WO2024062872A1 - 潅水制御システム - Google Patents

潅水制御システム Download PDF

Info

Publication number
WO2024062872A1
WO2024062872A1 PCT/JP2023/031500 JP2023031500W WO2024062872A1 WO 2024062872 A1 WO2024062872 A1 WO 2024062872A1 JP 2023031500 W JP2023031500 W JP 2023031500W WO 2024062872 A1 WO2024062872 A1 WO 2024062872A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
time
unit
value
index value
Prior art date
Application number
PCT/JP2023/031500
Other languages
English (en)
French (fr)
Inventor
谷口啓介
米津雄一
片桐康之
片岡麻子
田中秀明
安井雅彦
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022151582A external-priority patent/JP2024046281A/ja
Priority claimed from JP2022151580A external-priority patent/JP7471365B2/ja
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2024062872A1 publication Critical patent/WO2024062872A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to an irrigation control system for irrigation of cultivated plants.
  • the present invention also relates to an irrigation control system that includes an imaging unit that captures images of the leaves of cultivated plants.
  • a projected area ratio which is the ratio of the projected area to the maximum projected area, is calculated.
  • irrigation water supply
  • the object of the present invention is to provide an irrigation control system that can easily and conveniently control irrigation from above and below the roots of cultivated plants.
  • the maximum projected area is the maximum value of the projected area after the most recent irrigation. That is, this maximum projected area is updated every time watering is performed.
  • cultivation management work such as hanging, attracting, leaf plucking, and harvesting is performed by the manager.
  • cultivation management work is performed, the posture of the cultivated plants, the position of the leaves, etc. change. At this time, the projected area ratio tends to change rapidly.
  • the projected area ratio suddenly decreases as a result of cultivation management work, the projected area ratio may immediately fall below the water supply standard value, but once irrigation is performed, the maximum projected area will be updated. .
  • the updated maximum projected area corresponds to the state of the cultivated plants after the cultivation management work. Therefore, if the projected area ratio suddenly decreases as a result of cultivation management work, the effect on irrigation control is relatively small.
  • An object of the present invention is to provide an irrigation control system that can easily continue appropriate irrigation when the condition of cultivated plants changes due to cultivation management work.
  • the solution to problem [1] is as follows.
  • the features of the present invention include: an upper irrigation mechanism that performs watering to the cultivated plants from above the roots of the cultivated plants; a lower irrigation mechanism that performs irrigation to the cultivated plants from the lower side of the roots of the cultivated plants;
  • the present invention further includes a irrigation control section that individually controls the irrigation mechanism and the lower irrigation mechanism.
  • watering from the lower side of the roots may be performed at regular intervals, but when the leaves of the cultivated plants wither, It is possible to implement control such that irrigation is performed by the upper irrigation mechanism.
  • an imaging unit that captures an image of the leaves of the cultivated plant and a tension index value calculation unit that calculates a tension index value that indicates the degree of tension of the leaves based on the captured image acquired by the imaging unit are provided, and it is preferable that the irrigation control unit is capable of causing the upper irrigation mechanism to perform irrigation in response to the tension index value falling below a predetermined irrigation reference value.
  • the upper irrigation mechanism is automatically activated in response to the wilting of the leaves of the cultivated plant. It becomes possible to carry out irrigation. This makes it easy to quickly recover the tension of the leaves of the cultivated plants when they wilt.
  • the irrigation control unit is capable of causing the lower irrigation mechanism to perform irrigation in response to the current time reaching a set time.
  • a concentration setting unit is provided that can individually set the liquid fertilizer concentration of the nutrient solution supplied by the upper irrigation mechanism and the liquid fertilizer concentration of the nutrient solution supplied by the lower irrigation mechanism. suitable.
  • the upper irrigation mechanism It is easy to set the concentration of each liquid fertilizer according to the difference in characteristics between the lower irrigation mechanism and the lower irrigation mechanism. As a result, fertilizer is easily supplied from above and below the roots of the cultivated plants.
  • the roots of the cultivated plants are in contact with the upper surface of the membrane member through which the nutrient solution can permeate, and the lower irrigation mechanism is configured to irrigate the lower surface of the membrane member.
  • the method is configured to irrigate the cultivated plant through a membrane-like member, and the membrane-like member is configured to limit absorption of the nutrient solution by the roots of the cultivated plant through the membrane-like member. It is preferable that the
  • the solution to problem [2] is as follows.
  • the features of the present invention include an imaging unit that images the leaves of a cultivated plant, and a tension index value calculation that calculates a tension index value that is a value indicating the degree of tension of the leaf based on the captured image acquired by the imaging unit.
  • a reference index value setting section that sets the tension index value at a reference time as a reference index value;
  • a reference calculation section that calculates an irrigation reference value based on the reference index value;
  • an irrigation instruction section that outputs an irrigation instruction signal when the irrigation instruction signal is below a value, and a correction section that corrects the reference index value when a predetermined condition is met, the correction section corrects the reference index value.
  • the reference calculation unit is an irrigation control system that recalculates the irrigation reference value based on the corrected reference index value
  • the reference calculation unit is an irrigation control system that determines a judgment value regarding the correction of the reference index value. and the total amount of time during which the tension index value exceeds the determination value between the first time point and the second time point, or the tension index value between the first time point and the second time point.
  • a time calculation unit that calculates the total time during which the value is less than the determination value; The purpose is to decide whether
  • the transition of the tension index value is likely to be different from the transition before the cultivation management work. For example, if as a result of cultivation management work, the tension index value increases rapidly due to leaves approaching the imaging unit, etc., the tension index value tends to remain in a higher range than the range before the cultivation management work. . In addition, for example, if the tension index value suddenly decreases due to leaves moving away from the imaging unit as a result of cultivation management work, the tension index value tends to remain in a lower range than the range before the cultivation management work. It is.
  • the reference index value is determined based on the total time during which the tension index value exceeds the judgment value or the total time during which the tension index value falls below the judgment value. A decision is made as to whether or not to modify it. Therefore, if the tension index value is trending in a higher range than the range before cultivation management work, or if the tension index value is trending in a lower range than the range before cultivation management work, the standard index value It is easy to realize a configuration in which this is modified. Then, when the reference index value is corrected, the irrigation reference value is recalculated. This makes it easy to continue proper irrigation.
  • the second point in time is the current time
  • the first point in time is a point a predetermined time before the second point in time
  • the timing at which the irrigation reference value is recalculated is likely to be earlier than the configuration in which the second time point is earlier than the current time.
  • the second time point is 5 minutes before the current time.
  • the first time point e.g. 11:10 a.m.
  • the second time point e.g. 11:20 a.m.
  • the modification of the reference index value is not determined until 5 minutes have elapsed from the second point in time (for example, until 11:25). Therefore, the timing at which the irrigation reference value is recalculated is relatively late.
  • the tension index value between the first time point and the second time point is higher or lower than the range before cultivation management work. If the change occurs, it is possible to decide to correct the reference index value immediately (for example, at 11:20). Therefore, the timing at which the irrigation reference value is recalculated becomes relatively early.
  • the above-mentioned judgment value determination section includes an upper judgment value determination section that is the judgment value determination section, and an upper time calculation section that is the time calculation section, and the upper judgment value determination section is configured to perform a calculation based on the reference index value. , determines an upper judgment value that is the judgment value, and the upper time calculation unit calculates a period of time during which the tension index value exceeds the upper judgment value between the first time point and the second time point. Preferably, a total upper state time is calculated, and the modification unit determines whether to modify the reference index value based on the upper state time.
  • this configuration it is easy to realize a configuration in which the reference index value is corrected when the tension index value changes in a range higher than the range before the cultivation management work from the first time point to the second time point. Then, when the reference index value is corrected, the irrigation reference value is recalculated. This makes it easy to continue appropriate watering when the tension index value increases rapidly as a result of cultivation management work, for example due to leaves approaching the imaging unit.
  • the correction unit corrects the reference index value when the ratio of the upward state time to the determination time that is the length from the first time point to the second time point is a predetermined ratio or more. It is preferable to decide that
  • the reference index value when the tension index value changes in a range higher than the range before the cultivation management work from the first time point to the second time point, the reference index value is likely to be reliably corrected. Thereby, when the tension index value increases rapidly as a result of cultivation management work, for example due to leaves approaching the imaging unit, it is easy to ensure that appropriate watering is continued.
  • the lower judgment value determining section includes a lower judgment value determining section which is the judgment value determining section, and a lower time calculating section which is the time calculating section, and the lower judgment value determining section is configured to , determines a lower judgment value that is the judgment value, and the lower time calculation unit calculates a period of time during which the tension index value is lower than the lower judgment value between the first time point and the second time point.
  • a total downward state time is calculated, and the modification unit determines whether or not to correct the reference index value based on the downward state time.
  • this configuration it is easy to realize a configuration in which the reference index value is corrected when the tension index value changes in a range lower than the range before the cultivation management work from the first time point to the second time point. Then, when the reference index value is corrected, the irrigation reference value is recalculated. This makes it easy to continue appropriate watering even if the tension index value suddenly decreases due to, for example, leaves moving away from the imaging unit as a result of cultivation management work.
  • the correction unit corrects the reference index value when the ratio of the downward state time to the determination time that is the length from the first time point to the second time point is equal to or greater than a predetermined ratio. It is preferable to decide that
  • the reference index value when the tension index value changes in a range lower than the range before the cultivation management work from the first time point to the second time point, the reference index value is likely to be reliably corrected. Thereby, when the tension index value suddenly decreases due to, for example, leaves moving away from the imaging unit as a result of cultivation management work, it is easy to ensure that appropriate watering is continued.
  • the irrigation instruction unit limits the output of the irrigation instruction signal so that the number of times the irrigation instruction signal is output within a predetermined time limit is within a predetermined limit.
  • the irrigation instruction section is configured not to output the next irrigation instruction signal until a predetermined time interval elapses from the time when the irrigation instruction signal is output. It is.
  • This configuration makes it possible to avoid the situation where watering is repeated immediately after watering has been performed. This makes it possible to prevent over-watering.
  • FIG. 9 is a diagram showing the first embodiment (hereinafter, the same applies up to FIG. 9), and is a plan view showing the entire interior of the gardening facility.
  • FIG. 2 is a side view showing the entire interior of the horticultural facility.
  • It is a block diagram showing the composition of an irrigation control system. It is a figure which shows the structure of an upper irrigation tube, a lower irrigation tube, etc.
  • FIG. 13 is a diagram showing the display contents on a manual irrigation screen.
  • FIG. 3 is a diagram showing display contents on a mode display screen.
  • FIG. 3 is a plan view showing coverage. It is a figure showing an example of transition of coverage rate.
  • FIG. 7 is a diagram showing display contents on a density setting screen.
  • FIG. 17 is a block diagram showing a configuration of an irrigation control system according to a second embodiment of the present invention.
  • FIG. It is a figure showing an example of transition of coverage rate.
  • FIG. 13 is a diagram showing an example of a change in coverage rate when cultivation management work is performed. It is a figure showing an example of transition of coverage rate when cultivation management work is performed. It is a figure which shows the timing of irrigation when the repeated irrigation interval is 15 minutes. It is a figure which shows the timing of irrigation when the repeated irrigation interval is 10 minutes. It is a figure which shows the timing of irrigation when the repeated irrigation time limit and the number of repeated irrigation limits are set.
  • a gardening facility 10 as shown in FIG. 1 is provided with rows A1 to A8 arranged in rows and columns for planting cultivated plants P (see FIG. 2).
  • the space between each of the ridges A is a passage through which the administrator of the cultivated plants P can pass.
  • the horticultural facility 10 is, for example, a plastic greenhouse or a solar-powered plant factory.
  • Each ridge A is made of, for example, a non-porous hydrophilic film. Then, in each ridge A, a tomato, for example, is planted as a cultivated plant P. As shown in FIGS. 1 and 2, inside the gardening facility 10, an imaging unit Ca is provided in a state suspended from the ceiling above the ridge A where the cultivated plants P are planted. Note that the number of imaging units Ca provided may be one, or two or more.
  • the imaging unit Ca is a fixed-point camera having, for example, a CCD element or a CMOS element, and is configured to be able to image visible light that can be seen with the naked eye.
  • the imaging unit Ca then images the leaves P1 (see FIG. 4) of the cultivated plant P at predetermined time intervals. Thereby, the imaging unit Ca acquires captured images V (see FIG. 7) over time.
  • the horticultural facility 10 is also equipped with environmental sensors, side windows, blackout curtains, heat pump type air conditioning equipment, and the like.
  • the imaging section Ca is provided directly above the ridge A2.
  • the imaging unit Ca images the cultivated plants P planted in the ridge A2 from directly above in plan view. That is, the imaging unit Ca is located above the cultivated plants P and performs bird's-eye imaging downward.
  • the irrigation control system S in this embodiment includes an input device 2, a display 3, and a management computer 4.
  • the input device 2 is not particularly limited, but may be, for example, a keyboard, a mouse, or the like.
  • the horticultural facility 10 is included in the irrigation control system S.
  • the irrigation control system S includes an imaging unit Ca that images the leaves P1 of the cultivated plants P.
  • the horticultural facility 10 includes an upper irrigation mechanism D1 and a lower irrigation mechanism D2.
  • the upper irrigation mechanism D1 has an upper irrigation valve 13.
  • the upper irrigation mechanism D1 has an upper irrigation tube 14.
  • the upper irrigation tube 14 extends along the longitudinal direction of the ridge A.
  • the upper irrigation tube 14 is configured so that a nutrient solution can pass through the upper irrigation tube 14 .
  • a plurality of holes 14a are formed in the upper part of the upper irrigation tube 14. The holes 14a are arranged in a line along the direction in which the upper irrigation tube 14 extends, spaced apart from each other by a predetermined distance.
  • the number of upper irrigation tubes 14 arranged in one ridge A may be one, or two or more. In this embodiment, the number of upper irrigation tubes 14 arranged in one ridge A is one.
  • the upper irrigation valve 13 is configured to be openable and closable.
  • the upper irrigation mechanism D1 is configured such that the nutrient solution is discharged from each hole 14a while the upper irrigation valve 13 is in the open state. Note that when the upper irrigation valve 13 is in the closed state, the discharge of the nutrient solution from each hole 14a is stopped.
  • the upper irrigation tube 14 is arranged above the root P2 of the cultivated plant P. Therefore, the nutrient solution discharged from each hole 14a is supplied to the cultivated plant P from above the root P2. With this configuration, the upper irrigation mechanism D1 performs irrigation to the cultivated plants P from above the roots P2 of the cultivated plants P.
  • irrigation means supplying a nutrient solution.
  • the nutrient solution may be a liquid in which fertilizer or the like is dissolved in water, or may be simply water.
  • the irrigation control system S includes an upper irrigation mechanism D1 that performs irrigation to the cultivated plants P from above the roots P2 of the cultivated plants P.
  • the ridge A includes a membrane member 21, a water pumping cloth 22, and a water stop sheet 23.
  • the membrane member 21 is stacked on the water pumping cloth 22.
  • the water stop sheet 23 is located below the water pumping cloth 22.
  • the root P2 is in contact with the upper surface of the membrane member 21. Note that culture soil or the like may be placed on the membrane member 21.
  • the water stop sheet 23 is configured so that the nutrient solution does not pass through.
  • the pumping fabric 22 is made of, for example, a nonwoven fabric.
  • the water pumping cloth 22 is configured to suck up the nutrient solution present below the water pumping cloth 22.
  • the membrane member 21 is configured to be permeable to the nutrient solution.
  • the membrane member 21 may be, for example, a non-porous hydrophilic film, particularly a polyvinyl alcohol film.
  • the roots P2 of the cultivated plant P are in contact with the upper surface of the membrane member 21 through which the nutrient solution can permeate.
  • the lower irrigation mechanism D2 has a lower irrigation valve 15. Further, as shown in FIG. 4, the lower irrigation mechanism D2 has a lower irrigation tube 16.
  • the lower irrigation tube 16 extends along the longitudinal direction of the ridge A.
  • the lower irrigation tube 16 is configured so that a nutrient solution can pass through the inside of the lower irrigation tube 16.
  • a plurality of holes 16a are formed in the upper part of the lower irrigation tube 16. The holes 16a are arranged in a line along the direction in which the lower irrigation tube 16 extends, spaced apart from each other by a predetermined distance.
  • the number of lower irrigation tubes 16 arranged on one ridge A may be one or may be two or more. In this embodiment, the number of lower irrigation tubes 16 arranged on one ridge A is two.
  • the lower irrigation valve 15 is configured to be openable and closable.
  • the lower irrigation mechanism D2 is configured such that the nutrient solution is discharged from each hole 16a while the lower irrigation valve 15 is in the open state. Note that when the lower irrigation valve 15 is in the closed state, the discharge of the nutrient solution from each hole 16a is stopped.
  • the lower irrigation tube 16 is arranged at a position sandwiched between the water pumping cloth 22 and the water stop sheet 23. Therefore, the nutrient solution discharged from each hole 16a is sucked up by the water pumping cloth 22 and supplied to the lower surface of the membrane member 21.
  • the roots P2 absorb the nutrient solution supplied to the lower surface of the membrane member 21 via the membrane member 21.
  • the lower irrigation mechanism D2 performs irrigation to the cultivated plants P from below the roots P2 of the cultivated plants P.
  • the irrigation control system S includes the lower irrigation mechanism D2 that performs irrigation to the cultivated plants P from the lower side of the roots P2 of the cultivated plants P. Further, the lower irrigation mechanism D2 is configured to irrigate the cultivated plants P through the membrane member 21 by irrigate the lower surface of the membrane member 21.
  • the membrane member 21 is configured to limit the absorption of nutrient solution through the membrane member 21 by the roots P2 of the cultivated plant P. It is preferable that the membrane member 21 is configured to limit the absorption of nutrient solution through the membrane member 21 to such an extent that the cultivated plant P is appropriately subjected to water stress caused by the absorption of water through the membrane member 21.
  • the management computer 4 has an irrigation control unit 41.
  • the irrigation control unit 41 has an upper irrigation control unit 51 and a lower irrigation control unit 52.
  • the upper irrigation control unit 51 controls the opening and closing of the upper irrigation valve 13 to control irrigation by the upper irrigation mechanism D1.
  • the lower irrigation control unit 52 controls the opening and closing of the lower irrigation valve 15 to control irrigation by the lower irrigation mechanism D2.
  • the irrigation control section 41 individually controls the upper irrigation mechanism D1 and the lower irrigation mechanism D2 using the upper irrigation control section 51 and the lower irrigation control section 52. That is, the irrigation control system S includes an irrigation control section 41 that individually controls the upper irrigation mechanism D1 and the lower irrigation mechanism D2.
  • each element included in the management computer 4, such as the irrigation control unit 41, may be a functional part in software, or may be configured as a physical device such as a microcomputer.
  • Manual irrigation control is a control that performs irrigation according to manual operations by an administrator (user). The manual irrigation control will be explained in detail below.
  • the management computer 4 has an upper irrigation processing section 42.
  • the upper irrigation processing section 42 includes an upper manual instruction section 53.
  • the irrigation control unit 41 is configured to display a manual irrigation screen shown in FIG. 5 on the display 3.
  • the manual irrigation screen includes an upper information display section 31 and a lower information display section 32.
  • the upper information display section 31 is located at the upper part of the manual irrigation screen.
  • the lower information display section 32 is located at the lower part of the manual irrigation screen. Note that the upper information display section 31 is located above the lower information display section 32.
  • the upper information display section 31 displays information regarding manual irrigation control by the upper irrigation control section 51, and also receives setting operation input regarding manual irrigation control by the upper irrigation control section 51.
  • the administrator can set the amount of irrigation by manual irrigation control in each line of the upper irrigation mechanism D1 by inputting a setting operation to the upper information display section 31 via the input device 2.
  • the administrator can switch whether or not manual irrigation control is executed in each line of the upper irrigation mechanism D1 by inputting a setting operation to the upper information display section 31 via the input device 2. .
  • the "line" of the upper irrigation mechanism D1 means the range in which irrigation is controlled by one upper irrigation valve 13 of the upper irrigation mechanism D1.
  • the upper irrigation mechanism D1 is divided into 12 lines by 12 upper irrigation valves 13.
  • twelve upper irrigation control units 51 are provided corresponding to the twelve upper irrigation valves 13.
  • Each upper irrigation control section 51 controls opening and closing of the corresponding upper irrigation valve 13, respectively.
  • the upper irrigation valve 13 and the upper irrigation control part 51 are illustrated one by one so that the structure may be easily understood.
  • each upper irrigation control section 51 When the above-mentioned setting operation input is performed via the input device 2, a signal indicating the content of the setting operation input is sent from the upper irrigation processing section 42 to each upper irrigation control section 51.
  • each upper irrigation control section 51 When performing manual irrigation control, each upper irrigation control section 51 performs manual irrigation control of the upper irrigation mechanism D1 based on the signal.
  • an upper irrigation start button 33 is displayed on the manual irrigation screen.
  • a manual irrigation instruction signal is sent from the upper manual instruction section 53 to each upper irrigation control section 51, as shown in FIG.
  • each upper irrigation control unit 51 executes manual irrigation control of the upper irrigation mechanism D1. Thereby, irrigation is performed by the upper irrigation mechanism D1.
  • the management computer 4 has a lower irrigation processing section 43.
  • the lower irrigation processing section 43 includes a lower manual instruction section 54.
  • the lower information display section 32 displays information regarding manual irrigation control by the lower irrigation control section 52, and also receives setting operation input regarding manual irrigation control by the lower irrigation control section 52.
  • the administrator can set the amount of irrigation by manual irrigation control in each line of the lower irrigation mechanism D2 by inputting a setting operation to the lower information display section 32 via the input device 2.
  • the administrator can switch whether or not manual irrigation control is executed in each line of the lower irrigation mechanism D2 by inputting a setting operation to the lower information display section 32 via the input device 2. .
  • the "line" of the lower irrigation mechanism D2 means the range in which irrigation is controlled by one lower irrigation valve 15 of the lower irrigation mechanism D2.
  • the lower irrigation mechanism D2 is divided into 12 lines by 12 lower irrigation valves 15.
  • twelve lower irrigation control units 52 are provided corresponding to the twelve lower irrigation valves 15.
  • Each lower irrigation control section 52 controls opening and closing of the corresponding lower irrigation valve 15, respectively.
