方向上的宽度大于或等于0.07mm且小于或等于0.14mm。
有益效果
基于上述目的,本申请一种实施例中提供了一种超声探头的声头,包括背衬、匹配层、透镜以及如上述任一项所示的阵元引出结构,所述柔性电路板设于所述背衬上,所述匹配层位于所述阵元层上,所述透镜设于所述匹配层上。
基于上述目的,本申请一种实施例中提供了一种超声探头,包括声头,所述声头具有如上述所示的阵元引出结构。
依据上述实施例的阵元引出结构,其每对第二引出件之间通过连接部电连接,在垂直于第三方向的投影面上,子阵之间的第一间隙的正投影与连接部的正投影至少部分重叠。由于电转接件与对应第一间隙相对的区域通常为不设置第一导电转接部(如导电通孔)的区域,将连接部至少部分与该区域形成对应,可以使子电转接件上用于设置第一导电转接部的区域(称为导电转接区域)占比更大,即相对现有结构来说,在相同宽度条件下,本实施例所示电转接件具有更宽的导电转接区域,既可避免切割制造子阵时切割到电转接件的第一导电转接部,又可使电转接件能够满足更小宽度的子阵的引出要求,进而在相同宽度的阵元层中设置更多数量的阵元。
附图说明
图1为本申请一种实施例中声头的外观结构示意图;
图2为本申请一种实施例中声头的剖视示意图;
图3为本申请一种实施例中阵元层、转接层和引出组件在层叠方向上的分解示意图,图中示出了柔性电路板中的绝缘基材层;
图4为本申请一种实施例中阵元层、转接层和引出组件的结构示意图,图中为了方便地观察到转接层与引出组件之间的对应关系,省略了绝缘基材层;
图5为本申请一种实施例中阵元层与转接层的分解示意图,图中省略了绝缘基材层;
图6为本申请一种实施例中引出组件的分布示意图;
图7为本申请一种实施例中阵元层、转接层和引出组件的结构示意图,图中为了方便地观察到阵元层、转接层与引出组件之间的对应关系,省略了绝缘基材层;
图8为本申请一种实施例中阵元层、转接层和引出组件的结构的侧视图;
图9为本申请一种实施例中阵元层、转接层和引出组件在层叠方向上的分解示意图,图中省略了绝缘基材层;
图10申请一种实施例中第1层引出件的结构示意图;
图11申请一种实施例中第2层引出件的结构示意图;
图12申请一种实施例中第3层引出件的结构示意图;
图13和14为本申请一种实施例中通过铜箔将阵元负极引出时,在两个不同视角下的结构示意图;
图15和16为本申请一种实施例中通过铜箔将阵元负极引出时,在两个不同视角下的结构示意图;
图17为本申请一种实施例中通过导电层将阵元负极引出时的结构示意图;
图18为一种实施例中第二引出件之间的连接部从第一引出件侧方通过的示意图;
图19为本申请一种实施例中阵元层、转接层和引出组件配合状态下的截面示意图。
本发明的实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本申请提供了一种超声探头,该超声探头可应用于各类超声设备中。请参考图1和2,一些实施例中,该超声探头具有声头1和主控单元(图中未示出),该声头1主要用于向被检测者发射超声波信号,并接收反射回的超声波信号。该主控单元与声头1电连接,用以控制声头1的信号发送和接收等。
请参考图1和2,一些实施例中,该声头1包括透镜100、匹配层200、阵元层300、柔性电路板400以及背衬层500,该透镜100、匹配层200、阵元层300、柔性电路板400以及背衬层500层叠设置。该阵元层300可用来发射和接收超声波信号。该匹配层200是为实现阵元层300与传声媒质之间声特性阻抗的匹配,使声能良好地透过,而在阵元层300辐射面敷设的声学材料层。该透镜100可与被检测接触,并传递超声波信号波。该背衬层500可以吸收阵元层300背面辐射的无用声波,同时也可以作为声头1其他部件的支撑结构。该声头1的具体结构除本实施例所涉及的改进结构之外,其他结构可参考现有各类超声探头,在此不作进一步详细的介绍。
该主控单元需要与声头1中的阵元电连接,以实现电信号的传输,例如向阵元发出激励信号以及接收阵元所回收的信号等。主控单元可采用各种能够实现对声头1进行控制的主控制电路,该主控制电路可设置在一个或多个控制电路板上,该控制电路板可以为PCB板或FPCB板等。通常,该主控单元与声头1分开设置,声头1通过对应的阵元引出结构将其内部的阵元引出,并与主控单元实现电连接。该主控单元具有正极信号电路和负极信号电路,该正极信号电路用于与阵元引出结构中用于正极引出的电外接结构电连接,该负极信号电路用于与阵元引出结构中用于负极引出的电外接结构电连接。
该阵元引出结构用于实现对阵元的正极以及负极引出。请参考图2-4以及图7-9,一些实施例中,该阵元引出结构包括阵元层300和柔性电路板400。
请参考图3,一些实施例中,该阵元层300具有多个沿第一方向排列的阵元组301。具体说来,请参考图3和7,一些实施例中,在第二方向上位于同一列的阵元被称为一组阵元组301。该阵元组301的数量可根据声头1实际所需要实现的功能和效果而设置。
该阵元组301具有n个沿第二方向排列的阵元。在不同类型超声探头的声头1中,该n的数量不同。例如,在一些实施例中声头1为一种多维超声探头的声头1,该n为大于或等于3的奇数。其中,请参考图3和9,一些实施例中,阵元组301中的阵元至少分为位于最中间序位的第一阵元310和至少一对第二阵元320,每对第二阵元320在第二方向上相对地设置在第一阵元310的两侧。通常,每对第二阵元320的正极将被电连接到一起,并作为一个整体与主控单元电连接。根据不同的需求和功能,不同实施例的声头1中,每个阵元组301可具有一对或两对以上的第二阵元320,其中,每对第二阵元中的每个第二阵元的大小、形状或者尺寸可以相同或者不同。
请参考图3,一种实施例中,n等于3,即阵元组301具有3个沿第二方向排列的阵元。每个阵元组301具有一对第二阵元320,该一对第二阵元320在第二方向上位于第一阵元310的两侧。
