WO2024062802A1 - Mask, film forming method, and film forming apparatus - Google Patents

Mask, film forming method, and film forming apparatus Download PDF

Info

Publication number
WO2024062802A1
WO2024062802A1 PCT/JP2023/029421 JP2023029421W WO2024062802A1 WO 2024062802 A1 WO2024062802 A1 WO 2024062802A1 JP 2023029421 W JP2023029421 W JP 2023029421W WO 2024062802 A1 WO2024062802 A1 WO 2024062802A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
substrate
film forming
magnetic
forming method
Prior art date
Application number
PCT/JP2023/029421
Other languages
French (fr)
Japanese (ja)
Inventor
健 長岡
正浩 市原
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2024062802A1 publication Critical patent/WO2024062802A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to a technique for forming a film on a substrate, and relates to a mask, a film forming method, and a film forming apparatus.
  • a substrate and a mask are aligned, and then a deposition substance is evaporated onto the substrate through the mask to form a film. Film formation is performed with the aligned substrate and mask in close contact with each other.
  • a technique that uses magnetic force to bring a substrate and a mask into close contact is known. For example, a substrate is placed between a mask and a magnet plate, and the substrate and mask are brought into close contact with each other due to the magnetic force between the mask and the magnet plate (for example, Patent Document 1).
  • the mask is a magnetic material, such as a mask made of iron, it is possible to use magnetic force to bring the substrate and mask into close contact, but if the mask is a non-magnetic material, it is difficult to use magnetic force.
  • the present invention provides a technique that can improve the adhesion between a substrate and a mask while using a mask made of non-magnetic material.
  • a mask having an opening for forming a pattern of vapor deposition material on a substrate comprising: a mask body made of a non-magnetic material and having the opening; a magnetic body formed on the mask body; A mask is provided.
  • FIG. 1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a substrate and a mask, and a partially enlarged view of the mask.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. Cross-sectional view of line B-B in Figure 3. A sectional view taken along the line CC in FIG. 3.
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a substrate and a mask, and a partially
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 7 is an explanatory diagram of another configuration example of the substrate.
  • FIG. 13 is an explanatory diagram of another example of the configuration of the substrate.
  • FIG. 7 is an explanatory diagram of another configuration example of the substrate.
  • FIG. 7 is an explanatory diagram of another configuration example of the substrate.
  • FIG. 7 is an explanatory diagram of another configuration example of a mask.
  • FIG. 7 is an explanatory diagram of another configuration example of a mask.
  • FIG. 1 is a schematic diagram showing a part of the configuration of an electronic device manufacturing line 100 to which the film forming apparatus of the present invention can be applied.
  • arrows X and Y indicate horizontal directions perpendicular to each other, and arrow Z indicates an up-down direction (direction of gravity).
  • the manufacturing line shown in FIG. 1 is used, for example, to manufacture light emitting elements of organic EL display devices.
  • the manufacturing line 100 includes a transfer chamber 120 having an octagonal shape in plan view. The substrate 101 is carried into the transfer chamber 120 from the transfer path 110 , and the substrate 101 on which a film has been formed is transferred from the transfer chamber 120 to the transfer path 111 .
  • a plurality of film forming apparatuses 1 that perform film forming processing on the substrate 101 are arranged around the transfer chamber 120.
  • a transfer chamber 130 is arranged adjacent to each film forming apparatus 1 .
  • a storage chamber 140 in which the mask 102 is stored is arranged around the transfer chamber 130, which has an octagonal shape in plan view.
  • a transport unit 121 that transports the substrate 101 is arranged in the transport chamber 120.
  • the transport unit 121 of this embodiment is a horizontally articulated robot, and transports the substrate 101 mounted on its hand in a horizontal position.
  • the transport unit 121 performs a transport operation in which the substrate 101 carried in from the transport path 110 is transported to the film forming apparatus 1 and a transport operation in which the substrate 101 on which a film has been formed in the film forming apparatus 1 is transported from the film forming chamber 1 to the transport path 111. Perform the action.
  • a transport unit 131 that transports the mask 102 is arranged in each transport chamber 130.
  • the transport unit 131 of this embodiment is a horizontally articulated robot, and transports the mask 102 mounted on its hand in a horizontal position.
  • the transport unit 131 performs an operation of transporting the mask 102 from the storage chamber 140 to the film forming apparatus 1 and an operation of transporting the mask 102 from the film forming apparatus 1 to the storage chamber 140.
  • FIG. 2 is a schematic diagram of a film forming apparatus 1 according to an embodiment of the present invention.
  • the film forming apparatus 1 is an apparatus that forms a film of a vapor deposition material on a substrate 101, and uses a mask 102 to form a thin film of the vapor deposition material in a predetermined pattern.
  • the material of the substrate 101 on which film formation is performed in the film formation apparatus 1 can be appropriately selected from materials such as glass, resin, and metal.
  • the substrate 101 is, for example, a glass substrate on which TFTs (Thin Film Transistors) are formed, or a silicon wafer on which semiconductor elements are formed.
  • TFTs Thin Film Transistors
  • the deposition material may be an organic material or an inorganic material (metal, metal oxide, etc.).
  • the film forming apparatus 1 is applicable to manufacturing apparatuses for manufacturing electronic devices such as display devices (such as flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), as well as optical components, and is particularly applicable to manufacturing apparatuses for manufacturing organic EL panels.
  • display devices such as flat panel displays
  • organic photoelectric conversion elements organic thin-film imaging elements
  • optical components optical components
  • an example will be described in which the film forming apparatus 1 forms a film on the substrate 101 by vacuum deposition, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied.
  • the film forming apparatus 1 has a box-shaped vacuum chamber 2.
  • the interior space of the vacuum chamber 2 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas.
  • the vacuum chamber 2 is connected to a vacuum pump (not shown).
  • a vapor deposition unit 10 is arranged in the interior space of the vacuum chamber 2 .
  • the vapor deposition unit 10 includes a vapor deposition source that discharges vapor deposition materials upward.
  • a shutter 10a is arranged above the vapor deposition unit 10 to regulate and release the release of the vapor deposition substance.
  • the shutter 10a is opened and closed by an opening and closing mechanism (not shown).
  • a deposition prevention plate 2a is also arranged above the vapor deposition unit 10. The deposition prevention plate 2a prevents a vapor deposition substance from unnecessarily adhering to the following structure arranged in the upper part of the internal space of the vacuum chamber 2.
  • a substrate support plate 3 that supports the substrate 101 in a horizontal position is provided in the interior space of the vacuum chamber 2.
  • the substrate support plate 3 is an electrostatic chuck, and the substrate 101 is attracted and held on the lower surface thereof by electrostatic force.
  • a cooling plate 4 is fixed on the substrate support plate 3.
  • the cooling plate 4 is equipped with, for example, a water cooling mechanism, and cools the substrate 101 via the substrate support plate 3 during film formation.
  • the substrate support plate 3 and the cooling plate 4 are suspended from the magnet plate 5 via the support portion 5a so as to be movable in the Z direction.
  • the magnet plate 11 is a plate that attracts the mask 102 by magnetic force. Since the substrate 101 is magnetically sandwiched between the magnet plate 11 and the mask 102 during film formation, the adhesion between the substrate 101 and the mask 102 can be improved.
  • the film forming apparatus 1 includes a mask support unit 6 that supports the mask 102 during film forming.
  • the mask support unit 6 also performs the operation of transferring the substrate 101 between the transport unit 121 and the substrate support plate 3.
  • the mask support unit 6 includes a pair of support members 6a spaced apart in the X direction. Each support member 6a is raised and lowered by a corresponding actuator 6b.
  • an actuator 6b is provided for each support member 6a, but a pair of support members 6a may be raised and lowered by one actuator 6b.
  • the actuator 6b is, for example, an electric cylinder or an electric ball screw mechanism.
  • the support member 6a includes a claw portion F1 at its lower end.
  • the peripheral edge portions of the substrate 101 and the mask 102 are placed on the claw portion F1.
  • the mask 102 is placed on the claw portion F1.
  • the pair of support members 6a are raised and lowered synchronously to raise and lower the substrate 101 and the mask 102.
  • the film forming apparatus 1 includes an alignment unit 8 that aligns the substrate 101 and the mask 102.
  • the alignment device 8 includes a drive mechanism 80 and a plurality of measurement units SR.
  • the drive mechanism 80 includes a distance adjustment unit 81, a support shaft 82, a pedestal 83, and a position adjustment unit 84.
  • the distance adjustment unit 81 is a mechanism that moves the support shaft 82 up and down in the Z direction, and includes, for example, an electric cylinder or an electric ball screw mechanism.
  • the magnet plate 5 is fixed to the lower end of the support shaft 82, and as the support shaft 82 moves up and down, the substrate support plate 3 is moved up and down via the magnet plate 5.
  • the distance between the substrate 101 and the mask 102 is adjusted, and the substrate 101 supported by the substrate support plate 3 and the mask 102 are brought closer to each other and separated from each other in the thickness direction (Z direction) of the substrate 101.
  • the distance adjustment unit 81 causes the substrate 101 and the mask 102 to approach each other in the direction in which they overlap, or to separate them in the opposite direction.
  • the "distance" adjusted by the distance adjustment unit 81 is a so-called vertical distance (or vertical distance), and the distance adjustment unit 81 can also be said to be a unit that adjusts the vertical position of the substrate 101.
  • the distance adjustment unit 81 is mounted on a position adjustment unit 84 via a pedestal 83.
  • the position adjustment unit 84 adjusts the relative position of the substrate 101 with respect to the mask 102 by displacing the substrate support plate 3 on the XY plane.
  • the position adjustment unit 80 can also be said to be a unit that adjusts the horizontal positions of the mask 102 and the substrate 101.
  • the position adjustment unit 80 can displace the substrate support plate 6 in a rotational direction ( ⁇ direction) around the X, Y, and Z axes.
  • the position of the mask 102 is fixed and the substrate 101 is displaced to adjust their relative positions, but the mask 102 may also be displaced to make the adjustment, or both the substrate 101 and the mask 102 may be displaced.
  • the position adjustment unit 84 includes a fixed plate 20a and a movable plate 20b.
  • the fixed plate 84a and the movable plate 84b are rectangular frame-shaped plates, and the fixed plate 84a is fixed on the upper wall portion 20 of the vacuum chamber 2.
  • An actuator is provided between the fixed plate 20a and the movable plate 20b to displace the movable plate 20b relative to the fixed plate 20a in rotational directions around the axes in the X direction, the Y direction, and the Z direction.
  • a frame-shaped pedestal 83 is mounted on the movable plate 84b, and the distance adjustment unit 81 is supported on the pedestal 83.
  • the pedestal 83 and the distance adjustment unit 81 are integrally displaced. This allows the substrate 101 to be displaced in the rotational directions around the axes in the X direction, Y direction, and Z direction.
  • the upper wall portion 20 is formed with an opening through which the support shaft 82 and the support members 6a and 7a pass. These openings are sealed by a sealing member (not shown) (such as a bellows) to maintain airtightness within the vacuum chamber 2.
  • the measurement unit SR measures the positional deviation between the substrate 101 and the mask 102.
  • the measurement unit SR of this embodiment is an imaging device (camera) that captures an image.
  • the measurement unit SR is arranged on the upper wall portion 20 and is capable of capturing an image inside the vacuum chamber 2 .
  • Alignment marks (not shown) are formed on the substrate 101 and the mask 102, respectively.
