WO2024062801A1 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
WO2024062801A1
WO2024062801A1 PCT/JP2023/029420 JP2023029420W WO2024062801A1 WO 2024062801 A1 WO2024062801 A1 WO 2024062801A1 JP 2023029420 W JP2023029420 W JP 2023029420W WO 2024062801 A1 WO2024062801 A1 WO 2024062801A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
substrate
film forming
forming apparatus
electrostatic chuck
Prior art date
Application number
PCT/JP2023/029420
Other languages
French (fr)
Japanese (ja)
Inventor
健 長岡
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2024062801A1 publication Critical patent/WO2024062801A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a film forming apparatus and a film forming method.
  • a technique is known in which a substrate and a mask are aligned, and then a deposition substance is deposited onto the substrate through the mask to form a film (for example, Patent Document 1).
  • the present invention provides a technique that allows the substrate and mask to be brought closer to each other while preventing them from coming into contact with each other during alignment.
  • a substrate support means for supporting the substrate; Alignment means for aligning the substrate and the mask; Vapor deposition means for releasing a vapor deposition substance onto the substrate through the mask;
  • a film forming apparatus comprising: an electrostatic chuck that attracts the mask from a side opposite to the substrate during alignment by the alignment means; A film deposition apparatus is provided.
  • the present invention it is possible to provide a technique that allows the substrate and the mask to be brought closer to each other while preventing them from coming into contact with each other during alignment.
  • FIG. 1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a substrate, a mask, and an electrostatic chuck.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. Cross-sectional view of line B-B in Figure 3.
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2;
  • FIG. 3 is a perspective view of another electrostatic chuck.
  • FIG. 13A is a sectional view taken along line CC in FIG. 13A.
  • FIG. 6 is an explanatory diagram of the operation of a film forming apparatus according to another embodiment.
  • FIG. 6 is an explanatory diagram of the operation of a film forming apparatus according to another embodiment.
  • FIG. 1 is a schematic diagram showing a part of the configuration of an electronic device manufacturing line 100 to which the film forming apparatus of the present invention can be applied.
  • arrows X and Y indicate horizontal directions perpendicular to each other, and arrow Z indicates an up-down direction (direction of gravity).
  • the manufacturing line shown in FIG. 1 is used, for example, to manufacture light emitting elements of organic EL display devices.
  • the manufacturing line 100 includes a transfer chamber 120 having an octagonal shape in plan view. The substrate 101 is carried into the transfer chamber 120 from the transfer path 110 , and the substrate 101 on which a film has been formed is transferred from the transfer chamber 120 to the transfer path 111 .
  • a plurality of film forming apparatuses 1 that perform film forming processing on the substrate 101 are arranged around the transfer chamber 120.
  • a transfer chamber 130 is arranged adjacent to each film forming apparatus 1 .
  • a storage chamber 140 in which the mask 102 is stored and a storage chamber 141 in which the electrostatic chuck 103 is stored are arranged around the transfer chamber 130, which has an octagonal shape in plan view.
  • a transport unit 121 that transports the substrate 101 is arranged in the transport chamber 120.
  • the transport unit 121 of this embodiment is a horizontally articulated robot, and transports the substrate 101 mounted on its hand in a horizontal position.
  • the transport unit 121 carries out a transport operation in which the substrate 101 carried in from the transport path 110 is transported to the film forming apparatus 1, and a transport operation in which the substrate 101 on which a film has been formed in the film forming apparatus 1 is transported from the film forming chamber 1 to the transport path 111. Perform the action.
  • a transport unit 131 that transports the mask 102 and the electrostatic chuck 103 is arranged in each transport chamber 130.
  • the transport unit 131 of this embodiment is a horizontally articulated robot, and transports the mask 102 or the electrostatic chuck 103 mounted on its hand in a horizontal position.
  • the transport unit 131 transports the mask 102 from the storage chamber 140 to the film forming apparatus 1, transports the mask 102 from the film forming apparatus 1 to the storage chamber 140, and transports the electrostatic chuck 103 from the storage chamber 141 to the film forming apparatus 1. and the operation of transporting the electrostatic chuck 103 from the film forming apparatus 1 to the storage chamber 141.
  • FIG. 2 is a schematic diagram of a film forming apparatus 1 according to an embodiment of the present invention.
  • the film forming apparatus 1 is an apparatus that forms a film of a vapor deposition material on a substrate 101, and uses a mask 102 to form a thin film of the vapor deposition material in a predetermined pattern.
  • the material of the substrate 101 on which a film is formed in the film forming apparatus 1 can be appropriately selected from materials such as glass, resin, and metal.
  • the substrate 101 is, for example, a glass substrate on which a TFT (Thin Film Transistor) is formed or a silicon wafer on which a semiconductor element is formed.
  • TFT Thin Film Transistor
  • the vapor deposition substance includes organic materials, inorganic materials (metals, metal oxides, etc.).
  • the film forming apparatus 1 is applicable to, for example, a manufacturing apparatus for manufacturing electronic devices such as display devices (flat panel displays, etc.), thin film solar cells, organic photoelectric conversion elements (organic thin film image sensors), optical members, etc. In particular, it is applicable to manufacturing equipment that manufactures organic EL panels. In the following description, an example will be described in which the film forming apparatus 1 forms a film on the substrate 101 by vacuum evaporation, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied. .
  • the film forming apparatus 1 has a box-shaped vacuum chamber 2.
  • the interior space of the vacuum chamber 2 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas.
  • the vacuum chamber 2 is connected to a vacuum pump (not shown).
  • a vapor deposition unit 10 is arranged in the interior space of the vacuum chamber 2 .
  • the vapor deposition unit 10 includes a vapor deposition source that discharges vapor deposition materials upward.
  • a shutter 10a is arranged above the vapor deposition unit 10 to regulate and release the release of the vapor deposition substance.
  • the shutter 10a is opened and closed by an opening and closing mechanism (not shown).
  • a deposition prevention plate 2a is also arranged above the vapor deposition unit 10. The deposition prevention plate 2a prevents a vapor deposition substance from unnecessarily adhering to the following structure arranged in the upper part of the internal space of the vacuum chamber 2.
  • a substrate support plate 3 that supports the substrate 101 in a horizontal position is provided in the interior space of the vacuum chamber 2.
  • the substrate support plate 3 is an electrostatic chuck, and the substrate 101 is attracted and held on the lower surface thereof by electrostatic force.
  • a cooling plate 4 is fixed on the substrate support plate 3.
  • the cooling plate 4 is equipped with, for example, a water cooling mechanism, and cools the substrate 101 via the substrate support plate 3 during film formation.
  • the substrate support plate 3 and the cooling plate 4 are suspended from the magnet plate 5 via the support portion 5a so as to be movable in the Z direction.
  • the magnet plate 11 is a plate that attracts the mask 102 by magnetic force. Since the substrate 101 is magnetically sandwiched between the magnet plate 11 and the mask 102 during film formation, the adhesion between the substrate 101 and the mask 102 can be improved.
  • the film forming apparatus 1 includes a mask support unit 6 that supports the mask 102 during film forming.
  • the mask support unit 6 also performs the operation of transferring the substrate 101 between the transport unit 121 and the substrate support plate 3.
  • the mask support unit 6 includes a pair of support members 6a spaced apart in the X direction. Each support member 6a is raised and lowered by a corresponding actuator 6b.
  • an actuator 6b is provided for each support member 6a, but a pair of support members 6a may be raised and lowered by one actuator 6b.
  • the actuator 6b is, for example, an electric cylinder or an electric ball screw mechanism.
  • the support member 6a includes a claw portion F1 at its lower end.
