WO2024066357A1 - 分析物传感器固定装置 - Google Patents

分析物传感器固定装置 Download PDF

Info

Publication number
WO2024066357A1
WO2024066357A1 PCT/CN2023/092239 CN2023092239W WO2024066357A1 WO 2024066357 A1 WO2024066357 A1 WO 2024066357A1 CN 2023092239 W CN2023092239 W CN 2023092239W WO 2024066357 A1 WO2024066357 A1 WO 2024066357A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
analyte detection
outer shell
installation unit
present
Prior art date
Application number
PCT/CN2023/092239
Other languages
English (en)
French (fr)
Inventor
杨翠军
Original Assignee
上海移宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移宇科技有限公司 filed Critical 上海移宇科技有限公司
Publication of WO2024066357A1 publication Critical patent/WO2024066357A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building

Definitions

  • the present invention mainly relates to the field of medical devices, and in particular to a mounting unit of an analyte detection device.
  • the pancreas in a normal person's body can automatically detect the glucose content in the human blood and automatically secrete the required insulin/glucagon.
  • the pancreas of diabetic patients has abnormal function and cannot normally secrete the insulin required by the human body. Therefore, diabetes is a metabolic disease caused by abnormal pancreatic function in the human body, and diabetes is a lifelong disease.
  • medical technology cannot cure diabetes, and can only control the occurrence and development of diabetes and its complications by stabilizing blood sugar.
  • CGM continuous glucose monitoring
  • the installation unit structure of the current analyte detection device is complex, the installation process is cumbersome, the production cost is high, and it also causes inconvenience to users.
  • the prior art urgently needs an analyte detection device installation unit that is simple in structure and easy to use.
  • the present invention discloses a mounting unit for an analyte detection device.
  • the buckle structure of a parallel slider module contacts the annular structure of the analyte detection device, so that a releasable connection is formed between the parallel slider module and the analyte detection device.
  • the analyte detection device is fixed on the parallel slider module.
  • the analyte detection device is automatically separated from the parallel slider module.
  • the installation unit has a simple structure, high reliability and is easy to use.
  • the present invention provides an installation unit for an analyte detection device, including an installation unit, wherein the installation unit includes at least a shell, an auxiliary needle and a parallel slider module.
  • the installation unit includes at least a shell, an auxiliary needle and a parallel slider module.
  • the auxiliary needle and the parallel slider module slide from a distal end to a proximal end in the shell, and the analyte detection device is installed on the user's skin surface at the proximal end to obtain in vivo analyte parameter information; wherein, when the parallel slider module is located at the distal end, a buckle structure of the parallel slider module contacts with an annular structure of the analyte detection device, so that the analyte detection device is fixed on the parallel slider module, and after the parallel slider module slides to the proximal end, the buckle structure is released from contact with the annular structure, and the analyte detection device is separated from the parallel slider module.
  • an analyte detection device includes an upper outer shell and a lower outer shell.
  • the annular structure surrounds the outer side of the upper outer shell and/or the lower outer shell.
  • the annular structure surrounds the connection between the upper outer shell and the lower outer shell.
  • the circumferential sizes of the upper outer shell and the lower outer shell are different.
  • the circumference of the upper outer shell is larger than that of the lower outer shell, and the buckle structure is in contact with the upper outer shell.
  • the circumferential dimension of the upper outer shell is 0.05 to 5 mm larger than the circumferential dimension of the lower outer shell.
  • the present invention also includes an inclined transition surface connecting the outer edge of the upper shell and the outer edge of the lower shell, and the buckle structure is in contact with the inclined transition surface.
  • the annular structure is an annular groove
  • the buckle structure is in contact with the annular groove
  • the buckle structure is a T-shaped buckle.
  • the number of T-shaped structural buckles is 3, which are evenly spaced and distributed on the parallel slider module.
  • it also includes at least one set of corresponding limit blocks and limit holes.
  • the limiting block is located on the inner circumference of the parallel slider module, and the limiting hole is located on the outer circumference of the analyte detection device.
  • the limiting block is located on the outer circumference of the analyte detection device, and the limiting hole is located on the inner circumference of the parallel slider module.
  • the present invention further comprises a through hole located on the housing.
  • the through hole comprises a first through hole located in the lower outer shell and a second through hole located in the upper outer shell, and the first through hole and the second through hole are coaxial.
  • the auxiliary needle passes through the first through hole and the second through hole.
  • the invention further includes a self-sealing member located on the housing.
  • the auxiliary needle passes through the self-sealing component.
  • the analyte detection device further comprises a sensor, a transmitter, an internal circuit and a battery, wherein the sensor comprises an internal part and an external part, and the external part, the transmitter, the internal circuit and the battery are located in the housing.
  • the intracorporeal portion is bent relative to the extracorporeal portion.
  • the external portion is electrically coupled to the internal circuit.
  • the present invention also includes a conductive adhesive strip, and the external part is electrically coupled to the internal circuit through the conductive adhesive strip.
  • the conductive rubber strip includes conductive areas and insulating areas that are spaced apart.
  • the conductive rubber strip is a rectangular parallelepiped structure.
  • the internal body portion is electrically coupled to the internal circuit via at least one structural surface of the conductive adhesive strip.
  • the present invention further comprises an elastic module and a trigger module.
  • the elastic module Before using the mounting unit, the elastic module is in a compressed state, and the trigger module is used to prevent the elastic module from releasing elastic force.
  • the buckle structure of the parallel slider module contacts the annular structure of the analyte detection device, thereby realizing a releasable connection between the parallel slider module and the analyte detection device, which has a simple structure, is easy to process, and has high reliability.
  • the annular structure may be an annular groove surrounding the outer edge of the upper outer shell or the lower outer shell, which has a simple structure and is easy to process.
  • the annular structure may be a stepped structure formed by the difference in circumferential size between the upper outer shell and the lower outer shell.
  • the stepped structure can be formed without additional processing of the upper outer shell or the lower outer shell, and has a simple structure and is easy to process.
  • the stepped structure may be a step structure where the upper outer shell body changes suddenly to the lower outer shell body, which has a simple structure and is easy to process.
  • the stepped structure also includes an inclined transition surface connecting the outer edge of the upper outer shell to the outer edge of the lower outer shell, which can prevent the upper outer shell and the lower outer shell from detaching due to the user touching the outer edges of the upper outer shell and the lower outer shell during use.
  • it also includes a limit card block and a limit card hole with a corresponding relationship, and the limit card block and the limit card hole are respectively located on the parallel slider module or the analyte detection device.
  • the placement direction of the analyte detection device on the parallel slider module can be guided, so that the auxiliary needle can pass through the through hole or self-sealing component on the analyte detection device, so that the sensor can be enclosed in the auxiliary needle.
  • it can also prevent the analyte detection device from rotating and offsetting on the parallel slider module.
  • FIG1 is a schematic diagram of the external structure of a mounting unit of an analyte detection device according to an embodiment of the present invention
  • FIG2a is a schematic diagram of the external structure of a housing according to an embodiment of the present invention.
  • FIG2b is a schematic structural diagram of a protective cover according to an embodiment of the present invention.
  • FIG3 is a schematic diagram of an exploded structure of a mounting unit of an analyte detection device according to an embodiment of the present invention
  • FIG4 is a schematic diagram of the internal structure of a housing according to an embodiment of the present invention.
  • FIG5a is a schematic structural diagram of a distal end surface of a parallel slider module according to an embodiment of the present invention.
  • FIG5b is a schematic structural diagram of a proximal end surface of a parallel slider module according to an embodiment of the present invention.
  • FIG5c is a schematic structural diagram of a parallel slider module provided with a limit block according to an embodiment of the present invention.
  • 6a-6b are schematic structural diagrams of an analyte detection device according to an embodiment of the present invention.
  • FIG6c is a schematic structural diagram of an analyte detection device fixed on a parallel slider module according to an embodiment of the present invention.
  • Fig. 6d is a schematic diagram of the A-A' cross-sectional structure of Fig. 6a according to an embodiment of the present invention
  • 6e-6h are schematic diagrams of different usages of the conductive rubber strip according to an embodiment of the present invention.
  • FIG7a is a schematic structural diagram of an auxiliary needle module according to an embodiment of the present invention.
  • FIG7b is a schematic diagram of a bending sensor according to an embodiment of the present invention.
  • FIG7c is a schematic diagram showing an elastic cushion sleeve being arranged outside the auxiliary needle before installation according to an embodiment of the present invention
  • FIG7d is a schematic diagram of an elastic pad being arranged outside the auxiliary needle after the auxiliary needle has penetrated subcutaneously according to an embodiment of the present invention
  • FIG7e is a schematic diagram of an elastic cushion sleeve disposed outside the sensor after the auxiliary needle is retracted according to an embodiment of the present invention
  • FIG7f is a schematic diagram of a structure in which the elastic pad is solid according to an embodiment of the present invention.
  • FIG7g is a schematic diagram of a structure in which the elastic pad is hollow according to an embodiment of the present invention.
  • 7h is a schematic diagram of a structure in which an elastic pad is embedded into a housing of an analyte detection device according to an embodiment of the present invention
  • FIG8 is a schematic diagram of the structure of a trigger module according to an embodiment of the present invention.
  • FIG9 is a top view of a mounting unit according to an embodiment of the present invention.
  • FIG10a is a schematic diagram of the cross-sectional structure of section A in FIG9 ;
  • FIG10 b is a schematic diagram of the cross-sectional structure of section B of FIG9 ;
  • FIG10c is a schematic diagram of the cross-sectional structure of line C in FIG9 ;
  • FIG. 11 is a schematic diagram of the bending of the first buckle under force according to an embodiment of the present invention.
  • the installation unit of the prior art analyte detection device has a complex structure, a cumbersome installation process, and a high production cost, which also causes inconvenience to the user.
  • the present invention provides an installation unit for an analyte detection device, in which the snap structure of a parallel slider module contacts the annular structure of the analyte detection device, so that a releasable connection is formed between the parallel slider module and the analyte detection device.
  • the parallel slider module is located at the distal end, the analyte detection device is fixed on the parallel slider module. After the parallel slider module slides to the proximal end, the analyte detection device is automatically separated from the parallel slider module.
  • the installation unit has a simple structure, high reliability, and is easy to use.
  • FIG1 is a schematic diagram of the external structure of the mounting unit of the analyte detection device according to an embodiment of the present invention.
  • the external structure of the mounting unit 100 includes a housing 101 and a protective cover 102.
  • the housing 101 is used to carry internal structural components.
  • the end close to the user's skin is the proximal end, and the end away from the skin is the proximal end.
  • a first opening is provided at the proximal end of the housing 101.
  • the protective cover 102 is used to protect, seal and prevent the internal structure and internal structural parts of the housing 101 from being triggered.
  • FIG. 2a is a schematic diagram of the external structure of the shell of an embodiment of the present invention
  • FIG. 2b is a schematic diagram of the structure of the protective cover.
  • the protective cover 102 includes an outer cover body 1021, a clamp 1022, and an inner cover body 1023.
  • a second opening is provided in the distal direction of the outer cover body 1021, and the second opening faces the first opening.
  • the outer cover body 1021 and the clamp 1022 are connected by a breakable column 10211, and the columns 10211 are distributed between the outer cover body 1021 and the clamp 1022 at a certain interval.
  • An internal thread 10212 is provided on the inner side of the outer cover body 1021, and correspondingly, an external thread 10231 is provided on the outer side of the inner cover body 1023.
  • the internal thread 10212 and the external thread 10231 can be matched and connected to connect the outer cover body 1021 and the inner cover body 1023 together and keep them fixed.
  • a protrusion 10221 is provided on the inner side of the clamp 1022, and correspondingly, a groove 1011 is provided on the outer side of the housing 101.
  • the groove 1011 surrounds the outer side of the housing to form a circumference, and the protrusion 10221 can be embedded in the groove 1011.
  • the outer cover 1021 is first fixed to the inner cover 1023 by threaded cooperation, and then connected to the housing 101 by the clamp 1022.
  • the outer cover 1021 and the inner cover 1023 can protect, seal and prevent triggering of the internal structure of the housing 101. The anti-triggering function will be further described below.
  • the outer cover body 1021 and the inner cover body 1023 may also be fixedly connected by friction fit or snap fit.
  • clamp 1022 and the housing 101 may also be connected by friction fit, snap fit or thread fit.
  • FIG3 is an exploded structural diagram of the analyte detection device installation unit of an embodiment of the present invention.
  • the dotted lines in the figure represent the installation and matching relationship of each structural member.
  • the internal structural members of the analyte detection device installation unit 100 include a parallel slider module 103, an analyte detection device 104, an auxiliary needle module 105, a trigger module 106 and an elastic module 107, and the elastic module 107 includes a first elastic member 1071 and a second elastic member 1072.
  • the matching relationship between the analyte detection device 104 and the installation unit 100 is not limited to that shown in FIG. 3.
  • the analyte detection device 104 before installation, the analyte detection device 104 is built into the installation unit 100. When the user uses it, he can install the analyte detection device 104 on the surface of human skin by taking out the installation unit 100 from the packaging box.
  • the analyte detection device 104 and the installation unit 100 are in a separated state, that is, the user needs to take out the installation unit 100 from the packaging box separately.
  • the analyte detection device 104 is assembled into the mounting unit 100 and then the analyte detection device 104 can be mounted on the surface of human skin.
  • FIG. 4 is a schematic diagram of the internal structure of the housing 101 according to an embodiment of the present invention.
  • first buckles 1012 are disposed in the housing 101.
  • the first buckles 1012 are integrally formed with the housing 101 and protrude toward the proximal end of the housing 101.
  • the first buckles 1012 are made of flexible material, and the ends thereof can be bent or curved toward the outside of the housing 101.
  • first buckles 1012 there are two first buckles 1012 symmetrically distributed inside the housing 101 with an angular interval of 180° between them.
  • the number of first buckles 1012 is three or four, symmetrically distributed inside the housing 101, and the angle interval between each other is 120° or 90°.
  • the number of first buckles 1012 can also be five or more, which is not limited here.
  • At least two limiting grooves 1013 , at least two clamping grooves 1014 and one auxiliary needle limiting groove 1015 are further provided in the housing 101 .
  • the limiting groove 1013 includes at least two ribs protruding from the inner wall of the housing 101.
  • the ribs are parallel to each other, and a groove is formed between adjacent ribs.
  • the limiting groove 1013 is a groove recessed in the inner wall of the housing 101 .
  • the card slot 1014 includes two card slot positions, namely a first card slot position 10141 and a second card slot position 10142 . As shown in FIG. 10 a , the first card slot position 10141 is closer to the proximal end than the second card slot position 10142 .
  • the number of the limiting grooves 1013 and the clamping grooves 1014 is three or four, which are symmetrically distributed inside the housing 101, and the angle intervals between them are 120° or 90°.
  • the number of the limiting grooves 1013 and the clamping grooves 1014 can also be five or more, which is not limited here.
  • FIG. 5a is a schematic structural diagram of the distal end surface of the parallel slider module 103
  • FIG. 5b is a schematic structural diagram of the proximal end surface of the parallel slider module 103
  • FIG. 5c is a schematic structural diagram of the parallel slider module 103 with a limit block 1036 .
  • the distal end surface 1031 of the parallel slider module 103 is provided with a circular groove 1032 protruding toward the distal end.
  • the circular groove 1032 is a hollow cylindrical structure with an inner diameter of d1.
  • At least two slider buckles 10321 extend toward the distal end from the side wall of the circular groove 1032.
  • the buckle portion of the slider buckle 10321 is a plane or a nearly plane and forms a fixed angle with the horizontal plane. Its extended end m0 converges at the distal end. end.
  • the slider buckle 10321 is made of a flexible material and can be bent or folded toward the outside of the circular groove 1032 .
  • the slider buckle 10321 can be directly disposed on the distal end surface of the parallel slider module 103 without the need for a circular groove structure.
  • a boss 10322 is further provided at one end of the circular groove 1032 near the distal end surface 1031.
  • the boss 10322 is a hollow cylindrical structure with an inner diameter of d2. It can be understood that d1>d2.
  • the hollow circular groove 1032 and the boss 10322 form a through hole 10323 that runs from the distal end surface 1031 to the proximal end surface 1034 of the parallel slider module.
  • the number of the slider buckles 10321 can be three or four, symmetrically distributed on the side wall of the circular groove 1032, and the angle interval between the slider buckles 10321 is 120° or 90°.
  • the number of the slider buckles 10321 can also be five or more, which is not limited here.
