WO2024066318A1 - 基于内嵌型均热板的动力电池模组散热装置 - Google Patents

基于内嵌型均热板的动力电池模组散热装置 Download PDF

Info

Publication number
WO2024066318A1
WO2024066318A1 PCT/CN2023/090420 CN2023090420W WO2024066318A1 WO 2024066318 A1 WO2024066318 A1 WO 2024066318A1 CN 2023090420 W CN2023090420 W CN 2023090420W WO 2024066318 A1 WO2024066318 A1 WO 2024066318A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
battery module
heat
heat spreader
shaped
Prior art date
Application number
PCT/CN2023/090420
Other languages
English (en)
French (fr)
Inventor
尹树彬
汤勇
黎洪铭
张仕伟
赵威
黄皓熠
黄梓滨
余小媚
Original Assignee
广东畅能达科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东畅能达科技发展有限公司 filed Critical 广东畅能达科技发展有限公司
Publication of WO2024066318A1 publication Critical patent/WO2024066318A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of battery heat dissipation, and in particular to a power battery module heat dissipation device based on an embedded heat spreader.
  • the core component of new energy vehicles is the automotive power battery module, which is the energy source of new energy vehicles. It directly determines the vehicle's cruising range.
  • automotive power battery module which is the energy source of new energy vehicles. It directly determines the vehicle's cruising range.
  • new energy power battery modules There are many types of new energy power battery modules. Among them, ternary lithium power battery modules and lithium iron phosphate power battery modules are dominant in the fields of passenger cars and commercial vehicles. At present, passenger car power battery modules are mainly ternary lithium power battery modules, and commercial vehicle power battery modules are mainly lithium iron phosphate power battery modules.
  • One of the bottlenecks hindering the development of power lithium-ion power battery modules is its safety performance.
  • the heat of the battery module is mainly generated at the battery ear position, which makes the temperature near the battery ear higher than other areas of the battery, forming a local high temperature zone.
  • the SEI film in the power battery module begins to decompose, directly causing anode decomposition and electrolyte reaction, thus forming thermal runaway.
  • the technical problem to be solved by the present invention is to propose a power battery module heat dissipation device based on an embedded heat spreader, which can improve the heat dissipation efficiency of the power battery module, evenly distribute heat, and prevent thermal runaway accidents.
  • the present invention adopts the following technical solutions:
  • the present invention provides a power battery module heat dissipation device based on an embedded type heat spreader, comprising a heat spreader, a liquid cooling plate and a plurality of power battery modules, the power battery modules are arranged in an array, an embedded area is provided between adjacent power battery modules, the liquid cooling plate is located on one side of the power battery module, the heat spreader is provided with an evaporation end for absorbing heat and a condensation end for releasing heat, the evaporation end is located in the embedded area, the evaporation end is attached to the power battery module, and the condensation end is attached to the liquid cooling plate, the heat spreader transfers the heat of the power battery module to the liquid cooling plate and disperses the heat of the power battery module to avoid heat concentration.
  • the heat spreader in the above scheme can be implemented in different shapes, such as U-shaped, L-shaped, S-shaped and a variety of different combined applications.
  • the heat spreader is a U-shaped heat spreader, which is sleeved on the power battery module, the left and right ends of the U-shaped heat spreader are evaporation ends that absorb heat, and the bottom end of the U-shaped heat spreader is a condensation end that releases heat, the evaporation end is attached to the power battery module, and the condensation end is attached to the liquid cooling plate.
  • the U-shaped heat spreader includes a left U-shaped heat spreader and a right U-shaped heat spreader, the left U-shaped heat spreader and the right U-shaped heat spreader are respectively sleeved on the left and right sides of the power battery module, and the liquid cooling plate is symmetrically arranged on the left and right sides of the power battery module.
  • the preferred technical solution of the present invention is that a plurality of power battery modules are arranged front and back side by side to form a power battery pack, and a U-shaped heat spreader is sleeved on the power battery pack.
  • the heat spreader is an L-shaped heat spreader
  • the L-shaped heat spreader and the power battery module are matched at right angles
  • the vertical end of the L-shaped heat spreader is the evaporation end that absorbs heat
  • the bottom end is the condensation end that releases heat
  • the evaporation end is attached to the power battery module
  • the condensation end is attached to the liquid cooling plate.
  • the right-angle match in the above technical solution means that the right-angle side of the power battery module is tightly attached to the inside of the right-angle side of the L-shaped heat spreader to ensure that the L-shaped heat spreader can fully wrap the power battery module.
  • the vertical end and the bottom end are only distinguished for the convenience of explaining the evaporation end and the condensation end of the L-shaped heat spreader. In actual applications, the two can be interchanged.
  • the L-shaped heat spreader includes a left L-shaped heat spreader and a right L-shaped heat spreader, the left L-shaped heat spreader and the right L-shaped heat spreader are respectively matched with the left and right sides of the power battery module at right angles, and the liquid cooling plate is symmetrically arranged on the left and right sides of the power battery module.
  • the preferred technical solution of the present invention is that a plurality of power battery modules are arranged front and back side by side to form a power battery pack, and the L-shaped heat spreader and the power battery pack are matched at right angles.
  • a preferred technical solution of the present invention is that the contact surface area of the evaporation end and the power battery module is the same, and the contact surface area of the condensation end and the liquid cooling plate is the same.
  • the preferred technical solution of the present invention is that a heat dissipation medium is arranged in the heat spreader, and the boiling point of the heat dissipation medium is 60° C.-100° C., such as water, ethanol, acetone, etc.
  • a heat-conducting layer is provided between the evaporation end and the power battery module and between the condensation end and the liquid cooling plate, and the heat-conducting layer may be a heat-conducting mud or a heat-conducting glue.