  • the lower irrigation valve 15 and the lower irrigation control part 52 are illustrated one by one so that the structure may be easily understood.
  • each line of the upper irrigation mechanism D1 and the lower irrigation mechanism D2 is assigned an identification number from “1" to "12."
  • the lines of the upper irrigation mechanism D1 and the lower irrigation mechanism D2 that are assigned the same identification number irrigate the same area.
  • the area irrigated by "line 1" of the upper irrigation mechanism D1 is the same as the area irrigated by "line 1" of the lower irrigation mechanism D2.
  • an individual (or group of individuals) irrigated by "line 1" of the upper irrigation mechanism D1 is the same as an individual (or group of individuals) irrigated by "line 1" of the lower irrigation mechanism D2.
  • a signal indicating the content of the setting operation input is sent from the lower irrigation processing section 43 to each lower irrigation control section 52.
  • Each lower irrigation control section 52 performs manual irrigation control of the lower irrigation mechanism D2 based on the signal when executing manual irrigation control.
  • a lower irrigation start button 34 is displayed on the manual irrigation screen.
  • a manual irrigation instruction signal is sent from the lower manual instruction section 54 to each lower irrigation control section 52, as shown in FIG.
  • each lower irrigation control section 52 executes manual irrigation control of the lower irrigation mechanism D2. Thereby, irrigation is performed by the lower irrigation mechanism D2.
  • an interrupt button 35 is displayed on the manual irrigation screen.
  • the administrator operates the interrupt button 35 via the input device 2 during execution of manual irrigation control of the upper irrigation mechanism D1, as shown in FIG.
  • An interrupt signal is sent to.
  • each upper irrigation control section 51 interrupts the manual irrigation control of the upper irrigation mechanism D1.
  • irrigation by the upper irrigation mechanism D1 is interrupted.
  • each lower irrigation control is controlled from the lower manual instruction section 54 as shown in FIG.
  • An interrupt signal is sent to section 52.
  • each lower irrigation control section 52 interrupts the manual irrigation control of the lower irrigation mechanism D2. As a result, irrigation by the lower irrigation mechanism D2 is interrupted.
  • the irrigation control unit 41 is configured to display a mode display screen shown in FIG. 6 on the display 3.
  • the mode display screen includes an upper mode display section 36 and a lower mode display section 37.
  • the upper mode display section 36 is located at the top of the mode display screen.
  • the lower mode display section 37 is located at the lower part of the mode display screen. Note that the upper mode display section 36 is located above the lower mode display section 37.
  • the upper mode display section 36 displays the control mode of each upper irrigation control section 51, and also receives input for switching the control mode of each upper irrigation control section 51.
  • the administrator can switch the control mode of each upper irrigation control section 51 by inputting a switching operation to the upper mode display section 36 via the input device 2.
  • the upper irrigation processing unit 42 has an upper mode switching unit 55.
  • the administrator performs a switching operation input to the upper mode display unit 36 via the input device 2, as shown in FIG. 3, a mode switching signal is sent from the upper mode switching unit 55 to each upper irrigation control unit 51.
  • the control mode of each upper irrigation control unit 51 is switched in accordance with the mode switching signal.
  • the control mode of the upper irrigation control section 51 can be switched between a first irrigation mode, a second irrigation mode, and a third irrigation mode.
  • the first irrigation mode is a control mode in which irrigation is performed based on the degree of tension of the leaves P1.
  • the second irrigation mode is a control mode in which irrigation is performed based on time. More specifically, in the second irrigation mode, irrigation is performed in response to the current time reaching the set time.
  • the third irrigation mode is a control mode in which neither irrigation based on the degree of tension of the leaf P1 nor irrigation based on time is performed.
  • the upper irrigation control unit 51 can execute the above-mentioned manual irrigation control.
  • the upper irrigation control unit 51 is in the third irrigation mode, the upper irrigation control unit 51 does not execute irrigation other than irrigation by manual irrigation control.
  • the lower mode display section 37 displays the control mode of each lower irrigation control section 52 and receives input for switching the control mode of each lower irrigation control section 52.
  • the administrator can switch the control mode of each lower irrigation control section 52 by inputting a switching operation to the lower mode display section 37 via the input device 2.
  • the lower irrigation processing section 43 has a lower mode switching section 56.
  • a mode switching signal is sent from the lower mode switching section 56 to each lower irrigation control section 52, as shown in FIG.
  • the control mode of each lower irrigation control section 52 is switched according to the mode switching signal.
  • control mode of the lower irrigation control unit 52 can be switched between the second irrigation mode and the third irrigation mode.
  • the lower irrigation control section 52 can execute the above-mentioned manual irrigation control.
  • the lower irrigation control unit 52 is in the third irrigation mode, the lower irrigation control unit 52 does not perform irrigation other than irrigation by manual irrigation control.
  • the lower irrigation control unit 52 when in the second irrigation mode, causes the lower irrigation mechanism D2 to perform irrigation in response to the current time reaching the set time. That is, the irrigation control unit 41 can cause the lower irrigation mechanism D2 to perform irrigation in response to the current time reaching the set time.
  • the management computer 4 includes a coverage calculation section 44 (corresponding to the "tension index value calculation section” according to the present invention), a reference coverage setting section 45, a reference calculation section 46, and a wilting coefficient setting section 47. have.
  • the captured images V (see FIG. 7) acquired by the imaging unit Ca at predetermined time intervals are sent to the coverage calculation unit 44.
  • the coverage calculation unit 44 calculates the coverage E over time based on the received captured image V.
  • the coverage rate E is the ratio of the area occupied by the leaf P1 in the measurement area B (see FIG. 7), which is the area where the leaf P1 is shown in the captured image V. Moreover, the coverage E is a value indicating the degree of tension of the leaf P1. That is, the coverage E corresponds to the "tension index value" according to the present invention.
  • the coverage calculation unit 44 determines the areas of branches, leaves, and stems in the captured image V based on the color information of the captured image V, etc. This area is determined as a flourishing area of cultivated plants P, that is, a covered area.
  • the determination of areas of branches, leaves, and stems may be performed based on RGB data, or may be performed based on YUV data. However, in this embodiment, in order to cope with changes in brightness due to changes in weather and time of day, it is desirable that the determination of areas of branches, leaves, and stems be performed based on YUV data.
  • the range in which the cultivated plant P is located in the captured image V is set.
  • the area surrounded by four sides is set as the area in which the branches and leaves of cultivated plant P are photographed, and the area surrounded by these four sides is set as measurement area B, and the area of measurement area B is Bs is calculated.
  • the area Bs can be calculated by counting the number of dots (the minimum unit of pixels in the captured image V) in the measurement area B in the captured image V.
  • the leaf area B1 can be calculated by counting the number of dots in the covered area. Then, the ratio of the leaf area B1 to the area Bs is calculated as the coverage E using the following formula.
  • the area Bs of the measurement area B is fixed at the area Bs before the leaf P1 starts to wilt, even if the leaf P1 wilts over time and the area where the branches and leaves are shown gradually narrows. is desirable.
  • the area Bs is fixed as the area Bs calculated based on the first captured image V among the plurality of captured images V acquired over time, and the leaf area B1 increases over time. It is desirable to have a configuration in which the
  • the irrigation control system S includes the coverage calculation unit 44 that calculates the coverage E, which is a value indicating the degree of tension of the leaves P1, based on the captured image V acquired by the imaging unit Ca.
  • the coverage E calculated over time by the coverage calculation section 44 is sent to the upper irrigation control section 51 and the reference coverage setting section 45.
  • the reference coverage setting unit 45 sets the coverage E at the reference time as the reference coverage ST.
  • the above reference time is the time period immediately after sunrise. Furthermore, as described above, the imaging unit Ca acquires the captured image V at predetermined time intervals. That is, the imaging unit Ca acquires captured images V at a plurality of times in the time period immediately after sunrise. Thereby, a plurality of captured images V in the time period immediately after sunrise are acquired by the imaging unit Ca.
  • the coverage calculation unit 44 calculates a plurality of coverage ratios E based on a plurality of captured images V acquired in a time period immediately after sunrise. Then, the standard coverage setting unit 45 sets the 90th percentile value of the plurality of coverages E as the standard coverage ST.
  • the standard coverage rate setting unit 45 may be configured to set a value other than the 90th percentile value of the plurality of coverage rates E as the standard coverage rate ST.
  • the standard coverage setting unit 45 may be configured to set the maximum value of the plurality of coverages E as the standard coverage ST.
  • the standard coverage setting unit 45 may be configured to set the average value of the plurality of coverages E as the standard coverage ST.
  • the standard coverage ST set by the standard coverage setting section 45 is sent to the standard calculation section 46.
  • the administrator can input the wilting coefficient via the input device 2.
  • the wilting coefficient is a coefficient corresponding to the degree of wilting of the target leaf P1.
  • the wilting coefficient input to the input device 2 is sent to the wilting coefficient setting section 47. Then, the wilting coefficient setting unit 47 sets the wilting coefficient according to the contents input by the administrator. The set wilting coefficient is sent to the reference calculation section 46.
  • the reference calculation unit 46 calculates the irrigation reference value TH based on the reference coverage ST received from the reference coverage setting unit 45 and the wilting coefficient received from the wilting coefficient setting unit 47. More specifically, the reference calculation unit 46 calculates the irrigation reference value TH by multiplying the reference coverage ST by the wilting coefficient. The calculated irrigation reference value TH is sent to the upper irrigation control unit 51.
  • the upper irrigation control unit 51 When the upper irrigation control unit 51 is in the first irrigation mode, the upper irrigation control unit 51 performs the following irrigation based on the coverage E received from the coverage calculation unit 44 and the irrigation reference value TH received from the reference calculation unit 46. , it is determined whether the coverage rate E is less than the irrigation reference value TH. Then, when the coverage E is less than the irrigation reference value TH, the upper irrigation control section 51 causes the upper irrigation mechanism D1 to perform irrigation.
  • the irrigation control unit 41 can cause the upper irrigation mechanism D1 to perform irrigation in response to the coverage E falling below the predetermined irrigation reference value TH.
  • the coverage E basically changes as follows. That is, first, the wilting of the leaf P1 progresses with the passage of time. As a result, the coverage E decreases over time.
  • the timing at which the upper irrigation mechanism D1 performs irrigation under the control of the upper irrigation control unit 51 is indicated by an upward arrow.
  • irrigation is performed at each of time t1, time t2, time t3, time t4, and time t5.
  • the upper irrigation control unit 51 causes the upper irrigation mechanism D1 to perform additional irrigation. As a result, the coverage rate E exceeds the irrigation reference value TH.
  • the upper irrigation processing section 42 has an upper schedule setting section 57.
  • the administrator can input, via the input device 2, the schedule (time) of irrigation by the upper irrigation mechanism D1.
  • the schedule input into the input device 2 is sent to the upper irrigation processing section 42.
  • the upper schedule setting unit 57 sets a schedule for irrigation by the upper irrigation mechanism D1 according to the schedule.
  • Information indicating the schedule thus set is sent from the upper schedule setting section 57 to the upper irrigation control section 51.
  • the upper irrigation control unit 51 causes the upper irrigation mechanism D1 to perform irrigation based on the information.
  • the upper irrigation control unit 51 causes the upper irrigation mechanism D1 to perform irrigation in response to the current time being included in the set schedule.
  • the lower irrigation processing section 43 has a lower schedule setting section 58.
  • the administrator can input the schedule (time) of irrigation by the lower irrigation mechanism D2 via the input device 2.
  • the schedule input into the input device 2 is sent to the lower irrigation processing section 43.
  • the lower schedule setting unit 58 sets a schedule for irrigation by the lower irrigation mechanism D2 according to the schedule.
  • Information indicating the schedule thus set is sent from the lower schedule setting section 58 to the lower irrigation control section 52.
  • the lower irrigation control unit 52 causes the lower irrigation mechanism D2 to perform irrigation based on the information.
  • the lower irrigation control unit 52 causes the lower irrigation mechanism D2 to perform irrigation in response to the current time being included in the set schedule.
  • the irrigation schedule set by the upper schedule setting section 57 and the lower schedule setting section 58 may include only one time of day, or may include multiple times of the day. That is, the number of times that irrigation can be performed in the second irrigation mode may be only once a day, or may be multiple times.
  • the horticultural facility 10 includes an upper concentration adjustment device 17.
  • the upper concentration adjustment device 17 stores the nutrient solution.
  • the upper concentration adjustment device 17 is configured to be able to adjust the liquid fertilizer concentration of the stored nutrient solution.
  • the upper concentration adjustment device 17 supplies the nutrient solution with the adjusted liquid fertilizer concentration to the upper irrigation mechanism D1.
  • the upper irrigation mechanism D1 performs irrigation using the nutrient solution.
  • the upper concentration adjusting device 17 is configured to be able to supply nutrient solutions with different liquid fertilizer concentrations for each of the above-mentioned "lines.”
  • the horticultural facility 10 is equipped with a lower concentration adjustment device 18.
  • the lower concentration adjustment device 18 stores the nutrient solution. Further, the lower concentration adjustment device 18 is configured to be able to adjust the liquid fertilizer concentration of the stored nutrient solution. The lower concentration adjustment device 18 then supplies the nutrient solution with the adjusted liquid fertilizer concentration to the lower irrigation mechanism D2. The lower irrigation mechanism D2 performs irrigation using the nutrient solution.
  • the lower concentration adjusting device 18 is configured to be able to supply a nutrient solution with a different liquid fertilizer concentration for each of the above-mentioned "lines".
  • the management computer 4 includes a density setting section 48.
  • the density setting section 48 has an upper density setting section 59 and a lower density setting section 60.
  • the concentration setting unit 48 is configured to be able to display the concentration setting screen shown in FIG. 9 on the display 3.
  • the concentration setting screen includes a first concentration display section 61, a second concentration display section 62, a third concentration display section 63, and a fourth concentration display section 64.
  • the first concentration display section 61 and the second concentration display section 62 are located at the top of the concentration setting screen.
  • the third concentration display section 63 and the fourth concentration display section 64 are located at the bottom of the concentration setting screen.
  • the first concentration display section 61 and the second concentration display section 62 are located above the third concentration display section 63 and the fourth concentration display section 64.
  • the first concentration display section 61 displays the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from “line 1" to "line 6" in the upper irrigation mechanism D1, and Accepts input for setting liquid fertilizer concentration.
  • the administrator inputs a setting operation to the first concentration display section 61 via the input device 2, thereby setting each of the six lines from “Line 1" to "Line 6" in the upper irrigation mechanism D1. You can set the liquid fertilizer concentration of each nutrient solution supplied to the tank.
  • a density setting signal is sent.
  • the upper concentration adjustment device 17 adjusts the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from "line 1" to "line 6" in the upper irrigation mechanism D1 according to the concentration setting signal. adjust.
  • the second concentration display section 62 displays the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from “line 1" to "line 6" in the lower irrigation mechanism D2, and also Accepts input for setting liquid fertilizer concentration.
  • the administrator can set each of the six lines from “Line 1" to "Line 6" in the lower irrigation mechanism D2. You can set the liquid fertilizer concentration of each nutrient solution supplied to the tank.
  • a density setting signal is sent.
  • the lower concentration adjustment device 18 adjusts the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from "line 1" to "line 6" in the lower irrigation mechanism D2 according to the concentration setting signal. adjust.
  • the third concentration display section 63 displays the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from “line 7" to "line 12" in the upper irrigation mechanism D1, and Accepts input for setting liquid fertilizer concentration.
  • the administrator inputs setting operations to the third concentration display section 63 via the input device 2, thereby setting each of the six lines from “line 7" to "line 12" in the upper irrigation mechanism D1. You can set the liquid fertilizer concentration of each nutrient solution supplied to the tank.
  • a density setting signal is sent.
  • the upper concentration adjustment device 17 adjusts the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from "line 7" to "line 12" in the upper irrigation mechanism D1 according to the concentration setting signal. adjust.
  • the fourth concentration display section 64 displays the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from “line 7" to "line 12" in the lower irrigation mechanism D2, and Accepts input for setting liquid fertilizer concentration.
  • the administrator inputs a setting operation to the fourth concentration display section 64 via the input device 2, thereby setting each of the six lines from “line 7" to "line 12" in the lower irrigation mechanism D2. You can set the liquid fertilizer concentration of each nutrient solution supplied to the tank.
  • a density setting signal is sent.
  • the lower concentration adjustment device 18 adjusts the liquid fertilizer concentration of each nutrient solution supplied to each of the six lines from "line 7" to "line 12" in the lower irrigation mechanism D2 according to the concentration setting signal. adjust.
  • the concentration setting unit 48 can independently set the liquid fertilizer concentration of the nutrient solution supplied by the upper irrigation mechanism D1 and the liquid fertilizer concentration of the nutrient solution supplied by the lower irrigation mechanism D2. That is, the irrigation control system S includes a concentration setting unit 48 that can individually set the liquid fertilizer concentration of the nutrient solution supplied by the upper irrigation mechanism D1 and the liquid fertilizer concentration of the nutrient solution supplied by the lower irrigation mechanism D2. It is equipped with
  • irrigation control is performed according to the difference in characteristics between the upper irrigation mechanism D1 and the lower irrigation mechanism D2. Easy to do. As a result, irrigation from the upper and lower sides of the roots P2 of the cultivated plant P can be easily controlled.
  • the leaves of the cultivated plant P Control can be realized such that when P1 wilts, the upper irrigation mechanism D1 performs irrigation.
  • the control mode of the upper irrigation control section 51 may not be switchable.
  • the control mode of the lower irrigation control section 52 may not be switchable.
  • the imaging unit Ca may not be provided.
  • the density setting section 48 may not be provided.
  • the membrane member 21 may not be provided.
  • the upper irrigation mechanism D1 may be divided into any number of lines, or may be composed of a single line.
  • the lower irrigation mechanism D2 may be divided into any number of lines, or may be composed of a single line.
  • the irrigation control system S1 in this embodiment includes an input device 102 and a management computer 104.
  • the input device 102 is not particularly limited, but may be, for example, a keyboard, a mouse, or the like.
  • the horticultural facility 10 is included in the irrigation control system S1.
  • the irrigation control system S1 includes an imaging unit Ca that images the leaves P1 of the cultivated plants P.
  • the gardening facility 10 has an irrigation system 111.
  • the irrigation device 111 includes, for example, a irrigation tube.
  • the irrigation device 111 is configured to be able to irrigate the cultivated plants P.
  • "irrigation" means supplying a nutrient solution.
  • the nutrient solution may be a liquid in which fertilizer or the like is dissolved in water, or may be simply water.
  • the management computer 104 includes an irrigation instruction section 141, a coverage calculation section 144 (corresponding to the "tension index value calculation section” according to the present invention), and a reference coverage ratio setting section 145 (corresponding to the "tension index value calculation section” according to the present invention). a reference index value setting section), a reference calculation section 146, and a wilting coefficient setting section 147.
  • the captured images V (see FIG. 11) acquired by the imaging unit Ca at predetermined time intervals are sent to the coverage calculation unit 144.
  • the coverage calculation unit 144 calculates the coverage E over time based on the received captured images V.
  • the coverage E is the ratio of the area occupied by the leaf P1 in the measurement area B (see FIG. 11), which is the area where the leaf P1 is shown in the captured image V. Moreover, the coverage E is a value indicating the degree of tension of the leaf P1. That is, the coverage E corresponds to the "tension index value" according to the present invention.
  • the coverage calculation unit 144 determines the areas of branches, leaves, and stems in the captured image V based on the color information of the captured image V, etc. This area is determined as a flourishing area of cultivated plants P, that is, a covered area.
  • the determination of areas of branches, leaves, and stems may be performed based on RGB data, or may be performed based on YUV data. However, in this embodiment, in order to cope with changes in brightness due to changes in weather and time of day, it is desirable that the determination of areas of branches, leaves, and stems be performed based on YUV data.
  • the range in which the cultivated plant P is located in the captured image V is set.
  • the area surrounded by four sides is set as the area in which the branches and leaves of the cultivated plant P are photographed, and the area surrounded by these four sides is set as measurement area B, and the area of measurement area B is Bs is calculated.
  • the area Bs can be calculated by counting the number of dots (the minimum unit of pixels in the captured image V) in the measurement area B in the captured image V.
  • the leaf area B1 can be calculated by counting the number of dots in the covered area. Then, the ratio of the leaf area B1 to the area Bs is calculated as the coverage rate E using the following formula.
  • the area Bs of the measurement area B is fixed at the area Bs before the leaf P1 starts to wilt, even if the leaf P1 wilts over time and the area where the branches and leaves are shown gradually narrows. is desirable.
  • the area Bs is fixed as the area Bs calculated based on the first captured image V among the plurality of captured images V acquired over time, and the leaf area B1 increases over time. It is desirable to have a configuration in which the
  • the irrigation control system S1 includes the coverage calculation unit 144 that calculates the coverage E, which is a value indicating the degree of tension of the leaf P1, based on the captured image V acquired by the imaging unit Ca.
  • the coverage rate E calculated over time by the coverage rate calculation unit 144 is sent to the irrigation instruction unit 141 and the reference coverage rate setting unit 145.
  • the reference coverage rate setting unit 145 sets the coverage rate E at the reference time as the reference coverage rate ST (corresponding to the "reference index value" according to the present invention).
  • the irrigation control system S1 is equipped with a reference coverage rate setting unit 145 that sets the coverage rate E at the reference time as the reference coverage rate ST.
  • the above reference time is the time period immediately after sunrise. Furthermore, as described above, the imaging unit Ca acquires the captured image V at predetermined time intervals. That is, the imaging unit Ca acquires captured images V at a plurality of times in the time period immediately after sunrise. Thereby, a plurality of captured images V in the time period immediately after sunrise are acquired by the imaging unit Ca.
  • the coverage calculation unit 144 calculates a plurality of coverage ratios E based on a plurality of captured images V acquired in a time period immediately after sunrise. Then, the standard coverage setting unit 145 sets the 90th percentile value of the plurality of coverages E as the standard coverage ST.
  • the standard coverage rate setting unit 145 may be configured to set a value other than the 90th percentile value of the plurality of coverage rates E as the standard coverage rate ST.
  • the standard coverage rate setting unit 145 may be configured to set the maximum value of the plurality of coverage rates E as the standard coverage rate ST.
  • the standard coverage setting unit 145 may be configured to set the average value of the plurality of coverages E as the standard coverage ST.
  • the standard coverage ST set by the standard coverage setting section 145 is sent to the standard calculation section 146.
  • the administrator can input the wilting coefficient via the input device 102.
  • the wilting coefficient is a coefficient corresponding to the degree of wilting of the target leaf P1.
  • the wilting coefficient input to the input device 102 is sent to the wilting coefficient setting section 147. Then, the wilting coefficient setting unit 147 sets the wilting coefficient according to the contents input by the administrator. The set wilting coefficient is sent to the reference calculation unit 146.
  • the reference calculation unit 146 calculates the irrigation reference value TH based on the reference coverage ST received from the reference coverage setting unit 145 and the wilting coefficient received from the wilting coefficient setting unit 147. More specifically, the reference calculation unit 146 calculates the irrigation reference value TH by multiplying the reference coverage ST by the wilting coefficient. The calculated irrigation reference value TH is sent to the irrigation instruction section 141.
