WO2024026643A1 - 传输复用方式的指示方法、装置、介质及产品 - Google Patents
传输复用方式的指示方法、装置、介质及产品 Download PDFInfo
- Publication number
- WO2024026643A1 WO2024026643A1 PCT/CN2022/109535 CN2022109535W WO2024026643A1 WO 2024026643 A1 WO2024026643 A1 WO 2024026643A1 CN 2022109535 W CN2022109535 W CN 2022109535W WO 2024026643 A1 WO2024026643 A1 WO 2024026643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- code point
- indication field
- transmission
- multiplexing mode
- transmission multiplexing
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 278
- 238000000034 method Methods 0.000 title claims abstract description 160
- NJLAGDPRCAPJIF-MHSJTTIKSA-N (8S)-1',3',9-trihydroxy-6'-methoxy-3-[(1E,3E)-penta-1,3-dienyl]spiro[6,7-dihydro-2H-cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]naphthalene]-1,4',5',8',9'-pentone Chemical compound COc1cc(=O)c2c(c1=O)c(=O)c1=C(O)[C@]3(CCc4cc5cc(\C=C\C=C\C)[nH]c(=O)c5c(O)c34)C(O)=c1c2=O NJLAGDPRCAPJIF-MHSJTTIKSA-N 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 abstract description 45
- 238000004891 communication Methods 0.000 abstract description 20
- 238000010586 diagram Methods 0.000 description 27
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 15
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 13
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 13
- 238000013507 mapping Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101150006914 TRP1 gene Proteins 0.000 description 2
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000847024 Homo sapiens Tetratricopeptide repeat protein 1 Proteins 0.000 description 1
- 102100032841 Tetratricopeptide repeat protein 1 Human genes 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to the field of communications, and in particular to a method, device, medium and product for indicating a transmission multiplexing mode.
- Multipoint cooperation is still an important technical means in the New Radio (NR) system. Multipoint cooperation can improve coverage at the cell edge and provide more balanced service quality within the service area.
- NR New Radio
- transmission is carried out through the Physical Uplink Shared Channel (PUSCH) to the transmission and reception points (Transmission and Reception Point, TRP) of multiple base stations.
- PUSCH Physical Uplink Shared Channel
- TRP Transmission and Reception Point
- time division multiplexing Time Division Multiplexing
- TDM Coordinated transmission under Division Multiplexing
- Embodiments of the present disclosure provide a method, device, medium and product for indicating a transmission multiplexing mode.
- the technical solution is as follows:
- a method for indicating a transmission multiplexing mode is provided.
- the method is executed by a terminal.
- the method includes:
- Receive downlink control information (Downlink Control Information, DCI) carrying the first indication field.
- DCI Downlink Control Information
- Some code points in the first indication field are used to instruct the terminal to schedule multi-antenna panel simultaneous transmission (Simultaneous Transmission) from the multi-antenna panel to multiple TRPs.
- Multi-Panel, STxMP Multi-Panel, STxMP
- the antenna panel can also be referred to as a panel.
- a method for indicating a transmission multiplexing mode is provided.
- the method is executed by a terminal.
- the method includes:
- the DCI carrying the first indication field is sent, and some code points in the first indication field are used to indicate the transmission multiplexing mode applied when the terminal is scheduled to be STxMP from multi-panel to multi-TRP.
- a device for indicating a transmission multiplexing mode is provided, and the device is executed by a terminal.
- the device includes:
- the receiving module is configured to receive the DCI carrying the first indication field. Some code points in the first indication field are used to indicate the transmission multiplexing mode applied when the terminal is scheduled to be STxMP from multi-panel to multi-TRP.
- a device for indicating a transmission multiplexing mode is provided.
- the device is executed by a network device.
- the device includes:
- the sending module is configured to send the DCI carrying the first indication field. Some code points in the first indication field are used to indicate the transmission multiplexing mode applied when the terminal is scheduled to be STxMP from multi-panel to multi-TRP.
- a terminal including:
- transceiver coupled to the processor
- the processor is configured to load and execute executable instructions to implement the instruction method of the transmission multiplexing method in each of the above aspects.
- a network device includes:
- transceiver coupled to the processor
- the processor is configured to load and execute executable instructions to implement the instruction method of the transmission multiplexing method in each of the above aspects.
- a chip is provided.
- the chip includes a programmable logic circuit and/or program instructions, and when the chip is run, it is used to implement the instruction method of the transmission multiplexing method in each of the above aspects.
- a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, at least one instruction, at least a program , the code set or the instruction set is loaded and executed by the processor to realize the instruction method of the transmission multiplexing method of the above aspects.
- a computer program product includes computer instructions.
- the computer instructions are stored in a computer-readable storage medium; and a processor of the computer device obtains the information from the computer-readable storage medium.
- the computer instructions are read, and the processor executes the computer instructions, causing the computer device to perform the above instructions in various aspects of the transmission multiplexing method.
- the transmission multiplexing method can be indicated in the STxMP scenario, thereby supporting the use of multiple transmission multiplexing methods in the STxMP scenario, and also supporting the use of different transmission multiplexing methods. Perform dynamic switching.
- Figure 1 is a schematic diagram of a communication system provided according to an exemplary embodiment
- Figure 2 is a schematic diagram of a communication system provided according to an exemplary embodiment
- Figure 3 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
- Figure 4 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
- Figure 5 shows a schematic diagram of a transmission scheme provided by an exemplary embodiment of the present disclosure
- Figure 6 shows a schematic diagram of a transmission scheme provided by an exemplary embodiment of the present disclosure
- Figure 7 shows a schematic diagram of a transmission scheme provided by an exemplary embodiment of the present disclosure
- Figure 8 shows a flow chart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure
- Figure 9 shows a flowchart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure
- Figure 10 shows a flowchart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure
- Figure 11 is a block diagram of a transmission multiplexing mode indicating device according to an exemplary embodiment
- Figure 12 is a block diagram of a transmission multiplexing mode indicating device according to an exemplary embodiment
- Figure 13 is a schematic structural diagram of a terminal provided according to an exemplary embodiment
- Figure 14 is a schematic structural diagram of a network device provided according to an exemplary embodiment.
- FIG. 1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure.
- the communication system may include: a network device 12 and a terminal 14.
- the network device 12 includes TRP1 and TRP2.
- the network device 12 may be a base station, which is a device that provides wireless communication functions for the terminal 14.
- Base stations can include various forms of macro base stations, micro base stations, relay stations, access points, etc. In systems using different wireless access technologies, the names of equipment with base station functions may be different. For example, in the Long Term Evolution (LTE) system, it is called an evolved base station (eNodeB, eNB); In the 5G NR system, it is called the next generation base station (gNodeB, gNB). As communications technology evolves, the description "base station” may change. For convenience of description in the embodiments of the present disclosure, the above-mentioned devices that provide wireless communication functions for the terminal 14 are collectively referred to as network devices 12 .
- LTE Long Term Evolution
- gNodeB next generation base station
- the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), Terminal device and so on.
- mobile stations Mobile Station, MS
- Terminal device and so on.
- the devices mentioned above are collectively called terminals.
- uplink communication refers to the terminal 14 sending signals to the network device 12
- downlink communication refers to the network device 12 sending signals to the terminal 14.
- the uplink PUSCH transmission is transmitted in the TRP direction of multiple base stations.
- 3GPP Third Generation Partnership Project
- 3GPP version R17 the cooperative transmission under the TDM transmission mode was mainly standardized. Through different TO divisions in the time domain When sending repetitions of the same information on PUSCH to different TRPs of the base station, this method has relatively low requirements on terminal capabilities, does not require the ability to support simultaneous transmission of beams, and has a large transmission delay.
- the spatial characteristics of the actual channels passed by PUSCH channels facing different TRPs may be very different. Therefore, it is considered that the spatial reception parameters of PUSCH channels in different sending directions are different.
- the transmission of PUSCH can be based on multi-panel TRP transmission scheduled by a single physical downlink control channel (Physical Downlink Control Channel, PDCCH), that is, single downlink control information (Single Downlink Control Information, S-DCI), as shown in Figure 1.
- PDCCH Physical Downlink Control Channel
- S-DCI Single Downlink Control Information
- PUSCH transmission can also be based on multi-panel TRP transmission scheduled by different PDCCHs, namely Multi-Downlink Control Information (M-DCI), as shown in Figure 2.
- M-DCI Multi-Downlink Control Information
- one DCI directly or indirectly schedules precoding matrix 1 and precoding matrix 2 to the terminal.
- the terminal 14 uses the panel 1 to send one or more layers of uplink data to the TRP1 based on the precoding matrix 1.
- the terminal 14 uses the panel 2 to send one or more layers of uplink data to the TRP1 based on the precoding matrix 2.
- TRP 1 sends the first DCI to terminal 14 through PDCCH 1, and dispatching terminal 14 uses panel 1 to send PUSCH 1 to TRP 1;
- TRP 2 sends the second DCI to terminal 14 through PDCCH 2, and dispatching terminal 14 Use panel 2 to send PUSCH 2 to TRP 2.
- TRP1 and TRP2 are two TRPs of the same cell.
- the uplink transmission process includes: codebook-based uplink transmission and non-codebook-based uplink transmission.
- Figure 3 shows a schematic diagram of a codebook-based uplink transmission process provided by an exemplary embodiment of the present disclosure.
- the schematic diagram includes a terminal 22 and a network device 24.
- the network device 24 first sends a Sounding Reference Signal (SRS) resource configuration to the terminal 22.
- the SRS resource configuration includes at least one SRS resource and the time-frequency resource location of each SRS resource.
- the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
- the network device 24 obtains the channel conditions of each uplink channel based on the received at least one SRS, and then provides DCI to the terminal 22.
- the DCI at least includes an SRS resource indication (SRS Resource Indication (SRI) and Precoding Matrix Indicator (TPMI), and finally the terminal 22 sends PUSCH to the network device 24 based on SRI and TPMI.
- SRI SRS Resource Indication
- TPMI Precoding Matrix Indicator
- Figure 4 shows a schematic diagram of a non-codebook-based uplink transmission process provided by an exemplary embodiment of the present disclosure.
- the schematic diagram includes a terminal 22 and a network device 24.
- the precoding matrix is no longer limited to a fixed candidate set.
- the network device 24 first sends a channel state information reference signal (Channel State Information-Reference Symbol, CSI-RS) and SRS resource configuration information to the terminal 22.
- the SRS resource configuration includes at least one SRS resource and the time-frequency resource location of each SRS resource.
- the terminal 22 calculates by itself based on the CSI-RS measurement results through singular value decomposition and other algorithms to obtain at least one precoding matrix that may be used.
- the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
- the network device 24 receives the At least one SRS obtains the channel conditions of each uplink channel, and then provides DCI to the terminal 22.
- the DCI at least includes SRI.
- the terminal 22 determines the precoding matrix used this time based on the SRI among the possible precoding matrices. Based on the SRI and The precoding matrix used this time sends PUSCH to the network device 24.
- the transmission multiplexing methods that may be supported include the following possibilities:
- Figure 5 shows a schematic diagram of a transmission multiplexing method provided by an exemplary embodiment of the present disclosure.
- the schematic diagram includes a network device 12 and a terminal 14.
- SDM Space Division Multiplexing
- DMRS Demodulation Reference Signal
- TRP is sent on the same time-frequency resource, and different panels/TRP/TO are associated with different TCI states (ie, beams).
