WO2024065115A1 - 传输复用方式的指示方法、装置、介质及产品 - Google Patents

传输复用方式的指示方法、装置、介质及产品 Download PDF

Info

Publication number
WO2024065115A1
WO2024065115A1 PCT/CN2022/121480 CN2022121480W WO2024065115A1 WO 2024065115 A1 WO2024065115 A1 WO 2024065115A1 CN 2022121480 W CN2022121480 W CN 2022121480W WO 2024065115 A1 WO2024065115 A1 WO 2024065115A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication
multiplexing mode
transmission multiplexing
transmission
value
Prior art date
Application number
PCT/CN2022/121480
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/121480 priority Critical patent/WO2024065115A1/zh
Priority to CN202280003710.2A priority patent/CN118104201A/zh
Publication of WO2024065115A1 publication Critical patent/WO2024065115A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method, device, medium and product for indicating a transmission multiplexing mode.
  • the relevant technology provides simultaneous uplink transmission of multiple antenna panels (Simultaneous Transmission via Multiple Panels, STxMP) through multiple antenna panels (Panels) on the terminal to the transmission and reception points (TRP) of multiple base stations.
  • STxMP Simultaneous Transmission via Multiple Panels
  • TRP transmission and reception points
  • transmission is carried out to the transmission and reception points (TRP) of multiple base stations through the Physical Uplink Shared Channel (PUSCH).
  • TRP transmission and reception points
  • PUSCH Physical Uplink Shared Channel
  • TDM time division multiplexing
  • the embodiments of the present disclosure provide a method, device, medium and product for indicating a transmission multiplexing mode.
  • the technical solution is as follows:
  • a method for indicating a transmission multiplexing mode is provided, the method being executed by a terminal, the method comprising:
  • a first indication is received, where the first indication is used to indicate a transmission multiplexing mode to be applied when the terminal is scheduled to transmit simultaneously from multiple panels to multiple sending and receiving points TRP.
  • a method for indicating a transmission multiplexing mode is provided, the method being executed by a network device, the method comprising:
  • Send a first indication wherein the first indication is used to indicate the transmission multiplexing method to be applied when the terminal is scheduled to transmit simultaneously from multiple panels to multiple sending and receiving points TRP.
  • a transmission multiplexing mode indication device comprising:
  • the receiving module is used to receive a first indication, where the first indication is used to indicate the transmission multiplexing mode applied when the terminal is scheduled to transmit simultaneously from multiple panels to multiple sending and receiving points TRP.
  • a transmission multiplexing mode indication device comprising:
  • the sending module is used to send a first indication, where the first indication is used to indicate the transmission multiplexing mode applied when the terminal is scheduled to transmit simultaneously from multiple panels to multiple sending and receiving points TRP.
  • a terminal including:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the transmission multiplexing mode indication method in each aspect as described above.
  • a network device comprising:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the transmission multiplexing mode indication method in each aspect as described above.
  • a chip is provided.
  • the chip includes a programmable logic circuit and/or program instructions. When the chip is running, it is used to implement the transmission multiplexing mode indication method of the above aspects.
  • a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement an indication method of the transmission multiplexing mode of each aspect as described above.
  • a computer program product (or computer program) is provided, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for indicating the transmission multiplexing mode in each aspect as described above.
  • the transmission multiplexing mode is indicated by a first indication, so that the transmission multiplexing mode can be flexibly switched when the terminal is scheduled for simultaneous transmission from multiple panels to multiple TRPs.
  • FIG1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • FIG2 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • FIG3 shows a schematic diagram of an uplink transmission process provided by an exemplary embodiment of the present disclosure
  • FIG4 shows a schematic diagram of an uplink transmission process provided by an exemplary embodiment of the present disclosure
  • FIG5 shows a schematic diagram of a transmission solution provided by an exemplary embodiment of the present disclosure
  • FIG6 shows a schematic diagram of a transmission solution provided by an exemplary embodiment of the present disclosure
  • FIG7 shows a schematic diagram of a DCI information field provided by an exemplary embodiment of the present disclosure
  • FIG8 shows a flow chart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure
  • FIG9 shows a flow chart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure
  • FIG10 shows a block diagram of a transmission multiplexing mode indicating device provided by an exemplary embodiment of the present disclosure
  • FIG11 shows a block diagram of a transmission multiplexing mode indicating device provided by an exemplary embodiment of the present disclosure
  • FIG12 shows a schematic diagram of the structure of a terminal provided by an exemplary embodiment of the present disclosure
  • FIG. 13 shows a schematic diagram of the structure of a network device provided by an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • FIG1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: a network device 12 and a terminal 14.
  • the network device 12 includes TRP1 and TRP2.
  • the network device 12 may be a base station, which is a device that provides wireless communication functions for the terminal 14.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different.
  • LTE Long Term Evolution
  • eNodeB evolved base station
  • gNodeB next-generation base station
  • the description of "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 14 are collectively referred to as network devices 12.
  • the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment, mobile stations (MS), terminal devices, etc.
  • terminals For the convenience of description, the above-mentioned devices are collectively referred to as terminals.
  • Uplink communication refers to the terminal 14 sending a signal to the network device 12
  • downlink communication refers to the network device 12 sending a signal to the terminal 14.
  • the uplink PUSCH transmission is transmitted in the direction of TRPs of multiple base stations.
  • the Third Generation Partnership Project (3GPP) version R17 mainly standardized the collaborative transmission under the time division multiplexing (TDM) transmission mode.
  • TDM time division multiplexing
  • the same information on the PUSCH is sent to different TRPs of the base station at different transmission occasions (TO) in the time domain.
  • This method has relatively low requirements on the terminal capabilities, does not require the ability to support simultaneous transmission of beams, and has a large transmission delay.
  • the actual channels they pass through may have very different spatial characteristics. Therefore, it is believed that the spatial reception parameters of PUSCH channels in different sending directions are different.
  • PUSCH transmission can be based on multiple antenna panels scheduled by a single physical downlink control channel (PDCCH), that is, single downlink control information (S-DCI) to transmit to multiple TRPs.
  • PDCCH physical downlink control channel
  • S-DCI single downlink control information
  • one DCI directly or indirectly schedules precoding matrix 1 and precoding matrix 2 to the terminal.
  • Terminal 14 uses antenna panel 1 to send one or more layers of uplink data to TRP1 based on precoding matrix 1.
  • Terminal 14 uses antenna panel 2 to send one or more layers of uplink data to TRP2 based on precoding matrix 2.
  • the transmission of PUSCH can also be based on different PDCCHs, that is, multi-antenna panels scheduled by multi-downlink control information (M-DCI) to transmit to multiple TRPs, as shown in Figure 2.
  • M-DCI multi-downlink control information
  • TRP 1 sends the first DCI to terminal 14 via PDCCH 1, and scheduling terminal 14 uses antenna panel 1 to send PUSCH 1 to TRP 1;
  • TRP 2 sends the second DCI to terminal 14 via PDCCH 2, and scheduling terminal 14 uses antenna panel 2 to send PUSCH 2 to TRP 2.
  • TRP1 and TRP2 are two TRPs in the same cell.
  • the uplink transmission process includes: codebook-based uplink transmission and non-codebook-based uplink transmission.
  • FIG3 shows a schematic diagram of codebook-based uplink PUSCH transmission provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a terminal 22 and a network device 24 .
  • the network device 24 first sends a sounding reference signal (SRS) resource configuration to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource set and related configurations of each SRS resource.
  • the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
  • the network device 24 obtains the channel status of each uplink channel based on the at least one SRS received, and then provides DCI to the terminal 22.
  • the DCI includes at least SRI and TPMI.
  • the terminal 22 sends PUSCH to the network device 24 based on TPMI and SRI.
  • FIG4 shows a schematic diagram of a non-codebook based uplink transmission process provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a terminal 22 and a network device 24 .
  • the precoding matrix is no longer limited to a fixed candidate set.
  • the network device 24 first sends a channel state information reference signal (CSI-RS) and SRS resource configuration information to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource set and the relevant configuration of each SRS resource.
  • the terminal 22 calculates at least one precoding matrix that may be used based on the measurement result of the CSI-RS by singular value decomposition and other algorithms.
  • the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
  • the network device 24 obtains the channel conditions of each uplink channel based on the received at least one SRS, and then provides DCI to the terminal 22.
  • the DCI includes at least SRI.
  • the terminal 22 determines the precoding matrix used this time from the precoding matrices that may be used based on SRI, and sends PUSCH to the network device 24 based on SRI and the precoding matrix used this time.
  • FIG5 shows a schematic diagram of a SFN transmission multiplexing method provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a network device 12 and a terminal 14 .
  • a TB of PUSCH is sent on the same time-frequency resources to two different TRPs through the same DMRS port or port combination allocated on different panels.
  • Different panels/TRPs/TOs are associated with different TCI states (i.e., beams).
  • the terminal 14 uses the SFN transmission method, that is, simultaneously sends TB to multiple TRPs of the network device 12, thereby increasing the probability that the network device 12 receives data to achieve reliable uplink transmission.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the CP-OFDM waveform is used for the uplink and downlink of the physical layer in the NR system, which is suitable for high-throughput scenarios. It adopts the Multiple Input Multiple Output (MIMO) transmission method and provides high spectral packing efficiency in the Resource Block (RB), which can maximize the use of network capacity in densely populated cities.
  • MIMO Multiple Input Multiple Output
  • RB Resource Block
  • the DFT-S-OFDM waveform is used for the uplink of the physical layer in the NR system. It is suitable for power-constrained scenarios and adopts a single-layer transmission method. Since the Peak to Average Power Ratio (PAPR) of the DFT-S-OFDM waveform is lower than that of CP-OFDM, it is more conducive to cell coverage and more suitable for cell edge user transmission.
  • PAPR Peak to Average Power Ratio
  • FIG6 shows a schematic diagram of a transmission multiplexing method provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a network device 12 and a terminal 14 .
  • a TB of PUSCH is sent on the same time-frequency resources to two different TRPs through the corresponding demodulation reference signal (DMRS) ports or port combinations allocated on different panels.
  • DMRS demodulation reference signal
  • Different panels/TRPs/TOs are associated with different TCI states (i.e. beams).
  • SDM SDM
  • SDM-A Different parts of a TB of PUSCH are sent on the same time-frequency resources to two different TRPs through their corresponding DMRS ports or port combinations allocated on different panels. Different panels/TRPs/TOs are associated with different TCI states (i.e. beams).
  • SDM-B The repetition of the same TB of PUSCH corresponding to different redundancy versions (Redundancy Version, RV) is sent on the same time-frequency resources to two different TRPs through the corresponding DMRS ports or port combinations allocated on different panels. Different panels/TRPs/TOs are associated with different TCI states (i.e. beams).
  • RV Redundancy Version
  • the network device needs to send the SRS resource configuration to the terminal in advance.
  • the STxMP scenario there may be the following two configuration methods:
  • a first possible SRS resource configuration method the network device configures two SRS resource sets for the terminal, the two SRS resource sets include a first SRS resource set and a second SRS resource set, and different SRS resource sets are associated with different antenna panel information.
  • the two SRS resource sets are both used for codebook or both are non-codebook.
  • the different antenna panel information includes at least one of the following information:
  • the number of antenna panels can be 2 or 4, and in the embodiment of the present application, the maximum default is 2;
  • the first SRS resource set is associated with a first antenna panel of the terminal; and the second SRS resource set is associated with a second antenna panel of the terminal.
  • a first SRS resource set is associated with a first TRP of a network device, and the first TRP sends DCI to a first antenna panel;
  • a second SRS resource set is associated with a second TRP of a network device, and the second TRP sends DCI to a second antenna panel.
  • the first SRS resource set is associated with a first TCI state of the terminal, and the first TCI state is used to indicate a beam sent to a first TRP;
  • the second SRS resource set is associated with a second TCI state of the terminal, and the second TCI state is used to indicate a beam sent to a second TRP.
  • the first SRS resource set is associated with the first TO of the terminal, and the first TO is used to send SRS to the first TRP;