  • the present invention proposes a power battery module heat dissipation device based on an embedded heat spreader, in which a heat spreader is embedded between power battery modules arranged in an array, and the evaporation end of the heat spreader is in contact with the power battery module to absorb the generated heat, while the condensation end of the heat spreader is in contact with the liquid cooling plate to transfer the absorbed heat.
  • the design structure is simple, the assembly requirements are not high, and it is easy to process. It is particularly suitable for applications that require heat dissipation of multiple groups of power battery modules, and the structure of the heat spreader has various forms.
  • the heat spreader, the power battery module, and the water cooling plate are in close contact with each other, the heat dissipation efficiency is greatly improved, so that the power battery module can still achieve the purpose of rapid heat dissipation in a high-power working environment, and the heat is evenly distributed, thereby preventing thermal runaway accidents.
  • FIG1 is a perspective view of a power battery module heat dissipation device based on an embedded heat spreader according to Embodiment 1;
  • FIG2 is a three-dimensional view of a U-shaped vapor chamber of Embodiment 1;
  • FIG3 is a perspective view of a power battery module heat dissipation device based on an embedded heat spreader according to a second embodiment
  • FIG4 is a top view of a power battery module heat dissipation device based on an embedded heat spreader according to a second embodiment
  • FIG5 is a perspective view of a U-shaped vapor chamber according to the second embodiment
  • FIG6 is a three-dimensional view of a power battery module heat dissipation device based on an embedded heat spreader according to a third embodiment
  • FIG. 7 is a top view of a power battery module heat dissipation device based on an embedded heat spreader according to a third embodiment.
  • FIG8 is a three-dimensional view of a power battery module heat dissipation device based on an embedded heat spreader according to a fifth embodiment
  • FIG9 is a right side view of a power battery module heat dissipation device based on an embedded heat spreader according to a fifth embodiment
  • FIG10 is a perspective view of an L-shaped vapor chamber of Embodiment 5.
  • FIG11 is a perspective view of a power battery module heat dissipation device based on an embedded heat spreader according to a sixth embodiment
  • FIG12 is a top view of a power battery module heat dissipation device based on an embedded heat spreader according to a sixth embodiment
  • FIG. 13 is a three-dimensional view of a heat dissipation device for a power battery module based on an embedded heat spreader according to Embodiment 7. picture;
  • FIG. 14 is a top view of a power battery module heat dissipation device based on an embedded heat spreader according to a seventh embodiment.
  • 1-U-shaped heat sink 11-left U-shaped heat sink; 12-right U-shaped heat sink; 2-liquid cooling plate; 21- Left liquid cooling plate; 22-right liquid cooling plate; 3-power battery module; 4-evaporation end; 5-condensation end; 6-L-type heat spreader; 61-left L-type heat spreader; 62-right L-type heat spreader.
  • a power battery module heat dissipation device based on an embedded heat spreader comprising a U-shaped heat spreader 1, a liquid cooling plate 2 and a power battery module 3, wherein the liquid cooling plate 2 is located on one side of the power battery module 3, the U-shaped heat spreader 1 is sleeved on the power battery module 3, the left and right ends of the U-shaped heat spreader 1 are evaporation ends 4 for absorbing heat, the bottom end of the U-shaped heat spreader 1 is a condensation end 5 for releasing heat, the evaporation end 4 is tightly fitted to the front and rear sides of the power battery module 3, and the condensation end 5 is tightly fitted to the liquid cooling plate 2.
  • the contact surface area of the evaporation end 4 and the power battery module 3 is the same, and the contact surface area of the condensation end 5 and the liquid cooling plate 2 is the same.
  • each power battery module 3 is provided with a corresponding U-shaped heat spreader 1, and the directions of the power battery modules 3 are the same.
  • the number of liquid cooling plates 2 is one, and the condensing ends of the U-shaped heat spreaders 1 are in close contact with the liquid cooling plates 2.
  • the outer shell material of the U-shaped heat spreader 1 is copper or aluminum.
  • the outer shell material of the U-shaped heat spreader 1 is copper.
  • a heat sink is provided inside the U-shaped heat spreader 1.
  • the heat sink is deionized water with a resistivity of 18.2 M ⁇ *cm. After vacuum treatment, the internal vacuum degree is 7 Pa. The heat sink is condensed. Finally, it returns to the evaporation end through the capillary action of the liquid absorption core for the second stage of heat transfer, realizing a thermal cycle inside the system.
  • the U-shaped heat spreader includes a left U-shaped heat spreader 11 and a right U-shaped heat spreader 12, and the left U-shaped heat spreader 11 and the right U-shaped heat spreader 12 are respectively sleeved on the left and right sides of the power battery module 3, and the evaporation end 4 thereof is in close contact with the front and rear sides of the power battery module 3, and the liquid cooling plate 2 is symmetrically arranged on the left and right sides of the power battery module 3.
  • six power battery modules 3 are provided in a single row, six left U-shaped heat spreaders 11 and six right U-shaped heat spreaders 12 are provided respectively and are sleeved on the left and right sides of each power battery module 3, one left liquid cooling plate 21 and one right liquid cooling plate 22 are provided respectively, the condensation end 5 of the left U-shaped heat spreader 11 is attached to one side of the left liquid cooling plate 21, and the condensation end 5 of the right U-shaped heat spreader 12 is attached to one side of the right liquid cooling plate 22.
  • the structural advantage of this embodiment is that since the area of the condensation end is increased, the heat dissipation efficiency of the power battery module heat dissipation device can be further improved.
  • the difference between this embodiment and the second embodiment is that every two power battery modules 3 are arranged side by side to form a power battery pack, and the U-shaped heat spreader 1 is sleeved on the power battery pack.
  • the structure of the U-shaped heat spreader 1 is similar to that of the second embodiment, and the only difference is the size.
  • six power battery modules 3 are arranged in parallel front and back to form a power battery group, forming three groups of power battery groups.