- SDM SDM
- SDM-A Different parts of a TB of PUSCH are sent to two different TRPs on the same time-frequency resources through corresponding DMRS ports or port combinations allocated on different panels. Different panels/TRP/TO Respectively associated with different TCI states (i.e., beams).
- SDM-B The repetition of the same TB of PUSCH corresponding to different redundancy versions (Redundancy Version, RV) faces two different TRPs in the same time-frequency resources through the corresponding DMRS ports or port combinations allocated on different panels.
- RV Redundancy Version
- different panels/TRP/TO are associated with different TCI states (i.e. beams).
- FIG. 6 shows a schematic diagram of a transmission multiplexing method provided by an exemplary embodiment of the present disclosure.
- the schematic diagram includes a network device 12 and a terminal 14.
- FDRA refers to Frequency Domain Resource Allocation (FDRA).
- one TB of PUSCH faces the non-overlapping frequency domain of two different TRPs on the same time domain resource through the same DMRS port or port combination allocated on different panels. Transmit on resources, and different panels/TRP/TO are associated with different TCI states (i.e., beams).
- FDM FDM
- FDM-A Different parts of a TB of PUSCH are sent to two different TRPs on non-overlapping frequency domain resources on the same time domain resources through the same DMRS ports or port combinations allocated on different panels. Different panels /TRP/TO are respectively associated with different TCI states (i.e. beams);
- FDM-B The repetition of the same TB corresponding to different RV versions of PUSCH is sent through the same DMRS ports or port combinations allocated on different panels to two different TRPs on non-overlapping frequency domain resources on the same time domain resources. , different panels/TRP/TO are respectively associated with different TCI states (i.e. beams).
- Figure 7 shows a schematic diagram of a transmission multiplexing method provided by an exemplary embodiment of the present disclosure.
- the schematic diagram includes a network device 12 and a terminal 14.
- one TB of PUSCH is sent to two different TRPs on the same time-frequency resources through the same DMRS port or port combination allocated on different panels, and different Panel/TRP/TO are respectively associated with different TCI states (i.e. beams).
- SFN Single Frequency Network
- one or more of the above multiple transmission multiplexing methods may be supported.
- the network device needs to send SRS resource configuration to the terminal in advance.
- SRS resource configuration there may be the following two configuration methods:
- the first possible SRS resource configuration method the network device configures the configuration of two SRS resource sets to the terminal.
- the two SRS resource sets include the first SRS resource set and the second SRS resource set.
- Different SRS resource sets are related to different panel information. Union.
- the second possible SRS resource configuration method the network device configures an SRS resource set to the terminal.
- the SRS resource set includes a first SRS resource subset and a second SRS resource subset. Different SRS resource subsets and different panel information Associated.
- different panel information includes at least one of the following information:
- the number of panels can be 2 or 4, the default maximum is 2 in the embodiment of this disclosure;
- the SRS resource set indication domain in DCI also needs to be redesigned so that in the STxMP scenario, the network device can indicate single-TRP (Single-TRP, s-TRP) or multiple TRP (mutli -TRP, m-TRP) scenario, the SRS resource set and SRI/TPMI domain that need to be associated.
- Figure 8 shows a schematic diagram of the DCI information domain provided by an exemplary embodiment of the present disclosure. With reference to Figure 8, DCI includes multiple information domains. Among the multiple information domains, domains related to this application include: SRS resource set indication.
- the SRS resource set indication field and two SRI fields are used; for the codebook situation, the SRS resource set indication field, two SRI fields and two TPMI fields are used.
- x1, x2, y1 and y2 are variable values.
- each code point in the SRS resource set indication field is designed as shown in Table 1 below:
- the code point of the SRS resource set indication field is 00, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP1 and associate the first SRS resource set.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI field in the DCI Get the SRI used for this transfer. At this time, the second SRI/TPMI domain is not used.
- the code point of the SRS resource set indication field is 01, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP2 and associate the second SRS resource set.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI field in the DCI Get the SRI used for this transfer. At this time, the second SRI/TPMI domain is not used.
- the code point of the SRS resource set indication field is 10
- it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP1 in the first TO and associate it with the first SRS resource set; and then transmit PUSCH to TRP2 in the second TO.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2.
- SRI and TPMI in non-codebook-based transmission mode, use the first SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2 The SRI used during transmission.
- the code point of the SRS resource set indication field When the code point of the SRS resource set indication field is 11, it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP2 in the first TO and associate it with the second SRS resource set; and then transmit PUSCH to TRP1 in the second TO.
- the codebook-based transmission mode use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1.
- SRI and TPMI in non-codebook-based transmission mode, use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI used to transmit to TRP1 The SRI used during transmission.
- code point 10 is designed for the TDM cooperation method of sending PUSCH to TRP1 first, and then sending PUSCH to TRP2.
- Code point 11 is designed for the TDM cooperation method of sending PUSCH to TRP2 first, and then sending PUSCH to TRP1. .
- the terminal needs to send PUSCH to TRP1 and TRP2 at the same time. At this time, code point 10 and code point 11 in Table 1 will lose their indicating meaning and become redundant code points.
- the present disclosure proposes different design ideas, using the above redundant code points to fully or partially indicate the transmission multiplexing method used in the STxMP scenario.
- FIG. 9 shows a flowchart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure. This embodiment illustrates an example in which the method is executed by a terminal. The method includes:
- Step 902 The terminal receives the DCI carrying the first indication field. Some code points in the first indication field are used to indicate the transmission multiplexing mode applied when the terminal is scheduled to be STxMP from multi-panel to multi-TRP.
- the first indication field is the SRS resource set indication field, or other indication fields in DCI.
- the transmission multiplexing method includes at least one of the following: SFN, FDM, and SDM.
- FDM may include at least one of the following two types of FDM: FDM A and FDM B.
- SDM may include at least one of the following two types of SDM: SDM A and SDM B.
- some of the code points in the first indication field include a first code point and a second code point.
- the first code point is used to indicate the first transmission multiplexing mode
- the second code point is used to indicate the second transmission multiplexing mode.
- the first transmission multiplexing method is at least one of SFN, FDM, SDM, FDM A, FDM B, SDM A, and SDM B
- the second transmission multiplexing method is SFN, FDM, SDM, FDM A, FDM B, SDM A. At least one of SDM and B, and there is no intersection between the first transmission multiplexing method and the second transmission multiplexing method.
- the first code point is 10 and the second code point is 11; or, the first code point is 11 and the second code point is 10.
- the method provided in this embodiment can indicate the transmission multiplexing mode in the STxMP scenario by enhancing the first indication field in the DCI, thereby supporting the use of multiple transmission multiplexing modes in the STxMP scenario. , and also supports dynamic switching between different transmission multiplexing methods.
- the DCI 1 scheduled transmission multiplexing method is SDM
- the DCI 2 scheduled transmission multiplexing method is FDM.
- Figure 10 shows a flowchart of a method for indicating a transmission multiplexing mode provided by an exemplary embodiment of the present disclosure. This embodiment illustrates that the method is executed by a network device. The method includes:
- Step 1002 The network device sends the DCI carrying the first indication field to the terminal. Some code points in the first indication field are used to indicate the transmission multiplexing mode applied when the terminal schedules STxMP from multi-panel to multi-TRP.
- the first indication field is the SRS resource set indication field, or other indication fields in DCI.
- the transmission multiplexing method includes at least one of the following: SFN, FDM, and SDM.
- FDM may include at least one of the following two types of FDM: FDM A and FDM B.
- SDM may include at least one of the following two types of SDM: SDM A and SDM B.
- some of the code points in the first indication field include a first code point and a second code point.
- the first code point is used to indicate the first transmission multiplexing mode
- the second code point is used to indicate the second transmission multiplexing mode.
- the first transmission multiplexing method is at least one of SFN, FDM, SDM, FDM A, FDM B, SDM A, and SDM B
- the second transmission multiplexing method is SFN, FDM, SDM, FDM A, FDM B, SDM A. At least one of SDM and B, and there is no intersection between the first transmission multiplexing method and the second transmission multiplexing method.
- the first code point is 10 and the second code point is 11; or, the first code point is 11 and the second code point is 10.
- the method provided in this embodiment can indicate the transmission multiplexing mode in the STxMP scenario by enhancing the first indication field in the DCI, thereby supporting the use of multiple transmission multiplexing modes in the STxMP scenario. , and also supports dynamic switching between different transmission multiplexing methods.
- the DCI 1 scheduled transmission multiplexing method is SDM
- the DCI 2 scheduled transmission multiplexing method is FDM.
- the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is FDM or SFN.
- the first code point indicates that the transmission multiplexing mode is SDM. If SDM also distinguishes SDM-A or SDM-B, when the value of the first indication field in the DCI is the first code point, the default indication transmission multiplexing mode is SDM-A; or, if the value of the first indication field in the DCI is the first code point, When the value of an indication field is the first code point, the default indication transmission multiplexing mode is SDM-B; or, when the value of the first indication field in DCI is the first code point, other Possible implementations further indicate which of SDM-A and SDM-B the terminal uses, and this disclosure does not limit other possible implementations.
- the second code point indicates that the transmission multiplexing mode is FDM or SFN.
- the value of the first indication field in the DCI is the second code point
- other possible implementations may further instruct the terminal which one of FDM and SFN to use, or further instruct the terminal to use FDM-A, FDM -B or SFN, this disclosure does not limit other possible implementations.
- the first code point is used to indicate that the transmission multiplexing mode is SFN;
- the second code point is used to indicate that the transmission multiplexing mode is FDM.
- the indication is provided by other possible implementations, and this disclosure does not limit the other possible implementations.
- the second code point indicates that the transmission multiplexing mode is FDM. If FDM also distinguishes FDM-A or FDM-B, when the value of the first indication field in the DCI is the second code point, the default indication transmission multiplexing mode is FDM-A; or, in the case where the value of the first indication field in the DCI is the second code point, When the value of an indication field is the second code point, the default indication transmission multiplexing mode is FDM-B; or, when the value of the first indication field in DCI is the second code point, other Possible implementations further indicate which one of FDM-A and FDM-B the terminal uses, and this disclosure does not limit other possible implementations.
- the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is SFN.
- the indication is provided by other possible implementation manners, and this disclosure does not limit the other possible implementation manners.
- the first code point indicates that the transmission multiplexing mode is SDM. If SDM also distinguishes SDM-A or SDM-B, when the value of the first indication field in the DCI is the first code point, the default indication transmission multiplexing mode is SDM-A; or, if the value of the first indication field in the DCI is the first code point, When the value of an indication field is the first code point, the default indication transmission multiplexing mode is SDM-B; or, when the value of the first indication field in DCI is the first code point, other Possible implementations further indicate which of SDM-A and SDM-B the terminal uses, and this disclosure does not limit other possible implementations.
- the first code point is used to indicate that the transmission multiplexing mode is SDM-A;
- the first code point is used to indicate that the transmission multiplexing mode is SDM-B.
- the terminal is instructed to use one of SDM, FDM, and SFN by other possible implementations, and this disclosure does not limit the other possible implementations.
- the first code point is used to indicate that the transmission multiplexing mode is FDM-A;
- the first code point is used to indicate that the transmission multiplexing mode is FDM-B.
- the terminal is instructed to use one of SDM, FDM, and SFN by other possible implementations, and this disclosure does not limit the other possible implementations.
- the present disclosure when the value of the first indication field is the first code point, and the first code point is used to indicate that the transmission multiplexing mode is SDM, the present disclosure also provides the following further design:
- the network device sends DCI carrying the RV code point indication field to the terminal, where the RV code point indication field is the When the RV code point indication field is the second value, it indicates the application of SDM-A, and/or the application of the multi-RV solution.