另一些实施例中,n大于或等于5,即阵元组301具有5个以上沿第二方向排列的阵元(如310、320)。当每个阵元组301具有两对以上的第二阵元320时,同一对第二阵元320各自距离第一阵元310的位差相同。该同一对第二阵元320各自距离第一阵元310的位差相同是指,第一阵元310为基准位,自第一阵元310沿第二方向向两侧计算,同一对中的两个第二阵元320距离第一阵元310的顺位相同。例如,请参考图7和9,一种实施例中,该阵元组301具有5个沿第二方向排列的阵元。其中,位于最中间的阵元为第一阵元310,位于第一阵元310两侧的四个阵元被分为两组。具体地,请参考图7,沿第二方向从图示左侧向右,将同一阵元组301的阵元分为第1、2、3、4、5位,其中第3位阵元为第一阵元310,第2位和第4位阵元距离第一阵元310的位差均为1,两者为一对第二阵元320,第1位和第5位阵元距离第一阵元310的位差均为2,两者为一对第二阵元320。
当然,在某些实施例中,同一组第二阵元320距离第一阵元310的位差也可能不同。
为了提高超声换能器的性能,每个阵元通过第一间隙303分割为至少两个子阵,该第一间隙303可通过对应制造设备切割而成。当然,其他一些实施例中,这些子阵也可单独加工,最后通过排列的方式形成第一间隙303。请参考图3和7,一些实施例中,每个阵元都具有两个子阵302。但在其他实施例中,每个阵元也可具有三个或以上的子阵302。
为了能够将每个子阵302的正极引出,以便更方便地与主控单元电连接。请参考图3和9,该柔性电路板400具有转接层410和引出组件420。该转接层410和引出组件420之间设置绝缘基材层(图9中为了更方便的展示转接层410和引出组件420之间的对应关系,省略了绝缘基材层),该转接层410和引出组件420可以是通过印刷、涂覆或其他工艺设置在对应绝缘基材层上。绝缘基材层对转接层410和引出组件420形成支撑作用以及绝缘阻隔作用。其中,转接层410和引出组件420之间的绝缘基材层为第一绝缘层430。当引出组件420具有至少两层引出件时,每层引出件可设置在对应的绝缘基材层上,同时相邻层的引出件之间通过对应的绝缘基材层绝缘隔开。该引出组件420的各层引出件之间的绝缘基材层为第二绝缘层440。
此外,阵元层300、转接层410和引出组件420沿第三方向排布,其中,请参考图3、7和9,一些实施例中,该第一方向、第二方向和第三方向两两垂直。其中,该第三方向只是指阵元层300、转接层410和引出组件420三者之间的层叠方向,但并不限定阵元层300、转接层410和引出组件420必须以垂直于第三方向(即第一方向和第二方向所形成的平面)的形式布置。例如,在图3所示实施例中,该转接层410和引出组件420在沿垂直于第三方向的方向延伸后,其一部分也可沿第三方向弯折设置。或者,在图9所示实施例中,该引出组件420在沿垂直于第三方向的方向延伸后,其一部分也可沿第三方向弯折设置。
请参考图3以及图9,一些实施例中,该转接层410具有多个沿第一方向排列的电转接件组401。一个电转接件组401与一个对应阵元组301相对设置。电转接件组401具有多个沿第二方向排列的电转接件(如411、412),其排列方向与同一组阵元组301中的阵元排列方向一致。每个电转接件组401的电转接件分别与对应阵元组301中阵元的正极接触并电连接。该电转接件采用导电材料制成,例如可以为印刷、涂覆或通过其他工艺设置在对应绝缘基材层上的金属面等。该电转接件直接与对应阵元贴合,以实现导电连接。当然,电转接件与对应阵元之间也可采用现有技术中的其他方式实现导电连接。
请参考图3以及图9,一些实施例中,为了与子阵302对应,该电转接件可具有多个子电转接件413,子电转接件413与子阵302一一对应,子电转接件413均具有导电接触区,并通过导电接触区与对应子阵302的正极导电接触。该多个是指两个以上,请参考图3以及图9,一些实施例中,每个电转接件具有两个子电转接件413,相邻子电转接件413可通过第三间隙415隔开,该第三间隙415可贯穿电转接件,也可不贯穿电转接件。
请参考图3-6以及图7-12,一些实施例中,该引出组件420具有多个沿第一方向排列的引出件组402,引出件组402具有多个引出件(如421、422、428、429等),这些引出件可排列为一层,也可排列为多层。在同一个引出件组402中,该引出件至少分为的第一引出件421和至少一对第二引出件422,第一引出件421通过对应电转接件与对应的第一阵元310电连接,每对第二引出件422分别通过对应电转接件与一对第二阵元320电连接。其中,该引出件用于与主控单元的正极信号电路电连接,以向对应阵元输入正极信号。
其中,请参考图3-6以及图7-12,一些实施例中,电转接件上设有第一导电转接部414,引出件设有第二导电转接部423,第一导电转接部414与对应第二导电转接部423层叠设置,且在层叠方向上对齐并电连接,以将电转接件与对应的引出件电连接。请参考图3,对应的绝缘基材层上也可设置第三导电转接部431,用于实现第一导电转接部414和第二导电转接部423的电连接以及实现不同层引出件中第二导电转接部423之间的电连接。根据第一导电转接部414与第二导电转接部423所在的位置不同,其层叠方向也不同,例如在图9所示实施例中,第一导电转接部414与第二导电转接部423之间沿第三方向层叠。在图3所示实施例中,一部分第一导电转接部414与第二导电转接部423之间沿第三方向层叠,一部分第一导电转接部414与第二导电转接部423之间沿第二方向层叠。
在图3和9所示实施例中,该第一导电转接部414、第二导电转接部423和第三导电转接部431采用的是导电通孔,对应第一导电转接部414、第二导电转接部423和第三导电转接部431之间的导电通孔同轴设置,并通过在其内填充导电材料而实现导电连接。当然,在其他实施例中,该第一导电转接部414、第二导电转接部423和第三导电转接部431也可采用其他能够在层叠对象之间实现导电的结构,例如第一导电转接部414、第二导电转接部423和第三导电转接部431为柱状的导电结构。
为了实现将同一对第二阵元320的正极电连接成一个整体,请参考图6和9,一些实施例中,每对第二引出件422之间通过连接部424电连接。其中,至少一对第二引出件422之间间隔设有至少一个其他引出件,根据引出件层的数量不同以及引出件数量的不同,该其他引出件可包括第一引出件421、第一转接引出件428和/或第二转接引出件429。例如,请参考图6,在该实施例中,该一对第二引出件422之间具有一个第一引出件421,一对第二引出件422之间的连接部424从第一引出件421中穿过。在其他实施例中,一对第二引出件422之间也可设置其他对第二引出件422、第一转接引出件428和/或第二转接引出件429(第一转接引出件428和/或第二转接引出件429将在后文中详细介绍),一对第二引出件422之间的连接部424从该其他引出件中穿过。例如,请参考图9,一些实施例中,某对第二引出件422之间可设置第一引出件421、第一转接引出件428和/或第二转接引出件429。