  • the irrigation control system S1 includes the reference calculation unit 146 that calculates the irrigation reference value TH based on the reference coverage ST.
  • the irrigation instruction unit 141 determines whether the coverage E is below the irrigation reference value TH based on the coverage E received from the coverage calculation unit 144 and the irrigation reference value TH received from the reference calculation unit 146. Determine. Then, when the coverage E is less than the irrigation reference value TH, the irrigation instruction section 141 outputs an irrigation instruction signal to the irrigation device 111.
  • the irrigation control system S1 includes the irrigation instruction section 141 that outputs an irrigation instruction signal when the coverage E falls below the irrigation reference value TH.
  • the irrigation instruction section 141 After the irrigation instruction signal is output by the irrigation instruction section 141, if the coverage E does not exceed the irrigation reference value TH, the irrigation instruction section 141 additionally outputs an irrigation instruction signal to the irrigation device 111.
  • the irrigation device 111 performs irrigation in response to the irrigation instruction signal received from the irrigation instruction unit 141.
  • the coverage E basically changes as follows. That is, first, the wilting of the leaf P1 progresses with the passage of time. As a result, the coverage E decreases over time.
  • the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow.
  • the irrigation instruction signal is output at each of time t1, time t2, time t3, time t4, and time t5.
  • the irrigation instruction unit 141 outputs an irrigation instruction signal. As a result of this irrigation, the coverage E exceeds the irrigation reference value TH.
  • the irrigation instruction section 141 additionally outputs an irrigation instruction signal.
  • the coverage E exceeds the irrigation reference value TH.
  • each element such as the irrigation instruction unit 141 included in the management computer 104 may be a functional unit in software, or may be configured by a physical device such as a microcomputer. .
  • the irrigation reference value TH calculated based on the state of the cultivated plants P before the cultivation management work becomes a value that is too low after the cultivation management work.
  • the irrigation reference value TH is configured to be recalculated when the coverage rate E suddenly changes. Below, recalculation of the irrigation reference value TH will be explained.
  • the management computer 104 includes a calculation processing section 142 and a correction section 143.
  • the calculation processing section 142 includes an upper judgment value determination section 151 and a lower judgment value determination section 152.
  • the modification unit 143 is configured to modify the reference coverage ST when a predetermined condition, which will be described later, is satisfied. That is, the irrigation control system S1 includes a correction unit 143 that corrects the standard coverage ST when a predetermined condition is satisfied.
  • the upper judgment value determination unit 151 and the lower judgment value determination unit 152 are both a determination value determination unit G.
  • the determination value determination unit G is configured to determine the determination value J.
  • the determination value J is a value related to correction of the reference coverage ST.
  • the irrigation control system S1 includes the determination value determination unit G that determines the determination value J regarding the correction of the standard coverage ST. More specifically, the irrigation control system S1 includes an upper judgment value determining section 151 that is a judgment value determining section G, and a lower judgment value determining section 152 that is a judgment value determining section G.
  • the calculation processing section 142 includes an upper time calculation section 153 and a lower time calculation section 154.
  • the upper time calculation section 153 and the lower time calculation section 154 are both a time calculation section K.
  • the time calculation unit K calculates the total time during which the coverage rate E exceeds the judgment value J from the first time point to the second time point, or the total time period during which the coverage rate E exceeds the judgment value J from the first time point to the second time point. is configured to calculate the total amount of time during which is less than the determination value J.
  • the second time point is the current time.
  • the first time point is a predetermined time point before the second time point.
  • the length of this "predetermined time” is not particularly limited.
  • the first time point may be 15 minutes or 10 minutes before the second time point.
  • the irrigation control system S1 calculates the total amount of time during which the coverage rate E exceeds the determination value J from the first time point to the second time point, or the amount of time from the first time point to the second time point.
  • the apparatus includes a time calculation section K that calculates the total time during which the coverage E is less than the determination value J. More specifically, the irrigation control system S1 includes an upper time calculation section 153 that is a time calculation section K, and a lower time calculation section 154 that is a time calculation section K.
  • the upper judgment value determining unit 151 acquires the standard coverage ST from the standard coverage setting unit 145.
  • the upper judgment value determination unit 151 determines the upper judgment value J1 (see FIG. 13) based on the reference coverage ST.
  • the upper judgment value determination unit 151 may determine, for example, a value 1.02 times the reference coverage ST as the upper judgment value J1.
  • the upper judgment value J1 is a value related to correction of the standard coverage ST. That is, the upper judgment value J1 is the judgment value J.
  • the upper judgment value determination unit 151 determines the upper judgment value J1, which is the judgment value J, based on the reference coverage ST.
  • the upper judgment value determination unit 151 sends the determined upper judgment value J1 to the upper time calculation unit 153. Further, the coverage E calculated over time by the coverage calculation unit 144 is sent to the calculation processing unit 142. The upper time calculation unit 153 calculates the upper state time over time based on the upper judgment value J1 and the coverage rate E. The upper state time is the total time during which the coverage E exceeds the upper judgment value J1 from the first time point to the second time point.
  • the upper time calculation unit 153 calculates the upper state time, which is the total time during which the coverage E exceeds the upper judgment value J1 from the first time point to the second time point.
  • the correction unit 143 has a correction determination unit 155 and a correction execution unit 156.
  • the upper state time calculated by the upper state time calculation unit 153 is sent to the correction determination unit 155.
  • the correction determination unit 155 determines whether or not to correct the reference coverage rate ST based on the upper state time.
  • the modification determination unit 155 stores the determination time TA (see FIG. 13).
  • the determination time TA is the length from the first time point to the second time point.
  • the modification determination unit 155 determines whether the ratio of the upward state time to the determination time TA is equal to or greater than a predetermined ratio. Then, when the ratio of the upward state time to the determination time TA is equal to or greater than a predetermined ratio, the modification determination unit 155 determines to modify the reference coverage ST.
  • this "predetermined percentage” is 60% in this embodiment. However, the present invention is not limited to this, and this "predetermined percentage” may be any percentage other than 60%.
  • the modification unit 143 determines to modify the standard coverage ST when the ratio of the upward state time to the determination time TA, which is the length from the first time point to the second time point, is equal to or greater than a predetermined ratio. . That is, the modification unit 143 determines whether or not to modify the reference coverage ST based on the upper state time.
  • the length of the judgment time TA is not particularly limited.
  • the length of the judgment time TA may be 15 minutes or 10 minutes.
  • the length of the judgment time TA corresponds to the length of the "predetermined time" described above.
  • the modification determination unit 155 determines to modify the standard coverage ST
  • the modification determination unit 155 sends a modification instruction signal to the modification execution unit 156, as shown in FIG.
  • the modification executing section 156 modifies the standard coverage ST set by the standard coverage setting section 145.
  • the modification execution unit 156 modifies the standard coverage ST based on the coverage E from the first time point to the second time point.
  • the modification execution unit 156 may modify the standard coverage ST by replacing the standard coverage ST with the 90th percentile value of the coverage E from the first time point to the second time point.
  • the corrected standard coverage ST is sent from the standard coverage setting section 145 to the standard calculation section 146.
  • the standard calculation unit 146 recalculates the irrigation reference value TH based on the corrected standard coverage rate ST. More specifically, the reference calculation unit 146 recalculates the irrigation reference value TH by multiplying the corrected reference coverage ST by the wilting coefficient.
  • the standard calculation unit 146 recalculates the irrigation reference value TH based on the corrected standard coverage rate ST.
  • the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow.
  • cultivation management work is performed at time t12, resulting in a rapid increase in coverage E.
  • time t13 corresponds to the above-mentioned "first time point” and time t14 corresponds to the above-mentioned "second time point”.
  • the modification determination unit 155 determines to modify the reference coverage ST.
  • the modification execution unit 156 modifies the standard coverage ST.
  • the reference coverage ST increases at time t14.
  • the corrected reference coverage ST is sent to the reference calculation unit 146.
  • the reference calculation unit 146 recalculates the irrigation reference value TH based on the corrected reference coverage ST. As a result, the irrigation reference value TH increases at time t14.
  • the upper state time may include not only the time in which the coverage ratio E is greater than the upper determination value J1, but also the time in which the coverage ratio E matches the upper determination value J1.
  • the coverage rate E may be larger than the upper judgment value J1, or even if the coverage rate E is equal to the upper judgment value J1. good.
  • the lower judgment value determination unit 152 acquires the irrigation reference value TH from the reference calculation unit 146.
  • the lower judgment value determination unit 152 determines the lower judgment value J2 (see FIG. 14) based on the irrigation reference value TH.
  • the lower determination value determination unit 152 may determine, for example, a value 1.02 times the irrigation reference value TH as the lower determination value J2.
  • the lower judgment value J2 is a value related to correction of the standard coverage ST. That is, the lower judgment value J2 is the judgment value J.
  • the lower judgment value determination unit 152 determines the lower judgment value J2, which is the judgment value J, based on the irrigation reference value TH.
  • the lower judgment value determination unit 152 sends the determined lower judgment value J2 to the lower time calculation unit 154. Further, the coverage E calculated over time by the coverage calculation unit 144 is sent to the calculation processing unit 142.
  • the downward time calculation unit 154 calculates the downward state time over time based on the downward determination value J2 and the coverage rate E.
  • the downward state time is the total amount of time during which the coverage rate E is below the downward determination value J2 from the first time point to the second time point.
  • the lower time calculation unit 154 calculates the lower state time, which is the total time during which the coverage rate E is lower than the lower judgment value J2 from the first time point to the second time point.
  • the downward state time calculated by the downward time calculating section 154 is sent to the modification determining section 155.
  • the modification determining unit 155 determines whether or not to modify the reference coverage ST based on the downward state time.
  • the modification determination unit 155 determines whether the ratio of the downward state time to the determination time TA (see FIG. 14) is equal to or greater than a predetermined ratio. Then, when the ratio of the downward state time to the determination time TA is equal to or greater than a predetermined ratio, the modification determination unit 155 determines to modify the reference coverage ST.
  • this "predetermined percentage” is 60% in this embodiment. However, the present invention is not limited to this, and this "predetermined percentage” may be any percentage other than 60%.
  • the modification unit 143 determines to modify the standard coverage ST when the ratio of the downward state time to the determination time TA, which is the length from the first time point to the second time point, is equal to or greater than a predetermined ratio. . That is, the modification unit 143 determines whether or not to modify the reference coverage ST based on the downward state time.
  • the length of the determination time TA when determining whether or not to modify the standard coverage ST based on the upper state time, and the length of the determination time TA when determining whether or not to modify the reference coverage ST based on the lower state time may be the same or different.
  • the length of the determination time TA when determining whether or not to modify the standard coverage ST based on the upper state time and the length of the determination time TA when determining whether or not to modify the reference coverage ST based on the lower state time.
  • the administrator may be able to set the length of the determination time TA in .
  • the processing after the modification determination unit 155 determines to modify the reference coverage ST is as described above.
  • the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow.
  • cultivation management work is performed at time t22, resulting in a sudden decrease in coverage E.
  • the coverage E is below the irrigation standard value TH.
  • the irrigation instruction signal is output by the irrigation instruction section 141 at time t22.
  • time t22 corresponds to the above-mentioned "first time point” and time t23 corresponds to the above-mentioned "second time point”.
  • the modification determination unit 155 determines to modify the reference coverage ST.
  • the modification execution unit 156 modifies the standard coverage ST.
  • the reference coverage ST decreases at time t23.
  • the corrected reference coverage ST is sent to the reference calculation unit 146.
  • the reference calculation unit 146 recalculates the irrigation reference value TH based on the corrected reference coverage ST.
  • the irrigation reference value TH decreases at time t23.
  • the lower state time may include not only the time when the coverage rate E is smaller than the lower judgment value J2, but also the time when the coverage rate E is equal to the lower judgment value J2.
  • the modification determination unit 155 calculates the reference coverage ST based on the upper state time which is the calculation result by the upper time calculation unit 153 and the lower state time which is the calculation result by the lower time calculation unit 154. Decide whether to modify or not. That is, the modification unit 143 determines whether or not to modify the reference coverage ST based on the calculation result by the time calculation unit K.
  • predetermined conditions include the condition that "the ratio of the upward state time to the determination time TA is at least a predetermined ratio” and the condition that "the ratio of the downward state time to the determination time TA is more than a predetermined ratio” This is the condition. If the ratio of the upper state time to the determination time TA is less than the predetermined ratio, and the ratio of the lower state time to the determination time TA is less than the predetermined ratio, the modification determination unit 155 does not modify the reference coverage ST at this time. decide.
  • the first time point may be the time point when the irrigation instruction signal is output by the irrigation instruction section 141.
  • a time point after the determination time TA from the first time point may be determined as the second time point. That is, the second time point does not have to be the current time.
  • the first time point may be the time point when the irrigation instruction signal is output by the irrigation instruction section 141.
  • a time point after the determination time TA from the first time point may be determined as the second time point. That is, the second time point does not have to be the current time.
  • not only the upper judgment value J1 but also the lower judgment value J2 may be determined. Furthermore, in the example shown in FIG. 14, not only the lower determination value J2 but also the upper determination value J1 may be determined.
  • the management computer 104 includes an interval setting section 148.
  • the administrator can input the repeated irrigation interval (corresponding to the "time interval" according to the present invention) via the input device 102.
  • the repeated irrigation interval input into the input device 102 is sent to the interval setting section 148. Then, the interval setting unit 148 sets the repeated irrigation interval according to the contents input by the administrator. The set repeated irrigation interval is sent to the irrigation instruction section 141.
  • the irrigation instruction unit 141 does not output the next irrigation instruction signal until the repeated irrigation interval has elapsed from the time the irrigation instruction signal was output. That is, the irrigation instruction section 141 is configured not to output the next irrigation instruction signal until a predetermined repeated irrigation interval has elapsed from the time the irrigation instruction signal was output.
  • the coverage rate E is plotted every minute. Further, in FIG. 15, the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow. Further, at 10:14, the standard coverage ST is revised and the irrigation standard value TH is recalculated.
  • the above-mentioned lower judgment value J2 matches the irrigation reference value TH. Further, it is assumed that the above-mentioned determination time TA is 15 minutes (time for 15 plots). Moreover, the repeated irrigation interval is set to 15 minutes.
  • the coverage rate E is lower than the lower judgment value before recalculation of the irrigation reference value TH. It is in a state where it is below J2. At this time, even at exactly 10 o'clock, the coverage rate E is below the lower judgment value J2. Therefore, at the time of 10:14, the downward time calculation unit 154 calculates the downward state time to be 13 minutes.
  • the modification determination unit 155 determines to modify the reference coverage ST.
  • the modification execution unit 156 modifies the reference coverage ST.
  • the reference coverage ST decreases at 10:14.
  • the corrected reference coverage ST is sent to the reference calculation unit 146.
  • the reference calculation unit 146 recalculates the irrigation reference value TH based on the corrected reference coverage ST. As a result, the irrigation reference value TH decreases at 10:14.
  • the repeated irrigation interval is set to 15 minutes. Therefore, the irrigation instruction unit 141 does not output the next irrigation instruction signal until 15 minutes have passed from exactly 10 o'clock, which is the time when the irrigation instruction signal was output. Therefore, for example, although the coverage rate E is below the irrigation reference value TH at 10:01, the irrigation instruction section 141 does not output an irrigation instruction signal.
  • the coverage rate E for each minute is plotted. Further, in FIG. 16, the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow.
  • the above-mentioned lower judgment value J2 matches the irrigation reference value TH. Further, it is assumed that the above-mentioned determination time TA is 15 minutes (time for 15 plots). Moreover, the repeated irrigation interval is set to 10 minutes. Incidentally, the transition of the coverage rate E, the reference coverage rate ST, and the irrigation reference value TH (lower judgment value J2) in FIG. 16 are the same as in FIG. 15.
  • the modification execution unit 156 modifies the reference coverage ST at 10:14. Accordingly, at 10:14, the irrigation reference value TH decreases.
  • the repeat irrigation interval is set to 10 minutes. Therefore, the irrigation instruction unit 141 does not output the next irrigation instruction signal until 10 minutes have passed since exactly 10 o'clock, when the irrigation instruction signal was output. Therefore, for example, even though the coverage rate E is below the irrigation reference value TH at 10:01, the irrigation instruction unit 141 does not output a irrigation instruction signal.
  • the irrigation instruction section 141 outputs an irrigation instruction signal.
  • the management computer 104 includes an irrigation control section 149.
  • the irrigation control section 149 includes a time limit setting section 157 and a limit number of times setting section 158.
  • the administrator can input the repeated irrigation time limit (corresponding to the "limit time” according to the present invention) and the number of repeated irrigation limits (corresponding to the "limited number of times” according to the present invention) via the input device 102. .
  • the repeated irrigation time limit and the repeated irrigation limited number of times input into the input device 102 are sent to the irrigation control unit 149. Then, the time limit setting unit 157 sets a repeated irrigation time limit according to the input contents by the administrator. Further, the limit number of times setting unit 158 sets a limit number of times of repeated irrigation according to the input contents by the administrator. The set repeated irrigation time limit and the set repeated irrigation limit number of times are sent to the irrigation instruction section 141.
  • the irrigation instruction unit 141 is configured to limit the output of the irrigation instruction signal so that the number of times the irrigation instruction signal is output within the repeated irrigation limit time is within the number of repeated irrigation limits. . That is, the irrigation instruction unit 141 limits the output of the irrigation instruction signal so that the number of times the irrigation instruction signal is output within the predetermined repeated irrigation limit time is within the predetermined number of repeated irrigation limits.
  • the coverage rate E is plotted every minute. Further, in FIG. 17, the timing at which the irrigation instruction signal is output by the irrigation instruction section 141 is indicated by an upward arrow.
  • the above-mentioned lower judgment value J2 matches the irrigation reference value TH. Further, it is assumed that the above-mentioned determination time TA is 15 minutes (time for 15 plots). Moreover, the repeated irrigation interval is set to 3 minutes. Incidentally, the transition of the coverage rate E, the reference coverage rate ST, and the irrigation reference value TH (lower judgment value J2) in FIG. 17 are the same as in FIG. 15.
  • the repeated irrigation time limit and the repeated irrigation limit number of times are set to 15 minutes and 3 times, respectively.
  • the modification execution unit 156 modifies the reference coverage ST at 10:14. Accordingly, at 10:14, the irrigation reference value TH decreases.
  • the repeated irrigation interval is set to 3 minutes. Therefore, the irrigation instruction unit 141 does not output the next irrigation instruction signal until 3 minutes have elapsed from exactly 10 o'clock when the irrigation instruction signal was output.
  • the irrigation instruction unit 141 does not output the next irrigation instruction signal from 10:04, which is the time when the irrigation instruction signal is output, until the repeated irrigation interval (3 minutes) has elapsed.
  • the irrigation instruction section 141 outputs an irrigation instruction signal.
  • the irrigation instruction signal is output at exactly 10:00, 10:04, and 10:07. That is, from exactly 10 o'clock, the irrigation instruction signal is outputted the same number of times as the repetition limit (3 times) within the repeated irrigation limit time (15 minutes). Therefore, after the third irrigation instruction signal is output at 10:07, the irrigation instruction unit 141 continues to issue the irrigation instruction until the repeated irrigation limit time (15 minutes) that has been counted since exactly 10:00 ends. No signal is output.
  • the irrigation instruction unit 141 does not issue the irrigation instruction. No signal is output. Similarly, for example, at 10:13, the irrigation instruction section 141 does not output an irrigation instruction signal.
  • the transition of the coverage rate E tends to be different from the transition before the cultivation management work.
  • the coverage rate E increases rapidly due to leaf P1 approaching the imaging unit Ca, the coverage rate E tends to remain in a higher range than the range before the cultivation management work. It is.
  • the coverage rate E suddenly decreases due to the leaf P1 moving away from the imaging unit Ca as a result of the cultivation management work, the coverage rate E will remain in a lower range than the range before the cultivation management work. I tend to do that.
  • the irrigation reference value TH is recalculated. This makes it easy to continue proper irrigation.
  • the upper judgment value determination unit 151 may determine the upper judgment value J1 to be the same value as the reference coverage rate ST.
  • the upper judgment value determination unit 151 and the upper time calculation unit 153 may not be provided.
  • the modification unit 143 may be configured to determine whether or not to modify the reference coverage ST based only on the lower state time out of the upper state time and the lower state time.
  • the modification unit 143 may be configured to determine whether or not to modify the reference coverage ST without being based on the ratio of the upper state time to the determination time TA. For example, the modification unit 143 may be configured to determine to modify the reference coverage ST when the upper state time is longer than a predetermined length.
  • the lower judgment value determining section 152 and the lower time calculating section 154 may not be provided.
  • the modification unit 143 may be configured to determine whether or not to modify the reference coverage ST based only on the upper state time out of the upper state time and the lower state time.
  • the modification unit 143 may be configured to determine whether or not to modify the reference coverage ST without being based on the ratio of the downward state time to the determination time TA. For example, the modification unit 143 may be configured to determine to modify the reference coverage ST when the downward state time is longer than a predetermined length.
  • the interval setting section 148 may not be provided. That is, the configuration may be such that the output of the irrigation instruction signal is not limited based on the repeated irrigation interval.
  • the irrigation control unit 149 may not be provided. That is, the structure may be such that the output of the irrigation instruction signal is not limited based on the repeated irrigation time limit and the repeated irrigation limited number of times.
  • the present invention can be used in an irrigation control system that provides irrigation to cultivated plants.
  • the present invention can be used in an irrigation control system that includes an imaging unit that captures images of leaves of cultivated plants.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Greenhouses (AREA)