  • the peripheral edge portions of the substrate 101 and the mask 102 are placed on the claw portion F1.
  • the mask 102 is placed on the claw portion F1.
  • the pair of support members 6a are raised and lowered synchronously to raise and lower the substrate 101 and the mask 102.
  • the film forming apparatus 1 includes a chuck support unit 7 that supports the electrostatic chuck 103 during alignment.
  • the chuck support unit 7 includes a pair of support members 7a spaced apart in the X direction. Each support member 7a is raised and lowered by a corresponding actuator 7b. In this embodiment, an actuator 7b is provided for each support member 7a, but a pair of support members 7a may be raised and lowered by a single actuator 7b.
  • the actuator 7b includes, for example, an electric cylinder or an electric ball screw mechanism.
  • the support member 7a includes a claw portion F2 at its lower end. The peripheral portion of the electrostatic chuck 103 is placed on the claw portion F2. In the example of FIG. 2, the mask 102 is placed on the claw portion F2.
  • the pair of support members 7a are raised and lowered synchronously to raise and lower the electrostatic chuck 103.
  • the film forming apparatus 1 includes an alignment unit 8 that aligns the substrate 101 and the mask 102.
  • the alignment device 8 includes a drive mechanism 80 and a plurality of measurement units SR.
  • the drive mechanism 80 includes a distance adjustment unit 81, a support shaft 82, a pedestal 83, and a position adjustment unit 84.
  • the distance adjustment unit 81 is a mechanism that moves the support shaft 82 up and down in the Z direction, and includes, for example, an electric cylinder or an electric ball screw mechanism.
  • the magnet plate 5 is fixed to the lower end of the support shaft 82, and as the support shaft 82 moves up and down, the substrate support plate 3 is moved up and down via the magnet plate 5.
  • the distance between the substrate 101 and the mask 102 is adjusted, and the substrate 101 supported by the substrate support plate 3 and the mask 102 are brought closer to each other and separated from each other in the thickness direction (Z direction) of the substrate 101.
  • the distance adjustment unit 81 causes the substrate 101 and the mask 102 to approach each other in the direction in which they overlap, or to separate them in the opposite direction.
  • the "distance" adjusted by the distance adjustment unit 81 is a so-called vertical distance (or vertical distance), and the distance adjustment unit 81 can also be said to be a unit that adjusts the vertical position of the substrate 101.
  • the distance adjustment unit 81 is mounted on a position adjustment unit 84 via a pedestal 83.
  • the position adjustment unit 84 adjusts the relative position of the substrate 101 with respect to the mask 102 by displacing the substrate support plate 3 on the XY plane. That is, it can be said that the position adjustment unit 80 is a unit that adjusts the horizontal position of the mask 102 and the substrate 101.
  • the position adjustment unit 80 can displace the substrate support plate 6 in the rotation direction ( ⁇ direction) around the axes in the X direction, the Y direction, and the Z direction. In this embodiment, the position of the mask 102 is fixed and the substrate 101 is displaced to adjust these relative positions. It may be displaced.
  • the position adjustment unit 84 includes a fixed plate 20a and a movable plate 20b.
  • the fixed plate 84a and the movable plate 84b are rectangular frame-shaped plates, and the fixed plate 84a is fixed on the upper wall portion 20 of the vacuum chamber 2.
  • An actuator is provided between the fixed plate 20a and the movable plate 20b to displace the movable plate 20b relative to the fixed plate 20a in rotational directions around the axes in the X direction, the Y direction, and the Z direction.
  • a frame-shaped pedestal 83 is mounted on the movable plate 84b, and the distance adjustment unit 81 is supported on the pedestal 83.
  • the pedestal 83 and the distance adjustment unit 81 are integrally displaced. This allows the substrate 101 to be displaced in the rotational directions around the axes in the X direction, Y direction, and Z direction.
  • the upper wall portion 20 is formed with an opening through which the support shaft 82 and the support members 6a and 7a pass. These openings are sealed by a sealing member (not shown) (such as a bellows) to maintain airtightness within the vacuum chamber 2.
  • the measurement unit SR measures the positional deviation between the substrate 101 and the mask 102.
  • the measurement unit SR of this embodiment is an imaging device (camera) that captures an image.
  • the measurement unit SR is arranged on the upper wall portion 20 and is capable of capturing an image inside the vacuum chamber 2 .
  • Alignment marks (not shown) are formed on the substrate 101 and the mask 102, respectively.
  • the measurement unit SR photographs each alignment mark on the substrate 101 and the mask 102.
  • the amount of positional deviation between the substrate 101 and the mask 102 is calculated based on the position of each alignment mark, and the relative position between the substrate 101 and the mask 102 is adjusted by the position adjustment unit 84 so as to eliminate the amount of positional deviation.
  • the control device 9 controls the entire film forming apparatus 1.
  • the control device 9 includes a processing section 90, a storage section 91, an input/output interface (I/O) 92, and a communication section 93.
  • the processing unit 90 is a processor represented by a CPU, and controls the film forming apparatus 1 by executing a program stored in the storage unit 92 .
  • the storage unit 91 is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to programs executed by the processing unit 90.
  • the I/O 92 is an interface that transmits and receives signals between the processing unit 90 and external devices.
  • the communication unit 93 is a communication device that communicates with a host device or other control device via a communication line.
  • FIG. 3 shows an example of a substrate 101, a mask 102, and an electrostatic chuck 103.
  • the substrate 101 is a circular silicon wafer, and after film formation and the like, a plurality of chips 101a are cut out from the substrate 101.
  • the mask 102 is a circular member like the substrate 101, and includes a mask portion 102b corresponding to each chip 101a and a frame portion 102a surrounding the mask portion 102b.
  • a plurality of openings (through holes) 102c are formed in the mask portion 102b, through which a deposition material to be deposited on the substrate 101 passes, and a film formation pattern on the substrate 101 is defined by the arrangement of the openings 102c.
  • FIG. 4A is a cross-sectional view taken along the line AA in FIG. 3, and is a cross-sectional view of the mask 102.
  • FIG. The frame portion 102a is a relatively thick portion, and the mask portion 102b is a relatively thin portion.
  • the frame portion 102a has higher rigidity than the mask portion 102b.
  • the electrostatic chuck 103 is a circular member like the mask 102, and its upper surface forms a flat suction surface 103c.
  • the suction surface 103c includes a frame-shaped suction section 103a and a grid-like suction section 103b provided inside the suction section 103a.
  • the suction portion 103a has an annular shape and suctions the peripheral portion of the frame portion 102a of the mask 102.
  • the suction portion 103b has a cross shape and suctions a cross-shaped portion extending from the center of the frame portion 102a of the mask 102 in the left, right, front and rear directions.
  • FIG. 4B is a sectional view taken along line BB in FIG.
  • the electrostatic chuck 103 is configured to partially attract the mask 102 other than the opening 102c so as not to cover the opening 102c.
  • the electrostatic chuck 103 has a built-in battery and a control circuit (not shown).
  • the battery is the power source that operates the electrostatic chuck 102.
  • the control circuit can communicate with the control device 9 through wired or wireless communication. By turning on and off the power of the electrostatic chuck 102 using the control circuit, it is possible to control whether the electrostatic chuck 102 is attracted or stopped. Instead of communication, an ON/OFF switch may be provided on the electrostatic chuck 103, and an operating mechanism for operating the ON/OFF switch may be provided in the internal space of the vacuum chamber 2.
  • FIGS. 5 to 12 are explanatory diagrams of the operation of the film forming apparatus 1, and show examples from carrying in the substrate 101 to forming a film and carrying it out.
  • State ST51 in FIG. 5 shows the state in which the substrate 101 has been carried into the vacuum chamber 2.