  • the second SRS resource set is associated with the second TO of the terminal, and the second TO is used to send SRS to the second TRP.
  • a second possible SRS resource configuration method the network device configures an SRS resource set configuration for the terminal, where the SRS resource set includes a first SRS resource subset and a second SRS resource subset, and different SRS resource subsets are associated with different antenna panel information.
  • the purpose of the SRS resource set is codebook or non-codebook.
  • the different antenna panel information includes at least one of the following information:
  • the number of antenna panels can be 2 or 4, and in the embodiment of the present application, the maximum default is 2;
  • a first subset of SRS resources is associated with a first antenna panel of the terminal; and a second subset of SRS resources is associated with a second antenna panel of the terminal.
  • a first SRS resource subset is associated with a first TRP of a network device, and the first TRP sends DCI to a first antenna panel;
  • a second SRS resource subset is associated with a second TRP of a network device, and the second TRP sends DCI to a second antenna panel.
  • the first SRS resource subset is associated with a first TCI state of the terminal, and the first TCI state is used to indicate a beam sent to a first TRP;
  • the second SRS resource subset is associated with a second TCI state of the terminal, and the second TCI state is used to indicate a beam sent to a second TRP.
  • the first SRS resource subset is associated with the first TO of the terminal, and the first TO is used to send SRS to the first TRP;
  • the second SRS resource subset is associated with the second TO of the terminal, and the second TO is used to send SRS to the second TRP.
  • the SRS resource set indication field in the DCI also needs to be redesigned so that in the STxMP scenario, the network device can indicate to the terminal the SRS resource set and SRI/TPMI field that need to be associated in the single TRP (single-TRP, s-TRP) or multi-TRP (mutli-TRP, m-TRP) scenario.
  • FIG7 shows a schematic diagram of a DCI information domain provided by an exemplary embodiment of the present disclosure.
  • the DCI includes multiple information domains, and the domains related to the present application in the multiple information domains include: an SRS resource set indication domain (2 bits), a first SRI domain (x1 bit), a second SRI domain (x2 bits), a first TPMI domain (y1 bit), and a second TPMI domain (y2 bits).
  • an SRS resource set indication domain and two SRI domains are used;
  • an SRS resource set indication domain, two SRI domains, and two TPMI domains are used.
  • x1, x2, y1, and y2 are variable values.
  • the code point of the SRS resource set indication field is 00, it is used to indicate that the terminal uses the s-TRP mode to transmit PUSCH to TRP1 and associate the first SRS resource set.
  • the first SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used for this transmission; in the non-codebook-based transmission mode, the first SRI/TPMI field in the DCI is used to obtain the SRI used for this transmission.
  • the second SRI/TPMI field is not used.
  • the code point of the SRS resource set indication field is 01, it is used to indicate that the terminal uses the s-TRP mode to transmit PUSCH to TRP2 and associate the second SRS resource set.
  • the first SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used for this transmission; in the non-codebook-based transmission mode, the first SRI/TPMI field in the DCI is used to obtain the SRI used for this transmission.
  • the second SRI/TPMI field is not used.
  • the code point of the SRS resource set indication field is 10
  • the first SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used when transmitting to TRP1
  • the second SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used when transmitting to TRP2
  • the first SRI/TPMI field in the DCI is used to obtain the SRI used when transmitting to TRP1
  • the second SRI/TPMI field in the DCI is used to obtain the SRI used when transmitting to TRP2.
  • the code point of the SRS resource set indication field is 11, it is used to indicate that the terminal adopts the m-TRP mode to transmit PUSCH to TRP2 in the first TO, and associate the second SRS resource set; then transmit PUSCH to TRP1 in the second TO, and associate the first SRS resource set.
  • the second SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used when transmitting to TRP2, and the first SRI/TPMI field in the DCI is used to obtain the SRI and TPMI used when transmitting to TRP1; in the non-codebook-based transmission mode, the second SRI/TPMI field in the DCI is used to obtain the SRI used when transmitting to TRP2, and the first SRI/TPMI field in the DCI is used to obtain the SRI used when transmitting to TRP1.
  • code point 10 is designed for the TDM coordination mode of sending PUSCH to TRP1 first and then to TRP2, and code point 11 is designed for the TDM coordination mode of sending PUSCH to TRP2 first and then to TRP1.
  • the terminal needs to send PUSCH to TRP1 and TRP2 at the same time.
  • code points 10 and 11 in Table 1 will lose their indicative meaning and become redundant code points.
  • FIG8 shows a flow chart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure, the method is applied to a terminal of the communication system shown in FIG1 , and the method includes:
  • Step 220 Receive a first indication.
  • the terminal receives a first indication sent by the network device.
  • the first indication is used to indicate the transmission multiplexing mode to be applied when the terminal is scheduled to transmit from multiple panels to multiple TRPs simultaneously.
  • the simultaneous transmission of multiple panels is an STxMP transmission mode.
  • the transmission multiplexing method includes at least one of the following: Single-Frequency Network (SFN); Space Division Multiplexing (SDM).
  • SFN Single-Frequency Network
  • SDM Space Division Multiplexing
  • the first indication is used to instruct the terminal to use the SFN or SDM transmission mode for transmission during the uplink STxMP transmission process.
  • the first information is carried in Radio Resource Control (RRC) signaling; in some embodiments, the first information is carried in Medium Access Control Control Element (MAC CE) signaling; in some embodiments, the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in a newly added indication field of the DCI.
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Element
  • Method 1 The first indication is carried in the signaling.
  • the first indication is carried in at least one of the following signaling: RRC; MAC CE.
  • the terminal receives RRC signaling sent by the network device, and the RRC signaling carries first information, and the first information instructs the terminal to apply the SFN method or the SDM method to perform STxMP.
  • the terminal receives a MAC CE sent by a network device, and the MAC CE carries first information, and the first information instructs the terminal to perform STxMP using the SFN method or the SDM method.
  • Method 2 The first information is carried in the SRS resource set indication field.
  • the first code point when the value of the first indication is the first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM; when the value of the first indication field is the second code point, the second code point is used to indicate that the transmission multiplexing mode is SFN.
  • the first code point is 10 and the second code point is 11; or, the first code point is 11 and the second code point is 10.
  • the transmission multiplexing mode is indicated as SDM; when the code point corresponding to the first indication is 11, the transmission multiplexing mode is indicated as SFN.
  • the transmission multiplexing mode is indicated as SFN; when the code point corresponding to the first indication is 11, the transmission multiplexing mode is indicated as SDM.
  • Method 3 The first information is carried in the antenna port indication field (Antenna Ports) (determined by the number of CDM groups).
  • the first indication when the DMRS port indicated by the antenna port indication field corresponds to one code division multiplexing group, the first indication is used to indicate that the transmission multiplexing mode is SFN; when the DMRS port indicated by the antenna port indication field corresponds to at least two code division multiplexing groups, the first indication is used to indicate that the transmission multiplexing mode is SDM.
  • the DMRS port/port group is determined according to the value of the antenna port indication field, and then the DMRS port configuration pre-configured by the RRC is used to determine whether the DMRS port/port group belongs to the same CDM group or to different multiple CDM groups.
  • the transmission multiplexing mode indicated is SFN; in the case where the aforementioned DMRS port/port group belongs to multiple CDM groups, the transmission multiplexing mode indicated is SDM.
  • the DMRS ports sent by PUSCH through different panels/TRP/Transmission Configuration Indicator (TCI) correspond to different CDM groups; therefore, by limiting the DMRS port group used by SFN to correspond to the same CDM group, it can be used to distinguish whether the indication is SDM or SFN.
  • TCI Transmission Configuration Indicator
  • the DMRS ports ⁇ 0, 2 ⁇ corresponding to the SDM scheme belong to two CDM groups respectively, while the SFN scheme can use the DMRS ports ⁇ 0, 1 ⁇ belonging to the same CDM group for rank 2 transmission.
  • Method 4 The first information is carried in the antenna port indication field (Antenna Ports) (determined according to the DMRS port indication table).
  • the transmission multiplexing mode is determined by querying a DMRS port indication table according to the first indication, and the entries in the DMRS port indication table correspond to SDM or SFN respectively.
  • the terminal determines the entry corresponding to the value in the DMRS port indication table by querying the DMRS port indication table; since the entries in the DMRS port indication table correspond to the SDM or SFN transmission multiplexing modes respectively, the transmission multiplexing mode corresponding to the entry is the transmission multiplexing mode indicated by the first information.
  • Table 3 shows an example of a DMRS port indication table, wherein the parameter configuration is DMRS type 2, single symbol, three-stream transmission (rank is 3).
  • the number of predefined entries in the DMRS port indication table is increased to obtain a DMRS port indication table as shown in Table 3.
  • the transmission multiplexing mode corresponding to the first to third rows is the SDM mode
  • the transmission multiplexing mode corresponding to the fourth to sixth rows is the SFN mode.
  • the indicated transmission multiplexing mode is determined to be SDM by querying the table; for another example, when the value in the antenna port indication field is 3, the indicated transmission multiplexing mode is determined to be SFN by querying the table.
  • a new column may be added to additionally indicate the transmission multiplexing modes corresponding to different entries, as shown in Table 4.
  • the rightmost column in Table 4 is the new column.
  • the indicated transmission multiplexing mode is determined to be SDM by querying the table; for another example, when the value in the antenna port indication field is 5, the indicated transmission multiplexing mode is determined to be SFN by querying the table.
  • Method 5 The first information is carried in a newly added indication field in the DCI.
  • the newly added indication field occupies 1 bit; that is, 1 bit is added to the DCI to indicate the transmission multiplexing mode applied by the terminal when performing STxMP.
  • the first indication when the first indication is a first value, the first value is used to indicate that the transmission multiplexing mode is SDM; when the first indication is a second value, the second value is used to indicate that the transmission multiplexing mode is SFN.
  • the first value is 0 and the second value is 1; or, the first value is 1 and the second value is 0.
  • the value corresponding to the first indication when the value corresponding to the first indication is 0, it indicates that the transmission multiplexing mode is SDM; when the value corresponding to the first indication is 1, it indicates that the transmission multiplexing mode is SFN. In another possible implementation, when the value corresponding to the first indication is 1, it indicates that the transmission multiplexing mode is SFN; when the value corresponding to the first indication is 0, it indicates that the transmission multiplexing mode is SDM.
  • the first information is carried in RRC signaling; in some embodiments, the first information is carried in MAC CE; in some embodiments, the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in the newly added indication field of the DCI.
  • RRC signaling in some embodiments, the first information is carried in MAC CE
  • the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in the newly added indication field of the DCI.
  • the method provided in this embodiment receives a first indication for indicating a transmission multiplexing mode by scheduling the terminal to use uplink transmission from multiple panels to multiple TRPs in the STxMP scenario, so that the terminal can flexibly switch between different transmission multiplexing modes.
  • FIG9 shows a flow chart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure, the method being applied to a network device of the communication system shown in FIG1 , the method comprising:
  • Step 320 Send a first instruction.
  • the network device sends a first indication to the terminal.
  • the first indication is used to indicate the transmission multiplexing mode to be applied when the terminal is scheduled to transmit from multiple panels to multiple TRPs simultaneously.
  • the simultaneous transmission of multiple panels is an STxMP transmission mode.
  • the transmission multiplexing method includes at least one of the following: Single Frequency Network (SFN); Space Division Multiplexing (SDM).
  • SFN Single Frequency Network
  • SDM Space Division Multiplexing
  • the first indication is used to instruct the terminal to use the SFN or SDM transmission mode for transmission during the uplink STxMP transmission process.
  • the first information is carried in Radio Resource Control (RRC) signaling; in some embodiments, the first information is carried in Medium Access Control Control Element (MAC CE) signaling; in some embodiments, the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in a newly added indication field of the DCI.
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Element
  • Method 1 The first indication is carried in the signaling.
  • the first indication is carried in at least one of the following signaling: RRC; MAC CE.
  • the network device sends an RRC signaling to the terminal, where the RRC signaling carries first information, and the first information instructs the terminal to apply the SFN transmission multiplexing mode or the SDM transmission multiplexing mode to perform STxMP.