本实施例中,将电转接件上可有效设置第一导电转接部414的区域称为导电转接区域。请结合图3和图19,一些实施例中,为了避免在切割子阵302时破坏掉第一导电转接部414,因此该导电转接区域应该避让开切割位置(即与第一间隙303正对的位置)。同时,电转接件的第一导电转接部414与对应引出件的第二导电转接部423需在层叠方向上对齐,故电转接件上的第一导电转接部414只能设置在与对应引出件完全重叠的区域,因此引出件的位置也影响着电转接件上导电转接区域的位置和宽度(本实施例中宽度是指第一方向上的尺寸,长度为第二方向上的尺寸,厚度是指第三方向上的尺寸)。
为了保证子电转接件与下方对应的引出件的电连接可靠,子电转接件均具有导电通孔且导电通孔需要避让开切割位置(即与第一间隙正对的位置),以防止切割过程中将导电通孔破坏而影响到子电转接件与下方对应引出件的电连接。同时,子电转接件与对应的引出件各自的导电通孔需在层叠方向上对齐,故子电转接件上的导电通孔只能设置在与对应引出件完全重叠的区域,即由第一间隙的位置以及引出件的面积限定出了子电转接件上可设置导电通孔的区域(称为导电转接区域)。
由于引出组件中一些引出件需要越过其他引出件而电连接,这些引出件之间设有连接部,位于连接部的路径上的其他引出件需留出供连接部穿过的避让空间,导致这些其他引出件变窄,进而使得与该其他引出件对应的子电转接件上的导电转接区域也变窄。当子阵宽度足够大时,该导电转接区域的宽度远大于导通通孔的设置要求,因此在切割子阵时可通过加工工艺的精度控制而避免切割到子电转接件上的导电通孔。
但,随着高分辨率换能器的发展,相同面积的阵元层下需要设置更多数量的阵元,进而使得单个阵元尺寸逐渐减小,尤其是当阵元具有两个子阵时,单个子阵在与第一间隙延伸方向垂直的方向上的尺寸(即宽度)更加狭窄,这也导致子阵对应的子电转接件的宽度也变得狭窄,进一步限缩了子电转接件上导电转接区域的宽度。加上受加工工艺的影响,导电通孔的孔径在达到极限尺寸后,无法再进一步缩小。一旦子电转接件上导电转接区域的宽度小于导通通孔的设置要求时,非常容易切割到子电转接件上的导电通孔,造成电连接的失效,因此导致多维阵列式换能器中阵元数量达到极限值后,无法再进一步缩小阵元宽度,难以设计更多数量的阵元,从而影响了多维阵列式换能器的进步。下面结合图18对上述技术问题进行描述,以便参考理解本申请技术方案解决上述技术问题付出的创造性劳动。
请参考图18,一些实施例中,一对第二引出件422的连接部424从位于中间的第一引出件421的一侧绕行。为了避让该连接部424,该第一引出件421在第一方向上向一侧偏离,进而导致电转接件上的导电转接区域也向同侧偏离。与连接部424所在一侧对应的子电转接件413上的导电转接区域(如图18中虚线框A所示)被压缩,第一导电转接部414只能设置在该虚线框A中,该子电转接件413上虚线框A以外的区域则无法设置第一导电转接部414,造成了浪费。由于工艺限定,第一导电转接部414的宽度在达到极限尺寸后,无法再进一步缩小。当子阵302以及子阵302对应的子电转接件413足够宽时,还可以保证第一导电转接部414具有足够的空间。但,随着高分辨率换能器的发展,当相同面积的阵元层300下需要设置更多数量的子阵302以及子电转接件413时,该实施例所示结构下,难以保证子电转接件413具有足够的空间来设置第一导电转接部414。
针对上述图18所示实施例所带来的问题,请参考图19,一些实施例中,在垂直于第三方向的参考面上,第一间隙303的正投影与连接部424的正投影至少部分重叠。电转接件上与第一间隙303对应的区域以及与连接部424对应的区域均属于不能设置第一导电转接部414的区域,在该实施例中,通过将第一间隙303的正投影与连接部424的正投影至少部分在宽度方向上重叠,使得该电转接件上与第一间隙303对应的区域以及与连接部424对应的区域在宽度方向上至少部分重合,可以使子电转接件413上导电转接区域占比更大,即相对图18所示实施例来说,在相同宽度条件下,电转接件具有更宽的导电转接区域,既可避免切割制造子阵302时切割到电转接件的第一导电转接部414,又可使电转接件能够满足更小宽度的子阵302的引出要求,进而在相同宽度的阵元层300中设置更多数量的阵元。
进一步地,采用上述实施例所示结构后,一些实施例中,在阵元组301中,单个阵元在第一方向上的宽度大于或等于0.2mm且小于或等于0.4mm,即取值区间为[0.2mm,0.4mm],且单个子阵302在第一方向上的宽度大于或等于0.07mm且小于或等于0.17mm,即取值区间为[0.07mm,0.17mm];或者,单个阵元在第一方向上的宽度大于或等于0.2mm且小于或等于0.33mm,即取值区间为[0.2mm,0.33mm],且单个子阵302在第一方向上的宽度大于或等于0.07mm且小于或等于0.14mm,即取值区间为[0.07mm,0.14mm]。一些实施例中,在电转接件组401中,子电转接件413在第一方向上的宽度大于或等于0.07mm且小于或等于0.17mm,即取值区间为[0.07mm,0.17mm];或者子电转接件413在第一方向上的宽度大于或等于0.107mm且小于或等于0.14mm,即取值区间为[0.107mm,0.14mm]。
请参考图3、9和19,一些实施例中,每对第二引出件422之间的引出件上的第二导电转接部423及对应的第一导电转接部414在参考面上的正投影均分布在该引出件的连接部424的正投影两侧,从而保证第二导电转接部423与对应第一导电转接部414的可靠电连接。同时,该每对第二引出件422之间的引出件上的第二导电转接部423及对应的第一导电转接部414在参考面上的正投影均分布该引出件对应的电转接件上的第一间隙303的正投影两侧,以避免切割第一间隙303时切割到对应的第一导电转接部414。