  • Three left U-shaped heat spreaders 11 and three right U-shaped heat spreaders 12 are respectively provided and are sleeved on the left and right sides of each power battery module 3.
  • One left liquid cooling plate 21 and one right liquid cooling plate 22 are respectively provided.
  • the condensation end 5 of the left U-shaped heat spreader 11 is attached to one side of the left liquid cooling plate 21, and the condensation end 5 of the right U-shaped heat spreader 12 is attached to one side of the right liquid cooling plate 22.
  • the structure of the third embodiment has fewer bends in the U-shaped heat spreader, and the corresponding contact area between the condensation end and the liquid cooling plate is larger, which can improve the cooling efficiency.
  • this embodiment allows the condensing end of each U-shaped heat sink to contact the bottom surfaces of two power batteries at the same time, saving materials, space and cost compared to the above embodiment.
  • the difference between this embodiment and the third embodiment is that a heat-conducting layer is provided between the evaporation end and the power battery module and between the condensation end and the liquid cooling plate.
  • the gap at the bending position of the U-shaped heat spreader is filled with a heat-conducting layer, which can further improve the heat exchange efficiency.
  • the material of the heat-conducting layer is heat-conducting glue.
  • a power battery module heat dissipation device based on an embedded heat spreader including an L-shaped heat spreader 6, a liquid cooling plate 2 and a power battery module 3.
  • the liquid cooling plate 2 is located on one side of the power battery module 3, and the L-shaped heat spreader 6 and the power battery module 3 are matched at right angles.
  • the vertical end of the L-shaped heat spreader 6 is an evaporation end 4 that absorbs heat
  • the bottom end of the L-shaped heat spreader 6 is a condensation end 5 that releases heat.
  • the evaporation end 4 and the power battery module 3 are tightly fitted, and the condensation end 5 and the liquid cooling plate 2 are tightly fitted.
  • the contact surface area of the evaporation end 4 and the power battery module 3 is the same, and the contact surface area of the condensation end 5 and the liquid cooling plate 2 is the same.
  • each power battery module 3 is provided with a corresponding L-shaped heat spreader 6.
  • the L-shaped heat spreader 6 and the corresponding power battery module 3 are matched at right angles, and the right-angled directions of the six L-shaped heat spreaders 6 are the same.
  • the number of liquid cooling plates 2 is one, and the condensing ends of the L-shaped heat spreaders 6 are in close contact with the liquid cooling plate 2.
  • the outer shell material of the L-shaped heat spreader 6 is copper or aluminum.
  • the outer shell material of the L-shaped heat spreader 6 is aluminum.
  • a heat sink is provided inside the L-shaped heat spreader 6, and the heat sink is ethanol. After vacuum treatment, the internal vacuum degree is 7 Pa. After condensation, the heat sink returns to the evaporation end through the capillary action of the liquid wick for the second stage of heat transfer, realizing a thermal cycle inside the system.
  • the difference between this embodiment and the fifth embodiment is that the L-shaped heat sink 6 includes The left L-shaped vapor chamber 61 and the right L-shaped vapor chamber 62 are respectively matched with the left and right sides of the power battery module 3 at right angles, and the evaporation end 4 is in close contact with the power battery module 3.
  • the liquid cooling plate 2 is symmetrically arranged on the left and right sides of the power battery module 3.
  • the structure of the L-shaped vapor chamber 6 is similar to that of the fifth embodiment, with only a difference in size.
  • six power battery modules 3 are provided in a single row, six left L-shaped heat spreaders 61 and six right L-shaped heat spreaders 62 are provided respectively and are matched at right angles to the left and right sides of each power battery module 3, one left liquid cooling plate 21 and one right liquid cooling plate 22 are provided respectively, and the condensation end 5 of the left L-shaped heat spreader 61 is attached to one side of the left liquid cooling plate 21, and the condensation end 5 of the right L-shaped heat spreader 62 is attached to one side of the right liquid cooling plate 22.
  • the structural advantage of this embodiment is that since the area of the condensation end is increased, the heat dissipation efficiency of the power battery module heat dissipation device can be further improved.
  • the difference between this embodiment and the sixth embodiment is that every two power battery modules 3 are arranged side by side to form a power battery pack, and the L-shaped heat spreader 6 is matched with the power battery pack at a right angle.
  • the structure of the L-shaped heat spreader 6 is similar to that of the first embodiment, and the only difference is the size.
  • six power battery modules 3 are arranged side by side front and back to form a power battery group, forming three groups of power battery groups.
  • Three left L-shaped heat spreaders 61 and three right L-shaped heat spreaders 62 are respectively provided and are matched at right angles to the left and right sides of each power battery module 3.
  • One left liquid cooling plate 21 and one right liquid cooling plate 22 are respectively provided.
  • the condensation end 5 of the left L-shaped heat spreader 61 is attached to one side of the left liquid cooling plate 21, and the condensation end 5 of the right L-shaped heat spreader 62 is attached to one side of the right liquid cooling plate 22.
  • the structure of the third embodiment has relatively fewer bends in the L-shaped heat spreader, and the corresponding contact area between the condensation end and the liquid cooling plate is increased, which can improve the condensation heat exchange efficiency.
  • this embodiment allows the condensation end of each L-shaped heat spreader to contact the bottom surface of the two power batteries at the same time, saving materials, space and cost compared to the above embodiments.
  • the difference between this embodiment and the seventh embodiment is that a heat-conducting layer is provided between the evaporation end and the power battery module and between the condensation end and the liquid cooling plate.
  • the gap at the bending position of the L-shaped heat spreader is filled with a heat-conducting layer, which can further improve the heat exchange efficiency.
  • the material of the heat-conducting layer is heat-conducting mud.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明涉及一种基于内嵌型均热板的动力电池模组散热装置,包括均热板、液冷板和若干个动力电池模组,动力电池模组呈阵列设置,相邻动力电池模组之间设有嵌入区,液冷板位于动力电池模组的一侧,均热板设有用于吸收热量的蒸发端和用于释放热量的冷凝端,蒸发端位于嵌入区中,蒸发端相贴于动力电池模组,冷凝端相贴于液冷板,均热板使得动力电池模组的热量传递到液冷板并且分散动力电池模组的热量以避免热量集中。该发明能够提高动力电池模组的散热效率,平均热量分布,防止发生热失控事故,在动力电池模组散热领域具有广阔的发展前景。

