WO2024026645A1 - 信息指示方法、装置、介质及产品 - Google Patents

信息指示方法、装置、介质及产品 Download PDF

Info

Publication number
WO2024026645A1
WO2024026645A1 PCT/CN2022/109538 CN2022109538W WO2024026645A1 WO 2024026645 A1 WO2024026645 A1 WO 2024026645A1 CN 2022109538 W CN2022109538 W CN 2022109538W WO 2024026645 A1 WO2024026645 A1 WO 2024026645A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
sri
resource set
domain
tpmi
Prior art date
Application number
PCT/CN2022/109538
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/109538 priority Critical patent/WO2024026645A1/zh
Publication of WO2024026645A1 publication Critical patent/WO2024026645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications, and in particular to an information indicating method, device, medium and product.
  • the Sounding Reference Signal (SRS) resource set indication field can realize the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) at a single transmission and reception point (single Transmission and Reception Point, s-TRP) and multiple transmission and reception Dynamic switching between multi-Transmission and Reception Point (m-TRP) scheduling.
  • PUSCH Physical Uplink Shared Channel
  • s-TRP single Transmission and Reception Point
  • m-TRP Multi-Transmission and Reception Point
  • Embodiments of the present disclosure provide an information indicating method, device, medium and product.
  • the technical solution is as follows:
  • an information indication method is provided.
  • the method is executed by a terminal.
  • the method includes:
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • Some code points in the first indication field are used to indicate that under the STxMP configuration based on single DCI scheduling and the terminal is scheduled for a single antenna on the uplink data channel
  • SRI SRS Resource Indication
  • TPMI Precoding Matrix Indicator
  • the antenna panel can also be referred to as a panel for short.
  • an information indication method is provided.
  • the method is executed by a network device.
  • the method includes:
  • Some code points in the first indication field are used to indicate the uplink transmission of the terminal under the STxMP configuration based on a single DCI schedule and the uplink data channel is scheduled for a single antenna panel to a single TRP.
  • an information indication device which device includes:
  • the receiving module is configured to receive the DCI carrying the first indication field. Some code points in the first indication field are used to indicate that under the STxMP configuration based on single DCI scheduling, the terminal is scheduled for a single antenna panel on the uplink data channel to a single TRP.
  • an information indication device which device includes:
  • a sending module configured to send DCI carrying a first indication field. Part of the code points in the first indication field is used to indicate that under the STxMP configuration based on a single DCI scheduling and the terminal is scheduled as a single antenna panel to a single TRP on the uplink data channel
  • the SRS resource set and SRI/TPMI domain associated with the uplink transmission are used to indicate that under the STxMP configuration based on a single DCI scheduling and the terminal is scheduled as a single antenna panel to a single TRP on the uplink data channel.
  • a terminal including:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the information indicating methods in various aspects as above.
  • a network device which includes:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the information indicating methods in various aspects as above.
  • a chip includes programmable logic circuits and/or program instructions, and is used to implement the information indication methods of the above aspects when the chip is run.
  • a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, at least one instruction, at least a program , a code set or an instruction set is loaded and executed by the processor to implement the above information indication methods in various aspects.
  • a computer program product (or computer program) including computer instructions stored in a computer-readable storage medium; a computer device;
  • the processor reads computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, causing the computer device to perform the above information indication methods in various aspects.
  • the DCI indication field in the related technology is enhanced and designed to make it better and more efficient. Flexibly supports indication and dynamic switching of STxMP transmission schemes.
  • Figure 1 is a schematic diagram of a communication system provided according to an exemplary embodiment
  • Figure 2 is a schematic diagram of a communication system provided according to an exemplary embodiment
  • Figure 3 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
  • Figure 4 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
  • Figure 5 shows a schematic diagram of the DCI information domain provided by an exemplary embodiment of the present disclosure
  • Figure 6 shows a flow chart of an information indication method provided by an exemplary embodiment of the present disclosure
  • Figure 7 shows a flow chart of an information indication method provided by an exemplary embodiment of the present disclosure
  • Figure 8 shows a block diagram of an information indication device provided by an exemplary embodiment of the present disclosure
  • Figure 9 shows a block diagram of an information indication device provided by an exemplary embodiment of the present disclosure.
  • Figure 10 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure
  • Figure 11 shows a schematic structural diagram of a network device provided by an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • FIG. 1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: a network device 12 and a terminal 14.
  • the network device 12 includes TRP1 and TRP2.
  • the network device 12 may be a base station, which is a device that provides wireless communication functions for the terminal 14.
  • Base stations can include various forms of macro base stations, micro base stations, relay stations, access points, etc. In systems using different wireless access technologies, the names of equipment with base station functions may be different. For example, in the Long Term Evolution (LTE) system, it is called an evolved base station (eNodeB, eNB); In the 5G NR system, it is called the next generation base station (gNodeB, gNB). As communications technology evolves, the description "base station” may change. For convenience of description in the embodiments of the present disclosure, the above-mentioned devices that provide wireless communication functions for the terminal 14 are collectively referred to as network devices 12 .
  • LTE Long Term Evolution
  • gNodeB next generation base station
  • the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), Terminal device and so on.
  • mobile stations Mobile Station, MS
  • Terminal device and so on.
  • the devices mentioned above are collectively called terminals.
  • uplink communication refers to the terminal 14 sending signals to the network device 12
  • downlink communication refers to the network device 12 sending signals to the terminal 14.
  • the uplink PUSCH transmission is transmitted in the TRP direction of multiple base stations.
  • TDM Time Division Multiplexing
  • Cooperative transmission uses different transmission opportunities (Transmission Occasions, TO) in the time domain to send repetitions of the same information on the PUSCH to different TRPs of the base station in a time-sharing manner.
  • TO Transmission Occasions
  • the spatial characteristics of the actual channels passed by PUSCH channels facing different TRPs may be very different. Therefore, it is considered that the spatial reception parameters of PUSCH channels in different sending directions are different.
  • the terminal is required to have the ability to transmit multiple beams simultaneously.
  • the transmission of PUSCH can be transmitted to multiple TRPs based on a single physical downlink control channel (Physical Downlink Control Channel, PDCCH), that is, a multi-antenna panel scheduled by a single downlink control information (S-DCI).
  • PDCCH Physical Downlink Control Channel
  • S-DCI single downlink control information
  • one DCI directly schedules or indirectly schedules precoding matrix 1 and precoding matrix 2 to the terminal.
  • the terminal 14 uses the antenna panel 1 to send one or more layers of uplink data to the TRP1 based on the precoding matrix 1 .
  • the terminal 14 uses the antenna panel 2 to send one or more layers of uplink data to the TRP1 based on the precoding matrix 2 .
  • PUSCH transmission can also be transmitted to multiple TRPs based on different PDCCHs, that is, multi-antenna panels scheduled with Multi-Downlink Control Information (M-DCI), as shown in Figure 2.
  • M-DCI Multi-Downlink Control Information
  • TRP 1 sends the first DCI to terminal 14 through PDCCH 1, and dispatching terminal 14 uses antenna panel 1 to send PUSCH 1 to TRP 1;
  • TRP 2 sends the second DCI to terminal 14 through PDCCH 2, and dispatching terminal 14 uses antenna panel 2 to TRP 2 sends PUSCH 2.
  • TRP1 and TRP2 are two TRPs of the same cell.