- the terminal uses the default method to determine the DMRS ports assigned to the first PUSCH transmission opportunity (corresponding to sending to TPR1) and the second PUSCH transmission opportunity (corresponding to sending to TRP2) according to the antenna port indication field "antenna ports" in the DCI. number.
- the terminal's two PUSCH transmission opportunities do not support the first rank combination, and the total rank number indicated by the antenna port indication field is 2 or 4.
- the first rank combination involved in the embodiment of the present disclosure is a rank combination of 1+3 mode or 3+1 mode.
- the rank combination supported by the PUSCH transmission timing corresponding to the two panel information can be 1+1 (the total number of layers is 2), 1 +2 (total number of layers is 3), 2+1 (total number of layers is 3), 2+2 (total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 2 or 4
- a default method may be used to determine the number of DMRS ports allocated to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity in sequence.
- the DMRS port assigned to the first panel is determined to be ⁇ 2 ⁇ by default, and the DMRS port assigned to the second panel is ⁇ 3 ⁇ . .
- the "antenna ports" indication field in DCI signaling is used to indicate the total number of data layers, that is, the rank number.
- PUSCH can be associated with two PUSCH transmission opportunities using different beams on different panels facing different transmitting and receiving points TRP, and the DMRS port allocation information can at least include a DMRS port set allocated for the terminal device. And there is a mapping relationship between the index of the DMRS port in the DMRS port set and the rank combination supported by multiple PUSCH transmission opportunities.
- a default predefined method can be used to determine the number of DMRS ports corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity according to the DMRS port set and the mapping relationship; where , the two PUSCH transmission opportunities do not support the first rank combination, and the total rank number indicated by the antenna port indication field is 3.
- the actual rank combination supported by PUSCH transmission corresponding to the two panels/TRP/TCI states can be 1+1 (the total number of layers is 2), 1+2 (the total number of layers is 3), 2+1 (the total number of layers is 3), 2+2 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 3
- a default predefined method may be used to determine the number of DMRS ports corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity.
- the default index 0-2 can be predefined (that is, the index value is ⁇ 0, 1,2 ⁇ ) indicates a rank combination of 1+2, and index 3-5 (that is, the index value is ⁇ 3,4,5 ⁇ ) corresponds to a rank combination of 2+1, and the ports are allocated sequentially.
- the index value is 0, the corresponding DMRS port is ⁇ 0,1,2 ⁇ , the index value ⁇ 0 ⁇ is predefined by default to indicate a rank combination of 1+2, and the ports are allocated sequentially, so the first panel information can be determined
- the DMRS port of the second panel is ⁇ 0 ⁇ , determine the DMRS port of the second panel as ⁇ 1,2 ⁇ .
- the index value is 4, the corresponding DMRS port is ⁇ 0,1,2 ⁇ , the index value ⁇ 4 ⁇ is predefined by default to indicate a rank combination of 2+1, and the ports are allocated sequentially. Therefore, the first panel can be determined The DMRS port of the message is ⁇ 0,1 ⁇ , and the DMRS port of the second panel is determined to be ⁇ 2 ⁇ .
- each element in the above Table 8 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on the same time as shown in the table. exist. The value of each element does not depend on the value of any other element in Table 8. Therefore, those skilled in the art can understand that the value of each element in Table 8 is an independent embodiment. It should be noted that the embodiments of the present disclosure include multiple tables, and each of them is similar to Table 8. It is a combination of multiple independent embodiments in the same table, and each of these tables is An element should also be considered an independent embodiment.
- the DMRS port allocation information at least includes: a DMRS port set allocated to the terminal device and additional indication information.
- the additional indication information is used to indicate the mapping relationship between the index of the DMRS port in the DMRS port set and the rank combinations supported by the multiple PUSCH transmission opportunities.
- the terminal determines the DMRS port information configured for PUSCH on different panels facing different transmitting and receiving points TRP using the associated PUSCH transmission opportunities on different beams according to the antenna port indication field and DMRS port allocation information.
- Possible implementation methods can be as follows: According to the DMRS port set and mapping relationship, determine the number of DMRS ports that sequentially allocate multiple DMRS ports to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity; among them, the two PUSCH transmission opportunities are not supported.
- the first rank combination, and the total rank number indicated by the antenna port indication field is 3.
- the actual rank combination supported by PUSCH transmission corresponding to the two panels/TRP/TCI states can be 1+1 (the total number of layers is 2), 1+2 (the total number of layers is 3), 2+1 (the total number of layers is 3), 2+2 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 3
- the same number of rows can be added to the DMRS port allocation table, and a column of information can be added.
- the column information can be defined to indicate different rank combinations. It is 1+2 or 2+1, and the DMRS ports corresponding to different panels are sequentially corresponding.
- a column of additional indication information is added to the DMRS port allocation table, and the additional indication information is used to indicate whether the distinguished rank combination is 1+2 or 2+1.
- the corresponding information indication can clearly indicate that index 0-2 (that is, the index value is ⁇ 0,1,2 ⁇ ) indicates the combination of 1+2, and index 3-5 (that is, the index value is ⁇ 3,4, 5 ⁇ ) corresponds to indicating the combination of 2+1.
- the index value is 0, the corresponding DMRS port is ⁇ 0,1,2 ⁇ , the index value ⁇ 0 ⁇ corresponds to the rank combination indicating 1+2, and the DMRS ports corresponding to different panels are sequentially corresponding, therefore, it can be determined
- the DMRS port of the first panel is ⁇ 0 ⁇
- the DMRS port of the second panel is determined to be ⁇ 1,2 ⁇ .
- the index value is 5, the corresponding DMRS ports are ⁇ 3,4,5 ⁇ , the index value ⁇ 5 ⁇ corresponds to the rank combination indicating 2+1, and the DMRS ports corresponding to different panels are sequentially corresponding. Therefore, it can Determine the DMRS port of the first panel information as ⁇ 3,4 ⁇ , and determine the DMRS port of the second panel as ⁇ 5 ⁇ .
- the DMRS port allocation information at least includes: a DMRS port set allocated to the terminal device and additional indication information.
- the additional indication information is used to indicate the DMRS port occupied by the first PUSCH transmission opportunity, and the DMRS port occupied by the first PUSCH transmission opportunity belongs to the DMRS port set.
- PUSCH uses two PUSCH transmission opportunities associated with different beams on different panels facing different transmitting and receiving points TRP; the PUSCH is determined according to the antenna port indication field and DMRS port allocation information.
- Possible implementation methods for using DMRS port information configured with PUSCH transmission opportunities associated with different beams on different panels for different transmitting and receiving points TRP can be as follows: DMRS occupied by the first PUSCH transmission opportunity indicated by the DMRS port set and additional indication information port, respectively determine the DMRS port information corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity; wherein, the two PUSCH transmission opportunities do not support the first rank combination, and the total rank number indicated by the antenna port indication field is 3.
- the actual rank combination supported by PUSCH transmission corresponding to the two panels/TRP/TCI states can be 1+1 (the total number of layers is 2), 1+2 (the total number of layers is 3), 2+1 (the total number of layers is 3), 2+2 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 3
- the same number of rows can be added to the DMRS port allocation table, and a column of information can be added.
- the column information can be defined to indicate the first DMRS port on the panel. It can be understood that this method is more flexible.
- the corresponding number of DCI bits in the increased DMRS port allocation table remains unchanged and does not increase overhead.
- the additional indication information is used to indicate the DMRS port of the first panel, so that the index 0-5 is clearly defined (that is, the index value is ⁇ 0, 1,2,3,4,5 ⁇ ) corresponds to the rank combination indicating 1+2, and the index 6-11 (that is, the index value is ⁇ 6,7,8,9,10,11 ⁇ ) corresponds to the rank combination indicating 2+1 combination.
- the index value is 5, the corresponding DMRS port is ⁇ 3,4,5 ⁇ , the index value ⁇ 5 ⁇ corresponds to indicating the rank combination of 1+2, and the additional indication information is used to indicate that the DMRS port of the first panel is ⁇ 4 ⁇ , then you can determine the DMRS port of the first panel to be ⁇ 4 ⁇ , and determine the DMRS port of the second panel to be ⁇ 3,5 ⁇ .
- the index value is 6, the corresponding DMRS port is ⁇ 0,1,2 ⁇ , the index value ⁇ 6 ⁇ corresponds to indicating the rank combination of 2+1, and the additional indication information is used to indicate that the DMRS port of the first panel is ⁇ 0,1 ⁇ , then the DMRS port of the first panel can be determined as ⁇ 0,1 ⁇ , and the DMRS port of the second panel can be determined as ⁇ 2 ⁇ .
- PUSCH can be associated with two PUSCH transmission opportunities using different beams on different panels facing different transmitting and receiving points TRP, and the DMRS port allocation information at least includes a set of DMRS ports allocated for the terminal device.
- the DMRS port allocation information at least includes a set of DMRS ports allocated for the terminal device.
- the default method is used to determine the number of DMRS ports allocated to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity in sequence; among them, the two PUSCH transmission opportunities support the first rank combination, and the antenna
- the total rank number indicated by the port indication field is 2.
- the rank combinations actually supported by the transmission can be 1+1 (total number of layers is 2), 1+2 (total number of layers is 3), 2+1 (total number of layers is 3), 2+2 (total number of layers is 4) ), 1+3 (the total number of layers is 4), 3+1 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 2
- PUSCH can be associated with two PUSCH transmission opportunities using different beams on different panels facing different transmitting and receiving points TRP
- the DMRS port allocation information at least includes a DMRS port set allocated for the terminal device, and There is a mapping relationship between the index of the DMRS port in the DMRS port set and the rank combination supported by multiple PUSCH transmission opportunities.
- PUSCH uses DMRS port information configured on different panels for different transmitting and receiving points TRP using PUSCH transmission opportunities associated with different beams.
- the possible implementation method can be as follows: According to the DMRS port set and mapping relationship, the default predefined method is used to determine the number of DMRS ports corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity; among them, the two PUSCH transmission opportunities The first rank combination is supported, and the total rank number indicated by the antenna port indication field is 3 or 4.
- the rank combinations actually supported by the transmission can be 1+1 (total number of layers is 2), 1+2 (total number of layers is 3), 2+1 (total number of layers is 3), 2+2 (total number of layers is 4) ), 1+3 (the total number of layers is 4), 3+1 (the total number of layers is 4).
- the default predefined method can be used to determine the number of DMRS ports corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity.
- the default predefined index 0-2 (that is, the index value is ⁇ 0,1,2 ⁇ ) indicates the rank combination of 1+2.
- Index 3-5 that is, the index value is ⁇ 3,4,5 ⁇ corresponds to the rank combination of 2+1, and the ports are allocated sequentially.
- the default predefined index 0-1 (that is, the index value is ⁇ 0,1 ⁇ ) indicates the rank combination of 2+2, and the index 2 (i.e., the index value is ⁇ 2 ⁇ ) indicates a rank combination of 1+3, and index 3-5 (i.e., the index value is ⁇ 3,4,5 ⁇ ) indicates a rank combination of 2+1, and the ports are allocated sequentially.
- the DMRS port allocation information at least includes: a DMRS port set allocated to the terminal device and additional indication information.
- the additional indication information is used to indicate the mapping relationship between the index of the DMRS port in the DMRS port set and the rank combinations supported by the multiple PUSCH transmission opportunities.
- PUSCH uses two PUSCH transmission opportunities associated with different beams on different panels for different transmitting and receiving points TRP.