  • the substrate 101 is carried below the substrate support plate 3 by the transport robot 121.
  • the substrate adsorption surface 3a on the lower surface of the substrate support plate 3 is horizontal.
  • the mask support unit 6 transfers the substrate 101 from the transport robot 121 to the substrate support plate 3.
  • State ST52 in FIG. 5 shows this operation.
  • the electrostatic chuck of the substrate support plate 3 is operated to adsorb and hold the substrate 101.
  • the substrate 101 can be held in a horizontal position while maintaining a high degree of flatness of the substrate 101.
  • a state ST61 in FIG. 6 shows a state in which the mask 102 is carried into the vacuum chamber 2.
  • the mask 102 is carried into the vacuum chamber 2 from the storage chamber 140 by the transfer robot 131.
  • Mask 102 is located directly below substrate 101.
  • the mask 102 is transferred from the transfer robot 131 to the mask support unit 6.
  • State ST62 in FIG. 6 shows this operation. By lifting the support member 6a, the peripheral edge of the mask 102 is placed on the claw portion F1, and the mask 102 is lifted from the transfer robot 131. The mask 102 is now supported by the support member 6a.
  • a state ST71 in FIG. 7 shows a state in which the electrostatic chuck 103 is carried into the vacuum chamber 2.
  • the electrostatic chuck 103 is carried into the vacuum chamber 2 from the storage chamber 141 by the transfer robot 131.
  • Electrostatic chuck 103 is located directly below mask 102.
  • the electrostatic chuck 103 is transferred from the transfer robot 131 to the chuck support unit 7.
  • State ST72 in FIG. 7 shows this operation. By lifting the support member 7a, the peripheral edge of the electrostatic chuck 103 is placed on the claw portion F2, and the electrostatic chuck 103 is lifted from the transfer robot 131.
  • the electrostatic chuck 103 is now supported by the support member 7a.
  • the suction surface 103c on the upper surface of the electrostatic chuck 103 is horizontal.
  • the mask 102 is transferred to the electrostatic chuck 103, and the mask 102 is attracted by the electrostatic chuck 103.
  • State ST81 in FIG. 8 shows the operation.
  • the mask 102 is lowered by lowering the support member 6a of the mask support unit 6, and the mask 102 is transferred to the electrostatic chuck 103.
  • the electrostatic chuck 103 is operated to attract the mask 102 to the attraction surface 103c.
  • the mask 102 is attracted to the electrostatic chuck 103 from the side opposite to the substrate 101 (lower side). By using the electrostatic chuck 103, the mask 102 can be held in a horizontal position while maintaining a high flatness of the mask 102.
  • the substrate 101 and the mask 102 are positioned at alignment positions close to each other in the Z direction.
  • the mask 102 is raised to approach the substrate 101, but the substrate 101 may be lowered.
  • State ST82 in FIG. 8 shows the operation.
  • the support member 7a is raised to raise the mask 102 together with the electrostatic chuck 103.
  • the support member 6a also rises at the same time so that the support member 6a does not interfere with the support member 7a. Since the mask 102 is held by the electrostatic chuck 103 and has a high degree of flatness, the mask 102 can be approached very close to the substrate 101 without coming into contact with it.
  • the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 are measured by the measurement unit SR. If the measurement result (the amount of positional deviation between the substrate 101 and the mask 102) is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, a control amount (displacement amount of the substrate 101) is set based on the measurement result to keep the positional deviation amount within the allowable range.
  • the "positional deviation amount” is defined by the distance and direction (X, Y, ⁇ ) of positional deviation. Based on the set control amount, the position adjustment unit 80 is operated as shown in state ST92 in FIG. As a result, the substrate support plate 3 is displaced on the XY plane, and the relative position of the substrate 101 with respect to the mask 102 is adjusted.
  • Whether or not the measurement results are within the allowable range can be determined, for example, by calculating the distances between the alignment marks and comparing the average value or sum of squares of the distances with a preset threshold. can.
  • the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 again. If the measurement result is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, the relative position of the substrate 101 with respect to the mask 102 is adjusted again. Thereafter, measurements and relative position adjustments are repeated until the measurement results fall within the allowable range.
  • the measurement unit SR In order to improve the precision of position adjustment by alignment, it is required to improve the detection precision of each alignment mark by the measurement unit SR. Therefore, it is preferable to use a camera capable of acquiring images with high resolution as the measurement unit SR. However, as the resolution of the camera increases, the depth of field becomes shallower. In order to simultaneously photograph the alignment mark of the substrate 101 and the alignment mark of the mask 102, which are to be photographed, it is necessary to bring the two marks closer together in the optical axis direction (Z direction) of the measurement unit SR. On the other hand, the substrate 101 and the mask 102 have undulations. When adjusting the relative position, it is necessary to avoid damaging the substrate 101 due to contact between the two.
  • the electrostatic chuck 103 is used to maintain the high flatness of the mask 102 while holding the mask 102 in a horizontal position, so that the parallelism between the substrate 101 and the mask 102 is improved. can be made higher. Furthermore, since the substrate 101 is held in a horizontal position while maintaining its flatness at a high level using an electrostatic chuck (substrate support plate 3), the parallelism between the substrate 101 and the mask 102 can be increased. . Therefore, during alignment, it is possible to prevent the substrate 101 and the mask 102 from coming into contact with each other while bringing them closer together, and more accurate alignment can be performed.
  • State ST101 in FIG. 10 shows the operation.
  • the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 .
  • the magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, and the mask 102 are in close contact with each other in order from the top.
  • the mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole.
  • State ST102 in FIG. 10 shows this operation.
  • the mask 102 is supported by the mask support unit 6. Specifically, the support member 6a is raised, and the claw portion F1 supports the mask 102 from below. After the hand portion of the transport robot 131 enters below the electrostatic chuck 103, the support member 7a of the chuck support unit 7 is lowered, and the electrostatic chuck 103 is transferred from the support member 7a to the transport robot 131.
  • the transport robot 131 then transports the electrostatic chuck 103 to a retreat position (the chuck storage chamber 141 in this embodiment) where the deposition material does not adhere during film formation. This completes preparations for film formation.
  • the shutter 10a is opened, and the deposition material is released from the deposition unit 10. The deposition material is deposited on the substrate 101 through the mask 102.
  • State ST112 in FIG. 11 shows the operation of carrying out the mask 102.
  • the magnet plate 5 is lifted, and the substrate 101 and the mask 102 are separated.
  • the support member 6a of the mask support unit 6 is lowered, and the mask 102 is transferred from the support member 6a to the transfer robot 131.
  • the transport robot 131 transports the mask 102 to the storage chamber 140.
  • the substrate 101 on which the film has been formed is carried out.
  • the support member 6a of the mask support unit 6 is raised, and the substrate 101 is supported from below by the claw portion F1.
  • the adsorption of the substrate support unit 3 to the substrate 101 is released, and the substrate 101 is transferred to the support member 6a.
  • the support member 6a of the mask support unit 6 is lowered, and the substrate 101 is transferred from the support member 6a to the transfer robot 121. Transfer.
  • the transport robot 121 transports the substrate 101 to the transport path 111. As described above, the operations from carrying in the substrate 101 to forming a film and carrying it out are completed.
  • the electrostatic chuck 103 is transported from the vacuum chamber 2 to a retreated position during film formation, but the electrostatic chuck 103 may be positioned in the vacuum chamber 2 and adsorb the mask 102 even during film formation.
  • the electrostatic chuck 103 has a structure that allows the deposition material to pass through.