  • the network device sends a MAC CE to the terminal, and the MAC CE carries first information, and the first information instructs the terminal to apply the SFN transmission multiplexing method or the SDM transmission multiplexing method to perform STxMP.
  • Method 2 The first information is carried in the SRS resource set indication field.
  • the first code point when the value of the first indication is the first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM; when the value of the first indication field is the second code point, the second code point is used to indicate that the transmission multiplexing mode is SFN.
  • the first code point is 10 and the second code point is 11; or, the first code point is 11 and the second code point is 10.
  • the transmission multiplexing mode is indicated as SDM; when the code point corresponding to the first indication is 11, the transmission multiplexing mode is indicated as SFN.
  • the transmission multiplexing mode is indicated as SFN; when the code point corresponding to the first indication is 11, the transmission multiplexing mode is indicated as SDM.
  • Method 3 The first information is carried in the antenna port indication field (Antenna Ports) (determined by the number of CDM groups).
  • the first indication when the DMRS port indicated by the antenna port indication field corresponds to one code division multiplexing group, the first indication is used to indicate that the transmission multiplexing mode is SFN; when the DMRS port indicated by the antenna port indication field corresponds to at least two code division multiplexing groups, the first indication is used to indicate that the transmission multiplexing mode is SDM.
  • the DMRS port/port group is determined according to the value of the antenna port indication field, and then the DMRS port configuration pre-configured by the RRC is used to determine whether the DMRS port/port group belongs to the same CDM group or to different multiple CDM groups.
  • the transmission multiplexing mode indicated is SFN; in the case where the aforementioned DMRS port/port group belongs to multiple CDM groups, the transmission multiplexing mode indicated is SDM.
  • the DMRS ports sent by PUSCH through different panels/TRP/Transmission Configuration Indicator (TCI) correspond to different CDM groups; therefore, by limiting the DMRS port group used by SFN to correspond to the same CDM group, it can be used to distinguish whether the indication is SDM or SFN.
  • TCI Transmission Configuration Indicator
  • the DMRS ports ⁇ 0, 2 ⁇ corresponding to the SDM scheme belong to two CDM groups respectively, while the SFN scheme can use the DMRS ports ⁇ 0, 1 ⁇ belonging to the same CDM group for rank 2 transmission.
  • Method 4 The first information is carried in the antenna port indication field (Antenna Ports) (determined according to the DMRS port indication table).
  • the value of the first indication is associated with SDM or SFN.
  • the value of the antenna port indication field is associated with SDM or SFN; therefore, according to the DMRS port indication table, the corresponding transmission multiplexing mode can be determined as SDM or SFN according to the value of the first indication.
  • the terminal can query the DMRS port indication table according to the first indication to determine whether the transmission multiplexing mode is SDM or SFN.
  • the terminal determines the entry corresponding to the value in the DMRS port indication table by querying the DMRS port indication table; since the entries in the DMRS port indication table correspond to the SDM or SFN transmission multiplexing modes respectively, the transmission multiplexing mode corresponding to the entry is the transmission multiplexing mode indicated by the first information.
  • Table 7 shows an example of a DMRS port indication table, wherein the parameter configuration is DMRS type 2, single symbol, three-stream transmission (rank 3).
  • the number of predefined entries in the DMRS port indication table is increased to obtain a DMRS port indication table as shown in Table 7.
  • the transmission multiplexing mode corresponding to the first to third rows is the SDM mode
  • the transmission multiplexing mode corresponding to the fourth to sixth rows is the SFN mode.
  • the indicated transmission multiplexing mode is determined to be SDM by querying the table; for another example, when the value in the antenna port indication field is 3, the indicated transmission multiplexing mode is determined to be SFN by querying the table.
  • a new column may be added to additionally indicate the transmission multiplexing modes corresponding to different entries, as shown in Table 8.
  • the rightmost column in Table 8 is the new column.
  • the indicated transmission multiplexing mode is determined to be SDM by querying the table; for another example, when the value in the antenna port indication field is 5, the indicated transmission multiplexing mode is determined to be SFN by querying the table.
  • Method 5 The first information is carried in a newly added indication field in the DCI.
  • the newly added indication field occupies 1 bit; that is, 1 bit is added to the DCI to indicate the transmission multiplexing mode applied when the terminal performs STxMP.
  • the first indication when the first indication is a first value, the first value is used to indicate that the transmission multiplexing mode is SDM; when the first indication is a second value, the second value is used to indicate that the transmission multiplexing mode is SFN.
  • the first value is 0 and the second value is 1; or, the first value is 1 and the second value is 0.
  • the value corresponding to the first indication when the value corresponding to the first indication is 0, it indicates that the transmission multiplexing mode is SDM; when the value corresponding to the first indication is 1, it indicates that the transmission multiplexing mode is SFN. In another possible implementation, when the value corresponding to the first indication is 1, it indicates that the transmission multiplexing mode is SFN; when the value corresponding to the first indication is 0, it indicates that the transmission multiplexing mode is SDM.
  • the first information is carried in RRC signaling; in some embodiments, the first information is carried in MAC CE; in some embodiments, the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in the newly added indication field of the DCI.
  • RRC signaling in some embodiments, the first information is carried in MAC CE
  • the first indication is carried in the SRS resource set indication field; in some embodiments, the first indication is carried in the antenna port indication field (Antenna Ports) in the DCI; in some embodiments, the first indication is carried in the newly added indication field of the DCI.
  • the method provided in this embodiment solves the problem of how to indicate the SFN scheme when multiple uplink panels are transmitting simultaneously by sending a first indication for indicating the transmission multiplexing mode to the terminal in the STxMP scenario when the terminal is scheduled to use uplink transmission from multiple panels to multiple TRPs. This allows the terminal to flexibly switch between different transmission multiplexing modes.
  • FIG10 shows a block diagram of a transmission multiplexing mode indication device provided by an exemplary embodiment of the present disclosure, the device comprising:
  • the receiving module 420 is used to receive a first indication, where the first indication is used to indicate the transmission multiplexing mode applied when the terminal is scheduled to transmit simultaneously from multiple panels to multiple sending and receiving points TRP.
  • the transmission multiplexing mode includes at least one of the following: single frequency network SFN; space division multiplexing SDM.
  • the first indication is carried in at least one of the following signaling: radio resource control RRC; media access control layer control element MAC CE.
  • the first indication is carried in the antenna port indication field in the DCI.
  • the first indication when the DMRS port indicated by the antenna port indication field corresponds to one code division multiplexing group CDM, the first indication is used to indicate that the transmission multiplexing mode is SFN; when the DMRS port indicated by the antenna port indication field corresponds to at least two CDM groups, the first indication is used to indicate that the transmission multiplexing mode is SDM.
  • the first indication is carried in a sounding reference signal SRS resource set indication field.
  • the first code point when the value of the first indication is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM; when the value of the first indication is a second code point, the second code point is used to indicate that the transmission multiplexing mode is SFN.
  • the first code point is 10, and the second code point is 11; or, the first code point is 11, and the second code point is 10.
  • the apparatus includes a determination submodule 422.
  • the determination submodule 422 is configured to query a DMRS port indication table according to the first indication to determine the transmission multiplexing mode, wherein entries in the DMRS port indication table correspond to SDM or SFN respectively.
  • the first indication is carried in a newly added indication field of the DCI.
  • the newly added indication field occupies 1 bit.
  • the first indication when the first indication is a first value, the first value is used to indicate that the transmission multiplexing mode is SDM; when the first indication is a second value, the second value is used to indicate that the transmission multiplexing mode is SFN.
  • the first value is 0, and the second value is 1; or, the first value is 1, and the second value is 0.
  • FIG11 shows a block diagram of a transmission multiplexing mode indication device provided by an exemplary embodiment of the present disclosure, the device comprising:
  • the sending module 520 is used to send a first indication, where the first indication is used to indicate the transmission multiplexing mode applied when the terminal is scheduled to transmit from multiple panels to multiple sending and receiving points TRP simultaneously.
  • the transmission multiplexing mode includes at least one of the following: single frequency network SFN; space division multiplexing SDM.
  • the first indication is carried in at least one of the following signaling: radio resource control RRC; media access control layer control element MAC CE.
  • the first indication is carried in the antenna port indication field in the DCI.
  • the first indication when the DMRS port indicated by the antenna port indication field corresponds to one code division multiplexing CDM group, the first indication is used to indicate that the transmission multiplexing mode is SFN; when the DMRS port indicated by the antenna port indication field corresponds to at least two CDM groups, the first indication is used to indicate that the transmission multiplexing mode is SDM.
  • the first indication is carried in a sounding reference signal SRS resource set indication field.
  • the first code point when the value of the first indication is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM; when the value of the first indication is a second code point, the second code point is used to indicate that the transmission multiplexing mode is SFN.
  • the first code point is 10, and the second code point is 11; or, the first code point is 11, and the second code point is 10.
  • the value of the first indication is associated with SDM or SFN.
  • the first indication is carried in a newly added indication field of the DCI.
  • the newly added indication field occupies 1 bit.
  • the first indication when the first indication is a first value, the first value is used to indicate that the transmission multiplexing mode is SDM; when the first indication is a second value, the second value is used to indicate that the transmission multiplexing mode is SFN.
  • the first value is 0, and the second value is 1; or, the first value is 1, and the second value is 0.
  • FIG12 shows a schematic diagram of the structure of a terminal 1000 provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 1001, a receiver 1002, a transmitter 1003, a memory 1004 and a bus 1005.
  • the processor 1001 includes one or more processing cores.
  • the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 may be implemented as a communication component, which may be a communication chip.
  • the memory 1004 is connected to the processor 1001 via a bus 1005 .
  • the memory 1004 may be used to store at least one instruction, and the processor 1001 may be used to execute the at least one instruction to implement each step in the above method embodiment.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: a magnetic disk or an optical disk, an Electrically Erasable Programmable Read Only Memory (EEPROM), an Erasable Programmable Read Only Memory (EPROM), a Static Random-Access Memory (SRAM), a Read Only Memory (ROM), a magnetic storage device, a flash memory, and a Programmable Read Only Memory (PROM).
  • a non-temporary computer-readable storage medium including instructions is also provided, such as a memory including instructions, and the instructions can be executed by a processor of a terminal to complete the above-mentioned transmission multiplexing mode indication method.
  • the non-temporary computer-readable storage medium can be a ROM, a random access memory (Random-Access Memory, RAM), a compact disc read-only memory (Compact Disc Read Only Memory, CD-ROM), a magnetic tape, a floppy disk, and an optical data storage device, etc.
  • Fig. 13 is a block diagram showing a network device 1100 according to an exemplary embodiment.
  • the network device 1100 may be a base station.
  • the network device 1100 may include: a processor 1101, a receiver 1102, a transmitter 1103 and a memory 1104.
  • the receiver 1102, the transmitter 1103 and the memory 1104 are respectively connected to the processor 1101 via a bus.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes the transmission multiplexing mode indication method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 1104 can be used to store software programs and modules. Specifically, the memory 1104 can store an operating system 11041 and an application module 11042 required for at least one function.
  • the receiver 1102 is used to receive communication data sent by other devices, and the transmitter 1103 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement the transmission multiplexing method provided by the above-mentioned method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer program product, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the transmission multiplexing mode indication method provided in the above-mentioned method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输复用方式的指示方法、装置、介质及产品,属于通信领域。该方法包括:接收第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。该方法用于支持基于多天线面板的终端上行同时传输时应用的传输复用方式之间的动态切换指示,更好更灵活地支持传输复用方案的指示和动态切换。