  • At least two second buckles 1033 are disposed on the side of the distal surface 1031 of the parallel slider module 103 , and the second buckles 1033 are symmetrically distributed on the side of the distal surface 1031 , with an angular interval of 180° between them.
  • the number of the second buckles 1033 is three or four, symmetrically distributed on the side of the distal surface 1031, and the angular interval between each other is 120° or 90°.
  • the number of the second buckles 1033 can also be five or more, which is not limited here.
  • the second buckle 1033 is coupled to the first buckle 1012. The position and number of the second buckle 1033 are consistent with the first buckle 1012.
  • At least two T-shaped structures 1035 are arranged on the side of the proximal surface 1034 of the parallel slider module 103, the vertical portion of the T-shaped structure 1035 is connected to the proximal surface 1034, and the horizontal portion includes a T-shaped structure slider 10351 and a T-shaped structure buckle 10352, the T-shaped structure slider 10351 faces the outside of the parallel slider module 103 and protrudes from the outer circle of the parallel slider module 103; the T-shaped structure buckle 10352 faces the inside of the parallel slider module 103 and protrudes from the inner circle of the parallel slider module 103.
  • the T-shaped structural slider 10351 is located in the limiting groove 1013 to limit the position of the parallel slider module 103 and prevent the parallel slider module 103 from rotating in the installation unit 100.
  • the number and position of the T-shaped structural slider 10351 are consistent with the limiting groove 1013.
  • Parallel Slider Module During the movement of 103 toward the proximal end, the T-shaped structure slider 10351 slides in the limiting groove 1013.
  • the vertical portion of the T-shaped structure 1035 is made of flexible material, the vertical portion and the horizontal portion are integrally formed, and the horizontal portion can be bent or curved around the vertical portion.
  • the vertical portion of the T-shaped structure 1035 is made of elastic material, such as a spring, a spring, etc., and the horizontal portion is fixedly connected to the vertical portion by welding or hot melting, and the horizontal portion can also be bent or curved around the vertical portion.
  • a limit block 1036 is further provided on the inner ring of the parallel slider module 103, and the limit block 1036 is used to limit the analyte detection device 104 and prevent the analyte detection device 104 from rotational displacement, which will be described in detail below.
  • Figure 6a is a structural schematic diagram of the analyte detection device 104 according to an embodiment of the present invention
  • Figure 6b is another structural schematic diagram of the analyte detection device 104 according to an embodiment of the present invention
  • Figure 6c is a structural schematic diagram of the analyte detection device 104 according to an embodiment of the present invention being fixed on the parallel slider module 103
  • Figure 6d is a structural schematic diagram of the A-A’ section of Figure 6a
  • Figures 6e to 6h are schematic diagrams of different usage methods of the conductive rubber strip 1043.
  • the analyte detection device 104 includes a housing 1041, a transmitter (not shown in the figure), a sensor 1042, a battery (not shown in the figure), and an internal circuit (not shown in the figure) disposed in the housing 1041 and electrically coupled to the sensor.
  • the sensor 1042 is used to detect the analyte parameter information of the user's body fluid, and transmits the analyte parameter information to the transmitter through the internal circuit, and then the transmitter sends it to the external device 200.
  • a signal is transmitted to the external device 200 at a first frequency f 1 , and after being installed on the user's skin surface, a signal is transmitted to the external device 200 at a second frequency f 2 , and the second frequency f 2 is greater than the first frequency f 1.
  • the first frequency f 1 is 0 to 12 times/hour
  • the second frequency f 2 is 12 to 3600 times/hour.
  • the first frequency f1 is 0 times/hour, that is, before the analyte detection device 104 is installed on the user's skin surface, no signal is transmitted to the external device 200, which can save power consumption of the analyte detection device 104 before installation.
  • the housing 1041 includes an upper housing 10411 and a lower housing 10413, which are spliced to form an internal space.
  • the sensor 1042 includes an external part (not shown in the figure) and an internal part (not shown in the figure), the external part, the transmitter, the battery and the internal circuit are arranged in the internal space, and the external part is electrically coupled to the internal circuit.
  • the device has electrodes, membrane layers, and other structures, and can detect analyte parameter information by piercing the subcutaneous tissue of the user. When the internal part is pierced subcutaneously, it needs to be at a correct angle, such as perpendicular to the skin surface. After the life of the analyte detection device 104 ends, it is removed from the user's skin surface and discarded as a whole.
  • the lower outer shell 10413 includes a first through hole 10414 extending therethrough.
  • the upper outer shell 10411 includes a second through hole (not shown in the figure) extending therethrough.
  • the internal part passes through the first through hole 10414 to the outside of the outer shell to facilitate penetration into the user's subcutaneous tissue.
  • the upper outer shell 10411 is provided with a self-sealing member on the axis of the internal part.
  • the self-sealing member is initially in a sealed state, has a certain elasticity and softness, and can be pierced by the auxiliary needle 1052, such as silicone, nitrile rubber, etc.
  • the auxiliary needle 1052 pierces the self-sealing member, and the self-sealing member will tightly surround the side wall of the auxiliary needle 1052 without leaving a gap or opening.
  • the auxiliary needle 1052 is retracted and separated from the analyte detection device 104, and the self-sealing member will return to a closed state without leaving an opening or through hole, so that a good seal can be formed for the analyte detection device 104.
  • a self-sealing component is arranged around the internal part of the lower outer shell 10413, the internal part passes through the self-sealing component, and the self-sealing component surrounds the internal part.
  • the self-sealing component can provide sealing protection for the lower outer shell 10413 to prevent blood from being sprayed and immersed in the analyte detection device 104 when the internal part pierces the subcutaneous tissue, and can also achieve a waterproof effect.
  • the self-sealing member can be provided on both the upper outer shell 10411 and the lower outer shell 10413, or on one of them.
  • the other outer shell is provided with a through hole for the auxiliary needle 1052 to pass through.
  • the self-sealing member located on the lower outer shell 10413 is made of a light-proof material to prevent external light from irradiating the inside of the analyte detection device 104 through the self-sealing member and triggering the photosensitive element.
  • the self-sealing member on the upper outer shell 10411 may be made of a light-transmitting material. After the analyte detection device 104 is ejected, external light may pass through the self-sealing member to illuminate the interior of the analyte detection device 104 to trigger the photosensitive element.
  • the side of the upper outer shell 10411 includes a snap hole 10412 corresponding to the T-shaped structure buckle 10352, where "corresponding" means that the position and number of the snap hole 10412 are consistent with the T-shaped structure buckle 10352.
  • the upper outer shell 10411 fits the proximal surface 1034, the T-shaped structure buckle 10352 forms a snap connection with the snap hole 10412, and the analyte detection device 104 is fixed on the parallel slider module 103.
  • the analyte detection device 104 is The parallel slide module 103 is separated. Therefore, in the installation unit 100, the analyte detection device 104 is releasably connected to the parallel slide module 103.
  • the clamping hole 10412 corresponds to the T-shaped structure clamping buckle 10352, so that when the analyte detection device 104 is fixed on the parallel slider module 103, it can also play a positioning role.
  • the outer shell of the analyte detection device 104 is circular.
  • the analyte detection device 104 When the analyte detection device 104 is installed on the parallel slider module 103 before leaving the factory, the first through hole 10414 cannot be directly aligned with the auxiliary needle 1052, and even after the first through hole 10414 and the auxiliary needle 1052 are aligned during installation, the analyte detection device 104 may still rotate relative to the parallel slider module 103 during subsequent transportation and use, causing the body part 1042 to be separated from the envelope of the auxiliary needle 1052, affecting the use.
  • the placement position of the analyte detection device 104 on the parallel slider module 103 can be determined, and on the other hand, the analyte detection device can be prevented from rotating relative to the parallel slider module 103.
  • the offset which improves the use experience.
  • the circumferential dimensions of the upper outer shell 10411 and the lower outer shell 10413 are consistent, thereby forming a smooth connecting surface at the junction of the upper outer shell 10411 and the lower outer shell 10413, reducing the possibility of separation of the upper outer shell 10411 and the lower outer shell 10413 due to accidental collision, thereby ensuring the normal use of the analyte detection device 104.
  • an annular groove surrounding the upper outer shell 10411 is provided on the outer side of the upper outer shell 10411, and the T-shaped structural buckle 10352 can be embedded in the annular groove to achieve the buckle fixation of the analyte detection device 104.
  • the analyte detection device 104 can be separated from the parallel slider module 103.
  • the annular groove may also be provided on the outer side of the lower outer shell 10413 , or on the outer side of the connection between the upper outer shell 10411 and the lower outer shell 10413 .
  • the circumferential dimensions of the upper outer shell 10411 and the lower outer shell 10413 are inconsistent.
  • the diameter of the upper outer shell 10411 is slightly larger than the diameter of the lower outer shell 10413.
  • the diameter of the upper outer shell 10411 is 0.05 to 5 mm larger than the diameter of the lower outer shell 10413. In this way, the upper outer shell 10411 forms a step structure 10415 relative to the lower outer shell 10413.
  • the upper outer shell 10411 fits the proximal surface 1034
  • the T-shaped structure buckle 10352 fits the step structure 10415 to form a buckle connection
  • the T-shaped structure buckle 10352 presses the analyte detection device 104 on the proximal surface 1034 of the parallel slider module 103 through the step structure 10415.
  • the step structure 10415 may be a step structure that changes suddenly from the upper outer shell 10411 to the lower outer shell 10413 (as shown in FIG. 6 a ).
  • the analyte detection device 104 is fixed on the parallel slider module 103, and the T-shaped structure buckle 10352 contacts the upper outer shell 1411.
  • the user may touch the outer edge of the step structure during use, causing the upper outer shell 10411 to separate from the lower outer shell 10413, exposing the internal components and affecting the reliability of the analyte detection device 104.
  • the step structure 10415 may also include an inclined transition surface connected from the outer edge of the upper outer shell 10411 to the outer edge of the lower outer shell 10413.
  • the inclined transition surface may be a shell extension of the upper outer shell 10411 or a shell extension of the lower outer shell 10413.
  • the inclined transition surface may tightly connect the outer edges of the upper outer shell 10411 and the lower outer shell 10413.
  • the stepped structure 10415 is a step structure or an inclined transition surface
  • the stepped structure 10415 surrounds the outer side of the shell 1041 and is a ring structure.
  • the analyte detection device 104 can be fixed on the parallel slider module 103 through the cooperation of the step structure 10415 and the T-shaped structure buckle 10352, but it cannot play the positioning role as mentioned above, that is, it cannot prevent the analyte detection device 104 from rotational displacement. Based on this, it is also necessary to set a limit card hole 10416 on the shell 1041, and correspondingly, a limit card block 1036 is set on the parallel slider module 103. When the analyte detection device 104 is placed on the parallel slider module 103, the limit card block 1036 can be embedded in the limit card hole 10416.
  • the analyte detection device 104 can be placed on the parallel slider module 103 in a predetermined direction.
  • the analyte detection device 104 can be prevented from rotational displacement, ensuring that the auxiliary needle 1052 can pass through the first through hole 10414 or the self-sealing component.
  • the number of the limit block 1036 is at least one.
  • Those skilled in the art may know that one limit block 1036 and one corresponding limit hole 10416 can realize the functions of positioning and preventing rotational deviation, but may cause uneven force on the analyte detection device 104. Therefore, it is preferred to set at least two corresponding limit blocks 1036 and limit holes 10416, and the limit blocks 1036 and the limit holes 10416 are evenly spaced on the circumference of the parallel slider module 103 and the analyte detection device 104, respectively.
  • the number of the limiting blocks 1036 and the number of the limiting holes 10416 are both 2, which are symmetrically distributed on the circumference of the parallel slider module 103 and the analyte detection device 104, respectively.
  • the limiting block 1036 is disposed on the inner circumference of the parallel slider module 103
  • the limiting hole 10416 is disposed on the outer circumference of the housing of the analyte detection device 104 .
  • the limiting block 1036 is disposed on the outer circumference of the housing of the analyte detection device 104 , and the limiting hole 10416 is disposed on the inner circumference of the parallel slider module 103 .
  • Fig. 6 shows an internal schematic diagram of the analyte detection device 104.
  • the analyte detection device 104 includes the internal part 10421 of the sensor 1042, the conductive adhesive strip 1042 and the internal circuit 1044. It can be understood by those skilled in the art that, in addition to the components described above, the analyte detection device 104 may also include a battery (not shown in the figure), a buzzer (not shown in the figure), an LED lamp (not shown in the figure) and other components.
  • each pin is connected to an electrode of the external part 10422 through a wire provided on the insulating substrate of the sensor 1042, so as to receive current from the internal circuit 1044 and transmit detection current containing analyte parameter information to the internal circuit 1044.
  • the internal part 10421 can directly contact the electrical contacts on the internal circuit 1044, but due to size limitations, the pins on the internal part 10421 are distributed relatively closely. If they directly contact the electrical contacts on the internal circuit 1044, some pins may contact the wrong electrical contacts, thereby causing a short circuit or confusion of electrical signals.
  • the internal part 10421 contacts the electrical contacts on the internal circuit 1044 through the conductive rubber strip 1043.
  • the conductive rubber strip 1043 is composed of conductive areas and insulating areas distributed at intervals. The conductive areas and insulating areas are distributed on the surface of the conductive rubber strip 1043 or penetrate the conductive rubber strip 1043.
  • the in vivo portion 10421 of the sensor 1042 can be bent or curved relative to the in vitro portion 10422.
  • the bending or curving of the sensor 1042 is to better utilize the internal space of the analyte detection device 104 without affecting its use.
  • the conductive rubber strip 1043 is in the shape of a rectangular parallelepiped, and the conductive area and the insulating area are spaced apart along its length direction, so there are four conductive contact surfaces that can be used.
  • the four surfaces of the conductive rubber strip 1043 can be flexibly used according to the actual placement and structural design of the sensor 1042 and the internal circuit 1044.
  • the conductive rubber strip 1043 may also be in a regular shape such as a cylinder, a triangular prism, a sphere, a triangular pyramid, or other irregular shapes.
  • the internal circuit 1044 is placed inside the analyte detection device 104, and the conductive rubber strip 1043 is in the shape of a rectangular parallelepiped, and its upper end surface is in contact with the lower end surface of the internal circuit 1044, so that the conductive rubber strip 1043 still has a left end surface, a right end surface and a lower end surface for the external part 10421 of the sensor 1042 to contact.
  • the external part 10421 is in contact with the left end surface of the conductive rubber strip 1043.
  • the external part 10421 can also be in contact with the lower end surface or the right end surface of the conductive rubber strip 1043, as shown in FIG. 6g, which can also effectively realize the current transfer between the sensor 1042 and the internal circuit 1044.
  • the external portion 10421 is bent relative to the internal portion 10422 , the external portion 10421 contacts the right end surface of the conductive rubber strip 1043 , and the upper end surface of the conductive rubber strip 1043 contacts the lower end surface of the internal circuit 1044 .
  • the lower end surface of the zebra strip 1043 contacts the upper end surface of the internal circuit 1044, and the external part 10421 contacts the right end surface of the zebra strip 1043.
  • the external part 10421 is bent or curved relative to the internal part 10422. In this structure, the external part 10421 can contact the upper end surface of the conductive rubber strip 1043 without affecting the position and state of the internal part 10422.
  • the analyte detection device 104 is not limited to the above structure.
  • the transmitter is arranged outside the housing 1041 , and the user installs the housing 1041 on the user's skin surface through the installation unit 100 , and then installs the transmitter on the housing 1041 .
  • the battery when the transmitter is separated from the housing 1041 , the battery is built into the transmitter.
  • the battery when the transmitter is separated from the housing 1041 , the battery is built into the housing 1041 .
  • Figure 7a is a schematic diagram of the structure of the auxiliary needle module according to an embodiment of the present invention.
  • Figure 7b is a schematic diagram of the bending of the sensor according to an embodiment of the present invention.
  • Figure 7c is a schematic diagram of the elastic pad sleeve being arranged on the outside of the auxiliary needle before installation according to an embodiment of the present invention.
  • Figure 7d is a schematic diagram of the elastic pad sleeve being arranged on the outside of the auxiliary needle after the auxiliary needle is inserted into the subcutaneous tissue according to an embodiment of the present invention.
  • Figure 7e is a schematic diagram of the elastic pad sleeve being arranged on the outside of the sensor after the auxiliary needle is retracted according to an embodiment of the present invention.
  • Figure 7f is a schematic diagram of the structure of the elastic pad being solid according to an embodiment of the present invention.
  • Figure 7g is a schematic diagram of the structure of the embodiment of the present invention.
  • FIG7h is a schematic diagram of a structure in which the elastic pad is hollow.
  • FIG7h is a schematic diagram of a structure in which the elastic pad is embedded in the housing of the analyte detection device according to an embodiment of the present invention.
  • the auxiliary needle module 105 includes an auxiliary needle fixing structure 1051 and an auxiliary needle 1052.
  • the auxiliary needle fixing structure 1051 is located at the distal end, and the auxiliary needle 1052 is located at the proximal end.