Abstract

潅水制御システム(S)は、栽培植物の根の上側から栽培植物への潅水を行う上部潅水機構(D1)と、栽培植物の根の下側から栽培植物への潅水を行う下部潅水機構(D2)と、上部潅水機構(D1)と下部潅水機構(D2)とを個別に制御する潅水制御部(41)と、を備える。

Description

潅水制御システム
 本発明は、栽培植物への潅水を行う潅水制御システムに関する。
 また、本発明は、栽培植物の葉を撮像する撮像部を備える潅水制御システムに関する。
 上記のような潅水制御システムとして、例えば、特許文献1に記載のものが既に知られている。この潅水制御システムでは、撮影装置により取得された撮像画像に基づいて、栽培植物の葉の投影面積が算出される。
 さらに、この潅水制御システムでは、最大投影面積に対する投影面積の比である投影面積比が算出される。そして、投影面積比が給液基準値を下回った場合、栽培植物に対して潅水(特許文献1では「給液」)が実行される。
日本国特開2007-306846号公報
 [1]特許文献1に記載の潅水制御システムでは、栽培植物の根の上側からのみ潅水が行われる。特許文献1には、根の上側及び下側からの潅水を行うことについては記載されていない。
 本発明の目的は、栽培植物の根の上側及び下側からの潅水の制御が好適に行われやすい潅水制御システムを提供することである。
 [2]上述の潅水制御システムにおいて、最大投影面積は、直近の潅水以降の投影面積の最大値である。即ち、この最大投影面積は、潅水の度に更新される。
 ここで、園芸施設においては、管理者によって、つる下ろし、誘引、摘葉、収穫等の栽培管理作業が行われる。そして、栽培管理作業が行われた場合、栽培植物の姿勢や葉の位置等が変化する。このとき、投影面積比は急激に変化しやすい。
 栽培管理作業が行われた結果、投影面積比が急減した場合は、即座に投影面積比が給液基準値を下回る可能性があるものの、潅水が実行されれば、最大投影面積が更新される。更新後の最大投影面積は、栽培管理作業の後の栽培植物の状態に対応している。従って、栽培管理作業が行われた結果、投影面積比が急減した場合は、潅水制御への影響は比較的小さい。
 しかしながら、栽培管理作業が行われた結果、投影面積比が急増した場合、葉のしおれが進行し、最もしおれた状態となっても、投影面積比が給液基準値を下回らない事態が想定される。この場合、潅水が実行されないため、栽培植物が枯死してしまう可能性がある。
 本発明の目的は、栽培管理作業によって栽培植物の状態が変わった場合に適切な潅水を継続しやすい潅水制御システムを提供することである。
 [1]課題[1]に対応する解決手段は、以下の通りである。
 本発明の特徴は、栽培植物の根の上側から前記栽培植物への潅水を行う上部潅水機構と、前記栽培植物の根の下側から前記栽培植物への潅水を行う下部潅水機構と、前記上部潅水機構と前記下部潅水機構とを個別に制御する潅水制御部と、を備えることにある。
 本構成によれば、上部潅水機構と下部潅水機構とが一律に制御される構成に比べて、上部潅水機構と下部潅水機構との特性の違いに応じた潅水制御を行いやすい。その結果、栽培植物の根の上側及び下側からの潅水の制御が好適に行われやすい。
 例えば、根の下側からの潅水に比べて根の上側からの潅水に即効性がある栽培環境下では、下部潅水機構による潅水を一定時間毎に実行しながら、栽培植物の葉がしおれた際に上部潅水機構による潅水を実行するような制御を実現できる。
 即ち、本構成によれば、栽培植物の根の上側及び下側からの潅水の制御が好適に行われやすい潅水制御システムを実現できる。
 さらに、本発明において、前記栽培植物の葉を撮像する撮像部と、前記撮像部により取得された撮像画像に基づいて、前記葉の張り度合いを示す値である張り指標値を算出する張り指標値算出部と、を備え、前記潅水制御部は、前記張り指標値が所定の潅水基準値を下回ったことに応じて前記上部潅水機構に潅水を実行させることが可能であると好適である。
 本構成によれば、根の下側からの潅水に比べて根の上側からの潅水に即効性がある栽培環境下において、栽培植物の葉がしおれたことに応じて自動的に上部潅水機構による潅水を実行することが可能となる。これにより、栽培植物の葉がしおれた際に、葉の張り度合いを迅速に回復させやすい。
 さらに、本発明において、前記潅水制御部は、現在時刻が設定された時刻になったことに応じて前記下部潅水機構に潅水を実行させることが可能であると好適である。
 本構成によれば、例えば一定時間毎に下部潅水機構に潅水を実行させるように時刻を設定することにより、根の下側における養液の量を一定の範囲に維持しやすい。これにより、栽培植物へ、根の下側から安定的に養液を供給しやすい。
 さらに、本発明において、前記上部潅水機構により供給される養液の液体肥料濃度と、前記下部潅水機構により供給される養液の液体肥料濃度と、を個別に設定可能な濃度設定部を備えると好適である。
 本構成によれば、上部潅水機構により供給される養液の液体肥料濃度と、下部潅水機構により供給される養液の液体肥料濃度と、が一律に設定される構成に比べて、上部潅水機構と下部潅水機構との特性の違いに応じた各液体肥料濃度の設定を行いやすい。その結果、栽培植物の根の上側及び下側からの肥料の供給が好適に行われやすい。
 さらに、本発明において、前記栽培植物の根は、養液が透過可能な膜状部材の上面に接しており、前記下部潅水機構は、前記膜状部材の下面への潅水を行うことにより、前記膜状部材を介して前記栽培植物への潅水を行うように構成されており、前記膜状部材は、前記栽培植物の根による前記膜状部材を介した養液の吸収を制限するように構成されていると好適である。
 本構成によれば、根による下部潅水機構からの養液の吸収が制限される。これにより、下部潅水機構から供給される養液の吸収が制限され、且つ、上部潅水機構から供給される養液の吸収が制限されない構成を実現できる。そのため、下部潅水機構と上部潅水機構との養液の吸収されやすさの違いに応じた潅水制御を行うことができる。その結果、栽培植物の根の上側及び下側からのそれぞれの潅水が好適に行われやすい。
 [2]課題[2]に対応する解決手段は、以下の通りである。
 本発明の特徴は、栽培植物の葉を撮像する撮像部と、前記撮像部により取得された撮像画像に基づいて、前記葉の張り度合いを示す値である張り指標値を算出する張り指標値算出部と、基準時における前記張り指標値を基準指標値として設定する基準指標値設定部と、前記基準指標値に基づいて潅水基準値を算出する基準算出部と、前記張り指標値が前記潅水基準値を下回った場合に潅水指示信号を出力する潅水指示部と、所定の条件が満たされた場合に前記基準指標値を修正する修正部と、を備え、前記修正部によって前記基準指標値が修正された場合、前記基準算出部は、修正後の前記基準指標値に基づいて前記潅水基準値を再算出する潅水制御システムであって、前記基準指標値の修正に関する判定値を決定する判定値決定部と、第1時点から第2時点までの間において前記張り指標値が前記判定値を上回った状態である時間の合計、または、前記第1時点から前記第2時点までの間において前記張り指標値が前記判定値を下回った状態である時間の合計を算出する時間算出部と、を備え、前記修正部は、前記時間算出部による算出結果に基づいて、前記基準指標値を修正するか否かを決定することにある。
 栽培管理作業によって栽培植物の状態が変わった場合における張り指標値の推移は、栽培管理作業前の推移とは異なる状態になりやすい。例えば、栽培管理作業が行われた結果、葉が撮像部に近付いたこと等によって張り指標値が急増した場合、張り指標値は、栽培管理作業前の範囲よりも高い範囲で推移しがちである。また、例えば、栽培管理作業が行われた結果、葉が撮像部から遠ざかったこと等によって張り指標値が急減した場合、張り指標値は、栽培管理作業前の範囲よりも低い範囲で推移しがちである。
 ここで、本構成によれば、張り指標値が判定値を上回った状態である時間の合計、または、張り指標値が判定値を下回った状態である時間の合計に基づいて、基準指標値を修正するか否かが決定される。そのため、張り指標値が栽培管理作業前の範囲よりも高い範囲で推移している場合、または、張り指標値が栽培管理作業前の範囲よりも低い範囲で推移している場合に、基準指標値が修正される構成を実現しやすい。そして、基準指標値が修正された場合、潅水基準値が再算出される。これにより、適切な潅水を継続しやすい。
 従って、本構成によれば、栽培管理作業によって栽培植物の状態が変わった場合に適切な潅水を継続しやすい潅水制御システムを実現できる。
 さらに、本発明において、前記第2時点は現在時刻であり、前記第1時点は前記第2時点から所定時間前の時点であると好適である。
 本構成によれば、第2時点が現在時刻よりも前の時点である構成に比べて、栽培管理作業によって栽培植物の状態が変わった場合に潅水基準値が再算出されるタイミングが早くなりやすい。
 例えば、第1時点から第2時点までの所定時間における張り指標値の推移に基づいて基準指標値を修正するか否かを決定する構成において、第2時点が現在時刻から5分前の時点である場合、第1時点(例えば11時10分)から第2時点(例えば11時20分)までの間に張り指標値が栽培管理作業前の範囲よりも高い範囲または低い範囲で推移しても、第2時点から5分経過するまで(例えば11時25分になるまで)、基準指標値の修正は決定されない。そのため、潅水基準値が再算出されるタイミングが比較的遅くなる。
 これに対して、第2時点(例えば11時20分)が現在時刻である場合、第1時点から第2時点までの間に張り指標値が栽培管理作業前の範囲よりも高い範囲または低い範囲で推移した場合、速やかに(例えば11時20分に)、基準指標値の修正を決定することができる。そのため、潅水基準値が再算出されるタイミングが比較的早くなる。
 これにより、本構成によれば、栽培管理作業による栽培植物の状態の変化に迅速に対応可能な潅水制御システムを実現できる。
 さらに、本発明において、前記判定値決定部である上方判定値決定部と、前記時間算出部である上方時間算出部と、を備え、前記上方判定値決定部は、前記基準指標値に基づいて、前記判定値である上方判定値を決定し、前記上方時間算出部は、前記第1時点から前記第2時点までの間において前記張り指標値が前記上方判定値を上回った状態である時間の合計である上方状態時間を算出し、前記修正部は、前記上方状態時間に基づいて、前記基準指標値を修正するか否かを決定すると好適である。
 本構成によれば、第1時点から第2時点までの間に張り指標値が栽培管理作業前の範囲よりも高い範囲で推移した場合に、基準指標値が修正される構成を実現しやすい。そして、基準指標値が修正された場合、潅水基準値が再算出される。これにより、栽培管理作業が行われた結果、例えば葉が撮像部に近付いたこと等によって張り指標値が急増した場合に、適切な潅水を継続しやすい。
 さらに、本発明において、前記修正部は、前記第1時点から前記第2時点までの長さである判定時間に対する前記上方状態時間の割合が所定割合以上である場合、前記基準指標値を修正することを決定すると好適である。
 本構成によれば、第1時点から第2時点までの間に張り指標値が栽培管理作業前の範囲よりも高い範囲で推移した場合に、基準指標値が確実に修正されやすい。これにより、栽培管理作業が行われた結果、例えば葉が撮像部に近付いたこと等によって張り指標値が急増した場合に、適切な潅水を確実に継続しやすい。
 さらに、本発明において、前記判定値決定部である下方判定値決定部と、前記時間算出部である下方時間算出部と、を備え、前記下方判定値決定部は、前記潅水基準値に基づいて、前記判定値である下方判定値を決定し、前記下方時間算出部は、前記第1時点から前記第2時点までの間において前記張り指標値が前記下方判定値を下回った状態である時間の合計である下方状態時間を算出し、前記修正部は、前記下方状態時間に基づいて、前記基準指標値を修正するか否かを決定すると好適である。
 本構成によれば、第1時点から第2時点までの間に張り指標値が栽培管理作業前の範囲よりも低い範囲で推移した場合に、基準指標値が修正される構成を実現しやすい。そして、基準指標値が修正された場合、潅水基準値が再算出される。これにより、栽培管理作業が行われた結果、例えば葉が撮像部から遠ざかったこと等によって張り指標値が急減した場合に、適切な潅水を継続しやすい。
 さらに、本発明において、前記修正部は、前記第1時点から前記第2時点までの長さである判定時間に対する前記下方状態時間の割合が所定割合以上である場合、前記基準指標値を修正することを決定すると好適である。
 本構成によれば、第1時点から第2時点までの間に張り指標値が栽培管理作業前の範囲よりも低い範囲で推移した場合に、基準指標値が確実に修正されやすい。これにより、栽培管理作業が行われた結果、例えば葉が撮像部から遠ざかったこと等によって張り指標値が急減した場合に、適切な潅水を確実に継続しやすい。
 さらに、本発明において、前記潅水指示部は、所定の制限時間内に前記潅水指示信号が出力される回数が所定の制限回数以内となるように、前記潅水指示信号の出力を制限すると好適である。
 本構成によれば、短い時間の間に比較的多くの回数の潅水が行われてしまう事態を回避できる。これにより、潅水のし過ぎを防ぐことができる。
 さらに、本発明において、前記潅水指示部は、前記潅水指示信号が出力された時点から所定の時間間隔が経過するまでの間、次の前記潅水指示信号を出力しないように構成されていると好適である。
 本構成によれば、潅水が行われた直後に再び潅水が行われてしまう事態を回避できる。これにより、潅水のし過ぎを防ぐことができる。
第1実施形態を示す図であって(以下、図9まで同じ。)、園芸施設の内部全体を示す平面図である。 園芸施設の内部全体を示す側面図である。 潅水制御システムの構成を示すブロック図である。 上部潅水チューブ及び下部潅水チューブ等の構成を示す図である。 手動潅水画面における表示内容を示す図である。 モード表示画面における表示内容を示す図である。 被覆率を示す平面図である。 被覆率の推移の一例を示す図である。 濃度設定画面における表示内容を示す図である。 第2実施形態を示す図であって(以下、図17まで同じ。)、潅水制御システムの構成を示すブロック図である。 被覆率を示す平面図である。 被覆率の推移の一例を示す図である。 栽培管理作業が行われた場合の被覆率の推移の一例を示す図である。 栽培管理作業が行われた場合の被覆率の推移の一例を示す図である。 繰り返し潅水間隔が15分である場合の潅水のタイミングを示す図である。 繰り返し潅水間隔が10分である場合の潅水のタイミングを示す図である。 繰り返し潅水制限時間及び繰り返し潅水制限回数が設定されている場合の潅水のタイミングを示す図である。
 [第1実施形態]
 以下では、図1~図9を参照しながら、本発明の第1実施形態について説明する。
 〔園芸施設の構成〕
 本発明を実施するための形態について、図面に基づき説明する。本実施形態では、図1に示されているような園芸施設10に、栽培植物P(図2参照)を植えるための畝A1~A8が縦横に並ぶ状態で設けられている。夫々の畝Aの間は栽培植物Pの管理者が通行可能な通路となっている。園芸施設10は、例えばビニールハウスであったり、太陽光利用型の植物工場であったりする。
 夫々の畝Aは、例えば無孔性親水性フィルムで構成される。そして、夫々の畝Aに、栽培植物Pとして、例えばトマトが植えられる。図1及び図2に示されるように、園芸施設10の内部のうち、栽培植物Pが植えられる畝Aの上方に、撮像部Caが天井から吊り下げられた状態で備えられている。尚、撮像部Caの設けられる個数は、一つであっても良いし、二つ以上であっても良い。
 撮像部Caは、例えばCCD素子やCMOS素子を有する定点カメラであって、肉眼で視覚可能な可視光を撮像可能なように構成される。そして、撮像部Caは、栽培植物Pの葉P1(図4参照)を、所定の時間間隔毎に撮像する。これにより、撮像部Caは、撮像画像V(図7参照)を経時的に取得する。
 図示はされていないが、他にも、園芸施設10に、環境センサ、側窓、遮光カーテン、ヒートポンプ式の空調設備等が備えられている。
 図1及び図2に示すように、撮像部Caは、畝A2の真上に設けられている。撮像部Caは、畝A2に植えられた栽培植物Pを真上から平面視で撮像する。即ち、撮像部Caは、栽培植物Pよりも上側に位置すると共に下方へ向けて俯瞰撮像を行う。
 〔潅水制御システムの構成〕
 図3に示すように、本実施形態における潅水制御システムSは、入力装置2、ディスプレイ3、管理コンピュータ4を備えている。入力装置2は、特に限定されないが、例えばキーボードやマウス等であっても良い。また、園芸施設10は、潅水制御システムSに含まれている。
 即ち、潅水制御システムSは、栽培植物Pの葉P1を撮像する撮像部Caを備えている。
 園芸施設10は、上部潅水機構D1及び下部潅水機構D2を備えている。図3に示すように、上部潅水機構D1は、上部潅水弁13を有している。また、図4に示すように、上部潅水機構D1は、上部潅水チューブ14を有している。上部潅水チューブ14は、畝Aの長手方向に沿って延びている。上部潅水チューブ14は、上部潅水チューブ14の内側を養液が通過できるように構成されている。また、上部潅水チューブ14の上部には、複数の孔14aが形成されている。各孔14aは、互いに所定間隔を空けて、上部潅水チューブ14の延びる方向に沿って一列に並んでいる。
 一つの畝Aに配置される上部潅水チューブ14の個数は、一つでも良いし、二つ以上であっても良い。本実施形態においては、一つの畝Aに配置される上部潅水チューブ14の個数は、一つである。
 上部潅水弁13は、開閉可能に構成されている。そして、上部潅水機構D1は、上部潅水弁13が開状態である間、各孔14aから養液が排出されるように構成されている。尚、上部潅水弁13が閉状態になると、各孔14aからの養液の排出は停止する。
 図4に示すように、上部潅水チューブ14は、栽培植物Pの根P2の上側に配置されている。そのため、各孔14aから排出された養液は、根P2の上側から、栽培植物Pに供給される。この構成により、上部潅水機構D1は、栽培植物Pの根P2の上側から栽培植物Pへの潅水を行う。尚、本発明において、「潅水」は、養液を供給することを意味する。また、養液は、水に肥料等が溶け込んだ液体であっても良いし、単なる水であっても良い。
 このように、潅水制御システムSは、栽培植物Pの根P2の上側から栽培植物Pへの潅水を行う上部潅水機構D1を備えている。
 図4に示すように、畝Aは、膜状部材21、揚水布22、止水シート23を含んでいる。膜状部材21は、揚水布22の上に重ねられている。止水シート23は、揚水布22の下側に位置している。根P2は、膜状部材21の上面に接している。尚、膜状部材21の上に培養土等が載せられていても良い。
 止水シート23は、養液が透過しないように構成されている。揚水布22は、例えば不織布によって構成されている。揚水布22は、揚水布22の下側に存在する養液を吸い上げるように構成されている。膜状部材21は、養液が透過可能に構成されている。膜状部材21は、例えば、無孔性親水性フィルム、特にポリビニルアルコール系フィルムであっても良い。
 即ち、栽培植物Pの根P2は、養液が透過可能な膜状部材21の上面に接している。
 図3に示すように、下部潅水機構D2は、下部潅水弁15を有している。また、図4に示すように、下部潅水機構D2は、下部潅水チューブ16を有している。下部潅水チューブ16は、畝Aの長手方向に沿って延びている。下部潅水チューブ16は、下部潅水チューブ16の内側を養液が通過できるように構成されている。また、下部潅水チューブ16の上部には、複数の孔16aが形成されている。各孔16aは、互いに所定間隔を空けて、下部潅水チューブ16の延びる方向に沿って一列に並んでいる。
 一つの畝Aに配置される下部潅水チューブ16の個数は、一つでも良いし、二つ以上であっても良い。本実施形態においては、一つの畝Aに配置される下部潅水チューブ16の個数は、二つである。
 下部潅水弁15は、開閉可能に構成されている。そして、下部潅水機構D2は、下部潅水弁15が開状態である間、各孔16aから養液が排出されるように構成されている。尚、下部潅水弁15が閉状態になると、各孔16aからの養液の排出は停止する。
 図4に示すように、下部潅水チューブ16は、揚水布22と止水シート23とに挟まれる位置に配置されている。そのため、各孔16aから排出された養液は、揚水布22によって吸い上げられ、膜状部材21の下面に供給される。根P2は、膜状部材21の下面に供給された養液を、膜状部材21を介して吸収する。この構成により、下部潅水機構D2は、栽培植物Pの根P2の下側から栽培植物Pへの潅水を行う。
 このように、潅水制御システムSは、栽培植物Pの根P2の下側から栽培植物Pへの潅水を行う下部潅水機構D2を備えている。また、下部潅水機構D2は、膜状部材21の下面への潅水を行うことにより、膜状部材21を介して栽培植物Pへの潅水を行うように構成されている。
 また、膜状部材21は、栽培植物Pの根P2による膜状部材21を介した養液の吸収を制限するように構成されている。尚、膜状部材21は、膜状部材21を介して水分を吸収することによる水分ストレスが栽培植物Pに適度に与えられる程度に、膜状部材21を介した養液の吸収を制限するように構成されていると好適である。