  • Fig. 13A is a perspective view of the electrostatic chuck 103' of this embodiment
  • Fig. 13B is a cross-sectional view taken along line CC of Fig. 13A.
  • the electrostatic chuck 103' differs from the electrostatic chuck 103 in that it has an opening 103d.
  • the opening 103d is formed between the suction part 103a and the suction part 103b, and has a fan shape in plan view.
  • the opening 103d is formed at a position overlapping each mask portion 102b (see FIG. 3) of the mask 102, and the vapor deposition material can pass through the opening 103d and reach each mask portion 102b.
  • an adhesion prevention plate 104 is detachably attached to the electrostatic chuck 103'.
  • the adhesion prevention plate 104 is provided to cover the lower surface of the electrostatic chuck 103' and the inner wall surface of the opening 103d. By replacing the adhesion prevention plate 104, the electrostatic chuck 103b' can be used repeatedly and its lifespan can be extended.
  • FIGS. 14 and 15 show an example of the operation of the film forming apparatus 1 in this embodiment using the electrostatic chuck 103'. Operations that overlap with those of the first embodiment will be omitted as appropriate.
  • State ST141 in FIG. 14 is the same as state ST82 in FIG. 8 of the first embodiment, and indicates a state in which preparations for alignment operation are complete.
  • State ST142 in FIG. 14 is the same as the alignment operation shown in state ST91 and state ST92 in FIG. This embodiment is substantially the same as the first embodiment up to the alignment operation.
  • a film forming operation is performed.
  • the substrate 101 and the mask 102 are overlapped.
  • State ST151 in FIG. 15 shows the operation.
  • the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 .
  • the magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, the mask 102, and the electrostatic chuck 103 are in close contact with each other in order from the top.
  • the mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole.
  • the mask 102 is not supported from below by the mask support unit 6, but is supported from below by the chuck support unit 7 together with the electrostatic chuck 103.
  • Vapor deposition is started without retracting the electrostatic chuck 103.
  • the shutter 10a is opened and the vapor deposition substance is released from the vapor deposition unit 10.
  • a deposition material is deposited on the substrate 101 through the electrostatic chuck 103 and the mask 102 .
  • the mask 102 is maintained in an adsorbed state by the electrostatic chuck 103, but control can also be adopted to release the adsorption during film formation.
  • the carrying-out operation after film formation is performed in the order of the electrostatic chuck 103, the mask 102, and the substrate 101, and the operation is substantially the same as in the first embodiment.
  • the tact time can be improved by not retracting the electrostatic chuck 103 during film formation.
  • FIG. 16 is a schematic diagram of a transfer robot 131' replacing the transfer robot 131.
  • the transport robot 131' includes a multi-joint arm 1310 for transporting the mask 102 and a multi-joint arm 1311 for transporting the electrostatic chuck 103.
  • the multi-joint arms 1310 and 1311 have their root portions coaxially arranged, they may also have a configuration in which their root portions are arranged on different axes that are horizontally shifted. According to this embodiment, the mask 102 and the electrostatic chuck 103 can be carried in and out of the vacuum chamber 2 continuously, and the takt time can be improved.
  • a multi-joint arm 1311 is used instead of the chuck support unit 7 to hold the electrostatic chuck 103 and the mask 102. may be supported from below. That is, during film formation, the multi-joint arm 1311 enters into the vacuum chamber 2. In this configuration, the chuck support unit 7 can be omitted.
  • the present invention provides a system or device with a program that implements one or more functions of the embodiments described above via a network or a storage medium, and one or more processors in a computer of the system or device reads and executes the program. This can also be achieved by processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

This film forming apparatus is provided with: a substrate supporting means which supports a substrate; an alignment means which performs an alignment of the substrate and a mask; and a vapor deposition means which discharges a vapor deposition material onto the substrate by the intermediary of the mask. This film forming apparatus is also provided with an electrostatic chuck which sucks the mask from the reverse side from the substrate during the alignment operation by the alignment means.

Description

成膜装置及び成膜方法Film forming apparatus and film forming method
 本発明は成膜装置及び成膜方法に関する。 The present invention relates to a film forming apparatus and a film forming method.
 基板とマスクとのアライメントを行い、その後、マスクを介して基板に対して蒸着物質を蒸着し、成膜する技術が知られている(例えば特許文献1)。 A technique is known in which a substrate and a mask are aligned, and then a deposition substance is deposited onto the substrate through the mask to form a film (for example, Patent Document 1).
国際公開第2017/222009号パンフレットInternational Publication No. 2017/222009 pamphlet
 精密な蒸着パターンを基板に形成する場合、基板とマスクの高いアライメント精度が要求される。アライメントにおいて基板とマスクとの位置ずれ量を高い精度で計測するためには、基板とマスクとを極力近接させることが有効である。しかし、基板とマスクとを近接させると、基板とマスクとが接触して基板に傷がつく場合がある。 When forming a precise vapor deposition pattern on a substrate, high alignment accuracy between the substrate and mask is required. In order to measure the amount of positional deviation between the substrate and the mask with high precision during alignment, it is effective to bring the substrate and the mask as close as possible. However, when the substrate and the mask are placed close to each other, the substrate and the mask may come into contact and the substrate may be damaged.
 本発明は、アライメントの際に、基板とマスクとの接触を防止しつつ、これらをより近接可能な技術を提供するものである。 The present invention provides a technique that allows the substrate and mask to be brought closer to each other while preventing them from coming into contact with each other during alignment.
 本発明によれば、
 基板を支持する基板支持手段と、
 前記基板とマスクとのアライメントを行うアライメント手段と、
 前記マスクを介して前記基板に蒸着物質を放出する蒸着手段と、
を備えた成膜装置であって、
 前記アライメント手段によるアライメント中に、前記基板と反対側から前記マスクを吸着する静電チャックを備える、
ことを特徴とする成膜装置が提供される。
According to the invention,
a substrate support means for supporting the substrate;
Alignment means for aligning the substrate and the mask;
Vapor deposition means for releasing a vapor deposition substance onto the substrate through the mask;
A film forming apparatus comprising:
an electrostatic chuck that attracts the mask from a side opposite to the substrate during alignment by the alignment means;
A film deposition apparatus is provided.
 本発明によれば、アライメントの際に、基板とマスクとの接触を防止しつつ、これらをより近接可能な技術を提供することができる。 According to the present invention, it is possible to provide a technique that allows the substrate and the mask to be brought closer to each other while preventing them from coming into contact with each other during alignment.
電子デバイスの製造ラインの一部の模式図。A schematic diagram of part of an electronic device manufacturing line. 本発明の一実施形態に係る成膜装置の概略図。1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention. 基板、マスク及び静電チャックの斜視図。FIG. 2 is a perspective view of a substrate, a mask, and an electrostatic chuck. 図3のA-A線断面図。FIG. 4 is a sectional view taken along line AA in FIG. 3. 図3のB-B線断面図。Cross-sectional view of line B-B in Figure 3. 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 図2の成膜装置の動作説明図。FIG. 3 is an explanatory diagram of the operation of the film forming apparatus shown in FIG. 2; 別の静電チャックの斜視図。FIG. 3 is a perspective view of another electrostatic chuck. 図13AのC-C線断面図。FIG. 13A is a sectional view taken along line CC in FIG. 13A. 別の実施形態の成膜装置の動作説明図。FIG. 6 is an explanatory diagram of the operation of a film forming apparatus according to another embodiment. 別の実施形態の成膜装置の動作説明図。FIG. 6 is an explanatory diagram of the operation of a film forming apparatus according to another embodiment. 別の実施形態の搬送ロボットの概略図。The schematic diagram of the conveyance robot of another embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following embodiments do not limit the claimed invention. Although a plurality of features are described in the embodiments, not all of these features are essential to the invention, and the plurality of features may be arbitrarily combined. Furthermore, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and redundant description will be omitted.