  • the auxiliary needle fixing structure 1051 includes an auxiliary needle slider 10511 and an auxiliary needle fixing block 10512.
  • the diameter or width of the auxiliary needle slider 10511 is greater than the diameter or width of the auxiliary needle fixing block 10512, forming a convex surface 10513 facing the proximal end.
  • the auxiliary needle 1052 includes a fully enclosed needle body 10521 and a semi-enclosed needle body 10522.
  • the fully enclosed needle body 10521 is located between the auxiliary needle fixing block 10512 and the semi-enclosed needle body 10522, and is fixedly connected to the auxiliary needle fixing block 10512.
  • the hollow structure of the semi-enclosed needle body 10522 can be used to accommodate the internal part of the sensor 1042.
  • the auxiliary needle 1052 only includes a semi-enclosed needle body 10522, that is, the semi-enclosed needle body 10522 is fixedly connected to the auxiliary needle fixing block 10512. This can reduce the material used for the auxiliary needle 1052 and save costs, but it also reduces the rigidity of the auxiliary needle 1052.
  • the auxiliary needle 1052 passes through the second through hole and the first through hole 10414 in sequence, thereby penetrating the analyte detection device 104 , and the internal part of the sensor 1042 is located in the semi-enclosed needle body 10522 .
  • the semi-enclosed needle body 10522 can completely envelop the internal part 10422 of the sensor, since an electrode (not shown in the figure) is arranged on the side of the internal part 10422 close to the auxiliary needle 1052, the base of the internal part 10422 will bend toward the side away from the auxiliary needle 1052, forming the state shown in FIG. 7b .
  • the size of each component in the installation unit 100 in the embodiment of the present invention is small, which can reduce weight and facilitate user use.
  • the matching between the limit groove 1013 and the T-shaped structure slider 10351, and between the slider buckle 10321 and the auxiliary needle slider 10511 buckle is unstable, resulting in a slight swing of the auxiliary needle 1052, and the semi-enclosed needle body 10522 and the internal part 10422 of the sensor cannot be in an effective parallel state, and the internal part 10422 may escape the envelope of the semi-enclosed needle body 10522.
  • the in-body portion 10422 cannot be effectively penetrated into the subcutaneous tissue along with the semi-enclosed needle body 10522 , thereby reducing the detection reliability of the analyte detection device 104 .
  • an elastic pad 108 is sleeved on the outer side of the semi-enclosed needle body 10522, and the semi-enclosed needle body 10522 envelops the sensor.
  • the internal part 10422 of 1042, the elastic pad 108 can restrain the internal part 10422 in the semi-enclosed needle body 10522, which can prevent the internal part 10422 from bending.
  • the internal part 10422 can be prevented from escaping from the semi-enclosed needle body 10522, so that the internal part 10422 can be smoothly penetrated into the subcutaneous tissue with the semi-enclosed needle body 10522, thereby improving the detection reliability of the analyte detection device 104.
  • the elastic pad 108 is close to the needle tip end of the semi-enclosed needle body 10522, which can better constrain the internal part 10422 and prevent the internal part 10422 from escaping from the envelope of the semi-enclosed needle body 10522 or bending.
  • the semi-enclosed needle body 10522 carries the internal part 10422 into the subcutaneous tissue, and the elastic pad 108 remains stationary due to the obstruction of the skin. Therefore, during the process of the semi-enclosed needle body 10522 penetrating the subcutaneous tissue, the elastic pad 108 slides distally relative to the semi-enclosed needle body 10522 until the lower outer shell 10413 of the analyte detection device 104 contacts the skin surface and presses the elastic pad 108.
  • the semi-enclosed needle body 10522 carries the internal part 10422 and penetrates the subcutaneous tissue to a predetermined position and then retracts, leaving the internal part 10422 to remain under the skin to detect analyte parameter information.
  • the analyte detection device 104 is adhered to the skin surface under the action of the adhesive tape, so when the semi-enclosed needle body 10522 is retracted, the elastic pad 108 is blocked by the lower outer shell 10413 and remains stationary, and the elastic pad 108 slides toward the proximal end relative to the semi-enclosed needle body 10522 until the semi-enclosed needle body 10522 is separated from the elastic pad 108.
  • the elastic pad 108 is sandwiched between the lower outer shell 10413 and the skin surface. After the semi-enclosed needle body 10522 is fully retracted, the elastic pad 108 shrinks and sleeves on the outside of the internal part 10422 under the action of its own elasticity, pressing and covering the wound caused by the semi-enclosed needle body 10522 piercing the subcutaneous tissue, thereby preventing blood from overflowing from the wound and contaminating the analyte detection device 104. At the same time, it can also prevent foreign matter from contaminating the wound, thereby increasing the wound healing speed.
  • the elastic pad 108 may be a solid structure, and after the semi-enclosed needle body 10522 pierces the elastic pad 108 , the elastic pad 108 is sleeved on the outside of the semi-enclosed needle body 10522 .
  • the elastic pad 108 may be a hollow structure, and the inner diameter d' of the elastic pad 108 is smaller than the outer diameter d of the semi-enclosed needle body 10522, so that the elastic pad 108 can be tightly sleeved on the outside of the semi-enclosed needle body 10522 to prevent the internal part 10422 from escaping from the envelope of the semi-enclosed needle body 10522.
  • the inner diameter d' of the elastic pad 108 is also smaller than the outer diameter of the internal part 10422.
  • the elastic pad 108 can shrink and be tightly sleeved on the outside of the internal part 10422 to press and cover the wound caused by the semi-enclosed needle body 10522 piercing the subcutaneous tissue.
  • the thickness of the elastic pad 108 is 0.01-5 mm. If the elastic pad 108 is too thick, it will increase the pressure of the analyte detection device 104 on the skin surface, causing discomfort. If the elastic pad 108 is too thin, it will easily deform and cannot form an effective constraint on the internal part 10422. In a preferred embodiment of the present invention, the thickness of the elastic pad 108 is 0.3 mm.
  • the first through hole 10414 is sunk into the lower outer shell 10413.
  • the elastic pad 108 is pressed against the skin surface until the lower outer shell 10413 is pushed into contact with the skin surface.
  • the elastic pad 108 is embedded in the first through hole 10414 and is flush with the lower outer shell 10413. In this way, the elastic pad 108 will not cause additional extrusion on the skin surface, thereby reducing discomfort.
  • the elastic pad 108 is made of rubber, silicone or latex, which has good elasticity and can avoid contamination to the wound.
  • FIG. 8 is a schematic diagram of the structure of a trigger module according to an embodiment of the present invention.
  • the fixed buckle 1061 contacts the first buckle 1012 to prevent the first buckle 1012 from bending or folding toward the outside of the shell.
  • the contact between the fixed buckle 1061 and the first buckle 1012 can be point contact, line contact or surface contact.
  • the contact surface between the fixed buckle 1061 and the first buckle 1012 is at a fixed angle to the horizontal plane and converges at the proximal end of the mounting unit 100.
  • the number and position of the fixed buckle 1061 are consistent with the first buckle 1012.
  • At least two ears 1062 are further provided on the trigger module 106.
  • the ears 1062 are snap-fitted with the slots 1014 to fix the trigger module 106.
  • the number and position of the ears 1062 are consistent with the slots 1014.
  • the ears 1062 are located at the first slot position 10141, and at this time, the fixing buckle 1061 is in contact with the first buckle 1012.
  • the trigger module 106 further includes an outer ring 1063, and the outer ring 1063 connects the fixing buckle 1061 and the ear 1062 into a whole.
  • the outer ring 1063 is closer to the proximal end relative to the ear 1062, is located at the first opening and protrudes from the first opening, and when the installation unit 100 is used, the outer ring 1063 fits the user's skin surface.
  • the elastic module 107 includes a first elastic member 1071 and a second elastic member 1072 .
  • the first elastic member 1071 is located between the parallel slider module 103 and the housing 101, that is, one end of the first elastic member 1071 is located at the distal end surface of the parallel slider module 103, and the other end is located at the distal end surface of the parallel slider module 103.
  • the first elastic member 1071 In the housing 101 , in the mounting unit 100 , the first elastic member 1071 is in a compressed state and can provide elastic force.
  • the second elastic member 1072 is located between the parallel slider module 103 and the auxiliary needle module 105, that is, one end of the second elastic member 1072 is located on the boss 10322 of the parallel slider module 103, and the other end is located on the convex surface 10513 of the auxiliary needle module 105.
  • the second elastic member 1072 is in a compressed state and can provide elastic force.
  • the first elastic member 1071 or the second elastic member 1072 is a metal spring.
  • the inner ring diameter of the first elastic member 1071 is larger than the outer ring diameter of the circular groove 1032 and the auxiliary needle slider 10511.
  • the first elastic member 1071 is surrounded by the outside of the auxiliary needle slider 10511 and the circular groove 1032, so that the internal space of the installation unit 100 can be fully utilized.
  • the outer ring diameter of the second elastic member 1072 is larger than the outer diameter of the auxiliary needle fixing block 10512 and the inner diameter of the boss 10322, but smaller than the outer diameter of the auxiliary needle slider 10511 and the inner diameter of the circular groove 1032. Therefore, one end of the second elastic member 1072 is placed in the circular groove 1032, and the other end is surrounded by the outside of the auxiliary needle fixing block 10512, so that the internal space of the installation unit 100 can be fully utilized.
  • FIG. 9 is a top view of the mounting unit according to the embodiment of the present invention.
  • Fig. 10a is a schematic diagram of the cross-sectional structure of section A in Fig. 9;
  • Fig. 10b is a schematic diagram of the cross-sectional structure of section B in Fig. 9;
  • Fig. 10c is a schematic diagram of the cross-sectional structure of section C in Fig. 9; and
  • Fig. 11 is a schematic diagram of the bending of the first buckle under force.
  • the card slot 1014 is provided with two card slot positions, a first card slot position 10141 and a second card slot position 10142.
  • the trigger module 106 is fixed to the housing 101 through the snap fit of the card ear 1062 and the first card slot position 10141.
  • the fixed buckle 1061 contacts the first buckle 1012 to prevent the first buckle 1012 from bending or folding to the outside of the housing 101.
  • the fixed buckle 1061, the first buckle 1012 and the second buckle 1033 are located on the same horizontal line. In a preferred embodiment of the present invention, from the inside to the outside of the housing 101, the second buckle 1033, the first buckle 1012 and the fixed buckle 1061 are arranged in sequence.
  • the contact between the fixing buckle 1061 and the first buckle 1012 is point contact, line contact or surface contact.
  • the extension line m1 of the contact surface converges at the proximal end. This structural design allows the fixing buckle 1061 to move toward the distal end relative to the first buckle 1012.
  • the coupling surface between the second buckle 1033 and the first buckle 1012 is a plane, which forms a fixed angle with the horizontal plane, and the extended ends m2 thereof converge at the proximal end.
  • this structural design allows the first buckle 1012 to be pushed toward the outside of the housing 101 when the second buckle 1033 moves toward the proximal end relative to the first buckle 1012 , thereby releasing the coupling state between the first buckle 1012 and the second buckle 1033 .
  • the first elastic member 1071 is in a compressed state and has elastic potential energy. Its own elastic force gives the parallel module slider 103 a thrust Fr toward the proximal end.
  • the thrust Fr acts on the first buckle 1012 through the coupling surface of the second buckle 1033 and the first buckle 1012, and generates a component force Fsin perpendicular to the plane of the first buckle 1012.
  • the component force Fsin can push the first buckle 1012 toward the outside of the shell 101 to bend or fold, thereby releasing the coupling state between the first buckle 1012 and the second buckle 1033.
  • the outer cover body 1021 is rotated to break the column 10211, and the protective cover 102 is separated from the shell 101.
  • the proximal end of the installation unit 100 is brought close to the user's skin until the outer ring 1063 of the trigger module 106 is attached to the skin surface.
  • the user presses the shell 101 at the distal end, and the shell 101 moves toward the skin.
  • the trigger module 106 remains stationary, so the trigger module 106 moves distally relative to the shell 101, and the ear 1062 disengages from the first card slot 10141 and enters the second card slot 10142.
  • the fixed buckle 1061 no longer contacts the first buckle 1012.
  • the first buckle 1012 is bent or folded toward the outside of the shell 101 due to the component force Fsin, and the coupling state between the first buckle 1012 and the second buckle 1033 is released.
  • the parallel slider module 103 continues to move proximally under the elastic force of the first elastic member 1071, while driving the analyte detection device 104 to move proximally until the lower outer shell 10413 of the analyte detection device 104 contacts the user's skin surface.
  • the slider buckle 10321 is buckled and connected with the auxiliary needle slider 10511, and when the first elastic member 1071 pushes the parallel slider module 103 to move proximally, it drives the auxiliary needle module 105 to move proximally together.
  • connection between the slider buckle 10321 and the auxiliary needle slider 10511 is a plane or a nearly plane, which is at a fixed angle to the horizontal plane, and its extension line m3 converges at the distal end.
  • the thrust of the second elastic member 1072 on the auxiliary needle slider 10511 is toward the distal end, so the auxiliary needle slider 10511 can push the slider buckle 10321 to the outside of the housing 101, so that the slider buckle 10321 is bent or folded, and its principle is the same as that of FIG. 11.
  • the side wall of the auxiliary needle limiting groove 1015 prevents the slider buckle 10321 from bending or curving, and the slider buckle 10321 and the auxiliary needle slider 10511 buckle connection state does not change.
  • the parallel slider module 103 and the auxiliary needle module 105 move toward the proximal end, until the slider buckle 10321 is separated from the auxiliary needle limiting groove 1015, the inner wall of the auxiliary needle limiting groove 1015 no longer prevents the slider buckle 10321 from bending or curving, and the second elastic member 1072 pushes the slider buckle 10321 toward the distal end.
  • the auxiliary needle slider 10511 pushes the slider buckle 10321 to bend or bend outward, the buckle connection between the slider buckle 10321 and the auxiliary needle slider 10511 is released, and the second elastic member 1072 continues to push the auxiliary needle slider 10511 to move distally, and finally the auxiliary needle module 105 returns to the initial position, and the auxiliary needle 1052 retracts into the shell 101 to prevent the auxiliary needle 1052 from being exposed outside the shell 101 to avoid unnecessary damage.
  • the slider buckle 10321 when the slider buckle 10321 is disengaged from the auxiliary needle limiting groove 1015, the semi-enclosed needle body 10522 of the auxiliary needle penetrates into the subcutaneous tissue of the user.
  • the T-shaped structure slider 10351 is located in the limiting groove 1013, and the limiting groove 1013 limits the position and direction of the parallel slider module 103 through the T-shaped structure slider 10351 to ensure that the parallel slider module 103 remains perpendicular to its sliding direction, so that the analyte detection device 104 arranged at the front end of the parallel slider module 103 remains perpendicular to its movement direction, and the auxiliary needle 1052 remains parallel to its movement direction, so that the auxiliary needle 1052 and the inner part of the sensor body enveloped by it can penetrate into the user's subcutaneous tissue at a vertical angle, thereby reducing the user's pain.
  • the T-shaped structure slider 10351 slides in the limiting groove 1013 until it contacts the outer ring 1063 of the trigger module 106.
  • the parallel slider module 103 continues to move toward the proximal end, while the outer ring 1063 blocks the T-shaped structure slider 10351 from continuing to move toward the proximal end.
  • the T-shaped structure slider 10351 bends or folds around the vertical portion, and the connection between the T-shaped structure buckle 10352 and the buckle hole 10412 or the annular structure buckle is released, and the analyte detection device 104 is detached from the parallel slider module 103 so that it can be installed on the user's skin surface.
  • the position of the parallel slider module 103 is the predetermined position.
  • the lower outer shell 10413 of the analyte detection device contacts the user's skin surface.
  • the auxiliary needle 1052 passes through the second through hole and the first through hole 10414 in sequence, and penetrates the analyte detection device 104, and at the same time, the semi-enclosed needle body 10522 of the auxiliary needle envelops the sensor 1042.
  • the semi-enclosed needle body 10522 carries the sensor 1042 and penetrates the subcutaneous tissue.
  • the user when performing the installation action, the user needs to press the housing 101 at the distal end to apply a proximal force F to the housing 101, and the outer ring 1063 of the trigger module 106 contacts the user's skin surface.
  • the user's skin applies a force F' to the outer ring 1063 in the opposite direction of the force F, thereby achieving relative movement between the trigger module 106 and the housing 101.
  • the absolute position of the trigger module 106 remains unchanged.
  • the housing 101 moves toward the proximal end.
  • a protective cover 102 is installed at the proximal end of the shell 101.
  • the protective cover 102 surrounds the outside of the outer ring 1063 of the trigger module, which can prevent the installation from being performed in an incorrect position due to accidental contact with the outer ring 1063, thereby playing an anti-trigger role.
  • the distal surface 10232 of the inner cover body 1023 contacts the analyte detection device 104, and the auxiliary needle 1052 and the sensor 1042 extend into the inner cover body groove 10233, which can play a sealing role to prevent external dust, particles and other dirt from contacting the needle body and the sensor and causing contamination.
  • an adhesive tape (not shown in the figure) is further provided on the lower outer shell 10413 of the analyte detection device to fix the analyte detection device 104 on the user's skin surface.
  • an embodiment of the present invention discloses an installation unit for an analyte detection device, in which the snap structure of the parallel slider module contacts the annular structure of the analyte detection device, so that a releasable connection is formed between the parallel slider module and the analyte detection device.
  • the parallel slider module is located at the distal end, the analyte detection device is fixed on the parallel slider module. After the parallel slider module slides to the proximal end, the analyte detection device is automatically separated from the parallel slider module.
  • the installation unit has a simple structure, high reliability, and is easy to use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种分析物检测装置(104)的安装单元(100),平行滑块模块(103)的卡扣结构与分析物检测装置(104)的环形结构接触,使平行滑块模块(103)与分析物检测装置(104)间形成可释放连接,在平行滑块模块(103)位于远端时,分析物检测装置(104)固定在平行滑块模块(103)上,在平行滑块模块(103)滑向近端后,分析物检测装置(104)自动与平行滑块模块(103)分离,安装单元(100)结构简单,可靠性高,使用方便。

