WO2024065114A1 - Pusch的传输方法、装置、介质及产品 - Google Patents

Pusch的传输方法、装置、介质及产品 Download PDF

Info

Publication number
WO2024065114A1
WO2024065114A1 PCT/CN2022/121479 CN2022121479W WO2024065114A1 WO 2024065114 A1 WO2024065114 A1 WO 2024065114A1 CN 2022121479 W CN2022121479 W CN 2022121479W WO 2024065114 A1 WO2024065114 A1 WO 2024065114A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
pusch
dmrs
data layer
transmitted
Prior art date
Application number
PCT/CN2022/121479
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/121479 priority Critical patent/WO2024065114A1/zh
Publication of WO2024065114A1 publication Critical patent/WO2024065114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications, and in particular to a transmission method, device, medium and product of a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the relevant technology provides simultaneous transmission via multi-panel (Simultaneous Transmission via Multi-Panel, STxMP) from multiple panels (Panel) on the terminal to the transmission and reception points (Transmission and Reception Point, TRP) of multiple base stations.
  • STxMP Simultaneous Transmission via Multi-Panel
  • TRP Transmission and Reception Point
  • transmission is carried out in the TRP direction of multiple base stations through the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • TDM time division multiplexing
  • the embodiments of the present disclosure provide a PUSCH transmission method, device, medium and product, which can realize PUSCH transmission in a multi-panel simultaneous transmission scenario.
  • the technical solution is as follows:
  • a PUSCH transmission method is provided, the method being performed by a terminal, the method including:
  • the data layer/data layer set sent by different antenna panels is associated with a demodulation reference signal DMRS port/port group.
  • a PUSCH transmission method is provided, the method being performed by a network device, the method comprising:
  • the data layer/data layer set sent by different antenna panels is associated with a demodulation reference signal DMRS port/port group.
  • a PUSCH transmission device including:
  • a transmission module configured to transmit a transport block TB carried by the PUSCH from different antenna panels on the same time-frequency resources in the same time slot through the same data layer or data layer set, wherein the TB is transmitted by a multi-panel simultaneous transmission method from multiple antenna panels to multiple transmitting and receiving points TRP;
  • the data layer/data layer set sent by different antenna panels is associated with a demodulation reference signal DMRS port/port group.
  • a PUSCH transmission device including:
  • a receiving module configured to receive a transport block TB carried by the PUSCH transmitted from different antenna panels on the same time-frequency resources in the same time slot through the same data layer or data layer set, wherein the TB is transmitted using a multi-panel simultaneous transmission method from multiple antenna panels to multiple transmitting and receiving points TRP;
  • the data layer/data layer set sent by different antenna panels is associated with a demodulation reference signal DMRS port/port group.
  • a terminal including:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the PUSCH transmission method in various aspects as above.
  • a network device comprising:
  • transceiver coupled to the processor
  • the processor is configured to load and execute executable instructions to implement the PUSCH transmission method in various aspects as above.
  • a chip is provided.
  • the chip includes a programmable logic circuit and/or program instructions. When the chip is running, it is used to implement the PUSCH transmission method as described in the above aspects.
  • a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement a PUSCH transmission method as described in the above aspects.
  • a computer program product (or computer program) is provided, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the PUSCH transmission method as described in the above aspects.
  • Simultaneous uplink transmission through multiple panels/multiple transmission and receiving points is used to support higher uplink throughput and more reliable transmission performance, and a possible single-frequency network (SFN) transmission scheme for the terminal is given to support simultaneous transmission of multiple panels.
  • SFN single-frequency network
  • FIG1 is a schematic diagram of a communication system provided according to an exemplary embodiment
  • FIG2 is a schematic diagram of a communication system provided according to an exemplary embodiment
  • FIG3 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
  • FIG4 is a schematic diagram of an uplink transmission process provided according to an exemplary embodiment
  • FIG5 is a schematic diagram of a transmission scheme provided according to an exemplary embodiment
  • FIG6 is a flowchart of a PUSCH transmission method provided according to an exemplary embodiment
  • FIG7 is a flowchart of a PUSCH transmission method provided according to an exemplary embodiment
  • FIG8 is a block diagram of a PUSCH transmission apparatus provided according to an exemplary embodiment
  • FIG9 is a block diagram of a PUSCH transmission apparatus provided according to an exemplary embodiment
  • FIG10 is a schematic diagram of the structure of a terminal according to an exemplary embodiment
  • FIG. 11 is a schematic diagram of the structure of a network device according to an exemplary embodiment.
  • first, second, third, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • FIG1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: a network device 12 and a terminal 14.
  • the network device 12 includes TRP1 and TRP2.
  • the network device 12 may be a base station, which is a device that provides wireless communication functions for the terminal 14.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different.
  • LTE Long Term Evolution
  • eNodeB evolved base station
  • gNodeB next-generation base station
  • the description of "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 14 are collectively referred to as network devices 12.
  • the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment, mobile stations (MS), terminal devices, etc.
  • terminals For the convenience of description, the above-mentioned devices are collectively referred to as terminals.
  • Uplink communication refers to the terminal 14 sending a signal to the network device 12
  • downlink communication refers to the network device 12 sending a signal to the terminal 14.
  • the uplink physical uplink shared channel (PUSCH) transmission is transmitted in the direction of the transmission and reception points (TRP) of multiple base stations.
  • the Third Generation Partnership Project (3GPP) version R17 mainly standardized the collaborative transmission under the time division multiplexing (TDM) transmission mode.
  • TDM time division multiplexing
  • the same information on the PUSCH is sent to different TRPs of the base station at different transmission occasions (TO) in the time domain.
  • This method has relatively low requirements on the terminal capabilities, does not require the ability to support simultaneous transmission of beams, and has a large transmission delay.
  • the actual channels they pass through may have very different spatial characteristics. Therefore, it is believed that the spatial reception parameters of PUSCH channels in different sending directions are different.
  • PUSCH transmission can be based on multiple panels to multiple TRPs scheduled by a single physical downlink control channel (Physical Downlink Control Channel, PDCCH), that is, single downlink control information (S-DCI).
  • PDCCH Physical Downlink Control Channel
  • S-DCI single downlink control information
  • a downlink control information directly or indirectly schedules precoding matrix 1 and precoding matrix 2 to the terminal.
  • Terminal 14 uses panel 1 to send one or more layers of uplink data to TRP1 based on precoding matrix 1.
  • Terminal 14 uses panel 2 to send one or more layers of uplink data to TRP2 based on precoding matrix 2.
  • PUSCH transmission can also be based on multi-panel to multi-TRP transmission scheduled by different PDCCHs, namely Multi-Downlink Control Information (M-DCI), as shown in Figure 2.
  • M-DCI Multi-Downlink Control Information
  • TRP 1 sends the first DCI to terminal 14 via PDCCH 1, and scheduling terminal 14 uses panel 1 to send PUSCH 1 to TRP 1;
  • TRP 2 sends the second DCI to terminal 14 via PDCCH 2, and scheduling terminal 14 uses panel 2 to send PUSCH 2 to TRP 2.
  • TRP1 and TRP2 can be two TRPs of the same cell or two TRPs of different cells.
  • the uplink transmission process includes: a codebook-based uplink transmission process and a non-codebook-based uplink transmission process.
  • FIG3 shows a schematic diagram of a codebook-based uplink transmission process provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a terminal 22 and a network device 24 .
  • the network device 24 first sends an SRS resource configuration to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource and the time-frequency resource position of each SRS resource.
  • the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
  • the network device 24 obtains the channel status of each uplink channel based on the at least one SRS received, and then provides DCI to the terminal 22.
  • the DCI includes at least an SRS resource indication (SRS Resource Indication, SRI) and a precoding matrix indication (Transmitted Precoding Matrix Indicator, TPMI).
  • SRI SRS Resource Indication
  • TPMI Transmitted Precoding Matrix Indicator
  • FIG4 shows a schematic diagram of a non-codebook based uplink transmission process provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a terminal 22 and a network device 24 .
  • the precoding matrix is no longer limited to a fixed candidate set.
  • the network device 24 first sends a channel state information reference signal (CSI-RS) and SRS resource configuration information to the terminal 22.
  • the SRS resource configuration includes at least one SRS resource and the time-frequency resource position of each SRS resource.
  • the terminal 22 calculates at least one precoding matrix that may be used based on the measurement result of the CSI-RS by singular value decomposition and other algorithms.
  • the terminal 22 sends at least one SRS to the network device 24 based on the SRS resource configuration.
  • the network device 24 obtains the channel conditions of each uplink channel based on the received at least one SRS, and then provides DCI to the terminal 22.
  • the DCI includes at least SRI.
  • the terminal 22 determines the precoding matrix used this time from the precoding matrices that may be used based on SRI, and sends PUSCH to the network device 24 based on SRI and the precoding matrix used this time.