Description

传输复用方式的指示方法、装置、介质及产品 技术领域
本公开涉及通信领域,特别涉及一种传输复用方式的指示方法、装置、介质及产品。
背景技术
为了保证传输的可靠性和吞吐率,相关技术提供了通过终端上的多个天线面板(Panel)向多个基站的发送和接收点(Transmission and Reception Point,TRP)方向实现多天线面板上行同时传输(Simultaneous Transmission via Multiple Panels,STxMP)。
相关技术中,通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向多个基站的传输和接收点(Transmission and Reception Point,TRP)方向传输,在R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,然而这种方法传输时延较大。
因此,引入其它的传输复用方式以及对传输复用方式的切换指示问题需要解决。
发明内容
本公开实施例提供了一种传输复用方式的指示方法、装置、介质及产品。技术方案如下:
根据本公开实施例的一个方面,提供了一种传输复用方式的指示方法,该方法由终端执行,该方法包括:
接收第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
根据本公开实施例的一个方面,提供了一种传输复用方式的指示方法,该方法由网络设备执行,该方法包括:
发送第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发 送和接收点TRP的多面板同时传输时应用的传输复用方式。
根据本公开实施例的另一个方面,提供了一种传输复用方式的指示装置,该装置包括:
接收模块,用于接收第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
根据本公开实施例的另一个方面,提供了一种传输复用方式的指示装置,该装置包括:
发送模块,用于发送第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
根据本公开实施例的另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一方面,提供了一种网络设备,该网络设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种计算机程序产品(或者计算机程序),该计算机程序产品(或者计算机程序)包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上各个方面的传输复用方式的指示方法。
本公开实施例提供的技术方案可以包括以下有益效果:
为了支持基于多天线面板的终端上行同时传输时应用的传输复用方式之间的动态切换指示,通过第一指示来指示传输复用方式,从而使得终端调度为从多面板面向多TRP的多面板同时传输时可以灵活切换传输复用方式。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开一个示例性实施例提供的通信系统的示意图;
图2示出了本公开一个示例性实施例提供的通信系统的示意图;
图3示出了本公开一个示例性实施例提供的上行传输流程的示意图;
图4示出了本公开一个示例性实施例提供的上行传输流程的示意图;
图5示出了本公开一个示例性实施例提供的一种传输方案的示意图;
图6示出了本公开一个示例性实施例提供的一种传输方案的示意图;
图7示出了本公开一个示例性实施例提供的DCI信息域示意图;
图8示出了本公开一个示例性实施例提供的传输复用方式的指示方法的流程图;
图9示出了本公开一个示例性实施例提供的传输复用方式的指示方法的流程图;
图10示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框图;
图11示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框图;
图12示出了本公开一个示例性实施例提供的终端的结构示意图;
图13示出了本公开一个示例性实施例提供的网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下 示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了本公开一示例性实施例提供的通信系统的示意图,该通信系统可以包括:网络设备12和终端14,网络设备12包括TRP1、TRP2。
网络设备12可以是基站,基站是一种为终端14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进式基站(eNodeB,eNB);在5G NR系统中,称为下一代基站(gNodeB,gNB)。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端14提供无线通信功能的装置统称为网络设备12。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
示例性的,网络设备12与终端14之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指终端14向网络设备12发送信号;下行 通信是指网络设备12向终端14发送信号。
上行的PUSCH传输向多个基站的TRP方向传输,在第三代合作伙伴项目(Third Generation Partnership Project,3GPP)的版本R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
对于上行来讲,面向不同TRP的PUSCH信道,实际经过的信道可能空间特性差别很大,因此认为不同的发送方向PUSCH信道的空间接收参数不同。
在R18的增强目标中,主要希望通过终端的多个天线面板向多个TRP方向实现同时协作传输用来增加传输的可靠性和吞吐率,同时可以有效的降低多TRP下的传输时延,但是要求终端具备同时发送多波束的能力。PUSCH的传输可以基于单个物理下行控制信道(Physical Downlink Control Channel,PDCCH)即单下行控制信息(Single Downlink Control Information,S-DCI)调度的多天线面板向多TRP传输。
如图1所示,由一个DCI向终端直接调度或间接调度预编码矩阵1和预编码矩阵2。终端14基于预编码矩阵1使用天线面板1向TRP1发送一层或更多层的上行数据。终端14基于预编码矩阵2使用天线面板2向TRP2发送一层或更多层的上行数据。
PUSCH的传输也可以基于不同PDCCH,即多下行控制信息(Multi-Downlink Control Information,M-DCI)调度的多天线面板向多TRP传输,如图2所示。
TRP 1通过PDCCH 1向终端14发送第一个DCI,调度终端14使用天线面板1向TRP 1发送PUSCH 1;TRP 2通过PDCCH 2向终端14发送第二个DCI,调度终端14使用天线面板2向TRP 2发送PUSCH 2。
上述TRP1和TRP2是同一个小区的两个TRP。
在STxMP场景下,上行传输流程包括:基于码本的上行传输和基于非码本的上行传输。
图3示出了本公开一示例性实施例提供的基于码本的上行PUSCH传输的示意图,该示意图包括终端22和网络设备24。
在基于码本的上行传输流程中,网络设备24首先发送探测参考信号(Sounding Reference Signal,SRS)资源配置给终端22,SRS资源配置包括至少一个SRS资源集以及每个SRS资源的相关配置,之后终端22基于SRS资源配 置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI和TPMI,最后终端22基于TPMI和SRI发送PUSCH给网络设备24。
图4示出了本公开一示例性实施例提供的基于非码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于非码本的上行传输流程中,预编码矩阵不再限定在固定的候选集中。网络设备24首先发送信道状态信息参考信号(Channel State Information-Reference Symbol,CSI-RS)以及SRS资源配置信息给终端22,SRS资源配置包括至少一个SRS资源集以及每个SRS资源的相关配置,之后终端22基于CSI-RS的测量结果通过奇异值分解等算法自行计算得到可能使用的至少一个预编码矩阵,然后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI,最后终端22基于SRI在可能使用的预编码矩阵中确定本次使用的预编码矩阵,基于SRI和本次使用的预编码矩阵发送PUSCH给网络设备24。
图5示出了本公开一示例性实施例提供的SFN传输复用方式的示意图,该示意图包括网络设备12和终端14。
SFN传输复用方式中,PUSCH的一个TB通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
终端14通过SFN的传输方式,即同时向网络设备12的多个TRP发送TB,增加了网络设备12接收到数据的概率,以实现上行的可靠传输。
对于SFN的传输方式,循环前缀的正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM)和离散傅立叶变换扩频的正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)两种上行波形都可以支持。
其中,CP-OFDM波形用于NR系统中物理层的上行和下行链路,适用于高吞吐量的场景,采用多输入多输出(Multiple Input Multiple Output,MIMO)传输方式,在资源块(Resource Block,RB)中提供高频谱包装(spectral packing)效率,可以在密集城市中最大限度利用网络容量;DFT-S-OFDM波形用于NR系统中物理层的上行链路,适用于功率受限的场景,采用单层传输的传输方式,由 于DFT-S-OFDM波形的峰均功率比(Peak to Average Power Ratio,PAPR)比CP-OFDM低,因此更有利于小区覆盖,更适合小区边缘用户传输。
图6示出了本公开一示例性实施例提供的一种传输复用方式的示意图,该示意图包括网络设备12和终端14。
空分复用(Space Division Multiplexing,SDM)传输复用方式,PUSCH的一个TB通过不同面板上分配的各自对应的解调参考信号(Demodulation Reference Signal,DMRS)端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
可选地,SDM存在两种可能的类型:
SDM-A:PUSCH的一个TB的不同部分分别通过不同面板上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
SDM-B:PUSCH的对应不同冗余版本(Redundancy Version,RV)的同一个TB的重复通过不同面板上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
根据上述图3和图4可知,网络设备向终端需要预先发送SRS资源配置。在STxMP场景下,可能存在如下两种配置方式:
第一种可能的SRS资源配置方式:网络设备向终端配置两个SRS资源集的配置,两个SRS资源集包括第一SRS资源集和第二SRS资源集,不同SRS资源集与不同天线面板信息相关联。
该两个SRS资源集的用途均为码本或均为非码本。
可选地,不同天线面板信息包括如下信息中的至少一种:
·不同天线面板,天线面板数可以是2或4个,本申请实施例中默认最大为2个;
·不同TRP;
·不同TCI状态;
·不同TO。
在一些实施例中,第一SRS资源集与终端的第一天线面板关联;第二SRS 资源集与终端的第二天线面板关联。
在一些实施例中,第一SRS资源集与网络设备的第一TRP关联,第一TRP向第一天线面板发送DCI;第二SRS资源集与网络设备的第二TRP关联,第二TRP向第二天线面板发送DCI。
在一些实施例中,第一SRS资源集与终端的第一TCI状态关联,第一TCI状态用于指示向第一TRP发送的波束;第二SRS资源集与终端的第二TCI状态关联,第二TCI状态用于指示向第二TRP发送的波束。