 〔潅水制御部〕
 図3に示すように、管理コンピュータ4は、潅水制御部41を有している。潅水制御部41は、上部潅水制御部51及び下部潅水制御部52を有している。上部潅水制御部51は、上部潅水弁13の開閉を制御することにより、上部潅水機構D1による潅水を制御する。下部潅水制御部52は、下部潅水弁15の開閉を制御することにより、下部潅水機構D2による潅水を制御する。
 この構成により、潅水制御部41は、上部潅水制御部51及び下部潅水制御部52により、上部潅水機構D1と下部潅水機構D2とを個別に制御する。即ち、潅水制御システムSは、上部潅水機構D1と下部潅水機構D2とを個別に制御する潅水制御部41を備えている。
 尚、本実施形態において管理コンピュータ4に含まれている潅水制御部41等の各要素は、ソフトウェアにおける機能部であっても良いし、マイクロコンピュータ等の物理的な装置によって構成されていても良い。
 〔手動潅水制御〕
 上部潅水制御部51及び下部潅水制御部52は、何れも、手動潅水制御を実行可能に構成されている。手動潅水制御とは、管理者(ユーザー)の手動操作に応じて潅水を行う制御である。以下では、手動潅水制御について詳述する。
 図3に示すように、管理コンピュータ4は、上部潅水処理部42を有している。上部潅水処理部42は、上部手動指示部53を含んでいる。
 また、潅水制御部41は、ディスプレイ3に、図5に示す手動潅水画面を表示させることができるように構成されている。手動潅水画面には、上部情報表示部31及び下部情報表示部32が含まれている。上部情報表示部31は、手動潅水画面の上部に位置している。下部情報表示部32は、手動潅水画面の下部に位置している。尚、上部情報表示部31は、下部情報表示部32の上方に位置している。
 上部情報表示部31は、上部潅水制御部51による手動潅水制御に関する情報を表示すると共に、上部潅水制御部51による手動潅水制御に関する設定操作入力を受け付ける。管理者は、入力装置2を介して、上部情報表示部31に設定操作入力を行うことにより、上部潅水機構D1の各ラインにおける手動潅水制御による潅水の量を設定できる。また、管理者は、入力装置2を介して、上部情報表示部31に設定操作入力を行うことにより、上部潅水機構D1の各ラインにおいて手動潅水制御が実行されるか否かを切り替えることができる。
 尚、上部潅水機構D1の「ライン」とは、上部潅水機構D1のうち、一つの上部潅水弁13によって潅水が制御される範囲を意味する。特に限定されないが、本実施形態では、上部潅水機構D1は、12個の上部潅水弁13により、12個のラインに区切られている。また、特に限定されないが、本実施形態では、12個の上部潅水弁13に対応して、12個の上部潅水制御部51が設けられている。各上部潅水制御部51は、それぞれ、対応する上部潅水弁13の開閉を制御する。尚、図3では、構成がわかりやすくなるよう、上部潅水弁13及び上部潅水制御部51を一つずつ図示している。
 入力装置2を介した上述の設定操作入力が行われた場合、当該設定操作入力の内容を示す信号が、上部潅水処理部42から各上部潅水制御部51へ送られる。各上部潅水制御部51は、手動潅水制御を実行する際、当該信号に基づいて、上部潅水機構D1の手動潅水制御を行う。
 図5に示すように、手動潅水画面には、上部潅水開始ボタン33が表示されている。管理者が、入力装置2を介して、上部潅水開始ボタン33を操作すると、図3に示すように、上部手動指示部53から各上部潅水制御部51へ、手動潅水指示信号が送られる。各上部潅水制御部51は、当該手動潅水指示信号を受け取ると、上部潅水機構D1の手動潅水制御を実行する。これにより、上部潅水機構D1によって潅水が行われる。
 また、図3に示すように、管理コンピュータ4は、下部潅水処理部43を有している。下部潅水処理部43は、下部手動指示部54を含んでいる。
 下部情報表示部32は、下部潅水制御部52による手動潅水制御に関する情報を表示すると共に、下部潅水制御部52による手動潅水制御に関する設定操作入力を受け付ける。管理者は、入力装置2を介して、下部情報表示部32に設定操作入力を行うことにより、下部潅水機構D2の各ラインにおける手動潅水制御による潅水の量を設定できる。また、管理者は、入力装置2を介して、下部情報表示部32に設定操作入力を行うことにより、下部潅水機構D2の各ラインにおいて手動潅水制御が実行されるか否かを切り替えることができる。
 尚、下部潅水機構D2の「ライン」とは、下部潅水機構D2のうち、一つの下部潅水弁15によって潅水が制御される範囲を意味する。特に限定されないが、本実施形態では、下部潅水機構D2は、12個の下部潅水弁15により、12個のラインに区切られている。また、特に限定されないが、本実施形態では、12個の下部潅水弁15に対応して、12個の下部潅水制御部52が設けられている。各下部潅水制御部52は、それぞれ、対応する下部潅水弁15の開閉を制御する。尚、図3では、構成がわかりやすくなるよう、下部潅水弁15及び下部潅水制御部52を一つずつ図示している。
 本実施形態では、図5に示すように、上部潅水機構D1及び下部潅水機構D2の各ラインには、「1」から「12」の識別番号が付与されている。互いに同一の識別番号が付与された上部潅水機構D1及び下部潅水機構D2のラインは、互いに同一のエリアで潅水を行う。例えば、上部潅水機構D1の「ライン1」によって潅水が行われるエリアは、下部潅水機構D2の「ライン1」によって潅水が行われるエリアと同一である。言い換えれば、園芸施設10内の栽培植物Pのうち、上部潅水機構D1の「ライン1」によって潅水が行われる個体(または個体群)は、下部潅水機構D2の「ライン1」によって潅水が行われる個体(または個体群)と同一である。
 入力装置2を介した上述の設定操作入力が行われた場合、当該設定操作入力の内容を示す信号が、下部潅水処理部43から各下部潅水制御部52へ送られる。各下部潅水制御部52は、手動潅水制御を実行する際、当該信号に基づいて、下部潅水機構D2の手動潅水制御を行う。
 図5に示すように、手動潅水画面には、下部潅水開始ボタン34が表示されている。管理者が、入力装置2を介して、下部潅水開始ボタン34を操作すると、図3に示すように、下部手動指示部54から各下部潅水制御部52へ、手動潅水指示信号が送られる。各下部潅水制御部52は、当該手動潅水指示信号を受け取ると、下部潅水機構D2の手動潅水制御を実行する。これにより、下部潅水機構D2によって潅水が行われる。
 図5に示すように、手動潅水画面には、中断ボタン35が表示されている。上部潅水機構D1の手動潅水制御の実行中に、管理者が、入力装置2を介して、中断ボタン35を操作すると、図3に示すように、上部手動指示部53から各上部潅水制御部51へ、中断信号が送られる。各上部潅水制御部51は、当該中断信号を受け取ると、上部潅水機構D1の手動潅水制御を中断する。これにより、上部潅水機構D1による潅水が中断される。
 また、下部潅水機構D2の手動潅水制御の実行中に、管理者が、入力装置2を介して、中断ボタン35を操作すると、図3に示すように、下部手動指示部54から各下部潅水制御部52へ、中断信号が送られる。各下部潅水制御部52は、当該中断信号を受け取ると、下部潅水機構D2の手動潅水制御を中断する。これにより、下部潅水機構D2による潅水が中断される。
 〔制御モードの切り替え〕
 潅水制御部41は、ディスプレイ3に、図6に示すモード表示画面を表示させることができるように構成されている。モード表示画面には、上部モード表示部36及び下部モード表示部37が含まれている。上部モード表示部36は、モード表示画面の上部に位置している。下部モード表示部37は、モード表示画面の下部に位置している。尚、上部モード表示部36は、下部モード表示部37の上方に位置している。
 上部モード表示部36は、各上部潅水制御部51の制御モードを表示すると共に、各上部潅水制御部51の制御モードの切替操作入力を受け付ける。管理者は、入力装置2を介して、上部モード表示部36に切替操作入力を行うことにより、各上部潅水制御部51の制御モードを切り替えることができる。
 詳述すると、図3に示すように、上部潅水処理部42は、上部モード切替部55を有している。管理者が入力装置2を介して上部モード表示部36に切替操作入力を行うと、図3に示すように、上部モード切替部55から各上部潅水制御部51へ、モード切替信号が送られる。各上部潅水制御部51の制御モードは、当該モード切替信号に従って切り替わる。
 ここで、上部潅水制御部51の制御モードは、第1潅水モードと、第2潅水モードと、第3潅水モードと、の間で切り替え可能である。第1潅水モードとは、葉P1の張り度合いに基づいて潅水を行う制御モードである。第2潅水モードとは、時刻に基づいて潅水を行う制御モードである。より具体的には、第2潅水モードにおいては、現在時刻が設定された時刻になったことに応じて潅水が実行される。第3潅水モードとは、葉P1の張り度合いに基づく潅水、及び、時刻に基づく潅水の何れも行わない制御モードである。
 尚、上部潅水制御部51の制御モードが第1潅水モード、第2潅水モード、第3潅水モードの何れであっても、上部潅水制御部51は、上述の手動潅水制御を実行可能である。上部潅水制御部51が第3潅水モードであるとき、上部潅水制御部51は、手動潅水制御による潅水以外の潅水を実行しない。
 図6における「自動潅水ON」は、制御モードが第1潅水モードであることを意味する。また、「スケジュール潅水ON」は、制御モードが第2潅水モードであることを意味する。
 下部モード表示部37は、各下部潅水制御部52の制御モードを表示すると共に、各下部潅水制御部52の制御モードの切替操作入力を受け付ける。管理者は、入力装置2を介して、下部モード表示部37に切替操作入力を行うことにより、各下部潅水制御部52の制御モードを切り替えることができる。
 詳述すると、図3に示すように、下部潅水処理部43は、下部モード切替部56を有している。管理者が入力装置2を介して下部モード表示部37に切替操作入力を行うと、図3に示すように、下部モード切替部56から各下部潅水制御部52へ、モード切替信号が送られる。各下部潅水制御部52の制御モードは、当該モード切替信号に従って切り替わる。
 ここで、下部潅水制御部52の制御モードは、第2潅水モードと、第3潅水モードと、の間で切り替え可能である。
 尚、下部潅水制御部52の制御モードが第2潅水モード、第3潅水モードの何れであっても、下部潅水制御部52は、上述の手動潅水制御を実行可能である。下部潅水制御部52が第3潅水モードであるとき、下部潅水制御部52は、手動潅水制御による潅水以外の潅水を実行しない。
 この構成により、下部潅水制御部52は、第2潅水モードであるとき、現在時刻が設定された時刻になったことに応じて下部潅水機構D2に潅水を実行させる。即ち、潅水制御部41は、現在時刻が設定された時刻になったことに応じて下部潅水機構D2に潅水を実行させることが可能である。
 〔第1潅水モード〕
 以下では、第1潅水モードについて詳述する。図3に示すように、管理コンピュータ4は、被覆率算出部44(本発明に係る「張り指標値算出部」に相当)、基準被覆率設定部45、基準算出部46、しおれ係数設定部47を有している。
 図3に示すように、撮像部Caにより所定の時間間隔毎に取得された撮像画像V(図7参照)は、被覆率算出部44へ送られる。被覆率算出部44は、受け取った撮像画像Vに基づいて、被覆率Eを経時的に算出する。
 尚、被覆率Eとは、撮像画像Vにおいて葉P1が写っている領域である計測領域B(図7参照)のうち、葉P1の占める領域の割合である。また、被覆率Eは、葉P1の張り度合いを示す値である。即ち、被覆率Eは、本発明に係る「張り指標値」に相当する。
 被覆率Eの算出について詳述すると、図7に示すように、被覆率算出部44は、撮像画像Vの色情報等に基づいて、撮像画像Vにおける枝葉や茎の領域を判定する。この領域は、栽培植物Pの繁茂領域、即ち被覆領域として判定される。
 尚、枝葉や茎の領域の判定は、RGBデータに基づいて行われるものであっても良いし、YUVデータに基づいて行われるものであっても良い。但し、本実施形態では、天候や時間帯の変化に伴う明暗の変化に対応するため、枝葉や茎の領域の判定は、YUVデータに基づいて行われるのが望ましい。
 そして、被覆領域の判定に基づいて、撮像画像Vのうち、栽培植物Pの位置する範囲が設定される。図7に示されるように、栽培植物Pの枝葉が写っている領域として四辺で囲まれた範囲が設定され、この四辺で囲まれた範囲が計測領域Bとして設定されて、計測領域Bの面積Bsが算出される。面積Bsの算出は、撮像画像Vのうち、計測領域Bのドット(撮像画像Vにおける画素の最小単位)の数を数えることで可能である。
 また、被覆領域のドットの数を数えることによって、葉面積B1の算出が可能である。そして、下記の数式によって、面積Bsに対する葉面積B1の割合が、被覆率Eとして算出される。
 被覆率E=葉面積B1/面積Bs
 尚、計測領域Bの面積Bsは、時間の経過に伴って葉P1がしおれ、枝葉の写っている領域が次第に狭まる場合であっても、葉P1がしおれ始める前の面積Bsで固定されるのが望ましい。つまり、面積Bsは、経時的に取得される複数の撮像画像Vのうち、最初の撮像画像Vに基づいて算出された面積Bsのまま固定されると共に、時間の経過に伴って葉面積B1だけが変化する構成が望ましい。
 このように、潅水制御システムSは、撮像部Caにより取得された撮像画像Vに基づいて、葉P1の張り度合いを示す値である被覆率Eを算出する被覆率算出部44を備えている。
 図3に示すように、被覆率算出部44により経時的に算出された被覆率Eは、上部潅水制御部51及び基準被覆率設定部45へ送られる。基準被覆率設定部45は、基準時における被覆率Eを基準被覆率STとして設定する。
 詳述すると、本実施形態において、上記の基準時は、日の出直後の時間帯である。また、上述の通り、撮像部Caは、撮像画像Vを所定の時間間隔毎に取得する。即ち、撮像部Caは、日の出直後の時間帯において、複数の時刻で撮像画像Vを取得する。これにより、撮像部Caによって、日の出直後の時間帯における複数の撮像画像Vが取得される。
 被覆率算出部44は、日の出直後の時間帯において取得された複数の撮像画像Vに基づいて、複数の被覆率Eを算出する。そして、基準被覆率設定部45は、この複数の被覆率Eの90パーセンタイル値を、基準被覆率STとして設定する。
 尚、本発明はこれに限定されず、基準被覆率設定部45は、上記複数の被覆率Eの90パーセンタイル値以外の値を、基準被覆率STとして設定するように構成されていても良い。例えば、基準被覆率設定部45は、上記複数の被覆率Eのうちの最大値を基準被覆率STとして設定するように構成されていても良い。また、基準被覆率設定部45は、上記複数の被覆率Eの平均値を基準被覆率STとして設定するように構成されていても良い。
 図3に示すように、基準被覆率設定部45により設定された基準被覆率STは、基準算出部46へ送られる。
 また、管理者は、入力装置2を介して、しおれ係数を入力することができる。尚、しおれ係数とは、目標となる葉P1のしおれ度合いに相当する係数である。
 入力装置2に入力されたしおれ係数は、しおれ係数設定部47に送られる。そして、しおれ係数設定部47は、管理者の入力内容に従って、しおれ係数を設定する。設定されたしおれ係数は、基準算出部46へ送られる。
 基準算出部46は、基準被覆率設定部45から受け取った基準被覆率STと、しおれ係数設定部47から受け取ったしおれ係数と、に基づいて、潅水基準値THを算出する。より具体的には、基準算出部46は、基準被覆率STにしおれ係数を乗ずることによって潅水基準値THを算出する。算出された潅水基準値THは、上部潅水制御部51へ送られる。
 上部潅水制御部51が第1潅水モードであるとき、上部潅水制御部51は、被覆率算出部44から受け取った被覆率Eと、基準算出部46から受け取った潅水基準値THと、に基づいて、被覆率Eが潅水基準値THを下回っているか否かを判定する。そして、被覆率Eが潅水基準値THを下回った場合、上部潅水制御部51は、上部潅水機構D1に潅水を実行させる。
 このように、潅水制御部41は、被覆率Eが所定の潅水基準値THを下回ったことに応じて上部潅水機構D1に潅水を実行させることが可能である。
 以上で説明した構成により、図8に示すように、被覆率Eは基本的に以下の通りに推移する。即ち、まず、時間の経過に伴って葉P1のしおれが進行する。これにより、被覆率Eは時間の経過に伴って減少する。
 被覆率Eが潅水基準値THを下回り、潅水が実行されると、葉P1の張り度合いが回復する。これにより、被覆率Eは増加する。
 その後は、時間の経過に伴う葉P1のしおれの進行と、潅水による葉P1の張り度合いの回復と、を繰り返す。これにより、被覆率Eは、減少と増加とを交互に繰り返す。
 図8に示す例では、上部潅水制御部51の制御によって上部潅水機構D1が潅水を実行したタイミングが、上向き矢印によって示されている。この例では、時刻t1、時刻t2、時刻t3、時刻t4、時刻t5のそれぞれにおいて、潅水が実行されている。
 ここで、時刻t1、時刻t2、時刻t5においては、被覆率Eが潅水基準値THを下回ったため、上部潅水機構D1により潅水が実行されている。その結果、被覆率Eは、潅水基準値THを上回っている。
 しかしながら、時刻t3においては、時刻t1、時刻t2、時刻t5と同様に潅水が実行されたにもかかわらず、その後の時刻t4まで、被覆率Eは潅水基準値THを上回っていない。
 そのため、時刻t4において、上部潅水制御部51は、追加で上部潅水機構D1に潅水を実行させている。これにより、被覆率Eは、潅水基準値THを上回っている。
 〔第2潅水モード〕
 以下では、第2潅水モードについて詳述する。図3に示すように、上部潅水処理部42は、上部スケジュール設定部57を有している。管理者は、入力装置2を介して、上部潅水機構D1による潅水のスケジュール(時刻)を入力することができる。
 入力装置2に入力されたスケジュールは、上部潅水処理部42に送られる。上部スケジュール設定部57は、当該スケジュールに従って、上部潅水機構D1による潅水のスケジュールを設定する。これにより設定されたスケジュールを示す情報が、上部スケジュール設定部57から上部潅水制御部51へ送られる。上部潅水制御部51が第2潅水モードであるとき、上部潅水制御部51は、当該情報に基づいて上部潅水機構D1に潅水を実行させる。このとき、上部潅水制御部51は、現在時刻が、設定されたスケジュールに含まれる時刻になったことに応じて、上部潅水機構D1に潅水を実行させる。
 図3に示すように、下部潅水処理部43は、下部スケジュール設定部58を有している。管理者は、入力装置2を介して、下部潅水機構D2による潅水のスケジュール(時刻)を入力することができる。
 入力装置2に入力されたスケジュールは、下部潅水処理部43に送られる。下部スケジュール設定部58は、当該スケジュールに従って、下部潅水機構D2による潅水のスケジュールを設定する。これにより設定されたスケジュールを示す情報が、下部スケジュール設定部58から下部潅水制御部52へ送られる。下部潅水制御部52が第2潅水モードであるとき、下部潅水制御部52は、当該情報に基づいて下部潅水機構D2に潅水を実行させる。このとき、下部潅水制御部52は、現在時刻が、設定されたスケジュールに含まれる時刻になったことに応じて、下部潅水機構D2に潅水を実行させる。
 尚、上部スケジュール設定部57及び下部スケジュール設定部58により設定される潅水のスケジュールは、一日のうちの一つの時刻のみを含んでいても良いし、複数の時刻を含んでいても良い。即ち、第2潅水モードにおいて潅水を実行可能な回数は、一日のうち一回のみであっても良いし、複数回であっても良い。
 〔濃度設定部〕
 図3に示すように、園芸施設10は、上部濃度調整装置17を備えている。上部濃度調整装置17は、養液を貯留している。また、上部濃度調整装置17は、貯留している養液の液体肥料濃度を調整可能に構成されている。そして、上部濃度調整装置17は、液体肥料濃度が調整された養液を、上部潅水機構D1へ供給する。上部潅水機構D1は、当該養液を利用して潅水を行う。尚、上部濃度調整装置17は、上述の「ライン」毎に異なる液体肥料濃度の養液を供給可能に構成されている。
 また、園芸施設10は、下部濃度調整装置18を備えている。下部濃度調整装置18は、養液を貯留している。また、下部濃度調整装置18は、貯留している養液の液体肥料濃度を調整可能に構成されている。そして、下部濃度調整装置18は、液体肥料濃度が調整された養液を、下部潅水機構D2へ供給する。下部潅水機構D2は、当該養液を利用して潅水を行う。尚、下部濃度調整装置18は、上述の「ライン」毎に異なる液体肥料濃度の養液を供給可能に構成されている。
 図3に示すように、管理コンピュータ4は、濃度設定部48を備えている。濃度設定部48は、上部濃度設定部59及び下部濃度設定部60を有している。
 濃度設定部48は、ディスプレイ3に、図9に示す濃度設定画面を表示させることができるように構成されている。濃度設定画面には、第1濃度表示部61、第2濃度表示部62、第3濃度表示部63、第4濃度表示部64が含まれている。
