WO2024062803A1 - 情報処理方法、情報処理装置、およびプログラム - Google Patents

情報処理方法、情報処理装置、およびプログラム Download PDF

Info

Publication number
WO2024062803A1
WO2024062803A1 PCT/JP2023/029466 JP2023029466W WO2024062803A1 WO 2024062803 A1 WO2024062803 A1 WO 2024062803A1 JP 2023029466 W JP2023029466 W JP 2023029466W WO 2024062803 A1 WO2024062803 A1 WO 2024062803A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile
information
moving
remote control
remotely
Prior art date
Application number
PCT/JP2023/029466
Other languages
English (en)
French (fr)
Inventor
優樹 松村
俊介 久原
稔也 新井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024062803A1 publication Critical patent/WO2024062803A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present disclosure relates to an information processing method, an information processing device, and a program that process information for remotely controlling a plurality of moving objects.
  • a remote control method in which an operator in a remote location monitors a moving object capable of autonomous driving, such as an automatic delivery robot, and operates it as necessary. This is useful in situations where the moving object cannot drive autonomously for some reason, such as when there is an obstacle in the moving object's path, by remotely operating the moving object, it is possible to continue services without having to rush to the site. Furthermore, by making it possible for one operator to monitor multiple moving objects with this remote control method, it is hoped that low-cost, highly efficient mobility services will be realized.
  • Patent Document 1 discloses a determination device that determines the timing to change a supervisor who monitors a plurality of moving objects based on the timing at which the status of one of the plurality of moving objects satisfies a predetermined condition. is disclosed.
  • a supervisor monitors multiple moving objects and operates one moving object in an emergency. If you are operating one moving object and need to operate another moving object, it is assumed that you will not be able to start the operation on the latter moving object and will leave it as is (hereinafter sometimes referred to as request abandonment). be done. With the technology described in Patent Document 1, it is possible to suppress requests from being left unattended by changing the monitoring of other moving bodies to other monitors.
  • Stopping control will be performed. This reduces the service efficiency of the mobile.
  • the present disclosure provides an information processing method and the like that can efficiently perform remote control of a plurality of moving objects.
  • An information processing method is an information processing method in an information processing device, and the information processing method is an information processing method for an information processing device, and the information processing method is an information processing method for an information processing device, which requires remote control among a plurality of moving objects, each of which is autonomously movable and capable of remote control.
  • a monitor who is in charge of remote monitoring of the first mobile body among the plurality of mobile bodies is in charge of remote monitoring and who is in charge of remote monitoring of the first mobile body among the plurality of mobile bodies acquiring mobile body information regarding one or more second mobile bodies, and determining whether or not to cause the supervisor to remotely control the first mobile body based on the remote control information and the mobile body information;
  • a notification is made based on a determination result as to whether or not the supervisor is to remotely control the first mobile body.
  • An information processing device provides remote control regarding remote control of a first moving object that requires remote control among a plurality of moving objects that are each movable autonomously and capable of remote control.
  • a remote operation information acquisition unit that acquires information, and a monitor who is in charge of remote monitoring of the first mobile body among the plurality of mobile bodies and who is in charge of remote monitoring and who is responsible for remote monitoring of one or more mobile bodies other than the first mobile body.
  • a mobile body information acquisition unit that acquires mobile body information regarding a second mobile body; and a mobile body information acquisition unit that determines whether or not to cause the supervisor to remotely control the first mobile body based on the remote control information and the mobile body information.
  • the monitor includes a determination unit, and a notification unit that provides notification based on a determination result of whether or not to allow the supervisor to remotely control the first mobile object.
  • a program according to one aspect of the present disclosure is a program for causing a computer to execute the above information processing method.
  • the system, method, integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM
  • the system, method, integrated circuit, computer program and a recording medium may be used in any combination.
  • the recording medium may be a non-temporary recording medium.
  • the information processing method and the like of the present disclosure can efficiently perform remote control of a plurality of moving bodies.
  • FIG. 1 is a diagram showing an example of the overall configuration of a remote control system in an embodiment.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the server device in the embodiment.
  • FIG. 3 is a diagram showing an example of the data structure of operator information in the embodiment.
  • FIG. 4 is a diagram showing an example of the data structure of a plurality of partitions in the embodiment.
  • FIG. 5 is a conceptual diagram showing an example of a risk map according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of the data structure of remote control information in the embodiment.
  • FIG. 7 is a block diagram showing an example of the functional configuration of a mobile object in the embodiment.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the operator terminal device in the embodiment.
  • FIG. 1 is a diagram showing an example of the overall configuration of a remote control system in an embodiment.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the server device in the embodiment.
  • FIG. 9 is a diagram showing an example of a monitoring and operation screen according to the embodiment.
  • FIG. 10 is a diagram showing another example of the monitoring/operation screen in the embodiment.
  • FIG. 11 is a diagram illustrating an example of a flowchart of processing executed by the server device in the embodiment.
  • FIG. 12 is a diagram illustrating an example of a flowchart of a process for acquiring the required time in the embodiment.
  • FIG. 13 is a diagram illustrating an example of a flowchart of a process for determining whether there is a risk in the embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same reference numerals are attached to the same constituent members.
  • an operator when an operator is able to remotely monitor a mobile object, he or she is confirming whether or not remote control of the mobile object is necessary, and is able to start remote control at the required timing. shows. If a request to another moving object is left unattended, for example, when the other moving object is unable to autonomously travel and is stuck in an intersection, it may impede traffic. On the other hand, in response to an operation request from another stationary moving object at the departure point or arrival point, when the operator needs to perform remote control such as confirming the safety of the surrounding area and instructing the vehicle to depart, leaving the request unattended is a traffic problem. is unlikely to be a hindrance.
  • the presence of a risk due to neglecting a request may be expressed as “risk”, and the absence of risk due to neglect of a request may be expressed as “no risk”. How long from the current time it is necessary to confirm that there is no risk depends on how much time the operator will spend responding to operation requests. This time may be called the required time. Operations on moving objects are not only those that take time, such as remote control using a steering wheel controller, but also those that require time to perform, such as instructing departure using a push button. Some decisions require time. For example, the required time includes both the time required for the above decision and the time required for the remote operation itself.
  • the remote monitoring performed by one operator may only be to check whether there are operation requests from a plurality of moving objects, and is not necessarily limited to checking with video or audio. Furthermore, one operator may be in charge of remote control of a plurality of moving objects.
  • FIG. 1 is a diagram showing an example of the overall configuration of a remote control system 1 in an embodiment.
  • the remote control system 1 is a system for remotely controlling a plurality of moving bodies M1 to Mm by a plurality of operators O1 to On.
  • the remote control system 1 includes a server device S capable of communicating with a plurality of mobile objects M1 to Mm, etc. via a network N, a plurality of mobile objects M1 to Mm, and a plurality of operator terminal devices D1 to Dn. , and a service system X.
  • the server device S is an example of an information processing device
  • each of the plurality of operators O1 to On is an example of a monitor.
  • Each of the plurality of mobile bodies M1 to Mm can move autonomously and can be remotely controlled.
  • each of the plurality of moving bodies M1 to Mm can be remotely controlled by any one of the plurality of operators O1 to On.
  • each of the plurality of mobile bodies M1 to Mm is equipped with a camera 201, a laser sensor 202, a GNSS (Global Navigation Satellite System) 203, an ECU (Electronic Control Unit) 21, and a communication module 22.
  • a camera 201 and a laser sensor 202 observe the surrounding situation of the moving object.
  • the GNSS 203 acquires position information of the mobile object.
  • the ECU 21 controls the autonomous running of the mobile object.
  • the communication module 22 communicates with the server device S using LTE (Long Term Evolution) or the like.
  • Each of the plurality of mobile objects M1 to Mm is, for example, a vehicle capable of autonomous travel, such as an automatic delivery robot or an unmanned bus.
  • the allocation of where the plurality of mobile objects M1 to Mm should be moved depends on the service provided. For example, an automatic delivery robot for an on-demand food delivery service must dispatch a vehicle to a product loading point or delivery point in response to a user's order.
  • vehicle allocation instructions are determined by the service system X for each service, and define an interface between the service system X and the server device S, and the service system Mm sends a vehicle allocation instruction as to where to move.
  • the plurality of operator terminal devices D1 to Dn are provided corresponding to the plurality of operators O1 to On, and are used for each of the plurality of operators O1 to On to remotely monitor all or part of the plurality of mobile bodies M1 to Mm. It is both a device and a device for remote control.
  • Each of the plurality of operator terminal devices D1 to Dn is connected to output devices such as a monitor 315 and a speaker 316, and input devices such as a handle controller 311, a push button 312, a keyboard 313, a mouse 314, and a microphone (see FIG. 8).
  • operator O1 is in charge of remote monitoring and remote operation of mobile bodies M1 to M4, operator O2 is in charge of remote monitoring and remote operation of mobile bodies M5 to M8, etc.
  • ⁇ On may share in advance the remote monitoring and remote operation of the plurality of mobile bodies M1 ⁇ Mm.
  • a plurality of operators O1 to On remotely monitor a plurality of mobile bodies M1 to Mm overlappingly, and one of the plurality of operators O1 to On performs an operation on one of the plurality of mobile bodies M1 to Mm. This may be done by the same operator.
  • the number of operators may be one.
  • the ECU 21 determines that the operator cannot take over the running control of the mobile body on which the ECU 21 is mounted (the mobile body on which the ECU 21 is mounted among the plurality of mobile bodies M1 to Mm)
  • It has an MRM (minimum risk maneuver) function that allows the moving object to stop at a safe location.
  • MRM minimum risk maneuver
  • which mobile body among the plurality of mobile bodies M1 to Mm each of the plurality of operators O1 to On is responsible for remote monitoring and remote control is determined by corresponding to the operator among the plurality of operator terminal devices D1 to Dn.
  • a user interface may be provided through the operator terminal device that allows the operator to freely select, and the operator himself may decide.
  • the server device S may decide who is in charge of remote monitoring and remote operation of each of the plurality of mobile bodies M1 to Mm from among the plurality of operators O1 to On.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the server device S in the embodiment.
  • the server device S includes a communication section 101, a mobile object information acquisition section 102, an operator information acquisition section 103, a risk map storage section 104, a remote operation information storage section 105, a first mobile object identification section 106, and a remote operation information acquisition section 102. It includes an operation information acquisition section 107, a determination section 108, an operation permission determination section 109, an operation request distribution section 110, a mobile information distribution section 111, a travel control information distribution section 112, and a vehicle allocation instruction distribution section 113.
  • the communication unit 101 is realized by a communication module or the like.
  • the section 111, the travel control information distribution section 112, and the vehicle allocation instruction distribution section 113 are realized by a processor or the like.
  • the risk map storage unit 104 and the remote operation information storage unit 105 are realized by a memory or the like.
  • the server device S is connected via a network N to a plurality of mobile objects M1 to Mm, a plurality of operator terminal devices D1 to Dn, and a service system X.
  • the communication unit 101 transmits and receives information to and from the plurality of mobile objects M1 to Mm, the plurality of operator terminal devices D1 to Dn, and the service system X via the network N.
  • the mobile information acquisition unit 102 acquires mobile information from among the information received by the communication unit 101.
  • the mobile object information is information regarding the plurality of mobile objects M1 to Mm.
  • the mobile body information transmitted from each of the plurality of mobile bodies M1 to Mm includes at least the presence or absence of a request for remote control of the mobile body, sensor data such as images and audio acquired by the mobile body, autonomous It includes information indicating surrounding obstacle data acquired by the mobile body for travel control, the position of the mobile body on a map, and the route the mobile body is scheduled to travel.
  • the operator information acquisition unit 103 acquires operator information from among the information received by the communication unit 101.
  • the operator information is information regarding a plurality of operators O1 to On.
  • the operator information includes a moving object list transmitted from each of the plurality of operator terminal devices D1 to Dn.
  • the mobile object list is selected by the operator corresponding to the operator terminal device from among the plurality of operators O1 to On on the UI provided by the operator terminal device, and is in charge of remote monitoring among the plurality of mobile objects M1 to Mm. This is a list of moving objects.
  • the operator information includes information indicating the mobile object and details of the remote control, if any among the plurality of mobile objects M1 to Mm is being remotely controlled.
  • the details of the remote operation are, for example, data indicating what kind of operation signal was received through which operation means, such as a steering wheel controller or a push button.
  • FIG. 3 is a diagram showing an example of the data structure of operator information in the embodiment.
  • the operator ID is an identifier for distinguishing among the plurality of operators O1 to On.
  • the mobile object ID is an identifier for distinguishing between the plurality of mobile objects M1 to Mm.
  • the mobile object ID in charge of remote monitoring indicates which of the plurality of mobile objects M1 to Mm the operator with the same operator ID in the table of FIG. 3 is in charge of remote monitoring among the plurality of operators O1 to On. Indicates whether the The mobile object ID being remotely operated indicates which mobile object among the plurality of mobile objects M1 to Mm is being remotely controlled by the operator with the same operator ID in the table of FIG. 3 among the plurality of operators O1 to On. .
  • the remote control signal is stored in a format that differs depending on the means of remote control. For example, if the means of remote control is a push button, whether or not the push button has been pressed (press p) is stored as 0 or 1. For example, if the operating means is a steering controller, the acceleration a and steering amount s for the travel control of the moving object are stored.
  • the risk map storage unit 104 stores a risk map.
  • a risk map divides a certain area on the map into multiple sections, and each section is classified as either a section with a risk due to neglecting a request (hereinafter referred to as a section with risk) or a section with no risk due to neglect of a request (hereinafter referred to as a section with risk).
  • a risk-free zone may mean a state in which remote control is not performed for each of the one or more second moving bodies.
  • one or more second mobile bodies are operated by an operator who is in charge of remote monitoring of a first mobile body that requires remote control among the plurality of mobile bodies M1 to Mm (a first mobile body among the plurality of operators O1 to On).
  • an operator responsible for remote monitoring of the body is responsible for remote monitoring and is one or more mobile bodies other than the first mobile body.
  • FIG. 4 is a diagram showing an example of the data structure of multiple sections in the embodiment.
  • the section ID is an identifier for distinguishing between multiple sections.
  • a section is defined as a rectangular area specified by four points on the map.
  • points on the map are stored in latitude and longitude.
  • the most northwest (northwestmost) point, the most northeasternmost point, the most southeastern point, and the most southeasternmost point define a parcel.
  • Altitude may be added to the point information on the map, and if the point is indoors, hierarchy may be added.
  • each section may be composed of a polygon having three or more points.
  • FIG. 5 is a conceptual diagram showing an example of a risk map in the embodiment.
  • sections at risk are indicated by rectangles with a diagonal pattern
  • sections without risk are indicated by rectangles with a dot pattern.
  • Risk areas and non-risk areas may be changed based on actual results.
  • a part of the roadway or sidewalk may be set as a risk-free section
  • another area of the roadway or sidewalk may be set as a risk section.
  • You may change the risk zone and risk-free zone depending on the time zone and date and time.
  • Risk and non-risk zones may change depending on the weather.
  • the remote control information storage unit 105 stores remote control information.
  • the remote control information is information related to remote control of the first moving body.
  • the remote control information includes the time required to remotely control the first moving body, and the necessary time includes the time required to determine the timing to remotely control the first moving body, and the time required to remotely control the first moving body. This includes the time required for remote control of the body.
  • the remote control information storage unit 105 distinguishes the remote control of the first mobile object by at least each combination of remote control means and section, and stores the required time for each combination.
  • FIG. 6 is a diagram showing an example of the data configuration of remote operation information in an embodiment.
  • the required time is differentiated according to a combination of a section ID and a remote operation means.
  • the required time for each remote operation ID is stored in seconds, with a value determined in advance verification as the initial value.
  • the value of the required time may be updated based on statistical estimation based on past performance.
  • the required time to be stored may be changed by text that allows the operator to understand the purpose of the remote operation, such as "depart after confirming safety", “attention", and "avoiding obstacles”.
  • the required time to be stored may be changed by sensor data as a means of grasping the surroundings of the first moving body in determining how the operator will perform remote operation or the timing of executing remote operation.
  • the required time to be stored may be changed by time zone and date and time.
  • the required time to be stored may be changed by weather.
  • the first mobile body identification unit 106 identifies the first mobile body that requires remote control based on the request information included in the mobile body information acquired by the mobile body information acquisition unit 102. For example, the first mobile body outputs request information for requesting remote control for the first mobile body, and the first mobile body specifying unit 106 acquires the request information output by the first mobile body and requests A first mobile object is identified based on the information.