进一步地,通常第一间隙303为阵元切割而成,对应之下,一对第二引出件422的连接部424通常需要从位于该对第二引出件422之间的其他引出件中间穿过,故请参考图6,一些实施例中,该其他引出件通常具有第二间隙425,该连接部424从对应的第二间隙425中穿过。
具体地,请参考图3,一些实施例中,该其他引出件为第一引出件421,该第一引出件421具有第二间隙425,一对第二引出件422的连接部424从该第一引出件421的第二间隙425穿过。
请参考图9,一些实施例中,在第1层引出件420a中,一对第二引出件422之间的其他引出件为第一引出件421,该第一引出件421具有第二间隙425,一对第二引出件422的连接部424从该第一引出件421的第二间隙425穿过。在第2层引出件420b中,另一对第二引出件422之间的其他引出件为第一转接引出件428,该第一转接引出件428具有第二间隙425,该对第二引出件422的连接部424从该第一转接引出件428的第二间隙425穿过。
此外,在其他实施例中,一对第二引出件422之间的其他引出件还可以为其他第二引出件。
进一步地,请参考图19,一些实施例中,该第一间隙303在参考面的正投影在第一方向上不超出第二间隙425在参考面的正投影。 即,第一间隙303在第三方向上落入第二间隙425所对应的区域之内,进而可以使得电转接上的导电转接区域占比最大化。
进一步地,请参考图3-6,一些实施例中,该n等于3,即每个阵元组301具有3个沿第二方向排列的阵元。其中,该电转接件组401的电转接件至少分为第一电转接件411和一对分设在第一电转接件411两侧的第二电转接件412。第一电转接件411和第二电转接件412分别与对应的第一阵元310和第二阵元320的正极接触并电连接。该电连接的方式可采用直接导电接触或者现有技术中的其他电连接方式。对应地,该引出件组402的引出件至少分为第一引出件421和一对位于第一引出件421两侧的第二引出件422。第一引出件421和第二引出件422与对应的第一电转接件411和第二电转接件412电连接。即,第一引出件421与第一电转接件411电连接,一个第二引出件422与一个第二电转接件412电连接。
其中,该第一电转接件411和第二电转接件412具有与对应子阵302接触的导电接触区,通过该导电接触区,第一电转接件411和第二电转接件412能够与对应的子阵302电连接。
进一步地,请参考图6,一些实施例中,由于该第二引出件422从第一引出件421的中间穿过,该第一引出件421具有至少两个第一子引出件427,第一子引出件427之间具有第二间隙425,连接部424穿过第二间隙425。
进一步地,请参考图6,一些实施例中,第一子引出件427为两个,两个第一子引出件427关于第二间隙425对称,从而使与第一子引出件427对应的两个第一子电转接件413上的导电转接区域宽度相等或接近,如此可最大化的利用每个导电转接区域来设置第一导电转接部414。
进一步地,请参考图6,一些实施例中,为了将第一子引出件427引出并与主控单元电连接,该两个第一子引出件427从一个第二引出件422的两侧伸出。具体地,该第一子引出件427具有第三外延部4211,各第一子引出件427的第三外延部4211从第二引出件422的侧方延伸出去。
位于两个第三外延部4211中间的第二引出件422,由于受到第三外延部4211的影响,其宽度变窄。为了使位于两个第三外延部4211中间的第二引出件422能够更好地与对应的第二电转接件412对接,请参考图6,一些实施例中,位于两个第三外延部4211中间的第二引出件422具有第二外延部4221。该第二外延部4221与第二引出件422的本体之间为导电连接,两者可以一体成型(例如可以印刷或涂覆为一体成型的结构),也可分体制造后电连接在一起。请参考图3和6,一些实施例中,在对应电转接件组401中,与该具有第二外延部4221的第二引出件422对应的第二电转接件412具有位于其导电接触区之外的第一外延部4121,该第一外延部4121与第二转接件的第二外延部4221对应。该第一外延部4121与对应导电接触区电连接,两者可以一体成型(例如可以印刷或涂覆为一体成型的结构),也可分体制造后电连接在一起。该第一外延部4121设有第一导电转接部414,该第二外延部4221具有第二导电连接部423,以此实现第一外延部4121和第二外延部4221的导电连接,从而使得位于两个第三外延部4211中间的第二引出件422可以满足更小的宽度要求,以适应更狭窄的子阵302设计。
请参考图3-6,一些实施例中,该第一外延部4121与第二外延部4221均沿第三方向且向背离阵元层300的方向弯折延伸设置,并伸至背衬层500的周侧,充分利用背衬层500周侧的空间,不影响透镜100、匹配层200、阵元层300、柔性电路板400以及背衬层500层叠方向上的厚度。
当然,在其他实施例中,也可至少一个第二电转接件412具有位于其导电接触区之外的第一外延部4121,对应地至少一个第二引出件422具有第二外延部4221。例如,一些实施例中,与第一引出件421设置第三外延部4211一侧相背离的第二引出件422也可设置第二外延部4221,与该第二引出件422对应的第二电转接件412也可具有第一外延部4121,通过该第一外延部4121和第二外延部4221将该第二引出件422和第二电转接件412电连接。
请参考图3-6,一些实施例中,在设置有第二外延部4221时,未设置该第二外延部4221的第二引出件422可设置有电外接结构4222,该电外接结构4222用于与正极信号电路电连接,从而将与该两个第二引出件422对应的第二阵元320的子阵302与正极信号电路电连接。
当然,在其他实施例中,用于电连接第二引出件422的电外接结构也可设置在第二外延部4221上。
请参考图6,一些实施例中,该第三外延部4211可延伸至第二外延部4221的端部之外并相互电连接成电外接结构,该电外接结构用于与正极信号电路电连接,从而将与第一引出件421对应的第一阵元310的子阵302与正极信号电路电连接。当然,在其他实施例中,该两个第三外延部4211也可不连接在一起,其相互分离,且各自具有电外接结构,以与正极信号电路电连接。