Description

基于内嵌型均热板的动力电池模组散热装置 技术领域
本发明涉及电池散热技术领域,尤其涉及一种基于内嵌型均热板的动力电池模组散热装置。
背景技术
近年来,新能源汽车发展迅速,一批互联网造车新势力涌现,其高速发展态势直接给国内的汽车产业市场带来的无限活力与机遇。新能源汽车的核心部件当为汽车动力电池模组,也就是新能源汽车的能量来源,它直接决定了汽车的续航里程,新能源动力电池模组的种类很多,其中,三元锂动力电池模组和磷酸铁锂动力电池模组在乘用车和商用车领域起主导应用,目前乘用车动力电池模组以三元锂动力电池模组为主,商用车动力电池模组以磷酸铁锂动力电池模组为主。目前阻碍动力锂离子动力电池模组发展的瓶颈之一是它的安全性能。由于锂离子动力电池模组具有能量密度大、工作温度高、工作环境恶劣等方面的原因,加上以人为本的安全理念,因此,用户对动力电池模组的安全性提出了非常高的要求,最重要的就是实现动力电池模组工作时能够快速散热这一目的。
当前电池模组的热量主要产生在电池的极耳位置,从而使得电池极耳附近的温度相对电池的其他区域要高,形成局部高温区,当局部温度太高时,动力电池模组内的SEI膜开始分解,直接造成阳极分解以及电解质反应,从而形成热失控。而且,为了提高电池车的续航,动力电池模组往往不止一组,需要多组动力电池模组叠加使用,多个热源的增加使得热失控的情况更容易发生。如果出现热失控的情况,轻则出现电池包漏液、冒烟,严重的会导致起火、爆炸。该问题严重影响新能源汽车电池车的进一步推 广。
发明内容
为了克服现有技术的缺陷,本发明所要解决的技术问题在于提出一种基于内嵌型均热板的动力电池模组散热装置,能够提高动力电池模组的散热效率,平均热量分布,防止发生热失控事故。
为达此目的,本发明采用以下技术方案:
本发明提供的一种基于内嵌型均热板的动力电池模组散热装置,包括均热板、液冷板和若干个动力电池模组,动力电池模组呈阵列设置,相邻动力电池模组之间设有嵌入区,液冷板位于动力电池模组的一侧,均热板设有用于吸收热量的蒸发端和用于释放热量的冷凝端,蒸发端位于嵌入区中,蒸发端相贴于动力电池模组,冷凝端相贴于液冷板,均热板使得动力电池模组的热量传递到液冷板并且分散动力电池模组的热量以避免热量集中。上述方案中的均热板可以采用不同形状来实现,如U型,L型,S型以及多种不同的组合应用。
本发明优选地技术方案在于,均热板为U型均热板,U型均热板套接于动力电池模组,U型均热板的左右端为吸收热量的蒸发端,U型均热板的底端为释放热量的冷凝端,蒸发端相贴于动力电池模组,冷凝端相贴于液冷板。
本发明优选地技术方案在于,U型均热板包括左U型均热板和右U型均热板,左U型均热板和右U型均热板分别套接于动力电池模组的左右两侧,液冷板于动力电池模组的左右两侧对称设置。
本发明优选地技术方案在于,若干个动力电池模组前后并排设置形成动力电池组,U型均热板套接于动力电池组。
本发明优选地技术方案在于,均热板为L型均热板,L型均热板和动力电池模组直角配合,L型均热板的垂直端为吸收热量的蒸发端,L型均热板 的底端为释放热量的冷凝端,蒸发端相贴于动力电池模组,冷凝端相贴于液冷板。上述技术方案中的直角配合,是指动力电池模组的直角一侧紧密L型均热板的直角一侧的内部,以确保L型均热板能充分包裹动力电池模组。其中,垂直端和底端只是为了方便说明L型均热板的蒸发端和冷凝端而作区分,实际应用中,两者可以相互交换。
本发明优选地技术方案在于,L型均热板包括左L型均热板和右L型均热板,左L型均热板和右L型均热板分别和动力电池模组的左右两侧直角配合,液冷板于动力电池模组的左右两侧对称设置。
本发明优选地技术方案在于,若干个动力电池模组前后并排设置形成动力电池组,L型均热板和动力电池组直角配合。
本发明优选地技术方案在于,蒸发端与动力电池模组的接触面的面积相同,冷凝端与液冷板的接触面的面积相同。
本发明优选地技术方案在于,均热板内设置有散热工质,散热工质的沸点在60℃-100℃,如水、乙醇、丙酮等。
本发明优选地技术方案在于,蒸发端与动力电池模组之间、冷凝端与液冷板之间设置有导热层,可以是导热泥或导热胶。
本发明的有益效果:
本发明提出一种基于内嵌型均热板的动力电池模组散热装置,在呈阵列设置的动力电池模组之间嵌入均热板,通过均热板的蒸发端与动力电池模组相贴吸收产生的热量,而均热板的冷凝端与液冷板相贴传递所吸收的热量。该设计结构简单,对装配要求不高,易于加工,尤其适合于需要对多组动力电池模组散热的应用上,而且均热板的结构有多种形式。由于均热板、动力电池模组、水冷板两两紧密接触,大幅提高了散热效率,使得动力电池模组在高功率的工作环境下仍然可以达到快速散热的目的,平均热量分布,从而防止发生热失控事故。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例一的基于内嵌型均热板的动力电池模组散热装置的立体图;
图2为实施例一的U型均热板的立体图;
图3为实施例二的基于内嵌型均热板的动力电池模组散热装置的立体图;
图4为实施例二的基于内嵌型均热板的动力电池模组散热装置的俯视图;
图5为实施例二的U型均热板的立体图;
图6为实施例三的基于内嵌型均热板的动力电池模组散热装置的立体图;
图7为实施例三的基于内嵌型均热板的动力电池模组散热装置的俯视图。
图8为实施例五的基于内嵌型均热板的动力电池模组散热装置的立体图;
图9为实施例五的基于内嵌型均热板的动力电池模组散热装置的右视图;
图10为实施例五的L型均热板的立体图;
图11为实施例六的基于内嵌型均热板的动力电池模组散热装置的立体图;
图12为实施例六的基于内嵌型均热板的动力电池模组散热装置的俯视图;
图13为实施例七的基于内嵌型均热板的动力电池模组散热装置的立体 图;
图14为实施例七的基于内嵌型均热板的动力电池模组散热装置的俯视图。
图中:
1-U型均热板;11-左U型均热板;12-右U型均热板;2-液冷板;21-
左液冷板;22-右液冷板;3-动力电池模组;4-蒸发端;5-冷凝端;6-L型均热板;61-左L型均热板;62-右L型均热板。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
如图1-2所示,本实施例中提供的一种基于内嵌型均热板的动力电池模组散热装置,包括U型均热板1、液冷板2和动力电池模组3,液冷板2位于动力电池模组3的一侧,U型均热板1套接于动力电池模组3,U型均热板1的左右端为吸收热量的蒸发端4,U型均热板1的底端为释放热量的冷凝端5,蒸发端4和动力电池模组3的前后两侧紧密贴合,冷凝端5和液冷板2紧密贴合。
优选地,蒸发端4与动力电池模组3的接触面的面积相同,冷凝端5与液冷板2的接触面的面积相同。
本实施例中,动力电池模组3设置有六个,呈单列设置,每一个动力电池模组3均设置有相应的U型均热板1,且套接动力电池模组3的方向相同,液冷板2设置数目为一个,U型均热板1的冷凝端均与液冷板2紧密接触。
优选地,U型均热板1的外壳材料为铜或铝。本实施例中,U型均热板1的外壳材料为铜。U型均热板1内设置有散热工质,散热工质为电阻率18.2MΩ*cm的去离子水,抽真空处理后内部的真空度为7Pa。散热工质在冷凝 后通过吸液芯的毛细作用回到蒸发端进行第二阶段的传热,实现一次系统内部热循环。
实施例二
如图3-5所示,本实施例与实施例一的区别在于,U型均热板包括左U型均热板11和右U型均热板12,左U型均热板11和右U型均热板12分别套接于动力电池模组3的左右两侧,其蒸发端4和动力电池模组3的前后两侧紧密接触,液冷板2于动力电池模组3的左右两侧对称设置。
具体地,动力电池模组3设置有六个,呈单列设置,左U型均热板11和右U型均热板12分别设置有六个并且套接于每个动力电池模组3的左右两侧,左液冷板21和右液冷板22分别设置一个,左U型均热板11的冷凝端5均相贴于左液冷板21一侧,右U型均热板12的冷凝端5均相贴于右液冷板22一侧。
本实施例的结构优点在于:由于冷凝端的面积增大了,能够进一步提高动力电池模组散热装置的散热效率。
实施例三
如图6-7所示,本实施例与实施例二的区别在于,每两个动力电池模组3前后并排设置形成动力电池组,U型均热板1套接于动力电池组。其U型均热板1的结构和实施例二的结构相似,仅有尺寸的区别。
具体地,六个动力电池模组3每两个动力电池模组3前后并排设置形成动力电池组,形成三组动力电池组,左U型均热板11和右U型均热板12分别设置有三个并且套接于每个动力电池模组3的左右两侧,左液冷板21和右液冷板22分别设置一个,左U型均热板11的冷凝端5均相贴于左液冷板21一侧,右U型均热板12的冷凝端5均相贴于右液冷板22一侧。