在一些实施例中,第一SRS资源集与终端的第一TO关联,第一TO用于向第一TRP发送SRS;第二SRS资源集与终端的第二TO关联,第二TO用于向第二TRP发送SRS。
第二种可能的SRS资源配置方式:网络设备向终端配置一个SRS资源集的配置,该SRS资源集包括第一SRS资源子集和第二SRS资源子集,不同SRS资源子集与不同天线面板信息相关联。
该SRS资源集的用途为码本或非码本。
可选地,不同天线面板信息包括如下信息中的至少一种:
·不同天线面板,天线面板数可以是2或4个,本申请实施例中默认最大为2个;
·不同TRP;
·不同TCI状态;
·不同TO。
在一些实施例中,第一SRS资源子集与终端的第一天线面板关联;第二SRS资源子集与终端的第二天线面板关联。
在一些实施例中,第一SRS资源子集与网络设备的第一TRP关联,第一TRP向第一天线面板发送DCI;第二SRS资源子集与网络设备的第二TRP关联,第二TRP向第二天线面板发送DCI。
在一些实施例中,第一SRS资源子集与终端的第一TCI状态关联,第一TCI状态用于指示向第一TRP发送的波束;第二SRS资源子集与终端的第二TCI状态关联,第二TCI状态用于指示向第二TRP发送的波束。
在一些实施例中,第一SRS资源子集与终端的第一TO关联,第一TO用于向第一TRP发送SRS;第二SRS资源子集与终端的第二TO关联,第二TO用于向第二TRP发送SRS。
针对上述两种SRS资源配置方式,DCI中的SRS资源集指示域也需要重新 设计,以便在STxMP场景下,网络设备能够向终端指示单TRP(single-TRP,s-TRP)或多TRP(mutli-TRP,m-TRP)场景下,需要关联的SRS资源集以及SRI/TPMI域。
图7示出了本公开一个示例性实施例提供的DCI信息域示意图,结合参考图7,DCI中包括多个信息域,该多个信息域中与本申请有关的域包括:SRS资源集指示域(2比特),第一个SRI域(x1比特),第二个SRI域(x2比特),第一个TPMI域(y1比特),第二个TPMI域(y2比特)。其中,对于非码本的情况,使用SRS资源集指示域和两个SRI域;对于码本的情况,使用SRS资源集指示域、两个SRI域和两个TPMI域。x1、x2、y1和y2为可变值。
在当前R17协议中,针对TDM传输方式下的协作传输(非同时传输),SRS资源集指示域中的各个码点的含义设计如下表一所示:
表一
Figure PCTCN2022121480-appb-000001
表一中的每个码点含义如下:
在SRS资源集指示域的码点为00时,用于指示终端采用s-TRP模式向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为01时,用于指示终端采用s-TRP模式向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为10时,用于指示终端采用m-TRP模式在第一TO先向TRP1传输PUSCH,关联第一个SRS资源集;再在第二TO向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI。
在SRS资源集指示域的码点为11时,用于指示终端采用m-TRP模式在第一TO先向TRP2传输PUSCH,关联第二个SRS资源集;再在第二TO向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI。
分析表一可知,码点10是针对先向TRP1发送PUSCH,再向TRP2发送PUSCH的TDM协作方式设计的,码点11是针对先向TRP2发送PUSCH,再向TRP1发送PUSCH的TDM协作方式设计的。而在STxMP场景下,终端需要同时向TRP1和TRP2发送PUSCH,此时表一中的码点10和码点11将失去指示意义,成为冗余码点。
图8示出了本公开一个示例性实施例提供的传输复用方式的指示方法的流程图,该方法应用于图1所示的通信系统的终端中,该方法包括:
步骤220,接收第一指示。
示例性的,终端接收网络设备发送的第一指示。第一指示用于指示终端调度为从多面板面向多TRP的多面板同时传输时应用的传输复用方式。
示例性的,多面板同时传输为STxMP传输方式。
示例性的,传输复用方式包括如下至少之一:单频网(Single-Frequency Network,SFN);空分复用(Space Division Multiplexing,SDM)。
也即,第一指示用于指示终端在上行STxMP传输过程中使用SFN或SDM的传输方式进行传输。
在一些实施例中,第一信息携带在无线资源控制(Radio Resource Control,RRC)信令中;在一些实施例中,第一信息携带在媒体接入控制层控制元素 (Medium Access Control Control Element,MAC CE)信令中;在一些实施例中,第一指示携带在SRS资源集指示域中;在一些实施例中,第一指示携带在DCI中的天线端口指示域(Antenna Ports)中;在一些实施例中,第一指示携带在DCI的新增指示域中。
方法一:第一指示携带在信令中。
示例性的,第一指示携带在如下信令中的至少之一:RRC;MAC CE。
即,终端接收网络设备发送的RRC信令,该RRC信令中携带有第一信息,该第一信息指示终端应用SFN方式或SDM方式进行STxMP。
或者,终端接收网络设备发送的MAC CE,该MAC CE中携带有第一信息,该第一信息指示终端应用SFN方式或SDM方式进行STxMP。
方法二:第一信息携带在SRS资源集指示域中。
通过前述对表一的介绍可知,在STxMP场景中,由于终端需要同时向TRP1和TRP2发送PUSCH,因此表一中的码点10和码点11并不需要被使用,因此可以将冗余的码点10和码点11用于指示终端的传输复用方式。
示例性的,在第一指示的取值为第一码点的情况下,第一码点用于指示传输复用方式为SDM;在第一指示域的取值为第二码点的情况下,第二码点用于指示传输复用方式为SFN。
示例性的,第一码点为10,第二码点为11;或,第一码点为11,第二码点为10。
也即,在一种可能的情况下,在第一指示对应的码点为10的情况下,指示传输复用方式为SDM;在第一指示对应的码点为11的情况下,指示传输复用方式为SFN。在另一种可能的情况下,在第一指示对应的码点为10的情况下,指示传输复用方式为SFN;在第一指示对应的码点为11的情况下,指示传输复用方式为SDM。
在一种可能的设计中,以第一码点为10,第二码点为11为例,展示本实施例中SRS资源集指示域的部分码点的可能设计,如表二所示:
表二
Figure PCTCN2022121480-appb-000002
方法三:第一信息携带在天线端口指示域(Antenna Ports)中(根据CDM组数量判断)。
示例性的,在天线端口指示域指示的DMRS端口对应一个码分复用组的情况下,第一指示用于指示传输复用方式为SFN;在天线端口指示域指示的DMRS端口对应至少两个码分复用组的情况下,第一指示用于指示传输复用方式为SDM。
即,根据天线端口指示域的取值确定DMRS端口/端口组,再根据RRC预先配置的DMRS端口配置确定该DMRS端口/端口组属于同一个CDM组还是属于不同的多个CDM组。在前述DMRS端口/端口组属于同一个CDM组的情况下,代表指示的传输复用方式为SFN;在前述DMRS端口/端口组属于多个CDM组的情况下,代表指示的传输复用方式为SDM。
也即,SDM方案中PUSCH通过不同面板/TRP/传输配置指示(Transmission Configuration Indicator,TCI)发送的DMRS端口对应不同的CDM组;因此,通过限制SFN所使用的DMRS端口组对应同一个CDM组可以用来区分指示的为SDM或SFN。
例如,在秩(RANK)等于2的情况下,SDM方案对应的DMRS端口{0,2}分别属于2个CDM组,而SFN方案中可以使用属于同一个CDM组的DMRS端口{0,1}来进行秩为2的传输。
方法四:第一信息携带在天线端口指示域(Antenna Ports)中(根据DMRS端口指示表格判断)。
示例性的,根据第一指示查询DMRS端口指示表格确定传输复用方式,DMRS端口指示表格中的条目分别对应SDM或SFN。
即,终端在获取到天线端口指示域的取值后,通过查询DMRS端口指示表格来确定该取值在DMRS端口指示表格中对应的条目;由于DMRS端口指示表格中的条目分别与SDM或SFN传输复用方式对应,因此该条目对应的传输复用方式即为第一信息所指示的传输复用方式。
表三示出了DMRS端口指示表格的一个示例。其中,参数配置为DMRS类型2,单符号,三流传输(秩为3)。
表三
Figure PCTCN2022121480-appb-000003
Figure PCTCN2022121480-appb-000004
在一种可能的实施方式中,增加DMRS端口指示表格中预定义的条目(entry)数目,得到如表三所示的DMRS端口指示表格。其中,第一行至第三行对应的传输复用方式为SDM方式,第四行至第六行对应的传输复用方式为SFN方式。例如,当天线端口指示域中的取值为0时,通过查询该表确定指示的传输复用方式为SDM;再例如,当天线端口指示域中的取值为3时,通过查询该表确定指示的传输复用方式为SFN。
可选地,在表三的基础上,可以新增一列用于额外指示不同的条目所对应的传输复用方式,如表四所示。表四中的最右列即为新增列。
表四
Figure PCTCN2022121480-appb-000005
以表四为例,当天线端口指示域中的取值为1时,通过查询该表确定指示的传输复用方式为SDM;再例如,当天线端口指示域中的取值为5时,通过查询该表确定指示的传输复用方式为SFN。
方法五:第一信息携带在DCI中的新增指示域中。
在一些实施例中,该新增指示域占1比特;即,在DCI中新增1比特用于指示终端进行STxMP时应用的传输复用方式。
在一些实施例中,在第一指示为第一取值的情况下,第一取值用于指示传输复用方式为SDM;在第一指示为第二取值的情况下,第二取值用于指示传输复用方式为SFN。
示例性的,第一取值为0,第二取值为1;或,第一取值为1,第二取值为 0。
也即,在一种可能的实施方式中,在第一指示对应的取值为0的情况下,指示传输复用方式为SDM;在第一指示对应的取值为1的情况下,指示传输复用方式为SFN。在另一种可能的实施方式中,在第一指示对应的取值为1的情况下,指示传输复用方式为SFN;在第一指示对应的取值为0的情况下,指示传输复用方式为SDM。
在一种可能的设计中,以第一取值为0,第二取值为1为例,展示本实施例中新增指示域的可能设计,如表五所示:
表五
新增指示域取值 传输复用方式
0 SDM
1 SFN
需要注意的是,上述各个方法可以分别成为一个单独的实施例,也可以组合成为实施例。在一些实施例中,第一信息携带在RRC信令中;在一些实施例中,第一信息携带在MAC CE中;在一些实施例中,第一指示携带在SRS资源集指示域中;在一些实施例中,第一指示携带在DCI中的天线端口指示域(Antenna Ports)中;在一些实施例中,第一指示携带在DCI的新增指示域中。本公开对此不加以限制。
综上所述,本实施例提供的方法,通过在STxMP场景下,在调度终端使用从多面板面向多TRP的上行传输的情况下,接收用于指示传输复用方式的第一指示,使得终端可以在不同的传输复用方式之间灵活切换。
图9示出了本公开一个示例性实施例提供的传输复用方式的指示方法的流程图,该方法应用于图1所示的通信系统的网络设备中,该方法包括:
步骤320,发送第一指示。
示例性的,网络设备向终端发送第一指示。第一指示用于指示终端调度为从多面板面向多TRP的多面板同时传输时应用的传输复用方式。
示例性的,多面板同时传输为STxMP传输方式。
示例性的,传输复用方式包括如下至少之一:单频网(Single Frequency Network,SFN);空分复用(Space Division Multiplexing,SDM)。
也即,第一指示用于指示终端在上行STxMP传输过程中使用SFN或SDM的传输方式进行传输。
在一些实施例中,第一信息携带在无线资源控制(Radio Resource Control,RRC)信令中;在一些实施例中,第一信息携带在媒体接入控制层控制元素(Medium Access Control Control Element,MAC CE)信令中;在一些实施例中,第一指示携带在SRS资源集指示域中;在一些实施例中,第一指示携带在DCI中的天线端口指示域(Antenna Ports)中;在一些实施例中,第一指示携带在DCI的新增指示域中。
方法一:第一指示携带在信令中。
示例性的,第一指示携带在如下信令中的至少之一:RRC;MAC CE。