  • the measurement unit SR photographs each alignment mark on the substrate 101 and the mask 102.
  • the amount of positional deviation between the substrate 101 and the mask 102 is calculated based on the position of each alignment mark, and the relative position between the substrate 101 and the mask 102 is adjusted by the position adjustment unit 84 so as to eliminate the amount of positional deviation.
  • the control device 9 controls the entire film forming apparatus 1.
  • the control device 9 includes a processing section 90, a storage section 91, an input/output interface (I/O) 92, and a communication section 93.
  • the processing unit 90 is a processor represented by a CPU, and controls the film forming apparatus 1 by executing a program stored in the storage unit 92 .
  • the storage unit 91 is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to programs executed by the processing unit 90.
  • the I/O 92 is an interface that transmits and receives signals between the processing unit 90 and external devices.
  • the communication unit 93 is a communication device that communicates with a host device or other control device via a communication line.
  • FIG. 3 shows an example of a substrate 101, a mask 102, and an electrostatic chuck 103.
  • the substrate 101 is a circular silicon wafer, and after film formation and the like, a plurality of chips 101a are cut out from the substrate 101.
  • the mask 102 is a circular member like the substrate 101, and includes a mask portion 102b corresponding to each chip 101a and a frame portion 102a surrounding the mask portion 102b.
  • a plurality of openings (through holes) 102c are formed in the mask portion 102b, through which a vapor deposition material to be vapor-deposited on the substrate 101 passes, and a film formation pattern on the substrate 101 is defined by the arrangement of the openings 102c.
  • the mask 102 includes a mask body 1020 and a magnetic body 1021 formed on the mask body 1020.
  • the mask body 1020 is made of a non-magnetic material such as silicon (Si).
  • Si silicon
  • the frame portion 102a is a relatively thick portion, and the mask portion 102b is a relatively thin portion.
  • the frame portion 102a has higher rigidity than the mask portion 102b.
  • the mask portion 102b can be formed thin without significantly reducing the overall rigidity of the mask 102.
  • a plurality of slits 102d are formed on the surface of the mask body 102.
  • Each slit 102d is a bottomed groove formed in the mask portion 102b and having a cross shape in plan view.
  • the magnetic body 1021 is, for example, a thin film of a magnetic material such as nickel (Ni).
  • the magnetic force of the magnet plate 5 causes the mask 102 and the substrate 101 to adhere to each other during film formation. If the mask body 1020 is made of a non-magnetic material as in this embodiment, the magnetic force does not provide an adhesive effect.
  • the magnetic force of the magnet plate 5 acts on the magnetic body 1021, and the magnetic force provides an adhesive effect between the mask 102 and the substrate 101.
  • the magnetic material 1021 of this embodiment is formed on the surface of the mask body 1020, particularly on the surface that overlaps with the substrate 101.
  • the close contact effect between the mask 102 and the substrate 101 due to magnetic force can be obtained.
  • the magnetic body 1021 is formed so as to surround each opening 102c, and particularly in this embodiment, the magnetic body 1021 is formed as a whole in a lattice shape in which vertical and horizontal lines are orthogonal to each other.
  • the adhesion to the substrate 101 due to the magnetic force around the opening 102c can be improved, and the deposition material released through the opening 102c can be accurately deposited on a target portion of the substrate 101.
  • Control example> An example of control of the film forming apparatus 1 executed by the processing section 90 of the control unit 9 will be described.
  • 5 to 9 are explanatory diagrams of the operation of the film forming apparatus 1, and show examples from carrying in the substrate 101 to forming a film and carrying it out.
  • a state ST51 in FIG. 5 shows a state in which the substrate 101 is carried into the vacuum chamber 2.
  • the substrate 101 is transported below the substrate support plate 3 by the transport robot 121.
  • the substrate suction surface 3a on the lower surface of the substrate support plate 3 is horizontal.
  • the mask support unit 6 transfers the substrate 101 from the transfer robot 121 to the substrate support plate 3 .
  • State ST52 in FIG. 5 shows the operation.
  • the support member 6a By lifting the support member 6a, the peripheral edge of the substrate 101 is placed on the claw portion F1, the substrate 101 is lifted from the transfer robot 121, and is pressed against the substrate suction surface 3a of the substrate support plate 3.
  • the electrostatic chuck of the substrate support plate 3 is activated to attract and hold the substrate 101.
  • a state ST61 in FIG. 6 shows a state in which the mask 102 is carried into the vacuum chamber 2.
  • the mask 102 is carried into the vacuum chamber 2 from the storage chamber 140 by the transfer robot 131.
  • Mask 102 is located directly below substrate 101.
  • the mask 102 is transferred from the transfer robot 131 to the mask support unit 6 and positioned at an alignment position.
  • State ST62 in FIG. 6 shows this operation.
  • the support member 6a By lifting the support member 6a, the peripheral edge of the mask 102 is placed on the claw portion F1, and the mask 102 is lifted from the transfer robot 131.
  • the mask 102 is in a state of being supported by the support member 6a, and is further raised to the alignment position. In this embodiment, the mask 102 is raised and positioned at the alignment position, but a configuration may also be adopted in which the substrate 101 is lowered and the substrate 101 is positioned at the alignment position.
  • the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102. If the measurement result (the amount of positional deviation between the substrate 101 and the mask 102) is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, a control amount (displacement amount of the substrate 101) is set based on the measurement result to keep the positional deviation amount within the allowable range.
  • the "positional deviation amount” is defined by the distance and direction (X, Y, ⁇ ) of positional deviation. Based on the set control amount, the position adjustment unit 80 is operated as shown in state ST72 in FIG. As a result, the substrate support plate 3 is displaced on the XY plane, and the relative position of the substrate 101 with respect to the mask 102 is adjusted.
  • Whether or not the measurement results are within the allowable range can be determined, for example, by calculating the distances between the alignment marks and comparing the average value or sum of squares of the distances with a preset threshold. can.
  • the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 again. If the measurement result is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, the relative position of the substrate 101 with respect to the mask 102 is adjusted again. Thereafter, measurements and relative position adjustments are repeated until the measurement results fall within the allowable range.
  • a film forming operation is performed.
  • the substrate 101 and the mask 102 are overlapped.
  • State ST81 in FIG. 8 shows the operation.
  • the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 .
  • the magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, and the mask 102 are in close contact with each other in order from the top.
  • the mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole. Since the magnetic material 1021 (FIGS.
  • the adhesion between the substrate 101 and the mask 102 can be improved while using the mask 102 made of a non-magnetic material. Furthermore, even if stress is generated in the mask body 1020 due to the action of magnetic force, deformation is allowed by the slit 102d, and damage such as cracking of the mask 1020 can be prevented.
  • State ST91 in FIG. 9 shows the operation of carrying out the mask 102.
  • the magnet plate 5 is lifted, and the substrate 101 and the mask 102 are separated.
  • the support member 6a of the mask support unit 6 is lowered, and the mask 102 is transferred from the support member 6a to the transfer robot 131.
  • the transport robot 131 transports the mask 102 to the storage chamber 140.
  • the substrate 101 on which the film has been formed is carried out.
  • the support member 6a of the mask support unit 6 is raised to support the substrate 101 from below by the claws F1.
  • the adsorption of the substrate support unit 3 to the substrate 101 is released, and the substrate 101 is transferred to the support member 6a.
  • the support member 6a of the mask support unit 6 is lowered as shown in state ST92 in FIG. 9, and the substrate 101 is transferred from the support member 6a to the transfer robot 121. Transfer.
  • the transport robot 121 transports the substrate 101 to the transport path 111. As described above, the operations from carrying in the substrate 101 to forming a film and carrying it out are completed.
  • FIGS. 10A and 10B show an example. These figures correspond to the cross-sectional view of FIG. 4B, and also show a cross-sectional view of the substrate 101 aligned with the mask 102.
  • a magnetic material 101d is formed on the substrate 101 around one pixel region 101b, which is a region to be vapor-deposited.
  • the magnetic material 101d is formed on the surface of the bank 101c around one pixel region 101b.
  • the magnetic body 101d is, for example, a thin film of a magnetic material such as nickel (Ni).
  • Ni nickel
  • FIG. 10B shows a state in which the substrate 101 and the mask 102 are overlapped with each other after the substrate 101 and the mask 102 are aligned.
  • the magnetic force of the magnet plate 5 attracts the magnetic body 101d and the magnetic body 1021 to each other, improving the adhesion between the substrate 101 and the mask 102.
  • the relative position between the opening 102c and the one pixel region 101b is self-aligned, and the one pixel region 101b, which is the vapor deposition target region, is exposed to the one pixel region 101b through the opening 102c.
  • the deposition substance can be deposited more accurately.
  • FIGS. 11A and 11B show an example. These figures correspond to the cross-sectional view of FIG. 4B, and also show a cross-sectional view of the substrate 101 aligned with the mask 102.
  • a magnet 101e is formed on the substrate 101 around one pixel region 101b, which is a region to be vapor-deposited.
  • the magnet 101e is formed on the surface of the bank 101c around one pixel region 101b.
  • the magnet 101e is, for example, a thin film of a magnetic material such as nickel or cobalt.
  • the magnet 101e and the magnetic body 1021 are arranged at a portion where the substrate 101 and the mask 102 overlap each other when properly aligned.
  • FIG. 11B shows a state in which the substrate 101 and the mask 102 are overlapped with each other after the substrate 101 and the mask 102 are aligned.
  • the magnet 101e and the magnetic body 1021 attract each other, improving the adhesion between the substrate 101 and the mask 102.
  • the relative position between the opening 102c and the one pixel area 101b is self-aligned, and the one pixel area 101b, which is the evaporation target site, is exposed to the one pixel area 101b through the opening 102c. Vapor deposition substances can be deposited accurately.
  • FIGS. 12A to 12C Each of these figures corresponds to the cross-sectional view of FIG. 4B.
  • FIG. 12A shows a configuration example in which a spacer 1022 is interposed between the magnetic body 1021 and the mask body 1020.
  • the distance in the Z direction between the end of the opening 102c and the substrate 101 can be designed to a desired distance.
  • an elastic material is used as the spacer 1022, it is possible to reduce the impact when the substrate 101 and the mask 102 are brought into close contact with each other.
  • magnetic material 1021A which replaces magnetic material 1021, includes a portion 1021a formed on the inner circumferential surface of opening 102c in addition to the surface of mask body 1020.
  • a magnetic body 1021B replacing the magnetic body 1021 includes a portion 1021b formed on the inner peripheral surface of the opening 102c in addition to the surface of the mask body 1020, as in the example of FIG. 11B.
  • the magnetic material 1021B is formed on the surface of the mask body 1020 that is opposite to the substrate 101 (the surface that does not overlap).
  • the magnetic material 1021B is not interposed between the substrate 101 and the mask 102 when the substrate 101 and the mask 102 are in close contact with each other. In some cases, the parallelism between the mask 102 and the mask 102 can be improved.
  • the present invention provides a system or device with a program that implements one or more functions of the embodiments described above via a network or a storage medium, and one or more processors in a computer of the system or device reads and executes the program. This can also be achieved by processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This mask has an opening for forming a film of a pattern made of a vapor deposition material on a substrate and includes a mask body made of a non-magnetic substance and having the opening and a magnetic body formed on the mask body.