Description

分析物传感器固定装置
相关申请的交叉引用
本申请要求以下专利申请的权益并要求其优先权:2022年9月26日提交的PCT专利申请,申请号为PCT/CN2022/121280。
技术领域
本发明主要涉及医疗器械领域,特别涉及一种分析物检测装置的安装单元。
背景技术
正常人身体中的胰腺可自动检测人体血液中的葡萄糖含量,并自动分泌所需的胰岛素/胰高血糖素。而糖尿病患者胰腺的功能出现异常状况,无法正常分泌人体所需胰岛素。因此糖尿病是人体胰腺功能出现异常而导致的代谢类疾病,糖尿病为终身疾病。目前医疗技术尚无法根治糖尿病,只能通过稳定血糖来控制糖尿病及其并发症的发生和发展。
糖尿病患者在向体内注射胰岛素之前需要检测血糖。目前多数的检测手段可以对血糖连续检测,并将血糖数据实时发送至外界设备,便于用户查看,这种检测方法称为连续葡萄糖检测(Continuous Glucose Monitoring,CGM)。该方法需要检测装置贴在皮肤表面,将其携带的传感器刺入皮下的组织液完成检测。
目前的分析物检测装置的安装单元结构复杂,安装过程繁琐,生产成本较高的同时,也造成用户使用不便。
因此,现有技术亟需一种结构简单、使用方便的分析物检测装置安装单元。
发明内容
本发明公开了一种分析物检测装置的安装单元,平行滑块模块的卡扣结构与分析物检测装置的环形结构接触,使平行滑块模块与分析物检测装置间形成可释放连接,在平行滑块模块位于远端时,分析物检测装置固定在平行 滑块模块上,在平行滑块模块滑向近端后,分析物检测装置自动与平行滑块模块分离,安装单元结构简单,可靠性高,使用方便。
本发明提供了一种分析物检测装置的安装单元,包括安装单元,安装单元至少包括壳体、辅助针和平行滑块模块,在使用安装单元时,辅助针和平行滑块模块在壳体内从远端滑向近端,并在近端将分析物检测装置安装在用户皮肤表面,以获取体内分析物参数信息;其中,在平行滑块模块位于远端时,平行滑块模块的卡扣结构与分析物检测装置的环形结构接触,使分析物检测装置固定在平行滑块模块上,并在平行滑块模块滑向近端后,卡扣结构与环形结构解除接触,分析物检测装置与平行滑块模块分离。
根据本发明的一个方面,分析物检测装置包括上外壳体和下外壳体。
根据本发明的一个方面,环形结构环绕在上外壳体和/或下外壳体外侧。
根据本发明的一个方面,环形结构环绕在上外壳体和下外壳体的连接处。
根据本发明的一个方面,上外壳体和下外壳体的圆周尺寸不同。
根据本发明的一个方面,上外壳体的圆周尺寸大于下外壳体,卡扣结构与上外壳体接触。
根据本发明的一个方面,上外壳体的圆周尺寸比下外壳体的圆周尺寸大0.05~5mm。
根据本发明的一个方面,还包括连接上外壳体外沿和下外壳体外沿的倾斜过渡面,卡扣结构与倾斜过渡面接触。
根据本发明的一个方面,环形结构为环形槽,卡扣结构与环形槽接触。
根据本发明的一个方面,卡扣结构为T型结构卡扣。
根据本发明的一个方面,T型结构卡扣数量为3个,均匀间隔分布在平行滑块模块上。
根据本发明的一个方面,还包括至少1组具有对应关系的限位卡块和限位卡孔。
根据本发明的一个方面,限位卡块位于平行滑块模块的内圈圆周上,限位卡孔位于分析物检测装置的外圈圆周上。
根据本发明的一个方面,限位卡块位于分析物检测装置的外圈圆周上,限位卡孔位于平行滑块模块的内圈圆周上。
根据本发明的一个方面,还包括位于外壳上的通孔。
根据本发明的一个方面,通孔包括位于下外壳体的第一通孔和位于上外壳体的第二通孔,第一通孔和第二通孔同轴。
根据本发明的一个方面,在限位卡块嵌入到限位卡孔中时,辅助针穿过第一通孔和第二通孔。
根据本发明的一个方面,还包括位于外壳的自密封构件。
根据本发明的一个方面,在限位卡块嵌入到限位卡孔中时,辅助针穿过自密封构件。
根据本发明的一个方面,分析物检测装置还包括传感器、发射器、内部电路和电池,传感器包括体内部分和体外部分,体外部分、发射器、内部电路和电池位于壳体内。
根据本发明的一个方面,体内部分相对于体外部分弯折。
根据本发明的一个方面,体外部分与内部电路电耦合。
根据本发明的一个方面,还包括导电胶条,体外部分通过导电胶条与内部电路电耦合。
根据本发明的一个方面,导电胶条包括间隔分布的导电区和绝缘区。
根据本发明的一个方面,导电胶条为长方体型结构。
根据本发明的一个方面,体内部分与内部电路通过导电胶条的至少一个结构面实现电耦合。
根据本发明的一个方面,还包括弹性模块和触发模块,在使用安装单元前,弹性模块处于压缩状态,触发模块用于防止弹性模块释放弹力。
与现有技术相比,本发明的技术方案具备以下优点:
本发明公开的分析物检测装置的安装单元中,平行滑块模块的卡扣结构与分析物检测装置的环形结构接触,实现平行滑块模块与分析物检测装置的可释放连接,结构简单,便于加工,可靠性高。
进一步的,环形结构可以是围绕在上外壳体或者下外壳体外沿的环形槽,结构简单,便于加工。
进一步的,环形结构可以是由上外壳体和下外壳体的圆周尺寸差异形成的阶梯结构,无需对上外壳体或者下外壳体进行额外加工即可形成阶梯结构,结构简单,便于加工。
进一步的,阶梯结构可以是由上外壳体骤变至下外壳体的台阶结构,结构简单,便于加工。
进一步的,阶梯结构还包括由上外壳体外沿连接至下外壳体外沿的倾斜过渡面,可以防止用户在使用过程中因触碰到上外壳体和下外壳体的外沿,而导致上外壳体和下外壳体脱离。
进一步的,还包括具有对应关系的限位卡块和限位卡孔,限位卡块和限位卡孔分别位于平行滑块模块或者分析物检测装置上,当分析物检测装置固定在平行滑块模块上时,可以指引分析物检测装置在平行滑块模块上的放置方向,从而使辅助针能穿过分析物检测装置上的通孔或者自密封构件,使得传感器能够被包络在辅助针内,同时,还能防止分析物检测装置在平行滑块模块上发生旋转偏移。
附图说明
图1为根据本发明实施例分析物检测装置安装单元的外部结构示意图;
图2a为根据本发明实施例壳体的外部结构示意图;
图2b为根据本发明实施例保护盖的结构示意图;
图3为根据本发明实施例分析物检测装置安装单元的爆炸结构示意图;
图4为根据本发明实施例壳体的内部结构示意图;
图5a为根据本发明实施例平行滑块模块远端面的结构示意图;
图5b为根据本发明实施例平行滑块模块近端面的结构示意图;
图5c为根据本发明实施例平行滑块模块设置限位卡块的结构示意图;
图6a-6b为根据本发明实施例分析物检测装置的结构示意图;
图6c为根据本发明实施例分析物检测装置固定在平行滑块模块上的结构示意图;
图6d为根据本发明实施例图6a的A-A’剖面结构示意图;
图6e-6h为根据本发明实施例导电胶条的不同使用方式示意图;
图7a为根据本发明实施例辅助针模块的结构示意图;
图7b为根据本发明实施例传感器弯曲示意图;
图7c为根据本发明实施例安装前弹性垫套设在辅助针外侧的示意图;
图7d为根据本发明实施例辅助针刺入皮下后弹性垫套设在辅助针外侧的示意图;
图7e为根据本发明实施例辅助针缩回后弹性垫套设在传感器外侧的示意图;
图7f为根据本发明实施例弹性垫为实心的结构示意图;
图7g为根据本发明实施例弹性垫为空心的结构示意图;
图7h为根据本发明实施例弹性垫内嵌到分析物检测装置外壳的结构示意图;
图8为根据本发明实施例触发模块的结构示意图;
图9为根据本发明实施例安装单元的俯视图;
图10a为图9的A剖面结构示意图;
图10b为图9的B剖面结构示意图;
图10c为图9的C剖面结构示意图;
图11为根据本发明实施例第一卡扣受力弯折示意图。
具体实施方式
如前所述,现有技术的分析物检测装置的安装单元结构复杂,安装过程繁琐,生产成本较高的同时,也造成用户使用不便。
为了解决该问题,本发明提供了一种分析物检测装置的安装单元,平行滑块模块的卡扣结构与分析物检测装置的环形结构接触,使平行滑块模块与分析物检测装置间形成可释放连接,在平行滑块模块位于远端时,分析物检测装置固定在平行滑块模块上,在平行滑块模块滑向近端后,分析物检测装置自动与平行滑块模块分离,安装单元结构简单,可靠性高,使用方便。
现在将参照附图来详细描述本发明的各种示例性实施例。应理解,除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不应被理解为对本发明范围的限制。
此外,应当理解,为了便于描述,附图中所示出的各个部件的尺寸并不必然按照实际的比例关系绘制,例如某些单元的厚度、宽度、长度或距离可以相对于其他结构有所放大。
以下对示例性实施例的描述仅仅是说明性的,在任何意义上都不作为对本发明及其应用或使用的任何限制。这里对于相关领域普通技术人员已知的技术、方法和装置可能不作详细讨论,但在适用这些技术、方法和装置情况下,这些技术、方法和装置应当被视为本说明书的一部分。
应注意,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义或说明,则在随后的附图说明中将不需要对其进行进一步讨论。
图1为本发明实施例分析物检测装置安装单元的外部结构示意图。安装单元100的外部结构包括壳体101和保护盖102,壳体101用于承载内部结构件。安装单元100在使用时,靠近用户皮肤的一端为近端,远离皮肤的一端 为远端。在壳体101的近端设置有第一开口。保护盖102用于对壳体101的内部结构和内部结构件进行保护、密封以及防触发。
壳体外部
图2a为本发明实施例壳体的外部结构示意图,图2b为保护盖的结构示意图。保护盖102包括外盖体1021、卡箍1022和内盖体1023。外盖体1021远端方向设置有第二开口,第二开口面向第一开口。在第二开口,外盖体1021与卡箍1022通过可折断的立柱10211连接,立柱10211按一定的间距分布在外盖体1021和卡箍1022之间。外盖体1021相对于卡箍1022旋转时,立柱10211可被折断,外盖体1021与卡箍1022分离。
外盖体1021内侧设置有内螺纹10212,对应的,内盖体1023外侧设置有外螺纹10231,内螺纹10212与外螺纹10231可配合连接,以将外盖体1021与内盖体1023连接在一起并保持固定。
卡箍1022内侧设置有凸起10221,对应的,壳体101的外侧设置有凹槽1011,凹槽1011环绕于壳体外侧形成圆周,凸起10221可嵌入凹槽1011内。外盖体1021先与内盖体1023通过螺纹配合固定后,再通过卡箍1022与壳体101连接,外盖体1021和内盖体1023可对壳体101的内部结构进行保护、密封以及防触发,这里防触发功能将在下文中进一步阐述。
在本发明其他实施例中,外盖体1021与内盖体1023之间也可以摩擦配合或者卡扣配合实现固定连接。
在本发明其他实施例中,卡箍1022与壳体101之间也可以通过摩擦配合、卡扣配合或者螺纹配合实现连接。
壳体内部
图3为本发明实施例分析物检测装置安装单元的爆炸结构示意图。图中虚线表示各结构件的安装配合关系。分析物检测装置安装单元100的内部结构件包括平行滑块模块103、分析物检测装置104、辅助针模块105、触发模块106和弹性模块107,弹性模块107包括第一弹性件1071和第二弹性件1072。
分析物检测装置104与安装单元100不仅限于图3所述的配合关系。在本发明一些实施例中,在安装前,分析物检测装置104内置于安装单元100,用户在使用时,从包装盒中取出安装单元100即可以将分析物检测装置104安装到人体皮肤表面。在本发明另一些实施例中,在安装前,分析物检测装置104与安装单元100处于分离状态,即用户从包装盒中需要分别取出安装 单元100和分析物检测装置104,然后将分析物检测装置104装配到安装单元100中后,才可以将分析物检测装置104安装到人体皮肤表面。
图4为本发明实施例壳体101的内部结构示意图。
在本发明实施例中,壳体101内设置有至少两个第一卡扣1012,第一卡扣1012与壳体101一体成型,并向壳体101的近端凸出。第一卡扣1012为柔性材料,末端可向壳体101的外侧弯折或者弯曲。
在本发明优选实施例中,第一卡扣1012的数量为两个,对称分布在壳体101内部,彼此间的角度间隔为180°。
在本发明其他优选实施例中,第一卡扣1012的数量为三个或者四个,对称分布在壳体101内部,彼此间的角度间隔为120°或者90°。第一卡扣1012的数量也可以是五个或者更多,在此不作限制。
在本发明实施例中,壳体101内还设置有至少两个限位槽1013、至少两个卡槽1014以及一个辅助针限位槽1015。
在本发明实施例中,限位槽1013包括至少两条凸出于壳体101内壁的肋板。在本发明优选实施例中,肋板彼此平行,相邻的肋板中间形成凹槽。
在本发明其他实施例中,限位槽1013为凹陷于壳体101内壁的槽。
在本发明实施例中,卡槽1014包括两个卡槽位,即第一卡槽位10141和第二卡槽位10142,如图10a所示,第一卡槽位10141相对于第二卡槽位10142靠近于近端。
在本发明优选实施例中,限位槽1013、卡槽1014的数量为两个,对称分布在壳体101内部,彼此间的角度间隔为180°。
在本发明其他优选实施例中,限位槽1013、卡槽1014的数量为三个或者四个,对称分布在壳体101内部,彼此间的角度间隔为120°或者90°。限位槽1013、卡槽1014的数量也可以是五个或者更多,在此不作限制。
平行滑块模块
图5a为平行滑块模块103远端面的结构示意图,图5b为平行滑块模块103近端面的结构示意图,图5c为平行滑块模块103设置限位卡块1036的结构示意图。
在本发明实施例中,平行滑块模块103的远端面1031设置有向远端凸起的圆形槽1032,圆形槽1032为内部掏空的圆柱结构,其内径为d1。在圆形槽1032的侧壁上向远端伸出至少两个滑块卡扣10321,滑块卡扣10321的卡扣部为平面或者近似平面,并与水平面呈固定夹角,其延长端m0汇聚在远 端。
在本发明实施例中,滑块卡扣10321为柔性材料,因此可向圆形槽1032的外侧弯曲或者弯折。
在本发明其他实施例中,滑块卡扣10321可直接设置在平行滑块模块103的远端面,而不需要圆形槽结构。
在本发明实施例中,圆形槽1032内靠近远端面1031的一端还设置有一段凸台10322,凸台10322为内部掏空的圆柱体结构,其内径为d2,可以理解的是d1>d2。内部掏空结构的圆形槽1032和凸台10322形成一个通孔10323,从平行滑块模块的远端面1031贯穿到近端面1034。
在本发明优选实施例中,滑块卡扣10321的数量为两个,对称分布在圆形槽1032的侧壁上,两个滑块卡扣10321彼此间的角度间隔为180°。
在本发明其他优选实施例中,滑块卡扣10321的数量可以为三个或者四个,对称分布在圆形槽1032的侧壁上,滑块卡扣10321彼此间的角度间隔为120°或者90°。滑块卡扣10321的数量也可以是五个或者更多,在此不作限制。
继续参照图5a,在本发明实施例中,平行滑块模块103的远端面1031侧边设置有至少两个第二卡扣1033,第二卡扣1033对称分布在远端面1031侧边,彼此间的角度间隔为180°。
在本发明其他实施例中,第二卡扣1033的数量为三个或者四个,对称分布在远端面1031侧边,彼此间的角度间隔为120°或者90°。第二卡扣1033的数量也可以是五个或者更多,在此不做限制。在安装单元100中,第二卡扣1033与第一卡扣1012耦合。第二卡扣1033的位置和数量与第一卡扣1012一致。