 <第一実施形態>
 <電子デバイスの製造ライン>
 図1は、本発明の成膜装置が適用可能な電子デバイスの製造ライン100の構成の一部を示す模式図である。各図において、矢印X及びYは互いに直交する水平方向を示し、矢印Zは上下方向(重力方向)を示す。図1の製造ラインは、例えば、有機EL表示装置の発光素子の製造に用いられる。製造ライン100は、平面視で八角形の形状を有する搬送室120を備える。搬送室120には搬送路110から基板101が搬入され、また、成膜済みの基板101は搬送室120から搬送路111へ搬出される。
<First embodiment>
<Electronic device manufacturing line>
FIG. 1 is a schematic diagram showing a part of the configuration of an electronic device manufacturing line 100 to which the film forming apparatus of the present invention can be applied. In each figure, arrows X and Y indicate horizontal directions perpendicular to each other, and arrow Z indicates an up-down direction (direction of gravity). The manufacturing line shown in FIG. 1 is used, for example, to manufacture light emitting elements of organic EL display devices. The manufacturing line 100 includes a transfer chamber 120 having an octagonal shape in plan view. The substrate 101 is carried into the transfer chamber 120 from the transfer path 110 , and the substrate 101 on which a film has been formed is transferred from the transfer chamber 120 to the transfer path 111 .
 搬送室120の周囲には、基板101に対する成膜処理が行われる複数の成膜装置1が配置されている。各成膜装置1には搬送室130が隣接して配置されている。平面視で八角形の形状を有する搬送室130の周囲には、マスク102が収納される格納室140と、静電チャック103が収納される格納室141とが配置されている。 A plurality of film forming apparatuses 1 that perform film forming processing on the substrate 101 are arranged around the transfer chamber 120. A transfer chamber 130 is arranged adjacent to each film forming apparatus 1 . A storage chamber 140 in which the mask 102 is stored and a storage chamber 141 in which the electrostatic chuck 103 is stored are arranged around the transfer chamber 130, which has an octagonal shape in plan view.
 搬送室120には、基板101を搬送する搬送ユニット121が配置されている。本実施形態の搬送ユニット121は、水平多関節型のロボットであり、そのハンド部に基板101を水平姿勢で搭載して搬送する。搬送ユニット121は、搬送路110から搬入される基板101を成膜装置1へ搬送する搬入動作と、成膜装置1で成膜済みの基板101を成膜室1から搬送路111へ搬送する搬出動作とを行う。 A transport unit 121 that transports the substrate 101 is arranged in the transport chamber 120. The transport unit 121 of this embodiment is a horizontally articulated robot, and transports the substrate 101 mounted on its hand in a horizontal position. The transport unit 121 carries out a transport operation in which the substrate 101 carried in from the transport path 110 is transported to the film forming apparatus 1, and a transport operation in which the substrate 101 on which a film has been formed in the film forming apparatus 1 is transported from the film forming chamber 1 to the transport path 111. Perform the action.
 各搬送室130には、マスク102と静電チャック103とを搬送する搬送ユニット131が配置されている。本実施形態の搬送ユニット131は、水平多関節型のロボットであり、そのハンド部にマスク102又は静電チャック103を水平姿勢で搭載して搬送する。搬送ユニット131は、格納室140から成膜装置1へマスク102を搬送する動作、成膜装置1から格納室140へマスク102を搬送する動作、格納室141から成膜装置1へ静電チャック103を搬送する動作、及び、成膜装置1から格納室141へ静電チャック103を搬送する動作を行う。 A transport unit 131 that transports the mask 102 and the electrostatic chuck 103 is arranged in each transport chamber 130. The transport unit 131 of this embodiment is a horizontally articulated robot, and transports the mask 102 or the electrostatic chuck 103 mounted on its hand in a horizontal position. The transport unit 131 transports the mask 102 from the storage chamber 140 to the film forming apparatus 1, transports the mask 102 from the film forming apparatus 1 to the storage chamber 140, and transports the electrostatic chuck 103 from the storage chamber 141 to the film forming apparatus 1. and the operation of transporting the electrostatic chuck 103 from the film forming apparatus 1 to the storage chamber 141.
 <成膜装置>
 図2は本発明の一実施形態に係る成膜装置1の概略図である。成膜装置1は、基板101に蒸着物質を成膜する装置であり、マスク102を用いて所定のパターンの蒸着物質の薄膜を形成する。成膜装置1で成膜が行われる基板101の材質は、ガラス、樹脂、金属等の材料を適宜選択可能である。特に本実施形態では、基板101は、例えば、TFT(Thin Film Transistor)が形成されたガラス基板や半導体素子が形成されたシリコンウェハである。
<Film forming equipment>
FIG. 2 is a schematic diagram of a film forming apparatus 1 according to an embodiment of the present invention. The film forming apparatus 1 is an apparatus that forms a film of a vapor deposition material on a substrate 101, and uses a mask 102 to form a thin film of the vapor deposition material in a predetermined pattern. The material of the substrate 101 on which a film is formed in the film forming apparatus 1 can be appropriately selected from materials such as glass, resin, and metal. Particularly in this embodiment, the substrate 101 is, for example, a glass substrate on which a TFT (Thin Film Transistor) is formed or a silicon wafer on which a semiconductor element is formed.
 蒸着物質としては、有機材料、無機材料(金属、金属酸化物など)などの物質である。成膜装置1は、例えば表示装置(フラットパネルディスプレイなど)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)等の電子デバイスや、光学部材等を製造する製造装置に適用可能であり、特に、有機ELパネルを製造する製造装置に適用可能である。以下の説明においては成膜装置1が真空蒸着によって基板101に成膜を行う例について説明するが、本発明はこれに限定はされず、スパッタやCVD等の各種成膜方法を適用可能である。 The vapor deposition substance includes organic materials, inorganic materials (metals, metal oxides, etc.). The film forming apparatus 1 is applicable to, for example, a manufacturing apparatus for manufacturing electronic devices such as display devices (flat panel displays, etc.), thin film solar cells, organic photoelectric conversion elements (organic thin film image sensors), optical members, etc. In particular, it is applicable to manufacturing equipment that manufactures organic EL panels. In the following description, an example will be described in which the film forming apparatus 1 forms a film on the substrate 101 by vacuum evaporation, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied. .
 成膜装置1は、箱型の真空チャンバ2を有する。真空チャンバ2の内部空間は、真空雰囲気か、窒素ガスなどの不活性ガス雰囲気に維持されている。本実施形態では、真空チャンバ2は不図示の真空ポンプに接続されている。真空チャンバ2の内部空間には、蒸着ユニット10が配置されている。蒸着ユニット10は、蒸着物資を上方に放出する蒸着源を備える。蒸着ユニット10の上方には蒸着物質の放出の規制と規制解除を行うシャッタ10aが配置されている。シャッタ10aは不図示の開閉機構により開閉される。図2はシャッタ10aが閉状態の場合を示しており、蒸着ユニット10による蒸着物質の放出が規制される。蒸着ユニット10の上方には、また、防着板2aが配置されている。防着板2aは、真空チャンバ2の内部空間の上部に配置される以下の構成に、蒸着物質が不必要に付着することを防止する。 The film forming apparatus 1 has a box-shaped vacuum chamber 2. The interior space of the vacuum chamber 2 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas. In this embodiment, the vacuum chamber 2 is connected to a vacuum pump (not shown). A vapor deposition unit 10 is arranged in the interior space of the vacuum chamber 2 . The vapor deposition unit 10 includes a vapor deposition source that discharges vapor deposition materials upward. A shutter 10a is arranged above the vapor deposition unit 10 to regulate and release the release of the vapor deposition substance. The shutter 10a is opened and closed by an opening and closing mechanism (not shown). FIG. 2 shows a case where the shutter 10a is in a closed state, and the release of the vapor deposition substance by the vapor deposition unit 10 is regulated. A deposition prevention plate 2a is also arranged above the vapor deposition unit 10. The deposition prevention plate 2a prevents a vapor deposition substance from unnecessarily adhering to the following structure arranged in the upper part of the internal space of the vacuum chamber 2.