  • FIG5 shows a schematic diagram of a SFN transmission multiplexing method provided by an exemplary embodiment of the present disclosure, and the schematic diagram includes a network device 12 and a terminal 14 .
  • a TB of PUSCH is sent on the same time-frequency resources to two different TRPs through the same DMRS port or port combination allocated on different panels.
  • Different panels/TRPs/TOs are associated with different TCI states (i.e., beams).
  • the terminal 14 uses the SFN transmission method, that is, simultaneously sends TB to multiple TRPs of the network device 12, thereby increasing the probability that the network device 12 receives data to achieve reliable uplink transmission.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the CP-OFDM waveform is used for the uplink and downlink of the physical layer in the NR system. It is suitable for high-throughput scenarios and adopts Multiple Input Multiple Output (MIMO) transmission mode. It provides high spectral packing efficiency in the resource block (RB), which can maximize the use of network capacity in densely populated cities.
  • the DFT-S-OFDM waveform is used for the uplink of the physical layer in the NR system. It is suitable for power-constrained scenarios and adopts a single-layer transmission mode. Since the peak to average power ratio (PAPR) of the DFT-S-OFDM waveform is lower than that of CP-OFDM, it is more conducive to cell coverage and more suitable for cell edge user transmission.
  • PAPR peak to average power ratio
  • Antenna panels or TRPs can also be connected by optical fiber for more flexible distributed deployment.
  • the blocking effect caused by obstacles such as human bodies or vehicles will be more significant.
  • multi-point cooperative transmission technology can be divided into coherent and incoherent transmission.
  • coherent transmission each data layer is mapped to multiple TRPs/antenna panels through a weighted vector.
  • incoherent transmission each data stream is only mapped to part of the TRP/antenna panel.
  • Coherent transmission has higher requirements for the synchronization between transmission points and the transmission capacity of the backhaul link, and is therefore more sensitive to many non-ideal factors in real deployment conditions. Relatively speaking, incoherent transmission is less affected by the above factors, so it is a key consideration for multi-point transmission technology.
  • Multi-TRP Multi-TRP
  • PDSCH Physical Downlink Shared Channel
  • R17 enhanced the standardization of MTRP for PUSCH/PUCCH (Physical Uplink Control Channel), but only standardized the TDM (Time Division Multiplexing) transmission scheme.
  • PUSCH/PUCCH Physical Uplink Control Channel
  • TDM Time Division Multiplexing
  • Quasi co-location means that the large-scale parameters of the channel experienced by the symbols on one antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameters may include delay spread, average delay, Doppler spread, Doppler shift, average gain, and spatial reception parameters.
  • the concept of QCL was introduced with the emergence of Coordinated Multiple Point transmission (CoMP) technology.
  • the multiple sites involved in the CoMP transmission process may correspond to multiple sites with different geographical locations or multiple sectors with different antenna panel orientations.
  • the spatial differences between the sites will lead to differences in the large-scale channel parameters of the receiving links from different sites, such as Doppler frequency deviation, delay spread, etc.
  • the large-scale parameters of the channel will directly affect the adjustment and optimization of the filter coefficients during channel estimation.
  • Different channel estimation filter parameters should be used to adapt to the corresponding channel propagation characteristics for signals sent by different sites.
  • the impact of the above spatial differences on the large-scale parameters of the channel is an important factor that the UE needs to consider when performing channel estimation and reception detection.
  • the so-called QCL of two antenna ports in the sense of certain large-scale parameters means that these large-scale parameters of the two ports are the same. In other words, as long as some large-scale parameters of the two ports are consistent, regardless of whether their actual physical positions or corresponding antenna panel orientations are different, the terminal can consider that the two ports are emitted from the same position (i.e., quasi-co-location).
  • NR divides several channel large-scale parameters into the following four types to facilitate system configuration/indication according to different scenarios:
  • QCL-Type A ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ .
  • spatial reception parameters may not be required.
  • QCL-Type B (Type B): ⁇ Doppler frequency shift, Doppler extension ⁇ .
  • QCL-Type C ⁇ Doppler frequency shift, average delay ⁇ .
  • DMRS Downlink Reference Signal
  • DM-RS Demodulation Reference Signal
  • DMRS can be mapped to physical channels such as PBCH, PDCCH, PDSCH, PUCCH and PUSCH.
  • the embodiments of the present application mainly describe DMRS in the PUSCH channel.
  • DMRS is a UE-specific reference signal.
  • the configuration information of DMRS mainly consists of three parts:
  • mapping type determines the starting position of the DMRS symbol in the time domain.
  • DMRS configuration type (DMRS type): DMRS type is sometimes also called DMRS configuration type, which determines the RE (Resource Element) mapping density of DMRS in the frequency domain.
  • DMRS post-position (additional position): DMRS signals can be divided into front loaded DMRS (Front loaded DMRS) and post-loaded DMRS according to their positions. Post-loaded DMRS is the additional position mentioned here. Front loaded DMRS must exist, and post-loaded DMRS can be not configured. Post-loaded DMRS is generally used in medium and high-speed mobile scenarios. By inserting more DMRS pilot symbols in the scheduling time slot, the estimation accuracy of the time-varying channel is improved. Optionally, up to 3 additional positions can be configured in one time slot.
  • FIG6 shows a flow chart of a PUSCH transmission method provided by an exemplary embodiment of the present disclosure, the method is applied to a terminal of the communication system shown in FIG1 , and the method includes:
  • Step 220 Transmit a TB carried by the PUSCH from different antenna panels on the same time-frequency resources in the same time slot through the same data layer or data layer set.
  • TB is transmitted using an uplink multi-panel simultaneous transmission method from multiple antenna panels to multiple TRPs.
  • the multi-panel simultaneous transmission mode is an STxMP transmission mode.
  • different antenna panels transmit data layers/data layer sets associated with DMRS ports/port groups.
  • data layers/data layer sets are associated with the same group of DMRS ports/port groups; in some embodiments, data layers/data layer sets are associated with different groups of DMRS ports/port groups.
  • TBs transmitted from different antenna panels are all transmitted by the same data layer or data layer set, that is, the transmission of the data part is the same.
  • the terminal sends SRS resources to multiple TRPs, and the SRS resources are transmitted using a non-SFN method.
  • the non-SFN method is to send a panel-specific SRS based on each panel in multiple panels; or to send a TRP-specific SRS based on each TRP in multiple TRPs. That is, the panel-specific SRS is the SRS associated with each panel; the TRP-specific SRS is the SRS associated with each TRP.
  • SRS is sent before PUSCH is sent; considering the differences between the channels from each panel to each TRP, SRS is sent using a non-SFN method to detect different channels.
  • the SRS resources sent by each panel come from different SRS resource sets; in some embodiments, the SRS resources sent by each panel come from the same SRS resource set.
  • the usage of different groups of SRS resources is codebook or non-codebook.
  • the PUSCHs sent by multiple panels of the terminal are respectively associated with the same group of DMRS ports/port groups; in some embodiments, the PUSCHs sent by each panel in the multiple panels are respectively associated with a group of DMRS ports/port groups.
  • different DMRS ports/port groups are respectively configured with different quasi-co-site QCL assumptions/transmission configuration indications TCI; wherein each QCL assumption/TCI is associated with a panel/TRP/beam direction.
  • Method 1 PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port groups.
  • PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port group, that is, the same group of DMRS ports/port group is used for sending.
  • PUSCH is transmitted in SFN mode
  • DMRS is transmitted in SFN mode
  • the same set of DMRS ports/port groups are used, and both PUSCH and DMRS are transmitted through the SFN mode; in this mode, the overhead of DMRS signaling can be reduced.
  • Method 2 The PUSCH sent by each panel in the multi-panel is respectively associated with a group of DMRS ports/port groups.
  • the PUSCH sent by each panel in the multi-panel is associated with a group of DMRS ports/port groups, that is, different groups of DMRS ports/port groups are used for sending, and the number of DMRS ports contained in different groups of DMRS ports/port groups is the same.
  • each DMRS port/port group contains the same number of DMRS ports, that is, the DMRS port/port group corresponding to the PUSCH sent by each panel in the terminal's multi-panel is different, but the number of DMRS ports contained in different DMRS ports/port groups is the same.
  • PUSCH is transmitted in SFN mode; DMRS is transmitted in non-SFN mode.
  • the non-SFN method includes at least one of the following: sending a panel-specific DMRS based on each panel in multiple panels; sending a TRP-specific DMRS based on each TRP in multiple TRPs.
  • each panel is associated with a group of DMRS ports/port groups, and independent DMRS in different panel directions are applied to make more accurate estimation of different channels, but at the same time, the DMRS signaling overhead is also increased.
  • the PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port groups; in some embodiments, the PUSCHs sent by each panel in the multiple panels are respectively associated with a group of DMRS ports/port groups.
  • the method provided in this embodiment realizes the SFN transmission scheme of multi-panel terminals in multi-TRP mode by sending TB from different panels through the same data layer or data layer set on the same time-frequency resources in the same time slot; in addition, an SRS enhancement scheme is given.
  • FIG7 shows a flow chart of a PUSCH transmission method provided by an exemplary embodiment of the present application. This embodiment is illustrated by an example in which the method is implemented by a network device. The method includes:
  • Step 320 receiving a transport block TB carried by a PUSCH transmitted from different panels on the same time-frequency resources in the same time slot through the same data layer or data layer set.
  • TB is transmitted using an uplink multi-panel simultaneous transmission method from multiple antenna panels to multiple TRPs.
  • the multi-panel simultaneous transmission mode is an STxMP transmission mode.
  • different antenna panels transmit data layers/data layer sets associated with DMRS ports/port groups.
  • data layers/data layer sets are associated with the same group of DMRS ports/port groups; in some embodiments, data layers/data layer sets are associated with different groups of DMRS ports/port groups.
  • TBs transmitted from different antenna panels are all transmitted by the same data layer or data layer set, that is, the transmission of the data part is the same.
  • the network device receives SRS resources sent by the terminal, and the SRS resources are transmitted in a non-SFN manner.
  • the non-SFN method is to send a panel-specific SRS based on each panel in multiple panels; or to send a TRP-specific SRS based on each TRP in multiple TRPs. That is, the panel-specific SRS is the SRS associated with each panel; the TRP-specific SRS is the SRS associated with each TRP.
  • SRS is sent before PUSCH is sent; considering the differences between the channels from each panel to each TRP, SRS is sent using a non-SFN method to detect different channels.
  • the SRS resources sent by each panel come from different SRS resource sets; in some embodiments, the SRS resources sent by each panel come from the same SRS resource set.
  • the usage of different groups of SRS resources is codebook or non-codebook.
  • the PUSCHs sent by multiple panels of the terminal are respectively associated with the same group of DMRS ports/port groups; in some embodiments, the PUSCHs sent by each panel in the multiple panels are respectively associated with a group of DMRS ports/port groups.
  • different DMRS ports/port groups are respectively configured with different quasi-co-site QCL assumptions/transmission configuration indications TCI; wherein each QCL assumption/TCI is associated with a panel/TRP/beam direction.
  • Method 1 PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port groups.
  • PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port group, that is, the same group of DMRS ports/port group is used for sending.
  • PUSCH is transmitted in SFN mode
  • DMRS is transmitted in SFN mode
  • the same set of DMRS ports/port groups are used, and both PUSCH and DMRS are transmitted through the SFN mode; in this mode, the overhead of DMRS signaling can be reduced.
  • Method 2 The PUSCH sent by each panel in the multi-panel is respectively associated with a group of DMRS ports/port groups.
  • the PUSCH sent by each panel in the multi-panel is associated with a group of DMRS ports/port groups, that is, different groups of DMRS ports/port groups are used for sending, and the number of DMRS ports contained in different groups of DMRS ports/port groups is the same.
  • each DMRS port/port group contains the same number of DMRS ports, that is, the DMRS port/port group corresponding to the PUSCH sent by each panel in the terminal's multi-panel is different, but the number of DMRS ports contained in different DMRS ports/port groups is the same.
  • PUSCH is transmitted in SFN mode; DMRS is transmitted in non-SFN mode.
  • the non-SFN method includes at least one of the following: sending a panel-specific DMRS based on each panel in multiple panels; sending a TRP-specific DMRS based on each TRP in multiple TRPs.
  • each panel is associated with a group of DMRS ports/port groups, and independent DMRS in different panel directions are applied to make more accurate estimation of different channels, but at the same time, the DMRS signaling overhead is also increased.
  • the PUSCHs sent by multiple panels are respectively associated with the same group of DMRS ports/port groups; in some embodiments, the PUSCHs sent by each panel in the multiple panels are respectively associated with a group of DMRS ports/port groups.
  • the method provided in this embodiment realizes the SFN transmission scheme of multi-panel terminals in multi-TRP mode by receiving TBs sent from different panels through the same data layer or data layer set on the same time-frequency resources in the same time slot; in addition, an SRS enhancement scheme is given.
  • FIG8 shows a block diagram of a PUSCH transmission device provided by an exemplary embodiment of the present disclosure, the device comprising:
  • a transmission module 420 configured to transmit a transport block TB carried by the PUSCH from different panels on the same time-frequency resources in the same time slot through the same data layer or data layer set, wherein the TB is transmitted in a multi-panel simultaneous transmission mode from multiple panels to multiple transmitting and receiving points TRP;
  • the data layer/data layer set sent by different panels is associated with a demodulation reference signal DMRS port/port group.
  • the transmission module 420 is used to send a sounding reference signal SRS resource to the multiple TRPs, and the SRS resource is transmitted using a non-single frequency network SFN method.
  • the non-SFN method is to send a panel-specific SRS based on each panel in the multiple panels.
  • the SRS resources sent by each panel come from different SRS resource sets; or, the SRS resources sent by each panel come from the same SRS resource set.
  • the PUSCHs sent by the multiple panels are respectively associated with the same group of DMRS ports/port group.
  • the PUSCH is transmitted in SFN mode; the DMRS is transmitted in SFN mode.
  • the PUSCH sent by each panel in the multiple panels is respectively associated with a group of DMRS ports/port groups.
  • each of the DMRS ports/port groups includes the same number of DMRS ports.
  • the PUSCH is transmitted in an SFN manner; and the DMRS is transmitted in a non-SFN manner.
  • the non-SFN method is to send a panel-specific DMRS based on each panel in the multiple panels.
  • the different DMRS ports/port groups are respectively configured with different quasi-co-site QCL assumptions/transmission configuration indications TCI; wherein each of the QCL assumptions/TCI is associated with a panel/TRP/beam direction.
  • FIG9 shows a block diagram of a PUSCH transmission device provided by an exemplary embodiment of the present disclosure, the device comprising:
  • a receiving module 520 is used to receive a transport block TB carried by the PUSCH transmitted from different panels on the same time-frequency resources in the same time slot through the same data layer or data layer set, and the TB is transmitted using a multi-panel simultaneous transmission method from multiple panels to multiple transmitting and receiving points TRP;
  • the data layer/data layer set sent by different panels is associated with a demodulation reference signal DMRS port/port group.
  • the receiving module 520 is used to receive a sounding reference signal SRS resource, and the SRS resource is transmitted in a non-single frequency network SFN manner.
  • the non-SFN method is based on each panel in the multiple panels receiving a panel-specific SRS.
  • the SRS resources sent by each panel come from different SRS resource sets; or, the SRS resources sent by each panel come from the same SRS resource set.
  • the PUSCHs sent by the multiple panels are respectively associated with the same group of DMRS ports/port group.
  • the PUSCH is transmitted in SFN mode; the DMRS is transmitted in SFN mode.
  • the PUSCH sent by each panel in the multiple panels is respectively associated with a group of DMRS ports/port groups.
  • each of the DMRS ports/port groups includes the same number of DMRS ports.
  • the PUSCH is transmitted in an SFN manner; and the DMRS is transmitted in a non-SFN manner.
  • the non-SFN method is to send a panel-specific DMRS based on each panel in the multiple panels.
  • the different DMRS ports/port groups are respectively configured with different quasi-co-site QCL assumptions/transmission configuration indications TCI; wherein each of the QCL assumptions/TCI is associated with a panel/TRP/beam direction.
  • FIG10 shows a schematic diagram of the structure of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 1301 , a receiver 1302 , a transmitter 1303 , a memory 1304 and a bus 1305 .
  • the processor 1301 includes one or more processing cores.
  • the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 may be implemented as a communication component, which may be a communication chip.
  • the memory 1304 is connected to the processor 1301 via a bus 1305 .
  • the memory 1304 may be used to store at least one instruction, and the processor 1301 may be used to execute the at least one instruction to implement each step in the above method embodiment.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: a magnetic disk or an optical disk, an Electrically Erasable Programmable Read Only Memory (EEPROM), an Erasable Programmable Read Only Memory (EPROM), a Static Random-Access Memory (SRAM), a Read Only Memory (ROM), a magnetic storage device, a flash memory, and a Programmable Read Only Memory (PROM).
  • a non-temporary computer-readable storage medium including instructions is also provided, such as a memory including instructions, and the instructions can be executed by a processor of a terminal to complete the above-mentioned PUSCH transmission method.
  • the non-temporary computer-readable storage medium can be a ROM, a random access memory (RAM), a compact disc read-only memory (CD-ROM), a magnetic tape, a floppy disk, an optical data storage device, etc.
  • Fig. 11 is a block diagram showing a network device 1400 according to an exemplary embodiment.
  • the network device 1400 may be a base station.
  • the network device 1400 may include: a processor 1401, a receiver 1402, a transmitter 1403 and a memory 1404.
  • the receiver 1402, the transmitter 1403 and the memory 1404 are connected to the processor 1401 via a bus respectively.
  • the processor 1401 includes one or more processing cores, and the processor 1401 executes the PUSCH transmission method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 1404 can be used to store software programs and modules. Specifically, the memory 1404 can store an operating system 14041 and an application module 14042 required for at least one function.
  • the receiver 1402 is used to receive communication data sent by other devices, and the transmitter 1403 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement the PUSCH transmission method provided by the above-mentioned various method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer program product, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the PUSCH transmission method provided in the above-mentioned various method embodiments.