参照图5b,在本发明实施例中,平行滑块模块103的近端面1034侧边设置有至少两个T型结构1035,T型结构1035的竖直部连接于近端面1034,水平部包括T型结构滑块10351和T型结构卡扣10352,T型结构滑块10351朝向平行滑块模块103的外侧,并且凸出于平行滑块模块103的外圈;T型结构卡扣10352朝向平行滑块模块103的内侧,并且凸出于平行滑块模块103的内圈。
在安装单元100中,T型结构滑块10351位于限位槽1013内,以限制平行滑块模块103的位置,并防止平行滑块模块103在安装单元100内发生转动。T型结构滑块10351的数量及位置与限位槽1013一致。平行滑块模块 103向近端运动过程中,T型结构滑块10351在限位槽1013内滑动。
在本发明优选实施例中,T型结构1035的竖直部为柔性材料,竖直部与水平部一体成型,水平部可绕竖直部弯折或者弯曲。
在本发明其他优选实施例中,T型结构1035的竖直部为弹性材料,例如弹簧、弹片等,水平部通过焊接或者热熔等工艺与竖直部固定连接,水平部也可绕竖直部弯折或者弯曲。
参照图5c,在本发明其他实施例中,在平行滑块模块103的内圈上还设置有限位卡块1036,限位卡块1036用于限位分析物检测装置104,以及防止分析物检测装置104发生旋转偏移,具体将在下文描述。
分析物检测装置
图6a为本发明实施例分析物检测装置104的结构示意图,图6b为本发明实施例分析物检测装置104的另一种结构示意图,图6c为本发明实施例分析物检测装置104固定在平行滑块模块103上的结构示意图,图6d为图6a的A-A’剖面结构示意图,图6e-图6h为导电胶条1043的不同使用方式示意图。
结合参照图3,在本发明实施例中,分析物检测装置104包括外壳1041、发射器(图中未示出)、传感器1042、电池(图中未示出)和设置在外壳1041内并与传感器电耦合的内部电路(图中未示出)。传感器1042用于检测用户体液分析物参数信息,通过内部电路将上述分析物参数信息传递至发射器,再由发射器发送至外界设备200。
在本发明优选实施例中,在分析物检测装置104安装到用户皮肤表面前,以第一频率f1向外界设备200发射信号,安装到用户皮肤表面后,以第二频率f2向外界设备200发射信号,第二频率f2大于第一频率f1。在本发明进一步优选实施例中,第一频率f1为0~12次/小时,第二频率f2为12~3600次/小时。
在本发明更优选实施例中,第一频率f1为0次/小时,即在分析物检测装置104安装到用户皮肤表面前,不向外界设备200发射信号,这样可以节省安装前分析物检测装置104的电量消耗。
在本发明实施例中,外壳1041包括上外壳体10411和下外壳体10413,上外壳体10411和下外壳体10413拼接形成内部空间。传感器1042包括体外部分(图中未示出)和体内部分(图中未示出),体外部分、发射器、电池和内部电路设置在内部空间中,体外部分与内部电路电耦合。体内部分上设置 有电极、膜层等结构,刺入用户皮下可以对分析物参数信息进行检测。体内部分刺入皮下时,需要有正确的角度,例如垂直于皮肤表面刺入。在分析物检测装置104寿命终止后,将其从用户皮肤表面取下,整体抛弃。
在本发明实施例中,下外壳体10413包括贯穿的第一通孔10414,对应的,在第一通孔10414的轴线上,上外壳体10411包括贯穿的第二通孔(图中未示出),体内部分穿过第一通孔10414到外壳外部,以便于刺入用户皮下。
在本发明其他实施例中,在体内部分的轴线上,上外壳体10411设置有自密封构件,自密封构件初始为密封状态,自身具备一定的弹性和柔软性,并且可以被辅助针1052刺穿,例如硅胶、丁睛橡胶等。在安装单元100中,辅助针1052穿刺自密封构件,自密封构件会紧密包围辅助针1052的侧壁,不会留存缝隙或者开口,在使用安装单元100后,辅助针1052退回,与分析物检测装置104分离后,自密封构件会恢复到密闭的状态,而不会留下开口或者通孔,可以对分析物检测装置104形成良好的密封。
在本发明其他实施例中,在下外壳体10413的体内部分的周围设置有自密封构件,体内部分穿过自密封构件,自密封构件包围体内部分,自密封构件可为下外壳体10413提供密封保护,防止在体内部分刺入皮下时,血液喷射、浸入到分析物检测装置104中,同时也能起到防水的效果。
在本发明其他实施例中,可以在上外壳体10411和下外壳体10413同时设置自密封构件,也可以在其中之一设置自密封构件。在其中之一设置自密封构件时,另一个外壳体上设置有供辅助针1052穿过的通孔。
在本发明实施例中,位于下外壳体10413上的自密封构件是不透光材料的,防止外界光线通过自密封构件照射到分析物检测装置104内部而触发光敏元件。
在本发明实施例中,位于上外壳体10411上的自密封构件可以是透光材料的,在分析物检测装置104被弹射后,外界光线可以穿过自密封构件照射到分析物检测装置104的内部,以触发光敏元件。
在本发明实施例中,上外壳体10411的侧边包括对应于T型结构卡扣10352的卡孔10412,这里“对应”是指卡孔10412的位置、数量与T型结构卡扣10352一致。在安装单元100中,上外壳体10411与近端面1034贴合,T型结构卡扣10352与卡孔10412形成卡扣连接,分析物检测装置104被固定在平行滑块模块103上。当T型结构的水平部绕竖直部弯折或者弯曲时,T型结构卡扣10352与卡孔10412的卡扣连接解除,分析物检测装置104与 平行滑块模块103分离。因此在安装单元100中,分析物检测装置104与平行滑块模块103为可释放连接。
在本发明实施例中,卡孔10412与T型结构卡扣10352相对应,使得分析物检测装置104固定在平行滑块模块103上时,还可以同时起到定位的作用。分析物检测装置104的外壳体为圆形,在出厂前将分析物检测装置104安装到平行滑块模块103上时,无法直接将第一通孔10414与辅助针1052对齐,而且即使在安装时将第一通孔10414与辅助针1052对齐后,在后续运输、使用过程中,分析物检测装置104仍可能相对于平行滑块模块103发生旋转偏移,导致体内部分1042脱离辅助针1052的包络,影响使用。因此可根据卡孔10412与T型结构卡扣10352的对应关系,一方面可以确定分析物检测装置104在平行滑块模块103上的放置位置,另一方面可以防止分析物检测装置相对于平行滑块模块103发生旋转偏移,提升了使用体验。
在本发明实施例中,上外壳体10411与下外壳体10413的圆周尺寸一致,从而在上外壳体10411和下外壳体10413的结合处形成平滑的连接面,减小了因误碰导致上外壳体10411和下外壳体10413分离的可能性,可以保证分析物检测装置104的正常使用。
在本发明实施例中,在上外壳体10411的外侧设置有围绕上外壳体10411的环形槽,T型结构卡扣10352可以嵌入到环形槽中,以实现对分析物检测装置104的卡扣固定。T型结构卡扣10352脱离环形槽后,分析物检测装置104即可与平行滑块模块103分离。
在本发明其他实施例中,环形槽还可被设置在下外壳体10413的外侧,或者设置在上外壳体10411和下外壳体10413的连接处外侧。
结合参照图6b和图6c,在本发明其他实施例中,上外壳体10411与下外壳体10413的圆周尺寸不一致,优选的,上外壳体10411的直径略大于下外壳体10413的直径,例如,上外壳体10411的直径比下外壳体10413的直径大0.05~5mm,这样,上外壳体10411相对于下外壳体10413形成阶梯结构10415。当分析物检测装置104放置在平行滑块模块103上时,上外壳体10411贴合近端面1034,T型结构卡扣10352与阶梯结构10415贴合,形成卡扣连接,T型结构卡扣10352通过阶梯结构10415将分析物检测装置104压合在平行滑块模块103的近端面1034上。
在本发明一些实施例中,阶梯结构10415可以是由上外壳体10411骤变至下外壳体10413的台阶结构(如图6a所示),当平行滑块模块位于远端时, 分析物检测装置104固定在平行滑块模块103上,T型结构卡扣10352接触上外壳体1411。但是在本发明实施例中,在分析物检测装置104安装至用户皮肤表面后,当用户在使用过程中,可能会触碰到台阶结构的外沿,导致上外壳体10411与下外壳体10413脱离,使得内部构件暴露,影响分析物检测装置104的使用可靠性。
针对上述台阶结构可能存在的问题,在本发明其他实施例中,阶梯结构10415还可以包括由上外壳体10411外沿连接至下外壳体10413外沿的倾斜过渡面,该倾斜过渡面可以是上外壳体10411的壳体延伸,也可以是下外壳体10413的壳体延伸,倾斜过渡面可以将上外壳体10411和下外壳体10413的外沿紧密连接起来,用户在使用过程中触碰到上外壳体10411和下外壳体10413的外沿时,不会导致上外壳体10411和下外壳体10413分离,提高了分析物检测装置的使用可靠性。当平行滑块模块位于远端时,分析物检测装置104固定在平行滑块模块103上,T型结构卡扣10352接触倾斜过渡面。
本领域技术人员可以理解的是,无论阶梯结构10415是台阶结构还是倾斜的过渡面,阶梯结构10415围绕在外壳1041外侧,为环形结构。
结合参照图5c,在本发明实施例中,通过阶梯结构10415与T型结构卡扣10352的配合可以使分析物检测装置104固定在平行滑块模块103上,但无法起到如前所述的定位作用,即无法防止分析物检测装置104发生旋转偏移,基于此,还需要在外壳1041上设置限位卡孔10416,对应的,在平行滑块模块103上设置有限位卡块1036,当分析物检测装置104放置在平行滑块模块103上时,限位卡块1036可以嵌入限位卡孔10416中,一方面可以使分析物检测装置104按照预定方向放置在平行滑块模块103上,另一方面可以防止分析物检测装置104发生旋转偏移,确保辅助针1052能穿过第一通孔10414或者自密封构件。
在本发明实施例中,限位卡块1036的数量至少为1个,本领域技术人员可以知晓的是,1个限位卡块1036以及1个对应的限位卡孔10416即能实现定位和防止旋转偏移的功能,但是可能会导致分析物检测装置104受力不均,因此可以优选地设置至少2个对应的限位卡块1036和限位卡孔10416,限位卡块1036和限位卡孔10416分别在平行滑块模块103和分析物检测装置104的圆周上均匀间隔分布。
在本发明优选实施例中,限位卡块1036与限位卡孔10416地数量均为2个,分别对称分布在平行滑块模块103和分析物检测装置104的圆周上。
在本发明实施例中,限位卡块1036设置在平行滑块模块103的内圈圆周上,限位卡孔10416设置在分析物检测装置104壳体的外圈圆周上。
在本发明其他实施例中,限位卡块1036设置在分析物检测装置104壳体的外圈圆周上,限位卡孔10416设置在平行滑块模块103的内圈圆周上。
参照图6d,图6显示的是分析物检测装置104的内部示意图。如前所述,分析物检测装置104内包含传感器1042的体内部分10421、导电胶条1042和内部电路1044,本领域技术人员可以理解的是,除了上述描述的构件外,分析物检测装置104还可以包含电池(图中未示出)、蜂鸣器(图中未示出)、LED灯(图中未示出)等构件。
在本发明实施例中,体内部分10421上设置有数个引脚,每个引脚通过设置在传感器1042的绝缘基底上的导线与体外部分10422的电极连接,用于接收来自于内部电路1044的电流,以及向内部电路1044传输包含分析物参数信息的检测电流。
在本发明一些实施例中,体内部分10421可以直接与内部电路1044上的电触点接触,但由于尺寸限制,体内部分10421上的引脚分布比较紧密,若直接与内部电路1044上的电触点接触,可能会导致某一些引脚接触到错误的电触点,从而导致短路或者电信号混乱。
参照图6e,在本发明一些实施例中,体内部分10421通过导电胶条1043与内部电路1044上的电触点接触,导电胶条1043由间隔分布的导电区和绝缘区构成,导电区和绝缘区分布在导电胶条1043表面,或者贯穿导电胶条1043。
在本发明一些实施例中,为了使体内部分10421与内部电路1044间形成良好的导电、绝缘连接,并且还要尽可能地利用分析物检测装置104的内部空间,可以对传感器1042、导电胶条1043和内部电路1044的相对位置和连接关系作一些调整和改进。
在本发明一些实施例中,传感器1042的体内部分10421可以相对于体外部分10422弯折或者弯曲,弯折或者弯曲传感器1042是为了更好地利用分析物检测装置104的内部空间,而不会影响其使用。
继续参照图6e,在本发明一些实施例中,导电胶条1043为长方体型,导电区和绝缘区沿其长度方向间隔分布,因此可以使用的导电接触面有4个,可以根据传感器1042和内部电路1044的实际放置位置和结构设计,灵活使用导电胶条1043的4个面。
在本发明其他实施例中,导电胶条1043还可以为圆柱体型、三棱柱形、圆球形、三棱锥形等规则形状,还可以是其他不规则形状。
继续参照图6d,并以图6d所示方向为参考。在本发明实施例中,内部电路1044放置在分析物检测装置104内部,导电胶条1043为长方体形,其上端面与内部电路1044的下端面接触,这样导电胶条1043还剩下左端面、右端面和下端面可供传感器1042的体外部分10421接触。在图6d中,体外部分10421与导电胶条1043的左端面接触,本领域技术人员可以知晓的是,体外部分10421还可以与导电胶条1043的下端面或者右端面接触,如图6g所示,同样可以有效实现传感器1042与内部电路1044间的电流传递。
为了简便理解内部电路1044、导电胶条1043和传感器1042间的电连接方式,以下仅围绕上述三个构件及连接方式进行说明。
参照图6f,在本发明一些实施例中,体外部分10421相对于体内部分10422弯折,体外部分10421与导电胶条1043的右端面接触,导电胶条1043的上端面与内部电路1044的下端面接触。
参照图6h,在本发明一些实施例中,斑马条1043的下端面与内部电路1044的上端面接触,体外部分10421与斑马条1043的右端面接触。在本发明另一些实施例中,体外部分10421相对于体内部分10422弯折或者弯曲,在这种结构下,体外部分10421可以与导电胶条1043的上端面接触,而不影响体内部分10422的位置与状态。
在本发明其他实施例中,分析物检测装置104不仅限于上述结构。在本发明另一些实施例中,发射器设置在外壳1041外,用户通过安装单元100将外壳1041安装到用户皮肤表面后,再将发射器安装到外壳1041上。
在本发明再一些实施例中,发射器与外壳1041分离时,电池内置于发射器。
在本发明再一些实施例中,发射器与外壳1041分离时,电池内置于外壳1041。
辅助针模块
图7a为本发明实施例辅助针模块的结构示意图。图7b为本发明实施例传感器弯曲示意图。图7c为本发明实施例安装前弹性垫套设在辅助针外侧的示意图。图7d为本发明实施例辅助针刺入皮下后弹性垫套设在辅助针外侧的示意图。图7e为本发明实施例辅助针缩回后弹性垫套设在传感器外侧的示意图。图7f为本发明实施例弹性垫为实心的结构示意图。图7g为本发明实施 例弹性垫为空心的结构示意图。图7h为本发明实施例弹性垫内嵌到分析物检测装置外壳的结构示意图。
参照图7a,在本发明实施例中,辅助针模块105包括辅助针固定结构1051和辅助针1052。在安装单元100中,辅助针固定结构1051位于远端,辅助针1052位于近端。