此外,其他一些实施例中,该第一引出件421也可不具有第三外延部4211,即第一引出件421孤立地设置在一对第二引出件422之间,不从与其同一层的第二引出件422一侧伸出。例如,一些实施例中,在引出件组402中,至少一个引出件为第一转接引出件428,第一转接引出件428设于第一引出件421背离第一电转接件411的一侧,并与第一引出件421电连接,第一转接引出件428具有电外接结构,该电外接结构用于与正极信号电路电连接。具体地,在第一引出件421的下方(沿第三方向的下方)另外设置至少一层第一转接引出件428(类似于图9所示结构),该第一转接引出件428在第三方向上与第一引出件421通过第二导电转接部423电连接,且第一转接引出件428具有第五外延部4281,该第五外延部4281从第一引出件421和第二引出件422的下方延伸出去,例如延伸到背衬层500的周侧,该第五外延部4281具有电外接结构,该电外接结构用于与正极信号电路电连接,从而将与第一引出件421对应的第一阵元310的子阵302与正极信号电路电连接。
进一步地,一些实施例中,该n大于或等于5,即每个阵元组301具有5个以上的沿第二方向排列的阵元。其中,每组电转接件组401的电转接件与一组阵元组301的阵元一一对应,即每组电转接件组401的电转接件的数量与每个阵元组301的阵元数量相等。引出件组402中的引出件沿第三方向至少排列为m层,m=(n+1)/2。当然,每层引出件都设于对应的绝缘基材层上,并通过绝缘基材层绝缘隔开。其中沿第三方向,最靠近电转接件组401的一层引出件为第1层,最远离电转接组的一层引出件为第m层。
其中,在第1层引出件中具有第一引出件421,第一引出件421与对应的电转接件电连接。具体可采用上述各实施例所示的方式电连接。
在第1层至第(m-1)层中,每层引出件均具有一对第二引出件422,第1层引出件的第二引出件422与对应电转接件的第一导电转接部414电连接。在第2层至第(m-1)层中,各层中的第二引出件422通过上一层对应的第二转接引出件429,与对应的电转接件电连接。
在第2层至第m层中,每层引出件均具有第一转接引出件428,第一引出件421与下层中各第一转接引出件428电连接,每对第二引出件422中的至少一个第二引出件422和至少一个第一转接引出件428能够与主控单元的正极信号电路电连接,从而实现对子阵302正极的引出。
其中,一些实施例中,至少一层引出件中,一对第二引出件422之间的连接部424从第一引出件421和/或第一转接引出件428的第二间隙425中穿过。
其中,一些实施例中,至少一层引出件中,第二引出件422具有第二外延部4221,第二外延部4221的外端部位于阵元层300之外,该外端部设有电外接结构,该电外接结构可与主控单元的正极信号电路导电连接。
其中,一些实施例中,至少一层引出件中,至少一对第二转接引出件429相对地设置在一对第二引出件422的两侧,第二引出件422的第二外延部4221穿过对应的第二转接引出件429,并延伸至阵元层300之外。
其中,一些实施例中,至少一层引出件中,第二转接引出件429具有第四外延部4291,第四外延部4291位于阵元层300之外,第四外延部4291设有电外接结构,该电外接结构可与主控单元的正极信号电路导电连接。
具体地,请参考图7-12,一些实施例中, 该n等于5,即每个阵元组301具有5个沿第二方向排列的阵元(如310、320)。每组电转接件组401具有5个电转接件(如411、412),每个电转接件与对应一个阵元电连接。每个引出件组402中的引出件沿第三方向排列为3层。为了清楚表示引出组件420与转接层410之间以及各层引出件之间的对应关系,图中省略了绝缘基材层。沿第三方向,最靠近电转接件组401的一层引出件为第1层,最远离电转接组的一层引出件为第3层。
请参考图9和10,一些实施例中,在第1层引出件420a中具有第一引出件421、位于第一引出件421两侧的一对第二引出件422以及位于一对第二引出件422两侧的一对第二转接引出件429。该第一引出件421、第二引出件422以及第二转接引出件429均分别与对应的电转接件导电连接,进而与对应的子阵302导电连接,具体连接方式可参考上述各实施例所示导电连接的方式。
请参考图9和10,一些实施例中,在第1层引出件420a中,该第一引出件421与对应的电转接件导电连接,该一对第二引出件422的连接部424穿过第一引出件421,以将一对第二引出件422电连接为一个整体。该一对第二转接引出件429用于将对应的电转接件与下一层的第二引出件422或第二转接引出件429导电连接。
请参考图9和10,一些实施例中,在第1层引出件420a中,该一对第二引出件422设有第二外延部4221,通过该第二外延部4221与主控单元导电连接。
一些实施例中,该第二外延部4221可沿第三方向且向背离转接层410一侧弯折延伸设置。
一些实施例中,在第1层引出件420a中,该第二引出件422的第二外延部4221穿过对应的第二转接引出件429,并延伸至阵元层300之外,例如延伸到背衬层500的周侧空间,以方便与主控单元导电连接。
请参考图9和11,一些实施例中,在第2层引出件420b中,其具有一个第一转接引出件428和一对第二引出件422,该第一转接引出件428与第1层的第一引出件421导电连接。该一对第二引出件422与第1层的一对第二转接引出件429导电连接,以将该对第二引出件422与对应的阵元导电连接。该一对第二引出件422之间的连接部424从第一转接引出件428中穿过。该一对第二引出件422具有第二外延部4221,该第二外延部4221延伸至阵元层300之外,例如延伸到背衬层500的周侧空间,以方便与主控单元导电连接。
请参考图9-11,一些实施例中,第1层的第二转接引出件429可通过其上的第二导电转接部423与第2层的第二引出件422导电对接。一些实施例中,该第1层的第二转接引出件429也可具有第四外延部4291,该第四外延部4291延伸至阵元层300之外,例如延伸到背衬层500的周侧空间,以此与第二外延部4221导电连接。其中,用于将第2层第二引出件422引出的电外接结构可设置在该第二引出件422的第二外延部4221上,也可设于第1层第二转接引出件429的第四外延部4291上。