Abstract

本公开公开了一种物理上行共享信道PUSCH的传输方法、装置、介质及产品,属于通信领域。该方法包括:将所述PUSCH承载的一个传输块TB分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;其中,不同面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。该方法给出的PUSCH传输方法用于支持上行多面板同步传输。

Description

PUSCH的传输方法、装置、介质及产品 技术领域
本公开涉及通信领域,特别涉及一种物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输方法、装置、介质及产品。
背景技术
为了保证传输的可靠性和吞吐率,相关技术提供了通过终端上的多个面板(Panel)向多个基站的发送和接收点(Transmission and Reception Point,TRP)方向实现多面板同时传输(Simultaneous Transmission via Multi-Panel,STxMP)。
相关技术中,通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向多个基站的TRP方向传输,在R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,然而这种方法传输时延较大。
因此,如何实现其它的传输复用方式是需要解决的问题。
发明内容
本公开实施例提供了一种PUSCH的传输方法、装置、介质及产品,可以实现在多面板同时传输场景下的PUSCH传输。技术方案如下:
根据本公开实施例的一个方面,提供了一种PUSCH的传输方法,该方法由终端执行,该方法包括:
将所述PUSCH承载的一个传输块TB分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多天线面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
根据本公开实施例的另一个方面,提供了一种PUSCH的传输方法,该方法由网络设备执行,该方法包括:
接收分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的所述PUSCH承载的一个传输块TB,所述TB应用从多天线面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
根据本公开实施例的另一个方面,提供了一种PUSCH的传输装置,该装置包括:
传输模块,用于将所述PUSCH承载的一个传输块TB分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多天线面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
根据本公开实施例的另一个方面,提供了一种PUSCH的传输装置,该装置包括:
接收模块,用于接收分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的所述PUSCH承载的一个传输块TB,所述TB应用从多天线面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
根据本公开实施例的另一个方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的PUSCH的传输方法。
根据本公开实施例的另一个方面,提供了一种网络设备,该网络设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上各个方面的PUSCH的传输方法。
根据本公开实施例的另一个方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上述各个方面的PUSCH的传输方法。
根据本公开实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述各个方面的PUSCH的传输方法。
根据本公开实施例的另一个方面,提供了一种计算机程序产品(或者计算机程序),该计算机程序产品(或者计算机程序)包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方面的PUSCH的传输方法。
本公开实施例提供的技术方案可以包括以下有益效果:
通过多面板/多传输和接收点的上行同时传输用于支持更高的上行吞吐率和更可靠的传输性能,给出终端的可能单频网(Single-Frequency Network,SFN)传输方案用于支持多面板同时传输。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例提供的通信系统的示意图;
图2是根据一示例性实施例提供的通信系统的示意图;
图3是根据一示例性实施例提供的上行传输流程的示意图;
图4是根据一示例性实施例提供的上行传输流程的示意图;
图5是根据一示例性实施例提供的一种传输方案的示意图;
图6是根据一示例性实施例提供的PUSCH的传输方法的流程图;
图7是根据一示例性实施例提供的PUSCH的传输方法的流程图;
图8是根据一示例性实施例提供的PUSCH的传输装置的框图;
图9是根据一示例性实施例提供的PUSCH的传输装置的框图;
图10是根据一示例性实施例提供的终端的结构示意图;
图11是根据一示例性实施例提供的网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了本公开一示例性实施例提供的通信系统的示意图,该通信系统可以包括:网络设备12和终端14,网络设备12包括TRP1、TRP2。
网络设备12可以是基站,基站是一种为终端14提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为演进式基站(eNodeB,eNB);在5G NR系统中,称为下一代基站(gNodeB,gNB)。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端14提供无线通信功能的装置统称为网络设备12。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
示例性的,网络设备12与终端14之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指终端14向网络设备12发送信号;下行通信是指网络设备12向终端14发送信号。
上行的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输向多个基站的传输和接收点(Transmission and Reception Point,TRP)方向传输,在第三代合作伙伴项目(Third Generation Partnership Project,3GPP)的版本R17时主要标准化了时分多路复用(Time Division Multiplexing,TDM)传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的重复,这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
对于上行来讲,面向不同TRP的PUSCH信道,实际经过的信道可能空间特性差别很大,因此认为不同的发送方向PUSCH信道的空间接收参数不同。
在R18的增强目标中,主要希望通过终端的多个面板向多个TRP方向实现同时协作传输用来增加传输的可靠性和吞吐率,同时可以有效的降低多TRP下的传输时延,但是要求终端具备同时发送多波束的能力。PUSCH的传输可以基于单个物理下行控制信道(Physical Downlink Control Channel,PDCCH)即单下行控制信息(Single Downlink Control Information,S-DCI)调度的多面板向多TRP传输。
如图1所示,由一个下行控制信息(Downlink Control Information,DCI)向终端直接或间接调度预编码矩阵1和预编码矩阵2。终端14基于预编码矩阵1使用面板1向TRP1发送一层或更多层的上行数据。终端14基于预编码矩阵2使用面板2向TRP2发送一层或更多层的上行数据。
PUSCH的传输也可以基于不同PDCCH即多下行控制信息(Multi-Downlink Control Information,M-DCI)调度的多面板向多TRP传输,如图2所示。
TRP 1通过PDCCH 1向终端14发送第一个DCI,调度终端14使用面板1向TRP 1发送PUSCH 1;TRP 2通过PDCCH 2向终端14发送第二个DCI,调 度终端14使用面板2向TRP 2发送PUSCH 2。
上述TRP1和TRP2可以是同一个小区的两个TRP,也可以是不同小区的两个TRP。
在STxMP场景下,上行传输流程包括:基于码本的上行传输流程和基于非码本的上行传输流程。
图3示出了本公开一示例性实施例提供的基于码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于码本的上行传输流程中,网络设备24首先发送SRS资源配置给终端22,SRS资源配置包括至少一个SRS资源以及每个SRS资源的时频资源位置,之后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRS资源指示(SRS Resource Indication,SRI)和预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI),最后终端22基于SRI和TPMI发送PUSCH给网络设备24。
图4示出了本公开一示例性实施例提供的基于非码本的上行传输流程的示意图,该示意图包括终端22和网络设备24。
在基于非码本的上行传输流程中,预编码矩阵不再限定在固定的候选集中。网络设备24首先发送信道状态信息参考信号(Channel State Information-Reference Symbol,CSI-RS)以及SRS资源配置信息给终端22,SRS资源配置包括至少一个SRS资源以及每个SRS资源的时频资源位置,之后终端22基于CSI-RS的测量结果通过奇异值分解等算法自行计算得到可能使用的至少一个预编码矩阵,然后终端22基于SRS资源配置向网络设备24发送至少一个SRS,网络设备24基于接收到的至少一个SRS获取各个上行信道的信道情况,进而提供DCI给终端22,该DCI至少包括SRI,最后终端22基于SRI在可能使用的预编码矩阵中确定本次使用的预编码矩阵,基于SRI和本次使用的预编码矩阵发送PUSCH给网络设备24。
图5示出了本公开一示例性实施例提供的SFN传输复用方式的示意图,该示意图包括网络设备12和终端14。