在本发明实施例中,辅助针固定结构1051包括辅助针滑块10511和辅助针固定块10512,辅助针滑块10511的直径或者宽度大于辅助针固定块10512的直径或者宽度,形成一个朝向近端的凸面10513。
在本发明实施例中,辅助针1052包括全包围针体10521和半包围针体10522,全包围针体10521位于辅助针固定块10512和半包围针体10522之间,并与辅助针固定块10512固定连接。半包围针体10522的中空结构可用于容纳传感器1042的体内部分,半包围针体10522刺入用户皮下时,可将体内部分一并刺入皮下,并且在针体缩回时,不影响体内部分在皮下的状态。
在本发明其他实施例中,辅助针1052仅包括半包围针体10522,即半包围针体10522与辅助针固定块10512固定连接,这样可以减少辅助针1052的用料,节省成本,但同时也减小了辅助针1052的刚性。
在安装单元100中,辅助针1052依次穿过第二通孔和第一通孔10414,从而贯穿分析物检测装置104,传感器1042的体内部分位于半包围针体10522中。
参考图7b,尽管在理想状态下,期望半包围针体10522能完全包络传感器的体内部分10422,但由于体内部分10422靠近辅助针1052的一侧上布置有电极(图中未示出),导致体内部分10422的基底会向远离辅助针1052的一侧弯曲,形成如图7b所示状态。另外,本发明实施例中的安装单元100中的各零部件尺寸较小,虽能减轻重量、便于用户使用,但在安装过程中,由于各零部件尺寸配合的不一致、公差预留等原因,例如限位槽1013和T型结构滑块10351间、滑块卡扣10321与辅助针滑块10511卡扣间的配合不稳定,导致辅助针1052出现微弱的摇摆,半包围针体10522与传感器的体内部分10422无法处于有效的平行状态,体内部分10422可能会摆脱半包围针体10522的包络。基于上述原因,体内部分10422无法随半包围针体10522有效的刺入皮下,降低了分析物检测装置104的检测可靠性。
参照图7c,为了解决上述问题,在本发明一些实施例中,在安装前,半包围针体10522外侧套设一个弹性垫108,半包围针体10522包络住传感器 1042的体内部分10422,弹性垫108可以将体内部分10422束缚在半包围针体10522内,可以防止体内部分10422弯曲的同时,还可以在安装过程中,辅助针1052发生摇摆时,防止体内部分10422摆脱到半包围针体10522外,使得体内部分1422能随半包围针体10522顺利刺入皮下,提高了分析物检测装置104的检测可靠性。
在本发明优选实施例中,弹性垫108靠近半包围针体10522的针尖一端,可以更好地约束体内部分10422,防止体内部分10422脱离半包围针体10522的包络,或者弯曲。
参照图7d,在本发明一些实施例中,安装单元100在实施安装动作时,半包围针体10522携带体内部分10422刺入皮下,弹性垫108由于皮肤的阻挡而保持静止,因此半包围针体10522在刺入皮下的过程中,弹性垫108相对于半包围针体10522向远端滑动,直至分析物检测装置104的下外壳体10413接触皮肤表面,并且压住弹性垫108。
参照图7e,在本发明一些实施例中,半包围针体10522携带体内部分10422刺入皮下到预定位置后缩回,留下体内部分10422保持在皮下以检测分析物参数信息。分析物检测装置104在胶布的作用下粘在皮肤表面,因此在半包围针体10522缩回时,弹性垫108被下外壳体10413阻挡而保持静止,弹性垫108相对于半包围针体10522向近端滑动,直至半包围针体10522脱离弹性垫108。弹性垫108被夹在下外壳体10413和皮肤表面之间,半包围针体10522完全缩回后,弹性垫108在自身弹性作用下收缩套设在体内部分10422外侧,压住并覆盖半包围针体10522刺入皮下造成的创口,可以防止血液从创口溢出而污染分析物检测装置104,同时还可以防止外界异物污染创口,提高创口愈合速度。
参照图7f,在本发明一些实施例中,弹性垫108可以是实心结构,半包围针体10522刺穿弹性垫108后,弹性垫108套设在半包围针体10522外侧。
结合参照图7c和7g,在本发明一些实施例中,弹性垫108可以是空心结构,弹性垫108的内径d’小于半包围针体10522的外径d,使得弹性垫108可以紧密套设在半包围针体10522外侧,以阻止体内部分10422脱离半包围针体10522的包络。在本发明优选实施例中,弹性垫108的内径d’还小于体内部分10422的外径,在半包围针体10522缩回后,弹性垫108可以收缩并紧密套设在体内部分10422的外侧,以压住并覆盖半包围针体10522刺入皮下造成的创口。
在本发明一些实施例中,弹性垫108的厚度为0.01~5mm,弹性垫108过厚会增加分析物检测装置104对皮肤表面的压力,产生不适感,弹性垫108过薄自身容易产生形变,对体内部分10422无法形成有效的约束。在本发明优选实施例中,弹性垫108的厚度为0.3mm。
参照图7h,在本发明一些实施例中,第一通孔10414内沉到下外壳体10413内部,在安装过程中,弹性垫108被皮肤表面抵住,直至下外壳体10413被推进到与皮肤表面接触,弹性垫108嵌入到第一通孔10414内,并与下外壳体10413平齐,这样弹性垫108不会对皮肤表面造成额外的挤压,降低了不适感。
在本发明一些实施例中,弹性垫108的材质为橡胶、硅胶或者乳胶中的一种,具备良好弹性的同时,能避免对创口造成污染。
触发模块
图8为本发明实施例触发模块的结构示意图。
在本发明实施例中,触发模块106上设置有至少两个与第一卡扣1012对应的固定卡扣1061。在安装单元100中,固定卡扣1061与第一卡扣1012接触,以阻止第一卡扣1012向壳体外侧弯曲或者弯折。固定卡扣1061与第一卡扣1012的接触可以是点接触、线接触或者面接触,当接触为面接触时,固定卡扣1061与第一卡扣1012接触面与水平面呈固定夹角,并汇聚在安装单元100的近端。固定卡扣1061的数量及位置与第一卡扣1012一致。
在本发明实施例中,触发模块106上还设置有至少两个卡耳1062,在安装单元100中,卡耳1062与卡槽1014卡扣配合,以固定触发模块106。卡耳1062的数量及位置与卡槽1014一致。结合参照图10a,在安装单元100使用前,卡耳1062位于第一卡槽位10141,此时,固定卡扣1061与第一卡扣1012接触。
在本发明实施例中,触发模块106还包括一个外圈1063,外圈1063将上述固定卡扣1061和卡耳1062连接成一个整体。在安装单元100中,外圈1063相对于卡耳1062靠近于近端,位于第一开口且凸出于第一开口,在使用安装单元100时,外圈1063贴合用户皮肤表面。
弹性模块
参照图3,弹性模块107包括第一弹性件1071和第二弹性件1072。
在本发明实施例中,第一弹性件1071位于平行滑块模块103和壳体101之间,即第一弹性件1071的一端位于平行滑块模块103的远端面,另一端位 于壳体101内,在安装单元100中,第一弹性件1071处于压缩状态,可提供弹力。
在本发明实施例中,第二弹性件1072位于平行滑块模块103和辅助针模块105之间,即第二弹性件1072的一端位于平行滑块模块103的凸台10322上,另一端位于辅助针模块105的凸面10513上,在安装单元100中,第二弹性件1072处于压缩状态,可提供弹力。
在本发明优选实施例中,第一弹性件1071或者第二弹性件1072为金属弹簧。
在本发明实施例中,第一弹性件1071的内圈直径大于圆形槽1032和辅助针滑块10511的外圈直径,在安装单元100中,第一弹性件1071包围在辅助针滑块10511和圆形槽1032外侧,可以充分利用安装单元100的内部空间。
在本发明实施例中,第二弹性件1072的外圈直径大于辅助针固定块10512的外径和凸台10322的内径,而小于辅助针滑块10511的外径和圆形槽1032的内径,因此第二弹性件1072的一端放置在圆形槽1032内,另一端包围在辅助针固定块10512外侧,可以充分利用安装单元100的内部空间。
安装单元使用方法
图9为本发明实施例安装单元的俯视图。
图10a为图9的A剖面结构示意图;图10b为图9的B剖面结构示意图;图10c为图9的C剖面结构示意图;图11为第一卡扣受力弯折示意图。
结合参照图10a和图10b,在本发明实施例中,卡槽1014设置有两个卡槽位,第一卡槽位10141和第二卡槽位10142。在安装单元100使用前,触发模块106通过卡耳1062与第一卡槽位10141的卡扣配合固定在壳体101上,此时,固定卡扣1061与第一卡扣1012接触,阻止第一卡扣1012向壳体101外侧弯曲或者弯折,固定卡扣1061、第一卡扣1012和第二卡扣1033位于同一水平线上。在本发明优选实施例中,由壳体101内向外,依次为第二卡扣1033、第一卡扣1012和固定卡扣1061。
在本发明实施例中,固定卡扣1061与第一卡扣1012的接触为点接触、线接触或者面接触中的一种,当上述接触为面接触时,接触面的延长线m1汇聚在近端,这种结构设计可以使得固定卡扣1061相对于第一卡扣1012向远端运动。
在本发明优选实施例中,第二卡扣1033与第一卡扣1012的耦合面为平面,该平面与水平面呈固定夹角,其延长端m2汇聚在近端。
结合参照图11,这种结构设计可以使得第二卡扣1033相对于第一卡扣1012向近端运动时,将第一卡扣1012向壳体101外侧推开,从而解除第一卡扣1012与第二卡扣1033间的耦合状态。
在本发明实施例中,第一弹性件1071处于压缩状态,具备弹性势能,其自身弹力给予平行模块滑块103向近端的推力Fr,该推力Fr通过第二卡扣1033和第一卡扣1012的耦合面作用在第一卡扣1012上,并产生垂直于第一卡扣1012平面的分力Fsin,该分力Fsin可将第一卡扣1012向壳体101外侧推动而弯曲或者弯折,从而解除第一卡扣1012与第二卡扣1033的耦合状态。
在本发明实施例中,使用安装单元100时,旋转外盖体1021,使立柱10211折断,保护盖102与壳体101分离,将安装单元100的近端靠近用户皮肤,直到触发模块106的外圈1063贴合在皮肤表面,用户在远端按压壳体101,壳体101朝向皮肤运动,触发模块106保持不动,因此触发模块106相对于壳体101向远端运动,卡耳1062脱离第一卡槽位10141,进入到第二卡槽位10142,同时固定卡扣1061不再与第一卡扣1012接触,第一卡扣1012因分力Fsin向壳体101外侧弯曲或者弯折,第一卡扣1012与第二卡扣1033的耦合状态解除。
在本发明实施例中,解除耦合状态后,平行滑块模块103在第一弹性件1071的弹力推动下继续向近端运动,同时带动分析物检测装置104向近端运动,直至分析物检测装置104的下外壳体10413与用户皮肤表面接触。
参照图10c,在本发明实施例中,滑块卡扣10321与辅助针滑块10511卡扣连接,第一弹性件1071推动平行滑块模块103向近端运动时,带动辅助针模块105一起向近端运动。
在本发明实施例中,滑块卡扣10321与辅助针滑块10511的连接处为平面或者近似平面,该平面与水平面呈固定夹角,其延长线m3汇聚在远端。第二弹性件1072对辅助针滑块10511的推力朝向远端,因此辅助针滑块10511可将滑块卡扣10321向壳体101外侧推开,而使得滑块卡扣10321发生弯曲或者弯折,其原理等同于图11。
在本发明实施例中,在安装单元100中,辅助针限位槽1015的侧壁阻止滑块卡扣10321发生弯折或者弯曲,滑块卡扣10321与辅助针滑块10511卡扣连接状态不发生变化。随着平行滑块模块103和辅助针模块105向近端运动,直到滑块卡扣10321脱离辅助针限位槽1015,辅助针限位槽1015的内壁不再阻止滑块卡扣10321发生弯折或者弯曲,第二弹性件1072向远端推动 辅助针滑块10511,同时辅助针滑块10511推动滑块卡扣10321向外侧弯折或者弯曲,滑块卡扣10321与辅助针滑块10511的卡扣连接解除,第二弹性件1072继续推动辅助针滑块10511向远端运动,最终辅助针模块105回到初始位置,辅助针1052缩回到壳体101内,防止辅助针1052暴露在壳体101外面,避免造成不必要的伤害。
在本发明实施例中,滑块卡扣10321脱离辅助针限位槽1015时,辅助针的半包围针体10522刺入用户皮下。
在本发明实施例中,在安装单元100中,T型结构滑块10351位于限位槽1013内,限位槽1013通过T型结构滑块10351对平行滑块模块103的位置、方向进行限制,以保证平行滑块模块103与其滑动方向保持垂直,从而使设置在平行滑块模块103前端的分析物检测装置104与其运动方向保持垂直,同时辅助针1052与其运动方向保持平行,这样可以使辅助针1052及其包络的传感器体内部分以垂直角度刺入用户皮下,减轻用户的疼痛感。
在本发明实施例中,在平行滑块模块103向近端滑动过程中,T型结构滑块10351在限位槽1013内滑动,直至接触到触发模块106的外圈1063,在第一弹性件1071的推动下,平行滑块模块103继续向近端运动,而外圈1063阻挡T型结构滑块10351继续向近端运动,因此T型结构滑块10351绕竖直部弯曲或者弯折,T型结构卡扣10352与卡孔10412或者环形结构的卡扣连接解除,分析物检测装置104脱离平行滑块模块103,从而可以安装在用户皮肤表面。
在本发明实施例中,T型结构滑块10351与外圈1063接触时,平行滑块模块103所处的位置为预定位置,此时,分析物检测装置的下外壳体10413与用户皮肤表面接触。
在本发明实施例中,辅助针1052依次穿过第二通孔和第一通孔10414,而贯穿分析物检测装置104,同时,辅助针的半包围针体10522包络传感器1042。在平行滑块模块103和辅助针模块105向近端运动过程中,半包围针体10522携带传感器1042刺入皮下,辅助针1052缩回后,传感器1042体内部分保持在皮下,针体缩回时不影响传感器1042体内部分所处状态。
在本发明实施例中,实施安装动作时,需要用户在远端按压壳体101,向壳体101施加向近端的力F,触发模块106的外圈1063接触用户皮肤表面,用户皮肤给予外圈1063与力F反向的力F’,从而实现触发模块106与壳体101的相对运动。在实际安装过程中,触发模块106的绝对位置保持不变, 壳体101向近端运动。
在实施安装动作之前,为防止触发模块106相对于壳体101发生运动,在壳体101的近端安装保护盖102,保护盖102包围在触发模块的外圈1063外侧,可以防止因误碰外圈1063而在不正确的位置实施安装动作,起到防触发的作用。
内盖体1023的远端面10232与分析物检测装置104接触,同时辅助针1052和传感器1042伸入到内盖体凹槽10233,可以起到密封的作用,防止外界灰尘、颗粒等脏污与针体和传感器接触,造成污染。
在本发明实施例中,分析物检测装置的下外壳体10413上还设置有胶布(图中未示出),用于将分析物检测装置104固定在用户皮肤表面。
综上所述,本发明实施例公开了一种分析物检测装置的安装单元,平行滑块模块的卡扣结构与分析物检测装置的环形结构接触,使平行滑块模块与分析物检测装置间形成可释放连接,在平行滑块模块位于远端时,分析物检测装置固定在平行滑块模块上,在平行滑块模块滑向近端后,分析物检测装置自动与平行滑块模块分离,安装单元结构简单,可靠性高,使用方便。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (27)