  • the uplink transmission process includes: codebook-based uplink transmission and non-codebook-based uplink transmission.
  • Figure 3 shows a schematic diagram of codebook-based uplink PUSCH transmission provided by an exemplary embodiment of the present disclosure.
  • the schematic diagram includes a terminal 22 and a network device 24.
  • the network device 24 first sends the SRS resource configuration to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource set and the related configuration of each SRS resource.
  • the terminal 22 sends the SRS resource configuration to the network device based on the SRS resource configuration.
  • 24 sends at least one SRS.
  • the network device 24 obtains the channel conditions of each uplink channel based on the received at least one SRS, and then provides DCI to the terminal 22.
  • the DCI at least includes SRI and TPMI.
  • the terminal 22 sends PUSCH to the network based on TPMI and SRI. Device 24.
  • Figure 4 shows a schematic diagram of a non-codebook-based uplink transmission process provided by an exemplary embodiment of the present disclosure.
  • the schematic diagram includes a terminal 22 and a network device 24.
  • the precoding matrix is no longer limited to a fixed candidate set.
  • the network device 24 first sends a channel state information reference signal (Channel State Information-Reference Symbol, CSI-RS) and SRS resource configuration information to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource set and related configuration of each SRS resource.
  • the terminal 22 calculates by itself through algorithms such as singular value decomposition to obtain at least one precoding matrix that may be used.
  • the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
  • the network device 24 based on the received At least one SRS obtains the channel conditions of each uplink channel, and then provides DCI to the terminal 22.
  • the DCI includes at least SRI.
  • the terminal 22 determines the precoding matrix used this time among the possible precoding matrices based on the SRI. Based on the SRI and the current precoding matrix, The precoding matrix used for the first time sends PUSCH to the network device 24.
  • the network device needs to send SRS resource configuration to the terminal in advance.
  • SRS resource configuration there may be the following two configuration methods:
  • the first possible SRS resource configuration method the network device configures the configuration of two SRS resource sets to the terminal.
  • the two SRS resource sets include the first SRS resource set and the second SRS resource set. Different SRS resource sets and different antenna panel information Associated.
  • the purposes of the two SRS resource sets are both codebook or non-codebook.
  • different antenna panel information includes at least one of the following information:
  • the number of antenna panels can be 2 or 4.
  • the default maximum is 2;
  • the first set of SRS resources is associated with a first antenna panel of the terminal; the second set of SRS resources is associated with a second antenna panel of the terminal.
  • the first SRS resource set is associated with a first TRP of the network device, and the first TRP sends DCI to the first antenna panel;
  • the second SRS resource set is associated with a second TRP of the network device, and the second TRP sends DCI to the first antenna panel.
  • the two-antenna panel sends DCI.
  • the first SRS resource set is associated with a first TCI state of the terminal, and the first TCI state is used to indicate a beam transmitted to the first TRP;
  • the second SRS resource set is associated with a second TCI state of the terminal, The second TCI status is used to indicate the beam sent to the second TRP.
  • the first SRS resource set is associated with a first TO of the terminal, and the first TO is used to send SRS to the first TRP;
  • the second SRS resource set is associated with a second TO of the terminal, and the second TO is used to send SRS to the first TRP.
  • the second TRP sends SRS.
  • the second possible SRS resource configuration method the network device configures the configuration of an SRS resource set to the terminal.
  • the SRS resource set includes a first SRS resource subset and a second SRS resource subset. Different SRS resource subsets and different antenna panels Information is associated.
  • This SRS resource set is codebook or non-codebook.
  • different antenna panel information includes at least one of the following information:
  • the number of antenna panels can be 2 or 4.
  • the default maximum is 2;
  • the first SRS resource subset is associated with a first antenna panel of the terminal; the second SRS resource subset is associated with a second antenna panel of the terminal.
  • the first SRS resource subset is associated with a first TRP of the network device, and the first TRP sends DCI to the first antenna panel;
  • the second SRS resource subset is associated with a second TRP of the network device, and the second TRP Send DCI to the second antenna panel.
  • the first SRS resource subset is associated with a first TCI state of the terminal, and the first TCI state is used to indicate a beam transmitted to the first TRP;
  • the second SRS resource subset is associated with a second TCI state of the terminal , the second TCI status is used to indicate the beam sent to the second TRP.
  • the first SRS resource subset is associated with a first TO of the terminal, and the first TO is used to send SRS to the first TRP;
  • the second SRS resource subset is associated with a second TO of the terminal, and the second TO is used to send SRS to the first TRP. SRS is sent to the second TRP.
  • the SRS resource set indication domain in DCI also needs to be redesigned so that in the STxMP scenario, the network device can indicate a single TRP (single-TRP, s-TRP) or multiple TRP (mutli -TRP, m-TRP) scenario, the SRS resource set and SRI/TPMI domain that need to be associated.
  • Figure 5 shows a schematic diagram of the DCI information domain provided by an exemplary embodiment of the present disclosure.
  • DCI includes multiple information domains.
  • domains related to this application include: SRS resource set indication.
  • the SRS resource set indication field and two SRI fields are used; for the codebook situation, the SRS resource set indication field, two SRI fields and two TPMI fields are used.
  • x1, x2, y1 and y2 are variable values.
  • the code point of the SRS resource set indication field is 00, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP1 and associate the first SRS resource set.
  • the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI/TPMI field in the DCI
  • the TPMI domain obtains the SRI used for this transmission. At this time, the second SRI/TPMI domain is not used.
  • the code point of the SRS resource set indication field is 01, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP2 and associate the second SRS resource set.
  • the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI/TPMI field in the DCI
  • the TPMI domain obtains the SRI used for this transmission. At this time, the second SRI/TPMI domain is not used.
  • the code point of the SRS resource set indication field is 10
  • it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP1 in the first TO and associate it with the first SRS resource set; and then transmit PUSCH to TRP2 in the second TO. Associate the second SRS resource set.
  • the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2.
  • SRI and TPMI in non-codebook-based transmission mode, use the first SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2 The SRI used during transmission.
  • the code point of the SRS resource set indication field When the code point of the SRS resource set indication field is 11, it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP2 in the first TO and associate it with the second SRS resource set; and then transmit PUSCH to TRP1 in the second TO. Associate the first SRS resource set.
  • the codebook-based transmission mode use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1.
  • SRI and TPMI in non-codebook-based transmission mode, use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI used to transmit to TRP1 The SRI used during transmission.
  • Table 1 shows that in s-TRP mode, regardless of whether the first SRS resource set or the second SRS resource set is associated, the first SRI/TPMI domain is used.
  • the number of ports corresponding to the maximum SRS resources supported may be different, and the maximum number of data layers supported may be different, so at least for non-codebook situations, the actual configurable SRS resources are different.
  • the number of SRS resources corresponding to the set may differ depending on the antenna panel capabilities. Since the actual required x bits and y bits may be different, if y is greater than x, then when the above code point is 01, the x bits are not enough.
  • the first SRI/TPMI domain and the second SRI/TPMI domain can only be designed to have the same number of bits, and the same number of bits is the larger value of x bits and y bits. This will occupy more bits and cause DCI to consume more resources.