- the possible implementation method can be as follows: according to the DMRS port set and the mapping relationship, determine the number of DMRS ports that sequentially allocate multiple DMRS ports to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity; where, the two PUSCH transmission opportunities The first rank combination is supported, and the total rank number indicated by the antenna port indication field is 3 or 4.
- the rank combinations actually supported by the transmission can be 1+1 (total number of layers is 2), 1+2 (total number of layers is 3), 2+1 (total number of layers is 3), 2+2 (total number of layers is 4) ), 1+3 (the total number of layers is 4), 3+1 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 3 or 4
- the same number of rows can be added to the DMRS port allocation table, and a column of information can be added.
- the column information can be defined to indicate differentiation.
- the combination of rank 3 is 1+2 or 2+1
- the combination of rank 4 is 2+2, 1+3 or 3+1.
- the DMRS ports corresponding to different panels are sequentially corresponding.
- the DMRS port allocation information may include at least: a DMRS port set allocated to the terminal device and additional indication information.
- the additional indication information is used to indicate the DMRS port occupied by the first PUSCH transmission opportunity, and the DMRS port occupied by the first PUSCH transmission opportunity belongs to the DMRS port set.
- PUSCH uses two PUSCH transmission opportunities associated with different beams on different panels for different transmitting and receiving points TRP.
- the antenna port indication field and DMRS port allocation information it is determined that the DMRS port information configured for PUSCH on different panels facing different transmitting and receiving points TRP uses the PUSCH transmission opportunities associated with different beams.
- the implementation method can be as follows: according to the DMRS port set and the DMRS port occupied by the first PUSCH transmission opportunity indicated by the additional indication information, determine the DMRS port information corresponding to the first PUSCH transmission opportunity and the second PUSCH transmission opportunity respectively; where , the two PUSCH transmission opportunities support the first rank combination, and the total rank number indicated by the antenna port indication field is 3 or 4.
- the rank combinations actually supported by the transmission can be 1+1 (total number of layers is 2), 1+2 (total number of layers is 3), 2+1 (total number of layers is 3), 2+2 (total number of layers is 4) ), 1+3 (the total number of layers is 4), 3+1 (the total number of layers is 4).
- the total rank number indicated by the antenna port indication field is 3 or 4
- the same number of rows can be added to the DMRS port allocation table, and a column of information can be added.
- the column information can be defined to indicate the One panel DMRS port. It can be understood that this method is more flexible.
- the corresponding number of DCI bits in the increased DMRS port allocation table remains unchanged and does not increase overhead.
- Non-SDM transmission multiplexing methods include SFN and/or FDM.
- the network device sends DCI carrying a second indication field to the terminal, where the second indication field is used to indicate SDM and non-SDM.
- the second indication field is the first value, it is used to indicate SDM; when the second indication field is the second value, it is used to indicate SFN and/or FDM.
- the second indication field occupies 1 bit, and the 1 bit is a new bit, or multiplexes an existing bit in a certain field in the DCI of a known format in the related art, or uses the Reserved bits in a field in a known format of DCI.
- SDM and non-SDM are jointly indicated through the SRI/TPMI field and DMRS field in DCI.
- the network device sends the DCI carrying the third indication field and the fourth indication field to the terminal.
- the third indication field is the SRI/TPMI field
- the fourth indication field is the DMRS field.
- the terminal determines the first rank and the second rank based on the third indication field.
- the first rank is the rank number corresponding to the first panel information, which can be expressed as X1;
- the second rank is the rank number corresponding to the second panel, which can be expressed as X2.
- the first rank number and the second rank number can be called rank combinations.
- the terminal determines the total number of DMRS ports based on the fourth indication field, that is, the total number of ranks, which can be expressed as Y.
- the transmission multiplexing mode is determined to be non-SDM.
- the transmission multiplexing mode is determined to be SDM.
- the present disclosure also provides a method of how to distinguish the transmission multiplexing method as FDM and SDM.
- the SFN is indicated by other possible methods, such as the radio resource control (Radio Resource Control, RRC) signaling indication method.
- RRC Radio Resource Control
- the network device sends a DCI carrying a second indication field to the terminal, where the second indication field is used to indicate SDM and FDM.
- the second indication field is the first value, it is used to indicate SDM; when the second indication field is the second value, it is used to indicate FDM.
- the second indication field occupies 1 bit, and the 1 bit is a new bit, or multiplexes an existing bit in a certain field in the DCI of a known format in the related art, or uses the Reserved bits in a field in a known format of DCI.
- FDM and SDM are jointly indicated through the SRI/TPMI field and DMRS field in DCI.
- the network device sends the DCI carrying the third indication field and the fourth indication field to the terminal.
- the third indication field is the SRI/TPMI field
- the fourth indication field is the DMRS field.
- the terminal determines the first rank and the second rank based on the third indication field.
- the first rank is the rank number corresponding to the first panel information, which can be expressed as X1;
- the second rank is the rank number corresponding to the second panel, which can be expressed as X2.
- the first rank number and the second rank number can be called rank combinations.
- the terminal determines the total number of DMRS ports based on the fourth indication field, that is, the total number of ranks, which can be expressed as Y.
- the transmission multiplexing mode is determined to be FDM.
- the transmission multiplexing mode is determined to be SDM.
- DCI carrying various indication fields mentioned in this disclosure may refer to the same DCI or different DCIs.
- Figure 11 shows a block diagram of a transmission multiplexing mode indicating device provided by an exemplary embodiment of the present disclosure.
- the device includes:
- the receiving module 1110 is configured to receive DCI carrying a first indication field. Some code points in the first indication field are used to indicate the transmission to be applied when the terminal is scheduled to transmit STxMP simultaneously from multiple panels to multiple TRPs. Reuse method.
- the transmission multiplexing method includes at least one of the following:
- the FDM includes at least one of the following two types of FDM: FDM A; FDM B.
- the SDM includes at least one of the following two types of SDM: SDM A; SDM B.
- the first indication field is an SRS resource set indication field.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is FDM or SFN.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SFN;
- the second code point is used to indicate that the transmission multiplexing mode is FDM.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is SFN.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM-A; When the value of the first indication field is a second code point, the first code point is used to indicate that the transmission multiplexing mode is SDM-B.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is FDM-A; When the value of the first indication field is a second code point, the first code point is used to indicate that the transmission multiplexing mode is FDM-B.
- the first code point is 10, and the second code point is 11; or the first code point is 11, and the second code point is 10.
- Figure 12 shows a block diagram of a transmission multiplexing mode indicating device provided by an exemplary embodiment of the present disclosure.
- the device includes:
- the sending module 1210 is configured to send DCI carrying a first indication field. Some code points in the first indication field are used to indicate that the terminal is scheduled to transmit STxMP when uplink simultaneous transmission from multiple panels to multiple TRPs. Reuse method.
- the transmission multiplexing method includes at least one of the following: SFN; FDM; SDM.
- the FDM includes at least one of the following two types of FDM: FDM A; FDM B.
- the SDM includes at least one of the following two types of SDM: SDM A; SDM B.
- the first indication field is an SRS resource set indication field.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is FDM or SFN.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SFN;
- the second code point is used to indicate that the transmission multiplexing mode is FDM.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM;
- the second code point is used to indicate that the transmission multiplexing mode is SFN.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is SDM-A; When the value of the first indication field is a second code point, the first code point is used to indicate that the transmission multiplexing mode is SDM-B.
- the first code point when the value of the first indication field is a first code point, the first code point is used to indicate that the transmission multiplexing mode is FDM-A; When the value of the first indication field is a second code point, the first code point is used to indicate that the transmission multiplexing mode is FDM-B.
- the first code point is 10, and the second code point is 11; or the first code point is 11, and the second code point is 10.
- Figure 13 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
- the terminal includes: a processor 1301, a receiver 1302, a transmitter 1303, a memory 1304 and a bus 1305.
- the processor 1301 includes one or more processing cores.
- the processor 1301 executes various functional applications and information processing by running software programs and modules.
- the receiver 1302 and the transmitter 1303 can be implemented as a communication component, and the communication component can be a communication chip.
- Memory 1304 is connected to processor 1301 through bus 1305.
- the memory 1304 can be used to store at least one instruction, and the processor 1301 is used to execute the at least one instruction to implement each step in the above method embodiment.
- memory 1304 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only memory (Read Only Memory, ROM), magnetic memory, flash memory, programmable read only memory (Programmable Read Only Memory, PROM).
- magnetic or optical disks electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only memory (Read Only Memory, ROM), magnetic memory, flash memory, programmable read only memory (Programmable Read Only Memory, PROM).
- PROM Programmable Read Only Memory
- non-transitory computer-readable storage medium including instructions, such as a memory including instructions.
- the instructions can be executed by a processor of the terminal to complete the instruction method of the above-mentioned transmission multiplexing method.
- non-transitory computer-readable storage media may be ROM, random-access memory (Random-Access Memory, RAM), compact disc read-only memory (Compact Disc Read Only Memory, CD-ROM), magnetic tape, floppy disk, and optical data Storage devices, etc.
- Figure 14 is a block diagram of a network device 1400 according to an exemplary embodiment.
- the network device 1400 may be a base station.
- Network device 1400 may include: processor 1401, receiver 1402, transmitter 1403, and memory 1404.
- the receiver 1402, the transmitter 1403 and the memory 1404 are respectively connected to the processor 1401 through a bus.
- the processor 1401 includes one or more processing cores, and the processor 1401 executes the instruction method of the transmission multiplexing method provided by the embodiment of the present disclosure by running software programs and modules.
- Memory 1404 may be used to store software programs and modules. Specifically, the memory 1404 can store the operating system 14041 and at least one application module 14042 required for the function.
- the receiver 1402 is used to receive communication data sent by other devices, and the transmitter 1403 is used to send communication data to other devices.
- An exemplary embodiment of the present disclosure also provides a computer-readable storage medium.
- the computer-readable storage medium stores at least one instruction, at least a program, a code set or an instruction set. At least one instruction, at least a program, a code set. Or the instruction set is loaded and executed by the processor to implement the indicated method of transmission multiplexing provided by each of the above method embodiments.
- An exemplary embodiment of the present disclosure also provides a computer program product.
- the computer program product includes computer instructions.
- the computer instructions are stored in a computer-readable storage medium.
- the processor of the computer device reads the computer instructions from the computer-readable storage medium.