请参考图9-12,一些实施例中,该第1层的第二转接引出件429被第二引出件422的第二外延部4221分割为两部分,该两部分分别具有第四外延部4291,该两个第四外延部4291可连接为一体,也可分离设置。当具有第四外延部4291时,第1层的第二引出件422的第二外延部4221可通过设置于第3层的第六外延部4292引出,该第二外延部4221和第六外延部4292可通过第二导电转接部423导电连接,然后经第六外延部4292与主控单元导电连接。
请参考图9和12,一些实施例中,该第3层引出件420c包括第一转接引出件428,该第一转接件与第2层的第一转接引出件428导电连接,以最终将第一引出件421引出。
请参考图9和12,一些实施例中,该第3层引出件的第一转接引出件428具有第五外延部4281,该第五外延部4281延伸至阵元层300之外,例如延伸到背衬层500的周侧空间,以方便与主控单元导电连接。
以上介绍了阵元引出结构中对阵元的正极引出的方式,一些实施例中,该阵元引出结构还包括负极引出结构,负极引出结构与阵元的负极电连接,负极引出件用于将阵元的负极与主控单元的负极信号电路电连接。该负极引出结构可采用现有技术实现,也可采用一些新的结构实现。
请参考图2、13和14,一些实施例中,负极引出结构600为导电薄片610,例如铜箔,该导电薄片610与主控单元的负极信号电路导电连接。该导电薄片610覆盖在阵元层300的阵元的负极一侧(阵元背离柔性电路板400的一侧)。该导电薄片610与阵元的负极导电连接,并延伸至柔性电路板400未设置第一外延部4121的一侧,以防止与第一外延部4121形成导电接触而引起短路。
请参考图15和16,一些实施例中,负极引出结构600为导电薄片610,例如铜箔,该导电薄片610覆盖在阵元层300的阵元的负极一侧(阵元背离柔性电路板400的一侧)。该导电薄片610与阵元的负极导电连接。为了防止导电薄片610与第一外延部4121形成导电接触而引起短路,因此在第一外延部4121上覆盖绝缘层630,此时,该导电薄片610即可延伸至柔性电路板400未设置第一外延部4121的一侧,也可延伸至设有绝缘层630的一侧。
请参考图17,一些实施例中,该阵元层300还可包括设于最外侧的废阵元330,该废阵元330与其他阵元的负极一侧通过导电涂层620(如镀金层)导电连接。该负极引出结构600通过该废阵元330及导电涂层620与主控单元的负极信号电路导电连接。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本申请的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本申请的范围应根据以下权利要求确定。

Claims (24)

  1. 一种超声探头的阵元引出结构, 其特征在于,包括:
    阵元层,所述阵元层具有多个沿第一方向排列的阵元组,所述阵元组具有n个沿第二方向排列的阵元,所述n为大于或等于3的奇数;所述阵元通过第一间隙分割为至少两个子阵;其中,所述阵元组中的阵元至少分为位于最中间序位的第一阵元和至少一对第二阵元,每对所述第二阵元在所述第二方向上相对地设置在所述第一阵元的两侧;
    以及柔性电路板,所述柔性电路板具有转接层和引出组件,所述阵元层、转接层和引出组件沿第三方向排布,所述第一方向、第二方向和第三方向两两垂直;
    所述转接层具有多个沿第一方向排列的电转接件组,所述电转接件组具有多个沿所述第二方向排列的电转接件,每组所述电转接件组的电转接件分别与对应阵元组中所述阵元的正极接触并电连接;
    所述引出组件具有多个沿第一方向排列的引出件组,所述引出件组具有多个引出件,所述引出件至少包括第一引出件和至少一对第二引出件,所述第一引出件通过对应电转接件与对应的第一阵元电连接,每对第二引出件分别通过对应电转接件与一对第二阵元电连接;所述引出件用于与控制单元的正极信号电路电连接,以向对应阵元输入正极信号;
    所述电转接件上设有第一导电转接部,所述引出件设有第二导电转接部,所述第一导电转接部与对应第二导电转接部层叠设置,且在层叠方向上形成电连接,以将所述电转接件与对应的引出件电连接;每对第二引出件之间通过连接部电连接,在垂直于所述第三方向的参考面上,所述第一间隙的正投影与所述连接部的正投影至少部分重叠,每对第二引出件之间的所述第一引出件上的第二导电转接部及对应的第一导电转接部在所述参考面上的正投影均分布在所述连接部的正投影两侧。
  2.  如权利要求1所述的阵元引出结构,其特征在于,至少一对第二引出件之间间隔设有至少一个其他引出件,所述其他引出件包括所述第一引出件、第一转接引出件和/或第二转接引出件,所述其他引出件具有第二间隙,所述连接部从对应的第二间隙中穿过。
  3.  如权利要求2所述的阵元引出结构,其特征在于,所述第一间隙在所述参考面的正投影在所述第一方向上不超出所述第二间隙在所述参考面的正投影。  
  4.  如权利要求1所述的阵元引出结构,其特征在于,同一对第二阵元各自距离第一阵元的位差相同。
  5.  如权利要求1所述的阵元引出结构,其特征在于,所述n等于3,所述电转接件组的电转接件至少分为第一电转接件和一对分设在所述第一电转接件两侧的第二电转接件,所述第一电转接件和所述第二电转接件分别与对应的第一阵元和第二阵元的正极接触并电连接;所述引出件组的引出件至少分为第一引出件和一对位于所述第一引出件两侧的第二引出件,所述第一引出件和第二引出件与对应的第一电转接件和所述第二电转接件电连接。
  6.  如权利要求5所述的阵元引出结构,其特征在于,所述第一电转接件和第二电转接件具有与对应子阵接触的导电接触区;一个所述电转接件组中,至少一个所述第二电转接件具有位于其导电接触区之外的第一外延部,所述第一外延部与对应导电接触区电连接;具有所述第一外延部的第二电转接件中,其第一外延部设有第一导电转接部。
  7.  如权利要求6所述的阵元引出结构,其特征在于,所述第一电转接件和第二电转接件被分隔为多个子电转接件,所述子电转接件与所述子阵一一对应,所述子电转接件均具有所述导电接触区。