由于U型均热板在弯曲处存在和液冷板之间的缝隙,从而影响实际的冷凝换热面积,降低散热效率。而实施例三的结构相对实施例二,U型均热板的弯曲处少了,相对应的冷凝端和液冷板的接触面积大了,能够提高冷 凝的换热效率。此外,本实施例可使每个U型均热板的冷凝端同时与两个动力电池的底面相接触,相较于上述实施例节省了材料、空间和成本。
实施例四
本实施例与实施例三的区别在于,蒸发端与动力电池模组之间、冷凝端与液冷板之间设置有导热层。尤其位于U型均热板的弯曲位置的缝隙进行填充导热层,可以进一步提高换热效率。
具体地,导热层的材料为导热胶。
实施例五
如图8-10所示,本实施例中提供的一种基于内嵌型均热板的动力电池模组散热装置,包括L型均热板6、液冷板2和动力电池模组3,液冷板2位于动力电池模组3的一侧,L型均热板6和动力电池模组3直角配合,L型均热板6的垂直端为吸收热量的蒸发端4,L型均热板6的底端为释放热量的冷凝端5,蒸发端4和动力电池模组3紧密贴合,冷凝端5和液冷板2紧密贴合。
优选地,蒸发端4与动力电池模组3的接触面的面积相同,冷凝端5与液冷板2的接触面的面积相同。
本实施例中,动力电池模组3设置有六个,呈单列设置,每一个动力电池模组3均设置有相应的L型均热板6,L型均热板6和相应的动力电池模组3直角配合,并且六个L型均热板6的直角朝向的方向相同,液冷板2设置数目为一个,L型均热板6的冷凝端均与液冷板2紧密接触。
优选地,L型均热板6的外壳材料为铜或铝。本实施例中,L型均热板6的外壳材料为铝。L型均热板6内设置有散热工质,散热工质为乙醇,抽真空处理后内部的真空度为7Pa。散热工质在冷凝后通过吸液芯的毛细作用回到蒸发端进行第二阶段的传热,实现一次系统内部热循环。
实施例六
如图11-12所示,本实施例与实施例五的区别在于,L型均热板6包括 左L型均热板61和右L型均热板62,左L型均热板61和右L型均热板62分别和动力电池模组3的左右两侧直角配合,其蒸发端4和动力电池模组3紧密接触,液冷板2于动力电池模组3的左右两侧对称设置。其L型均热板6的结构和实施例五的结构相似,仅有尺寸的区别。
具体地,动力电池模组3设置有六个,呈单列设置,左L型均热板61和右L型均热板62分别设置有六个并且和每个动力电池模组3的左右两侧直角配合,左液冷板21和右液冷板22各设置一个,左L型均热板61的冷凝端5均相贴于左液冷板21一侧,右L型均热板62的冷凝端5均相贴于右液冷板22一侧。
本实施例的结构优点在于:由于冷凝端的面积增大了,能够进一步提高动力电池模组散热装置的散热效率。
实施例七
如图13-14所示,本实施例与实施例六的区别在于,每两个动力电池模组3前后并排设置形成动力电池组,L型均热板6和动力电池组直角配合。其L型均热板6的结构和实施例一的结构相似,仅有尺寸的区别。
具体地,六个动力电池模组3每两个动力电池模组3前后并排设置形成动力电池组,形成三组动力电池组,左L型均热板61和右L型均热板62分别设置有三个并且和每个动力电池模组3的左右两侧直角配合,左液冷板21和右液冷板22分别设置一个,左L型均热板61的冷凝端5均相贴于左液冷板21一侧,右L型均热板62的冷凝端5均相贴于右液冷板22一侧。
由于L型均热板在弯曲处存在和液冷板之间的缝隙,从而影响实际的冷凝换热面积,降低散热效率。而实施例三的结构相对实施例二,L型均热板的弯曲处相对少了,相对应的冷凝端和液冷板的接触面积增大了,能够提高冷凝的换热效率。此外,本实施例可使每个L型均热板的冷凝端同时与两个动力电池的底面相接触,相较于上述实施例节省了材料、空间和成本。
实施例八
本实施例与实施例七的区别在于,蒸发端与动力电池模组之间、冷凝端与液冷板之间设置有导热层。尤其对位于L型均热板的弯曲位置的缝隙进行填充导热层,可以进一步提高换热效率。
具体地,导热层的材料为导热泥。
本发明是通过优选实施例进行描述的,本领域技术人员知悉,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。本发明不受此处所公开的具体实施例的限制,其他落入本申请的权利要求内的实施例都属于本发明保护的范围。