  • the remote operation information acquisition unit 107 acquires remote operation information. For example, the remote operation information acquisition unit 107 predicts the means of remote operation depending on whether obstacle avoidance using the steering wheel controller is necessary based on the moving object information acquired by the moving object information acquisition unit 102, and The risk map is referenced from the position of the first moving object to specify the section where the first moving object is located, and the required time is obtained by referring to the remote operation information storage unit 105.
  • the determination unit 108 is in charge of remote monitoring of the first mobile body identified by the first mobile body identification unit 106 among the plurality of operators O1 to On from the operator information acquired by the operator information acquisition unit 103. Extract information about operators who are Then, the determination unit 108 determines whether one or more second mobile bodies included in the mobile body information of one or more second mobile bodies whose operator is in charge of remote monitoring among the plurality of mobile bodies M1 to Mm is Each of the one or more second mobile bodies is moved between the current time and the required time acquired by the remote operation information acquisition unit 107 from the respective positions and the scheduled travel routes of the one or more second mobile bodies. Estimate the partitions in which . Then, the determination unit 108 determines whether all the zones estimated by referring to the risk map are at risk or no risk.
  • the operation possibility determining unit 109 determines that remote operation of the first moving object is possible, and performs remote operation of the one or more second moving objects. When it is determined that there is a risk with respect to at least one second moving object among the bodies, it is determined that remote control of the first moving object is not possible.
  • the operation request distribution unit 110 transmits an operator terminal device (a plurality of operator terminal devices D1 to Dn) of an operator who performs remote operation among the plurality of operators O1 to On.
  • the operation request information is distributed to the operator terminal device (operator terminal device corresponding to the operator) via the communication unit 101.
  • the operation request distribution unit 110 is an example of a notification unit that provides notification based on a determination result as to whether or not to allow the operator to perform remote operation on the first mobile object.
  • the mobile object information distribution unit 111 transmits mobile objects for which each of the plurality of operators O1 to On is in charge of remote monitoring (among the plurality of mobile objects M1 to Mm, the mobile object for which the operator is in charge of remote monitoring);
  • Each of the plurality of operators O1 to On transmits the mobile object information of the mobile object being remotely operated (the mobile object being remotely controlled by the operator among the plurality of mobile objects M1 to Mm) to the respective operator terminal devices D1 to Dn. Deliver to.
  • the travel control information distribution unit 112 distributes the operation signal included in the operator information to the mobile object via the communication unit 101.
  • the dispatch instruction distribution unit 113 acquires dispatch instructions regarding where multiple mobile objects M1 to Mm should move, which are sent from the service system X among the information received by the communication unit 101, and distributes the dispatch instructions to the mobile objects via the communication unit 101.
  • the remote operation information acquisition unit 107 performs remote operation on the first mobile object that requires remote operation among the plurality of mobile objects M1 to Mm, each of which can move autonomously and can be remotely operated. Obtain remote control information about.
  • remote operation information acquisition section 107 acquires remote operation information stored in remote operation information storage section 105.
  • the mobile object information acquisition unit 102 also includes an operator who is in charge of remote monitoring of a first mobile object among the plurality of mobile objects M1 to Mm (an operator who is in charge of remote monitoring of the first mobile object among the plurality of operators O1 to On). ) is in charge of remote monitoring and obtains mobile object information regarding one or more second mobile objects other than the first mobile object.
  • the mobile object information acquisition unit 102 acquires the mobile object information from one or more second mobile objects.
  • the moving object information indicates the positions of each of the one or more second moving objects and the route each of the one or more second moving objects is scheduled to travel.
  • the determination unit 108 determines whether or not the operator is to perform remote operation on the first mobile body based on the remote operation information and the mobile body information.
  • the operation request distribution unit 110 makes a notification based on the determination result of whether or not to allow the operator to perform remote operation on the first mobile object. For example, the operation request distribution unit 110 makes the notification via the operator terminal device corresponding to the operator in charge of remote monitoring of the first mobile object among the plurality of operator terminal devices D1 to Dn.
  • the first mobile body outputs request information for requesting remote control of the first mobile body
  • the mobile body information acquisition unit 102 receives the request information output by the first mobile body.
  • the first moving object identifying unit 106 identifies the first moving object based on the request information.
  • the remote control information includes the necessary time required to remotely control the first moving body, and the necessary time is the time required to determine the timing to remotely control the first moving body. time, and the time required for remote control of the first moving object.
  • the required time is predetermined based on the means of remote control of the first moving body.
  • the required time is determined for each of the plurality of sections 1 to 21 in the area in which the first moving body moves and is divided into the plurality of sections 1 to 21 (the plurality of sections 1 to 21). 21) is determined in advance.
  • the required time is determined in advance based on at least one of the day when the first mobile object is to be remotely controlled, the time period when the first mobile object is to be remotely controlled, and the weather when the first mobile object is to be remotely controlled. It may be determined. For example, on a day or time when traffic is light, the required time may be set shorter, and on a day or time when traffic is heavy, the required time may be set longer. Further, for example, if the weather is such as sunny weather that makes it easy to perform remote control, the required time may be set to be shorter, and if the weather is such that it is difficult to perform remote control, such as rainy weather, the required time may be set to be longer.
  • the determination unit 108 determines whether there is a risk due to not performing remote operation for each of the one or more second mobile bodies based on the remote operation information and the mobile body information. If it is determined that there is no risk, it is determined that the operator is to remotely control the first moving object.
  • the determination unit 108 determines that: Determine that there is a risk. For example, the determination unit 108 determines whether each of the one or more second moving objects moves to a plurality of sections 1 to 22 during the required time based on the respective positions and scheduled travel routes of the one or more second moving objects. It is determined whether the area is located in a risk area.
  • each of the plurality of sections 1 to 21 in the area in which each of the one or more second moving objects moves and is divided by the plurality of sections 1 to 21. Whether or not it is a partition is set in advance.
  • whether or not a zone is at risk is determined by at least the day when the first mobile object is to be remotely controlled, the time of day when the first mobile object is to be remotely controlled, and the weather at the time when the first mobile object is to be remotely controlled. It may be predetermined based on one. For example, for a certain section among the plurality of sections 1 to 21, if it is a day or time when the traffic volume is low, it is determined that there is no risk, and if it is a day or time when the traffic volume is high, there is a risk. It may be defined as a division.
  • a certain section among the plurality of sections 1 to 21 has weather that makes remote control easy, such as sunny weather, it is determined as a risk-free section, and if the weather is difficult to perform remote control, such as rainy weather, then it is determined that there is no risk. , may be defined as a zone at risk.
  • the operation request distribution unit 110 when it is determined that the operator is to perform remote operation on the first mobile object, notifies the operator that the operator is to perform remote operation on the first mobile object. .
  • the operation request distribution unit 110 notifies the operator that the first mobile object is to be remotely operated by distributing the operation request to the operator.
  • the operation request distribution unit 110 issues a notification to the effect that the first moving object is to be stopped.
  • the operation request distribution unit 110 notifies the operator that the first moving body is to be stopped by distributing information to the operator that the first moving body is to be stopped.
  • FIG. 7 is a block diagram showing an example of the functional configuration of the mobile body M1 in the embodiment.
  • the mobile body M1 communicates with a camera 201 and a laser sensor 202 for observing surrounding conditions, a GNSS 203 for acquiring position information, an ECU 21 for controlling autonomous driving, and a server device S via a network N. It has a communication module 22.
  • the ECU 21 includes an acquisition section 211 , a detection section 212 , a self-position estimation section 213 , a judgment control section 214 , an operation request determination section 215 , and a moving object information output section 216 .
  • the communication module 22 receives travel control information such as dispatch instructions for where the mobile body M1 should move, operations by the operator, and operation of the MRM function from the server device S, and outputs it to the ECU 21.
  • travel control information such as dispatch instructions for where the mobile body M1 should move, operations by the operator, and operation of the MRM function from the server device S, and outputs it to the ECU 21.
  • the acquisition unit 211 acquires vehicle allocation instructions and travel control instructions from the communication module 22.
  • the detection unit 212 acquires sensor data from a camera 201 for observing the surroundings of the moving body M1, a laser sensor 202, a sound collecting microphone, etc., and detects surrounding obstacles.
  • the self-position estimation unit 213 estimates the position of the moving body M1 from at least the GNSS 203.
  • the determination control unit 214 determines the planned travel route based on the dispatch instruction from the communication module 22, the position of the mobile object M1 estimated by the self-position estimation unit 213, and information on surrounding obstacles detected by the detection unit 212, and determines the route to be traveled.
  • the acceleration/deceleration and steering of the moving body M1 are controlled, or the acceleration/deceleration, steering, etc. of the moving body M1 are controlled in accordance with travel control instructions from the communication module 22.
  • the operation request determination unit 215 determines to output an operation request when autonomous driving cannot be continued, such as when the vehicle stops for a certain period of time.
  • the mobile object information output unit 216 generates mobile object information including at least the presence or absence of an operation request, sensor data, surrounding obstacle data, the position of the mobile object, and the planned travel route, and outputs it to the communication module 22.
  • the communication module 22 receives mobile object information from the ECU 21 and transmits it to the server device S. Note that part or all of the mobile object information may be generated by the communication module 22.
  • Each of the plurality of mobile bodies M2 to Mm has the same configuration as the mobile body M1, so a detailed explanation will be omitted.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the operator terminal device D1 in the embodiment.
  • the operator terminal device D1 includes a communication section 301, an input reception section 302, a screen generation section 303, a UI control section 304, an operator information output section 305, a mobile information acquisition section 306, and an operation request detection section 307. has.
  • the communication unit 301 has a function of transmitting and receiving information with the server device S connected via the network N.
  • the input receiving unit 302 receives input from input devices such as the handle controller 311, push buttons 312, keyboard 313, and mouse 314 of the operator O1.
  • the screen generation unit 303 generates a login screen, a selection screen for a mobile body in charge of remote monitoring and a mobile body in charge of remote operation among the plurality of mobile bodies M1 to Mm, and a monitoring/operation screen in response to input from the operator O1. generate.
  • the UI control unit 304 controls output devices such as a monitor 315 and a speaker 316 in order to present the generated screen.
  • the operator information output unit 305 outputs operator information to the server device S via the communication unit 301, including at least the logged-in operator, the mobile object selected by the operator to monitor and operate, and the operation signal to the mobile object.
  • the screen generation section 303 uses the mobile object information acquired by the mobile object information acquisition section 306 when generating the monitoring/operation screen.
  • the mobile object information acquisition unit 306 acquires mobile object information of the mobile object that the operator O1 is responsible for remote monitoring (among the multiple mobile objects M1 to Mm, the mobile object that the operator O1 is responsible for remote monitoring) from the information received by the communication unit 301.
  • the operation request detection unit 307 detects whether or not there is a request for remote operation to the operator O1 from among the information received by the communication unit 301.
  • FIG. 9 is a diagram showing an example of a monitoring/operation screen in the embodiment.
  • FIG. 9 is an example of a monitoring/operation screen when operator O1 selects to be in charge of remote monitoring of mobile bodies M1 to M4.
  • the positions of the moving bodies and the planned travel routes included in the moving body information of the moving bodies M1 to M4 acquired by the moving body information acquisition unit 306 are displayed with a MAP icon and a line with an arrow.
  • the sensor data included in the moving body information of the moving body M1 is displayed as an image from a first-person viewpoint and the relative position with respect to an obstacle from an overhead viewpoint as a point group.
  • the moving objects M2 to M4 may also display images or point clouds at the same time.
  • the input reception unit 302 may accept the input and switch the moving object for displaying sensor data.
  • the moving object making the operation request can be distinguished from the icons of other moving objects. May be displayed.
  • FIG. 10 is a diagram showing another example of the monitoring/operation screen in the embodiment.
  • FIG. 10 is another example of the monitoring/operation screen when the operator O1 selects to be in charge of remote monitoring of the mobile bodies M1 to M4.
  • the server device S determines whether or not to have the operator O1 remotely operate the mobile body M1, and the server device S allows the operator O1 to remotely operate the mobile body M1. If it is determined that the remote control is possible, the server device S distributes a request for remote operation to the operator O1.
  • the operation request detection unit 307 of the operator terminal device D1 detects the remote operation request, the operator O1 notices the request and starts the operation by notifying the remote operation request in text in addition to the display shown in FIG. can.
  • the input reception unit 302 may not accept some operations until the operation request detection unit 307 detects a request for remote operation. This can prevent human errors due to unnecessary operational intervention.
  • the display may be switched to only that moving object. For example, when a plurality of moving objects are displayed at the same time, only camera images in front of each moving object may be displayed. When one moving object is displayed, more information about the moving object may be displayed, such as by displaying camera images of the moving object in all directions.
  • the display of other moving objects can be controlled without changing the display of multiple moving objects.
  • the displayed content may also be maintained in a state where it can be confirmed in the peripheral vision.
  • FIG. 11 is a diagram illustrating an example of a flowchart of processing executed by the server device S in the embodiment. Specifically, FIG. 11 is a flowchart showing an example of the overall process that is repeatedly executed by the server device S at regular intervals.
  • the mobile body information acquisition unit 102 acquires the latest mobile body information transmitted from the plurality of mobile bodies M1 to Mm among the information received by the communication unit 101 (S101).
  • the operator information acquisition unit 103 acquires the latest operator information transmitted from the plurality of operator terminal devices D1 to Dn from among the information received by the communication unit 101 (S102).
  • the first moving object identification unit 106 determines whether or not there is a first moving object (S103). For example, the first moving object identifying unit 106 determines whether or not there is a first moving object based on the presence or absence of an operation request included in the moving object information acquired in S101.
  • the first mobile body outputs request information for requesting remote control of the first mobile body.
  • the mobile object information acquisition unit 102 acquires request information output by the first mobile object.
  • the first moving object specifying section 106 determines that there is a first moving object when the moving object information obtaining section 102 obtains the request information. Then, if there is a first moving object, the first moving object identifying unit 106 identifies the first moving object based on the request information. Furthermore, when the first moving object identification unit 106 determines that there is no first moving object, the process ends.
  • the remote operation information acquisition unit 107 specifies which means of remote operation is required from the mobile object information acquired in S101, and refers to the remote operation information storage unit 105.
  • the necessary time is estimated (S104). Details of S104 will be described later.
  • the determination unit 108 extracts the operator information of the operator in charge of remote monitoring of the first mobile object among the plurality of operators O1 to On from the operator information acquired in S102 (S105).
  • the determining unit 108 determines whether there is a risk (S106). For example, the determination unit 108 determines that the operator extracted in S105 is in charge of remote monitoring of the positions and scheduled travel routes of each of the plurality of mobile objects M1 to Mm included in the mobile object information acquired in S101. Regarding the one or more second moving objects, the predicted position of the one or more second moving objects is estimated between the current time and the necessary time determined in S104. Next, when there is an operation request from any second mobile body at any timing between the current time and the required time, the determination unit 108 refers to the risk map and determines the predicted position of the second mobile body. Determine whether there is a risk or not. Details of S106 will be described later.
  • the operability determining unit 109 determines whether remote control of the first moving object is possible (S107). For example, if it is determined in S106 that there is no risk with respect to all of the one or more second moving objects, the operation permission determining unit 109 determines that the first moving object can be remotely operated (Yes in S107). On the other hand, if it is determined that there is a risk with respect to at least one second mobile object, the operation permission determining unit 109 determines that remote control of the first mobile object is not possible (No in S107), and ends the process. .
  • the operation request distribution unit 110 sends the operation request to the operator terminal device of the operator in charge of remote monitoring of the first mobile unit via the communication unit 101. is distributed (S108). Note that if it is determined in S107 that remote control of the first mobile object is not possible, the remote monitoring of the first mobile object is handed over to another operator, and the remote monitoring of one or more second mobile objects is transferred to another operator. It is conceivable to hand over the MRM control to the operator, or to instruct the first mobile object to perform MRM control as it is unable to respond to the operation request.
  • the travel control information distribution unit 112 instructs one or more second moving bodies to perform MRM control via the communication unit 101, assuming that the operator cannot respond to the operation request.