- the processor executes the computer instructions, causing the computer device to execute the transmission multiplexing method instruction method provided by each of the above method embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开公开了一种传输复用方式的指示方法、装置、介质及产品,属于通信领域。该方法包括:终端接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示终端调度为从多面板面向多 TRP 的上行同时传输 STxMP时应用的传输复用方式(902)。该方法根据新的STxMP传输特性,对相关技术中的动态指示域做增强设计,从而更好更灵活地支持传输复用方式的指示和动态切换。
Description
本公开涉及通信领域,特别涉及一种传输复用方式的指示方法、装置、介质及产品。
多点协作在新空口(New Radio,NR)系统中仍然是一种重要的技术手段,多点协作可以改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量。
相关技术中,通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向多个基站的传输和接收点(Transmission and Reception Point,TRP)方向传输,在R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,然而这种方法传输时延较大。
发明内容
本公开实施例提供了一种传输复用方式的指示方法、装置、介质及产品。技术方案如下:
根据本公开实施例的一个方面,提供了一种传输复用方式的指示方法,该方法由终端执行,该方法包括:
接收携带有第一指示域的下行控制信息(Downlink Control Information,DCI),第一指示域中的部分码点用于指示终端调度为从多天线面板面向多TRP的多天线面板同时传输(Simultaneous Transmission via Multi-Panel,STxMP)时应用的传输复用方式,其中天线面板也可简称为面板。
根据本公开实施例的另一个方面,提供了一种传输复用方式的指示方法,该方法由终端执行,该方法包括:
发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示终端调度为从多面板面向多TRP的STxMP时应用的传输复用方式。
根据本公开实施例的另一个方面,提供了一种传输复用方式的指示装置,该装置由终端执行,该装置包括:
接收模块,用于接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示终端调度为从多面板面向多TRP的STxMP时应用的传输复用方式。
根据本公开实施例的另一个方面,提供了一种传输复用方式的指示装置,该装置由网络设备执行,该装置包括:
发送模块,用于发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示终端调度为从多面板面向多TRP的STxMP时应用的传输复用方式。
根据本公开实施例的另一个方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种网络设备,该网络设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上各个方面的传输复用方式的指示方法。
根据本公开实施例的另一个方面,提供了一种计算机程序产品,该计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;该计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上各个方面的传输复用方式的指示方法。
本公开实施例提供的技术方案可以包括以下有益效果:
通过对DCI中的第一指示域进行增强,可以在STxMP场景下对传输复用方式进行指示,从而支持在STxMP场景下使用多种传输复用方式,同时还支持在不同传输复用方式之间进行动态切换。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例提供的通信系统的示意图;
图2是根据一示例性实施例提供的通信系统的示意图;
图3是根据一示例性实施例提供的上行传输流程的示意图;
图4是根据一示例性实施例提供的上行传输流程的示意图;
图5示出了本公开一示例性实施例提供的一种传输方案的示意图;
图6示出了本公开一示例性实施例提供的一种传输方案的示意图;
图7示出了本公开一示例性实施例提供的一种传输方案的示意图;
图8示出了本公开一示例性实施例提供的传输复用方式的指示方法的流程 图;
图9示出了本公开一示例性实施例提供的传输复用方式的指示方法的流程图;
图10示出了本公开一示例性实施例提供的传输复用方式的指示方法的流程图;
图11是根据一示例性实施例提供的传输复用方式的指示装置的框图;
图12是根据一示例性实施例提供的传输复用方式的指示装置的框图;
图13是根据一示例性实施例提供的终端的结构示意图;
图14是根据一示例性实施例提供的网络设备的结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出了本公开一示例性实施例提供的通信系统的示意图,该通信系统可以包括:网络设备12和终端14,网络设备12包括TRP1、TRP2。
网络设备12可以是基站,基站是一种为终端14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进式基站(eNodeB,eNB);在5G NR系统中,称为下一代基站(gNodeB,gNB)。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端14提供无线通信功能的装置统称为网络设备12。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
示例性的,网络设备12与终端14之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指终端14向网络设备12发送信号;下行通信是指网络设备12向终端14发送信号。
上行的PUSCH传输向多个基站的TRP方向传输,在第三代合作伙伴项目(Third Generation Partnership Project,3GPP)的版本R17时主要标准化了TDM传输方式下的协作传输,通过时域的不同TO分时向基站的不同TRP发送PUSCH上同一信息的重复,这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
对于上行来讲,面向不同TRP的PUSCH信道,实际经过的信道可能空间特性差别很大,因此认为不同的发送方向PUSCH信道的空间接收参数不同。
在R18的增强目标中,主要希望通过终端的多个面板向多个TRP方向实现同时协作传输用来增加传输的可靠性和吞吐率,同时可以有效的降低多TRP下的传输时延,但是要求终端具备同时发送多波束的能力。PUSCH的传输可以基于单个物理下行控制信道(Physical Downlink Control Channel,PDCCH)即单下行控制信息(Single Downlink Control Information,S-DCI)调度的多面板TRP传输,如图1所示。PUSCH的传输也可以基于不同PDCCH即多下行控制信息(Multi-Downlink Control Information,M-DCI)调度的多面板TRP传输,如图2所示。
如图1所示,由一个DCI向终端直接或间接调度预编码矩阵1和预编码矩阵2。终端14基于预编码矩阵1使用面板1向TRP1发送一层或更多层的上行数据。终端14基于预编码矩阵2使用面板2向TRP1发送一层或更多层的上行数据。
如图2所示,TRP 1通过PDCCH 1向终端14发送第一个DCI,调度终端14使用面板1向TRP 1发送PUSCH 1;TRP 2通过PDCCH 2向终端14发送第二个DCI,调度终端14使用面板2向TRP 2发送PUSCH 2。
上述TRP1和TRP2是同一个小区的两个TRP。
在STxMP场景下,上行传输流程包括:基于码本的上行传输和基于非码本的上行传输。
图3示出了本公开一示例性实施例提供的基于码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于码本的上行传输流程中,网络设备24首先发送探测参考信号(Sounding Reference Signal,SRS)资源配置给终端22,SRS资源配置包括至少一个SRS资源以及每个SRS资源的时频资源位置,之后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRS资源指示(SRS Resource Indication,SRI)和预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI),最后终端22基于SRI和TPMI发送PUSCH给网络设备24。
图4示出了本公开一示例性实施例提供的基于非码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于非码本的上行传输流程中,预编码矩阵不再限定在固定的候选集中。网络设备24首先发送信道状态信息参考信号(Channel State Information-Reference Symbol,CSI-RS)以及SRS资源配置信息给终端22,SRS资源配置包括至少一个SRS资源以及每个SRS资源的时频资源位置,之后终端22基于CSI-RS的测量结果通过奇异值分解等算法自行计算得到可能使用的至少一个预编码矩阵,然后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI,最后终端22基于SRI在可能使用的预编码矩阵中确定本次使用的预编码矩阵,基于SRI和本次使用的预编码矩阵 发送PUSCH给网络设备24。
对于多面板的上行同步传输,对于PUSCH的一个传输块(Transport Block,TB)的协作传输调度,可能支持的传输复用方式包括以下几种可能性:
图5示出了本公开一示例性实施例提供的一种传输复用方式的示意图,该示意图包括网络设备12和终端14。
空分复用(Space Division Multiplexing,SDM)传输复用方式,PUSCH的一个TB通过不同面板上分配的各自对应的解调参考信号(Demodulation Reference Signal,DMRS)端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
可选地,SDM存在两种可能的类型:
SDM-A:PUSCH的一个TB的不同部分分别通过不同面板上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
SDM-B:PUSCH的对应不同冗余版本(Redundancy Version,RV)的同一个TB的重复通过不同面板上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
图6示出了本公开一示例性实施例提供的一种传输复用方式的示意图,该示意图包括网络设备12和终端14,FDRA指频域资源分配(Frequency Domain Resource Allocation,FDRA)。
频分复用(Frequency Division Multiplexing,FDM)传输复用方式,PUSCH的一个TB通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
可选地,FDM存在两种可能的类型:
FDM-A:PUSCH的一个TB的不同部分分别通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联;
FDM-B:PUSCH的对应不同RV版本的同一个TB的重复通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
图7示出了本公开一示例性实施例提供的一种传输复用方式的示意图,该示意图包括网络设备12和终端14。
单频网(Single Frequency Network,SFN)传输复用方式,PUSCH的一个TB通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状 态(即波束)相关联。
在STxMP场景下,可能会支持上述多种传输复用方式中的一种或多种。
根据上述图3和图4可知,网络设备需要向终端预先发送SRS资源配置。在STxMP场景下,可能存在如下两种配置方式:
第一种可能的SRS资源配置方式:网络设备向终端配置两个SRS资源集的配置,两个SRS资源集包括第一SRS资源集和第二SRS资源集,不同SRS资源集与不同面板信息相关联。
第二种可能的SRS资源配置方式:网络设备向终端配置一个SRS资源集的配置,该SRS资源集包括第一SRS资源子集和第二SRS资源子集,不同SRS资源子集与不同面板信息相关联。
可选地,不同面板信息包括如下信息中的至少一种:
·不同面板,面板数可以是2或4个,本公开实施例中默认最大为2个;
·不同TRP;
·不同TCI状态;
·不同TO。
针对上述两种SRS资源配置方式,DCI中的SRS资源集指示域也需要重新设计,以便在STxMP场景下,网络设备能够向终端指示单TRP(Single-TRP,s-TRP)或多TRP(mutli-TRP,m-TRP)场景下,需要关联的SRS资源集以及SRI/TPMI域。图8示出了本公开一个示例性实施例提供的DCI信息域示意图,结合参考图8,DCI中包括多个信息域,该多个信息域中与本申请有关的域包括:SRS资源集指示域(2比特),第一个SRI域(x1比特),第二个SRI域(x2比特),第一个TPMI域(y1比特),第二个TPMI域(y2比特)。其中,对于非码本的情况,使用SRS资源集指示域和两个SRI域;对于码本的情况,使用SRS资源集指示域、两个SRI域和两个TPMI域。x1、x2、y1和y2为可变值。
在针对TDM传输方式下的协作传输(非同时传输),SRS资源集指示域中的各个码点的含义设计如下表一所示:
表一
表一中的每个码点含义如下:
在SRS资源集指示域的码点为00时,用于指示终端采用s-TRP模式向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为01时,用于指示终端采用s-TRP模式向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为10时,用于指示终端采用m-TRP模式在第一TO先向TRP1传输PUSCH,关联第一个SRS资源集;再在第二TO向TRP2传输PUSCH。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI。
在SRS资源集指示域的码点为11时,用于指示终端采用m-TRP模式在第一TO先向TRP2传输PUSCH,关联第二个SRS资源集;再在第二TO向TRP1传输PUSCH。在基于码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI。
分析表一可知,码点10是针对先向TRP1发送PUSCH,再向TRP2发送PUSCH的TDM协作方式设计的,码点11是针对先向TRP2发送PUSCH,再向TRP1发送PUSCH的TDM协作方式设计的。而在STxMP场景下,终端需要同时向TRP1和TRP2发送PUSCH,此时表一中的码点10和码点11将失去指示意义,成为冗余码点。