 真空チャンバ2の内部空間には、基板101を水平姿勢で支持する基板支持プレート3が設けられている。本実施形態の場合、基板支持プレート3は静電チャックであり、その下面に静電気力により基板101を吸着し、保持する。基板支持プレート3上には冷却プレート4が固定されている。冷却プレート4は例えば水冷機構等を備えており、基板支持プレート3を介して成膜時に基板101を冷却する。 A substrate support plate 3 that supports the substrate 101 in a horizontal position is provided in the interior space of the vacuum chamber 2. In the case of this embodiment, the substrate support plate 3 is an electrostatic chuck, and the substrate 101 is attracted and held on the lower surface thereof by electrostatic force. A cooling plate 4 is fixed on the substrate support plate 3. The cooling plate 4 is equipped with, for example, a water cooling mechanism, and cools the substrate 101 via the substrate support plate 3 during film formation.
 基板支持プレート3と冷却プレート4とは、支持部5aを介してZ方向に変位可能に磁石プレート5に吊り下げられている。磁石プレート11は、磁力によってマスク102を引き寄せるプレートである。成膜時に基板101は磁石プレート11とマスク102との間に磁力によって挟まれるので、基板101とマスク102の密着性を向上することができる。 The substrate support plate 3 and the cooling plate 4 are suspended from the magnet plate 5 via the support portion 5a so as to be movable in the Z direction. The magnet plate 11 is a plate that attracts the mask 102 by magnetic force. Since the substrate 101 is magnetically sandwiched between the magnet plate 11 and the mask 102 during film formation, the adhesion between the substrate 101 and the mask 102 can be improved.
 成膜装置1は、成膜時にマスク102を支持するマスク支持ユニット6を備える。マスク支持ユニット6は、本実施形態の場合、搬送ユニット121と基板支持プレート3との間の基板101の移載動作も行う。マスク支持ユニット6は、X方向に離間した一対の支持部材6aを備える。各支持部材6aは対応するアクチュエータ6bにより昇降される。本実施形態ではアクチュエータ6bを支持部材6a毎に設けたが、一対の支持部材6aを一つのアクチュエータ6bで昇降してもよい。アクチュエータ6bは例えば電動シリンダや、電動ボールねじ機構である。支持部材6aは、その下端部に爪部F1を備えている。基板101やマスク102は、その周縁部が爪部F1上に載置される。図2の例ではマスク102が爪部F1上に載置されている。一対の支持部材6aは同期的に昇降され、基板101やマスク102を昇降する。 The film forming apparatus 1 includes a mask support unit 6 that supports the mask 102 during film forming. In this embodiment, the mask support unit 6 also performs the operation of transferring the substrate 101 between the transport unit 121 and the substrate support plate 3. The mask support unit 6 includes a pair of support members 6a spaced apart in the X direction. Each support member 6a is raised and lowered by a corresponding actuator 6b. In this embodiment, an actuator 6b is provided for each support member 6a, but a pair of support members 6a may be raised and lowered by one actuator 6b. The actuator 6b is, for example, an electric cylinder or an electric ball screw mechanism. The support member 6a includes a claw portion F1 at its lower end. The peripheral edge portions of the substrate 101 and the mask 102 are placed on the claw portion F1. In the example of FIG. 2, the mask 102 is placed on the claw portion F1. The pair of support members 6a are raised and lowered synchronously to raise and lower the substrate 101 and the mask 102.
 成膜装置1は、アライメント時に静電チャック103を支持するチャック支持ユニット7を備える。チャック支持ユニット7は、X方向に離間した一対の支持部材7aを備える。各支持部材7aは対応するアクチュエータ7bにより昇降される。本実施形態ではアクチュエータ7bを支持部材7a毎に設けたが、一対の支持部材7aを一つのアクチュエータ7bで昇降してもよい。アクチュエータ7bは例えば電動シリンダや、電動ボールねじ機構を備える。支持部材7aは、その下端部に爪部F2を備えている。静電チャック103は、その周縁部が爪部F2上に載置される。図2の例ではマスク102が爪部F2上に載置されている。一対の支持部材7aは同期的に昇降され、静電チャック103を昇降する。 The film forming apparatus 1 includes a chuck support unit 7 that supports the electrostatic chuck 103 during alignment. The chuck support unit 7 includes a pair of support members 7a spaced apart in the X direction. Each support member 7a is raised and lowered by a corresponding actuator 7b. In this embodiment, an actuator 7b is provided for each support member 7a, but a pair of support members 7a may be raised and lowered by a single actuator 7b. The actuator 7b includes, for example, an electric cylinder or an electric ball screw mechanism. The support member 7a includes a claw portion F2 at its lower end. The peripheral portion of the electrostatic chuck 103 is placed on the claw portion F2. In the example of FIG. 2, the mask 102 is placed on the claw portion F2. The pair of support members 7a are raised and lowered synchronously to raise and lower the electrostatic chuck 103.
 成膜装置1は、基板101とマスク102とのアライメントを行うアライメントユニット8を備える。アライメント装置8は、駆動機構80と、複数の計測ユニットSRとを備える。駆動機構80は、距離調整ユニット81と、支持軸82と、架台83と、位置調整ユニット84と、を備える。 The film forming apparatus 1 includes an alignment unit 8 that aligns the substrate 101 and the mask 102. The alignment device 8 includes a drive mechanism 80 and a plurality of measurement units SR. The drive mechanism 80 includes a distance adjustment unit 81, a support shaft 82, a pedestal 83, and a position adjustment unit 84.
 距離調整ユニット81は、支持軸82をZ方向に昇降する機構であり、例えば、電動シリンダや、電動ボールねじ機構を備える。支持軸82の下端部には磁石プレート5が固定されており、支持軸82の昇降によって、磁石プレート5を介して基板支持プレート3が昇降される。基板支持プレート3を昇降することで、基板101とマスク102との距離を調整し、基板支持プレート3に支持された基板101とマスク102とを基板101の厚み方向(Z方向)に接近及び離隔(離間)させる。換言すれば、距離調整ユニット81は、基板101とマスク102とを重ね合わせる方向に接近させたり、その逆方向に離隔させたりする。なお、距離調整ユニット81によって調整する「距離」はいわゆる垂直距離(又は鉛直距離)であり、距離調整ユニット81は、基板101の垂直位置を調整するユニットであるとも言える。距離調整ユニット81は、架台83を介して位置調整ユニット84に搭載されている。 The distance adjustment unit 81 is a mechanism that moves the support shaft 82 up and down in the Z direction, and includes, for example, an electric cylinder or an electric ball screw mechanism. The magnet plate 5 is fixed to the lower end of the support shaft 82, and as the support shaft 82 moves up and down, the substrate support plate 3 is moved up and down via the magnet plate 5. By raising and lowering the substrate support plate 3, the distance between the substrate 101 and the mask 102 is adjusted, and the substrate 101 supported by the substrate support plate 3 and the mask 102 are brought closer to each other and separated from each other in the thickness direction (Z direction) of the substrate 101. (separate) In other words, the distance adjustment unit 81 causes the substrate 101 and the mask 102 to approach each other in the direction in which they overlap, or to separate them in the opposite direction. Note that the "distance" adjusted by the distance adjustment unit 81 is a so-called vertical distance (or vertical distance), and the distance adjustment unit 81 can also be said to be a unit that adjusts the vertical position of the substrate 101. The distance adjustment unit 81 is mounted on a position adjustment unit 84 via a pedestal 83.