  • Figure 6 shows a flow chart of an information indication method provided by an exemplary embodiment of the present disclosure. The method is applied to the terminal of the communication system shown in Figure 1. The method includes:
  • Step 602 The terminal receives the DCI carrying the first indication field. Some code points in the first indication field are used to indicate that under the STxMP configuration based on a single DCI scheduling and the terminal is scheduled for a single antenna panel on the uplink data channel to a single TRP.
  • the first indication field is an SRS resource set indication field.
  • the design ideas in Table 1 continue to be used, that is, no matter which SRS resource set the s-TRP mode is associated with, the first SRI/TPMI domain is always used.
  • the value of the first indication field includes: the first code point.
  • the first code point is 00 or 01.
  • the first code point When the value of the first indication field is the first code point, the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • SRS resource set, and the SRI/TPMI domain used is the first SRI/TPMI domain. It can be understood that: in the case of uplink transmission corresponding to the codebook, the SRI/TPMI domain used is the first SRI/TPMI domain; in the case of uplink transmission corresponding to the non-codebook, the SRI domain used is the first SRI domain. For example, when the first code point is 00, x is 1; when the first code point is 01, x is 2.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource set containing the largest number of SRS resources in all SRS resource sets as the first SRS resource set.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the bits of the second SRI domain. number.
  • the first SRS resource set defaults to the SRS resource set with the largest number of SRS resources among all SRS resource sets (may be associated with TRP1 or TRP2, not limited), and the number of bits corresponding to the first SRI field is greater than or equal to Number of bits in the second SRI field.
  • the value of the first indication field includes: the second code point.
  • the second code point is 01.
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • SRS resource set, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/TPMI domain ; In the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the above example is based on the network device configuring two SRS resource sets to the terminal. If the network device configures one SRS resource set for the terminal, the one SRS resource set includes a first SRS resource subset and a second SRS resource subset.
  • the design ideas in Table 1 continue to be used, that is, no matter which SRS resource subset the s-TRP mode is associated with, the first SRI/TPMI domain is always used.
  • the value of the first indication field includes: the first code point.
  • the first code point is 00 or 01.
  • the first code point When the value of the first indication field is the first code point, the first code point is used to indicate that when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP, the associated SRS resource subset is the x SRS resource subsets, and the SRI/TPMI domain used is the first SRI/TPMI domain. It can be understood that: in the case of uplink transmission corresponding to the codebook, the SRI/TPMI domain used is the first SRI/TPMI domain; in the case of uplink transmission corresponding to the non-codebook, the SRI domain used is the first SRI domain. For example, when the first code point is 00, x is 1; when the first code point is 01, x is 2.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource subset containing the largest number of SRS resources among all SRS resource subsets as the first SRS resource subset.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the second SRI. The number of bits in the field.
  • the first SRS resource subset defaults to the SRS resource subset with the largest number of SRS resources among all SRS resource subsets (it may be associated with TRP1 or TRP2, not limited), and the bits corresponding to the first SRI field The number is greater than or equal to the number of bits in the second SRI field.
  • the value of the first indication field includes: the second code point.
  • the second code point is 01.
  • the second code point is used to indicate that the SRS resource subset used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the third code point.
  • Two SRS resource subsets, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/ TPMI domain; in the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the uplink data channel is PUSCH.
  • the method provided by this embodiment uses any of the above design methods of the SRS resource set indication field if the terminal is scheduled to use a single antenna panel for uplink transmission to a single TRP in the STxMP scenario. Both can reduce the number of bits required by DCI.
  • Figure 7 shows a flow chart of an information indication method provided by an exemplary embodiment of the present disclosure.
  • the method is applied to the network device of the communication system shown in Figure 1.
  • the method includes:
  • Step 702 The network device sends DCI carrying the first indication field to the terminal. Part of the code points in the first indication field is used to indicate that under the STxMP configuration based on a single DCI scheduling and the terminal is scheduled for a single antenna panel on the uplink data channel.
  • the first indication field is an SRS resource set indication field.
  • the design ideas in Table 1 continue to be used, that is, no matter which SRS resource set the s-TRP mode is associated with, the first SRI/TPMI domain is always used.
  • the value of the first indication field includes: the first code point.
  • the first code point is 00 or 01.
  • the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • SRS resource set, and the SRI/TPMI domain used is the first SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the first SRI/TPMI domain ; In the case of uplink transmission corresponding to non-codebook, the SRI domain used is the first SRI domain. For example, when the first code point is 00, x is 1; when the first code point is 01, x is 2.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource set containing the largest number of SRS resources in all SRS resource sets as the first SRS resource set.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the bits of the second SRI domain. number.
  • the first SRS resource set defaults to the SRS resource set with the largest number of SRS resources among all SRS resource sets (may be associated with TRP1 or TRP2, not limited), and the number of bits corresponding to the first SRI field is greater than or equal to Number of bits in the second SRI field.
  • the value of the first indication field includes: the second code point.
  • the second code point is 01.
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • SRS resource set, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/TPMI domain ; In the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the above example is based on the network device configuring two SRS resource sets to the terminal. If the network device configures one SRS resource set for the terminal, the one SRS resource set includes a first SRS resource subset and a second SRS resource subset.
  • the design ideas in Table 1 continue to be used, that is, no matter which SRS resource subset the s-TRP mode is associated with, the first SRI/TPMI domain is always used.
  • the value of the first indication field includes: the first code point.
  • the first code point is 00 or 01.
  • the first code point is used to indicate that when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP, the associated SRS resource subset is the x SRS resource subsets, and the SRI/TPMI domain used is the first SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the first SRI/ TPMI domain; in the case of uplink transmission corresponding to non-codebook, the SRI domain used is the first SRI domain. For example, when the first code point is 00, x is 1, and when the first code point is 01, x is 2.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource subset containing the largest number of SRS resources among all SRS resource subsets as the first SRS resource subset.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the second SRI. The number of bits in the field.
  • the first SRS resource subset defaults to the SRS resource subset with the largest number of SRS resources among all SRS resource subsets (it may be associated with TRP1 or TRP2, not limited), and the bits corresponding to the first SRI field The number is greater than or equal to the number of bits in the second SRI field.
  • the value of the first indication field includes: the second code point.
  • the second code point is 01.
  • the second code point is used to indicate that the SRS resource subset used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the third code point.
  • Two SRS resource subsets, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/ TPMI domain; in the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the uplink data channel is PUSCH.