SFN传输复用方式中,PUSCH的一个TB通过不同面板上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的面板/TRP/TO分别和不同的TCI状态(即波束)相关联。
终端14通过SFN的传输方式,即同时向网络设备12的多个TRP发送TB,增加了网络设备12接收到数据的概率,以实现上行的可靠传输。
对于SFN的传输方式,循环前缀的正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM)和离散傅立叶变换扩频的正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)两种上行波形都可以支持。
其中,CP-OFDM波形用于NR系统中物理层的上行和下行链路,适用于高吞吐量的场景,采用多输入多输出(Multiple Input Multiple Output,MIMO)传输方式,在资源块(Resource Block,RB)中提供高频谱包装(spectral packing)效率,可以在密集城市中最大限度利用网络容量;DFT-S-OFDM波形用于NR系统中物理层的上行链路,适用于功率受限的场景,采用单层传输的传输方式,由于DFT-S-OFDM波形的峰均功率比(Peak to Average Power Ratio,PAPR)比CP-OFDM低,因此更有利于小区覆盖,更适合小区边缘用户传输。
下面对本申请涉及的相关名词进行说明:
多TRP传输:
为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作在NR系统中仍然是一种重要的技术手段。从网络形态角度考虑,以大量的分布式接入点+基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。而在高频段,随着有源天线设备集成度的提高,将更加倾向于采用模块化的有源天线阵列。每个TRP的天线阵可以被分为若干相对独立的天线面板,因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活的调整。而天线面板或TRP之间也可以由光纤连接,进行更为灵活的分布式部署。在毫米波波段,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。这种情况下,从保障链路连接鲁棒性的角度出发,也可以利用多个TRP或天线面板之间的协作,从多个角度 的多个波束进行传输/接收,从而降低阻挡效应带来的不利影响。
根据发送信号流到多个TRP/面板上的映射关系,多点协作传输技术可以分为相干和非相干传输两种。其中,相干传输时,每个数据层会通过加权向量映射到多个TRP/天线面板之上。而非相干传输时,每个数据流只映射到部分的TRP/天线面板上。相干传输对于传输点之间的同步以及回程链路的传输能力有着更高的要求,因而对现实部署条件中的很多非理想因素较为敏感。相对而言,非相干传输受上述因素的影响较小,因此是多点传输技术的重点考虑方案。
需要说明的是,在NR R15中针对M-TRP(Multi-TRP,多TRP)的研究和标准化工作并没有充分展开,R16主要针对PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的标准化,R17针对PUSCH/PUCCH(Physical Uplink Control Channel,物理上行控制信道)进行了MTRP的标准化增强,但只标准化了TDM(Time Division Multiplexing,时分复用)传输方案,目前R18对于PUSCH/PUCCH考虑基于多panel终端MTRP的同时传输增强。
QCL(Quasi Co-Location,准共址):
准共址(QCL)是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道所推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。
QCL的概念是随着多点协作传输(Coordinated Multiple Point transmission,CoMP)技术的出现而引入的。CoMP传输过程中涉及到的多个站点可能对应于多个地理位置不同的站点或者天线面板朝向有差异的多个扇区。例如当终端从不同的站点接收数据时,各个站点在空间上的差异会导致来自不同站点的接收链路的大尺度信道参数的差别,如多普勒频偏,时延扩展等。而信道的大尺度参数将直接影响到信道估计时滤波器系数的调整与优化,对应于不同站点发出的信号,应当使用不同的信道估计滤波参数以适应相应的信道传播特性。
因此,尽管各个站点在空间位置或角度上的差异对于UE以及CoMP操作本身而言是透明的,但是上述空间差异对于信道大尺度参数的影响则是UE进行信道估计与接收检测时需要考虑的重要因素。所谓两个天线端口在某些大尺度参数意义下QCL,就是指这两个端口的这些大尺度参数是相同的。或者说,只要两个端口的某些大尺度参数一致,不论他们的实际物理位置或对应的天线面 板朝向是否存在差异,终端就可以认为这两个端口是发自相同的位置(即准共址)。
针对一些典型的应用场景,考虑到各种参考信号之间可能的QCL关系,从简化信令的角度出发,NR中将几种信道大尺度参数分为以下4个类型,便于系统根据不同场景进行配置/指示:
·QCL-TypeA(类型A):{Doppler(多普勒)频移,Doppler扩展,平均时延,时延扩展}。
除了空间接收参数之外,的其他大尺度参数均相同。
对于6GHz以下频段而言,可能并不需要空间接收参数。
·QCL-TypeB(类型B):{Doppler频移,Doppler扩展}。
仅针对6GHz以下频段。
·QCL-TypeC(类型C):{Doppler频移,平均时延}。
·QCL-TypeD(类型D):{空间接收参数}。
主要针对6GHz以上频段。
DMRS:
DMRS或DM-RS(Demodulation Reference Signal,解调参考信号),用于物理信道的信道估计和相干解调。
DMRS可以映射到PBCH、PDCCH、PDSCH、PUCCH和PUSCH等物理信道中,本申请实施例主要描述PUSCH信道中的DMRS。
DMRS是UE专用的参考信号,DMRS的配置信息主要由三个部分组成:
1、DMRS映射类型(mapping type):映射类型决定着DMRS在时域中的符号起始位置。
2、DMRS配置类型(DMRS type):DMRS类型有时候也称为DMRS配置类型,它决定着DMRS在频域中的RE(Resource Element,资源粒子)映射密度。
3、DMRS后置位置(additional position):DMRS信号按照位置可以分为前置DMRS(Front loaded DMRS)和后置DMRS,后置DMRS就是这里说的additional position。前置DMRS是必须存在的,后置DMRS可以不配置。后置DMRS一般用于中高速移动场景,通过在调度时隙内插入更多的DMRS导频符号,提升时变信道的估计精度。可选地,一个时隙内最多可以配置3个additional  position。
图6示出了本公开一个示例性实施例提供的PUSCH的传输方法的流程图,该方法应用于图1所示的通信系统的终端中,该方法包括:
步骤220,将PUSCH承载的一个TB分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输。
示例性的,TB应用从多天线面板面向多TRP的上行多面板同时传输方式进行传输。
示例性的,多面板同时传输方式为STxMP传输方式。
示例性的,不同天线面板发送数据层/数据层集合与DMRS端口/端口组相关联。在一些实施例中,数据层/数据层集合与同一组DMRS端口/端口组相关联;在一些实施例中,数据层/数据层集合与不同组DMRS端口/端口组相关联。
示例性的,从不同的天线面板进行传输的TB都是由同一个数据层或数据层集合进行传输。即,数据部分的发送是相同的。
示例性的,终端向多个TRP发送SRS资源,SRS资源使用非SFN方式传输。
其中,非SFN方式为基于多面板中每个面板发送面板(panel-specific)专用SRS;或,基于多个TRP中每个TRP发送TRP专用(TRP-specific)SRS。即,面板专用SRS是与各个面板相关联的SRS;TRP专用SRS是与各个TRP相关联的SRS。
即,在发送PUSCH之前先发送SRS;考虑到各个面板至各个TRP的信道之间存在差异,因此使用非SFN方式发送SRS,以对不同信道进行探测。
在一些实施例中,每个面板发送的SRS资源来自于不同的SRS资源集合;在一些实施例中,每个面板发送的SRS资源来自于同一个SRS资源集合。
示例性的,不同组SRS资源的用途(usage)为码本或非码本。
在一些实施例中,终端的多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联;在一些实施例中,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
示例性的,不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/传输配置指示TCI;其中,每个QCL假设/TCI与一个面板/TRP/波束方向相关 联。
以下根据DMRS端口/端口组的两种不同情况分别进行介绍。
方法一:多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
示例性的,多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联,即分别使用同一组DMRS端口/端口组进行发送。
示例性的,PUSCH采用SFN方式进行传输;DMRS采用SFN方式进行传输。
即,应用同一组DMRS端口/端口组,PUSCH和DMRS都通过SFN方式进行传输;该种方式下可以减少DMRS信令的开销。
方法二:多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
示例性的,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联,即分别使用不同分组的DMRS端口/端口组进行发送,且不同分组的DMRS端口/端口组包含的DMRS端口数量相同。
示例性的,每个DMRS端口/端口组包含的DMRS端口数量相同。即,终端的多面板中的每个面板发送的PUSCH对应的DMRS端口/端口组是不一样的,但是不同的DMRS端口/端口组中包含的DMRS端口的数量是相同的。
示例性的,PUSCH采用SFN方式进行传输;DMRS采用非SFN方式进行传输。
其中,非SFN方式包括如下中的至少一种:基于多面板中每个面板发送面板专用(panel-specific)DMRS;基于多个TRP中每个TRP发送TRP专用(TRP-specific)DMRS。
即,将各个面板分别与一组DMRS端口/端口组相关联,应用独立的不同面板方向的DMRS使得对不同信道有更准确的估计,但同时也增加了DMRS信令开销。