  8.  如权利要求6所述的阵元引出结构,其特征在于,所述第一引出件和第二引出件设有第二导电转接部,所述第二导电转接部与对应的第一导电转接部电连接;其中,至少一个所述第二引出件具有与所述第一外延部对应的第二外延部;具有所述第二外延部的第二引出件中,其第二外延部设有第二导电转接部。
  9.  如权利要求8所述的阵元引出结构,其特征在于,所述第一外延部和所述第二外延部向背离所述阵元层的方向弯折设置。
  10.  如权利要求8所述的阵元引出结构,其特征在于,所述第二外延部具有电外接结构,所述电外接结构用于与所述正极信号电路电连接。
  11.  如权利要求8所述的阵元引出结构,其特征在于,所述第一引出件具有至少两个第一子引出件,所述第一子引出件之间具有第二间隙,所述连接部穿过所述第二间隙;所述第一子引出件具有第三外延部,各第一子引出件的第三外延部从所述第二引出件的侧方延伸至第二外延部的端部之外并相互电连接成电外接结构,所述电外接结构用于与所述正极信号电路电连接。
  12.  如权利要求11所述的阵元引出结构,其特征在于,所述第一子引出件为两个,两个所述第一子引出件关于所述第二间隙对称。
  13.  如权利要求4所述的阵元引出结构,其特征在于,在所述引出件组中,至少一个引出件为第一转接引出件,所述第一转接引出件设于所述第一引出件背离所述第一电转接件的一侧,并与所述第一引出件电连接,所述第一转接引出件和所述第二引出件分别具有电外接结构,所述电外接结构用于与所述正极信号电路电连接。
  14.  如权利要求1所述的阵元引出结构,其特征在于,所述n大于或等于5,每组所述电转接件组的电转接件与一组所述阵元组的阵元一一对应;所述引出件组中的引出件沿所述第三方向至少排列为m层,所述m=(n+1)/2;其中最靠近所述电转接件组的一层引出件为第1层,最远离所述电转接组的一层引出件为第m层;
    第1层引出件中具有第一引出件,所述第一引出件与对应的电转接件电连接;
    在第1层至第(m-1)层中,每层引出件均具有一对第二引出件,所述第1层引出件的第二引出件与对应电转接件的第一导电转接部电连接;在第2层至第(m-1)层中,各层中的第二引出件通过上一层对应的第二转接引出件,与对应的电转接件电连接;
    在第2层至第m层中,每层引出件均具有第一转接引出件,所述第一引出件与下层中各第一转接引出件电连接,每对第二引出件中的至少一个第二引出件和至少一个第一转接引出件能够与所述正极信号电路电连接。
  15.  如权利要求14所述的阵元引出结构,其特征在于,至少一层引出件中,一对所述第二引出件之间的连接部从第一引出件和/或第一转接引出件的第二间隙中穿过。
  16.  如权利要求14所述的阵元引出结构,其特征在于,至少一层引出件中,所述第二引出件具有第二外延部,所述第二外延部的外端部位于所述阵元层之外,所述外端部设有所述电外接结构。
  17.  如权利要求16所述的阵元引出结构,其特征在于,至少一层引出件中,至少一对第二转接引出件相对地设置在一对第二引出件的两侧,所述第二引出件的第二外延部穿过对应的第二转接引出件,并延伸至所述阵元层之外。
  18.  如权利要求17所述的阵元引出结构,其特征在于,至少一层引出件中,所述第二转接引出件具有第四外延部,所述第四外延部位于所述阵元层之外,所述第四外延部设有所述电外接结构。
  19.  如权利要求14所述的阵元引出结构,其特征在于,所述n=5,所述阵元组具有一个第一阵元和两对第二阵元;
    所述m=3,第1层引出件具有一个第一引出件、一对第二引出件以及一对第二转接引出件,一对所述第二引出件,所述第二引出件相对地设于所述第一引出件两侧,所述第二转接引出件相对地设于一对所述第二引出件的两侧;所述第二引出件和所述第二转接引出件分别与一个对应的第二阵元电连接;
    第2层引出件具有一个第一转接引出件和一对第二引出件,所述第二引出件与第1层的所述第二转接引出件电连接,以通过所述第二转接引出件与对应的第二阵元电连接;
    第3层引出件具有一个第一转接引出件,第3层的第一转接引出件与第2层的第一转接引出件电连接,所述第3层的第一转接引出件具有所述电外接结构。
  20.  如权利要求1-19一项所述的阵元引出结构,其特征在于,所述转接层和所述引出组件之间设有第一绝缘层;
    和/或,所述引出组件的各层引出件之间设有第二绝缘层。
  21.  如权利要求1-20任一项所述的阵元引出结构,其特征在于,还包括负极引出结构,所述负极引出结构与所述阵元的负极电连接,所述负极引出件用于将所述阵元的负极与控制单元的负极信号电路电连接。
  22.  如权利要求1-21任一项所述的阵元引出结构,其特征在于,在所述阵元组中,单个所述阵元在所述第一方向上的宽度大于或等于0.2mm且小于或等于0.4mm且单个所述子阵在所述第一方向上的宽度大于或等于0.07mm且小于或等于0.17mm;或者,单个所述阵元在所述第一方向上的宽度大于或等于0.2mm且小于或等于0.33mm且单个所述子阵在所述第一方向上的宽度大于或等于0.07mm且小于或等于0.14mm。
  23.  一种超声探头的声头,其特征在于,包括背衬、匹配层、透镜以及权利要求1-22任一项所示的阵元引出结构,所述柔性电路板设于所述背衬上,所述匹配层位于所述阵元层上,所述透镜设于所述匹配层上。
  24.  一种超声探头,其特征在于,包括声头,所述声头具有如权利要求1-22任一项所示的阵元引出结构。
PCT/CN2023/093093 2023-05-09 2023-05-09 超声探头的阵元引出结构、声头及超声探头 WO2024066372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/093093 WO2024066372A1 (zh) 2023-05-09 2023-05-09 超声探头的阵元引出结构、声头及超声探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/093093 WO2024066372A1 (zh) 2023-05-09 2023-05-09 超声探头的阵元引出结构、声头及超声探头

Publications (1)

Publication Number Publication Date