Description

マスク、成膜方法及び成膜装置Mask, film-forming method and film-forming equipment
 本発明は、基板に成膜する技術に関し、マスク、成膜方法及び成膜装置に関する。 The present invention relates to a technique for forming a film on a substrate, and relates to a mask, a film forming method, and a film forming apparatus.
 基板とマスクとのアライメントを行い、その後、マスクを介して基板に対して蒸着物質を蒸着し、成膜する技術が知られている。成膜は、アライメントが行われた基板とマスクとを互いに密着した状態で行われる。基板とマスクとを密着させるために、磁力を利用した技術が知られている。例えば、基板をマスクとマグネットプレートとの間に配置してマスクとマグネットプレートとの間の磁力により基板とマスクとが密着する(例えば特許文献1)。 There is a known technique in which a substrate and a mask are aligned, and then a deposition substance is evaporated onto the substrate through the mask to form a film. Film formation is performed with the aligned substrate and mask in close contact with each other. A technique that uses magnetic force to bring a substrate and a mask into close contact is known. For example, a substrate is placed between a mask and a magnet plate, and the substrate and mask are brought into close contact with each other due to the magnetic force between the mask and the magnet plate (for example, Patent Document 1).
国際公開第2017/222009号パンフレットInternational Publication No. 2017/222009 pamphlet
 鉄製のマスクのようにマスクが磁性体であれば、磁力を利用して基板とマスクとを密着させることができるが、マスクが非磁性体の場合、磁力を利用することは困難である。 If the mask is a magnetic material, such as a mask made of iron, it is possible to use magnetic force to bring the substrate and mask into close contact, but if the mask is a non-magnetic material, it is difficult to use magnetic force.
 本発明は、非磁性体製のマスクを用いつつ、基板とマスクの密着性を向上可能な技術を提供するものである。 The present invention provides a technique that can improve the adhesion between a substrate and a mask while using a mask made of non-magnetic material.
 本発明によれば、
 基板上に蒸着物質のパターンを成膜するための開口部を有するマスクであって、
 前記開口部を有し、非磁性体のマスク本体と、
 前記マスク本体に形成された磁性体と、を備える、
ことを特徴とするマスクが提供される。
According to the invention,
A mask having an opening for forming a pattern of vapor deposition material on a substrate, the mask comprising:
a mask body made of a non-magnetic material and having the opening;
a magnetic body formed on the mask body;
A mask is provided.
 本発明によれば、非磁性体製のマスクを用いつつ、基板とマスクの密着性を向上可能な技術を提供することができる。 According to the present invention, it is possible to provide a technique that can improve the adhesion between a substrate and a mask while using a mask made of a non-magnetic material.
電子デバイスの製造ラインの一部の模式図。A schematic diagram of part of an electronic device manufacturing line. 本発明の一実施形態に係る成膜装置の概略図。1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention. 基板及びマスクの斜視図及びマスクの部分拡大図。FIG. 2 is a perspective view of a substrate and a mask, and a partially enlarged view of the mask. 図3のA-A線断面図。FIG. 4 is a sectional view taken along line AA in FIG. 3. 図3のB-B線断面図。Cross-sectional view of line B-B in Figure 3. 図3のC-C線断面図。A sectional view taken along the line CC in FIG. 3. 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 基板の別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of the substrate. 基板の別の構成例の説明図。FIG. 13 is an explanatory diagram of another example of the configuration of the substrate. 基板の別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of the substrate. 基板の別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of the substrate. マスクの別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of a mask. マスクの別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of a mask. マスクの別の構成例の説明図。FIG. 7 is an explanatory diagram of another configuration example of a mask.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following embodiments do not limit the claimed invention. Although a plurality of features are described in the embodiments, not all of these features are essential to the invention, and the plurality of features may be arbitrarily combined. Furthermore, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and redundant description will be omitted.
 <第一実施形態>
 <電子デバイスの製造ライン>
 図1は、本発明の成膜装置が適用可能な電子デバイスの製造ライン100の構成の一部を示す模式図である。各図において、矢印X及びYは互いに直交する水平方向を示し、矢印Zは上下方向(重力方向)を示す。図1の製造ラインは、例えば、有機EL表示装置の発光素子の製造に用いられる。製造ライン100は、平面視で八角形の形状を有する搬送室120を備える。搬送室120には搬送路110から基板101が搬入され、また、成膜済みの基板101は搬送室120から搬送路111へ搬出される。
<First embodiment>
<Electronic device manufacturing line>
FIG. 1 is a schematic diagram showing a part of the configuration of an electronic device manufacturing line 100 to which the film forming apparatus of the present invention can be applied. In each figure, arrows X and Y indicate horizontal directions perpendicular to each other, and arrow Z indicates an up-down direction (direction of gravity). The manufacturing line shown in FIG. 1 is used, for example, to manufacture light emitting elements of organic EL display devices. The manufacturing line 100 includes a transfer chamber 120 having an octagonal shape in plan view. The substrate 101 is carried into the transfer chamber 120 from the transfer path 110 , and the substrate 101 on which a film has been formed is transferred from the transfer chamber 120 to the transfer path 111 .
 搬送室120の周囲には、基板101に対する成膜処理が行われる複数の成膜装置1が配置されている。各成膜装置1には搬送室130が隣接して配置されている。平面視で八角形の形状を有する搬送室130の周囲には、マスク102が収納される格納室140が配置されている。 A plurality of film forming apparatuses 1 that perform film forming processing on the substrate 101 are arranged around the transfer chamber 120. A transfer chamber 130 is arranged adjacent to each film forming apparatus 1 . A storage chamber 140 in which the mask 102 is stored is arranged around the transfer chamber 130, which has an octagonal shape in plan view.
 搬送室120には、基板101を搬送する搬送ユニット121が配置されている。本実施形態の搬送ユニット121は、水平多関節型のロボットであり、そのハンド部に基板101を水平姿勢で搭載して搬送する。搬送ユニット121は、搬送路110から搬入される基板101を成膜装置1へ搬送する搬入動作と、成膜装置1で成膜済みの基板101を成膜室1から搬送路111へ搬送する搬出動作とを行う。 A transport unit 121 that transports the substrate 101 is arranged in the transport chamber 120. The transport unit 121 of this embodiment is a horizontally articulated robot, and transports the substrate 101 mounted on its hand in a horizontal position. The transport unit 121 performs a transport operation in which the substrate 101 carried in from the transport path 110 is transported to the film forming apparatus 1 and a transport operation in which the substrate 101 on which a film has been formed in the film forming apparatus 1 is transported from the film forming chamber 1 to the transport path 111. Perform the action.
 各搬送室130には、マスク102を搬送する搬送ユニット131が配置されている。本実施形態の搬送ユニット131は、水平多関節型のロボットであり、そのハンド部にマスク102を水平姿勢で搭載して搬送する。搬送ユニット131は、格納室140から成膜装置1へマスク102を搬送する動作、成膜装置1から格納室140へマスク102を搬送する動作を行う。 A transport unit 131 that transports the mask 102 is arranged in each transport chamber 130. The transport unit 131 of this embodiment is a horizontally articulated robot, and transports the mask 102 mounted on its hand in a horizontal position. The transport unit 131 performs an operation of transporting the mask 102 from the storage chamber 140 to the film forming apparatus 1 and an operation of transporting the mask 102 from the film forming apparatus 1 to the storage chamber 140.
 <成膜装置>
 図2は本発明の一実施形態に係る成膜装置1の概略図である。成膜装置1は、基板101に蒸着物質を成膜する装置であり、マスク102を用いて所定のパターンの蒸着物質の薄膜を形成する。成膜装置1で成膜が行われる基板101の材質は、ガラス、樹脂、金属等の材料を適宜選択可能である。特に本実施形態では、基板101は、例えば、TFT(Thin Film Transistor)が形成されたガラス基板や半導体素子が形成されたシリコンウエハである。
<Film forming equipment>
FIG. 2 is a schematic diagram of a film forming apparatus 1 according to an embodiment of the present invention. The film forming apparatus 1 is an apparatus that forms a film of a vapor deposition material on a substrate 101, and uses a mask 102 to form a thin film of the vapor deposition material in a predetermined pattern. The material of the substrate 101 on which film formation is performed in the film formation apparatus 1 can be appropriately selected from materials such as glass, resin, and metal. Particularly in this embodiment, the substrate 101 is, for example, a glass substrate on which TFTs (Thin Film Transistors) are formed, or a silicon wafer on which semiconductor elements are formed.
 蒸着物質としては、有機材料、無機材料(金属、金属酸化物など)などの物質である。成膜装置1は、例えば表示装置(フラットパネルディスプレイなど)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)等の電子デバイスや、光学部材等を製造する製造装置に適用可能であり、特に、有機ELパネルを製造する製造装置に適用可能である。以下の説明においては成膜装置1が真空蒸着によって基板101に成膜を行う例について説明するが、本発明はこれに限定はされず、スパッタやCVD等の各種成膜方法を適用可能である。 The deposition material may be an organic material or an inorganic material (metal, metal oxide, etc.). The film forming apparatus 1 is applicable to manufacturing apparatuses for manufacturing electronic devices such as display devices (such as flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), as well as optical components, and is particularly applicable to manufacturing apparatuses for manufacturing organic EL panels. In the following explanation, an example will be described in which the film forming apparatus 1 forms a film on the substrate 101 by vacuum deposition, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied.
 成膜装置1は、箱型の真空チャンバ2を有する。真空チャンバ2の内部空間は、真空雰囲気か、窒素ガスなどの不活性ガス雰囲気に維持されている。本実施形態では、真空チャンバ2は不図示の真空ポンプに接続されている。真空チャンバ2の内部空間には、蒸着ユニット10が配置されている。蒸着ユニット10は、蒸着物資を上方に放出する蒸着源を備える。蒸着ユニット10の上方には蒸着物質の放出の規制と規制解除を行うシャッタ10aが配置されている。シャッタ10aは不図示の開閉機構により開閉される。図2はシャッタ10aが閉状態の場合を示しており、蒸着ユニット10による蒸着物質の放出が規制される。蒸着ユニット10の上方には、また、防着板2aが配置されている。防着板2aは、真空チャンバ2の内部空間の上部に配置される以下の構成に、蒸着物質が不必要に付着することを防止する。 The film forming apparatus 1 has a box-shaped vacuum chamber 2. The interior space of the vacuum chamber 2 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas. In this embodiment, the vacuum chamber 2 is connected to a vacuum pump (not shown). A vapor deposition unit 10 is arranged in the interior space of the vacuum chamber 2 . The vapor deposition unit 10 includes a vapor deposition source that discharges vapor deposition materials upward. A shutter 10a is arranged above the vapor deposition unit 10 to regulate and release the release of the vapor deposition substance. The shutter 10a is opened and closed by an opening and closing mechanism (not shown). FIG. 2 shows a case where the shutter 10a is in a closed state, and the release of the vapor deposition substance by the vapor deposition unit 10 is regulated. A deposition prevention plate 2a is also arranged above the vapor deposition unit 10. The deposition prevention plate 2a prevents a vapor deposition substance from unnecessarily adhering to the following structure arranged in the upper part of the internal space of the vacuum chamber 2.