  • the determination control unit 214 of one or more second moving objects may automatically determine MRM control based on the elapsed time from the operation request.
  • the operation request distribution unit 110 distributes the operation request to the operator, thereby transmitting the operation request to the operator. A notification is given to the operator to remotely control the mobile object. Further, for example, if it is determined that the operator is not allowed to remotely control the first moving object (No in S107), the operation request distribution unit 110 sends information to the operator that the first moving object is to be stopped. By distributing the information, a notification to the effect that the first mobile object is to be stopped is provided.
  • FIG. 12 is a diagram illustrating an example of a flowchart of a process for acquiring the required time in the embodiment. Specifically, FIG. 12 is a flowchart illustrating an example of the process of S104. For example, this process is executed after the first moving object is identified in S103.
  • the remote operation information acquisition unit 107 acquires the mobile ID of the first mobile body and identifies the first mobile body (S201).
  • the mobile body ID of the first mobile body is expressed as m.
  • the remote operation information acquisition unit 107 extracts the position, planned travel route, and obstacle data included in the mobile body information of the first mobile body from the mobile body information acquired in S101 (S202).
  • the position included in the mobile body information of the first mobile body m is expressed as a coordinate point pm indicating latitude and longitude on a map, and the traveling direction is clockwise with north at 0 degrees. It is expressed by the direction ⁇ .
  • the planned travel route is expressed as a list of discrete map coordinates [w 1 m , . . . , w N m ] up to the arrival point.
  • the obstacle data is expressed as a distance d( ⁇ ) to the obstacle in the direction ⁇ , using a clockwise direction ⁇ with the traveling direction of the first moving body m being 0 degrees.
  • the azimuth resolution of the obstacle data is expressed as ⁇ .
  • the remote operation information acquisition unit 107 identifies in which section of the risk map the position of the first mobile object extracted in S202 exists (S203). Specifically, for example, it is possible to determine in which section the first moving object m is present by using a general intersection number determination. For example, if a horizontal line is extended from a point and the number of times it intersects the sides of the polygon is an odd number, it can be determined that the point is inside.
  • the section ID of the specified section is expressed as b m .
  • the remote control information acquisition unit 107 determines whether or not there is an obstacle on the planned driving route based on the planned driving route and the obstacle data extracted in S202 (S204).
  • the position information of the obstacle on the map is obtained by general coordinate system transformation.
  • Distance information between an obstacle and the planned route can be obtained from the general formula for the distance between a point and a straight line. Distance information is obtained using obstacle data from 0 degrees to 360 degrees with a resolution of ⁇ .
  • the distance is less than a threshold with more than a predetermined number of obstacle data, there is an obstacle on the planned route. It is determined that Note that after the first moving object arrives at w 1 m , where it will move next can be obtained from the line segment information from w 1 m to w s m , so the subsequent route can also be determined as described above. You may make a judgment.
  • the remote operation information acquisition unit 107 predicts the means of remote operation (S205). For example, when there is an obstacle, the remote control information acquisition unit 107 determines that the operator needs to avoid the obstacle, and predicts that the remote control means will be a steering wheel controller. Further, for example, when there is no obstacle, the remote operation information acquisition unit 107 predicts that the remote operation means will be a push button (S205).
  • the remote operation information acquisition unit 107 compares the risk map with the section where the moving object identified in S203 exists and the means of remote operation predicted in S205 and acquires the required time (S206).
  • the remote control information acquisition unit 107 acquires the mobile object ID of the first mobile object at m.
  • the remote operation information acquisition unit 107 determines the position included in the mobile body information of the first mobile body m as p m and the traveling direction ⁇ , and the planned traveling route as [w 1 m , . . . , w N m ] , obstacle data is extracted with resolution ⁇ and distance d( ⁇ ) in direction ⁇ .
  • the remote operation information acquisition unit 107 first acquires line segment information from p m to w 1 m .
  • the position information of the obstacle on the map is obtained from p m , the traveling direction ⁇ , and the obstacle data d( ⁇ ).
  • Distance information between the line segment information and obstacle position information is obtained using a general formula for points and straight lines.
  • distance information is obtained using obstacle data from 0 degrees to 360 degrees with a resolution of ⁇ , and when the distance is less than the threshold with more than a predetermined number of obstacle data, there is an obstacle on the planned route. It is determined that
  • the remote control information acquisition unit 107 determines that there is an obstacle in S204, it predicts that the remote control means will be a steering wheel controller in S205.
  • FIG. 13 is a diagram illustrating an example of a flowchart of a process for determining whether there is a risk in the embodiment. Specifically, FIG. 13 is a flowchart showing an example of the process of S106. For example, this process is executed next after the operator information of the operator in charge of remote monitoring of the first mobile object is extracted in S105. This process is executed for each operator.
  • the determination unit 108 obtains the required time estimated in S104 (S301). Specifically, for example, the obtained required time value (seconds) is expressed as ⁇ t.
  • the determination unit 108 acquires the positions and planned travel routes included in the operator information extracted in S105 for the one or more second mobile bodies in charge of remote monitoring included in the operator information.
  • a mobile body whose mobile body ID is m is expressed as a mobile body m.
  • the position included in the mobile body information of the mobile body m is expressed by a coordinate point p m indicating latitude and longitude on the map.
  • a planned travel route is expressed as a list of discrete map coordinates [w 1 m , . . . , w N m ] up to the arrival point.
  • the determination unit 108 estimates a section in which one or more second moving objects in charge of remote monitoring may exist within the required time ⁇ t from the current time (S303). Specifically, for example, the determination unit 108 determines which section includes the position p m and [w 1 m , ..., w N m ] of the moving object m.
  • the inside/outside determination can be performed using a general intersection number determination. For example, if a horizontal line is extended from a point and the number of intersections with the sides of a polygon is odd, it can be determined that the point is inside.
  • the determination result is expressed as a list of section IDs [b 0 m , ..., b N m ].
  • the coordinates that the moving body m can reach on the route it is scheduled to travel between the current time and the concentration time ⁇ t are determined.
  • the time required to reach w 1 m from position p m can be calculated using the following formula using the average speed v k of the moving object.
  • the time required to reach w n m from w n-1 m for n where 1 ⁇ n ⁇ N can be calculated using the following formula.
  • the average speed may be determined in advance for each moving body m. Further, different values may be determined for each route and section. Furthermore, traffic conditions, service conditions, etc. may be taken into consideration. Specifically, the traffic situation corresponds to a red light, a traffic jam, or the like. The service status corresponds to loading, unloading, refueling, etc. For example, the average speed may be adjusted depending on traffic conditions, service conditions, etc. Alternatively, additional time may be added depending on traffic conditions, service conditions, etc.
  • the time required from the current position to the farthest reaching point is added in order, and the farthest reaching point w x m that does not exceed ⁇ t is determined. At this time , by removing duplicate partition IDs from [b 0 m , .
  • the determination unit 108 determines whether there is a risk or no risk for each of the one or more second moving objects in all the estimated sections by referring to the risk map shown in FIG. 5 (S304). .
  • the determination unit 108 obtains the required time by ⁇ t.
  • the determination unit 108 determines the position included in the mobile body information of each mobile body m included in the set M of one or more second mobile body IDs as p m and the planned travel route as [w 1 m , ⁇ ..., w N m ].
  • the determination unit 108 determines, as a result of the above calculation, a section in which one or more second moving objects may exist between the current time and the concentration time ⁇ t, [1, 2, 5, 9, 15, 17] will be explained.
  • the set of mobile body IDs of the mobile bodies in charge of remote monitoring among the plurality of mobile bodies M1 to Mm is ⁇ 1, 2, 3 ⁇
  • the division of the route on which the mobile body M1 is scheduled to travel is ⁇ 1, 2, 3 ⁇ .
  • the section in which the moving body M1 can exist is [1, 2].
  • the sections where the moving body M2 can exist are [5, 9, 11, 10, 12]. 5,9].
  • the determination unit 108 refers to the risk map in FIG. 5 and determines that there is no risk for any of the moving objects M1 to M3 based on [1, 2, 5, 9, 15, 17].
  • priority may be given to mobile units that have a greater influence on service provision.
  • movement for loading and delivery takes priority over movement back to the base.
  • this can be realized by the service system X transmitting the priority to the server device S along with the vehicle dispatch instruction, and the server device S taking the priority into consideration when specifying the first mobile object in S103.
  • the remote monitoring of the first mobile object can be taken over by another operator, the remote monitoring of one or more second mobile objects can be taken over by another operator, or It instructs the first mobile object to perform MRM control because it cannot respond to the operation request.
  • the travel control information distribution unit 112 instructs the first moving body to perform MRM control via the communication unit 101, assuming that the operator cannot respond to the operation request.
  • the determination control unit 214 of the first moving body may automatically determine the MRM control based on the elapsed time from the operation request.
  • the information processing method is an information processing method in an information processing device (server device S).
  • remote operation information is acquired regarding remote operation of a first moving body that requires remote operation among a plurality of moving bodies M1 to Mm, each of which can move autonomously and be remotely controlled (S104).
  • a monitor in charge of remote monitoring the first moving body among the plurality of moving bodies M1 to Mm (an operator in charge of remote monitoring the first moving body among a plurality of operators O1 to On) acquires moving body information regarding one or more second moving bodies other than the first moving body that are in charge of remote monitoring (S101).
  • the first mobile body outputs request information for requesting remote control of the first mobile body, and acquires the request information output by the first mobile body ( S101), the first mobile object is identified based on the request information (S201).
  • the first moving object since the first moving object can be easily identified, remote control of the plurality of moving objects M1 to Mm can be performed more efficiently.
  • the remote control information includes the necessary time required to remotely control the first moving body, and the necessary time determines the timing to remotely control the first moving body. and the time required to remotely control the first mobile object.
  • the required time is predetermined based on the remote control means for the first moving body.
  • the required time is predetermined for each of the plurality of sections 1 to 21 in the area within which the first moving object moves and is divided into the plurality of sections 1 to 21. It will be done.
  • the required time is the day when the first mobile object is to be remotely controlled, the time period when the first mobile object is to be remotely controlled, and the time when the first moving object is to be remotely controlled. may be predetermined based on at least one of the weather conditions.
  • the information processing method it is determined whether there is a risk due to not performing remote control for each of the one or more second moving objects based on the remote control information and the moving object information ( S106), if it is determined that there is no risk, it is determined that the supervisor is to remotely control the first moving object (S107).
  • the supervisor can remotely control the first mobile object, so that the remote control of the plurality of mobile objects M1 to Mm can be performed more efficiently. can.
  • each of the one or more second moving objects moves within the range, and for each of the plurality of sections 1 to 21 in the area divided by the plurality of sections 1 to 21. , it is set in advance whether or not the section is at risk.
  • whether or not a section is at risk is determined based on the date on which the first mobile object is to be remotely controlled, the time period in which the first mobile object is to be remotely controlled, and the first mobile object.
  • the weather may be predetermined based on at least one of the weather conditions when remote control is performed.
  • the remote control information includes the necessary time required to remotely control the first moving body.
  • the required time includes the time required to determine the timing to remotely control the first moving object and the time required to remotely control the first moving object. Then, if at least one of the one or more second moving objects is located in a risky section among the plurality of sections 1 to 21 during the required time, it is determined that there is a risk (S106).
  • a notification is sent to the effect that the supervisor is to perform remote operation on the first mobile body (S108 ).
  • a notification to the effect that the first moving object is to be stopped is provided.
  • the information processing device includes a remote operation information acquisition unit 107, a mobile information acquisition unit 102, a determination unit 108, and a notification unit (operation request distribution unit 110).
  • the remote operation information acquisition unit 107 obtains remote operation information regarding the remote operation of a first mobile object that requires remote operation among the plurality of mobile objects M1 to Mm, each of which can move autonomously and can be remotely operated. get.
  • the mobile object information acquisition unit 102 includes a monitor in charge of remote monitoring of a first mobile object among the plurality of mobile objects M1 to Mm, and one or more second mobile objects other than the first mobile object. Obtain mobile information regarding.
  • the determination unit 108 determines whether or not the supervisor is to perform remote operation on the first mobile body based on the remote operation information and the mobile body information.
  • the notification unit (operation request distribution unit 110) performs notification based on the determination result of whether or not to allow the supervisor to perform remote operation on the first moving object.
  • the program according to the embodiment is a program for causing a computer to execute the above information processing method.
  • each component may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that implements the apparatus and the like of the embodiments described above is a program that causes a computer to execute each step included in the flowcharts shown in FIGS. 11 to 13.
  • the at least one device described above may be a computer system including a microprocessor, ROM, RAM, hard disk unit, display unit, keyboard, mouse, etc.
  • a computer program is stored in the RAM or hard disk unit.
  • the at least one device described above achieves its functions by the microprocessor operating according to a computer program.
  • the computer program may be configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • a part or all of the components constituting at least one of the above devices may be composed of one system LSI (Large Scale Integration).
  • a system LSI is a super-multifunctional LSI manufactured by integrating multiple components onto a single chip, and specifically, it is a computer system that includes a microprocessor, ROM, RAM, etc. .
  • a computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to a computer program.
  • An IC card or module is a computer system composed of a microprocessor, ROM, RAM, etc.
  • the IC card or module may include the above-mentioned super multifunctional LSI.
  • An IC card or module achieves its functions by a microprocessor operating according to a computer program. This IC card or this module may be tamper resistant.
  • the present disclosure may be used as the method described above. Also, a computer program for executing the method described above by a computer may be realized, or a digital signal consisting of the computer program may be realized.
  • a computer-readable recording medium on which a computer program or a digital signal is recorded may be realized.
  • Examples of computer-readable recording media include flexible disks, hard disks, CD (Compact Disc)-ROMs, DVDs, DVD-ROMs, DVD-RAMs, BDs (Blu-ray (registered trademark) Discs), and semiconductor memories. It's okay.
  • a computer program or a digital signal may be realized as a computer program or a digital signal recorded on these recording media.
  • the computer program or digital signal may be transmitted via a telecommunications line, a wireless or wired communication line, a network typified by the Internet, data broadcasting, etc.
  • computer programs or digital signals may be recorded on a recording medium and transferred, or transferred via a network, etc., so that the corresponding methods, etc., can be used by other independent computer systems. May be executed.
  • FIG. 1 An information processing method in an information processing device, which provides remote control for a first moving object that requires remote control among a plurality of moving objects that are each movable autonomously and capable of being remotely controlled.
  • a monitor who is in charge of remote monitoring of the first mobile body among the plurality of mobile bodies is in charge of remote monitoring and one or more second mobile bodies other than the first mobile body.
  • obtains moving body information regarding the first moving body determines whether or not to cause the supervisor to perform remote control on the first moving body based on the remote control information and the moving body information, and performs remote control on the first moving body.
  • An information processing method that provides notification based on a determination result of whether or not to have the supervisor perform the following.
  • the first mobile body outputs request information for requesting remote control of the first mobile body, acquires the request information output by the first mobile body, and applies the request information to the request information.
  • the remote control information includes the necessary time required to remotely control the first mobile body, and the necessary time is the time required to determine the timing to remotely control the first mobile body.
  • the information processing method according to technique 1 or 2 including time and time required for remote control of the first mobile object.
  • the remote control information includes the necessary time required to remotely control the first mobile body, and the necessary time is the time required to determine the timing to remotely control the first mobile body. time, and the time required for remote control of the first mobile body, and at least one of the one or more second mobile bodies is located in the risky zone among the plurality of zones during the required time.
  • the present disclosure can be used in a method of processing information for remotely controlling a mobile object, etc.
  • Remote control system 21 ECU 22 Communication module 101, 301 Communication section 102, 306 Mobile object information acquisition section 103 Operator information acquisition section 104 Risk map storage section 105 Remote operation information storage section 106 First mobile object identification section 107 Remote operation information acquisition section 108 Judgment section 109 Operation Possibility determining unit 110 Operation request distribution unit 111 Moving object information distribution unit 112 Traveling control information distribution unit 113 Vehicle allocation instruction distribution unit 201 Camera 202 Laser sensor 203 GNSS 211 Acquisition unit 212 Detection unit 213 Self-position estimation unit 214 Judgment control unit 215 Operation request determination unit 216 Mobile object information output unit 302 Input reception unit 303 Screen generation unit 304 UI control unit 305 Operator information output unit 307 Operation request detection unit 311 Handle Controller 312 Push button 313 Keyboard 314 Mouse 315 Monitor 316 Speaker D1, Dn Operator terminal device M1, Mm Mobile object N Network O1, On Operator S Server device X Service system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