WO2024066372A1 true WO2024066372A1 (zh) 2024-04-04

Family

ID=90475862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093093 WO2024066372A1 (zh) 2023-05-09 2023-05-09 超声探头的阵元引出结构、声头及超声探头

Country Status (1)

Country Link
WO (1) WO2024066372A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952387A (en) * 1973-07-03 1976-04-27 Tokyo Shibaura Electric Co., Ltd. Method of manufacturing an ultrasonic probe
US20010041837A1 (en) * 2000-02-07 2001-11-15 Takashi Takeuchi Ultrasonic probe and method of manufacturing the same
JP2007036642A (ja) * 2005-07-27 2007-02-08 Aloka Co Ltd 超音波探触子及びその製造方法
CN103371850A (zh) * 2012-04-23 2013-10-30 三星电子株式会社 超声换能器、超声探头和超声波图像诊断设备
CN111317507A (zh) * 2019-10-30 2020-06-23 深圳迈瑞生物医疗电子股份有限公司 面阵超声探头的声头以及面阵超声探头
CN113333261A (zh) * 2021-06-18 2021-09-03 深圳先进技术研究院 一种高频阵列换能器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952387A (en) * 1973-07-03 1976-04-27 Tokyo Shibaura Electric Co., Ltd. Method of manufacturing an ultrasonic probe
US20010041837A1 (en) * 2000-02-07 2001-11-15 Takashi Takeuchi Ultrasonic probe and method of manufacturing the same
JP2007036642A (ja) * 2005-07-27 2007-02-08 Aloka Co Ltd 超音波探触子及びその製造方法
CN103371850A (zh) * 2012-04-23 2013-10-30 三星电子株式会社 超声换能器、超声探头和超声波图像诊断设备
CN111317507A (zh) * 2019-10-30 2020-06-23 深圳迈瑞生物医疗电子股份有限公司 面阵超声探头的声头以及面阵超声探头
CN113333261A (zh) * 2021-06-18 2021-09-03 深圳先进技术研究院 一种高频阵列换能器

Similar Documents

Publication Publication Date Title
US9907538B2 (en) High frequency ultrasound probe
US7654961B2 (en) Ultrasonic probe
US4747192A (en) Method of manufacturing an ultrasonic transducer
US6971148B2 (en) Method of manufacturing a multi-dimensional transducer array
KR100722370B1 (ko) 적층형 초음파 탐촉자 및 이의 제조방법
US7791252B2 (en) Ultrasound probe assembly and method of fabrication
JP4758634B2 (ja) 多層セラミック音響変換器の製造方法
JPH06243729A (ja) 平面状フレックス回路
JP5247960B2 (ja) 高密度ケーブルとその製法
CN102497938A (zh) 带有整体的电连接的超声波成像转换器声学叠层
US6664717B1 (en) Multi-dimensional transducer array and method with air separation
US6429574B1 (en) Transducer array using multi-layered elements having an even number of elements and a method of manufacture thereof
JP2015524318A (ja) 超音波内視鏡及びその製造方法
WO2021000075A1 (zh) 一种传输线
WO2024066372A1 (zh) 超声探头的阵元引出结构、声头及超声探头
CN109952768A (zh) 用于超声阵列的具有冗余连接点的柔性电路
JP2001250612A (ja) 高速伝送用コネクタ
JPH0614396A (ja) 超音波探触子
JP3776519B2 (ja) 超音波トランスジューサおよびその製造方法
JP4583970B2 (ja) 超音波プローブ、信号線パターン形成バッキング材およびその製造方法
JP2006140557A (ja) 超音波プローブ
JPH11164397A (ja) 超音波トランスジューサ
KR101786010B1 (ko) 음향 트랜스듀서
JPS6161599A (ja) アレ−型超音波探触子とその製造方法
JP3851743B2 (ja) 電子走査型超音波探触子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869627

Country of ref document: EP

Kind code of ref document: A1