为此,本公开提出不同设计思路,利用上述冗余码点来全部或部分指示在STxMP场景下,所使用的传输复用方式。
图9示出了本公开一示例性实施例提供的传输复用方式的指示方法的流程图,本实施例以该方法由终端执行来举例说明。该方法包括:
步骤902:终端接收携带有第一指示域的DCI,该第一指示域中的部分码点 用于指示终端调度为从多面板面向多TRP的STxMP时应用的传输复用方式。
第一指示域为SRS资源集合指示域,或DCI中的其他指示域。
在一些实施例中,传输复用方式包括如下至少之一:SFN、FDM、SDM。其中,FDM可能包括如下两种类型FDM中的至少一种:FDM A、FDM B。其中,SDM可能包括如下两种类型SDM中的至少一种:SDM A、SDM B。
在一些实施例中,上述第一指示域中的部分码点包括第一码点和第二码点。第一码点用于指示第一传输复用方式,第二码点用于指示第二传输复用方式。
第一传输复用方式是SFN、FDM、SDM、FDM A、FDM B、SDM A、SDM B中的至少一种,第二传输复用方式是SFN、FDM、SDM、FDM A、FDM B、SDM A、SDM B中的至少一种,而且第一传输复用方式和第二传输复用方式不存在交集。
可选地,第一码点为10,第二码点为11;或,第一码点为11,第二码点为10。
本实施例中SRS资源集指示域的部分码点的可能设计如表二所示:
表二
码点 | SRS资源集 |
10 | m-TRP模式,关联第一传输复用方式 |
11 | m-TRP模式,关联第二传输复用方式 |
综上所述,本实施例提供的方法,通过对DCI中的第一指示域进行增强,可以在STxMP场景下对传输复用方式进行指示,从而支持在STxMP场景下使用多种传输复用方式,同时还支持在不同的传输复用方式之间动态切换。比如,DCI 1调度传输复用方式为SDM,DCI 2调度传输复用方式为FDM。
图10示出了本公开一示例性实施例提供的传输复用方式的指示方法的流程图,本实施例以该方法由网络设备执行来举例说明。该方法包括:
步骤1002:网络设备向终端发送携带有第一指示域的DCI,该第一指示域中的部分码点用于指示终端调度为从多面板面向多TRP的STxMP时应用的传输复用方式。
第一指示域为SRS资源集合指示域,或DCI中的其他指示域。
在一些实施例中,传输复用方式包括如下至少之一:SFN、FDM、SDM。其中,FDM可能包括如下两种类型FDM中的至少一种:FDM A、FDM B。其中,SDM可能包括如下两种类型SDM中的至少一种:SDM A、SDM B。
在一些实施例中,上述第一指示域中的部分码点包括第一码点和第二码点。第一码点用于指示第一传输复用方式,第二码点用于指示第二传输复用方式。
第一传输复用方式是SFN、FDM、SDM、FDM A、FDM B、SDM A、SDM B中的至少一种,第二传输复用方式是SFN、FDM、SDM、FDM A、FDM B、SDM A、SDM B中的至少一种,而且第一传输复用方式和第二传输复用方式不存在交集。
可选地,第一码点为10,第二码点为11;或,第一码点为11,第二码点为 10。
本实施例中SRS资源集指示域的部分码点的可能设计如上表二所示。
综上所述,本实施例提供的方法,通过对DCI中的第一指示域进行增强,可以在STxMP场景下对传输复用方式进行指示,从而支持在STxMP场景下使用多种传输复用方式,同时还支持在不同的传输复用方式之间动态切换。比如,DCI 1调度传输复用方式为SDM,DCI 2调度传输复用方式为FDM。
在基于图9和/或图10所示实施例的中,上述第一传输复用方式和第二传输复用方式的设计可能有多种,比如采用如下可能设计中的任意一种:
可能设计方式一(排名不分先后):
在第一指示域的取值为第一码点的情况下,第一码点用于指示传输复用方式为SDM;
在第一指示域的取值为第二码点的情况下,第二码点用于指示传输复用方式为FDM或SFN。
以第一码点为10,第二码点为11为例,SRS资源集指示域的部分码点的可能设计如表三所示:
表三
码点 | SRS资源集 |
10 | m-TRP模式,关联SDM |
11 | m-TRP模式,关联FDM或SFN |
示例性的,由于第一码点指示传输复用方式为SDM。若SDM还区分SDM-A或SDM-B,在DCI中的第一指示域的取值为第一码点的情况下,默认指示传输复用方式为SDM-A;或,在DCI中的第一指示域的取值为第一码点的情况下,默认指示传输复用方式为SDM-B;或,在DCI中的第一指示域的取值为第一码点的情况下,由其它可能的实现方式进一步指示终端使用SDM-A和SDM-B中的哪一种,本公开对该其它可能的实现方式不加以限定。
示例性的,由于第二码点指示传输复用方式为FDM或SFN。在DCI中的第一指示域的取值为第二码点的情况下,由其它可能的实现方式进一步指示终端使用FDM和SFN中的哪一种,或者,进一步指示终端使用FDM-A、FDM-B、SFN中的哪一种,本公开对该其它可能的实现方式不加以限定。
可能设计方式二:
在第一指示域的取值为第一码点的情况下,第一码点用于指示传输复用方式为SFN;
在第一指示域的取值为第二码点的情况下,第二码点用于指示传输复用方式为FDM。
以第一码点为10,第二码点为11为例,SRS资源集指示域的部分码点的可能设计如表四所示:
表四
码点 | SRS资源集 |
10 | m-TRP模式,关联SFN |
11 | m-TRP模式,关联FDM |
示例性的,在该种可能设计方式中,若需要支持指示传输复用模式为SDM,则由其它可能的实现方式进行指示,本公开对该其它可能的实现方式不加以限定。
示例性的,由于第二码点指示传输复用方式为FDM。若FDM还区分FDM-A或FDM-B,在DCI中的第一指示域的取值为第二码点的情况下,默认指示传输复用方式为FDM-A;或,在DCI中的第一指示域的取值为第二码点的情况下,默认指示传输复用方式为FDM-B;或,在DCI中的第一指示域的取值为第二码点的情况下,由其它可能的实现方式进一步指示终端使用FDM-A和FDM-B中的哪一种,本公开对该其它可能的实现方式不加以限定。
可能设计方式三:
在第一指示域的取值为第一码点的情况下,第一码点用于指示传输复用方式为SDM;
在第一指示域的取值为第二码点的情况下,第二码点用于指示传输复用方式为SFN。
以第一码点为10,第二码点为11为例,SRS资源集指示域的部分码点的可能设计如表五所示:
表五
码点 | SRS资源集 |
10 | m-TRP模式,关联SDM |
11 | m-TRP模式,关联SFN |
示例性的,在该种可能设计方式中,若需要支持指示传输复用模式为FDM,则由其它可能的实现方式进行指示,本公开对该其它可能的实现方式不加以限定。
示例性的,由于第一码点指示传输复用方式为SDM。若SDM还区分SDM-A或SDM-B,在DCI中的第一指示域的取值为第一码点的情况下,默认指示传输复用方式为SDM-A;或,在DCI中的第一指示域的取值为第一码点的情况下,默认指示传输复用方式为SDM-B;或,在DCI中的第一指示域的取值为第一码点的情况下,由其它可能的实现方式进一步指示终端使用SDM-A和SDM-B中的哪一种,本公开对该其它可能的实现方式不加以限定。
可能设计方式四:
在第一指示域的取值为第一码点的情况下,第一码点用于指示传输复用方式为SDM-A;
在第一指示域的取值为第二码点的情况下,第一码点用于指示传输复用方 式为SDM-B。
以第一码点为10,第二码点为11为例,SRS资源集指示域的部分码点的可能设计如表六所示:
表六
码点 | SRS资源集 |
10 | m-TRP模式,关联SDM-A |
11 | m-TRP模式,关联SDM-B |
示例性的,在该种可能设计方式中,由其它可能的实现方式指示终端使用SDM、FDM和SFN中的一种,本公开对该其它可能的实现方式不加以限定。
可能设计方式五:
在第一指示域的取值为第一码点的情况下,第一码点用于指示传输复用方式为FDM-A;
在第一指示域的取值为第二码点的情况下,第一码点用于指示传输复用方式为FDM-B。
以第一码点为10,第二码点为11为例,SRS资源集指示域的部分码点的可能设计如表七所示:
表七
码点 | SRS资源集 |
10 | m-TRP模式,关联FDM-A |
11 | m-TRP模式,关联FDM-B |
示例性的,在该种可能设计方式中,由其它可能的实现方式指示终端使用SDM、FDM和SFN中的一种,本公开对该其它可能的实现方式不加以限定。
针对上述可能设计方式一,在第一指示域的取值为第一码点,第一码点用于指示传输复用方式为SDM的情况下,本公开还提供了如下进一步地设计:
·在同时支持SDM-A和SDM-B,需要进一步区分SDM-A和SDM-B的情况下,网络设备向终端发送携带有RV码点指示域的DCI,在该RV码点指示域为第一取值时,指示应用SDM-A,和/或指示应用单RV方案;在该RV码点指示域为第二取值时,指示应用SDM-B,和/或指示应用多RV方案。
·在仅支持SDM-A或SDM-B中的一种,无需区分SDM-A和SDM-B的情况下,采用如下方式区分不同的面板/TRP/TCI状态分别对应的DMRS端口或端口组合:
终端根据DCI中的天线端口指示域“antenna ports”,采用默认方式分别确定依次对应分配给第一个PUSCH传输时机(对应向TPR1发送)和第二PUSCH传输时机(对应向TRP2发送)的DMRS端口数目。可选地,终端的两个PUSCH传输时机不支持第一秩组合,且天线端口指示域指示的总的秩数为2或4。作为一种示例,本公开实施例中所涉及的第一秩组合为1+3方式或3+1方式的秩组合。
举例而言,针对不支持1+3方式或3+1方式的秩组合的情况,则两个面板信息对应的PUSCH传输时机支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4)。在天线端口指示域指示的总的秩数为2或4的情况下,可以采用默认方式分别确定依次对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目。例如,通过DCI信令指示的端口具体为DMRS ports={2,3},则默认确定分配给第一个面板的DMRS端口为{2},分配给第二个面板的DMRS端口为{3}。
在本公开的实施例中,DCI信令中“antenna ports”指示域用于指示总的数据层数,即秩数。
在本公开的一些实施例中,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机可为两个,DMRS端口分配信息至少可以包括为终端设备分配的DMRS端口集合,且DMRS端口集合中的DMRS端口的索引与多个PUSCH传输时机支持的秩组合存在映射关系。其中,在一种可能的实现方式中,可以根据DMRS端口集合和该映射关系,采用默认预定义方式分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目;其中,两个PUSCH传输时机不支持第一秩组合,且天线端口指示域指示的总的秩数为3。
举例而言,针对不支持1+3方式或3+1方式的秩组合的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4)。在天线端口指示域指示的总的秩数为3的情况下,可以采用默认预定义方式分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目。例如,在DMRS端口分配表中,对于DMRS类型2,单符号,秩=3的情况下配置的DMRS端口如下面表八所示,可以默认预定义索引0-2(即索引值为{0,1,2})指示1+2的秩组合,索引3-5(即索引值为{3,4,5})对应2+1的秩组合,且端口顺序分配。比如,索引值为0,对应的DMRS端口为{0,1,2},索引值{0}默认预定义指示1+2的秩组合,且端口顺序分配,因此,可以确定第一个面板信息的DMRS端口为{0},确定第二个面板的DMRS端口为{1,2}。又如,索引值为4,对应的DMRS端口为{0,1,2},索引值{4}默认预定义指示2+1的秩组合,且端口顺序分配,因此,可以确定第一个面板信息的DMRS端口为{0,1},确定第二个面板的DMRS端口为{2}。
表八 对于DMRS类型2,单符号的情况,秩=3情况下配置的DMRS端口
索引 | 不包含数据的DMRS CDM组数 | DMRS端口 |
0 | 2 | 0-2 |
1 | 3 | 0-2 |
2 | 3 | 3-5 |
3 | 2 | 0-2 |
4 | 3 | 0-2 |
5 | 3 | 3-5 |
6-15 | Reserved | Reserved |
可以理解的是,上述的表八中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表八中任何其他元素值。因此本领域内技术人员可以理解,该表八中的每一个元素的取值都是一个独立的实施例。需要说明的是,本公开实施例中包括多个表格,而其中的每一个表格都与表八相似的,是将多个独立的实施例合并在了同一张表格中,而这些表格中的每一个元素也应当被认为是一个独立的实施例。
在本公开的一些实施例中,该DMRS端口分配信息至少包括:为终端设备分配的DMRS端口集合和附加指示信息。其中,该附加指示信息用于指示DMRS端口集合中的DMRS端口的索引与多个PUSCH传输时机支持的秩组合之间的映射关系。其中,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机为两个。
其中,在本公开的实施例中,终端根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的DMRS端口信息的可能实现方式可以如下:根据DMRS端口集合和映射关系,确定将多个DMRS端口顺序分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目;其中,两个PUSCH传输时机不支持第一秩组合,且天线端口指示域指示的总的秩数为3。
举例而言,针对不支持1+3方式或3+1方式的秩组合的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4)。在天线端口指示域指示的总的秩数为3的情况下,可以在DMRS端口分配表中增加相同的行数,并增加一列信息,可选地,可以定义该列信息用于指示区分秩组合是1+2或2+1,不同的面板对应的DMRS端口为顺序对应。例如,如下面表九所示,在DMRS端口分配表中增加一列附加指示信息,该附加指示信息用于指示区分秩组合是1+2或2+1。该DMRS端口分配表中,可以对应信息指示明确索引0-2(即索引值为{0,1,2})指示1+2的组合,索引3-5(即索引值为{3,4,5})对应指示2+1的组合。比如,索引值为0,对应的DMRS端口为{0,1,2},索引值{0}对应指示1+2的秩组合,且不同的面板对应的DMRS端口为顺序对应,因此,可以确定第一个面板的DMRS端口为{0},确定第二个面板的DMRS端口为{1,2}。又如,索引值为5,对应的DMRS端口为{3,4,5},索引值{5}对应指示2+1的秩组合,且不同的面板对应的DMRS端口为顺序对应,因此,可以确定第一个面板信息的DMRS端口为{3,4},确定第二个面板的DMRS端口为{5}。
表九 对于DMRS类型2,单符号的情况,秩=3情况下配置的DMRS端口
索引 | 不包含数据的DMRS CDM组数 | DMRS端口 | 附加指示 |
0 | 2 | 0-2 | 1+2 |
1 | 3 | 0-2 | 1+2 |
2 | 3 | 3-5 | 1+2 |
3 | 2 | 0-2 | 2+1 |
4 | 3 | 0-2 | 2+1 |
5 | 3 | 3-5 | 2+1 |
6-15 | Reserved | Reserved |
在本公开的一些实施例中,该DMRS端口分配信息至少包括:为终端设备分配的DMRS端口集合和附加指示信息。其中,该附加指示信息用于指示第一个PUSCH传输时机占用的DMRS端口,第一个PUSCH传输时机占用的DMRS端口属于DMRS端口集合中。