 真空チャンバ2の内部空間には、基板101を水平姿勢で支持する基板支持プレート3が設けられている。本実施形態の場合、基板支持プレート3は静電チャックであり、その下面に静電気力により基板101を吸着し、保持する。基板支持プレート3上には冷却プレート4が固定されている。冷却プレート4は例えば水冷機構等を備えており、基板支持プレート3を介して成膜時に基板101を冷却する。 A substrate support plate 3 that supports the substrate 101 in a horizontal position is provided in the interior space of the vacuum chamber 2. In the case of this embodiment, the substrate support plate 3 is an electrostatic chuck, and the substrate 101 is attracted and held on the lower surface thereof by electrostatic force. A cooling plate 4 is fixed on the substrate support plate 3. The cooling plate 4 is equipped with, for example, a water cooling mechanism, and cools the substrate 101 via the substrate support plate 3 during film formation.
 基板支持プレート3と冷却プレート4とは、支持部5aを介してZ方向に変位可能に磁石プレート5に吊り下げられている。磁石プレート11は、磁力によってマスク102を引き寄せるプレートである。成膜時に基板101は磁石プレート11とマスク102との間に磁力によって挟まれるので、基板101とマスク102の密着性を向上することができる。 The substrate support plate 3 and the cooling plate 4 are suspended from the magnet plate 5 via the support portion 5a so as to be movable in the Z direction. The magnet plate 11 is a plate that attracts the mask 102 by magnetic force. Since the substrate 101 is magnetically sandwiched between the magnet plate 11 and the mask 102 during film formation, the adhesion between the substrate 101 and the mask 102 can be improved.
 成膜装置1は、成膜時にマスク102を支持するマスク支持ユニット6を備える。マスク支持ユニット6は、本実施形態の場合、搬送ユニット121と基板支持プレート3との間の基板101の移載動作も行う。マスク支持ユニット6は、X方向に離間した一対の支持部材6aを備える。各支持部材6aは対応するアクチュエータ6bにより昇降される。本実施形態ではアクチュエータ6bを支持部材6a毎に設けたが、一対の支持部材6aを一つのアクチュエータ6bで昇降してもよい。アクチュエータ6bは例えば電動シリンダや、電動ボールねじ機構である。支持部材6aは、その下端部に爪部F1を備えている。基板101やマスク102は、その周縁部が爪部F1上に載置される。図2の例ではマスク102が爪部F1上に載置されている。一対の支持部材6aは同期的に昇降され、基板101やマスク102を昇降する。 The film forming apparatus 1 includes a mask support unit 6 that supports the mask 102 during film forming. In this embodiment, the mask support unit 6 also performs the operation of transferring the substrate 101 between the transport unit 121 and the substrate support plate 3. The mask support unit 6 includes a pair of support members 6a spaced apart in the X direction. Each support member 6a is raised and lowered by a corresponding actuator 6b. In this embodiment, an actuator 6b is provided for each support member 6a, but a pair of support members 6a may be raised and lowered by one actuator 6b. The actuator 6b is, for example, an electric cylinder or an electric ball screw mechanism. The support member 6a includes a claw portion F1 at its lower end. The peripheral edge portions of the substrate 101 and the mask 102 are placed on the claw portion F1. In the example of FIG. 2, the mask 102 is placed on the claw portion F1. The pair of support members 6a are raised and lowered synchronously to raise and lower the substrate 101 and the mask 102.
 成膜装置1は、基板101とマスク102とのアライメントを行うアライメントユニット8を備える。アライメント装置8は、駆動機構80と、複数の計測ユニットSRとを備える。駆動機構80は、距離調整ユニット81と、支持軸82と、架台83と、位置調整ユニット84と、を備える。 The film forming apparatus 1 includes an alignment unit 8 that aligns the substrate 101 and the mask 102. The alignment device 8 includes a drive mechanism 80 and a plurality of measurement units SR. The drive mechanism 80 includes a distance adjustment unit 81, a support shaft 82, a pedestal 83, and a position adjustment unit 84.
 距離調整ユニット81は、支持軸82をZ方向に昇降する機構であり、例えば、電動シリンダや、電動ボールねじ機構を備える。支持軸82の下端部には磁石プレート5が固定されており、支持軸82の昇降によって、磁石プレート5を介して基板支持プレート3が昇降される。基板支持プレート3を昇降することで、基板101とマスク102との距離を調整し、基板支持プレート3に支持された基板101とマスク102とを基板101の厚み方向(Z方向)に接近及び離隔(離間)させる。換言すれば、距離調整ユニット81は、基板101とマスク102とを重ね合わせる方向に接近させたり、その逆方向に離隔させたりする。なお、距離調整ユニット81によって調整する「距離」はいわゆる垂直距離(又は鉛直距離)であり、距離調整ユニット81は、基板101の垂直位置を調整するユニットであるとも言える。距離調整ユニット81は、架台83を介して位置調整ユニット84に搭載されている。 The distance adjustment unit 81 is a mechanism that moves the support shaft 82 up and down in the Z direction, and includes, for example, an electric cylinder or an electric ball screw mechanism. The magnet plate 5 is fixed to the lower end of the support shaft 82, and as the support shaft 82 moves up and down, the substrate support plate 3 is moved up and down via the magnet plate 5. By raising and lowering the substrate support plate 3, the distance between the substrate 101 and the mask 102 is adjusted, and the substrate 101 supported by the substrate support plate 3 and the mask 102 are brought closer to each other and separated from each other in the thickness direction (Z direction) of the substrate 101. (separate) In other words, the distance adjustment unit 81 causes the substrate 101 and the mask 102 to approach each other in the direction in which they overlap, or to separate them in the opposite direction. Note that the "distance" adjusted by the distance adjustment unit 81 is a so-called vertical distance (or vertical distance), and the distance adjustment unit 81 can also be said to be a unit that adjusts the vertical position of the substrate 101. The distance adjustment unit 81 is mounted on a position adjustment unit 84 via a pedestal 83.
 位置調整ユニット84は、基板支持プレート3をX-Y平面上で変位することにより、マスク102に対する基板101の相対位置を調整する。すなわち、位置調整ユニット80は、マスク102と基板101の水平位置を調整するユニットであるとも言える。位置調整ユニット80は、基板支持プレート6をX方向、Y方向及びZ方向の軸周りの回転方向(θ方向)に変位することができる。本実施形態では、マスク102の位置を固定し、基板101を変位してこれらの相対位置を調整するが、マスク102を変位させて調整してもよく、或いは、基板101とマスク102の双方を変位させてもよい。 The position adjustment unit 84 adjusts the relative position of the substrate 101 with respect to the mask 102 by displacing the substrate support plate 3 on the XY plane. In other words, the position adjustment unit 80 can also be said to be a unit that adjusts the horizontal positions of the mask 102 and the substrate 101. The position adjustment unit 80 can displace the substrate support plate 6 in a rotational direction (θ direction) around the X, Y, and Z axes. In this embodiment, the position of the mask 102 is fixed and the substrate 101 is displaced to adjust their relative positions, but the mask 102 may also be displaced to make the adjustment, or both the substrate 101 and the mask 102 may be displaced.
 位置調整ユニット84は、固定プレート20aと、可動プレート20bとを備える。固定プレート84aと、可動プレート84bは矩形の枠状のプレートであり、固定プレート84aは真空チャンバ2の上壁部20上に固定されている。固定プレート20aと、可動プレート20bとの間には、固定プレート20aに対して可動プレート20bをX方向、Y方向、及び、Z方向の軸周りの回転方向に変位させるアクチュエータが設けられている。 The position adjustment unit 84 includes a fixed plate 20a and a movable plate 20b. The fixed plate 84a and the movable plate 84b are rectangular frame-shaped plates, and the fixed plate 84a is fixed on the upper wall portion 20 of the vacuum chamber 2. An actuator is provided between the fixed plate 20a and the movable plate 20b to displace the movable plate 20b relative to the fixed plate 20a in rotational directions around the axes in the X direction, the Y direction, and the Z direction.
 可動プレート84b上には、フレーム状の架台83が搭載されており、架台83には距離調整ユニット81が支持されている。可動プレート84bが変位すると、架台83及び距離調整ユニット81が一体的に変位する。これにより基板101をX方向、Y方向、及び、Z方向の軸周りの回転方向に変位させることができる。上壁部20には、支持軸82、支持部材6a及び7aが通過する開口部が形成されている。これらの開口部は不図示のシール部材(ベローズ等)によってシールされ、真空チャンバ2内の気密性が維持される。 A frame-shaped pedestal 83 is mounted on the movable plate 84b, and the distance adjustment unit 81 is supported on the pedestal 83. When the movable plate 84b is displaced, the pedestal 83 and the distance adjustment unit 81 are integrally displaced. This allows the substrate 101 to be displaced in the rotational directions around the axes in the X direction, Y direction, and Z direction. The upper wall portion 20 is formed with an opening through which the support shaft 82 and the support members 6a and 7a pass. These openings are sealed by a sealing member (not shown) (such as a bellows) to maintain airtightness within the vacuum chamber 2.
 計測ユニットSRは、基板101とマスク102の位置ずれを計測する。本実施形態の計測ユニットSRは画像を撮像する撮像装置(カメラ)である。計測ユニットSRは、上壁部20に配置され、真空チャンバ2内の画像を撮像可能である。基板101とマスク102にはそれぞれアライメントマーク(不図示)が形成されている。計測ユニットSRは、基板101とマスク102の各アライメントマークを撮影する。各アライメントマークの位置により基板101とマスク102との位置ずれ量を演算し、位置調整ユニット84によって位置ずれ量を解消するように基板101とマスク102との相対位置を調整する。 The measurement unit SR measures the positional deviation between the substrate 101 and the mask 102. The measurement unit SR of this embodiment is an imaging device (camera) that captures an image. The measurement unit SR is arranged on the upper wall portion 20 and is capable of capturing an image inside the vacuum chamber 2 . Alignment marks (not shown) are formed on the substrate 101 and the mask 102, respectively. The measurement unit SR photographs each alignment mark on the substrate 101 and the mask 102. The amount of positional deviation between the substrate 101 and the mask 102 is calculated based on the position of each alignment mark, and the relative position between the substrate 101 and the mask 102 is adjusted by the position adjustment unit 84 so as to eliminate the amount of positional deviation.
 制御装置9は、成膜装置1の全体を制御する。制御装置9は、処理部90、記憶部91、入出力インタフェース(I/O)92及び通信部93を備える。処理部90は、CPUに代表されるプロセッサであり、記憶部92に記憶されたプログラムを実行して成膜装置1を制御する。記憶部91は、ROM、RAM、HDD等の記憶デバイスであり、処理部90が実行するプログラムの他、各種の制御情報を記憶する。I/O92は、処理部90と外部デバイスとの間の信号を送受信するインタフェースである。通信部93は通信回線を介して上位装置又は他の制御装置等と通信を行う通信デバイスである。 The control device 9 controls the entire film forming apparatus 1. The control device 9 includes a processing section 90, a storage section 91, an input/output interface (I/O) 92, and a communication section 93. The processing unit 90 is a processor represented by a CPU, and controls the film forming apparatus 1 by executing a program stored in the storage unit 92 . The storage unit 91 is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to programs executed by the processing unit 90. The I/O 92 is an interface that transmits and receives signals between the processing unit 90 and external devices. The communication unit 93 is a communication device that communicates with a host device or other control device via a communication line.
 <基板及びマスクの構成例>
 図3は基板101、マスク102及び静電チャック103の例を示す。基板101は円形のシリコンウエハであり、成膜等の後、複数のチップ101aが基板101から切り出される。マスク102は基板101と同様に円形の部材であり、各チップ101aに対応したマスク部102bと、マスク部102bの周囲のフレーム部102aとを含む。マスク部102bには、基板101に蒸着される蒸着物質が通過する複数の開口部(貫通孔)102cが形成されており、開口部102cの配置によって基板101上の成膜パターンが規定される。
<Example of structure of substrate and mask>