情報処理方法は、情報処理装置における情報処理方法であって、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体(M1~Mm)のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得し(S104)、複数の移動体(M1~Mm)のうち第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得し(S101)、遠隔操作情報および移動体情報に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定し(S106)、第1移動体に対する遠隔操作を監視者に行わせるか否かの判定結果に基づいて通知を行う(S108)。

Description

情報処理方法、情報処理装置、およびプログラム
 本開示は、複数の移動体を遠隔管制するための情報を処理する情報処理方法、情報処理装置、およびプログラムに関する。
 自動配送ロボット等の自律的な走行が可能な移動体を、遠隔地にいるオペレータが監視し、必要に応じてオペレータが操作する遠隔管制方法がある。これは、移動体の進路に障害物がある等何らかの理由で当該移動体が自律走行できない状況において、当該移動体を遠隔から操作することで、現場への駆け付けなしにサービスを継続できることに役立つ。また、このような遠隔管制方法において、オペレータ1人あたり複数の移動体の監視を可能にすることで、低コストかつ高効率なモビリティサービスの実現が期待されている。
 特許文献1には、複数の移動体のうち、ある1台の移動体の状況が所定の条件を満たすタイミングに基づいて、複数の移動体を監視する監視者を変更するタイミングを決定する決定装置が開示されている。
特許第6679657号公報
 例えば、監視者は、複数の移動体を監視し、有事には一の移動体を操作する。一の移動体を操作中、他の移動体の操作が必要になった場合、後者の移動体への操作を開始できず放置してしまうこと(以降、要請放置と呼ぶ場合がある)が想定される。特許文献1に記載の技術では、他の移動体の監視を他の監視者に変更することで要請放置を抑制することが可能である。
 しかしながら、他の監視者も既に監視可能な上限台数の移動体を監視していること等によって他の移動体の監視を他の監視者に変更することが困難である場合、他の移動体の停車制御を行うことになる。これにより、移動体のサービス効率が低下する。
 そこで、本開示は、複数の移動体の遠隔管制を効率的に行わせることができる情報処理方法等を提供する。
 本開示の一態様に係る情報処理方法は、情報処理装置における情報処理方法であって、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得し、前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得し、前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定し、前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う。
 本開示の一態様に係る情報処理装置は、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得する遠隔操作情報取得部と、前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得する移動体情報取得部と、前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定する判定部と、前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う通知部とを備える。
 本開示の一態様に係るプログラムは、上記の情報処理方法をコンピュータに実行させるためのプログラムである。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROM等の記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。また、記録媒体は、非一時的な記録媒体であってもよい。
 本開示の情報処理方法等は、複数の移動体の遠隔管制を効率的に行わせることができる。
 なお、本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施の形態ならびに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
図1は、実施の形態における遠隔管制システムの全体構成の一例を示す図である。 図2は、実施の形態におけるサーバ装置の機能構成の一例を示すブロック図である。 図3は、実施の形態におけるオペレータ情報のデータ構成の一例を示す図である。 図4は、実施の形態における複数の区画のデータ構成の一例を示す図である。 図5は、実施の形態におけるリスクマップの一例を示す概念図である。 図6は、実施の形態における遠隔操作情報のデータ構成の一例を示す図である。 図7は、実施の形態における移動体の機能構成の一例を示すブロック図である。 図8は、実施の形態におけるオペレータ端末装置の機能構成の一例を示すブロック図である。 図9は、実施の形態における監視・操作画面の一例を示す図である。 図10は、実施の形態における監視・操作画面の他の一例を示す図である。 図11は、実施の形態におけるサーバ装置で実行される処理のフローチャートの一例を示す図である。 図12は、実施の形態における必要時間を取得する処理のフローチャートの一例を示す図である。 図13は、実施の形態におけるリスクがあるか否かを判定する処理のフローチャートの一例を示す図である。
 以下、実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 (実施の形態)
 (他の移動体の遠隔監視を引き継ぐことなく一の移動体を遠隔操作することの説明)
 まず、他の移動体への遠隔監視を引き継ぐことなく一の移動体を遠隔操作することの実現可能性について説明する。
 オペレータがある移動体を遠隔監視できている状態というのは、具体的には、その移動体への遠隔操作が必要か否かを確認していて、必要なタイミングでその遠隔操作を開始できる状態を示す。他の移動体に対する要請放置が、例えば、他の移動体が交差点内で自律走行ができずスタックしている状況で起こると交通の妨げとなり得る。一方で、出発地点または到着地点での停車中の他の移動体からの操作要請に対して、オペレータが周囲の安全を確認し発車を指示するような遠隔操作が必要なとき、要請放置が交通の妨げとなる可能性は低い。
 よって要請放置が発生したとしてもリスクがあるか否かは操作要請をした他の移動体の状況によって異なり、リスクがないのであれば、他の移動体の遠隔監視の引き継ぎおよび停車制御は不要である。よって、例えば、一のオペレータがある一の移動体を遠隔操作するにあたり、当該オペレータが遠隔監視中の他の移動体に対する要請放置によるリスクがないことを確認すればよい。
 以降、要請放置によるリスクがあることをリスクありと表現し、要請放置によるリスクがないことをリスクなしと表現する場合がある。現時刻からいつまでリスクなしであることを確認すればよいのかは、操作要請への対応にあたりどのくらいの時間オペレータがかかりきりになるのかに依存する。この時間を必要時間と呼ぶ場合がある。移動体への操作は、ハンドルコントローラを用いた遠隔操縦のように、操作自体に時間がかかるものだけでなく、プッシュボタンを用いた発車指示のように、操作自体は一瞬だがそれをいつ実行するかの決定に時間を要するものもある。例えば、必要時間は、上記の決定にかかる時間および遠隔操作自体にかかる時間いずれも含む。
 例えば、一のオペレータが複数の移動体を遠隔監視中、一の移動体からの操作要請を受けたとき、その操作要請に対する遠隔操作の必要時間の間での他の移動体の状況変化が予測される。そして、必要時間の間における任意のタイミングでいずれかの他の移動体から操作要請があった場合にリスクありかリスクなしかが判断される。そして、常にリスクなしと判定したとき、他の移動体の遠隔監視を他のオペレータに引き継ぐことなく一の移動体の遠隔操作をオペレータに行わせることが可能である。
 なお、一のオペレータが行う遠隔監視は、複数の移動体からの操作要請の有無を確認することだけでもよく、必ずしも映像又は音声等で確認を行うことに限定されない。また、一のオペレータが複数の移動体の遠隔操作を担当してもよい。
 (遠隔管制システムの説明)
 図1は、実施の形態における遠隔管制システム1の全体構成の一例を示す図である。
 遠隔管制システム1は、複数のオペレータO1~Onで複数の移動体M1~Mmを遠隔管制するためのシステムである。図1に示すように、遠隔管制システム1は、ネットワークNを介して複数の移動体M1~Mm等と通信可能なサーバ装置S、複数の移動体M1~Mm、複数のオペレータ端末装置D1~Dn、およびサービスシステムXを備える。本実施の形態では、サーバ装置Sは情報処理装置の一例であり、複数のオペレータO1~Onのそれぞれは監視者の一例である。
 複数の移動体M1~Mmのそれぞれは、自律して移動可能であり、遠隔操作が可能である。本実施の形態では、複数の移動体M1~Mmのそれぞれは、複数のオペレータO1~Onのいずれかによって遠隔操作されることが可能である。
 例えば、複数の移動体M1~Mmのそれぞれは、カメラ201、レーザーセンサ202、GNSS(Global Navigation Satellite System)203、ECU(Electronic Control Unit)21、および通信モジュール22を搭載する(図7)。カメラ201およびレーザーセンサ202は、当該移動体の周囲状況を観測する。GNSS203は、当該移動体の位置情報を取得する。ECU21は、当該移動体の自律走行を制御する。通信モジュール22は、サーバ装置SとLTE(Long Term Evolution)等で通信する。複数の移動体M1~Mmのそれぞれは、例えば、自動配送ロボットまたは無人バス等、自律走行可能な車両である。
 複数の移動体M1~Mmをどこに移動させるべきかの配車は提供サービスに依る。例えば、オンデマンド型のフードデリバリーサービスの自動配送ロボットであれば、ユーザからの注文に合わせ、商品の積み込み地点、あるいは、受け渡し地点への配車が必要である。このような配車の指示はサービス毎のサービスシステムXで決定され、サービスシステムXとサーバ装置Sとの間でのインタフェースを定義し、サービスシステムXはサーバ装置Sを介して複数の移動体M1~Mmがどこに移動すべきかの配車の指示を送信する。
 複数のオペレータ端末装置D1~Dnは、複数のオペレータO1~Onに対応して設けられ、複数のオペレータO1~Onがそれぞれ複数の移動体M1~Mmの全てあるいは一部を、遠隔監視するための装置であるとともに、遠隔操作するための装置である。複数のオペレータ端末装置D1~Dnのそれぞれは、モニタ315およびスピーカ316等の出力機器、ならびに、ハンドルコントローラ311、プッシュボタン312、キーボード313、マウス314、およびマイク等の入力機器と接続される(図8)。
 遠隔管制の運用形態として、例えば、オペレータO1が移動体M1~M4の遠隔監視および遠隔操作を担当し、オペレータO2が移動体M5~M8の遠隔監視および遠隔操作を担当する等、複数のオペレータO1~Onが複数の移動体M1~Mmの遠隔監視および遠隔操作を予め分担してもよい。あるいは、複数のオペレータO1~Onが複数の移動体M1~Mmを重複して遠隔監視し、複数の移動体M1~Mmのうち一の移動体への操作は複数のオペレータO1~Onのうちいずれかのオペレータが行ってもよい。
 なお、オペレータは1人であってもよい。この場合、例えば、ECU21は、当該ECU21が搭載されている移動体(複数の移動体M1~Mmのうち当該ECU21が搭載されている移動体)の走行制御をオペレータが引き継げないと判断したとき、当該移動体を安全な位置で停車させるようなMRM(ミニマム・リスク・マヌーバー)機能を有している。複数のオペレータO1~Onのそれぞれが複数の移動体M1~Mmのうちどの移動体の遠隔監視および遠隔操作を担当するかは、例えば、複数のオペレータ端末装置D1~Dnのうち当該オペレータに対応するオペレータ端末装置を介して当該オペレータが自由に選択できるようなユーザインタフェース(UI)を提供し、当該オペレータ自身が決定してもよい。また、例えば、サーバ装置Sで、複数のオペレータO1~Onのうちから複数の移動体M1~Mmのそれぞれの遠隔監視および遠隔操作の担当を決定してもよい。
 (遠隔管制システムを構成する各機器の説明)
 (サーバ装置)
 図2は、実施の形態におけるサーバ装置Sの機能構成の一例を示すブロック図である。
 サーバ装置Sは、通信部101と、移動体情報取得部102と、オペレータ情報取得部103と、リスクマップ記憶部104と、遠隔操作情報記憶部105と、第1移動体特定部106と、遠隔操作情報取得部107と、判定部108と、操作可否決定部109と、操作依頼配信部110と、移動体情報配信部111と、走行制御情報配信部112と、配車指示配信部113とを有する。例えば、通信部101は、通信モジュール等によって実現される。また、移動体情報取得部102とオペレータ情報取得部103と第1移動体特定部106と遠隔操作情報取得部107と判定部108と操作可否決定部109と操作依頼配信部110と移動体情報配信部111と走行制御情報配信部112と配車指示配信部113とは、プロセッサ等によって実現される。また、リスクマップ記憶部104と遠隔操作情報記憶部105とは、メモリ等によって実現される。
 サーバ装置Sは、複数の移動体M1~Mm、複数のオペレータ端末装置D1~Dn、およびサービスシステムXと、ネットワークNを介して接続される。
 通信部101は、ネットワークNを介して、複数の移動体M1~Mm、複数のオペレータ端末装置D1~Dn、およびサービスシステムXとの情報の送受信を行う。
 移動体情報取得部102は、通信部101が受信する情報のうち移動体情報を取得する。移動体情報は、複数の移動体M1~Mmに関する情報である。例えば、移動体情報は、複数の移動体M1~Mmのそれぞれから送信される、少なくとも、当該移動体に対する遠隔操作の要請の有無、当該移動体によって取得された画像および音声等のセンサデータ、自律走行制御のために当該移動体で取得される周囲の障害物データ、当該移動体の地図上の位置、および当該移動体の走行予定の経路を示す情報を含む。
 オペレータ情報取得部103は、通信部101が受信する情報のうちオペレータ情報を取得する。オペレータ情報は、複数のオペレータO1~Onに関する情報である。例えば、オペレータ情報は、複数のオペレータ端末装置D1~Dnのそれぞれから送信される移動体リストを含む。当該移動体リストは、当該オペレータ端末装置が提供するUI上で複数のオペレータO1~Onのうち当該オペレータ端末装置に対応するオペレータにより選択された、複数の移動体M1~Mmのうち遠隔監視を担当している移動体のリストである。さらに、例えば、オペレータ情報は、複数の移動体M1~Mmのうち遠隔操作中の移動体があればその移動体と遠隔操作の詳細とを示す情報を含む。遠隔操作の詳細は、例えば、ハンドルコントローラ、プッシュボタン等のどの操作手段を通じてどのような操作信号を受け付けたのかを示すデータである。
 図3は、実施の形態におけるオペレータ情報のデータ構成の一例を示す図である。オペレータIDは、複数のオペレータO1~Onを区別するための識別子である。移動体IDは、複数の移動体M1~Mmを区別するための識別子である。遠隔監視を担当している移動体IDは、複数のオペレータO1~Onのうち図3の表における同列のオペレータIDのオペレータが複数の移動体M1~Mmのうちどの移動体の遠隔監視を担当しているかを示す。遠隔操作中の移動体IDは、複数のオペレータO1~Onのうち図3の表における同列のオペレータIDのオペレータが複数の移動体M1~Mmのうちどの移動体の遠隔操作を行っているかを示す。
 遠隔操作信号は、遠隔操作の手段によって異なるフォーマットで格納する。例えば、遠隔操作の手段がプッシュボタンであれば、プッシュボタンを押下したか否か(押下p)を0か1で格納する。例えば、操作手段がハンドルコントローラであれば、移動体の走行制御に対して、加速度aおよび操舵量sを格納する。
 図2に戻って、リスクマップ記憶部104は、リスクマップを記憶する。リスクマップは、地図上の一定の領域を複数の区画に区分し、区画毎に、要請放置によるリスクがある区画(以降、リスクありの区画)であるか、要請放置によるリスクがない区画(以降、リスクなしの区画)であるかを示す地図である。ここで、要請放置は、具体的には、1つ以上の第2移動体のそれぞれに対する遠隔操作を行わない状態を意味し得る。また、1つ以上の第2移動体は、複数の移動体M1~Mmのうち遠隔操作を必要とする第1移動体の遠隔監視を担当するオペレータ(複数のオペレータO1~Onのうち第1移動体の遠隔監視を担当するオペレータ)が遠隔監視を担当しかつ第1移動体以外の1つ以上の移動体である。