其中,在本公开的实施例中,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机为两个;所述根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的DMRS端口信息的可能实现方式可以如下:根据DMRS端口集合和附加指示信息指示的第一个PUSCH传输时机占用的DMRS端口,分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口信息;其中,两个PUSCH传输时机不支持第一秩组合,且天线端口指示域指示的总的秩数为3。
举例而言,针对不支持1+3方式或3+1方式的秩组合的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4)。在天线端口指示域指示的总的秩数为3的情况下,可以在DMRS端口分配表中增加相同的行数,并增加一列信息,可选地,可以定义该列信息用于指示第一个面板的DMRS端口。可以理解,这种方式较为灵活,增加后的DMRS端口分配表中对应的DCI比特数不变,不增加开销。
例如,如下面表十所示,在DMRS端口分配表中增加一列附加指示信息,该附加指示信息用于指示第一个面板的DMRS端口,这样明确索引0-5(即索引值为{0,1,2,3,4,5})对应指示1+2的秩组合,索引6-11(即索引值为{6,7,8,9,10,11})对应指示2+1的秩组合。比如,索引值为5,对应的DMRS端口为{3,4,5},索引值{5}对应指示1+2的秩组合,附加指示信息用于指示第一个面板的DMRS端口为{4},则可以确定第一个面板的DMRS端口为{4},确定第二个面板的DMRS端口为{3,5}。又如,索引值为6,对应的DMRS端口为{0,1,2},索引值{6}对应指示2+1的秩组合,附加指示信息用于指示第一个面板的DMRS端口为{0,1},则可以确定第一个面板的DMRS端口为{0,1},确定第二个面板的DMRS端口为{2}。
表十 对于DMRS类型2,单符号的情况,秩=3情况下配置的DMRS端口
在本公开的一些实施例中,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机可以为两个,DMRS端口分配信息至少包括为终端设备分配的DMRS端口集合。其中,在本公开的实施例中,所述根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的可能实现方式可以如下:根据DMRS端口集合,采用默认方式分别确定依次对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目;其中,两个PUSCH传输时机支持第一秩组合,且天线端口指示域指示的总的秩数为2。
举例而言,针对支持1+3方式或3+1方式的秩组合(如针对1个码字和2个码字的灵活分配映射)的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4),1+3(总层数为4),3+1(总层数为4)。在天线端口指示域指示的总的秩数为2的情况下,可以采用默认方式分别确定依次对应分配给第一个面板和第二个面板的DMRS端口数目。例如,通过DCI信令指示的端口具体为DMRS={2,3},则确定分配给第一个面板的DMRS端口为{2},分配给第二个面板的DMRS端口为{3}。
在本公开的一些实施例中,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机可以为两个,DMRS端口分配信息至少包括为终端设备分配的DMRS端口集合,且DMRS端口集合中的DMRS端口的索引与多个PUSCH传输时机支持的秩组合存在映射关系。其中,在本公开的实施例中,所述根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的DMRS端口信息的可能实现方式可以如下:根据DMRS端口集合和映射关系,采用默认预定义方式分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目;其中,两个PUSCH传输时机支持第一秩组合,且天线端口指示域指示的总的秩数为3或4。
举例而言,针对支持1+3方式或3+1方式的秩组合(如针对1个码字和2个码字的灵活分配映射)的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4),1+3(总层数为4),3+1(总层数为4)。在天线端 口指示域指示的总的秩数为3或4的情况下,可以采用默认预定义方式分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目。例如,以DMRS类型2,单符号,秩=3的DMRS端口分配表为例,可以默认预定义索引0-2(即索引值为{0,1,2})指示1+2的秩组合,索引3-5(即索引值为{3,4,5})对应2+1的秩组合,且端口顺序分配。又如,DMRS类型2,单符号,秩=4的DMRS端口分配表为例,可以默认预定义索引0-1(即索引值为{0,1})指示2+2的秩组合,索引2(即索引值为{2})指示1+3的秩组合,索引3-5(即索引值为{3,4,5})对应指示2+1的秩组合,且端口顺序分配。
在本公开的一些实施例中,该DMRS端口分配信息至少包括:为终端设备分配的DMRS端口集合和附加指示信息。其中,该附加指示信息用于指示DMRS端口集合中的DMRS端口的索引与多个PUSCH传输时机支持的秩组合之间的映射关系。作为一种示例,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机为两个。其中,在本公开的实施例中,所述根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的DMRS端口信息的可能实现方式可如下:根据DMRS端口集合和该映射关系,确定将多个DMRS端口顺序分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口数目;其中,两个PUSCH传输时机支持第一秩组合,且天线端口指示域指示的总的秩数为3或4。
举例而言,针对支持1+3方式或3+1方式的秩组合(如针对1个码字和2个码字的灵活分配映射)的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4),1+3(总层数为4),3+1(总层数为4)。在天线端口指示域指示的总的秩数为3或4的情况下,可以在DMRS端口分配表中增加相同的行数,并增加一列信息,可选地,可以定义该列信息用于指示区分秩3的组合是1+2或2+1,秩4的组合是2+2,1+3或3+1,不同的面板对应的DMRS端口为顺序对应。
在本公开的一些实施例中,该DMRS端口分配信息可以至少包括:为终端设备分配的DMRS端口集合和附加指示信息。其中,该附加指示信息用于指示第一个PUSCH传输时机占用的DMRS端口,第一个PUSCH传输时机占用的DMRS端口属于DMRS端口集合中。作为一种示例,PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机为两个。其中,在本公开的实施例中,根据天线端口指示域和DMRS端口分配信息,确定为PUSCH在不同的面板面向不同发送接收点TRP使用不同波束上关联的PUSCH传输时机配置的DMRS端口信息的可能实现方式可如下:根据DMRS端口集合和附加指示信息指示的第一个PUSCH传输时机占用的DMRS端口,分别确定对应分配给第一个PUSCH传输时机和第二个PUSCH传输时机的DMRS端口信息;其中,两个PUSCH传输时机支持第一秩组合,且天线端口指示域指示的总的秩数为3或4。
举例而言,针对支持1+3方式或3+1方式的秩组合(如针对1个码字和2个码字的灵活分配映射)的情况,则两个面板/TRP/TCI state对应的PUSCH传输实际支持的秩组合可以为1+1(总层数为2),1+2(总层数为3),2+1(总层数为3),2+2(总层数为4),1+3(总层数为4),3+1(总层数为4)。在天线端口指示域指示的总的秩数为3或4的情况下,可以在DMRS端口分配表中增加相同的行数,并增加一列信息,可选地,可以定义该列信息用于指示第一个面板的DMRS端口。可以理解,这种方式较为灵活,增加后的DMRS端口分配表中对应的DCI比特数不变,不增加开销。
针对上述可能设计方式二和可能设计方式四,本公开还提供了一种如何区分传输复用方式为SDM和非SDM的方法。非SDM的传输复用方式包括SFN和/或FDM。
在一些实施例中,网络设备向终端发送携带第二指示域的DCI,该第二指示域用于指示SDM和非SDM。当第二指示域为第一取值时,用于指示SDM;当第二指示域为第二取值时,用于指示SFN和/或FDM。可选地,该第二指示域占用1个比特,该1个比特为新增比特,或复用相关技术中已知格式的DCI中某个域中的已有比特,或,使用相关技术中已知格式的DCI中某个域中的保留比特。
在一些实施例中,通过DCI中的SRI/TPMI域和DMRS域联合指示SDM和非SDM。网络设备向终端发送携带有第三指示域和第四指示域的DCI。可选的,该第三指示域为SRI/TPMI域,第四指示域为DMRS域。
终端基于第三指示域确定第一秩和第二秩,第一秩是与第一面板信息对应的秩数,可表示为X1;第二秩是与第二面板对应的秩数,可表示为X2。第一秩数和第二秩数可称为秩组合。终端基于第四指示域确定总的DMRS端口数,也即总的秩数目,可表示为Y。
在第一秩数和第二秩数均等于总的秩数的情况下,也即X1=X2=Y的情况下,确定传输复用方式为非SDM。
在第一秩数和第二秩数的和等于总的秩数的情况下,也即X1+X2=Y的情况下,确定传输复用方式为SDM。
针对上述可能设计方式五,本公开还提供了一种如何区分传输复用方式为FDM和SDM的方法。其中,SFN由其它可能的方式进行指示,比如该可能的其它方式为无线资源控制(Radio Resource Control,RRC)信令指示方式。
在一些实施例中,网络设备向终端发送携带第二指示域的DCI,该第二指示域用于指示SDM和FDM。当第二指示域为第一取值时,用于指示SDM;当第二指示域为第二取值时,用于指示FDM。可选地,该第二指示域占用1个比特,该1个比特为新增比特,或复用相关技术中已知格式的DCI中某个域中的已有比特,或,使用相关技术中已知格式的DCI中某个域中的保留比特。
在一些实施例中,通过DCI中的SRI/TPMI域和DMRS域联合指示FDM和 SDM。网络设备向终端发送携带有第三指示域和第四指示域的DCI。可选的,该第三指示域为SRI/TPMI域,第四指示域为DMRS域。
终端基于第三指示域确定第一秩和第二秩,第一秩是与第一面板信息对应的秩数,可表示为X1;第二秩是与第二面板对应的秩数,可表示为X2。第一秩数和第二秩数可称为秩组合。终端基于第四指示域确定总的DMRS端口数,也即总的秩数目,可表示为Y。
在第一秩数和第二秩数均等于总的秩数的情况下,也即X1=X2=Y的情况下,确定传输复用方式为FDM。
在第一秩数和第二秩数的和等于总的秩数的情况下,也即X1+X2=Y的情况下,确定传输复用方式为SDM。
需要说明的是,本公开中提及的携带有各种指示域的DCI,可以是指同一个DCI,也可以是指不同DCI。
图11示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框图,该装置包括:
接收模块1110,用于接收携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多TRP的上行同时传输STxMP时应用的传输复用方式。
在本实施例的一种可能设计中,传输复用方式包括如下至少之一:
SFN;FDM;SDM。
在本实施例的一种可能设计中,所述FDM包括如下两种类型FDM中的至少一种:FDM A;FDM B。
在本实施例的一种可能设计中,所述SDM包括如下两种类型SDM中的至少一种:SDM A;SDM B。
在本实施例的一种可能设计中,第一指示域为SRS资源集合指示域。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM或SFN。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SFN;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,在所述第一指示域的取值为第一码点的情 况下,所述第一码点用于指示所述传输复用方式为SDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-B。
在本实施例的一种可能设计中,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-B。
在本实施例的一种可能设计中,第一码点为10,所述第二码点为11;或所述第一码点为11,所述第二码点为10。
图12示出了本公开一个示例性实施例提供的传输复用方式的指示装置的框图,该装置包括:
发送模块1210,用于发送携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多TRP的上行同时传输STxMP时应用的传输复用方式。
在本实施例的一种可能设计中,传输复用方式包括如下至少之一:SFN;FDM;SDM。
在本实施例的一种可能设计中,所述FDM包括如下两种类型FDM中的至少一种:FDM A;FDM B。
在本实施例的一种可能设计中,所述SDM包括如下两种类型SDM中的至少一种:SDM A;SDM B。
在本实施例的一种可能设计中,第一指示域为SRS资源集合指示域。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM或SFN。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SFN;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM。
在本实施例的一种可能设计中,第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;
在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
在本实施例的一种可能设计中,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-B。
在本实施例的一种可能设计中,在所述第一指示域的取值为第一码点的情 况下,所述第一码点用于指示所述传输复用方式为FDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-B。
在本实施例的一种可能设计中,第一码点为10,所述第二码点为11;或所述第一码点为11,所述第二码点为10。
图13示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read Only Memory,PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述传输复用方式的指示方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(Random-Access Memory,RAM)、紧凑型光盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。
图14是根据一示例性实施例示出的一种网络设备1400的框图,该网络设备1400可以是基站。
网络设备1400可以包括:处理器1401、接收机1402、发射机1403和存储器1404。接收机1402、发射机1403和存储器1404分别通过总线与处理器1401连接。