FIG. 3 shows an example of a substrate 101, a mask 102, and an electrostatic chuck 103. The substrate 101 is a circular silicon wafer, and after film formation and the like, a plurality of chips 101a are cut out from the substrate 101. The mask 102 is a circular member like the substrate 101, and includes a mask portion 102b corresponding to each chip 101a and a frame portion 102a surrounding the mask portion 102b. A plurality of openings (through holes) 102c are formed in the mask portion 102b, through which a vapor deposition material to be vapor-deposited on the substrate 101 passes, and a film formation pattern on the substrate 101 is defined by the arrangement of the openings 102c.
 図4A~図4Cは、図3のA-A線断面図、B-B線断面図及びC-C線断面図である。マスク102は、マスク本体1020と、マスク本体1020に形成された磁性体1021とを備える。マスク本体1020は例えばシリコン(Si)等の非磁性材料からなる。マスク本体1020としてシリコンウエハを用いることで、半導体製造技術の応用によりより微細で精密な開口部102cを形成することができる。フレーム部102aは相対的に厚肉の厚肉部であり、マスク部102bは相対的に薄肉の薄肉部である。フレーム部102aはマスク部102bよりも剛性が高い。マスク102の全体の剛性を大きく低下させることなく、マスク部102bを薄く形成することができる。 4A to 4C are a sectional view taken along the line AA, BB, and CC in FIG. 3. The mask 102 includes a mask body 1020 and a magnetic body 1021 formed on the mask body 1020. The mask body 1020 is made of a non-magnetic material such as silicon (Si). By using a silicon wafer as the mask body 1020, finer and more precise openings 102c can be formed by applying semiconductor manufacturing technology. The frame portion 102a is a relatively thick portion, and the mask portion 102b is a relatively thin portion. The frame portion 102a has higher rigidity than the mask portion 102b. The mask portion 102b can be formed thin without significantly reducing the overall rigidity of the mask 102.
 マスク本体102の表面には、複数のスリット102dが形成されている。各スリット102dはマスク部102b内に複数形成された、平面視で十字形状の有底溝である。スリット102dを形成したことによって、マスク本体102に応力が作用した場合に、スリット102での変形を許容してマスク本体102のひび割れ等の破損を防止できる。 A plurality of slits 102d are formed on the surface of the mask body 102. Each slit 102d is a bottomed groove formed in the mask portion 102b and having a cross shape in plan view. By forming the slit 102d, when stress is applied to the mask body 102, deformation in the slit 102 is allowed and damage such as cracking of the mask body 102 can be prevented.
 磁性体1021は、例えば、ニッケル(Ni)等の磁性材料の薄膜である。本実施形態では、上記の磁石プレート5の磁力によって成膜時にマスク102と基板101とを密着させる。本実施形態のようにマスク本体1020を非磁性体で構成した場合、そのままでは磁力による密着作用を得られない。磁性体1021をマスク本体1020に形成したことで、磁石プレート5の磁力が磁性体1021に作用し、磁力によるマスク102と基板101との密着作用を得られる。 The magnetic body 1021 is, for example, a thin film of a magnetic material such as nickel (Ni). In this embodiment, the magnetic force of the magnet plate 5 causes the mask 102 and the substrate 101 to adhere to each other during film formation. If the mask body 1020 is made of a non-magnetic material as in this embodiment, the magnetic force does not provide an adhesive effect. By forming the magnetic body 1021 on the mask body 1020, the magnetic force of the magnet plate 5 acts on the magnetic body 1021, and the magnetic force provides an adhesive effect between the mask 102 and the substrate 101.
 本実施形態の磁性体1021は、マスク本体1020の表面に形成されており、特に、基板101と重なる面に形成されている。磁力によるマスク102と基板101との密着作用を得られる。また、磁性体1021は個々の開口部102cを囲むように形成されており、特に本実施形態では全体として縦横の直線が互いに直交した格子状に形成されている。開口部102cの周囲において磁力による基板101との密着作用を向上でき、開口部102cを通って放出される蒸着物質を基板101の目的とする部位に的確に蒸着できる。 The magnetic material 1021 of this embodiment is formed on the surface of the mask body 1020, particularly on the surface that overlaps with the substrate 101. The close contact effect between the mask 102 and the substrate 101 due to magnetic force can be obtained. Further, the magnetic body 1021 is formed so as to surround each opening 102c, and particularly in this embodiment, the magnetic body 1021 is formed as a whole in a lattice shape in which vertical and horizontal lines are orthogonal to each other. The adhesion to the substrate 101 due to the magnetic force around the opening 102c can be improved, and the deposition material released through the opening 102c can be accurately deposited on a target portion of the substrate 101.
 <制御例>
 制御ユニット9の処理部90が実行する成膜装置1の制御例について説明する。図5~図9は成膜装置1の動作説明図であり、基板101の搬入から、成膜し、搬出するまでの例を示す。
<Control example>
An example of control of the film forming apparatus 1 executed by the processing section 90 of the control unit 9 will be described. 5 to 9 are explanatory diagrams of the operation of the film forming apparatus 1, and show examples from carrying in the substrate 101 to forming a film and carrying it out.
 図5の状態ST51は基板101を真空チャンバ2内に搬入した状態を示す。基板101は搬送ロボット121により基板支持プレート3の下方に搬送される。基板支持プレート3の下面の基板吸着面3aは水平である。次にマスク支持ユニット6によって搬送ロボット121から基板支持プレート3へ基板101を移載する。図5の状態ST52はその動作を示している。支持部材6aを上昇することにより、基板101の周縁が爪部F1に載置され、基板101は搬送ロボット121から上昇し、かつ、基板支持プレート3の基板吸着面3aに押し付けられる。基板支持プレート3の静電チャックを作動して基板101を吸着し、保持する。 A state ST51 in FIG. 5 shows a state in which the substrate 101 is carried into the vacuum chamber 2. The substrate 101 is transported below the substrate support plate 3 by the transport robot 121. The substrate suction surface 3a on the lower surface of the substrate support plate 3 is horizontal. Next, the mask support unit 6 transfers the substrate 101 from the transfer robot 121 to the substrate support plate 3 . State ST52 in FIG. 5 shows the operation. By lifting the support member 6a, the peripheral edge of the substrate 101 is placed on the claw portion F1, the substrate 101 is lifted from the transfer robot 121, and is pressed against the substrate suction surface 3a of the substrate support plate 3. The electrostatic chuck of the substrate support plate 3 is activated to attract and hold the substrate 101.
 続いてマスク102を真空チャンバ2内に搬入する。図6の状態ST61はマスク102を真空チャンバ2内に搬入した状態を示す。マスク102は搬送ロボット131によって格納室140から真空チャンバ2内に搬入される。マスク102は基板101の真下に位置する。次にマスク102を搬送ロボット131からマスク支持ユニット6に移載し、アライメント位置に位置させる。図6の状態ST62はその動作を示している。支持部材6aを上昇することにより、マスク102の周縁が爪部F1に載置され、マスク102は搬送ロボット131から上昇する。マスク102は支持部材6aに支持された状態となり、かつ、更に上昇することでアライメント位置に位置する。本実施形態ではマスク102を上昇してアライメント位置に位置させるが、基板101を降下して基板101をアライメント位置に位置させる構成でもよい。 Subsequently, the mask 102 is carried into the vacuum chamber 2. A state ST61 in FIG. 6 shows a state in which the mask 102 is carried into the vacuum chamber 2. The mask 102 is carried into the vacuum chamber 2 from the storage chamber 140 by the transfer robot 131. Mask 102 is located directly below substrate 101. Next, the mask 102 is transferred from the transfer robot 131 to the mask support unit 6 and positioned at an alignment position. State ST62 in FIG. 6 shows this operation. By lifting the support member 6a, the peripheral edge of the mask 102 is placed on the claw portion F1, and the mask 102 is lifted from the transfer robot 131. The mask 102 is in a state of being supported by the support member 6a, and is further raised to the alignment position. In this embodiment, the mask 102 is raised and positioned at the alignment position, but a configuration may also be adopted in which the substrate 101 is lowered and the substrate 101 is positioned at the alignment position.
 次にアライメント動作を行う。図7の状態ST71に示すように計測ユニットSRにより、基板101のアライメントマークとマスク102のアライメントマークの相対位置が計測される。計測結果(基板101とマスク102の位置ずれ量)が許容範囲内であればアライメント動作を終了する。計測結果が許容範囲外であれば、計測結果に基づいて位置ずれ量を許容範囲内に収めるための制御量(基板101の変位量)が設定される。 Next, perform alignment operation. As shown in state ST71 in FIG. 7, the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102. If the measurement result (the amount of positional deviation between the substrate 101 and the mask 102) is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, a control amount (displacement amount of the substrate 101) is set based on the measurement result to keep the positional deviation amount within the allowable range.
 「位置ずれ量」とは、位置ずれの距離と方向(X、Y、θ)で定義される。設定された制御量に基づいて、図7の状態ST72に示すように位置調整ユニット80が作動される。これにより、基板支持プレート3がX-Y平面上で変位され、マスク102に対する基板101の相対位置が調整される。 The "positional deviation amount" is defined by the distance and direction (X, Y, θ) of positional deviation. Based on the set control amount, the position adjustment unit 80 is operated as shown in state ST72 in FIG. As a result, the substrate support plate 3 is displaced on the XY plane, and the relative position of the substrate 101 with respect to the mask 102 is adjusted.
 計測結果が許容範囲内であるか否かの判定は、例えば、アライメントマーク間の距離をそれぞれ算出し、その距離の平均値や二乗和を、予め設定された閾値と比較することで行うことができる。 Whether or not the measurement results are within the allowable range can be determined, for example, by calculating the distances between the alignment marks and comparing the average value or sum of squares of the distances with a preset threshold. can.
 相対位置の調整後、再度、計測ユニットSRにより、基板101のアライメントマークとマスク102のアライメントマークの相対位置が計測される。計測結果が許容範囲内であればアライメント動作を終了する。計測結果が許容範囲外であれば、マスク102に対する基板101の相対位置が再度調整される。以降、計測結果が許容範囲内となるまで、計測と相対位置調整が繰り返される。 After adjusting the relative positions, the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 again. If the measurement result is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, the relative position of the substrate 101 with respect to the mask 102 is adjusted again. Thereafter, measurements and relative position adjustments are repeated until the measurement results fall within the allowable range.
 次に、成膜動作を行う。まず、基板101をマスク102と重ね合わせる。図8の状態ST81はその動作を示している。基板支持プレート3を降下させると、基板101はマスク102上に載置され、基板101は基板101の被処理面の全体がマスク102と接触する。磁石プレート5が冷却プレート4上に当接し、上から順に磁石プレート5、冷却プレート4、基板支持プレート3、基板101及びマスク102が密着した状態になる。磁石プレート5の磁力によりマスク102を引き寄せ、マスク102と基板101とを全体的に密着させることができる。マスク102には磁性体1021(図3、図4B及び図4C)が形成されているため、より強い磁気吸着力を得られる。このように本実施形態によれば、非磁性体製のマスク102を用いつつ、基板101とマスク102の密着性を向上することができる。また、磁力の作用によりマスク本体1020に応力が生じても、スリット102dで変形が許容され、マスク1020のひび割れ等の破損を防止できる。 Next, a film forming operation is performed. First, the substrate 101 and the mask 102 are overlapped. State ST81 in FIG. 8 shows the operation. When the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 . The magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, and the mask 102 are in close contact with each other in order from the top. The mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole. Since the magnetic material 1021 (FIGS. 3, 4B, and 4C) is formed on the mask 102, stronger magnetic attraction force can be obtained. As described above, according to this embodiment, the adhesion between the substrate 101 and the mask 102 can be improved while using the mask 102 made of a non-magnetic material. Furthermore, even if stress is generated in the mask body 1020 due to the action of magnetic force, deformation is allowed by the slit 102d, and damage such as cracking of the mask 1020 can be prevented.