即,网络设备向终端发送RRC信令,该RRC信令中携带有第一信息,该第一信息指示终端应用SFN传输复用方式或SDM传输复用方式进行STxMP。
或者,网络设备向终端发送MAC CE,该MAC CE中携带有第一信息,该第一信息指示终端应用SFN传输复用方式或SDM传输复用方式进行STxMP。
方法二:第一信息携带在SRS资源集指示域中。
通过前述对表一的介绍可知,在STxMP场景中,由于终端需要同时向TRP1和TRP2发送PUSCH,因此表一中的码点10和码点11并不需要被使用,因此可以将冗余的码点10和码点11用于指示终端的传输复用方式。
示例性的,在第一指示的取值为第一码点的情况下,第一码点用于指示传输复用方式为SDM;在第一指示域的取值为第二码点的情况下,第二码点用于指示传输复用方式为SFN。
示例性的,第一码点为10,第二码点为11;或,第一码点为11,第二码点为10。
也即,在一种可能的情况下,在第一指示对应的码点为10的情况下,指示传输复用方式为SDM;在第一指示对应的码点为11的情况下,指示传输复用方式为SFN。在另一种可能的情况下,在第一指示对应的码点为10的情况下,指示传输复用方式为SFN;在第一指示对应的码点为11的情况下,指示传输复用方式为SDM。
在一种可能的设计中,以第一码点为10,第二码点为11为例,展示本实施例中SRS资源集指示域的部分码点的可能设计,如表六所示:
表六
Figure PCTCN2022121480-appb-000006
Figure PCTCN2022121480-appb-000007
方法三:第一信息携带在天线端口指示域(Antenna Ports)中(根据CDM组数量判断)。
示例性的,在天线端口指示域指示的DMRS端口对应一个码分复用组的情况下,第一指示用于指示传输复用方式为SFN;在天线端口指示域指示的DMRS端口对应至少两个码分复用组的情况下,第一指示用于指示传输复用方式为SDM。
即,根据天线端口指示域的取值确定DMRS端口/端口组,再根据RRC预先配置的DMRS端口配置确定该DMRS端口/端口组属于同一个CDM组还是属于不同的多个CDM组。在前述DMRS端口/端口组属于同一个CDM组的情况下,代表指示的传输复用方式为SFN;在前述DMRS端口/端口组属于多个CDM组的情况下,代表指示的传输复用方式为SDM。
也即,SDM方案中PUSCH通过不同面板/TRP/传输配置指示(Transmission Configuration Indicator,TCI)发送的DMRS端口对应不同的CDM组;因此,通过限制SFN所使用的DMRS端口组对应同一个CDM组可以用来区分指示的为SDM或SFN。
例如,在秩(RANK)等于2的情况下,SDM方案对应的DMRS端口{0,2}分别属于2个CDM组,而SFN方案中可以使用属于同一个CDM组的DMRS端口{0,1}来进行秩为2的传输。
方法四:第一信息携带在天线端口指示域(Antenna Ports)中(根据DMRS端口指示表格判断)。
示例性的,第一指示的取值与SDM或SFN相关联。
即,在DMRS端口指示表格中,天线端口指示域的值与SDM或SFN相关联;因此,根据DMRS端口指示表格可以根据第一指示的取值来确定其对应的传输复用方式为SDM或SFN。
也即,由于DMRS端口指示表格中的条目分别对应SDM或SFN,因此终端可以根据第一指示查询DMRS端口指示表格确定传输复用方式为SDM或SFN。
也即,终端在获取到天线端口指示域的取值后,通过查询DMRS端口指示表格来确定该取值在DMRS端口指示表格中对应的条目;由于DMRS端口指示 表格中的条目分别与SDM或SFN传输复用方式对应,因此该条目对应的传输复用方式即为第一信息所指示的传输复用方式。
表七示出了DMRS端口指示表格的一个示例。其中,参数配置为DMRS类型2,单符号,三流传输(秩为3)。
表七
Figure PCTCN2022121480-appb-000008
在一种可能的实施方式中,增加DMRS端口指示表格中预定义的条目(entry)数目,得到如表七所示的DMRS端口指示表格。其中,第一行至第三行对应的传输复用方式为SDM方式,第四行至第六行对应的传输复用方式为SFN方式。例如,当天线端口指示域中的取值为0时,通过查询该表确定指示的传输复用方式为SDM;再例如,当天线端口指示域中的取值为3时,通过查询该表确定指示的传输复用方式为SFN。
可选地,在表七的基础上,可以新增一列用于额外指示不同的条目所对应的传输复用方式,如表八所示。表八中的最右列即为新增列。
表八
Figure PCTCN2022121480-appb-000009
以表八为例,当天线端口指示域中的取值为1时,通过查询该表确定指示的传输复用方式为SDM;再例如,当天线端口指示域中的取值为5时,通过查询该表确定指示的传输复用方式为SFN。
方法五:第一信息携带在DCI中的新增指示域中。
在一些实施例中,该新增指示域占1比特;即,在DCI中新增1比特用于指示终端进行STxMP时应用的传输复用方式。
在一些实施例中,在第一指示为第一取值的情况下,第一取值用于指示传输复用方式为SDM;在第一指示为第二取值的情况下,第二取值用于指示传输复用方式为SFN。
示例性的,第一取值为0,第二取值为1;或,第一取值为1,第二取值为0。
也即,在一种可能的实施方式中,在第一指示对应的取值为0的情况下,指示传输复用方式为SDM;在第一指示对应的取值为1的情况下,指示传输复用方式为SFN。在另一种可能的实施方式中,在第一指示对应的取值为1的情况下,指示传输复用方式为SFN;在第一指示对应的取值为0的情况下,指示传输复用方式为SDM。
在一种可能的设计中,以第一取值为0,第二取值为1为例,展示本实施例中新增指示域的可能设计,如表九所示:
表九
新增指示域取值 传输复用方式
0 SDM
1 SFN
需要注意的是,上述各个方法可以分别成为一个单独的实施例,也可以组合成为实施例。在一些实施例中,第一信息携带在RRC信令中;在一些实施例中,第一信息携带在MAC CE中;在一些实施例中,第一指示携带在SRS资源集指示域中;在一些实施例中,第一指示携带在DCI中的天线端口指示域(Antenna Ports)中;在一些实施例中,第一指示携带在DCI的新增指示域中。本公开对此不加以限制。
综上所述,本实施例提供的方法,通过在STxMP场景下,在调度终端使用从多面板面向多TRP的上行传输的情况下,向终端发送用于指示传输复用方式的第一指示,解决了在上行多面板同时传输时如何指示SFN方案,使得终端可以在不同的传输复用方式之间灵活切换。
图10示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框图,该装置包括:
接收模块420,用于接收第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
在本实施例的一种可能设计中,所述传输复用方式包括如下至少之一:单频网SFN;空分复用SDM。
在本实施例的一种可能设计中,所述第一指示携带在如下信令中的至少之一:无线资源控制RRC;媒体接入控制层控制元素MAC CE。
在本实施例的一种可能设计中,所述第一指示携带在DCI中的天线端口指示域中。
在本实施例的一种可能设计中,在所述天线端口指示域指示的DMRS端口对应一个码分复用组CDM的情况下,所述第一指示用于指示所述传输复用方式为SFN;在所述天线端口指示域指示的DMRS端口对应至少两个CDM组的情况下,所述第一指示用于指示所述传输复用方式为SDM。
在本实施例的一种可能设计中,所述第一指示携带在探测参考信号SRS资源集指示域中。
在本实施例的一种可能设计中,在所述第一指示的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,所述第一码点为10,所述第二码点为11;或,所述第一码点为11,所述第二码点为10。
在本实施例的一种可能设计中,所述装置包括确定子模块422。所述确定子模块422,用于根据所述第一指示查询DMRS端口指示表格确定所述传输复用方式,所述DMRS端口指示表格中的条目分别对应SDM或SFN。
在本实施例的一种可能设计中,所述第一指示携带在DCI的新增指示域中。
在本实施例的一种可能设计中,所述新增指示域占1比特。
在本实施例的一种可能设计中,在所述第一指示为第一取值的情况下,所述第一取值用于指示所述传输复用方式为SDM;在所述第一指示为第二取值的情况下,所述第二取值用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,所述第一取值为0,所述第二取值为1;或,所述第一取值为1,所述第二取值为0。
图11示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框 图,该装置包括:
发送模块520,用于发送第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
在本实施例的一种可能设计中,所述传输复用方式包括如下至少之一:单频网SFN;空分复用SDM。
在本实施例的一种可能设计中,所述第一指示携带在如下信令中的至少之一:无线资源控制RRC;媒体接入控制层控制元素MAC CE。
在本实施例的一种可能设计中,所述第一指示携带在DCI中的天线端口指示域中。
在本实施例的一种可能设计中,在所述天线端口指示域指示的DMRS端口对应一个码分复用CDM组的情况下,所述第一指示用于指示所述传输复用方式为SFN;在所述天线端口指示域指示的DMRS端口对应至少两个CDM组的情况下,所述第一指示用于指示所述传输复用方式为SDM。
在本实施例的一种可能设计中,所述第一指示携带在探测参考信号SRS资源集合指示域中。
在本实施例的一种可能设计中,在所述第一指示的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,所述第一码点为10,所述第二码点为11;或,所述第一码点为11,所述第二码点为10。
在本实施例的一种可能设计中,所述第一指示的取值与SDM或SFN相关联。
在本实施例的一种可能设计中,所述第一指示携带在DCI的新增指示域中。
在本实施例的一种可能设计中,所述新增指示域占1比特。
在本实施例的一种可能设计中,在所述第一指示为第一取值的情况下,所述第一取值用于指示所述传输复用方式为SDM;在所述第一指示为第二取值的情况下,所述第二取值用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,所述第一取值为0,所述第二取值为1;或,所述第一取值为1,所述第二取值为0。
图12示出了本公开一个示例性实施例提供的终端1000的结构示意图,该 终端包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read Only Memory,PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述传输复用方式的指示方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(Random-Access Memory,RAM)、紧凑型光盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。
图13是根据一示例性实施例示出的一种网络设备1100的框图,该网络设备1100可以是基站。
网络设备1100可以包括:处理器1101、接收机1102、发射机1103和存储器1104。接收机1102、发射机1103和存储器1104分别通过总线与处理器1101连接。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块以执行本公开实施例提供的传输复用方式的指示方法。存储器1104可用于存储软件程序以及模块。具体的,存储器1104可存储操作系统11041、至少一个功能所需的应用程序模块11042。接收机1102用于接收其他设备发送的通信数据,发射机1103用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,计算机可读存 储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的传输复用方式的指示方法。
本公开一示例性实施例还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方法实施例提供的传输复用方式的指示方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (33)