 第1濃度表示部61及び第2濃度表示部62は、濃度設定画面の上部に位置している。第3濃度表示部63及び第4濃度表示部64は、濃度設定画面の下部に位置している。第1濃度表示部61及び第2濃度表示部62は、第3濃度表示部63及び第4濃度表示部64の上方に位置している。
 第1濃度表示部61は、上部潅水機構D1のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を表示すると共に、当該液体肥料濃度の設定操作入力を受け付ける。管理者は、入力装置2を介して、第1濃度表示部61に設定操作入力を行うことにより、上部潅水機構D1のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を設定できる。
 詳述すると、管理者が入力装置2を介して第1濃度表示部61に設定操作入力を行ったことに応じて、図3に示すように、上部濃度設定部59から上部濃度調整装置17へ、濃度設定信号が送られる。上部濃度調整装置17は、当該濃度設定信号に従って、上部潅水機構D1のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を調整する。
 第2濃度表示部62は、下部潅水機構D2のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を表示すると共に、当該液体肥料濃度の設定操作入力を受け付ける。管理者は、入力装置2を介して、第2濃度表示部62に設定操作入力を行うことにより、下部潅水機構D2のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を設定できる。
 詳述すると、管理者が入力装置2を介して第2濃度表示部62に設定操作入力を行ったことに応じて、図3に示すように、下部濃度設定部60から下部濃度調整装置18へ、濃度設定信号が送られる。下部濃度調整装置18は、当該濃度設定信号に従って、下部潅水機構D2のうち、「ライン1」から「ライン6」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を調整する。
 第3濃度表示部63は、上部潅水機構D1のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を表示すると共に、当該液体肥料濃度の設定操作入力を受け付ける。管理者は、入力装置2を介して、第3濃度表示部63に設定操作入力を行うことにより、上部潅水機構D1のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を設定できる。
 詳述すると、管理者が入力装置2を介して第3濃度表示部63に設定操作入力を行ったことに応じて、図3に示すように、上部濃度設定部59から上部濃度調整装置17へ、濃度設定信号が送られる。上部濃度調整装置17は、当該濃度設定信号に従って、上部潅水機構D1のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を調整する。
 第4濃度表示部64は、下部潅水機構D2のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を表示すると共に、当該液体肥料濃度の設定操作入力を受け付ける。管理者は、入力装置2を介して、第4濃度表示部64に設定操作入力を行うことにより、下部潅水機構D2のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を設定できる。
 詳述すると、管理者が入力装置2を介して第4濃度表示部64に設定操作入力を行ったことに応じて、図3に示すように、下部濃度設定部60から下部濃度調整装置18へ、濃度設定信号が送られる。下部濃度調整装置18は、当該濃度設定信号に従って、下部潅水機構D2のうち、「ライン7」から「ライン12」までの六つのラインのそれぞれに対して供給される各養液の液体肥料濃度を調整する。
 この構成により、濃度設定部48は、上部潅水機構D1により供給される養液の液体肥料濃度と、下部潅水機構D2により供給される養液の液体肥料濃度と、を個別に設定可能である。即ち、潅水制御システムSは、上部潅水機構D1により供給される養液の液体肥料濃度と、下部潅水機構D2により供給される養液の液体肥料濃度と、を個別に設定可能な濃度設定部48を備えている。
 以上で説明した構成によれば、上部潅水機構D1と下部潅水機構D2とが一律に制御される構成に比べて、上部潅水機構D1と下部潅水機構D2との特性の違いに応じた潅水制御を行いやすい。その結果、栽培植物Pの根P2の上側及び下側からの潅水の制御が好適に行われやすい。
 例えば、根P2の下側からの潅水に比べて根P2の上側からの潅水に即効性がある栽培環境下では、下部潅水機構D2による潅水を一定時間毎に実行しながら、栽培植物Pの葉P1がしおれた際に上部潅水機構D1による潅水を実行するような制御を実現できる。
 即ち、以上で説明した構成によれば、栽培植物Pの根P2の上側及び下側からの潅水の制御が好適に行われやすい潅水制御システムSを実現できる。
 [第1実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。
 〔その他の実施形態〕
 (1)上部潅水制御部51の制御モードが切り替え不能であっても良い。
 (2)下部潅水制御部52の制御モードが切り替え不能であっても良い。
 (3)撮像部Caは設けられていなくても良い。
 (4)濃度設定部48は設けられていなくても良い。
 (5)膜状部材21は設けられていなくても良い。
 (6)上部潅水機構D1は、いかなる数のラインに区切られていても良いし、単一のラインにより構成されていても良い。
 (7)下部潅水機構D2は、いかなる数のラインに区切られていても良いし、単一のラインにより構成されていても良い。
 尚、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 [第2実施形態]
 以下では、図10~図17を参照しながら、本発明の第2実施形態について説明する。以下の説明において、第1実施形態の構成要素と同じ符号が付された構成要素については、第1実施形態と同様であり、詳細な説明は省略している。
 〔潅水制御システムの構成〕
 図10に示すように、本実施形態における潅水制御システムS1は、入力装置102及び管理コンピュータ104を備えている。入力装置102は、特に限定されないが、例えばキーボードやマウス等であっても良い。また、園芸施設10は、潅水制御システムS1に含まれている。
 即ち、潅水制御システムS1は、栽培植物Pの葉P1を撮像する撮像部Caを備えている。
 図10に示すように、園芸施設10は、潅水装置111を有している。潅水装置111は、例えば潅水チューブ等を含んでいる。潅水装置111は、栽培植物Pへの潅水を行うことができるように構成されている。尚、本発明において、「潅水」は、養液を供給することを意味する。また、養液は、水に肥料等が溶け込んだ液体であっても良いし、単なる水であっても良い。
 〔被覆率に基づく潅水〕
 図10に示すように、管理コンピュータ104は、潅水指示部141、被覆率算出部144(本発明に係る「張り指標値算出部」に相当)、基準被覆率設定部145(本発明に係る「基準指標値設定部」に相当)、基準算出部146、しおれ係数設定部147を有している。
 図10に示すように、撮像部Caにより所定の時間間隔毎に取得された撮像画像V(図11参照)は、被覆率算出部144へ送られる。被覆率算出部144は、受け取った撮像画像Vに基づいて、被覆率Eを経時的に算出する。
 尚、被覆率Eとは、撮像画像Vにおいて葉P1が写っている領域である計測領域B(図11参照)のうち、葉P1の占める領域の割合である。また、被覆率Eは、葉P1の張り度合いを示す値である。即ち、被覆率Eは、本発明に係る「張り指標値」に相当する。
 被覆率Eの算出について詳述すると、図11に示すように、被覆率算出部144は、撮像画像Vの色情報等に基づいて、撮像画像Vにおける枝葉や茎の領域を判定する。この領域は、栽培植物Pの繁茂領域、即ち被覆領域として判定される。
 尚、枝葉や茎の領域の判定は、RGBデータに基づいて行われるものであっても良いし、YUVデータに基づいて行われるものであっても良い。但し、本実施形態では、天候や時間帯の変化に伴う明暗の変化に対応するため、枝葉や茎の領域の判定は、YUVデータに基づいて行われるのが望ましい。
 そして、被覆領域の判定に基づいて、撮像画像Vのうち、栽培植物Pの位置する範囲が設定される。図11に示されるように、栽培植物Pの枝葉が写っている領域として四辺で囲まれた範囲が設定され、この四辺で囲まれた範囲が計測領域Bとして設定されて、計測領域Bの面積Bsが算出される。面積Bsの算出は、撮像画像Vのうち、計測領域Bのドット(撮像画像Vにおける画素の最小単位)の数を数えることで可能である。
 また、被覆領域のドットの数を数えることによって、葉面積B1の算出が可能である。そして、下記の数式によって、面積Bsに対する葉面積B1の割合が、被覆率Eとして算出される。
 被覆率E=葉面積B1/面積Bs
 尚、計測領域Bの面積Bsは、時間の経過に伴って葉P1がしおれ、枝葉の写っている領域が次第に狭まる場合であっても、葉P1がしおれ始める前の面積Bsで固定されるのが望ましい。つまり、面積Bsは、経時的に取得される複数の撮像画像Vのうち、最初の撮像画像Vに基づいて算出された面積Bsのまま固定されると共に、時間の経過に伴って葉面積B1だけが変化する構成が望ましい。
 このように、潅水制御システムS1は、撮像部Caにより取得された撮像画像Vに基づいて、葉P1の張り度合いを示す値である被覆率Eを算出する被覆率算出部144を備えている。
 図10に示すように、被覆率算出部144により経時的に算出された被覆率Eは、潅水指示部141及び基準被覆率設定部145へ送られる。基準被覆率設定部145は、基準時における被覆率Eを基準被覆率ST(本発明に係る「基準指標値」に相当)として設定する。即ち、潅水制御システムS1は、基準時における被覆率Eを基準被覆率STとして設定する基準被覆率設定部145を備えている。
 詳述すると、本実施形態において、上記の基準時は、日の出直後の時間帯である。また、上述の通り、撮像部Caは、撮像画像Vを所定の時間間隔毎に取得する。即ち、撮像部Caは、日の出直後の時間帯において、複数の時刻で撮像画像Vを取得する。これにより、撮像部Caによって、日の出直後の時間帯における複数の撮像画像Vが取得される。
 被覆率算出部144は、日の出直後の時間帯において取得された複数の撮像画像Vに基づいて、複数の被覆率Eを算出する。そして、基準被覆率設定部145は、この複数の被覆率Eの90パーセンタイル値を、基準被覆率STとして設定する。
 尚、本発明はこれに限定されず、基準被覆率設定部145は、上記複数の被覆率Eの90パーセンタイル値以外の値を、基準被覆率STとして設定するように構成されていても良い。例えば、基準被覆率設定部145は、上記複数の被覆率Eのうちの最大値を基準被覆率STとして設定するように構成されていても良い。また、基準被覆率設定部145は、上記複数の被覆率Eの平均値を基準被覆率STとして設定するように構成されていても良い。
 図10に示すように、基準被覆率設定部145により設定された基準被覆率STは、基準算出部146へ送られる。
 また、管理者(ユーザー)は、入力装置102を介して、しおれ係数を入力することができる。尚、しおれ係数とは、目標となる葉P1のしおれ度合いに相当する係数である。
 入力装置102に入力されたしおれ係数は、しおれ係数設定部147に送られる。そして、しおれ係数設定部147は、管理者の入力内容に従って、しおれ係数を設定する。設定されたしおれ係数は、基準算出部146へ送られる。
 基準算出部146は、基準被覆率設定部145から受け取った基準被覆率STと、しおれ係数設定部147から受け取ったしおれ係数と、に基づいて、潅水基準値THを算出する。より具体的には、基準算出部146は、基準被覆率STにしおれ係数を乗ずることによって潅水基準値THを算出する。算出された潅水基準値THは、潅水指示部141へ送られる。
 このように、潅水制御システムS1は、基準被覆率STに基づいて潅水基準値THを算出する基準算出部146を備えている。
 潅水指示部141は、被覆率算出部144から受け取った被覆率Eと、基準算出部146から受け取った潅水基準値THと、に基づいて、被覆率Eが潅水基準値THを下回っているか否かを判定する。そして、被覆率Eが潅水基準値THを下回った場合、潅水指示部141は、潅水装置111へ、潅水指示信号を出力する。
 このように、潅水制御システムS1は、被覆率Eが潅水基準値THを下回った場合に潅水指示信号を出力する潅水指示部141を備えている。
 また、潅水指示部141により潅水指示信号が出力された後、被覆率Eが潅水基準値THを上回らなかった場合、潅水指示部141は、潅水装置111へ、追加で潅水指示信号を出力する。
 潅水装置111は、潅水指示部141から受け取った潅水指示信号に応じて、潅水を実行する。
 以上で説明した構成により、図12に示すように、被覆率Eは基本的に以下の通りに推移する。即ち、まず、時間の経過に伴って葉P1のしおれが進行する。これにより、被覆率Eは時間の経過に伴って減少する。
 被覆率Eが潅水基準値THを下回り、潅水が実行されると、葉P1の張り度合いが回復する。これにより、被覆率Eは増加する。
 その後は、時間の経過に伴う葉P1のしおれの進行と、潅水による葉P1の張り度合いの回復と、を繰り返す。これにより、被覆率Eは、減少と増加とを交互に繰り返す。
 図12に示す例では、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。この例では、時刻t1、時刻t2、時刻t3、時刻t4、時刻t5のそれぞれにおいて、潅水指示信号が出力されている。
 ここで、時刻t1、時刻t2、時刻t5においては、被覆率Eが潅水基準値THを下回ったため、潅水指示部141により潅水指示信号が出力されている。これにより潅水が実行された結果、被覆率Eは、潅水基準値THを上回っている。
 しかしながら、時刻t3においては、時刻t1、時刻t2、時刻t5と同様に潅水指示信号が出力されたにもかかわらず、その後の時刻t4まで、被覆率Eは潅水基準値THを上回っていない。
 そのため、時刻t4において、潅水指示部141は、追加で潅水指示信号を出力している。これにより、被覆率Eは、潅水基準値THを上回っている。
 尚、本実施形態において管理コンピュータ104に含まれている潅水指示部141等の各要素は、ソフトウェアにおける機能部であっても良いし、マイクロコンピュータ等の物理的な装置によって構成されていても良い。
 〔潅水基準値の再算出について〕
 園芸施設10においては、管理者によって、つる下ろし、誘引、摘葉、収穫等の栽培管理作業が行われる。そして、栽培管理作業が行われた場合、栽培植物Pの姿勢や葉P1の位置等が変化する。これにより、撮像部Caによって取得される撮像画像Vにおける葉面積B1が急激に変化しやすい。撮像画像Vにおける葉面積B1が急激に変化すると、被覆率Eが急激に変化する。
 このとき、被覆率Eが急増した場合、栽培管理作業前の栽培植物Pの状態に基づいて算出された潅水基準値THは、栽培管理作業後においては低すぎる値となる。
 逆に、このとき、被覆率Eが急減した場合、栽培管理作業前の栽培植物Pの状態に基づいて算出された潅水基準値THは、栽培管理作業後においては高すぎる値となる。
 そのため、本実施形態では、被覆率Eが急激に変化した場合、潅水基準値THが再算出されるように構成されている。以下では、潅水基準値THの再算出について説明する。
 図10に示すように、管理コンピュータ104は、算出処理部142及び修正部143を有している。算出処理部142は、上方判定値決定部151及び下方判定値決定部152を含んでいる。また、修正部143は、後述する所定の条件が満たされた場合に基準被覆率STを修正するように構成されている。即ち、潅水制御システムS1は、所定の条件が満たされた場合に基準被覆率STを修正する修正部143を備えている。
 上方判定値決定部151及び下方判定値決定部152は、何れも、判定値決定部Gである。判定値決定部Gは、判定値Jを決定するように構成されている。判定値Jとは、基準被覆率STの修正に関する値である。
 このように、潅水制御システムS1は、基準被覆率STの修正に関する判定値Jを決定する判定値決定部Gを備えている。より具体的には、潅水制御システムS1は、判定値決定部Gである上方判定値決定部151と、判定値決定部Gである下方判定値決定部152と、を備えている。
 また、図10に示すように、算出処理部142は、上方時間算出部153及び下方時間算出部154を有している。上方時間算出部153及び下方時間算出部154は、何れも、時間算出部Kである。時間算出部Kは、第1時点から第2時点までの間において被覆率Eが判定値Jを上回った状態である時間の合計、または、第1時点から第2時点までの間において被覆率Eが判定値Jを下回った状態である時間の合計を算出するように構成されている。
 尚、特に限定されないが、本実施形態において、第2時点は現在時刻である。第1時点は第2時点から所定時間前の時点である。この「所定時間」の長さは特に限定されない。例えば、第1時点は第2時点から15分前の時点であっても良いし、10分前の時点であっても良い。
 このように、潅水制御システムS1は、第1時点から第2時点までの間において被覆率Eが判定値Jを上回った状態である時間の合計、または、第1時点から第2時点までの間において被覆率Eが判定値Jを下回った状態である時間の合計を算出する時間算出部Kを備えている。より具体的には、潅水制御システムS1は、時間算出部Kである上方時間算出部153と、時間算出部Kである下方時間算出部154と、を備えている。
 図10に示すように、上方判定値決定部151は、基準被覆率設定部145から、基準被覆率STを取得する。上方判定値決定部151は、基準被覆率STに基づいて、上方判定値J1(図13参照)を決定する。特に限定されないが、上方判定値決定部151は、例えば、基準被覆率STの1.02倍の値を、上方判定値J1に決定しても良い。
 上方判定値J1は、基準被覆率STの修正に関する値である。即ち、上方判定値J1は、判定値Jである。
 このように、上方判定値決定部151は、基準被覆率STに基づいて、判定値Jである上方判定値J1を決定する。
 上方判定値決定部151は、決定した上方判定値J1を、上方時間算出部153へ送る。また、被覆率算出部144により経時的に算出された被覆率Eは、算出処理部142へ送られる。上方時間算出部153は、上方判定値J1と、被覆率Eと、に基づいて、上方状態時間を経時的に算出する。上方状態時間とは、第1時点から第2時点までの間において被覆率Eが上方判定値J1を上回った状態である時間の合計である。
 このように、上方時間算出部153は、第1時点から第2時点までの間において被覆率Eが上方判定値J1を上回った状態である時間の合計である上方状態時間を算出する。
 ここで、図10に示すように、修正部143は、修正判定部155及び修正実行部156を有している。上方時間算出部153により算出された上方状態時間は、修正判定部155へ送られる。修正判定部155は、上方状態時間に基づいて、基準被覆率STを修正するか否かを決定する。
 より具体的には、修正判定部155は、判定時間TA(図13参照)を記憶している。判定時間TAは、第1時点から第2時点までの長さである。修正判定部155は、判定時間TAに対する上方状態時間の割合が所定割合以上であるか否かを判定する。そして、判定時間TAに対する上方状態時間の割合が所定割合以上である場合、修正判定部155は、基準被覆率STを修正することを決定する。尚、この「所定割合」は、本実施形態では6割である。ただし、本発明はこれに限定されず、この「所定割合」は、6割以外のいかなる割合であっても良い。
 このように、修正部143は、第1時点から第2時点までの長さである判定時間TAに対する上方状態時間の割合が所定割合以上である場合、基準被覆率STを修正することを決定する。即ち、修正部143は、上方状態時間に基づいて、基準被覆率STを修正するか否かを決定する。
 尚、判定時間TAの長さは特に限定されない。例えば、判定時間TAの長さは15分間であっても良いし、10分間であっても良い。また、判定時間TAの長さは、上述の「所定時間」の長さに一致する。
 基準被覆率STを修正することが修正判定部155によって決定された場合、図10に示すように、修正判定部155は、修正指示信号を修正実行部156へ送る。修正実行部156は、修正指示信号を受け取ると、基準被覆率設定部145により設定されている基準被覆率STを修正する。
 このとき、修正実行部156は、第1時点から第2時点までにおける被覆率Eに基づいて基準被覆率STを修正する。特に限定されないが、例えば、修正実行部156は、第1時点から第2時点までにおける被覆率Eの90パーセンタイル値で基準被覆率STを置き換えることにより、基準被覆率STを修正しても良い。修正後の基準被覆率STは、基準被覆率設定部145から基準算出部146へ送られる。