  • the method provided by this embodiment uses any of the above design methods of the SRS resource set indication field if the terminal is scheduled to use a single antenna panel for uplink transmission to a single TRP in the STxMP scenario. Both can reduce the number of bits required by DCI.
  • Figure 8 shows a block diagram of an information indication device provided by an exemplary embodiment of the present disclosure.
  • the device includes:
  • the receiving module 810 is configured to receive DCI carrying the first indication field. Some code points in the first indication field are used to indicate that under the STxMP configuration based on single DCI scheduling, the terminal schedules the uplink data channel as a single antenna panel to a single TRP.
  • the first code point is 00 or 01.
  • the DCI includes a first SRI/TPMI domain and a second SRI/TPMI domain;
  • the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • SRS resource set, and the SRI/TPMI domain used is the first SRI/TPMI domain;
  • the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • a subset of SRS resources, and the SRI/TPMI domain used is the first SRI/TPMI domain. It can be understood that: in the case of uplink transmission corresponding to the codebook, the SRI/TPMI domain used is the first SRI/TPMI domain; in the case of uplink transmission corresponding to the non-codebook, the SRI domain used is the first SRI domain.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource set containing the largest number of SRS resources in all SRS resource sets as the first SRS resource set.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the bits of the second SRI domain.
  • Number, x is 1 or 2. For example, when the first code point is 00, x is 1, and when the first code point is 01, x is 2.
  • the DCI includes a first SRI/TPMI domain and a second SRI/TPMI domain;
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • SRS resource set, and the SRI/TPMI domain used is the second SRI/TPMI domain;
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • a subset of SRS resources, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/TPMI domain; in the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the second code point is 01.
  • the SRS resource set includes: a first SRS resource set and a second SRS resource set;
  • the first SRS resource set corresponds to the first TRP, or the first SRS resource set corresponds to the first antenna panel;
  • the second SRS resource set corresponds to the second TRP, or the second SRS resource set corresponds to the second antenna panel.
  • the SRS resource set includes: a first SRS resource subset and a second SRS resource subset;
  • the first SRS resource subset corresponds to the first TRP, or the first SRS resource subset corresponds to the first antenna panel;
  • the second SRS resource subset corresponds to the second TRP, or the second SRS resource subset corresponds to the second antenna panel.
  • the first indication field is an SRS resource set indication field.
  • Figure 9 shows a block diagram of an information indication device provided by an exemplary embodiment of the present disclosure.
  • the device includes:
  • the sending module 910 is configured to send DCI carrying a first indication field. Part of the code points in the first indication field is used to indicate that under the STxMP configuration based on a single DCI scheduling, the terminal schedules the uplink data channel as a single antenna panel to a single TRP.
  • the first code point is 00 or 01.
  • the DCI includes a first SRI/TPMI domain and a second SRI/TPMI domain;
  • the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • SRS resource set, and the SRI/TPMI domain used is the first SRI/TPMI domain;
  • the first code point is used to indicate that the associated SRS resource set of the terminal is the x-th when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP.
  • a subset of SRS resources, and the SRI/TPMI domain used is the first SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the first SRI/TPMI field; in the case of uplink transmission corresponding to non-codebook, the SRI field used is the first SRI field.
  • the first SRI/TPMI domain is fixedly associated with the SRS resource set containing the largest number of SRS resources in all SRS resource sets as the first SRS resource set.
  • the number of bits corresponding to the first SRI domain is greater than or equal to the bits of the second SRI domain.
  • Number, x is 1 or 2. For example, when the first code point is 00, x is 1, and when the first code point is 01, x is 2.
  • the DCI includes a first SRI/TPMI domain and a second SRI/TPMI domain;
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • SRS resource set, and the SRI/TPMI domain used is the second SRI/TPMI domain;
  • the second code point is used to indicate that the SRS resource set used by the terminal when the uplink data channel is scheduled for uplink transmission from a single antenna panel to a single TRP is the second code point.
  • a subset of SRS resources, and the SRI/TPMI domain used is the second SRI/TPMI domain, which can be understood as: in the case of uplink transmission of the corresponding codebook, the SRI/TPMI domain used is the second SRI/TPMI domain; in the case of uplink transmission corresponding to non-codebook, the SRI domain used is the second SRI domain.
  • the second code point is 01.
  • the SRS resource set includes: a first SRS resource set and a second SRS resource set;
  • the first SRS resource set corresponds to the first TRP, or the first SRS resource set corresponds to the first antenna panel;
  • the second SRS resource set corresponds to the second TRP, or the second SRS resource set corresponds to the second antenna panel.
  • the SRS resource set includes: a first SRS resource subset and a second SRS resource subset;
  • the first SRS resource subset corresponds to the first TRP, or the first SRS resource subset corresponds to the first antenna panel;
  • the second SRS resource subset corresponds to the second TRP, or the second SRS resource subset corresponds to the second antenna panel.
  • the first indication field is an SRS resource set indication field.
  • Figure 10 shows a schematic structural diagram of a terminal 1000 provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 1001, a receiver 1002, a transmitter 1003, a memory 1004 and a bus 1005.
  • the processor 1001 includes one or more processing cores.
  • the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 1004 is connected to the processor 1001 through a bus 1005.
  • the memory 1004 can be used to store at least one instruction, and the processor 1001 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 1004 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only memory (Read Only Memory, ROM), magnetic memory, flash memory, programmable read only memory (Programmable Read Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only memory (Read Only Memory, ROM), magnetic memory, flash memory, programmable read only memory (Programmable Read Only Memory, PROM).
  • PROM Programmable Read Only Memory
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, is also provided, and the instructions can be executed by a processor of the terminal to complete the above SRS resource configuration method.
  • non-transitory computer-readable storage media may be ROM, random-access memory (Random-Access Memory, RAM), compact disc read-only memory (Compact Disc Read Only Memory, CD-ROM), magnetic tape, floppy disk, and optical data Storage devices, etc.
  • Figure 11 is a block diagram of a network device 1100 according to an exemplary embodiment.
  • the network device 1100 may be a base station.
  • Network device 1100 may include: processor 1101, receiver 1102, transmitter 1103, and memory 1104.
  • the receiver 1102, the transmitter 1103 and the memory 1104 are respectively connected to the processor 1101 through a bus.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes the SRS resource configuration method provided by the embodiment of the present disclosure by running software programs and modules.
  • Memory 1104 may be used to store software programs and modules. Specifically, the memory 1104 can store the operating system 11041 and at least one application module 11042 required for the function.
  • the receiver 1102 is used for receiving communication data sent by other devices, and the transmitter 1103 is used for sending communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium stores at least one instruction, at least a program, a code set or an instruction set. At least one instruction, at least a program, a code set. Or the instruction set is loaded and executed by the processor to implement the SRS resource configuration method provided by each of the above method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer program product.
  • the computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium.
  • the processor executes computer instructions, causing the computer device to execute the SRS resource configuration method provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信息指示方法、装置、介质及产品,属于通信领域。该方法包括:接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板(panel)向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。该方法用于支持基于多天线面板终端上行同时传输时的s-TRP和m-TRP之间的动态切换指示,根据新的STxMP传输特性,对于R17引入的动态指示域做增强设计,从而更好更灵活地支持传输方案的指示和动态切换。