 図4は、実施の形態における複数の区画のデータ構成の一例を示す図である。区画IDは、複数の区画を区別するための識別子である。ここでは、区画は、地図上の4点で特定される矩形領域で定義する。ここでは、地図上の点は、緯度、および経度で格納する。最北西(最も北西にある)点、最北東点、最南西点、および最南東点で1つの区画を定義する。地図上の点情報に、標高を加えてもよいし、屋内であれば階層を加えてもよい。なお、区画を、3点以上の多角形で構成してもよい。
 図5は、実施の形態におけるリスクマップの一例を示す概念図である。ここでは、リスクありの区画は、斜線パターンを付した矩形で示され、リスクなしの区画は、ドットパターンを付した矩形で示される。リスクありの区画およびリスクなしの区画は、実績を踏まえて変更してもよい。複数の移動体M1~Mmのそれぞれが車道または歩道を片側走行する場合、車道または歩道の一部をリスクなしの区画とし、車道または歩道の他の領域をリスクありの区画としてもよい。時間帯および日時でリスクありの区画およびリスクなしの区画を変更してもよい。天候によってリスクありの区画およびリスクなしの区画を変更してもよい。
 図2に戻って、遠隔操作情報記憶部105は、遠隔操作情報を記憶する。遠隔操作情報は、第1移動体に対する遠隔操作に関する情報である。例えば、遠隔操作情報は、第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、必要時間は、第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、第1移動体に対する遠隔操作にかかる時間とを含む。遠隔操作情報記憶部105は、第1移動体への遠隔操作を少なくとも遠隔操作の手段と区画との組み合わせ毎で区別し、各組み合わせの必要時間を記憶する。
 図6は、実施の形態における遠隔操作情報のデータ構成の一例を示す図である。区画IDと遠隔操作の手段との組み合わせによって必要時間を区別する。各遠隔操作IDの必要時間は、事前の検証で求めた値を初期値として秒数で記憶する。実績に基づく統計的推測に基づいて必要時間の値を更新してもよい。なお、安全確認後発車、注意喚起、障害物回避といったオペレータがその遠隔操作の目的を理解できるようなテキストによって、記憶する必要時間を変更してもよい。オペレータがどのように遠隔操作するか、あるいは、遠隔操作の実行タイミングを判断するうえで第1移動体の周囲を把握する手段として、センサデータによって記憶する必要時間を変更してもよい。時間帯および日時で記憶する必要時間を変更してもよい。天候によって記憶する必要時間を変更してもよい。
 第1移動体特定部106は、移動体情報取得部102が取得する移動体情報に含まれる要請情報に基づいて、遠隔操作を必要とする第1移動体を特定する。例えば、第1移動体は、第1移動体に対する遠隔操作を要請するための要請情報を出力し、第1移動体特定部106は、第1移動体によって出力された要請情報を取得し、要請情報に基づいて第1移動体を特定する。
 遠隔操作情報取得部107は、遠隔操作情報を取得する。例えば、遠隔操作情報取得部107は、移動体情報取得部102が取得する移動体情報からハンドルコントローラによる障害物回避が必要か否かで遠隔操作の手段を予測し、移動体情報に含まれる第1移動体の位置からリスクマップを参照して第1移動体が位置している区画を特定し、遠隔操作情報記憶部105を参照して必要時間を取得する。
 図2に戻って、判定部108は、オペレータ情報取得部103が取得するオペレータ情報から、複数のオペレータO1~Onのうち第1移動体特定部106で特定した第1移動体の遠隔監視を担当しているオペレータの情報を抽出する。そして、判定部108は、複数の移動体M1~Mmのうちそのオペレータが遠隔監視を担当している1つ以上の第2移動体の移動体情報に含まれる1つ以上の第2移動体のそれぞれの位置、および1つ以上の第2移動体のそれぞれの走行予定の経路から、現時刻から遠隔操作情報取得部107が取得した必要時間の間に、1つ以上の第2移動体のそれぞれが存在し得る区画を推定する。そして、判定部108は、リスクマップを参照して推定した全区画に対してリスクありの区画であるかリスクなしの区画であるかを判定する。
 操作可否決定部109は、判定部108で1つ以上の第2移動体全てに関してリスクなしと判定したとき、第1移動体に対する遠隔操作が可能であると決定し、1つ以上の第2移動体のうち少なくとも1つの第2移動体に関してリスクありと判定したとき第1移動体に対する遠隔操作が不可であると決定する。
 操作依頼配信部110は、操作可否決定部109で遠隔操作が可能であると決定したとき、複数のオペレータO1~Onのうち遠隔操作を行うオペレータのオペレータ端末装置(複数のオペレータ端末装置D1~Dnのうち当該オペレータに対応するオペレータ端末装置)に通信部101を介して操作依頼情報を配信する。操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせるか否かの判定結果に基づいて通知を行う通知部の一例である。
 移動体情報配信部111は、複数のオペレータO1~Onのそれぞれが遠隔監視を担当している移動体(複数の移動体M1~Mmのうち当該オペレータが遠隔監視を担当している移動体)、および、複数のオペレータO1~Onのそれぞれが遠隔操作中の移動体(複数の移動体M1~Mmのうち当該オペレータが遠隔操作中の移動体)の移動体情報を各々のオペレータ端末装置D1~Dnに配信する。
 走行制御情報配信部112は、通信部101を介してオペレータ情報に含まれる操作信号を当該移動体に配信する。
 配車指示配信部113は、通信部101が受信する情報のうちサービスシステムXから送信される、複数の移動体M1~Mmがどこに移動すべきかの配車指示を取得し、通信部101を介して当該移動体に配車指示を配信する。
 このように、遠隔操作情報取得部107は、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体M1~Mmのうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得する。本実施の形態では、遠隔操作情報取得部107は、遠隔操作情報記憶部105に記憶されている遠隔操作情報を取得する。
 また、移動体情報取得部102は、複数の移動体M1~Mmのうち第1移動体の遠隔監視を担当するオペレータ(複数のオペレータO1~Onのうち第1移動体の遠隔監視を担当するオペレータ)が遠隔監視を担当しかつ第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得する。本実施の形態では、移動体情報取得部102は、1つ以上の第2移動体から当該移動体情報を取得する。例えば、当該移動体情報は、1つ以上の第2移動体のそれぞれの位置、および1つ以上の第2移動体のそれぞれの走行予定の経路を示す。
 また、判定部108は、遠隔操作情報および移動体情報に基づいて第1移動体に対する遠隔操作をオペレータに行わせるか否かを判定する。
 また、操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせるか否かの判定結果に基づいて通知を行う。例えば、操作依頼配信部110は、複数のオペレータ端末装置D1~Dnのうち第1移動体の遠隔監視を担当するオペレータに対応するオペレータ端末装置を介して、当該通知を行う。
 また、本実施の形態では、第1移動体は、第1移動体に対する遠隔操作を要請するための要請情報を出力し、移動体情報取得部102は、第1移動体によって出力された要請情報を取得し、第1移動体特定部106は、要請情報に基づいて第1移動体を特定する。
 また、本実施の形態では、遠隔操作情報は、第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、必要時間は、第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、第1移動体に対する遠隔操作にかかる時間とを含む。
 また、本実施の形態では、必要時間は、第1移動体に対する遠隔操作の手段に基づいて予め定められる。
 また、本実施の形態では、必要時間は、その範囲内において第1移動体が移動しかつ複数の区画1~21に区分される領域における複数の区画1~21毎に(複数の区画1~21のそれぞれについて)予め定められる。
 なお、必要時間は、第1移動体に対する遠隔操作を行う日、第1移動体に対する遠隔操作を行う時間帯、および第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められてもよい。例えば、交通量が少ない日または時間帯であれば、必要時間は短めに定められ、交通量が多い日または時間帯であれば、必要時間は長めに定められてもよい。また、例えば、晴天等の遠隔操作がし易い天候であれば、必要時間は短めに定められ、雨天等の遠隔操作がし難い天候であれば、必要時間は長めに定められてもよい。
 また、本実施の形態では、判定部108は、遠隔操作情報および移動体情報に基づいて1つ以上の第2移動体のそれぞれに対する遠隔操作を行わないことによるリスクがあるか否かを判定し、リスクがないと判定した場合には第1移動体に対する遠隔操作をオペレータに行わせると判定する。
 具体的には、本実施の形態では、判定部108は、1つ以上の第2移動体の少なくとも1つが必要時間の間に複数の区画1~21のうちリスクがある区画に位置する場合、リスクがあると判定する。例えば、判定部108は、1つ以上の第2移動体のそれぞれの位置と走行予定の経路に基づいて、1つ以上の第2移動体のそれぞれが必要時間の間に複数の区画1~21のうちリスクがある区画に位置するか否かを判定する。
 また、本実施の形態では、その範囲内において1つ以上の第2移動体のそれぞれが移動しかつ複数の区画1~21で区分される領域における複数の区画1~21毎に、リスクがある区画であるか否かが予め設定される。
 なお、リスクがある区画であるか否は、第1移動体に対する遠隔操作を行う日、第1移動体に対する遠隔操作を行う時間帯、および第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められてもよい。例えば、複数の区画1~21のうちのある区画について、交通量が少ない日または時間帯であれば、リスクがない区画として定められ、交通量が多い日または時間帯であれば、リスクがある区画として定められてもよい。また、例えば、複数の区画1~21のうちのある区画について、晴天等の遠隔操作がし易い天候であれば、リスクがない区画として定められ、雨天等の遠隔操作がし難い天候であれば、リスクがある区画として定められてもよい。
 また、本実施の形態では、操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせると判定された場合、第1移動体に対する遠隔操作をオペレータに行わせる旨の通知を行う。たとえば、操作依頼配信部110は、操作依頼をオペレータに対して配信することによって、第1移動体に対する遠隔操作をオペレータに行わせる旨の通知を行う。
 また、本実施の形態では、操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせないと判定された場合、第1移動体を停止させる旨の通知を行う。たとえば、操作依頼配信部110は、第1移動体を停止させる旨の情報をオペレータに対して配信することによって、第1移動体を停止させる旨の通知を行う。
 (移動体)
 図7は、実施の形態における移動体M1の機能構成の一例を示すブロック図である。
 移動体M1は、周囲状況を観測するためのカメラ201およびレーザーセンサ202、位置情報を取得するためのGNSS203、自律走行を制御するためのECU21、ならびにサーバ装置SとネットワークNを介して通信するための通信モジュール22を有する。
 ECU21は、取得部211と、検知部212と、自己位置推定部213と、判断制御部214と、操作要請決定部215と、移動体情報出力部216とを有する。
 通信モジュール22は、サーバ装置Sから移動体M1がどこに移動すべきかの配車指示、オペレータによる操作およびMRM機能の動作等の走行制御情報を受信し、ECU21に出力する。
 取得部211は、通信モジュール22から配車指示、および走行制御指示を取得する。
 検知部212は、移動体M1の周囲を観測するためのカメラ201、レーザーセンサ202、および集音マイク等からセンサデータを取得し、周囲の障害物を検知する。
 自己位置推定部213は、少なくともGNSS203から移動体M1の位置を推定する。
 判断制御部214は、通信モジュール22からの配車指示と自己位置推定部213が推定する移動体M1の位置と検知部212が検知する周囲の障害物の情報から走行予定の経路を判断し、移動体M1の加減速および操舵を制御する、あるいは、通信モジュール22からの走行制御指示に従って移動体M1の加減速および操舵等を制御する。
 操作要請決定部215は、一定時間停止する等自律走行が継続できない場合に操作要請を出力することを決定する。
 移動体情報出力部216は、少なくとも操作要請の有無、センサデータ、周囲の障害物データ、移動体の位置、および走行予定の経路を含む移動体情報を生成し通信モジュール22に出力する。
 通信モジュール22は、ECU21から移動体情報を受け付けサーバ装置Sに送信する。なお、移動体情報の一部またはすべてを通信モジュール22で生成してもよい。
 複数の移動体M2~Mmのそれぞれは、移動体M1と同様の構成であるので、詳細な説明を省略する。
 (オペレータ端末装置)
 図8は、実施の形態におけるオペレータ端末装置D1の機能構成の一例を示すブロック図である。オペレータ端末装置D1は、通信部301と、入力受付部302と、画面生成部303と、UI制御部304と、オペレータ情報出力部305と、移動体情報取得部306と、操作依頼検出部307とを有する。
 通信部301は、ネットワークNを介して接続されるサーバ装置Sとの情報の送受信機能を有する。
 入力受付部302は、オペレータO1のハンドルコントローラ311、プッシュボタン312、キーボード313、およびマウス314等の入力機器からの入力を受け付ける。
 画面生成部303は、オペレータO1の入力に応じてログイン画面、複数の移動体M1~Mmのうち遠隔監視を担当する移動体および遠隔操作を担当する移動体の選択画面、および監視・操作画面を生成する。
 UI制御部304は、生成した画面を提示するために、モニタ315およびスピーカ316等の出力機器を制御する。
 オペレータ情報出力部305は、通信部301を介して少なくともログインしたオペレータ、そのオペレータが選択した監視・操作する移動体、移動体への操作信号を含むオペレータ情報をサーバ装置Sに出力する。なお、画面生成部303は、監視・操作画面を生成するうえで、移動体情報取得部306が取得する移動体情報を用いる。
 移動体情報取得部306は、通信部301が受信する情報のうち、オペレータO1が遠隔監視を担当する移動体(複数の移動体M1~MmのうちオペレータO1が遠隔監視を担当する移動体)の移動体情報を取得する。
 操作依頼検出部307は、通信部301が受信する情報のうち、オペレータO1への遠隔操作の依頼があるか否か検出する。
 図9は、実施の形態における監視・操作画面の一例を示す図である。具体的には、図9は、オペレータO1が移動体M1~M4の遠隔監視を担当することを選択した場合の監視・操作画面の一例である。移動体情報取得部306が取得する移動体M1~M4の移動体情報に含まれる移動体の位置、および走行予定の経路をMAPのアイコンと矢印付きの線で表示する。移動体M1の移動体情報に含まれるセンサデータを一人称視点での映像および俯瞰視点で障害物との相対位置を点群で表示する。
 移動体M2~M4も同時に映像や点群による表示を実施してもよい。キーボード313およびマウス314でMAP中の移動体のアイコンを選択すると入力受付部302が入力を受け付けてセンサデータを表示する移動体を切り替えてもよい。また、操作要請を行っている移動体のアイコンを他の移動体のアイコンとは別の色にすること等によって、操作要請を行っている移動体が、他の移動体のアイコンとは区別して表示されてもよい。
 図10は、実施の形態における監視・操作画面の他の一例を示す図である。具体的には、図10は、オペレータO1が移動体M1~M4の遠隔監視を担当することを選択した場合の監視・操作画面の他の一例である。例えば、移動体M1が操作要請を行うと、サーバ装置Sが移動体M1の遠隔操作をオペレータO1に行わせるか否かを判定し、サーバ装置Sが移動体M1の遠隔操作をオペレータO1に行わせると判定した場合、サーバ装置Sは遠隔操作の依頼をオペレータO1に対して配信する。オペレータ端末装置D1の操作依頼検出部307がその遠隔操作の依頼を検出したとき、図9の表示に加えて遠隔操作の依頼をテキストで通知することでオペレータO1は当該依頼に気付き、操作を開始できる。