需要注意的是,本公开中涉及的每种方法可以实施成为单独的实施例。在一些实施例中,多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联;在一些实施例中,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
综上所述,本实施例提供的方法,通过从不同的面板在同一时隙内的相同时 频资源上通过相同的数据层或数据层集合发送TB,实现多面板终端在多TRP模式下的SFN传输方案的实现;此外,给出了SRS增强方案。
图7示出了本申请一个示例性实施例提供的PUSCH的传输方法的流程图。本实施例以该方法由网络设备实现来举例说明。该方法包括:
步骤320,接收分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的PUSCH承载的一个传输块TB。
示例性的,TB应用从多天线面板面向多TRP的上行多面板同时传输方式进行传输。
示例性的,多面板同时传输方式为STxMP传输方式。
示例性的,不同天线面板发送数据层/数据层集合与DMRS端口/端口组相关联。在一些实施例中,数据层/数据层集合与同一组DMRS端口/端口组相关联;在一些实施例中,数据层/数据层集合与不同组DMRS端口/端口组相关联。
示例性的,从不同的天线面板进行传输的TB都是由同一个数据层或数据层集合进行传输。即,数据部分的发送是相同的。
示例性的,网络设备接收终端发送的SRS资源,SRS资源使用非SFN方式传输。
其中,非SFN方式为基于多面板中每个面板发送面板(panel-specific)专用SRS;或,基于多个TRP中每个TRP发送TRP专用(TRP-specific)SRS。即,面板专用SRS是与各个面板相关联的SRS;TRP专用SRS是与各个TRP相关联的SRS。
即,在发送PUSCH之前先发送SRS;考虑到各个面板至各个TRP的信道之间存在差异,因此使用非SFN方式发送SRS,以对不同信道进行探测。
在一些实施例中,每个面板发送的SRS资源来自于不同的SRS资源集合;在一些实施例中,每个面板发送的SRS资源来自于同一个SRS资源集合。
示例性的,不同组SRS资源的用途(usage)为码本或非码本。
在一些实施例中,终端的多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联;在一些实施例中,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
示例性的,不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/ 传输配置指示TCI;其中,每个QCL假设/TCI与一个面板/TRP/波束方向相关联。
以下根据DMRS端口/端口组的两种不同情况分别进行介绍。
方法一:多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
示例性的,多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联,即分别使用同一组DMRS端口/端口组进行发送。
示例性的,PUSCH采用SFN方式进行传输;DMRS采用SFN方式进行传输。
即,应用同一组DMRS端口/端口组,PUSCH和DMRS都通过SFN方式进行传输;该种方式下可以减少DMRS信令的开销。
方法二:多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
示例性的,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联,即分别使用不同分组的DMRS端口/端口组进行发送,且不同分组的DMRS端口/端口组包含的DMRS端口数量相同。
示例性的,每个DMRS端口/端口组包含的DMRS端口数量相同。即,终端的多面板中的每个面板发送的PUSCH对应的DMRS端口/端口组是不一样的,但是不同的DMRS端口/端口组中包含的DMRS端口的数量是相同的。
示例性的,PUSCH采用SFN方式进行传输;DMRS采用非SFN方式进行传输。
其中,非SFN方式包括如下中的至少一种:基于多面板中每个面板发送面板专用(panel-specific)DMRS;基于多个TRP中每个TRP发送TRP专用(TRP-specific)DMRS。
即,将各个面板分别与一组DMRS端口/端口组相关联,应用独立的不同面板方向的DMRS使得对不同信道有更准确的估计,但同时也增加了DMRS信令开销。
需要注意的是,本公开中涉及的每种方法可以实施成为单独的实施例。在一些实施例中,多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联;在一些实施例中,多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
综上所述,本实施例提供的方法,通过接收从不同的面板在同一时隙内的相同时频资源上通过相同的数据层或数据层集合发送的TB,实现多面板终端在多TRP模式下的SFN传输方案的实现;此外,给出了SRS增强方案。
图8示出了本公开一个示例性实施例提供的PUSCH的传输装置的框图,该装置包括:
传输模块420,用于将所述PUSCH承载的一个传输块TB分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
在本实施例的一种可能设计中,所述传输模块420,用于向所述多个TRP发送探测参考信号SRS资源,所述SRS资源使用非单频网SFN方式传输。
在本实施例的一种可能设计中,所述非SFN方式为基于所述多面板中每个面板发送面板专用SRS。
在本实施例的一种可能设计中,每个面板发送的SRS资源来自于不同的SRS资源集合;或,每个面板发送的SRS资源来自于同一个SRS资源集合。
在本实施例的一种可能设计中,所述多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
在本实施例的一种可能设计中,所述PUSCH采用SFN方式进行传输;所述DMRS采用SFN方式进行传输。
在本实施例的一种可能设计中,所述多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
在本实施例的一种可能设计中,每个所述DMRS端口/端口组包含的DMRS端口数量相同。
在本实施例的一种可能设计中,所述PUSCH采用SFN方式进行传输;所述DMRS采用非SFN方式进行传输。
在本实施例的一种可能设计中,所述非SFN方式为基于所述多面板中每个面板发送面板专用DMRS。
在本实施例的一种可能设计中,所述不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/传输配置指示TCI;其中,每个所述QCL假设/所述TCI与一个面板/TRP/波束方向相关联。
图9示出了本公开一个示例性实施例提供的PUSCH的传输装置的框图,该装置包括:
接收模块520,用于接收分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的所述PUSCH承载的一个传输块TB,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
其中,不同面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
在本实施例的一种可能设计中,所述接收模块520,用于接收探测参考信号SRS资源,所述SRS资源使用非单频网SFN方式传输。
在本实施例的一种可能设计中,所述非SFN方式为基于所述多面板中每个面板接收面板专用SRS。
在本实施例的一种可能设计中,每个面板发送的SRS资源来自于不同的SRS资源集合;或,每个面板发送的SRS资源来自于同一个SRS资源集合。
在本实施例的一种可能设计中,所述多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
在本实施例的一种可能设计中,所述PUSCH采用SFN方式进行传输;所述DMRS采用SFN方式进行传输。
在本实施例的一种可能设计中,所述多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
在本实施例的一种可能设计中,每个所述DMRS端口/端口组包含的DMRS端口数量相同。
在本实施例的一种可能设计中,所述PUSCH采用SFN方式进行传输;所述DMRS采用非SFN方式进行传输。
在本实施例的一种可能设计中,所述非SFN方式为基于所述多面板中每个面板发送面板专用DMRS。
在本实施例的一种可能设计中,所述不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/传输配置指示TCI;其中,每个所述QCL假设/所述TCI与一个面板/TRP/波束方向相关联。
图10示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory),可擦除可编程只读存储器(EPROM,Erasable Programmable Read Only Memory),静态随时存取存储器(SRAM,Static Random-Access Memory),只读存储器(ROM,Read Only Memory),磁存储器,快闪存储器,可编程只读存储器(PROM,Programmable Read Only Memory)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述PUSCH的传输方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM,Random-Access Memory)、紧凑型光盘只读存储器(CD-ROM,Compact Disc Read Only Memory)、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种网络设备1400的框图,该网络设备1400可以是基站。
网络设备1400可以包括:处理器1401、接收机1402、发射机1403和存储器1404。接收机1402、发射机1403和存储器1404分别通过总线与处理器1401 连接。
其中,处理器1401包括一个或者一个以上处理核心,处理器1401通过运行软件程序以及模块以执行本公开实施例提供的PUSCH的传输方法。存储器1404可用于存储软件程序以及模块。具体的,存储器1404可存储操作系统14041、至少一个功能所需的应用程序模块14042。接收机1402用于接收其他设备发送的通信数据,发射机1403用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的PUSCH的传输方法。
本公开一示例性实施例还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方法实施例提供的PUSCH的传输方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (29)