 以上により成膜の準備が整い、次に図8の状態ST82に示すように、シャッタ10aを開状態とし、蒸着ユニット10から蒸着物質を放出する。蒸着物質はマスク102を介して基板101に蒸着される。 With the above steps, preparations for film formation are completed, and then, as shown in state ST82 in FIG. 8, the shutter 10a is opened, and the vapor deposition substance is released from the vapor deposition unit 10. A deposition material is deposited on the substrate 101 through the mask 102 .
 こうした成膜が完了すると、マスク102及び基板101をそれぞれ搬出する動作を行う。図9の状態ST91はマスク102を搬出する動作を示している。まず、磁石プレート5を上昇し、基板101とマスク102とが離間される。搬送ロボット131のハンド部をマスク102の下方に進入させた後、マスク支持ユニット6の支持部材6aを降下して、マスク102を支持部材6aから搬送ロボット131へ移載する。搬送ロボット131はマスク102を格納室140へ搬送する。 When such film formation is completed, the mask 102 and the substrate 101 are each carried out. State ST91 in FIG. 9 shows the operation of carrying out the mask 102. First, the magnet plate 5 is lifted, and the substrate 101 and the mask 102 are separated. After the hand portion of the transfer robot 131 enters below the mask 102, the support member 6a of the mask support unit 6 is lowered, and the mask 102 is transferred from the support member 6a to the transfer robot 131. The transport robot 131 transports the mask 102 to the storage chamber 140.
 続いて成膜済みの基板101を搬出する。マスク支持ユニット6の支持部材6aを上昇して、基板101を爪部F1によって下側から支持する。基板101に対する基板支持ユニット3の吸着を解除して基板101が支持部材6aに移載される。搬送ロボット121のハンド部を基板101の下方に進入させた後、図9の状態ST92に示すようにマスク支持ユニット6の支持部材6aを降下して、基板101を支持部材6aから搬送ロボット121へ移載する。搬送ロボット121は基板101を搬送路111へ搬送する。以上により基板101の搬入から、成膜し、搬出するまでの動作が完了する。 Subsequently, the substrate 101 on which the film has been formed is carried out. The support member 6a of the mask support unit 6 is raised to support the substrate 101 from below by the claws F1. The adsorption of the substrate support unit 3 to the substrate 101 is released, and the substrate 101 is transferred to the support member 6a. After the hand portion of the transfer robot 121 enters below the substrate 101, the support member 6a of the mask support unit 6 is lowered as shown in state ST92 in FIG. 9, and the substrate 101 is transferred from the support member 6a to the transfer robot 121. Transfer. The transport robot 121 transports the substrate 101 to the transport path 111. As described above, the operations from carrying in the substrate 101 to forming a film and carrying it out are completed.
 <第二実施形態>
 基板101にも磁性体を形成してもよい。図10A及び図10Bはその一例を示す。これらの図は図4Bの断面図に相当し、かつ、マスク102に対してアライメントされた基板101の断面図も示した図である。
<Second embodiment>
A magnetic material may also be formed on the substrate 101. FIGS. 10A and 10B show an example. These figures correspond to the cross-sectional view of FIG. 4B, and also show a cross-sectional view of the substrate 101 aligned with the mask 102.
 図10Aに示すように基板101には、蒸着対象部位である一画素領域101bの周囲に磁性体101dが形成されている。図示の例では磁性体101dは一画素領域101bの周囲のバンク101cの表面に形成されている。磁性体101dは、例えば、ニッケル(Ni)等の磁性材料の薄膜である。磁性体101dと磁性体1021とは、基板101とマスク102とが適切にアライメントされたときに互いに重なる部位に配置されている。 As shown in FIG. 10A, a magnetic material 101d is formed on the substrate 101 around one pixel region 101b, which is a region to be vapor-deposited. In the illustrated example, the magnetic material 101d is formed on the surface of the bank 101c around one pixel region 101b. The magnetic body 101d is, for example, a thin film of a magnetic material such as nickel (Ni). The magnetic material 101d and the magnetic material 1021 are arranged at positions where they overlap each other when the substrate 101 and the mask 102 are properly aligned.
 図10Bは基板101とマスク102とのアライメント後、基板101をマスク102と重ね合わせた状態を示している。磁石プレート5の磁力によって、磁性体101dと磁性体1021とが互いに引き合い、基板101とマスク102との密着性を向上する。更に、磁性体101dと磁性体1021とが互いに引き合うことで、開口部102cと一画素領域101bとの相対位置がセルフアライメントされ、蒸着対象部位である一画素領域101bに、開口部102cを介してより的確に蒸着物質を蒸着できる。 FIG. 10B shows a state in which the substrate 101 and the mask 102 are overlapped with each other after the substrate 101 and the mask 102 are aligned. The magnetic force of the magnet plate 5 attracts the magnetic body 101d and the magnetic body 1021 to each other, improving the adhesion between the substrate 101 and the mask 102. Furthermore, as the magnetic material 101d and the magnetic material 1021 are attracted to each other, the relative position between the opening 102c and the one pixel region 101b is self-aligned, and the one pixel region 101b, which is the vapor deposition target region, is exposed to the one pixel region 101b through the opening 102c. The deposition substance can be deposited more accurately.
 <第三実施形態>
 基板101に磁石を形成してもよい。図11A及び図11Bはその一例を示す。これらの図は図4Bの断面図に相当し、かつ、マスク102に対してアライメントされた基板101の断面図も示した図である。
<Third embodiment>
A magnet may be formed on the substrate 101. FIGS. 11A and 11B show an example. These figures correspond to the cross-sectional view of FIG. 4B, and also show a cross-sectional view of the substrate 101 aligned with the mask 102.
 図11Aに示すように基板101には、蒸着対象部位である一画素領域101bの周囲に磁石101eが形成されている。図示の例では磁石101eは一画素領域101bの周囲のバンク101cの表面に形成されている。磁石101eは、例えば、ニッケル、コバルト等の磁石材料の薄膜である。磁石101eと磁性体1021とは、基板101とマスク102とが適切にアライメントされたときに互いに重なる部位に配置されている。 As shown in FIG. 11A, a magnet 101e is formed on the substrate 101 around one pixel region 101b, which is a region to be vapor-deposited. In the illustrated example, the magnet 101e is formed on the surface of the bank 101c around one pixel region 101b. The magnet 101e is, for example, a thin film of a magnetic material such as nickel or cobalt. The magnet 101e and the magnetic body 1021 are arranged at a portion where the substrate 101 and the mask 102 overlap each other when properly aligned.
 図11Bは基板101とマスク102とのアライメント後、基板101をマスク102と重ね合わせた状態を示している。磁石プレート5の磁力による引き寄せに加えて、磁石101eと磁性体1021とが互いに引き合い、基板101とマスク102との密着性を向上する。更に、磁石101e101dと磁性体1021とが互いに引き合うことで、開口部102cと一画素領域101bとの相対位置がセルフアライメントされ、蒸着対象部位である一画素領域101bに、開口部102cを介してより的確に蒸着物質を蒸着できる。 FIG. 11B shows a state in which the substrate 101 and the mask 102 are overlapped with each other after the substrate 101 and the mask 102 are aligned. In addition to the attraction by the magnetic force of the magnet plate 5, the magnet 101e and the magnetic body 1021 attract each other, improving the adhesion between the substrate 101 and the mask 102. Furthermore, as the magnet 101e101d and the magnetic body 1021 attract each other, the relative position between the opening 102c and the one pixel area 101b is self-aligned, and the one pixel area 101b, which is the evaporation target site, is exposed to the one pixel area 101b through the opening 102c. Vapor deposition substances can be deposited accurately.
 本実施形態の場合、磁石プレート5を省略し、磁石101eと磁性体1021の磁力によって基板101とマスク102とを密着させることも可能である。 In the case of this embodiment, it is also possible to omit the magnet plate 5 and bring the substrate 101 and mask 102 into close contact with each other by the magnetic force of the magnet 101e and the magnetic body 1021.
 <第四実施形態>
 磁性体1021に関するマスク102の他の構成例について図12A~図12Cを参照して説明する。これらの各図は図4Bの断面図に相当する。
<Fourth embodiment>
Other configuration examples of the mask 102 regarding the magnetic material 1021 will be described with reference to FIGS. 12A to 12C. Each of these figures corresponds to the cross-sectional view of FIG. 4B.
 図12Aは、磁性体1021とマスク本体1020との間にスペーサ1022を介在させた構成例を示す。スペーサ1022のZ方向の厚さによって、開口部102cの端部と基板101とのZ方向の距離を所望の距離に設計することができる。また、スペーサ1022として弾性を有する材料を用いた場合には、基板101とマスク102とを密着させる際の衝撃緩和を図ることができる。 FIG. 12A shows a configuration example in which a spacer 1022 is interposed between the magnetic body 1021 and the mask body 1020. Depending on the thickness of the spacer 1022 in the Z direction, the distance in the Z direction between the end of the opening 102c and the substrate 101 can be designed to a desired distance. Further, when an elastic material is used as the spacer 1022, it is possible to reduce the impact when the substrate 101 and the mask 102 are brought into close contact with each other.
 図12Bは、磁性体1021に代わる磁性体1021Aが、マスク本体1020の表面に加えて、開口部102cの内周面に形成された部分1021aを含む。開口部102cの内周面にも磁性体を形成したことで、磁石プレート5の磁力による基板101とマスク102との密着作用を更に向上できる。 In FIG. 12B, magnetic material 1021A, which replaces magnetic material 1021, includes a portion 1021a formed on the inner circumferential surface of opening 102c in addition to the surface of mask body 1020. By forming a magnetic material on the inner circumferential surface of opening 102c, the adhesive effect between substrate 101 and mask 102 due to the magnetic force of magnet plate 5 can be further improved.
 図12Cは、磁性体1021に代わる磁性体1021Bが、図11Bの例と同様に、マスク本体1020の表面に加えて、開口部102cの内周面に形成された部分1021bを含む。但し、磁性体1021Bはマスク本体1020の表面のうち、基板101と反対側の面(重ならない面)に形成されている。磁石プレート5の磁力による基板101とマスク102との密着作用を更に向上できる他、基板101とマスク102との密着時に、磁性体1021Bが基板101とマスク102との間に介在しないので、基板101とマスク102との平行度を向上できる場合がある。 In FIG. 12C, a magnetic body 1021B replacing the magnetic body 1021 includes a portion 1021b formed on the inner peripheral surface of the opening 102c in addition to the surface of the mask body 1020, as in the example of FIG. 11B. However, the magnetic material 1021B is formed on the surface of the mask body 1020 that is opposite to the substrate 101 (the surface that does not overlap). In addition to further improving the adhesion between the substrate 101 and the mask 102 due to the magnetic force of the magnet plate 5, the magnetic material 1021B is not interposed between the substrate 101 and the mask 102 when the substrate 101 and the mask 102 are in close contact with each other. In some cases, the parallelism between the mask 102 and the mask 102 can be improved.
 <他の実施形態>
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other embodiments>
The present invention provides a system or device with a program that implements one or more functions of the embodiments described above via a network or a storage medium, and one or more processors in a computer of the system or device reads and executes the program. This can also be achieved by processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are hereby appended to disclose the scope of the invention.
1 成膜装置、5 磁石プレート、8 アライメントユニット、10 蒸着ユニット、101 基板、102 マスク、1021 磁性体 1 Film forming device, 5 Magnet plate, 8 Alignment unit, 10 Vapor deposition unit, 101 Substrate, 102 Mask, 1021 Magnetic material