 なお、操作依頼検出部307が遠隔操作の依頼を検出するまで、入力受付部302で一部の操作を受け付けないようにしてもよい。これにより不要な操作介入によるヒューマンエラーを防ぐことができる。
 また、同時に映像又は点群で複数の移動体の表示が行われている場合において、いずれかの移動体から操作要請があれば、その移動体だけの表示に切り替えが行われてもよい。例えば、同時に複数の移動体の表示が行われる場合、各移動体の前方のカメラ映像のみが表示されてもよい。そして、1つの移動体の表示が行われる場合、当該移動体の全方向のカメラ映像が表示される等によって、当該移動体のより多くの情報が表示されてもよい。
 逆に、1つの移動体の遠隔操作を実行するうえで、複数の移動体の表示で十分な情報量が得られていれば、複数の移動体の表示を変えずに、他の移動体の表示内容も周辺視野で確認可能な状態が維持されてもよい。
 (サーバ装置で実行される処理の一例)
 図11は、実施の形態におけるサーバ装置Sで実行される処理のフローチャートの一例を示す図である。具体的には、図11は、サーバ装置Sで一定の周期で繰り返し実行される処理の全体像の一例を示すフローチャートである。
 まず、移動体情報取得部102は、通信部101が受信する情報のうち複数の移動体M1~Mmから送信された最新の移動体情報を取得する(S101)。
 オペレータ情報取得部103は、通信部101が受信する情報のうち複数のオペレータ端末装置D1~Dnから送信された最新のオペレータ情報を取得する(S102)。
 第1移動体特定部106は、第1移動体があるか否かを判定する(S103)。例えば、第1移動体特定部106は、S101で取得した移動体情報に含まれる操作要請の有無をもとに第1移動体があるか否かを判定する。
 具体的には、例えば、第1移動体は、第1移動体に対する遠隔操作を要請するための要請情報を出力する。移動体情報取得部102は、第1移動体によって出力された要請情報を取得する。第1移動体特定部106は、移動体情報取得部102が要請情報を取得した場合には第1移動体があると判定する。そして、第1移動体特定部106は、第1移動体がある場合には要請情報に基づいて第1移動体を特定する。また、第1移動体特定部106は、第1移動体がないと判定した場合、処理を終了する。
 第1移動体があると判定した場合、遠隔操作情報取得部107は、S101で取得した移動体情報からどの手段を用いた遠隔操作が必要かを特定し、遠隔操作情報記憶部105を参照して必要時間を推定する(S104)。S104の詳細については後述する。
 判定部108は、S102で取得したオペレータ情報から、複数のオペレータO1~Onのうち第1移動体の遠隔監視を担当しているオペレータのオペレータ情報を抽出する(S105)。
 判定部108は、リスクがあるか否かを判定する(S106)。例えば、判定部108は、S101で取得した移動体情報に含まれる複数の移動体M1~Mmのそれぞれの位置および走行予定の経路に対して、S105で抽出したオペレータが遠隔監視を担当している1つ以上の第2移動体に関して、現時刻からS104で決定した必要時間の間で1つ以上の第2移動体の予測位置を推定する。次に、判定部108は、現時刻から必要時間の間の任意のタイミングでいずれかの第2移動体から操作要請があった場合において、リスクマップを参照してその第2移動体の予測位置においてリスクありかリスクなしかを判定する。S106の詳細については後述する。
 操作可否決定部109は、第1移動体に対する遠隔操作が可能であるか否かを判定する(S107)。例えば、操作可否決定部109は、S106で1つ以上の第2移動体全てに関してリスクなしと判定された場合には第1移動体に対する遠隔操作が可能であると判定する(S107でYes)。一方、操作可否決定部109は、少なくとも1つの第2移動体に関してリスクありと判定された場合には第1移動体に対する遠隔操作が不可であると判定し(S107でNo)、処理を終了する。
 S107で第1移動体に対する遠隔操作が可能であると判定されると、操作依頼配信部110は、第1移動体の遠隔監視を担当するオペレータのオペレータ端末装置に通信部101を介して操作依頼を配信する(S108)。なお、S107で第1移動体に対する遠隔操作が不可能であると判定された場合、第1移動体の遠隔監視を他のオペレータに引き継ぐ、1つ以上の第2移動体の遠隔監視を他のオペレータに引き継ぐ、または、操作要請に応じられないとしてMRM制御を第1移動体に指示することが考えられる。
 まず、第1移動体の遠隔監視の引き継ぎでは、第1移動体をその時点では遠隔監視していなかったオペレータに対して、遠隔監視ができている状態になるまでのマージンを必要時間に加算して、S106の処理を実行することで、他のオペレータでも同様に第1移動体に対する遠隔操作の可否を判定することができ、可と判定したオペレータに引き継ぎができる。一方、1つ以上の第2移動体の遠隔監視の引き継ぎでは、遠隔操作中でないオペレータに引き継ぎができる。他のオペレータがみんな遠隔操作中のとき、操作要請に応じられないとして走行制御情報配信部112が通信部101を介して1つ以上の第2移動体にMRM制御を指示する。なお、1つ以上の第2移動体の判断制御部214が操作要請からの経過時間等で自動的にMRM制御を決定してもよい。
 このように、例えば、操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせると判定された場合(S107でYes)、操作依頼をオペレータに対して配信することによって、第1移動体に対する遠隔操作をオペレータに行わせる旨の通知を行う。また、例えば、操作依頼配信部110は、第1移動体に対する遠隔操作をオペレータに行わせないと判定された場合(S107でNo)、第1移動体を停止させる旨の情報をオペレータに対して配信することによって、第1移動体を停止させる旨の通知を行う。
 (必要時間の推定(S104)の詳細)
 図12は、実施の形態における必要時間を取得する処理のフローチャートの一例を示す図である。具体的には、図12は、S104の処理の一例を示すフローチャートである。例えば、この処理は、S103で第1移動体を特定した後、その次に実行される。
 まず、遠隔操作情報取得部107は、第1移動体の移動体IDを取得し、第1移動体を特定する(S201)。例えば、第1移動体の移動体IDをmと表現する。
 遠隔操作情報取得部107は、S101で取得した移動体情報のうち、第1移動体の移動体情報に含まれる位置、走行予定の経路、および、障害物データを抽出する(S202)。具体的には、例えば、第1移動体mの移動体情報に含まれる位置は、地図上の緯度および経度を示す座標点pで表現され、進行方向は、北を0度とし時計回りでの方位θで表現される。走行予定の経路は、到着地点までの離散的な地図上の座標のリスト[w ,・・・,w ]で表現される。障害物データは、第1移動体mの進行方向を0度とし時計回りでの方位αを用いて、方位αにおける障害物までの距離d(α)で表現される。障害物データの方位の分解能は、Δαで表現される。
 遠隔操作情報取得部107は、S202で抽出した第1移動体の位置が、リスクマップのどの区画に存在するかを特定する(S203)。具体的に、例えば、第1移動体mがどの区画に存在するかは、一般的な交差数判定を用いることで内外判定は可能である。例えば、点から水平線を伸ばし、多角形の辺を交差する数が奇数ならば内側であることが判定できる。特定した区画の区画IDをbと表現する。
 遠隔操作情報取得部107は、S202で抽出した走行予定の経路と障害物データに基づいて、走行予定の経路上に障害物があるか否かを判定する(S204)。
 具体的に、例えば、第1移動体mの位置pおよび[w ,・・・,w ]に基づいて、第1移動体が次にどこを移動していくかはpからはw までの線分情報で取得する。また第1移動体mの位置pおよび進行方向θと、障害物データd(α)から、一般的な座標系変換により地図上での障害物の位置情報を取得する。点と直線の距離の一般公式から障害物と走行予定の経路との距離情報を取得できる。分解能Δαで0度から360度までの障害物データで距離情報を取得し、例えば、既定数以上の障害物データで距離がしきい値未満であれば、走行予定の経路上に障害物があると判定する。なお、第1移動体がw に到着した後、次にどこを移動していくかはw からはw までの線分情報で取得できるので、以降の経路についても前記の判断を行ってもよい。
 遠隔操作情報取得部107は、遠隔操作の手段を予測する(S205)。例えば、遠隔操作情報取得部107は、障害物があるとき、オペレータによる障害物回避が必要であると判断し、遠隔操作の手段をハンドルコントローラと予測する。また、例えば、遠隔操作情報取得部107は、障害物がないとき、遠隔操作の手段をプッシュボタンと予測する(S205)。
 遠隔操作情報取得部107は、S203で特定した移動体が存在する区画とS205で予測した遠隔操作の手段から、リスクマップを照合して必要時間を取得する(S206)。
 以上の処理の具体例として、第1移動体が存在する区画の区画IDが図5における2である場合で説明する。
 遠隔操作情報取得部107は、S201で、第1移動体の移動体IDをmで取得する。
 遠隔操作情報取得部107は、S202で、第1移動体mの移動体情報に含まれる位置をpおよび進行方向θ、走行予定の経路を[w ,・・・,w ]、障害物データを分解能Δαで方位αでの距離d(α)で抽出する。
 遠隔操作情報取得部107は、S203で、第1移動体mが存在する区画b=2を特定する。
 遠隔操作情報取得部107は、S204で、まずpからはw までの線分情報を取得する。次に、p、進行方向θ、および障害物データd(α)から地図上の障害物の位置情報を取得する。点と直線の一般公式を使って前記線分情報と障害物の位置情報の距離情報を取得する。同様に分解能Δαで0度から360度までの障害物データで距離情報を取得し、既定数以上の障害物データで距離がしきい値未満であるとき、走行予定の経路上に障害物があると判定する。
 遠隔操作情報取得部107は、S204で障害物があると判定したので、S205で遠隔操作の手段をハンドルコントローラと予測する。
 遠隔操作情報取得部107は、S203で特定した区画b=2とS205で予測した遠隔操作の手段(ハンドルコントローラ)から、図6の表と照合して、必要時間を15(秒)と決定する。
 (リスクがあるか否かの判定(S106)の詳細)
 図13は、実施の形態におけるリスクがあるか否かを判定する処理のフローチャートの一例を示す図である。具体的には、図13は、S106の処理の一例を示すフローチャートである。例えば、この処理は、S105で第1移動体の遠隔監視を担当しているオペレータのオペレータ情報を抽出した後、その次に実行される。この処理はオペレータ毎に実行される。
 まず、判定部108は、S104で推定された必要時間を取得する(S301)。具体的には、例えば、取得した必要時間の値(秒)をΔtと表現する。
 次に、判定部108は、S105で抽出したオペレータ情報に含まれる遠隔監視を担当している1つ以上の第2移動体について、それらの移動体情報に含まれる位置、走行予定の経路を取得する(S302)。具体的に、例えば、抽出したオペレータ情報に含まれる遠隔監視を担当している1つ以上の第2移動体は、移動体IDの集合M={m,m,・・・,m}と表現する。移動体IDがmである移動体を移動体mと表現する。移動体mの移動体情報に含まれる位置は地図上の緯度、経度を示す座標点pで表現する。走行予定の経路を、到着地点までの離散的な地図上の座標のリスト[w ,・・・,w ]で表現する。
 判定部108は、遠隔監視を担当している1つ以上の第2移動体が現時刻から必要時間Δtの間で存在し得る区画を推定する(S303)。具体的には、例えば、判定部108は、移動体mの位置pおよび[w ,・・・,w ]がそれぞれどの区画に含まれるかを判定する。一般的な交差数判定を用いることで内外判定は可能である。例えば、点から水平線を伸ばし、多角形の辺を交差する数が奇数ならば内側であることが判定できる。判定結果は区画IDのリスト[b ,・・・,b ]と表現する。
 移動体mが、現時刻から集中時間Δtの間で、走行予定の経路に対して到達可能な座標を求める。まず位置pからw に到達するためにかかる時間は移動体の平均速度vを用いれば下記の式で計算できる。
Figure JPOXMLDOC01-appb-M000001
 同様に、1<n≦Nなるnについてwn-1 からw に到達するためにかかる時間は下記の式で計算できる。
Figure JPOXMLDOC01-appb-M000002
 なお、平均速度は移動体mごとに予め定めても良い。また、経路および区画で別の値を定めても良い。また、交通状況またはサービス状況等が考慮されてもよい。具体的には、交通状況は、赤信号または渋滞等に対応する。サービス状況は、積荷中、荷卸中または燃料補給中等に対応する。例えば、交通状況またはサービス状況等によって、平均速度が調整されてもよい。あるいは、交通状況またはサービス状況等によって、追加の時間が加算されてもよい。
 上記の式で現在位置から順に遠くの到達点までにかかる時間を加算していき、Δtを超えない最も遠くの到達点w を求める。このとき、[b ,・・・,b ]から重複する区画IDを除けば、移動体mが現時刻から必要時間Δtの間で存在し得る区画の推定結果を取得できる。
 判定部108は、推定した全区画において、図5のリスクマップを参照することで、1つ以上の第2移動体それぞれに対してリスクありであるかリスクなしであるかを判定する(S304)。
 以上の処理の具体例として、1つ以上の第2移動体が現時刻から必要時間Δtの間で存在し得る区画が全て図5で示すリスクなしの区画である場合で説明する。
 判定部108は、S301で、必要時間をΔtで取得する。
 判定部108は、S302で、1つ以上の第2移動体IDの集合Mに含まれる各移動体mの移動体情報に含まれる位置をp、走行予定の経路を[w ,・・・,w ]で取得する。
 以下では、判定部108が、S303で、上述の計算の結果として、1つ以上の第2移動体が現時刻から集中時間Δtの間で存在し得る区画を[1,2,5,9,15,17]で推定する場合について説明する。
 より具体的には、複数の移動体M1~Mmのうち遠隔監視を担当している移動体の移動体IDの集合が{1,2,3}で、移動体M1の走行予定の経路の区画が[1,2,10,16]で必要時間Δtを超えない最も遠くの到達点が区画2であるとき、移動体M1が存在し得る区画は[1,2]となる。移動体M2の走行予定の経路が、[5,9,11,10,12]で必要時間Δtを超えない最も遠くの到達点が区画9であるとき、移動体M2が存在し得る区画は[5,9]となる。移動体M3の走行予定の経路が、[15,17,18,19]で必要時間Δtを超えない最も遠くの到達点が区画17であるとき、移動体M3が存在し得る区画は[15,17]となる。このとき、推定結果は[1,2,5,9,15,17]となる。
 判定部108は、S304で、図5のリスクマップを参照し、[1,2,5,9,15,17]よりいずれの移動体M1~M3でもリスクなしと判定する。
 (遠隔操作中の操作要請について)
 一の移動体への遠隔操作が完了する前に、他の移動体から操作要請が上がるケースについて説明する。
 まず、上述したように、一の移動体への遠隔操作中に、遠隔監視を担当している他の移動体からリスクありの操作要請が起こらないことを確認したうえで、一の移動体への遠隔操作が可であると判定し、操作依頼をオペレータに配信する。よって、遠隔操作中に上がってくる操作要請は、リスクなしの操作要請である。この場合、リスクなしのため、今の遠隔操作が完了した後、次の遠隔操作についても図11のフローチャートの処理を実施することで対応可能である。
 なお、遠隔操作が完了するまでに、前記のような操作要請が複数発生することも考えられる。この場合、サービス提供においてより影響度の大きい移動体を優先してもよい。例えば、自動配送ロボットによるフードデリバリ-サービスの場合、積み込みやお届けのための移動は、拠点に戻る移動より優先する。この場合、サービスシステムXが配車指示とともに、その優先度をサーバ装置Sに送信し、サーバ装置SがS103で第1移動体を特定する際、その優先度を考慮することで実現可能である。
 次に、遠隔操作中に他の移動体から操作要請が上がる場合について、遠隔操作が必要時間よりも実際は多くの時間がかかってしまう可能性があり、他の移動体が存在し得る区画の推定と実際に存在する区画が異なる等のリスクありかリスクなしかの判定に用いる情報が実際とは異なる場合が考えられる。このような場合は、S107で不可と決定した場合と同様に、第1移動体の遠隔監視を他のオペレータに引き継ぐ、1つ以上の第2移動体の遠隔監視を他のオペレータに引き継ぐ、または操作要請に応じられないとしてMRM制御を第1移動体に指示する。