  1. 一种物理上行共享信道PUSCH的传输方法,其特征在于,所述方法由终端执行,所述方法包括:
    将所述PUSCH承载的一个传输块TB分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
    其中,不同面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述多个TRP发送探测参考信号SRS资源,所述SRS资源使用非单频网SFN方式传输。
  3. 根据权利要求2所述的方法,其特征在于,所述非SFN方式为基于所述多面板中每个面板发送面板专用SRS。
  4. 根据权利要求3所述的方法,其特征在于,
    每个面板发送的SRS资源来自于不同的SRS资源集合;
    或,每个面板发送的SRS资源来自于同一个SRS资源集合。
  5. 根据权利要求1至4任一所述的方法,其特征在于,
    所述多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
  6. 根据权利要求5所述的方法,其特征在于,
    所述PUSCH采用SFN方式进行传输;
    所述DMRS采用SFN方式进行传输。
  7. 根据权利要求1至4任一所述的方法,其特征在于,
    所述多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
  8. 根据权利要求7所述的方法,其特征在于,
    每个所述DMRS端口/端口组包含的DMRS端口数量相同。
  9. 根据权利要求8所述的方法,其特征在于,
    所述PUSCH采用SFN方式进行传输;
    所述DMRS采用非SFN方式进行传输。
  10. 根据权利要求9所述的方法,其特征在于,所述非SFN方式为基于所述多面板中每个面板发送面板专用DMRS。
  11. 根据权利要求5至10任一所述的方法,其特征在于,
    所述不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/传输配置指示TCI;
    其中,每个所述QCL假设/所述TCI与一个面板/TRP/波束方向相关联。
  12. 一种物理上行共享信道PUSCH的传输方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    接收分别从不同的面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的所述PUSCH承载的一个传输块TB,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
    其中,不同面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收探测参考信号SRS资源,所述SRS资源使用非单频网SFN方式传输。
  14. 根据权利要求13所述的方法,其特征在于,所述非SFN方式为基于所述多面板中每个面板接收面板专用SRS。
  15. 根据权利要求14所述的方法,其特征在于,
    每个面板发送的SRS资源来自于不同的SRS资源集合;
    或,每个面板发送的SRS资源来自于同一个SRS资源集合。
  16. 根据权利要求12至15任一所述的方法,其特征在于,
    所述多面板发送的PUSCH分别与同一组DMRS端口/端口组相关联。
  17. 根据权利要求16所述的方法,其特征在于,
    所述PUSCH采用SFN方式进行传输;
    所述DMRS采用SFN方式进行传输。
  18. 根据权利要求12至15任一所述的方法,其特征在于,
    所述多面板中的每个面板发送的PUSCH分别与一组DMRS端口/端口组相关联。
  19. 根据权利要求18所述的方法,其特征在于,
    每个所述DMRS端口/端口组包含的DMRS端口数量相同。
  20. 根据权利要求19所述的方法,其特征在于,
    所述PUSCH采用SFN方式进行传输;
    所述DMRS采用非SFN方式进行传输。
  21. 根据权利要求20所述的方法,其特征在于,所述非SFN方式为基于所述多面板中每个面板发送面板专用DMRS。
  22. 根据权利要求16至21任一所述的方法,其特征在于,
    所述不同的DMRS端口/端口组分别配置有不同的准共址QCL假设/传输配置指示TCI;
    其中,每个所述QCL假设/所述TCI与一个面板/TRP/波束方向相关联。
  23. 一种物理上行共享信道PUSCH的传输装置,其特征在于,所述装置包 括:
    传输模块,用于将所述PUSCH承载的一个传输块TB分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输,所述TB应用从多天线面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
    其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
  24. 一种物理上行共享信道PUSCH的传输装置,其特征在于,所述装置包括:
    接收模块,用于接收分别从不同的天线面板在同一时隙内的相同时频资源上通过同一个数据层或数据层集合进行传输的所述PUSCH承载的一个传输块TB,所述TB应用从多面板面向多发送和接收点TRP的多面板同时传输方式进行传输;
    其中,不同天线面板发送所述数据层/数据层集合与解调参考信号DMRS端口/端口组相关联。
  25. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至11任一所述的物理上行共享信道PUSCH的传输方法。
  26. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求12至22任一所述的物理上行共享信道PUSCH的传输方法。
  27. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至11任一所述的物理上行共享信道 PUSCH的传输方法,或者,如权利要求12至22任一所述的物理上行共享信道PUSCH的传输方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至11任一所述的物理上行共享信道PUSCH的传输方法,或者,如权利要求12至22任一所述的物理上行共享信道PUSCH的传输方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质中读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至11任一所述的物理上行共享信道PUSCH的传输方法,或者,如权利要求12至22任一所述的物理上行共享信道PUSCH的传输方法。
PCT/CN2022/121479 2022-09-26 2022-09-26 Pusch的传输方法、装置、介质及产品 WO2024065114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121479 WO2024065114A1 (zh) 2022-09-26 2022-09-26 Pusch的传输方法、装置、介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121479 WO2024065114A1 (zh) 2022-09-26 2022-09-26 Pusch的传输方法、装置、介质及产品