Description

信息指示方法、装置、介质及产品 技术领域
本公开涉及通信领域,特别涉及一种信息指示方法、装置、介质及产品。
背景技术
为了保证传输的可靠性和吞吐率,相关技术提供了通过终端上的多个天线面板(Panel)向多个基站的传输和接收点(Transmission and Reception Point,TRP)方向实现多天线面板上行同时传输(Simultaneous Transmission via Multiple Panels,STxMP)。
探测参考信号(Sounding Reference Signal,SRS)资源集合指示域可以实现物理上行共享信道(Physical Uplink Shared Channel,PUSCH)在单传输和接收点(single Transmission and Reception Point,s-TRP)以及多传输和接收点(multi-Transmission and Reception Point,m-TRP)调度之间的动态切换。然而由于Release-17标准(R17)中SRS资源集的配置限制,所以对于该指示域的设计也比较受限,如何对该指示域进行改进是亟待解决的问题。
发明内容
本公开实施例提供了一种信息指示方法、装置、介质及产品。技术方案如下:
根据本公开实施例的一个方面,提供了一种信息指示方法,该方法由终端执行,该方法包括:
接收携带有第一指示域的下行控制信息(Downlink Control Information,DCI),第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板向单TRP的上行传输下,所关联的SRS资源集以及SRS资源指示(SRS Resource Indication,SRI)/预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)域。其中,天线面板也可简称为面板。
根据本公开实施例的一个方面,提供了一种信息指示方法,该方法由网络设备执行,该方法包括:
发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于 单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
根据本公开实施例的另一个方面,提供了一种信息指示装置,该装置包括:
接收模块,用于接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
根据本公开实施例的另一个方面,提供了一种信息指示装置,该装置包括:
发送模块,用于发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
根据本公开实施例的另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的信息指示方法。
根据本公开实施例的另一方面,提供了一种网络设备,该网络设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的信息指示方法。
根据本公开实施例的另一个方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上各个方面的信息指示方法。
根据本公开实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上各个方面的信息指示方法。
根据本公开实施例的另一个方面,提供了一种计算机程序产品(或者计算机程序),该计算机程序产品(或者计算机程序)包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上各个方面的信息指示方法。
本公开实施例提供的技术方案可以包括以下有益效果:
为了支持基于多天线面板的终端上行同时传输时的s-TRP和m-TRP之间的动态切换指示,根据新的STxMP传输特性,对相关技术中的DCI指示域做增强设计,从而更好更灵活地支持STxMP传输方案的指示和动态切换。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例提供的通信系统的示意图;
图2是根据一示例性实施例提供的通信系统的示意图;
图3是根据一示例性实施例提供的上行传输流程的示意图;
图4是根据一示例性实施例提供的上行传输流程的示意图;
图5示出了本公开一个示例性实施例提供的DCI信息域示意图;
图6示出了本公开一个示例性实施例提供的信息指示方法的流程图;
图7示出了本公开一个示例性实施例提供的信息指示方法的流程图;
图8示出了本公开一个示例性实施例提供的信息指示装置的框图;
图9示出了本公开一个示例性实施例提供的信息指示装置的框图;
图10示出了本公开一个示例性实施例提供的终端的结构示意图;
图11示出了本公开一个示例性实施例提供的网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了本公开一示例性实施例提供的通信系统的示意图,该通信系统可以包括:网络设备12和终端14,网络设备12包括TRP1、TRP2。
网络设备12可以是基站,基站是一种为终端14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进式基站(eNodeB,eNB);在5G NR系统中,称为下一代基站(gNodeB,gNB)。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端14提供无线通信功能的装置统称为网络设备12。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
示例性的,网络设备12与终端14之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指终端14向网络设备12发送信号;下行通信是指网络设备12向终端14发送信号。
上行的PUSCH传输向多个基站的TRP方向传输,在第三代合作伙伴项目(Third Generation Partnership Project,3GPP)的版本R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
对于上行来讲,面向不同TRP的PUSCH信道,实际经过的信道可能空间特性差别很大,因此认为不同的发送方向PUSCH信道的空间接收参数不同。
在R18的增强目标中,主要希望通过终端的多个天线面板向多个TRP方向实现同时协作传输用来增加传输的可靠性和吞吐率,同时可以有效的降低多TRP下的传输时延,但是要求终端具备同时发送多波束的能力。PUSCH的传输可以基于单个物理下行控制信道(Physical Downlink Control Channel,PDCCH)即单下行控制信息(Single Downlink Control Information,S-DCI)调度的多天线面板向多TRP传输。
如图1所示,由一个DCI向终端直接调度或间接调度预编码矩阵1和预编码矩阵2。终端14基于预编码矩阵1使用天线面板1向TRP1发送一层或更多层的上行数据。终端14基于预编码矩阵2使用天线面板2向TRP1发送一层或更多层的上行数据。
PUSCH的传输也可以基于不同PDCCH,即多下行控制信息(Multi-Downlink Control Information,M-DCI)调度的多天线面板向多TRP传输,如图2所示。
TRP 1通过PDCCH 1向终端14发送第一个DCI,调度终端14使用天线面板1向TRP 1发送PUSCH 1;TRP 2通过PDCCH 2向终端14发送第二个DCI,调度终端14使用天线面板2向TRP 2发送PUSCH 2。
上述TRP1和TRP2是同一个小区的两个TRP。
在STxMP场景下,上行传输流程包括:基于码本的上行传输和基于非码本的上行传输。
图3示出了本公开一示例性实施例提供的基于码本的上行PUSCH传输的示意图,该示意图包括终端22和网络设备24。
在基于码本的上行传输流程中,网络设备24首先发送SRS资源配置给终端22,SRS资源配置包括至少一个SRS资源集以及每个SRS资源的相关配置,之后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI和TPMI,最后终端22基于TPMI和SRI发送PUSCH给网络设备24。
图4示出了本公开一示例性实施例提供的基于非码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于非码本的上行传输流程中,预编码矩阵不再限定在固定的候选集中。网络设备24首先发送信道状态信息参考信号(Channel State Information- Reference Symbol,CSI-RS)以及SRS资源配置信息给终端22,SRS资源配置包括至少一个SRS资源集以及每个SRS资源的相关配置,之后终端22基于CSI-RS的测量结果通过奇异值分解等算法自行计算得到可能使用的至少一个预编码矩阵,然后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI,最后终端22基于SRI在可能使用的预编码矩阵中确定本次使用的预编码矩阵,基于SRI和本次使用的预编码矩阵发送PUSCH给网络设备24。
根据上述图3和图4可知,网络设备向终端需要预先发送SRS资源配置。在STxMP场景下,可能存在如下两种配置方式:
第一种可能的SRS资源配置方式:网络设备向终端配置两个SRS资源集的配置,两个SRS资源集包括第一SRS资源集和第二SRS资源集,不同SRS资源集与不同天线面板信息相关联。
该两个SRS资源集的用途均为码本或均为非码本。
可选地,不同天线面板信息包括如下信息中的至少一种:
·不同天线面板,天线面板数可以是2或4个,本申请实施例中默认最大为2个;
·不同TRP;
·不同TCI状态;
·不同TO。
在一些实施例中,第一SRS资源集与终端的第一天线面板关联;第二SRS资源集与终端的第二天线面板关联。
在一些实施例中,第一SRS资源集与网络设备的第一TRP关联,第一TRP向第一天线面板发送DCI;第二SRS资源集与网络设备的第二TRP关联,第二TRP向第二天线面板发送DCI。
在一些实施例中,第一SRS资源集与终端的第一TCI状态关联,第一TCI状态用于指示向第一TRP发送的波束;第二SRS资源集与终端的第二TCI状态关联,第二TCI状态用于指示向第二TRP发送的波束。
在一些实施例中,第一SRS资源集与终端的第一TO关联,第一TO用于向第一TRP发送SRS;第二SRS资源集与终端的第二TO关联,第二TO用于向第二TRP发送SRS。
第二种可能的SRS资源配置方式:网络设备向终端配置一个SRS资源集的配置,该SRS资源集包括第一SRS资源子集和第二SRS资源子集,不同SRS资源子集与不同天线面板信息相关联。
该SRS资源集的用途为码本或非码本。
可选地,不同天线面板信息包括如下信息中的至少一种:
·不同天线面板,天线面板数可以是2或4个,本申请实施例中默认最大为2个;
·不同TRP;
·不同TCI状态;
·不同TO。
在一些实施例中,第一SRS资源子集与终端的第一天线面板关联;第二SRS资源子集与终端的第二天线面板关联。
在一些实施例中,第一SRS资源子集与网络设备的第一TRP关联,第一TRP向第一天线面板发送DCI;第二SRS资源子集与网络设备的第二TRP关联,第二TRP向第二天线面板发送DCI。
在一些实施例中,第一SRS资源子集与终端的第一TCI状态关联,第一TCI状态用于指示向第一TRP发送的波束;第二SRS资源子集与终端的第二TCI状态关联,第二TCI状态用于指示向第二TRP发送的波束。
在一些实施例中,第一SRS资源子集与终端的第一TO关联,第一TO用于向第一TRP发送SRS;第二SRS资源子集与终端的第二TO关联,第二TO用于向第二TRP发送SRS。
针对上述两种SRS资源配置方式,DCI中的SRS资源集指示域也需要重新设计,以便在STxMP场景下,网络设备能够向终端指示单TRP(single-TRP,s-TRP)或多TRP(mutli-TRP,m-TRP)场景下,需要关联的SRS资源集以及SRI/TPMI域。图5示出了本公开一个示例性实施例提供的DCI信息域示意图,结合参考图5,DCI中包括多个信息域,该多个信息域中与本申请有关的域包括:SRS资源集指示域(2比特),第一个SRI域(x1比特),第二个SRI域(x2比特),第一个TPMI域(y1比特),第二个TPMI域(y2比特)。其中,对于非码本的情况,使用SRS资源集指示域和两个SRI域;对于码本的情况,使用SRS资源集指示域、两个SRI域和两个TPMI域。x1、x2、y1和y2为可变值。
在当前R17协议中,针对TDM传输方式下的协作传输(非同时传输),SRS资源集指示域中的各个码点的含义设计如下表一所示:
表一
Figure PCTCN2022109538-appb-000001
表一中的每个码点含义如下:
在SRS资源集指示域的码点为00时,用于指示终端采用s-TRP模式向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为01时,用于指示终端采用s-TRP模式向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRS资源集指示域的码点为10时,用于指示终端采用m-TRP模式在第一TO先向TRP1传输PUSCH,关联第一个SRS资源集;再在第二TO向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI。
在SRS资源集指示域的码点为11时,用于指示终端采用m-TRP模式在第一TO先向TRP2传输PUSCH,关联第二个SRS资源集;再在第二TO向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI,使用DCI中 的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI。
分析表一可知,在s-TRP模式下,不论关联第一个SRS资源集还是第二个SRS资源集,都是使用第一个SRI/TPMI域。考虑到不同的天线面板能力可能不同,比如支持的最大SRS资源对应的端口数可能不同,还有支持的最大数据层数可能不同,因此至少对于非码本的情况,实际可配置的不同SRS资源集合对应的SRS资源数目根据天线面板能力可能不同,由于实际所需要的x比特和y比特可能是不一样多的,如果y大于x,则上述码点为01的情况下,x比特不够使用。基于此,只能将第一个SRI/TPMI域和第二个SRI/TPMI域设计为相同比特数,且该相同比特数是x比特和y比特中的较大值。这样会占用较多的比特数,导致DCI需要消耗较多的资源。
为此,本申请提出不同设计思路,来解决上述问题。
图6示出了本公开一个示例性实施例提供的信息指示方法的流程图,该方法应用于图1所示的通信系统的终端中,该方法包括:
步骤602,终端接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
可选地,第一指示域为SRS资源集指示域。
可能的设计方式一:
在设计方式一中,继续沿用表一的设计思路,也即不论s-TRP模式关联哪一个SRS资源集,总是使用第一个SRI/TPMI域。
示例性的,第一指示域的取值包括:第一码点。比如,该第一码点为00或01。
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源集,且使用的SRI/TPMI域为第一个SRI/TPMI域。可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。示例性的,当第一码点为00时,x为1;当第一码点为01时,x为2。
其中,第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目 最多的SRS资源集作为第一个SRS资源集,第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
示例性的,基于该设计思路的SRS资源集指示域中的部分码点如下表二所示:
表二
Figure PCTCN2022109538-appb-000002
其中,第一个SRS资源集默认是所有SRS资源集中SRS资源数目最多的一个SRS资源集(可能与TRP1关联,也可能与TRP2关联,不限定),第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
可能的设计方式二:
在设计方式二中,不再沿用表一的设计思路,使用哪一个SRI/TPMI域,与s-TRP模式关联哪一个SRS资源集有关。
示例性的,第一指示域的取值包括:第二码点。比如,该第二码点为01。
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
示例性的,基于该设计思路的SRS资源集指示域中的部分码点如下表三所示:
表三
Figure PCTCN2022109538-appb-000003
当然,上述举例是以网络设备向终端配置2个SRS资源集来举例说明的。若网络设备向终端配置1个SRS资源集,该1个SRS资源集包括第一SRS资源子集和第二SRS资源子集。
可能的设计方式三:
在设计方式三中,继续沿用表一的设计思路,也即不论s-TRP模式关联哪 一个SRS资源子集,总是使用第一个SRI/TPMI域。
示例性的,第一指示域的取值包括:第一码点。比如,该第一码点为00或01。
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源子集为第x个SRS资源子集,且使用的SRI/TPMI域为第一个SRI/TPMI域。可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。示例性的,当第一码点为00时,x为1;当第一码点为01时,x为2。
其中,第一个SRI/TPMI域固定关联所有SRS资源子集中包含SRS资源数目最多的SRS资源子集作为第一个SRS资源子集,第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
示例性的,基于该设计思路的SRS资源子集指示域中的部分码点如下表四所示:
表四
Figure PCTCN2022109538-appb-000004
其中,第一个SRS资源子集默认是所有SRS资源子集中SRS资源数目最多的一个SRS资源子集(可能与TRP1关联,也可能与TRP2关联,不限定),第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
可能的设计方式四:
在设计方式四中,不再沿用表一的设计思路,使用哪一个SRI/TPMI域,与s-TRP模式关联哪一个SRS资源子集有关。
示例性的,第一指示域的取值包括:第二码点。比如,该第二码点为01。
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源子集为第二个SRS资源子集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
示例性的,基于该设计思路的SRS资源子集指示域中的部分码点如下表五 所示:
表五
Figure PCTCN2022109538-appb-000005
可选地,上行数据信道为PUSCH。
综上所述,本实施例提供的方法,通过在STxMP场景下,若调度终端使用单个天线面板向单TRP的上行传输,采用上述几种SRS资源集指示域的设计方式中的任意一种,均可以减少DCI所需要占用的比特数。
图7示出了本公开一个示例性实施例提供的信息指示方法的流程图,该方法应用于图1所示的通信系统的网络设备中,该方法包括:
步骤702,网络设备向终端发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下以及终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
可选地,第一指示域为SRS资源集指示域。
可能的设计方式一:
在设计方式一中,继续沿用表一的设计思路,也即不论s-TRP模式关联哪一个SRS资源集,总是使用第一个SRI/TPMI域。
示例性的,第一指示域的取值包括:第一码点。比如,该第一码点为00或01。
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源集,且使用的SRI/TPMI域为第一个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。示例性的,当第一码点为00时,x为1;当第一码点为01时,x为2。
其中,第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目最多的SRS资源集作为第一个SRS资源集,第一个SRI域对应的比特数大于等 于第二个SRI域的比特数。
示例性的,基于该设计思路的SRS资源集指示域中的部分码点如上表二所示。其中,第一个SRS资源集默认是所有SRS资源集中SRS资源数目最多的一个SRS资源集(可能与TRP1关联,也可能与TRP2关联,不限定),第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
可能的设计方式二:
在设计方式二中,不再沿用表一的设计思路,使用哪一个SRI/TPMI域,与s-TRP模式关联哪一个SRS资源集有关。
示例性的,第一指示域的取值包括:第二码点。比如,该第二码点为01。
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
示例性的,基于该设计思路的SRS资源集指示域中的部分码点如上表三所示。
当然,上述举例是以网络设备向终端配置2个SRS资源集来举例说明的。若网络设备向终端配置1个SRS资源集,该1个SRS资源集包括第一SRS资源子集和第二SRS资源子集。
可能的设计方式三:
在设计方式三中,继续沿用表一的设计思路,也即不论s-TRP模式关联哪一个SRS资源子集,总是使用第一个SRI/TPMI域。
示例性的,第一指示域的取值包括:第一码点。比如,该第一码点为00或01。
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源子集为第x个SRS资源子集,且使用的SRI/TPMI域为第一个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。示例性的,当第一码点为00时,x为1,当第一码点为01时,x为2。
其中,第一个SRI/TPMI域固定关联所有SRS资源子集中包含SRS资源数目最多的SRS资源子集作为第一个SRS资源子集,第一个SRI域对应的比特数 大于等于第二个SRI域的比特数。
示例性的,基于该设计思路的SRS资源子集指示域中的部分码点如上表四所示。
其中,第一个SRS资源子集默认是所有SRS资源子集中SRS资源数目最多的一个SRS资源子集(可能与TRP1关联,也可能与TRP2关联,不限定),第一个SRI域对应的比特数大于等于第二个SRI域的比特数。
可能的设计方式四:
在设计方式四中,不再沿用表一的设计思路,使用哪一个SRI/TPMI域,与s-TRP模式关联哪一个SRS资源子集有关。
示例性的,第一指示域的取值包括:第二码点。比如,该第二码点为01。
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源子集为第二个SRS资源子集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
示例性的,基于该设计思路的SRS资源子集指示域中的部分码点如上表五所示。
可选地,上行数据信道为PUSCH。
综上所述,本实施例提供的方法,通过在STxMP场景下,若调度终端使用单个天线面板向单TRP的上行传输,采用上述几种SRS资源集指示域的设计方式中的任意一种,均可以减少DCI所需要占用的比特数。
图8示出了本公开一个示例性实施例提供的信息指示装置的框图,该装置包括:
接收模块810,用于接收携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
在本实施例的一种可能设计中,第一码点为00或01。
在本实施例的一种可能设计中,DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第 x个SRS资源集,且使用的SRI/TPMI域为第一个SRI/TPMI域;
或,
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源子集,且使用的SRI/TPMI域为第一个SRI/TPMI域。可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。其中,第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目最多的SRS资源集作为第一个SRS资源集,第一个SRI域对应的比特数大于等于第二个SRI域的比特数,x为1或2。示例性的,当第一码点为00时,x为1,当第一码点为01时,x为2。
在本实施例的一种可能设计中,DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为第二个SRI/TPMI域;
或,
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源子集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
在本实施例的一种可能设计中,第二码点为01。
在本实施例的一种可能设计中,SRS资源集包括:第一个SRS资源集和第二个SRS资源集;
第一个SRS资源集与第一TRP,或第一个SRS资源集与第一天线面板对应;
第二个SRS资源集与第二TRP,或第二个SRS资源集与第二天线面板对应。
在本实施例的一种可能设计中,SRS资源集为一个,该SRS资源集包括:第一个SRS资源子集和第二个SRS资源子集;