Claims (10)

  1. 一种基于内嵌型均热板的动力电池模组散热装置,其特征在于:
    包括均热板、液冷板和若干个动力电池模组;
    所述动力电池模组呈阵列设置,相邻所述动力电池模组之间设有嵌入区,所述液冷板位于所述动力电池模组的一侧;
    所述均热板设有用于吸收热量的蒸发端和用于释放热量的冷凝端,所述,所述蒸发端位于所述嵌入区中,所述蒸发端相贴于所述动力电池模组,所述冷凝端相贴于所述液冷板,所述均热板使得动力电池模组的热量传递到液冷板并且分散动力电池模组的热量以避免热量集中。
  2. 根据权利要求1所述的动力电池模组散热装置,其特征在于:
    所述均热板为U型均热板;
    所述U型均热板套接于所述动力电池模组,所述U型均热板的左右端为吸收热量的蒸发端,所述U型均热板的底端为释放热量的冷凝端;
    所述蒸发端相贴于所述动力电池模组,所述冷凝端相贴于所述液冷板。
  3. 根据权利要求2所述的动力电池模组散热装置,其特征在于:
    所述U型均热板包括左U型均热板和右U型均热板;
    所述左U型均热板和所述右U型均热板分别套接于所述动力电池模组的左右两侧;
    所述液冷板于所述动力电池模组的左右两侧对称设置。
  4. 根据权利要求2所述的动力电池模组散热装置,其特征在于:
    若干个所述动力电池模组前后并排设置形成动力电池组;
    所述U型均热板套接于所述动力电池组。
  5. 根据权利要求1所述的动力电池模组散热装置,其特征在于:
    所述均热板为L型均热板;
    所述L型均热板和所述动力电池模组直角配合,所述L型均热板的垂 直端为吸收热量的蒸发端,所述L型均热板的底端为释放热量的冷凝端;
    所述蒸发端相贴于所述动力电池模组,所述冷凝端相贴于所述液冷板。
  6. 根据权利要求5所述的动力电池模组散热装置,其特征在于:
    所述L型均热板包括左L型均热板和右L型均热板;
    所述左L型均热板和所述右L型均热板分别和所述动力电池模组的左右两侧直角配合;
    所述液冷板于所述动力电池模组的左右两侧对称设置。
  7. 根据权利要求5所述的动力电池模组散热装置,其特征在于:
    若干个所述动力电池模组前后并排设置形成动力电池组;
    所述L型均热板和所述动力电池组直角配合。
  8. 根据权利要求1所述的动力电池模组散热装置,其特征在于:
    所述蒸发端与所述动力电池模组的接触面的面积相同,所述冷凝端与所述液冷板的接触面的面积相同。
  9. 根据权利要求1所述的动力电池模组散热装置,其特征在于:
    所述均热板内设置有散热工质,所述散热工质的沸点在60℃-100℃。
  10. 根据权利要求1所述的动力电池模组散热装置,其特征在于:
    所述蒸发端与所述动力电池模组之间、所述冷凝端与所述液冷板之间设置有导热层。
PCT/CN2023/090420 2022-09-30 2023-04-24 基于内嵌型均热板的动力电池模组散热装置 WO2024066318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211212974.7 2022-09-30
CN202211212974.7A CN115441090A (zh) 2022-09-30 2022-09-30 基于内嵌型均热板的动力电池模组散热装置

Publications (1)

Publication Number Publication Date
WO2024066318A1 true WO2024066318A1 (zh) 2024-04-04

Family

ID=84251557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090420 WO2024066318A1 (zh) 2022-09-30 2023-04-24 基于内嵌型均热板的动力电池模组散热装置

Country Status (2)