 まず、第1移動体の引き継ぎでは、第1移動体をその時点では遠隔監視していなかったオペレータに対して、遠隔監視ができている状態になるまでのマージンを必要時間に加算して、S106の処理を実行することで、他のオペレータでも同様に遠隔操作の可否を決定することができ、可と決定したオペレータに引き継ぎができる。一方、1つ以上の第2移動体の引き継ぎでは、遠隔操作中でないオペレータに引き継ぎができる。他のオペレータがみんな遠隔操作中のとき、操作要請に応じられないとして走行制御情報配信部112が通信部101を介して第1移動体にMRM制御を指示する。なお、第1移動体の判断制御部214が操作要請からの経過時間等で自動的にMRM制御を決定してもよい。
 実施の形態に係る情報処理方法は、情報処理装置(サーバ装置S)における情報処理方法である。当該情報処理方法では、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体M1~Mmのうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報が取得される(S104)。そして、複数の移動体M1~Mmのうち第1移動体の遠隔監視を担当する監視者(複数のオペレータO1~Onのうち第1移動体の遠隔監視を担当するオペレータ)が遠隔監視を担当しかつ第1移動体以外の1つ以上の第2移動体に関する移動体情報が取得される(S101)。そして、遠隔操作情報および移動体情報に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かが判定される(S106)。そして、第1移動体に対する遠隔操作を監視者に行わせるか否かの判定結果に基づいて通知が行われる(S108)。
 これによれば、遠隔操作情報および移動体情報に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定できるので、複数の移動体M1~Mmの遠隔管制を効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、第1移動体は、第1移動体に対する遠隔操作を要請するための要請情報を出力し、第1移動体によって出力された要請情報を取得し(S101)、要請情報に基づいて第1移動体を特定する(S201)。
 これによれば、第1移動体を容易に特定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、遠隔操作情報は、第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、必要時間は、第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、第1移動体に対する遠隔操作にかかる時間とを含む。
 これによれば、必要時間に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、必要時間は、第1移動体に対する遠隔操作の手段に基づいて予め定められる。
 これによれば、第1移動体に対する遠隔操作の手段に基づいて定められた必要時間に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、必要時間は、その範囲内において第1移動体が移動しかつ複数の区画1~21に区分される領域における複数の区画1~21毎に予め定められる。
 これによれば、複数の区画1~21毎に定められた必要時間に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 なお、実施の形態に係る情報処理方法において、必要時間は、第1移動体に対する遠隔操作を行う日、第1移動体に対する遠隔操作を行う時間帯、および第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められてもよい。
 これによれば、第1移動体に対する遠隔操作を行う日、第1移動体に対する遠隔操作を行う時間帯、および第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて定められた必要時間に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、遠隔操作情報および移動体情報に基づいて1つ以上の第2移動体のそれぞれに対する遠隔操作を行わないことによるリスクがあるか否かを判定し(S106)、リスクがないと判定した場合には第1移動体に対する遠隔操作を監視者に行わせると判定する(S107)。
 これによれば、リスクがないと判定した場合に第1移動体に対する遠隔操作を監視者に行わせることができるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、その範囲内において1つ以上の第2移動体のそれぞれが移動しかつ複数の区画1~21で区分される領域における複数の区画1~21毎に、リスクがある区画であるか否かが予め設定される。
 これによれば、リスクがあるか否かを容易に判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 なお、実施の形態に係る情報処理方法において、リスクがある区画であるか否は、第1移動体に対する遠隔操作を行う日、第1移動体に対する遠隔操作を行う時間帯、および第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められてもよい。
 これによれば、リスクがあるか否かをより精度よく判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、遠隔操作情報は、第1移動体に対する遠隔操作を行うためにかかる必要時間を含む。必要時間は、第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、第1移動体に対する遠隔操作にかかる時間とを含む。そして、1つ以上の第2移動体の少なくとも1つが必要時間の間に複数の区画1~21のうちリスクがある区画に位置する場合、リスクがあると判定される(S106)。
 これによれば、リスクがあるか否かをさらに容易に判定できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、第1移動体に対する遠隔操作を監視者に行わせると判定した場合、第1移動体に対する遠隔操作を監視者に行わせる旨の通知を行う(S108)。
 これによれば、第1移動体に対する遠隔操作を監視者に効率よく行わせることができるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理方法において、第1移動体に対する遠隔操作を監視者に行わせないと判定した場合、第1移動体を停止させる旨の通知を行う。
 これによれば、監視者は第1移動体が停止することを容易に認識できるので、複数の移動体M1~Mmの遠隔管制をさらに効率的に行わせることができる。
 また、実施の形態に係る情報処理装置は、遠隔操作情報取得部107と、移動体情報取得部102と、判定部108と、通知部(操作依頼配信部110)とを備える。遠隔操作情報取得部107は、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体M1~Mmのうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得する。移動体情報取得部102は、複数の移動体M1~Mmのうち第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得する。判定部108は、遠隔操作情報および移動体情報に基づいて第1移動体に対する遠隔操作を監視者に行わせるか否かを判定する。通知部(操作依頼配信部110)は、第1移動体に対する遠隔操作を監視者に行わせるか否かの判定結果に基づいて通知を行う。
 これによれば、上記の情報処理方法と同様の作用効果を奏する。
 また、実施の形態に係るプログラムは、上記の情報処理方法をコンピュータに実行させるためのプログラムである。
 これによれば、上記の情報処理方法と同様の作用効果を奏する。
 (他の実施の形態等)
 以上、一つまたは複数の態様に係る情報処理方法等について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものも、本開示の範囲内に含まれてもよい。
 なお、上述した実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)またはプロセッサ等のプログラム実行部が、ハードディスクまたは半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上述した実施の形態の装置等を実現するソフトウェアは、図11~図13に示すフローチャートに含まれる各ステップをコンピュータに実行させるプログラムである。
 なお、以下のような場合も本開示に含まれる。
 (1)上記の少なくとも1つの装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムであってもよい。そのRAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、上記の少なくとも1つの装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されていてもよい。
 (2)上記の少なくとも1つの装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
 (3)上記の少なくとも1つの装置を構成する構成要素の一部または全部は、その装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
 (4)本開示は、上記に示す方法として利用されてもよい。また、上記に示す方法をコンピュータにより実行するコンピュータプログラムが実現されてもよいし、コンピュータプログラムからなるデジタル信号が実現されてもよい。
 また、コンピュータプログラムまたはデジタル信号が記録されたコンピュータ読み取り可能な記録媒体が実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、ハードディスク、CD(Compact Disc)-ROM、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどであってもよい。また、これらの記録媒体に記録されているコンピュータプログラムまたはデジタル信号として、コンピュータプログラムまたはデジタル信号が実現されてもよい。
 また、コンピュータプログラムまたはデジタル信号は、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送されてもよい。
 また、コンピュータプログラムまたはデジタル信号は、記録媒体に記録されて移送されることにより、または、ネットワーク等を経由して移送されることにより、これらに対応する方法等が、独立した他のコンピュータシステムにより実行されてもよい。
 (付記)
 以上の実施の形態等の記載により、下記の技術が開示される。
 (技術1)情報処理装置における情報処理方法であって、それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得し、前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得し、前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定し、前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う、情報処理方法。
 (技術2)前記第1移動体は、前記第1移動体に対する遠隔操作を要請するための要請情報を出力し、前記第1移動体によって出力された前記要請情報を取得し、前記要請情報に基づいて前記第1移動体を特定する、技術1に記載の情報処理方法。
 (技術3)前記遠隔操作情報は、前記第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、前記必要時間は、前記第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、前記第1移動体に対する遠隔操作にかかる時間とを含む、技術1または2に記載の情報処理方法。
 (技術4)前記必要時間は、前記第1移動体に対する遠隔操作の手段に基づいて予め定められる、技術3に記載の情報処理方法。
 (技術5)前記必要時間は、その範囲内において前記第1移動体が移動しかつ複数の区画に区分される領域における前記複数の区画毎に予め定められる、技術3または4に記載の情報処理方法。
 (技術6)前記必要時間は、前記第1移動体に対する遠隔操作を行う日、前記第1移動体に対する遠隔操作を行う時間帯、および前記第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められる、技術3から5のいずれか1つに記載の情報処理方法。
 (技術7)前記遠隔操作情報および前記移動体情報に基づいて前記1つ以上の第2移動体のそれぞれに対する遠隔操作を行わないことによるリスクがあるか否かを判定し、前記リスクがないと判定した場合には前記第1移動体に対する遠隔操作を前記監視者に行わせると判定する、技術1または2に記載の情報処理方法。
 (技術8)その範囲内において前記1つ以上の第2移動体のそれぞれが移動しかつ複数の区画で区分される領域における前記複数の区画毎に、前記リスクがある区画であるか否かが予め設定される、技術7に記載の情報処理方法。
 (技術9)前記リスクがある区画であるか否は、前記第1移動体に対する遠隔操作を行う日、前記第1移動体に対する遠隔操作を行う時間帯、および前記第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められる、技術8に記載の情報処理方法。
 (技術10)前記遠隔操作情報は、前記第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、前記必要時間は、前記第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、前記第1移動体に対する遠隔操作にかかる時間とを含み、前記1つ以上の第2移動体の少なくとも1つが前記必要時間の間に前記複数の区画のうち前記リスクがある区画に位置する場合、前記リスクがあると判定する、技術8または9に記載の情報処理方法。
 (技術11)前記第1移動体に対する遠隔操作を前記監視者に行わせると判定した場合、前記第1移動体に対する遠隔操作を前記監視者に行わせる旨の前記通知を行う、技術1から10のいずれか1つに記載の情報処理方法。
 (技術12)前記第1移動体に対する遠隔操作を前記監視者に行わせないと判定した場合、前記第1移動体を停止させる旨の前記通知を行う、技術1から11のいずれか1つに記載の情報処理方法。
 (技術13)それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得する遠隔操作情報取得部と、前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得する移動体情報取得部と、前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定する判定部と、前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う通知部とを備える、情報処理装置。
 (技術14)技術1から12のいずれか1つに記載の情報処理方法をコンピュータに実行させるためのプログラム。
 本開示は、移動体を遠隔管制するための情報を処理する方法等に利用可能である。
 1 遠隔管制システム
 21 ECU
 22 通信モジュール
 101,301 通信部
 102,306 移動体情報取得部
 103 オペレータ情報取得部
 104 リスクマップ記憶部
 105 遠隔操作情報記憶部
 106 第1移動体特定部
 107 遠隔操作情報取得部
 108 判定部
 109 操作可否決定部
 110 操作依頼配信部
 111 移動体情報配信部
 112 走行制御情報配信部
 113 配車指示配信部
 201 カメラ
 202 レーザーセンサ
 203 GNSS
 211 取得部
 212 検知部
 213 自己位置推定部
 214 判断制御部
 215 操作要請決定部
 216 移動体情報出力部
 302 入力受付部
 303 画面生成部
 304 UI制御部
 305 オペレータ情報出力部
 307 操作依頼検出部
 311 ハンドルコントローラ
 312 プッシュボタン
 313 キーボード
 314 マウス
 315 モニタ
 316 スピーカ
 D1,Dn オペレータ端末装置
 M1,Mm 移動体
 N ネットワーク
 O1,On オペレータ
 S サーバ装置
 X サービスシステム