Publications (1)

Publication Number Publication Date
WO2024065114A1 true WO2024065114A1 (zh) 2024-04-04

Family

ID=90475154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121479 WO2024065114A1 (zh) 2022-09-26 2022-09-26 Pusch的传输方法、装置、介质及产品

Country Status (1)

Country Link
WO (1) WO2024065114A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置
CN110838856A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种数据传输方法、终端及网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置
CN110838856A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种数据传输方法、终端及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "NR MIMO evolution for downlink and uplink", 3GPP TSG RAN MEETING #96, RP-221393, 30 May 2022 (2022-05-30), XP052154415 *

Similar Documents

Publication Publication Date Title
US20230028861A1 (en) Power control parameter determination method and device, and storage medium
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
US11166239B2 (en) Mitigation of calibration errors
EP3860091B1 (en) Information receiving method and device and information sending method and device
WO2022082700A1 (en) Communication in multiple transmission/reception point environments
KR102632143B1 (ko) 정보 엘리먼트를 송신하기 위한 방법, 통신 노드, 시스템 및 저장 매체
WO2020140353A1 (en) System and Method for Beam Management with Emissions Limitations
CN105991271A (zh) 无线通信的装置和方法
CN115804187A (zh) 传输信息的确定系统和方法
CN115668851A (zh) 用于tci状态激活和码点到tci状态映射的系统和方法
US11234294B2 (en) Data dimension reduction method, apparatus, and system, computer device, and storage medium
WO2024065114A1 (zh) Pusch的传输方法、装置、介质及产品
KR20160133159A (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
CN112492642A (zh) 基于干扰协调的传输方法和装置、存储介质及电子装置
CN107682059A (zh) 用于网络控制端和中央处理节点的电子设备和方法
WO2024065113A1 (zh) 上行波形的指示方法、装置、介质及产品
WO2024026644A1 (zh) Srs资源的配置方法、装置、介质及产品
WO2024065115A1 (zh) 传输复用方式的指示方法、装置、介质及产品
WO2024098576A1 (en) Systems and methods for reporting user equipment capability
WO2024026645A1 (zh) 信息指示方法、装置、介质及产品
US20240097863A1 (en) Methods and systems for enhanced transmission configuration indicator framework
WO2023272598A1 (zh) 参考信号的配置方法、装置、设备及存储介质
WO2023010520A1 (en) Systems and methods for uplink transmission in multi-transmission reception points and multi-panel scenarios
WO2024031673A1 (en) Transmission precoder determination and spatial relation indication
WO2023173378A1 (en) Method, device and computer readable medium of communication