  1. 一种分析物检测装置的安装单元,其特征在于,包括:
    安装单元,所述安装单元至少包括壳体、辅助针和平行滑块模块,在使用所述安装单元时,所述辅助针和所述平行滑块模块在壳体内从远端滑向近端,并在近端将所述分析物检测装置安装在用户皮肤表面,以获取体内分析物参数信息;
    其中,在所述平行滑块模块位于所述远端时,所述平行滑块模块的卡扣结构与所述分析物检测装置的环形结构接触,使所述分析物检测装置固定在所述平行滑块模块上,并在所述平行滑块模块滑向所述近端后,所述卡扣结构与所述环形结构解除接触,所述分析物检测装置与所述平行滑块模块分离。
  2. 根据权利要求1所述的分析物检测装置的安装单元,其特征在于,所述分析物检测装置包括上外壳体和下外壳体。
  3. 根据权利要求2所述的分析物检测装置的安装单元,其特征在于,所述环形结构环绕在所述上外壳体和/或所述下外壳体外侧。
  4. 根据权利要求3所述的分析物检测装置的安装单元,其特征在于,所述环形结构环绕在所述上外壳体和所述下外壳体的连接处。
  5. 根据权利要求2所述的分析物检测装置的安装单元,其特征在于,所述上外壳体和所述下外壳体的圆周尺寸不同。
  6. 根据权利要求5所述的分析物检测装置的安装单元,其特征在于,所述上外壳体的圆周尺寸大于所述下外壳体,所述卡扣结构与所述上外壳体接触。
  7. 根据权利要求6所述的分析物检测装置的安装单元,其特征在于,所述上外壳体的圆周尺寸比所述下外壳体的圆周尺寸大0.05~5mm。
  8. 根据权利要求5所述的分析物检测装置的安装单元,其特征在于,还包括连接所述上外壳体外沿和所述下外壳体外沿的倾斜过渡面,所述卡扣结构与所述倾斜过渡面接触。
  9. 根据权利要求3所述的分析物检测装置的安装单元,其特征在于,所述环形结构为环形槽,所述卡扣结构与所述环形槽接触。
  10. 根据权利要求1~9任一所述的分析物检测装置的安装单元,其特征在于,所述卡扣结构为T型结构卡扣。
  11. 根据权利要求10所述的分析物检测装置的安装单元,其特征在于,所述T型结构卡扣数量为3个,均匀间隔分布在所述平行滑块模块上。
  12. 根据权利要求2所述的分析物检测装置的安装单元,其特征在于,还包括至少1组具有对应关系的限位卡块和限位卡孔。
  13. 根据权利要求12所述的分析物检测装置的安装单元,其特征在于,所述限位卡块位于所述平行滑块模块的内圈圆周上,所述限位卡孔位于所述分析物检测装置的外圈圆周上。
  14. 根据权利要求12所述的分析物检测装置的安装单元,其特征在于,所述限位卡块位于所述分析物检测装置的外圈圆周上,所述限位卡孔位于所述平行滑块模块的内圈圆周上。
  15. 根据权利要求12所述的分析物检测装置的安装单元,其特征在于,还包括位于所述外壳的通孔。
  16. 根据权利要求15所述的分析物检测装置的安装单元,其特征在于,所述通孔包括位于所述下外壳体的第一通孔和位于所述上外壳体的第二通孔,所述第一通孔和所述第二通孔同轴。
  17. 根据权利要求16所述的分析物检测装置的安装单元,其特征在于,在所述限位卡块嵌入到所述限位卡孔中时,所述辅助针穿过所述第一通孔和所述第二通孔。
  18. 根据权利要求12所述的分析物检测装置的安装单元,其特征在于,还包括位于所述外壳的自密封构件。
  19. 根据权利要求18所述的分析物检测装置的安装单元,其特征在于,在所述限位卡块嵌入到所述限位卡孔中时,所述辅助针穿过所述自密封构件。
  20. 根据权利要求1所述的分析物检测装置的安装单元,其特征在于,所述分析物检测装置还包括传感器、发射器、内部电路和电池,所述传感器包括体内部分和体外部分,所述体外部分、所述发射器、所述内部电路和所述电池位于所述壳体内。
  21. 根据权利要求20所述的分析物检测装置的安装单元,其特征在于,所述体内部分相对于所述体外部分弯折。
  22. 根据权利要求20所述的分析物检测装置的安装单元,其特征在于,所述体外部分与所述内部电路电耦合。
  23. 根据权利要求20所述的分析物检测装置的安装单元,其特征在于,还包括导电胶条,所述体外部分通过所述导电胶条与所述内部电路电耦合。
  24. 根据权利要求23所述的分析物检测装置的安装单元,其特征在于,所述导电胶条包括间隔分布的导电区和绝缘区。
  25. 根据权利要求24所述的分析物检测装置的安装单元,其特征在于,所述导电胶条为长方体型结构。
  26. 根据权利要求25所述的分析物检测装置的安装单元,其特征在于,所述体内部分与所述内部电路通过所述导电胶条的至少一个结构面实现电耦合。
  27. 根据权利要求1所述的分析物检测装置的安装单元,其特征在于,还包括弹性模块和触发模块,在使用所述安装单元前,所述弹性模块处于压缩状态,所述触发模块用于防止所述弹性模块释放弹力。
PCT/CN2023/092239 2021-09-27 2023-05-05 分析物传感器固定装置 WO2024066357A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/120854 WO2023044887A1 (en) 2021-09-27 2021-09-27 Installation unit of analyte detection device and use method
PCT/CN2022/121280 WO2023046154A1 (zh) 2021-09-27 2022-09-26 分析物传感器固定装置
CNPCT/CN2022/121280 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024066357A1 true WO2024066357A1 (zh) 2024-04-04