Claims (14)

  1.  情報処理装置における情報処理方法であって、
     それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得し、
     前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得し、
     前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定し、
     前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う、
     情報処理方法。
  2.  前記第1移動体は、前記第1移動体に対する遠隔操作を要請するための要請情報を出力し、
     前記第1移動体によって出力された前記要請情報を取得し、
     前記要請情報に基づいて前記第1移動体を特定する、
     請求項1に記載の情報処理方法。
  3.  前記遠隔操作情報は、前記第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、
     前記必要時間は、前記第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、前記第1移動体に対する遠隔操作にかかる時間とを含む、
     請求項1に記載の情報処理方法。
  4.  前記必要時間は、前記第1移動体に対する遠隔操作の手段に基づいて予め定められる、
     請求項3に記載の情報処理方法。
  5.  前記必要時間は、その範囲内において前記第1移動体が移動しかつ複数の区画に区分される領域における前記複数の区画毎に予め定められる、
     請求項3または4に記載の情報処理方法。
  6.  前記必要時間は、前記第1移動体に対する遠隔操作を行う日、前記第1移動体に対する遠隔操作を行う時間帯、および前記第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められる、
     請求項3または4に記載の情報処理方法。
  7.  前記遠隔操作情報および前記移動体情報に基づいて前記1つ以上の第2移動体のそれぞれに対する遠隔操作を行わないことによるリスクがあるか否かを判定し、前記リスクがないと判定した場合には前記第1移動体に対する遠隔操作を前記監視者に行わせると判定する、
     請求項1に記載の情報処理方法。
  8.  その範囲内において前記1つ以上の第2移動体のそれぞれが移動しかつ複数の区画で区分される領域における前記複数の区画毎に、前記リスクがある区画であるか否かが予め設定される、
     請求項7に記載の情報処理方法。
  9.  前記リスクがある区画であるか否は、前記第1移動体に対する遠隔操作を行う日、前記第1移動体に対する遠隔操作を行う時間帯、および前記第1移動体に対する遠隔操作を行うときの天候の少なくとも1つに基づいて予め定められる、
     請求項8に記載の情報処理方法。
  10.  前記遠隔操作情報は、前記第1移動体に対する遠隔操作を行うためにかかる必要時間を含み、
     前記必要時間は、前記第1移動体に対する遠隔操作を行うタイミングを決定するのにかかる時間と、前記第1移動体に対する遠隔操作にかかる時間とを含み、
     前記1つ以上の第2移動体の少なくとも1つが前記必要時間の間に前記複数の区画のうち前記リスクがある区画に位置する場合、前記リスクがあると判定する、
     請求項8または9に記載の情報処理方法。
  11.  前記第1移動体に対する遠隔操作を前記監視者に行わせると判定した場合、前記第1移動体に対する遠隔操作を前記監視者に行わせる旨の前記通知を行う、
     請求項1から4のいずれか1項に記載の情報処理方法。
  12.  前記第1移動体に対する遠隔操作を前記監視者に行わせないと判定した場合、前記第1移動体を停止させる旨の前記通知を行う、
     請求項1から4のいずれか1項に記載の情報処理方法。
  13.  それぞれが自律して移動可能でありかつ遠隔操作が可能である複数の移動体のうち遠隔操作を必要とする第1移動体に対する遠隔操作に関する遠隔操作情報を取得する遠隔操作情報取得部と、
     前記複数の移動体のうち前記第1移動体の遠隔監視を担当する監視者が遠隔監視を担当しかつ前記第1移動体以外の1つ以上の第2移動体に関する移動体情報を取得する移動体情報取得部と、
     前記遠隔操作情報および前記移動体情報に基づいて前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かを判定する判定部と、
     前記第1移動体に対する遠隔操作を前記監視者に行わせるか否かの判定結果に基づいて通知を行う通知部とを備える、
     情報処理装置。
  14.  請求項1から4のいずれか1項に記載の情報処理方法をコンピュータに実行させるためのプログラム。
PCT/JP2023/029466 2022-09-21 2023-08-14 情報処理方法、情報処理装置、およびプログラム WO2024062803A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150590 2022-09-21
JP2022-150590 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062803A1 true WO2024062803A1 (ja) 2024-03-28

Family

ID=90454208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029466 WO2024062803A1 (ja) 2022-09-21 2023-08-14 情報処理方法、情報処理装置、およびプログラム

Country Status (1)

Country Link
WO (1) WO2024062803A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206223A (ja) * 2017-06-07 2018-12-27 ヤフー株式会社 決定装置、決定方法、及び決定プログラム
JP2022019169A (ja) * 2020-07-17 2022-01-27 国立大学法人東海国立大学機構 情報処理装置、情報処理方法、および、コンピュータプログラム
JP2022129234A (ja) * 2021-02-24 2022-09-05 トヨタ自動車株式会社 遠隔支援システム及び遠隔支援方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206223A (ja) * 2017-06-07 2018-12-27 ヤフー株式会社 決定装置、決定方法、及び決定プログラム
JP2022019169A (ja) * 2020-07-17 2022-01-27 国立大学法人東海国立大学機構 情報処理装置、情報処理方法、および、コンピュータプログラム
JP2022129234A (ja) * 2021-02-24 2022-09-05 トヨタ自動車株式会社 遠隔支援システム及び遠隔支援方法

Similar Documents

Publication Publication Date Title
US11307597B2 (en) Tele-operation of autonomous cars to negotiate problem situations
JP6726363B2 (ja) 生成されたインターフェースを使用する自律走行車の監視
CN109891470B (zh) 远程操作系统、交通系统及远程操作方法
JP6732130B2 (ja) 自律走行車の遠隔サポートマッピングインターフェース
US20190361447A1 (en) Facilitating Rider Pick-Up For A Self-Driving Vehicle
US10717448B1 (en) Automated transfer of vehicle control for autonomous driving
EP3862991B1 (en) Information processing method and information processing system
JP2020123341A (ja) 自律走行モードと手動走行モードとの間の走行モードを変更するリモートコントロール自律走行自動車のための方法及び装置
JP7111022B2 (ja) 管制装置
JP2016192028A (ja) 自動走行制御装置および自動走行制御システム
JP2019537159A5 (ja)
JP2022528640A (ja) 例外処理のための遠隔操作
KR20180029742A (ko) 공항 로봇 및 그를 포함하는 공항 로봇 시스템
CN108628299B (zh) 移动体、移动体控制系统及移动体控制方法
JP6733997B2 (ja) 車両を制御する方法、装置およびシステム
US11584394B2 (en) Vehicle controller device and vehicle control system
WO2024062803A1 (ja) 情報処理方法、情報処理装置、およびプログラム
JP7238443B2 (ja) 基地局及び車載装置
US20230166771A1 (en) Teleoperable Vehicle and System
US20220326706A1 (en) Information processing method and information processing system
CN116153074A (zh) 信息处理方法
EP4006680B1 (en) Systems and methods for controlling a robotic vehicle
US20200301409A1 (en) Remote control system and self-driving system
JP7496447B2 (ja) 監視支援システム、監視支援装置の制御方法、及び監視支援装置の制御プログラム
US11787441B2 (en) Stationary vehicle impact analysis and decision making

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867928

Country of ref document: EP

Kind code of ref document: A1