第一个SRS资源子集与第一TRP,或第一个SRS资源子集与第一天线面板 对应;
第二个SRS资源子集与第二TRP,或第二个SRS资源子集与第二天线面板对应。
在本实施例的一种可能设计中,第一指示域为SRS资源集指示域。
图9示出了本公开一个示例性实施例提供的信息指示装置的框图,该装置包括:
发送模块910,用于发送携带有第一指示域的DCI,第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
在本实施例的一种可能设计中,第一码点为00或01。
在本实施例的一种可能设计中,DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源集,且使用的SRI/TPMI域为第一个SRI/TPMI域;
或,
在第一指示域的取值为第一码点的情况下,第一码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源子集,且使用的SRI/TPMI域为第一个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第一个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第一个SRI域。其中,第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目最多的SRS资源集作为第一个SRS资源集,第一个SRI域对应的比特数大于等于第二个SRI域的比特数,x为1或2。示例性的,当第一码点为00时,x为1,当第一码点为01时,x为2。
在本实施例的一种可能设计中,DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为第二个SRI/TPMI域;
或,
在第一指示域的取值为第二码点的情况下,第二码点用于指示终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源子集,且使用的SRI/TPMI域为第二个SRI/TPMI域,可以理解为:在对应码本的上行传输的情况下,使用的SRI/TPMI域为第二个SRI/TPMI域;在对应非码本的上行传输的情况下,使用的SRI域为第二个SRI域。
在本实施例的一种可能设计中,第二码点为01。
在本实施例的一种可能设计中,SRS资源集包括:第一个SRS资源集和第二个SRS资源集;
第一个SRS资源集与第一TRP,或第一个SRS资源集与第一天线面板对应;
第二个SRS资源集与第二TRP,或第二个SRS资源集与第二天线面板对应。
在本实施例的一种可能设计中,SRS资源集为一个,该SRS资源集包括:第一个SRS资源子集和第二个SRS资源子集;
第一个SRS资源子集与第一TRP,或第一个SRS资源子集与第一天线面板对应;
第二个SRS资源子集与第二TRP,或第二个SRS资源子集与第二天线面板对应。
在本实施例的一种可能设计中,第一指示域为SRS资源集指示域。
图10示出了本公开一个示例性实施例提供的终端1000的结构示意图,该终端包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory, EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read Only Memory,PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述SRS资源的配置方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(Random-Access Memory,RAM)、紧凑型光盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种网络设备1100的框图,该网络设备1100可以是基站。
网络设备1100可以包括:处理器1101、接收机1102、发射机1103和存储器1104。接收机1102、发射机1103和存储器1104分别通过总线与处理器1101连接。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块以执行本公开实施例提供的SRS资源的配置方法。存储器1104可用于存储软件程序以及模块。具体的,存储器1104可存储操作系统11041、至少一个功能所需的应用程序模块11042。接收机1102用于接收其他设备发送的通信数据,发射机1103用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的SRS资源的配置方法。
本公开一示例性实施例还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方法实施例提供的SRS资源的配置方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公 知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种信息指示方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收携带有第一指示域的下行控制信息DCI,所述第一指示域中的部分码点用于指示在基于单个DCI调度的多天线面板上行同时传输STxMP配置下以及所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
    在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源集,且使用的SRI/TPMI域为所述第一个SRI/TPMI域;
    或,
    在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源子集,且使用的SRI/TPMI域为所述第一个SRI/TPMI域;
    其中,所述第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目最多的SRS资源集作为第一个SRS资源集,所述第一个SRI域对应的比特数大于等于所述第二个SRI域的比特数,x为1或2。
  3. 根据权利要求2所述的方法,其特征在于,所述第一码点为00或01。
  4. 根据权利要求1所述的方法,其特征在于,所述DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
    在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为所述第二个SRI/TPMI域;
    或,
    在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源子集,且使用的SRI/TPMI域为所述第二个SRI/TPMI域。
  5. 根据权利要求4所述的方法,其特征在于,所述第二码点为01。
  6. 根据权利要求2或4所述的方法,其特征在于,所述SRS资源集包括:第一个SRS资源集和所述第二个SRS资源集;
    所述第一个SRS资源集与第一TRP对应,或所述第一个SRS资源集与第一天线面板对应;
    所述第二个SRS资源集与第二TRP对应,或所述第二个SRS资源集与第二天线面板对应。
  7. 根据权利要求2或4所述的方法,其特征在于,所述SRS资源集为一个,所述SRS资源集包括:第一个SRS资源子集和所述第二个SRS资源子集;
    所述第一个SRS资源子集与第一TRP对应,或所述第一个SRS资源子集与第一天线面板对应;
    所述第二个SRS资源子集与第二TRP对应,或所述第二个SRS资源子集与第二天线面板对应。
  8. 根据权利要求1所述的方法,其特征在于,所述第一指示域为SRS资源集指示域。
  9. 一种信息指示方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    发送携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
  10. 根据权利要求9所述的方法,其特征在于,所述DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
    在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源集,且使用的SRI/TPMI域为所述第一个SRI/TPMI域;
    或,
    在所述第一指示域的取值为第一码点的情况下,所述第一码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集为第x个SRS资源子集,且使用的SRI/TPMI域为所述第一个SRI/TPMI域;
    其中,所述第一个SRI/TPMI域固定关联所有SRS资源集中包含SRS资源数目最多的SRS资源集作为第一个SRS资源集,所述第一个SRI域对应的比特数大于等于所述第二个SRI域的比特数,x为1或2。
  11. 根据权利要求10所述的方法,其特征在于,所述第一码点为00或01。
  12. 根据权利要求9所述的方法,其特征在于,所述DCI包括第一个SRI/TPMI域和第二个SRI/TPMI域;
    在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源集,且使用的SRI/TPMI域为所述第二个SRI/TPMI域;
    或,
    在所述第一指示域的取值为第二码点的情况下,所述第二码点用于指示所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所使用的SRS资源集为第二个SRS资源子集,且使用的SRI/TPMI域为所述第二个SRI/TPMI域。
  13. 根据权利要求12所述的方法,其特征在于,所述第二码点为01。
  14. 根据权利要求10或12所述的方法,其特征在于,所述SRS资源集包括:第一个SRS资源集和所述第二个SRS资源集;
    所述第一个SRS资源集与第一TRP对应,或所述第一个SRS资源集与第 一天线面板对应;
    所述第二个SRS资源集与第二TRP对应,或所述第二个SRS资源集与第二天线面板对应。
  15. 根据权利要求10或12所述的方法,其特征在于,所述SRS资源集为一个,所述SRS资源集包括:第一个SRS资源子集和所述第二个SRS资源子集;
    所述第一个SRS资源子集与第一TRP对应,或所述第一个SRS资源子集与第一天线面板对应;
    所述第二个SRS资源子集与第二TRP对应,或所述第二个SRS资源子集与第二天线面板对应。
  16. 根据权利要求9至13任一所述的方法,其特征在于,所述第一指示域为SRS资源集指示域。
  17. 一种信息指示装置,其特征在于,所述装置包括:
    接收模块,用于接收携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
  18. 一种信息指示方法,其特征在于,所述装置包括:
    发送模块,用于发送携带有第一指示域的DCI,所述第一指示域中的部分码点用于指示在基于单个DCI调度的STxMP配置下所述终端在上行数据信道调度为单个天线面板向单TRP的上行传输下所关联的SRS资源集以及SRI/TPMI域。
  19. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至8任一所述的信息指示方法。
  20. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求9至16任一所述的信息指示方法。
  21. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至8任一所述的信息指示方法,或者,如权利要求9至16任一所述的信息指示方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至8任一所述的信息指示方法,或者,如权利要求9至16任一所述的信息指示方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至8任一所述的信息指示方法,或者,如权利要求9至16任一所述的信息指示方法。
PCT/CN2022/109538 2022-08-01 2022-08-01 信息指示方法、装置、介质及产品 WO2024026645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109538 WO2024026645A1 (zh) 2022-08-01 2022-08-01 信息指示方法、装置、介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109538 WO2024026645A1 (zh) 2022-08-01 2022-08-01 信息指示方法、装置、介质及产品