其中,处理器1401包括一个或者一个以上处理核心,处理器1401通过运行软件程序以及模块以执行本公开实施例提供的传输复用方式的指示方法。存储器1404可用于存储软件程序以及模块。具体的,存储器1404可存储操作系统14041、至少一个功能所需的应用程序模块14042。接收机1402用于接收其他设备发送的通信数据,发射机1403用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,计算机可读存 储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的传输复用方式的指示方法。
本公开一示例性实施例还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方法实施例提供的传输复用方式的指示方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
Claims (29)
- 一种传输复用方式的指示方法,其特征在于,所述方法由终端执行,所述方法包括:接收携带有第一指示域的下行控制信息DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多发送和接收点TRP的上行同时传输STxMP时应用的传输复用方式。
- 根据权利要求1所述的方法,其特征在于,所述传输复用方式包括如下至少之一:单频网SFN;频分复用FDM;空分复用SDM。
- 根据权利要求2所述的方法,其特征在于,所述FDM包括如下两种类型FDM中的至少一种:FDM A;FDM B。
- 根据权利要求2所述的方法,其特征在于,所述SDM包括如下两种类型SDM中的至少一种:SDM A;SDM B。
- 根据权利要求1至4任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM或SFN。
- 根据权利要求1至4任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SFN;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM。
- 根据权利要求1至4任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
- 根据权利要求1至4任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-B。
- 根据权利要求1至4任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-B。
- 根据权利要求5至9任一所述的方法,其特征在于,所述第一码点为10,所述第二码点为11;或,所述第一码点为11,所述第二码点为10。
- 根据权利要求1至10任一所述的方法,其特征在于,所述第一指示域为SRS资源集合指示域。
- 一种传输复用方式的指示方法,其特征在于,所述方法由网络设备执行,所述方法包括:发送携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多TRP的上行同时传输STxMP时应用的传输复用方式。
- 根据权利要求12所述的方法,其特征在于,所述传输复用方式包括如下至少之一:单频网SFN;频分复用FDM;空分复用SDM。
- 根据权利要求13所述的方法,其特征在于,所述FDM包括如下两种类型FDM中的至少一种:FDM A;FDM B。
- 根据权利要求13所述的方法,其特征在于,所述SDM包括如下两种类型SDM中的至少一种:SDM A;SDM B。
- 根据权利要求12至15任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM或SFN。
- 根据权利要求12至15任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SFN;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为FDM。
- 根据权利要求12至15任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM;在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述传输复用方式为SFN。
- 根据权利要求12至15任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为SDM-B。
- 根据权利要求12至15任一所述的方法,其特征在于,在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-A;在所述第一指示域的取值为第二码点的情况下,所述第一码点用于指示所述传输复用方式为FDM-B。
- 根据权利要求16至20任一所述的方法,其特征在于,所述第一码点为10,所述第二码点为11;或,所述第一码点为11,所述第二码点为10。
- 根据权利要求12至21任一所述的方法,其特征在于,所述第一指示域为SRS资源集合指示域。
- 一种传输复用方式的指示装置,其特征在于,所述装置包括:接收模块,用于接收携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多TRP的上行同时传输STxMP时应用的传输复用方式。
- 一种传输复用方式的指示装置,其特征在于,所述装置包括:发送模块,用于发送携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示所述终端调度为从多面板面向多TRP的上行同时传输STxMP时应用的传输复用方式。
- 一种终端,其特征在于,所述终端包括:处理器;与所述处理器相连的收发器;其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至11任一所述的传输复用方式的指示方法。
- 一种网络设备,其特征在于,所述网络设备包括:处理器;与所述处理器相连的收发器;其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求12至22任一所述的传输复用方式的指示方法。
- 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至11任一所述的传输复用方式的指示方法,或者,如权利要求12至22任一所述的传输复用方式的指示方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至11任一所述的传输复用方式的指示方法,或者,如权利要求12至22任一所述的传输复用方式的指示方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至11任一所述的传输复用方式的指示方法,或者,如权利要求12至22任一所述的传输复用方式的指示方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109535 WO2024026643A1 (zh) | 2022-08-01 | 2022-08-01 | 传输复用方式的指示方法、装置、介质及产品 |
CN202280002853.1A CN117813885A (zh) | 2022-08-01 | 2022-08-01 | 传输复用方式的指示方法、装置、介质及产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/109535 WO2024026643A1 (zh) | 2022-08-01 | 2022-08-01 | 传输复用方式的指示方法、装置、介质及产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024026643A1 true WO2024026643A1 (zh) | 2024-02-08 |
Family
ID=89848238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109535 WO2024026643A1 (zh) | 2022-08-01 | 2022-08-01 | 传输复用方式的指示方法、装置、介质及产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117813885A (zh) |
WO (1) | WO2024026643A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112583523A (zh) * | 2019-09-30 | 2021-03-30 | 大唐移动通信设备有限公司 | 一种传输模式的指示方法、装置、基站、终端及存储介质 |
US20220014346A1 (en) * | 2020-07-10 | 2022-01-13 | Qualcomm Incorporated | Transmit receive point pairing indication |
CN114128353A (zh) * | 2019-08-16 | 2022-03-01 | 华为技术有限公司 | 传输模式确定方法及装置 |
CN115004588A (zh) * | 2022-04-27 | 2022-09-02 | 北京小米移动软件有限公司 | 一种确定传输配置指示状态的方法及装置 |
-
2022
- 2022-08-01 CN CN202280002853.1A patent/CN117813885A/zh active Pending
- 2022-08-01 WO PCT/CN2022/109535 patent/WO2024026643A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114128353A (zh) * | 2019-08-16 | 2022-03-01 | 华为技术有限公司 | 传输模式确定方法及装置 |
CN112583523A (zh) * | 2019-09-30 | 2021-03-30 | 大唐移动通信设备有限公司 | 一种传输模式的指示方法、装置、基站、终端及存储介质 |
US20220014346A1 (en) * | 2020-07-10 | 2022-01-13 | Qualcomm Incorporated | Transmit receive point pairing indication |
CN115004588A (zh) * | 2022-04-27 | 2022-09-02 | 北京小米移动软件有限公司 | 一种确定传输配置指示状态的方法及装置 |
Non-Patent Citations (2)
Title |
---|
SAMSUNG: "Views on UL precoding indication for STxMP", 3GPP DRAFT; R1-2203893, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143994 * |
VIVO: "Views on UL precoding indication for multi-panel transmission", 3GPP DRAFT; R1-2203546, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153021 * |
Also Published As
Publication number | Publication date |
---|---|
CN117813885A (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019141285A1 (zh) | 一种天线选择指示方法、装置和系统 | |
JP2020523804A (ja) | リソースブロックを配分するためのシステムおよび方法 | |
US20190222354A1 (en) | Method for configuring channel state information reporting band and communications apparatus | |
WO2023226046A1 (zh) | Tci状态的指示方法、装置、设备及介质 | |
WO2019192410A1 (zh) | 一种信号传输方法及通信设备 | |
WO2022147755A1 (en) | Unified transmission configuration indicators in multiple transmission reception point environments | |
CN111446995B (zh) | 一种用于多天线传输的用户设备、基站中的方法和装置 | |
CN113452496A (zh) | 一种被用于多天线传输的用户设备、基站中的方法和装置 | |
US20240048346A1 (en) | Systems and methods for uplink transmission scheme in multi-trp operation | |
WO2021087768A1 (en) | Method, device and computer storage medium for communication | |
WO2013138989A1 (en) | Method and apparatus for determining the physical downlink shared channel fallback mode | |
WO2024026643A1 (zh) | 传输复用方式的指示方法、装置、介质及产品 | |
WO2023272514A1 (zh) | 上行传输方法、装置、设备及可读存储介质 | |
WO2024026645A1 (zh) | 信息指示方法、装置、介质及产品 | |
WO2024026644A1 (zh) | Srs资源的配置方法、装置、介质及产品 | |
WO2024098576A1 (en) | Systems and methods for reporting user equipment capability | |
WO2024065113A1 (zh) | 上行波形的指示方法、装置、介质及产品 | |
WO2024065115A1 (zh) | 传输复用方式的指示方法、装置、介质及产品 | |
WO2024103529A1 (en) | Systems and methods for determining downlink control information | |
US20220330073A1 (en) | Handling configurations for reporting channel state information | |
JP7302095B2 (ja) | リソース指示方法および装置 | |
US20240223324A1 (en) | Simultaneous uplink transmission in a multiple transmit-receive point configuration | |
WO2023201643A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
JP6817910B2 (ja) | リソースの割り当て | |
WO2024191331A1 (en) | Static and dynamic rate matching for new radio user equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280002853.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22953458 Country of ref document: EP Kind code of ref document: A1 |