 修正実行部156によって基準被覆率STが修正された場合、基準算出部146は、修正後の基準被覆率STに基づいて潅水基準値THを再算出する。より具体的には、基準算出部146は、修正後の基準被覆率STにしおれ係数を乗ずることによって、潅水基準値THを再算出する。
 このように、修正部143によって基準被覆率STが修正された場合、基準算出部146は、修正後の基準被覆率STに基づいて潅水基準値THを再算出する。
 例えば、図13に示す例では、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。この例では、時刻t11で潅水が実行された後、時刻t12で栽培管理作業が行われることによって被覆率Eが急増している。
 その後、時刻t13から時刻t14までの間、被覆率Eは上方判定値J1を上回っている。この例では、現在時刻が時刻t14であるとき、時刻t13が上述の「第1時点」に相当すると共に、時刻t14が上述の「第2時点」に相当する。
 そして、現在時刻が時刻t14であるとき、上方状態時間は、判定時間TAに一致している。即ち、判定時間TAに対する上方状態時間の割合は、10割である。従って、判定時間TAに対する上方状態時間の割合は、上述の所定割合以上である。そのため、修正判定部155は、基準被覆率STを修正することを決定する。
 その結果、時刻t14において、修正実行部156は、基準被覆率STを修正する。これにより、時刻t14に、基準被覆率STは上昇する。修正後の基準被覆率STは、基準算出部146へ送られる。基準算出部146は、修正後の基準被覆率STに基づいて潅水基準値THを再算出する。これにより、時刻t14に、潅水基準値THは上昇する。
 尚、上方状態時間に、被覆率Eが上方判定値J1よりも大きい状態の時間だけでなく、被覆率Eが上方判定値J1に一致している状態の時間が含まれていても良い。例えば、図13に示す例において、時刻t13に、被覆率Eが上方判定値J1よりも大きい状態であっても良いし、被覆率Eが上方判定値J1に一致している状態であっても良い。
 また、図10に示すように、下方判定値決定部152は、基準算出部146から、潅水基準値THを取得する。下方判定値決定部152は、潅水基準値THに基づいて、下方判定値J2(図14参照)を決定する。特に限定されないが、下方判定値決定部152は、例えば、潅水基準値THの1.02倍の値を、下方判定値J2に決定しても良い。
 下方判定値J2は、基準被覆率STの修正に関する値である。即ち、下方判定値J2は、判定値Jである。
 このように、下方判定値決定部152は、潅水基準値THに基づいて、判定値Jである下方判定値J2を決定する。
 下方判定値決定部152は、決定した下方判定値J2を、下方時間算出部154へ送る。また、被覆率算出部144により経時的に算出された被覆率Eは、算出処理部142へ送られる。下方時間算出部154は、下方判定値J2と、被覆率Eと、に基づいて、下方状態時間を経時的に算出する。下方状態時間とは、第1時点から第2時点までの間において被覆率Eが下方判定値J2を下回った状態である時間の合計である。
 このように、下方時間算出部154は、第1時点から第2時点までの間において被覆率Eが下方判定値J2を下回った状態である時間の合計である下方状態時間を算出する。
 図10に示すように、下方時間算出部154により算出された下方状態時間は、修正判定部155へ送られる。修正判定部155は、下方状態時間に基づいて、基準被覆率STを修正するか否かを決定する。
 より具体的には、修正判定部155は、判定時間TA(図14参照)に対する下方状態時間の割合が所定割合以上であるか否かを判定する。そして、判定時間TAに対する下方状態時間の割合が所定割合以上である場合、修正判定部155は、基準被覆率STを修正することを決定する。尚、この「所定割合」は、本実施形態では6割である。ただし、本発明はこれに限定されず、この「所定割合」は、6割以外のいかなる割合であっても良い。
 このように、修正部143は、第1時点から第2時点までの長さである判定時間TAに対する下方状態時間の割合が所定割合以上である場合、基準被覆率STを修正することを決定する。即ち、修正部143は、下方状態時間に基づいて、基準被覆率STを修正するか否かを決定する。
 尚、上方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合における判定時間TAの長さと、下方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合における判定時間TAの長さと、は互いに一致していても良いし、異なっていても良い。
 また、上方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合における判定時間TAの長さと、下方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合における判定時間TAの長さと、を管理者が設定可能であっても良い。
 基準被覆率STを修正することが修正判定部155によって決定された後の処理は、上述の通りである。
 例えば、図14に示す例では、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。この例では、時刻t21で潅水が実行された後、時刻t22で栽培管理作業が行われることによって被覆率Eが急減している。これにより、被覆率Eは潅水基準値THを下回っている。
 そして、被覆率Eが潅水基準値THを下回ったため、時刻t22に、潅水指示部141により潅水指示信号が出力されている。
 その後、時刻t22から時刻t23までの間において、被覆率Eが下方判定値J2を下回った状態である時間の合計は、比較的長い。この例では、現在時刻が時刻t23であるとき、時刻t22が上述の「第1時点」に相当すると共に、時刻t23が上述の「第2時点」に相当する。
 この例では、現在時刻が時刻t23であるとき、判定時間TAに対する下方状態時間の割合は、8割であるとする。従って、判定時間TAに対する下方状態時間の割合は、上述の所定割合以上である。そのため、修正判定部155は、基準被覆率STを修正することを決定する。
 その結果、時刻t23において、修正実行部156は、基準被覆率STを修正する。これにより、時刻t23に、基準被覆率STは低下する。修正後の基準被覆率STは、基準算出部146へ送られる。基準算出部146は、修正後の基準被覆率STに基づいて潅水基準値THを再算出する。これにより、時刻t23に、潅水基準値THは低下する。
 尚、下方状態時間に、被覆率Eが下方判定値J2よりも小さい状態の時間だけでなく、被覆率Eが下方判定値J2に一致している状態の時間が含まれていても良い。
 以上で説明した構成により、修正判定部155は、上方時間算出部153による算出結果である上方状態時間、及び、下方時間算出部154による算出結果である下方状態時間に基づいて、基準被覆率STを修正するか否かを決定する。即ち、修正部143は、時間算出部Kによる算出結果に基づいて、基準被覆率STを修正するか否かを決定する。
 また、上述の「所定の条件」は、「判定時間TAに対する上方状態時間の割合が所定割合以上である」という条件、及び、「判定時間TAに対する下方状態時間の割合が所定割合以上である」という条件である。判定時間TAに対する上方状態時間の割合が所定割合未満であり、且つ、判定時間TAに対する下方状態時間の割合が所定割合未満である場合、修正判定部155は、現時点では基準被覆率STを修正しないことを決定する。
 尚、上方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合において、第1時点は、潅水指示部141により潅水指示信号が出力された時点であっても良い。この場合、第1時点から判定時間TA後の時点が、第2時点として決定されても良い。即ち、第2時点は、現在時刻でなくても良い。
 また、下方状態時間に基づいて基準被覆率STを修正するか否かを決定する場合において、第1時点は、潅水指示部141により潅水指示信号が出力された時点であっても良い。この場合、第1時点から判定時間TA後の時点が、第2時点として決定されても良い。即ち、第2時点は、現在時刻でなくても良い。
 また、図13に示す例において、上方判定値J1だけでなく、下方判定値J2も決定されていても良い。また、図14に示す例において、下方判定値J2だけでなく、上方判定値J1も決定されていても良い。
 〔繰り返し潅水間隔〕
 図10に示すように、管理コンピュータ104は、間隔設定部148を有している。管理者は、入力装置102を介して、繰り返し潅水間隔(本発明に係る「時間間隔」に相当)を入力することができる。
 入力装置102に入力された繰り返し潅水間隔は、間隔設定部148に送られる。そして、間隔設定部148は、管理者の入力内容に従って、繰り返し潅水間隔を設定する。設定された繰り返し潅水間隔は、潅水指示部141へ送られる。
 本実施形態において、潅水指示部141は、潅水指示信号が出力された時点から繰り返し潅水間隔が経過するまでの間、次の潅水指示信号を出力しない。即ち、潅水指示部141は、潅水指示信号が出力された時点から所定の繰り返し潅水間隔が経過するまでの間、次の潅水指示信号を出力しないように構成されている。
 例えば、図15に示す例では、1分毎の被覆率Eがプロットされている。また、図15には、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。また、10時14分に基準被覆率STが修正されると共に、潅水基準値THが再算出されている。
 図15に示す例において、上述の下方判定値J2は、潅水基準値THに一致している。また、上述の判定時間TAは、15分間(プロット15個分の時間)であるとする。また、繰り返し潅水間隔は、15分に設定されている。
 この例では、10時ちょうどに潅水が実行された後、10時1分、2分、4分、6分から14分までにおいて、被覆率Eが、潅水基準値THの再算出前の下方判定値J2を下回った状態である。尚、このとき、10時ちょうどにおいても、被覆率Eが下方判定値J2を下回っている。そのため、10時14分の時点で、下方時間算出部154は、下方状態時間を13分間と算出する。
 この場合、判定時間TAに対する下方状態時間の割合は、所定割合(6割)以上である。そのため、修正判定部155は、基準被覆率STを修正することを決定する。その結果、10時14分において、修正実行部156は、基準被覆率STを修正する。これにより、10時14分に、基準被覆率STは低下する。修正後の基準被覆率STは、基準算出部146へ送られる。基準算出部146は、修正後の基準被覆率STに基づいて潅水基準値THを再算出する。これにより、10時14分に、潅水基準値THは低下する。
 また、この例では、上述の通り、繰り返し潅水間隔が15分に設定されている。そのため、潅水指示部141は、潅水指示信号が出力された時点である10時ちょうどから、15分が経過するまでの間、次の潅水指示信号を出力しない。従って、例えば10時1分に被覆率Eが潅水基準値THを下回っているが、潅水指示部141は潅水指示信号を出力しない。
 また、図16に示す例では、1分毎の被覆率Eがプロットされている。また、図16には、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。
 図16に示す例において、上述の下方判定値J2は、潅水基準値THに一致している。また、上述の判定時間TAは、15分間(プロット15個分の時間)であるとする。また、繰り返し潅水間隔は、10分に設定されている。尚、図16における被覆率Eの推移と、基準被覆率STと、潅水基準値TH(下方判定値J2)と、は図15と同一である。
 この例では、図15に示した例と同様に、10時14分において、修正実行部156は、基準被覆率STを修正する。これに伴い、10時14分に、潅水基準値THは低下する。
 また、この例では、上述の通り、繰り返し潅水間隔が10分に設定されている。そのため、潅水指示部141は、潅水指示信号が出力された時点である10時ちょうどから、10分が経過するまでの間、次の潅水指示信号を出力しない。従って、例えば10時1分に被覆率Eが潅水基準値THを下回っているが、潅水指示部141は潅水指示信号を出力しない。
 また、10時ちょうどから繰り返し潅水間隔(10分)が経過した時点である10時10分において、被覆率Eが潅水基準値THを下回っている。そのため、10時10分に、潅水指示部141は潅水指示信号を出力する。
 〔潅水の回数制限〕
 図10に示すように、管理コンピュータ104は、潅水制御部149を有している。潅水制御部149は、制限時間設定部157及び制限回数設定部158を含んでいる。管理者は、入力装置102を介して、繰り返し潅水制限時間(本発明に係る「制限時間」に相当)及び繰り返し潅水制限回数(本発明に係る「制限回数」に相当)を入力することができる。
 入力装置102に入力された繰り返し潅水制限時間及び繰り返し潅水制限回数は、潅水制御部149に送られる。そして、制限時間設定部157は、管理者の入力内容に従って、繰り返し潅水制限時間を設定する。また、制限回数設定部158は、管理者の入力内容に従って、繰り返し潅水制限回数を設定する。設定された繰り返し潅水制限時間及び繰り返し潅水制限回数は、潅水指示部141へ送られる。
 本実施形態において、潅水指示部141は、繰り返し潅水制限時間内に潅水指示信号が出力される回数が繰り返し潅水制限回数以内となるように、潅水指示信号の出力を制限するように構成されている。即ち、潅水指示部141は、所定の繰り返し潅水制限時間内に潅水指示信号が出力される回数が所定の繰り返し潅水制限回数以内となるように、潅水指示信号の出力を制限する。
 例えば、図17に示す例では、1分毎の被覆率Eがプロットされている。また、図17には、潅水指示部141により潅水指示信号が出力されたタイミングが、上向き矢印によって示されている。
 図17に示す例において、上述の下方判定値J2は、潅水基準値THに一致している。また、上述の判定時間TAは、15分間(プロット15個分の時間)であるとする。また、繰り返し潅水間隔は、3分に設定されている。尚、図17における被覆率Eの推移と、基準被覆率STと、潅水基準値TH(下方判定値J2)と、は図15と同一である。
 また、図17に示す例では、繰り返し潅水制限時間及び繰り返し潅水制限回数が、それぞれ、15分及び3回に設定されている。
 この例では、図15に示した例と同様に、10時14分において、修正実行部156は、基準被覆率STを修正する。これに伴い、10時14分に、潅水基準値THは低下する。
 この例では、上述の通り、繰り返し潅水間隔が3分に設定されている。そのため、潅水指示部141は、潅水指示信号が出力された時点である10時ちょうどから、3分が経過するまでの間、次の潅水指示信号を出力しない。
 また、10時ちょうどから繰り返し潅水間隔(3分)が経過した時点である10時3分において、被覆率Eは潅水基準値THを下回っていない。そのため、10時3分に、潅水指示部141は潅水指示信号を出力しない。その後、10時4分に被覆率Eが潅水基準値THを下回っている。そのため、10時4分に、潅水指示部141は潅水指示信号を出力する。
 潅水指示部141は、潅水指示信号が出力された時点である10時4分から、繰り返し潅水間隔(3分)が経過するまでの間、次の潅水指示信号を出力しない。10時4分から繰り返し潅水間隔(3分)が経過した時点である10時7分において、被覆率Eが潅水基準値THを下回っている。そのため、10時7分に、潅水指示部141は潅水指示信号を出力する。
 以上で説明した通り、この例では、10時ちょうど、10時4分、10時7分において潅水指示信号が出力される。即ち、10時ちょうどから繰り返し潅水制限時間(15分)内に、潅水指示信号が、繰り返し制限回数(3回)と同じ回数出力されている。そのため、潅水指示部141は、10時7分に3回目の潅水指示信号が出力された後、10時ちょうどからカウントされている繰り返し潅水制限時間(15分)が終了するまでの間、潅水指示信号を出力しない。
 従って、例えば10時10分においては、10時7分から繰り返し潅水間隔(3分)が経過しており、且つ、被覆率Eが潅水基準値THを下回っているが、潅水指示部141は潅水指示信号を出力しない。また、例えば10時13分においても同様に、潅水指示部141は潅水指示信号を出力しない。
 以上で説明したように、栽培管理作業によって栽培植物Pの状態が変わった場合における被覆率Eの推移は、栽培管理作業前の推移とは異なる状態になりやすい。例えば、栽培管理作業が行われた結果、葉P1が撮像部Caに近付いたこと等によって被覆率Eが急増した場合、被覆率Eは、栽培管理作業前の範囲よりも高い範囲で推移しがちである。また、例えば、栽培管理作業が行われた結果、葉P1が撮像部Caから遠ざかったこと等によって被覆率Eが急減した場合、被覆率Eは、栽培管理作業前の範囲よりも低い範囲で推移しがちである。
 ここで、以上で説明した構成によれば、被覆率Eが判定値Jを上回った状態である時間の合計、または、被覆率Eが判定値Jを下回った状態である時間の合計に基づいて、基準被覆率STを修正するか否かが決定される。そのため、被覆率Eが栽培管理作業前の範囲よりも高い範囲で推移している場合、または、被覆率Eが栽培管理作業前の範囲よりも低い範囲で推移している場合に、基準被覆率STが修正される構成を実現しやすい。そして、基準被覆率STが修正された場合、潅水基準値THが再算出される。これにより、適切な潅水を継続しやすい。
 従って、以上で説明した構成によれば、栽培管理作業によって栽培植物Pの状態が変わった場合に適切な潅水を継続しやすい潅水制御システムS1を実現できる。
 [第2実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。
 〔その他の実施形態〕
 (1)上方判定値決定部151は、上方判定値J1を、基準被覆率STと同一の値に決定しても良い。
 (2)上方判定値決定部151及び上方時間算出部153は設けられていなくても良い。この場合、修正部143は、上方状態時間及び下方状態時間のうち、下方状態時間のみに基づいて、基準被覆率STを修正するか否かを決定するように構成されていても良い。
 (3)修正部143は、判定時間TAに対する上方状態時間の割合に基づくことなく、基準被覆率STを修正するか否かを決定するように構成されていても良い。例えば、修正部143は、上方状態時間が所定の長さ以上である場合、基準被覆率STを修正することを決定するように構成されていても良い。
 (4)下方判定値決定部152及び下方時間算出部154は設けられていなくても良い。この場合、修正部143は、上方状態時間及び下方状態時間のうち、上方状態時間のみに基づいて、基準被覆率STを修正するか否かを決定するように構成されていても良い。
 (5)修正部143は、判定時間TAに対する下方状態時間の割合に基づくことなく、基準被覆率STを修正するか否かを決定するように構成されていても良い。例えば、修正部143は、下方状態時間が所定の長さ以上である場合、基準被覆率STを修正することを決定するように構成されていても良い。
 (6)間隔設定部148は設けられていなくても良い。即ち、繰り返し潅水間隔に基づく潅水指示信号の出力の制限が行われない構成であっても良い。
 (7)潅水制御部149は設けられていなくても良い。即ち、繰り返し潅水制限時間及び繰り返し潅水制限回数に基づく潅水指示信号の出力の制限が行われない構成であっても良い。
 尚、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、栽培植物への潅水を行う潅水制御システムに利用可能である。
 また、本発明は、栽培植物の葉を撮像する撮像部を備える潅水制御システムに利用可能である。
 (第1実施形態)
 21  :膜状部材
 41  :潅水制御部
 44  :被覆率算出部(張り指標値算出部)
 48  :濃度設定部
 Ca  :撮像部
 D1  :上部潅水機構
 D2  :下部潅水機構
 E   :被覆率(張り指標値)
 P   :栽培植物
 P1  :葉
 P2  :根
 S   :潅水制御システム
 TH  :潅水基準値
 V   :撮像画像
 (第2実施形態)
 141 :潅水指示部
 143 :修正部
 144 :被覆率算出部(張り指標値算出部)
 145 :基準被覆率設定部(基準指標値設定部)
 146 :基準算出部
 151 :上方判定値決定部
 152 :下方判定値決定部
 153 :上方時間算出部
 154 :下方時間算出部
 Ca  :撮像部
 E   :被覆率(張り指標値)
 G   :判定値決定部
 J   :判定値
 J1  :上方判定値
 J2  :下方判定値
 K   :時間算出部
 P   :栽培植物
 P1  :葉
 S1  :潅水制御システム
 ST  :基準被覆率(基準指標値)
 TA  :判定時間
 TH  :潅水基準値
 V   :撮像画像