 位置調整ユニット84は、基板支持プレート3をX-Y平面上で変位することにより、マスク102に対する基板101の相対位置を調整する。すなわち、位置調整ユニット80は、マスク102と基板101の水平位置を調整するユニットであるとも言える。位置調整ユニット80は、基板支持プレート6をX方向、Y方向及びZ方向の軸周りの回転方向(θ方向)に変位することができる。本実施形態では、マスク102の位置を固定し、基板101を変位してこれらの相対位置を調整するが、マスク102を変位させて調整してもよく、或いは、基板101とマスク102の双方を変位させてもよい。 The position adjustment unit 84 adjusts the relative position of the substrate 101 with respect to the mask 102 by displacing the substrate support plate 3 on the XY plane. That is, it can be said that the position adjustment unit 80 is a unit that adjusts the horizontal position of the mask 102 and the substrate 101. The position adjustment unit 80 can displace the substrate support plate 6 in the rotation direction (θ direction) around the axes in the X direction, the Y direction, and the Z direction. In this embodiment, the position of the mask 102 is fixed and the substrate 101 is displaced to adjust these relative positions. It may be displaced.
 位置調整ユニット84は、固定プレート20aと、可動プレート20bとを備える。固定プレート84aと、可動プレート84bは矩形の枠状のプレートであり、固定プレート84aは真空チャンバ2の上壁部20上に固定されている。固定プレート20aと、可動プレート20bとの間には、固定プレート20aに対して可動プレート20bをX方向、Y方向、及び、Z方向の軸周りの回転方向に変位させるアクチュエータが設けられている。 The position adjustment unit 84 includes a fixed plate 20a and a movable plate 20b. The fixed plate 84a and the movable plate 84b are rectangular frame-shaped plates, and the fixed plate 84a is fixed on the upper wall portion 20 of the vacuum chamber 2. An actuator is provided between the fixed plate 20a and the movable plate 20b to displace the movable plate 20b relative to the fixed plate 20a in rotational directions around the axes in the X direction, the Y direction, and the Z direction.
 可動プレート84b上には、フレーム状の架台83が搭載されており、架台83には距離調整ユニット81が支持されている。可動プレート84bが変位すると、架台83及び距離調整ユニット81が一体的に変位する。これにより基板101をX方向、Y方向、及び、Z方向の軸周りの回転方向に変位させることができる。上壁部20には、支持軸82、支持部材6a及び7aが通過する開口部が形成されている。これらの開口部は不図示のシール部材(ベローズ等)によってシールされ、真空チャンバ2内の気密性が維持される。 A frame-shaped pedestal 83 is mounted on the movable plate 84b, and the distance adjustment unit 81 is supported on the pedestal 83. When the movable plate 84b is displaced, the pedestal 83 and the distance adjustment unit 81 are integrally displaced. This allows the substrate 101 to be displaced in the rotational directions around the axes in the X direction, Y direction, and Z direction. The upper wall portion 20 is formed with an opening through which the support shaft 82 and the support members 6a and 7a pass. These openings are sealed by a sealing member (not shown) (such as a bellows) to maintain airtightness within the vacuum chamber 2.
 計測ユニットSRは、基板101とマスク102の位置ずれを計測する。本実施形態の計測ユニットSRは画像を撮像する撮像装置(カメラ)である。計測ユニットSRは、上壁部20に配置され、真空チャンバ2内の画像を撮像可能である。基板101とマスク102にはそれぞれアライメントマーク(不図示)が形成されている。計測ユニットSRは、基板101とマスク102の各アライメントマークを撮影する。各アライメントマークの位置により基板101とマスク102との位置ずれ量を演算し、位置調整ユニット84によって位置ずれ量を解消するように基板101とマスク102との相対位置を調整する。 The measurement unit SR measures the positional deviation between the substrate 101 and the mask 102. The measurement unit SR of this embodiment is an imaging device (camera) that captures an image. The measurement unit SR is arranged on the upper wall portion 20 and is capable of capturing an image inside the vacuum chamber 2 . Alignment marks (not shown) are formed on the substrate 101 and the mask 102, respectively. The measurement unit SR photographs each alignment mark on the substrate 101 and the mask 102. The amount of positional deviation between the substrate 101 and the mask 102 is calculated based on the position of each alignment mark, and the relative position between the substrate 101 and the mask 102 is adjusted by the position adjustment unit 84 so as to eliminate the amount of positional deviation.
 制御装置9は、成膜装置1の全体を制御する。制御装置9は、処理部90、記憶部91、入出力インタフェース(I/O)92及び通信部93を備える。処理部90は、CPUに代表されるプロセッサであり、記憶部92に記憶されたプログラムを実行して成膜装置1を制御する。記憶部91は、ROM、RAM、HDD等の記憶デバイスであり、処理部90が実行するプログラムの他、各種の制御情報を記憶する。I/O92は、処理部90と外部デバイスとの間の信号を送受信するインタフェースである。通信部93は通信回線を介して上位装置又は他の制御装置等と通信を行う通信デバイスである。 The control device 9 controls the entire film forming apparatus 1. The control device 9 includes a processing section 90, a storage section 91, an input/output interface (I/O) 92, and a communication section 93. The processing unit 90 is a processor represented by a CPU, and controls the film forming apparatus 1 by executing a program stored in the storage unit 92 . The storage unit 91 is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to programs executed by the processing unit 90. The I/O 92 is an interface that transmits and receives signals between the processing unit 90 and external devices. The communication unit 93 is a communication device that communicates with a host device or other control device via a communication line.
 <基板、マスク及び静電チャックの構成例>
 図3は基板101、マスク102及び静電チャック103の例を示す。基板101は円形のシリコンウェハであり、成膜等の後、複数のチップ101aが基板101から切り出される。マスク102は基板101と同様に円形の部材であり、各チップ101aに対応したマスク部102bと、マスク部102bの周囲のフレーム部102aとを含む。マスク部102bには、基板101に蒸着される蒸着物質が通過する複数の開口部(貫通孔)102cが形成されており、開口部102cの配置によって基板101上の成膜パターンが規定される。図4Aは図3のA-A線断面図であり、マスク102の断面図である。フレーム部102aは相対的に厚肉の厚肉部であり、マスク部102bは相対的に薄肉の薄肉部である。フレーム部102aはマスク部102bよりも剛性が高い。
<Example of configuration of substrate, mask, and electrostatic chuck>
FIG. 3 shows an example of a substrate 101, a mask 102, and an electrostatic chuck 103. The substrate 101 is a circular silicon wafer, and after film formation and the like, a plurality of chips 101a are cut out from the substrate 101. The mask 102 is a circular member like the substrate 101, and includes a mask portion 102b corresponding to each chip 101a and a frame portion 102a surrounding the mask portion 102b. A plurality of openings (through holes) 102c are formed in the mask portion 102b, through which a deposition material to be deposited on the substrate 101 passes, and a film formation pattern on the substrate 101 is defined by the arrangement of the openings 102c. 4A is a cross-sectional view taken along the line AA in FIG. 3, and is a cross-sectional view of the mask 102. FIG. The frame portion 102a is a relatively thick portion, and the mask portion 102b is a relatively thin portion. The frame portion 102a has higher rigidity than the mask portion 102b.