Claims (13)

  1.  基板上に蒸着物質のパターンを成膜するための開口部を有するマスクであって、
     前記開口部を有し、非磁性体のマスク本体と、
     前記マスク本体に形成された磁性体と、を備える、
    ことを特徴とするマスク。
    A mask having an opening for forming a pattern of vapor deposition material on a substrate, the mask comprising:
    a mask body made of a non-magnetic material and having the opening;
    a magnetic body formed on the mask body;
    A mask characterized by:
  2.  請求項1に記載のマスクであって、
     前記磁性体は、前記マスク本体の表面に形成された部分を含む、
    ことを特徴とするマスク。
    The mask according to claim 1,
    The magnetic material includes a portion formed on the surface of the mask body.
    A mask characterized by:
  3.  請求項1に記載のマスクであって、
     前記磁性体は、前記マスク本体の表面において前記開口部の周囲に形成された部分を含む、
    ことを特徴とするマスク。
    The mask according to claim 1,
    The magnetic material includes a portion formed around the opening on the surface of the mask body.
    A mask characterized by:
  4.  請求項1に記載のマスクであって、
     前記磁性体は、前記開口部の内周面に形成された部分を含む、
    ことを特徴とするマスク。
    The mask according to claim 1,
    The magnetic body includes a portion formed on an inner circumferential surface of the opening.
    A mask characterized by:
  5.  請求項1に記載のマスクであって、
     前記マスク本体には、複数のスリットが形成されている、
    ことを特徴とするマスク。
    The mask according to claim 1,
    A plurality of slits are formed in the mask body,
    A mask characterized by:
  6.  請求項1に記載のマスクであって、
     前記磁性体は、格子状に形成されている、
    ことを特徴とするマスク。
    The mask according to claim 1,
    The magnetic body is formed in a lattice shape,
    A mask characterized by:
  7.  基板と、前記基板上に蒸着物質のパターンを成膜するための開口部を有するマスクと、のアライメントを行うアライメント工程と、
     前記アライメント工程によりアライメントされた前記基板と前記マスクとを密着させる密着工程と、
     前記マスクを介して前記基板に対して蒸着物質を放出する蒸着工程と、
    を備えた成膜方法であって、
     前記マスクは、
     前記開口部を有し、非磁性体のマスク本体と、
     前記マスク本体に形成された磁性体と、を備え、
     前記密着工程では、
     前記磁性体に対する磁力の作用によって前記基板と前記マスクとを密着させる、
    ことを特徴とする成膜方法。
    an alignment step of aligning a substrate with a mask having openings for depositing a pattern of a deposition material on the substrate;
    a contact step of contacting the substrate aligned in the alignment step with the mask;
    a deposition step of ejecting a deposition material onto the substrate through the mask;
    A film forming method comprising:
    The mask comprises:
    a mask body made of a non-magnetic material and having the opening;
    A magnetic body formed on the mask body,
    In the adhesion step,
    the substrate and the mask are brought into close contact with each other by the action of a magnetic force on the magnetic body;
    A film forming method comprising:
  8.  請求項7に記載の成膜方法であって、
     前記密着工程では、
     磁石プレートと、前記マスクとの間に前記基板を配置する、
    ことを特徴とする成膜方法。
    The film forming method according to claim 7,
    In the adhesion step,
    arranging the substrate between a magnet plate and the mask;
    A film forming method characterized by the following.
  9.  請求項8に記載の成膜方法であって、
     前記基板の前記マスクの側の面には、前記マスク本体に形成された前記磁性体と重なる部位に磁性体が形成されている、
    ことを特徴とする成膜方法。
    9. The film forming method according to claim 8,
    A magnetic material is formed on a surface of the substrate on the mask side at a portion overlapping with the magnetic material formed on the mask main body.
    A film forming method characterized by the following.
  10.  請求項9に記載の成膜方法であって、
     前記マスクの前記磁性体は、前記マスク本体の表面において前記開口部の周囲に形成された部分を含み、
     前記基板の前記磁性体は、前記基板に蒸着物質を蒸着する部位の周囲に形成されている、
    ことを特徴とする成膜方法。
    The film forming method according to claim 9,
    The magnetic body of the mask includes a portion formed around the opening on the surface of the mask body,
    The magnetic body of the substrate is formed around a region where a vapor deposition substance is deposited on the substrate.
    A film forming method characterized by the following.
  11.  請求項7に記載の成膜方法であって、
     前記基板の前記マスクの側の面には、前記マスク本体に形成された前記磁性体と重なる部位に磁石が形成されている、
    ことを特徴とする成膜方法。
    The film forming method according to claim 7,
    A magnet is formed on a surface of the substrate on the mask side at a portion overlapping with the magnetic material formed on the mask body.
    A film forming method characterized by the following.
  12.  請求項11に記載の成膜方法であって、
     前記磁性体は、前記マスク本体の表面において前記開口部の周囲に形成された部分を含み、
     前記基板の前記磁石は、前記基板に蒸着物質を蒸着する部位の周囲に形成されている、
    ことを特徴とする成膜方法。
    The film forming method according to claim 11,
    The magnetic material includes a portion formed around the opening on the surface of the mask body,
    The magnet of the substrate is formed around a portion of the substrate where a deposition substance is deposited,
    A film forming method characterized by the following.
  13.  基板とマスクとのアライメントを行うアライメント手段と、
     アライメントされた前記基板と前記マスクとを磁力により密着させる磁石プレートと、
     前記マスクを介して前記基板に蒸着物質を放出する蒸着手段と、
    を備えた成膜装置であって、
     前記マスクは、
     前記基板上に蒸着物質のパターンを成膜するための開口部を有し、非磁性体のマスク本体と、
     前記マスク本体に形成された磁性体と、を備え、
     前記磁石プレートと前記マスクとの間に前記基板が配置される、
    ことを特徴とする成膜装置。
    an alignment means for aligning the substrate and the mask;
    a magnet plate that brings the aligned substrate and the mask into close contact with each other by magnetic force;
    Vapor deposition means for releasing a vapor deposition substance onto the substrate through the mask;
    A film forming apparatus comprising:
    The mask is
    a mask body made of a non-magnetic material and having an opening for forming a pattern of vapor deposition material on the substrate;
    A magnetic body formed on the mask body,
    the substrate is disposed between the magnet plate and the mask;
    A film forming apparatus characterized by the following.
PCT/JP2023/029421 2022-09-20 2023-08-14 Mask, film forming method, and film forming apparatus WO2024062802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149511A JP2024044139A (en) 2022-09-20 2022-09-20 Mask, film-forming method and film-forming equipment
JP2022-149511 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062802A1 true WO2024062802A1 (en) 2024-03-28