  1. 一种传输复用方式的指示方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
  2. 根据权利要求1所述的方法,其特征在于,所述传输复用方式包括如下至少之一:
    单频网SFN;
    空分复用SDM。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示携带在如下信令中的至少之一:
    无线资源控制RRC;
    媒体接入控制层控制元素MAC CE。
  4. 根据权利要求2所述的方法,其特征在于,
    所述第一指示携带在DCI中的天线端口指示域中。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述天线端口指示域指示的DMRS端口对应一个码分复用CDM组的情况下,所述第一指示用于指示所述传输复用方式为SFN;
    在所述天线端口指示域指示的DMRS端口对应至少两个CDM组的情况下,所述第一指示用于指示所述传输复用方式为SDM。
  6. 根据权利要求2所述的方法,其特征在于,
    所述第一指示携带在探测参考信号SRS资源集指示域中。
  7. 根据权利要求6所述的方法,其特征在于,
    在所述第一指示的取值为第一码点的情况下,所述第一码点用于指示所述 传输复用方式为SDM;
    在所述第一指示的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一码点为10,所述第二码点为11;
    或,
    所述第一码点为11,所述第二码点为10。
  9. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述第一指示查询DMRS端口指示表格确定所述传输复用方式,所述DMRS端口指示表格中的条目分别对应SDM或SFN。
  10. 根据权利要求2所述的方法,其特征在于,
    所述第一指示携带在DCI的新增指示域中。
  11. 根据权利要求10所述的方法,其特征在于,
    所述新增指示域占1比特。
  12. 根据权利要求11所述的方法,其特征在于,
    在所述第一指示为第一取值的情况下,所述第一取值用于指示所述传输复用方式为SDM;
    在所述第一指示为第二取值的情况下,所述第二取值用于指示所述传输复用方式为SFN。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一取值为0,所述第二取值为1;
    或,
    所述第一取值为1,所述第二取值为0。
  14. 一种传输复用方式的指示方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    发送第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
  15. 根据权利要求14所述的方法,其特征在于,所述传输复用方式包括如下至少之一:
    单频网SFN;
    空分复用SDM。
  16. 根据权利要求15所述的方法,其特征在于,所述第一指示携带在如下信令中的至少之一:
    无线资源控制RRC;
    媒体接入控制层控制元素MAC CE。
  17. 根据权利要求15所述的方法,其特征在于,
    所述第一指示携带在DCI中的天线端口指示域中。
  18. 根据权利要求17所述的方法,其特征在于,
    在所述天线端口指示域指示的DMRS端口对应一个码分复用CDM组的情况下,所述第一指示用于指示所述传输复用方式为SFN;
    在所述天线端口指示域指示的DMRS端口对应至少两个CDM组的情况下,所述第一指示用于指示所述传输复用方式为SDM。
  19. 根据权利要求15所述的方法,其特征在于,
    所述第一指示携带在探测参考信号SRS资源集合指示域中。
  20. 根据权利要求19所述的方法,其特征在于,
    在所述第一指示的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;
    在所述第一指示的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一码点为10,所述第二码点为11;
    或,
    所述第一码点为11,所述第二码点为10。
  22. 根据权利要求17所述的方法,其特征在于,
    所述第一指示的取值与SDM或SFN相关联。
  23. 根据权利要求15所述的方法,其特征在于,
    所述第一指示携带在DCI的新增指示域中。
  24. 根据权利要求23所述的方法,其特征在于,
    所述新增指示域占1比特。
  25. 根据权利要求24所述的方法,其特征在于,
    在所述第一指示为第一取值的情况下,所述第一取值用于指示所述传输复用方式为SDM;
    在所述第一指示为第二取值的情况下,所述第二取值用于指示所述传输复用方式为SFN。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第一取值为0,所述第二取值为1;
    或,
    所述第一取值为1,所述第二取值为0。
  27. 一种传输复用方式的指示装置,其特征在于,所述装置包括:
    接收模块,用于接收第一指示,所述第一指示用于指示所述终端调度为从多 面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
  28. 一种传输复用方式的指示装置,其特征在于,所述装置包括:
    发送模块,用于发送第一指示,所述第一指示用于指示所述终端调度为从多面板面向多发送和接收点TRP的多面板同时传输时应用的传输复用方式。
  29. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至13任一所述的传输复用方式的指示方法。
  30. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求14至26任一所述的传输复用方式的指示方法。
  31. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至13任一所述的传输复用方式的指示方法,或者,如权利要求14至26任一所述的传输复用方式的指示方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至13任一所述的传输复用方式的指示方法,或者,如权利要求14至26任一所述的传输复用方式的指示方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至13任一所述的传输复用方式的指示方 法,或者,如权利要求14至26任一所述的传输复用方式的指示方法。
PCT/CN2022/121480 2022-09-26 2022-09-26 传输复用方式的指示方法、装置、介质及产品 WO2024065115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/121480 WO2024065115A1 (zh) 2022-09-26 2022-09-26 传输复用方式的指示方法、装置、介质及产品
CN202280003710.2A CN118104201A (zh) 2022-09-26 2022-09-26 传输复用方式的指示方法、装置、介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121480 WO2024065115A1 (zh) 2022-09-26 2022-09-26 传输复用方式的指示方法、装置、介质及产品