Family

ID=85719878

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/120854 WO2023044887A1 (en) 2021-09-27 2021-09-27 Installation unit of analyte detection device and use method
PCT/CN2022/121280 WO2023046154A1 (zh) 2021-09-27 2022-09-26 分析物传感器固定装置
PCT/CN2023/092239 WO2024066357A1 (zh) 2021-09-27 2023-05-05 分析物传感器固定装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/120854 WO2023044887A1 (en) 2021-09-27 2021-09-27 Installation unit of analyte detection device and use method
PCT/CN2022/121280 WO2023046154A1 (zh) 2021-09-27 2022-09-26 分析物传感器固定装置

Country Status (2)

Country Link
CN (1) CN117897091A (zh)
WO (3) WO2023044887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117122304B (zh) * 2023-08-11 2024-03-26 北京劲松口腔医院投资管理有限公司 一种口腔测试仪

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514816A (ja) * 2008-02-27 2011-05-12 モン4ディー リミテッド モジュールの検体モニタのための装置、システム及び方法
US20150173661A1 (en) * 2012-07-27 2015-06-25 Abbott Diabetes Care, Inc. Medical Device Applicators
CN215959882U (zh) * 2021-09-27 2022-03-08 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216257100U (zh) * 2021-09-27 2022-04-12 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216495287U (zh) * 2021-09-27 2022-05-13 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216652295U (zh) * 2021-09-27 2022-06-03 上海移宇科技股份有限公司 分析物检测装置安装单元
US20220225899A1 (en) * 2019-05-14 2022-07-21 Sanvita Medical Corporation Subcutaneous Analyte Sensor Applicator and Continuous Monitoring System
CN115868971A (zh) * 2021-09-27 2023-03-31 上海移宇科技股份有限公司 分析物检测装置安装单元及其使用方法
CN115868973A (zh) * 2021-09-27 2023-03-31 上海移宇科技股份有限公司 分析物检测装置安装单元
CN115919301A (zh) * 2021-09-27 2023-04-07 上海移宇科技股份有限公司 分析物检测装置安装单元

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381184B2 (en) * 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
CA2554232C (en) * 2003-12-22 2013-07-09 Paul Hadvary Dermallly affixed sensor device
US20090221893A1 (en) * 2008-02-29 2009-09-03 Path Scientific, Llc Unitized Painfree Blood Glucose Measuring Device
US20100198034A1 (en) * 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
CN105193421B (zh) * 2014-06-13 2020-05-05 尔湾投资控股有限公司 一种实时动态葡萄糖单软针传感器及其专用助针器
DE202016009211U1 (de) * 2015-12-30 2024-04-08 Dexcom, Inc. Systeme für transkutane Analytsensoren
JP6963600B2 (ja) * 2017-03-21 2021-11-10 テルモ株式会社 センサ、計測装置、及びセンサの製造方法
HUE057712T2 (hu) * 2017-05-23 2022-05-28 Hoffmann La Roche Érzékelõrendszer és eljárás annak elõállítására
TWI732260B (zh) * 2019-08-02 2021-07-01 華廣生技股份有限公司 生物感測植入裝置及其植抽針單元
WO2021164182A1 (en) * 2020-02-20 2021-08-26 Medtrum Technologies Inc. A mounting unit of an analyte detection device and a mounting method thereof
CN213217017U (zh) * 2020-08-03 2021-05-18 深圳中兴网信科技有限公司 传感器组件和血糖检测仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514816A (ja) * 2008-02-27 2011-05-12 モン4ディー リミテッド モジュールの検体モニタのための装置、システム及び方法
US20150173661A1 (en) * 2012-07-27 2015-06-25 Abbott Diabetes Care, Inc. Medical Device Applicators
US20220225899A1 (en) * 2019-05-14 2022-07-21 Sanvita Medical Corporation Subcutaneous Analyte Sensor Applicator and Continuous Monitoring System
CN215959882U (zh) * 2021-09-27 2022-03-08 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216257100U (zh) * 2021-09-27 2022-04-12 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216495287U (zh) * 2021-09-27 2022-05-13 上海移宇科技股份有限公司 分析物检测装置安装单元
CN216652295U (zh) * 2021-09-27 2022-06-03 上海移宇科技股份有限公司 分析物检测装置安装单元
CN115868971A (zh) * 2021-09-27 2023-03-31 上海移宇科技股份有限公司 分析物检测装置安装单元及其使用方法
CN115868973A (zh) * 2021-09-27 2023-03-31 上海移宇科技股份有限公司 分析物检测装置安装单元
CN115919301A (zh) * 2021-09-27 2023-04-07 上海移宇科技股份有限公司 分析物检测装置安装单元

Also Published As

Publication number Publication date
WO2023046154A1 (zh) 2023-03-30
WO2023044887A1 (en) 2023-03-30
CN117897091A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2023273062A1 (zh) 植入器及植入方法
JP4065575B2 (ja) 経皮性センサのための挿入セット
WO2024066357A1 (zh) 分析物传感器固定装置
WO2023273083A1 (zh) 分离式传感器电极固定结构
CN216652295U (zh) 分析物检测装置安装单元
CN216495287U (zh) 分析物检测装置安装单元
CN215959882U (zh) 分析物检测装置安装单元
CN216257100U (zh) 分析物检测装置安装单元
US20230248278A1 (en) Installation unit of analyte detection device
US20240066211A1 (en) Skin patch drug infusion device
CN114712612A (zh) 集成型贴片式人工胰腺
CN110664415A (zh) 一种敷贴装置
WO2023092912A1 (zh) 体表附接单元
CN115868973A (zh) 分析物检测装置安装单元
CN115919301A (zh) 分析物检测装置安装单元
CN115868971A (zh) 分析物检测装置安装单元及其使用方法
WO2023092913A1 (zh) 经皮分析物传感器系统
KR20230002012A (ko) 경피성 센서용 어플리케이터 및 어플리케이터 조립체
WO2023044890A1 (en) Installation unit of analyte detection device
WO2023044893A1 (en) Installation unit of analyte detection device
WO2023044888A1 (en) Installation unit of analyte detection device
WO2023045215A1 (en) Installation unit of analyte detection device
CN211155999U (zh) 一种自动按压的棉签
CN218247218U (zh) 分析物检测装置安装单元
CN115868970A (zh) 分析物检测装置安装单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869612

Country of ref document: EP

Kind code of ref document: A1