Family

ID=90454193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029421 WO2024062802A1 (en) 2022-09-20 2023-08-14 Mask, film forming method, and film forming apparatus

Country Status (2)

Country Link
JP (1) JP2024044139A (en)
WO (1) WO2024062802A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188731A (en) * 2005-01-06 2006-07-20 Seiko Epson Corp Film deposition method for mask, and mask
JP2006233286A (en) * 2005-02-25 2006-09-07 Seiko Epson Corp Mask, method for manufacturing mask, pattern-forming apparatus and pattern-forming method
JP2010209441A (en) * 2009-03-12 2010-09-24 Seiko Epson Corp Film deposition mask, and apparatus for manufacturing organic el device
JP2015028204A (en) * 2013-06-28 2015-02-12 大日本印刷株式会社 Manufacturing method of vapor deposition mask, manufacturing method of vapor deposition mask with metal frame, and manufacturing method of organic semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188731A (en) * 2005-01-06 2006-07-20 Seiko Epson Corp Film deposition method for mask, and mask
JP2006233286A (en) * 2005-02-25 2006-09-07 Seiko Epson Corp Mask, method for manufacturing mask, pattern-forming apparatus and pattern-forming method
JP2010209441A (en) * 2009-03-12 2010-09-24 Seiko Epson Corp Film deposition mask, and apparatus for manufacturing organic el device
JP2015028204A (en) * 2013-06-28 2015-02-12 大日本印刷株式会社 Manufacturing method of vapor deposition mask, manufacturing method of vapor deposition mask with metal frame, and manufacturing method of organic semiconductor element

Also Published As

Publication number Publication date
JP2024044139A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
CN113802106B (en) Substrate mounting method, electronic device manufacturing method, and substrate mounting apparatus
JP6448067B2 (en) Substrate mounting method, substrate mounting mechanism, film forming method, film forming apparatus, and electronic device manufacturing method
JP6461235B2 (en) Substrate mounting apparatus, film forming apparatus, substrate mounting method, film forming method, and electronic device manufacturing method
JP6393802B1 (en) Substrate placing apparatus, substrate placing method, film forming apparatus, film forming method, alignment apparatus, alignment method, and electronic device manufacturing method
JP7244401B2 (en) Alignment apparatus, film formation apparatus, alignment method, film formation method, and electronic device manufacturing method
JP6468540B2 (en) Substrate transport mechanism, substrate mounting mechanism, film forming apparatus, and methods thereof
JP7289421B2 (en) Substrate support device and deposition device
CN111146241A (en) Method of manufacturing organic light emitting display and mask assembly
JP7120545B2 (en) Film forming apparatus, film forming method, and method for manufacturing organic EL display device using the same
US20170117474A1 (en) Mask assembly, apparatus, and method of manufacturing display apparatus
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
WO2024062802A1 (en) Mask, film forming method, and film forming apparatus
JP2022114212A (en) Film deposition apparatus
KR102505832B1 (en) Adsorption apparatus, position adjusting method, and method for forming film
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP7078694B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
WO2024062801A1 (en) Film forming apparatus and film forming method
JP7246598B2 (en) Adsorption device, film formation device, adsorption method, film formation method, and electronic device manufacturing method
WO2023210464A1 (en) Film deposition device, film deposition method, electronic device manufacturing method, and computer program recording medium
WO2024105993A1 (en) Film forming apparatus and film forming method
WO2024116600A1 (en) Film forming apparatus and film forming method
KR102669513B1 (en) Carrier, apparatus for manufacturing a display apparatus having the same and method for manufacturing a display apparatus
JP7078696B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
WO2024034236A1 (en) Alignment device, film forming device, control method, electronic device manufacturing method, program, and storage medium
JP2024078166A (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867927

Country of ref document: EP

Kind code of ref document: A1