Publications (1)

Publication Number Publication Date
WO2024065115A1 true WO2024065115A1 (zh) 2024-04-04

Family

ID=90475093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121480 WO2024065115A1 (zh) 2022-09-26 2022-09-26 传输复用方式的指示方法、装置、介质及产品

Country Status (2)

Country Link
CN (1) CN118104201A (zh)
WO (1) WO2024065115A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677228A (zh) * 2019-11-08 2020-01-10 中国信息通信研究院 一种多传输机制的指示方法和设备
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)
WO2021221476A1 (ko) * 2020-04-29 2021-11-04 엘지전자 주식회사 복수 개의 trp를 위한 상향링크 송수신 방법 및 그를 위한 장치
US20220141061A1 (en) * 2020-11-02 2022-05-05 Qualcomm Incorporated Techniques for configuring multi-transmission reception point communication schemes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677228A (zh) * 2019-11-08 2020-01-10 中国信息通信研究院 一种多传输机制的指示方法和设备
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)
WO2021221476A1 (ko) * 2020-04-29 2021-11-04 엘지전자 주식회사 복수 개의 trp를 위한 상향링크 송수신 방법 및 그를 위한 장치
US20220141061A1 (en) * 2020-11-02 2022-05-05 Qualcomm Incorporated Techniques for configuring multi-transmission reception point communication schemes

Also Published As

Publication number Publication date
CN118104201A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN108111280B (zh) 参考信号配置、信息的发送、信息的接收方法及装置
US11637667B2 (en) Method and apparatus for transmitting and receiving uplink signal, storage medium, and electronic device
CN108260217B (zh) 一种信息传输的方法、装置和通信节点
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN113574815A (zh) 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
US9055567B2 (en) Communicating control information including an index
CN113302869A (zh) 用于多传输点(trp)的物理下行链路共享信道(pdsch)资源映射
EP3800945B1 (en) Power allocation method and related device
US20220124761A1 (en) Systems and methods for signaling pdsch diversity
JP2021521662A (ja) 複数の仮定を伴うチャネル状態情報(csi)フィードバック
CN111082905B (zh) 信息接收、发送方法及装置
US20160143029A1 (en) Base station device, terminal device, and communication method
TWI795261B (zh) 傳輸配置指示(tci)狀態的確定方法、裝置及終端設備
CN111446994B (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2023035945A1 (zh) 多时隙传输方法、装置、终端及网络侧设备
WO2024065115A1 (zh) 传输复用方式的指示方法、装置、介质及产品
WO2024065113A1 (zh) 上行波形的指示方法、装置、介质及产品
WO2020143702A1 (zh) 参考信号的接收、发送方法及装置
WO2024026644A1 (zh) Srs资源的配置方法、装置、介质及产品
WO2024026643A1 (zh) 传输复用方式的指示方法、装置、介质及产品
WO2024026645A1 (zh) 信息指示方法、装置、介质及产品
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
US20240089057A1 (en) Information processing method, device, terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959767

Country of ref document: EP

Kind code of ref document: A1