Publications (1)

Publication Number Publication Date
WO2024026645A1 true WO2024026645A1 (zh) 2024-02-08

Family

ID=89848251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109538 WO2024026645A1 (zh) 2022-08-01 2022-08-01 信息指示方法、装置、介质及产品

Country Status (1)

Country Link
WO (1) WO2024026645A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020847A1 (ko) * 2019-07-26 2021-02-04 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 공유 채널 송수신 방법 및 그 장치
US20210195616A1 (en) * 2019-12-18 2021-06-24 Qualcomm Incorporated Techniques for signaling uplink transmission configuration indicator states
CN113271188A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种数据传输方法、终端和基站
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)
CN114303431A (zh) * 2019-08-23 2022-04-08 Lg电子株式会社 在无线通信系统中发送或接收上行链路信道的方法及其装置
CN114586307A (zh) * 2019-02-16 2022-06-03 弗劳恩霍夫应用研究促进协会 网络中基于码本和非码本的ul传输的srs配置和指示

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586307A (zh) * 2019-02-16 2022-06-03 弗劳恩霍夫应用研究促进协会 网络中基于码本和非码本的ul传输的srs配置和指示
WO2021020847A1 (ko) * 2019-07-26 2021-02-04 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 공유 채널 송수신 방법 및 그 장치
CN114303431A (zh) * 2019-08-23 2022-04-08 Lg电子株式会社 在无线通信系统中发送或接收上行链路信道的方法及其装置
US20210195616A1 (en) * 2019-12-18 2021-06-24 Qualcomm Incorporated Techniques for signaling uplink transmission configuration indicator states
CN113271188A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种数据传输方法、终端和基站
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on SRI/TPMI enhancement for enabling 8 TX UL transmission", 3GPP DRAFT; R1-2203155, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143973 *
LG ELECTRONICS: "SRI/TPMI enhancement for enabling 8 TX UL transmission", 3GPP DRAFT; R1-2204147, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144009 *
MODERATOR (OPPO): "Summary on UL precoding indication for multi-panel transmission", 3GPP DRAFT; R1-2205407, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 18 May 2022 (2022-05-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052192041 *
VIVO: "Views on enabling 8 TX UL transmission", 3GPP DRAFT; R1-2203547, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153022 *
VIVO: "Views on UL precoding indication for multi-panel transmission", 3GPP DRAFT; R1-2203546, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153021 *
ZTE: "Enhancements on UL precoding indication for multi-panel transmission", 3GPP DRAFT; R1-2203268, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152904 *

Similar Documents

Publication Publication Date Title
CN111615805B (zh) 无线通信系统中的用户装置
WO2019128873A1 (zh) 一种波束训练方法及相关设备
WO2019214682A1 (zh) 通信方法及装置
JP2020523932A (ja) データ伝送方法、装置、ネットワーク側機器およびユーザ機器
US20230239032A1 (en) Beam processing method and apparatus, and related device
JP2021513757A (ja) アップリンクデータの伝送のための方法および端末機器
EP3860091B1 (en) Information receiving method and device and information sending method and device
CN111586858A (zh) 信号传输方法和通信装置
WO2019192410A1 (zh) 一种信号传输方法及通信设备
CN113647168A (zh) 激活或去激活传输配置指示状态的方法和装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
TW201906445A (zh) 波束管理方法、網路設備和終端
CN111446994B (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
CN117044139A (zh) 一种基于波束的通信方法以及相关装置
WO2021074485A1 (en) Ue panel combination-specific coreset configuration for cell-free massive mimo
CN112469125A (zh) 一种传输方法、终端设备以及网络设备
WO2024026645A1 (zh) 信息指示方法、装置、介质及产品
US20230156680A1 (en) Signal transmission method and device
WO2024026644A1 (zh) Srs资源的配置方法、装置、介质及产品
WO2024026643A1 (zh) 传输复用方式的指示方法、装置、介质及产品
WO2024065113A1 (zh) 上行波形的指示方法、装置、介质及产品
CN112054831A (zh) 信道状态信息的反馈方法及装置
WO2024065115A1 (zh) 传输复用方式的指示方法、装置、介质及产品
WO2024007316A1 (en) Methods and apparatuses for multi-trp operation
WO2023272514A1 (zh) 上行传输方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953460

Country of ref document: EP

Kind code of ref document: A1