Country Link
CN (1) CN115441090A (zh)
WO (1) WO2024066318A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441090A (zh) * 2022-09-30 2022-12-06 广东畅能达科技发展有限公司 基于内嵌型均热板的动力电池模组散热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067574A (zh) * 2015-04-22 2016-11-02 株式会社Lg化学 用于电池单体的冷却装置、电池模块、电池组和车辆
CN106785183A (zh) * 2015-11-24 2017-05-31 比亚迪股份有限公司 一种动力电池包及电动汽车
CN108183282A (zh) * 2018-02-07 2018-06-19 华南理工大学 一种基于均热板的电池模组热管理装置
CN208986137U (zh) * 2018-10-26 2019-06-14 上汽大众汽车有限公司 一种基于热管技术的电动汽车电池包散热装置
CN110311189A (zh) * 2019-08-12 2019-10-08 深圳市嘉名科技有限公司 电池模组、电池包、电动车及电网系统
CN111540977A (zh) * 2020-04-21 2020-08-14 华南理工大学 一种动力电池液冷型热管理系统及吹胀型铝质均热板
CN115441090A (zh) * 2022-09-30 2022-12-06 广东畅能达科技发展有限公司 基于内嵌型均热板的动力电池模组散热装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972218A (zh) * 2017-03-07 2017-07-21 华南理工大学 一种圆柱型动力电池组的冷却装置与方法
CN112072203B (zh) * 2020-08-25 2021-12-10 东北林业大学 一种电动汽车电池包及其电池模组热管理单元
CN215451536U (zh) * 2021-06-16 2022-01-07 深圳市德镒盟电子有限公司 一种运用于新能源汽车电芯快充的导热组件
CN113782861A (zh) * 2021-07-27 2021-12-10 华为技术有限公司 电池保护结构、电池包及电动汽车
CN216354415U (zh) * 2021-09-30 2022-04-19 蜂巢能源科技有限公司 电芯模组及电池包
CN114094228A (zh) * 2021-10-28 2022-02-25 华南理工大学 一种基于相变材料复合均热板的动力电池热管理系统
CN217426893U (zh) * 2022-05-18 2022-09-13 蜂巢能源科技股份有限公司 冷却结构及电池包

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067574A (zh) * 2015-04-22 2016-11-02 株式会社Lg化学 用于电池单体的冷却装置、电池模块、电池组和车辆
CN106785183A (zh) * 2015-11-24 2017-05-31 比亚迪股份有限公司 一种动力电池包及电动汽车
CN108183282A (zh) * 2018-02-07 2018-06-19 华南理工大学 一种基于均热板的电池模组热管理装置
CN208986137U (zh) * 2018-10-26 2019-06-14 上汽大众汽车有限公司 一种基于热管技术的电动汽车电池包散热装置
CN110311189A (zh) * 2019-08-12 2019-10-08 深圳市嘉名科技有限公司 电池模组、电池包、电动车及电网系统
CN111540977A (zh) * 2020-04-21 2020-08-14 华南理工大学 一种动力电池液冷型热管理系统及吹胀型铝质均热板
CN115441090A (zh) * 2022-09-30 2022-12-06 广东畅能达科技发展有限公司 基于内嵌型均热板的动力电池模组散热装置

Also Published As

Publication number Publication date
CN115441090A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024066318A1 (zh) 基于内嵌型均热板的动力电池模组散热装置
CN107346814B (zh) 一种电池热管理系统
CN107134557B (zh) 电池模块及电池模组
CN110311189A (zh) 电池模组、电池包、电动车及电网系统
CN107482278B (zh) 锂电池均温散热系统
CN106025434A (zh) 一种电池模组
WO2024082591A1 (zh) 一种框架散热结构及具有该结构的动力电池模组
CN109768194A (zh) 一种基于相变材料-翅片复合结构的锂离子电池模组热管理系统
KR20130123874A (ko) 배터리 모듈 및 그 제조 방법
CN111403847B (zh) 一种基于相变材料与u型扁平热管耦合的动力电池极耳散热系统
CN103227297A (zh) 一种电动汽车用肋片式单体电池结构
CN106785236B (zh) 圆柱体电池组的热管理系统和方法
CN210074099U (zh) 电池模组、电池包、电动车及电网系统
CN209496981U (zh) 一种电池模组的冷却结构
WO2024087564A1 (zh) 一种基于高导热均热板的动力电池模组系统
CN109273797A (zh) 一种基于相变材料和热管协同散热的电池模组热管理装置
JP3241876U (ja) 熱伝導構造を有するバッテリモジュール
CN107833747A (zh) 一种组合式超级电容器模块散热结构
KR101149406B1 (ko) 전기 차량용 전지셀의 히트 싱크 및 그를 이용한 전지셀 모듈
CN216671792U (zh) 一种多层热管理结构的电池包及电动汽车
WO2022143409A1 (zh) 一种电池单体及其电池模块
CN219626732U (zh) 基于u型均热板的动力电池模组散热装置
CN116154355A (zh) 一种可变导热系数的主/被动结合的散热结构
CN219626775U (zh) 基于l型均热板的动力电池模组散热装置
CN111600092A (zh) 一种超宽温域高安全性锂离子动力电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869574

Country of ref document: EP

Kind code of ref document: A1