Claims (13)

  1.  栽培植物の根の上側から前記栽培植物への潅水を行う上部潅水機構と、
     前記栽培植物の根の下側から前記栽培植物への潅水を行う下部潅水機構と、
     前記上部潅水機構と前記下部潅水機構とを個別に制御する潅水制御部と、を備える潅水制御システム。
  2.  前記栽培植物の葉を撮像する撮像部と、
     前記撮像部により取得された撮像画像に基づいて、前記葉の張り度合いを示す値である張り指標値を算出する張り指標値算出部と、を備え、
     前記潅水制御部は、前記張り指標値が所定の潅水基準値を下回ったことに応じて前記上部潅水機構に潅水を実行させることが可能である請求項1に記載の潅水制御システム。
  3.  前記潅水制御部は、現在時刻が設定された時刻になったことに応じて前記下部潅水機構に潅水を実行させることが可能である請求項1または2に記載の潅水制御システム。
  4.  前記上部潅水機構により供給される養液の液体肥料濃度と、前記下部潅水機構により供給される養液の液体肥料濃度と、を個別に設定可能な濃度設定部を備える請求項1から3の何れか一項に記載の潅水制御システム。
  5.  前記栽培植物の根は、養液が透過可能な膜状部材の上面に接しており、
     前記下部潅水機構は、前記膜状部材の下面への潅水を行うことにより、前記膜状部材を介して前記栽培植物への潅水を行うように構成されており、
     前記膜状部材は、前記栽培植物の根による前記膜状部材を介した養液の吸収を制限するように構成されている請求項1から4の何れか一項に記載の潅水制御システム。
  6.  栽培植物の葉を撮像する撮像部と、
     前記撮像部により取得された撮像画像に基づいて、前記葉の張り度合いを示す値である張り指標値を算出する張り指標値算出部と、
     基準時における前記張り指標値を基準指標値として設定する基準指標値設定部と、
     前記基準指標値に基づいて潅水基準値を算出する基準算出部と、
     前記張り指標値が前記潅水基準値を下回った場合に潅水指示信号を出力する潅水指示部と、
     所定の条件が満たされた場合に前記基準指標値を修正する修正部と、を備え、
     前記修正部によって前記基準指標値が修正された場合、前記基準算出部は、修正後の前記基準指標値に基づいて前記潅水基準値を再算出する潅水制御システムであって、
     前記基準指標値の修正に関する判定値を決定する判定値決定部と、
     第1時点から第2時点までの間において前記張り指標値が前記判定値を上回った状態である時間の合計、または、前記第1時点から前記第2時点までの間において前記張り指標値が前記判定値を下回った状態である時間の合計を算出する時間算出部と、を備え、
     前記修正部は、前記時間算出部による算出結果に基づいて、前記基準指標値を修正するか否かを決定する潅水制御システム。
  7.  前記第2時点は現在時刻であり、
     前記第1時点は前記第2時点から所定時間前の時点である請求項6に記載の潅水制御システム。
  8.  前記判定値決定部である上方判定値決定部と、
     前記時間算出部である上方時間算出部と、を備え、
     前記上方判定値決定部は、前記基準指標値に基づいて、前記判定値である上方判定値を決定し、
     前記上方時間算出部は、前記第1時点から前記第2時点までの間において前記張り指標値が前記上方判定値を上回った状態である時間の合計である上方状態時間を算出し、
     前記修正部は、前記上方状態時間に基づいて、前記基準指標値を修正するか否かを決定する請求項6または7に記載の潅水制御システム。
  9.  前記修正部は、前記第1時点から前記第2時点までの長さである判定時間に対する前記上方状態時間の割合が所定割合以上である場合、前記基準指標値を修正することを決定する請求項8に記載の潅水制御システム。
  10.  前記判定値決定部である下方判定値決定部と、
     前記時間算出部である下方時間算出部と、を備え、
     前記下方判定値決定部は、前記潅水基準値に基づいて、前記判定値である下方判定値を決定し、
     前記下方時間算出部は、前記第1時点から前記第2時点までの間において前記張り指標値が前記下方判定値を下回った状態である時間の合計である下方状態時間を算出し、
     前記修正部は、前記下方状態時間に基づいて、前記基準指標値を修正するか否かを決定する請求項6から9の何れか一項に記載の潅水制御システム。
  11.  前記修正部は、前記第1時点から前記第2時点までの長さである判定時間に対する前記下方状態時間の割合が所定割合以上である場合、前記基準指標値を修正することを決定する請求項10に記載の潅水制御システム。
  12.  前記潅水指示部は、所定の制限時間内に前記潅水指示信号が出力される回数が所定の制限回数以内となるように、前記潅水指示信号の出力を制限する請求項6から11の何れか一項に記載の潅水制御システム。
  13.  前記潅水指示部は、前記潅水指示信号が出力された時点から所定の時間間隔が経過するまでの間、次の前記潅水指示信号を出力しないように構成されている請求項6から12の何れか一項に記載の潅水制御システム。
PCT/JP2023/031500 2022-09-22 2023-08-30 潅水制御システム WO2024062872A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-151582 2022-09-22
JP2022151582A JP2024046281A (ja) 2022-09-22 2022-09-22 潅水制御システム
JP2022-151580 2022-09-22
JP2022151580A JP7471365B2 (ja) 2022-09-22 2022-09-22 潅水制御システム

Publications (1)

Publication Number Publication Date
WO2024062872A1 true WO2024062872A1 (ja) 2024-03-28

Family

ID=90454139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031500 WO2024062872A1 (ja) 2022-09-22 2023-08-30 潅水制御システム

Country Status (1)

Country Link
WO (1) WO2024062872A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306846A (ja) * 2006-05-18 2007-11-29 Ehime Univ 給液制御装置
WO2016194312A1 (ja) * 2015-06-02 2016-12-08 パナソニックIpマネジメント株式会社 水耕栽培装置
JP2020043780A (ja) * 2018-09-14 2020-03-26 株式会社クボタ 灌水制御システム
JP2021191247A (ja) * 2020-06-05 2021-12-16 株式会社クボタ 潅水管理システム
JP2022068455A (ja) * 2020-10-22 2022-05-10 株式会社テヌート 栽培施設
US20220272917A1 (en) * 2019-08-06 2022-09-01 Aeropod Oy An aeroponic farming system and a method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306846A (ja) * 2006-05-18 2007-11-29 Ehime Univ 給液制御装置
WO2016194312A1 (ja) * 2015-06-02 2016-12-08 パナソニックIpマネジメント株式会社 水耕栽培装置
JP2020043780A (ja) * 2018-09-14 2020-03-26 株式会社クボタ 灌水制御システム
US20220272917A1 (en) * 2019-08-06 2022-09-01 Aeropod Oy An aeroponic farming system and a method
JP2021191247A (ja) * 2020-06-05 2021-12-16 株式会社クボタ 潅水管理システム
JP2022068455A (ja) * 2020-10-22 2022-05-10 株式会社テヌート 栽培施設

Similar Documents

Publication Publication Date Title
Peet et al. Greenhouse tomato production.
JP6276100B2 (ja) 農作物の成長観察システム
JP6870448B2 (ja) 栽培施設に用いる細霧冷房システムおよび細霧冷房方法
JP7154077B2 (ja) 灌水制御システム
KR102032499B1 (ko) 엽온에 따른 수분스트레스가 고려된 관수 제어 방법 및 이를 이용한 관수 제어 시스템
JP5233204B2 (ja) 植物栽培制御装置
CN108961909A (zh) 一种用以教学的智能化微型农场及其管理系统
WO2024062872A1 (ja) 潅水制御システム
WO2015107591A1 (ja) 水耕栽培装置
KR102308623B1 (ko) 수경재배 베드 및 뿌리 생장 정보를 이용한 수경재배 방법
JP7301022B2 (ja) 潅水管理システム
JP7471365B2 (ja) 潅水制御システム
JP6651191B1 (ja) 栽培支援システム、コントローラ及び制御方法
CN108513860A (zh) 一种立体种植食用菌的装置
JP6292700B1 (ja) 縦型水耕栽培における収量予測システム
WO2015107590A1 (ja) 水耕栽培装置
JP7442391B2 (ja) 潅水管理システム
JP2024046281A (ja) 潅水制御システム
KR20200051951A (ko) 다단식 식물재배장치
JP2019146501A (ja) 薬液噴霧システム及びその運転方法
JP6737130B2 (ja) 植物栽培設備
CN116910490B (zh) 农业大棚环境调节方法、装置、设备及介质
JP2020043779A (ja) 灌水制御システム
Hemming et al. Remote control of greenhouse cucumber production with artificial intelligence-results from the first international autonomous greenhouse challenge
JP2024046280A (ja) 潅水制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867996

Country of ref document: EP

Kind code of ref document: A1