 図3に戻り、静電チャック103はマスク102と同様に円形の部材であり、その上面が平面の吸着面103cを形成している。吸着面103cは、枠状の吸着部103aと、吸着部103aの内側に設けられ、格子状の吸着部103bと、を有する。吸着部103aは円環形状を有しており、マスク102のフレーム部102aの周縁部分を吸着する。吸着部103bは十字形状を有しており、マスク102のフレーム部102aの中心から左右前後に延びる十字形状の部分を吸着する。図4Bは図3のB-B線断面図であり、静電チャック103の断面図である。吸着面103cで囲まれる部分は凹んでおり、吸着面103cはマスク102のフレーム部102aを吸着し、マスク部102bは吸着しないように構成されている。静電チャック103はこのようにマスク102を、開口部102c以外の部分を部分的に吸着して、開口部102cを覆わないように構成されている。 Returning to FIG. 3, the electrostatic chuck 103 is a circular member like the mask 102, and its upper surface forms a flat suction surface 103c. The suction surface 103c includes a frame-shaped suction section 103a and a grid-like suction section 103b provided inside the suction section 103a. The suction portion 103a has an annular shape and suctions the peripheral portion of the frame portion 102a of the mask 102. The suction portion 103b has a cross shape and suctions a cross-shaped portion extending from the center of the frame portion 102a of the mask 102 in the left, right, front and rear directions. FIG. 4B is a sectional view taken along line BB in FIG. 3, and is a sectional view of the electrostatic chuck 103. The portion surrounded by the suction surface 103c is recessed, and the suction surface 103c is configured to suction the frame portion 102a of the mask 102, but not the mask portion 102b. In this way, the electrostatic chuck 103 is configured to partially attract the mask 102 other than the opening 102c so as not to cover the opening 102c.
 静電チャック103には不図示のバッテリ及び制御回路が内蔵されている。バッテリは静電チャック102を作動する電源である。制御回路は有線又は無線の通信により制御装置9と通信可能である。制御回路によって静電チャック102の電源ON、OFF操作を行うことで静電チャック102の吸着、吸着停止を制御することができる。通信に代えて、静電チャック103にON/OFFスイッチを設ける一方、真空チャンバ2の内部空間においてON/OFFスイッチを操作する操作機構を設けてもよい。 The electrostatic chuck 103 has a built-in battery and a control circuit (not shown). The battery is the power source that operates the electrostatic chuck 102. The control circuit can communicate with the control device 9 through wired or wireless communication. By turning on and off the power of the electrostatic chuck 102 using the control circuit, it is possible to control whether the electrostatic chuck 102 is attracted or stopped. Instead of communication, an ON/OFF switch may be provided on the electrostatic chuck 103, and an operating mechanism for operating the ON/OFF switch may be provided in the internal space of the vacuum chamber 2.
 <制御例>
 制御ユニット9の処理部90が実行する成膜装置1の制御例について説明する。図5~図12は成膜装置1の動作説明図であり、基板101の搬入から、成膜し、搬出するまでの例を示す。
<Control example>
An example of control of the film forming apparatus 1 executed by the processing section 90 of the control unit 9 will be described. FIGS. 5 to 12 are explanatory diagrams of the operation of the film forming apparatus 1, and show examples from carrying in the substrate 101 to forming a film and carrying it out.
 図5の状態ST51は基板101を真空チャンバ2内に搬入した状態を示す。基板101は搬送ロボット121により基板支持プレート3の下方に搬送される。基板支持プレート3の下面の基板吸着面3aは水平である。次にマスク支持ユニット6によって搬送ロボット121から基板支持プレート3へ基板101を移載する。図5の状態ST52はその動作を示している。支持部材6aを上昇することにより、基板101の周縁が爪部F1に載置され、基板101は搬送ロボット121から上昇し、かつ、基板支持プレート3の基板吸着面3aに押し付けられる。基板支持プレート3の静電チャックを作動して基板101を吸着し、保持する。静電チャックを利用することで基板101の平面度を高く維持しつつ、水平姿勢で基板101を保持することができる。 State ST51 in FIG. 5 shows the state in which the substrate 101 has been carried into the vacuum chamber 2. The substrate 101 is carried below the substrate support plate 3 by the transport robot 121. The substrate adsorption surface 3a on the lower surface of the substrate support plate 3 is horizontal. Next, the mask support unit 6 transfers the substrate 101 from the transport robot 121 to the substrate support plate 3. State ST52 in FIG. 5 shows this operation. By raising the support member 6a, the edge of the substrate 101 is placed on the claw portion F1, and the substrate 101 is raised from the transport robot 121 and pressed against the substrate adsorption surface 3a of the substrate support plate 3. The electrostatic chuck of the substrate support plate 3 is operated to adsorb and hold the substrate 101. By using the electrostatic chuck, the substrate 101 can be held in a horizontal position while maintaining a high degree of flatness of the substrate 101.
 続いてマスク102を真空チャンバ2内に搬入する。図6の状態ST61はマスク102を真空チャンバ2内に搬入した状態を示す。マスク102は搬送ロボット131によって格納室140から真空チャンバ2内に搬入される。マスク102は基板101の真下に位置する。次にマスク102を搬送ロボット131からマスク支持ユニット6に移載する。図6の状態ST62はその動作を示している。支持部材6aを上昇することにより、マスク102の周縁が爪部F1に載置され、マスク102は搬送ロボット131から上昇する。マスク102は支持部材6aに支持された状態となる。 Next, the mask 102 is carried into the vacuum chamber 2. A state ST61 in FIG. 6 shows a state in which the mask 102 is carried into the vacuum chamber 2. The mask 102 is carried into the vacuum chamber 2 from the storage chamber 140 by the transfer robot 131. Mask 102 is located directly below substrate 101. Next, the mask 102 is transferred from the transfer robot 131 to the mask support unit 6. State ST62 in FIG. 6 shows this operation. By lifting the support member 6a, the peripheral edge of the mask 102 is placed on the claw portion F1, and the mask 102 is lifted from the transfer robot 131. The mask 102 is now supported by the support member 6a.
 続いて静電チャック103を真空チャンバ2内に搬入する。図7の状態ST71は静電チャック103を真空チャンバ2内に搬入した状態を示す。静電チャック103は搬送ロボット131によって格納室141から真空チャンバ2内に搬入される。静電チャック103はマスク102の真下に位置する。次に静電チャック103を搬送ロボット131からチャック支持ユニット7に移載する。図7の状態ST72はその動作を示している。支持部材7aを上昇することにより、静電チャック103の周縁が爪部F2に載置され、静電チャック103は搬送ロボット131から上昇する。静電チャック103は支持部材7aに支持された状態となる。静電チャック103の上面の吸着面103cは水平である。 Subsequently, the electrostatic chuck 103 is carried into the vacuum chamber 2. A state ST71 in FIG. 7 shows a state in which the electrostatic chuck 103 is carried into the vacuum chamber 2. The electrostatic chuck 103 is carried into the vacuum chamber 2 from the storage chamber 141 by the transfer robot 131. Electrostatic chuck 103 is located directly below mask 102. Next, the electrostatic chuck 103 is transferred from the transfer robot 131 to the chuck support unit 7. State ST72 in FIG. 7 shows this operation. By lifting the support member 7a, the peripheral edge of the electrostatic chuck 103 is placed on the claw portion F2, and the electrostatic chuck 103 is lifted from the transfer robot 131. The electrostatic chuck 103 is now supported by the support member 7a. The suction surface 103c on the upper surface of the electrostatic chuck 103 is horizontal.
 次にマスク102を静電チャック103に移載し、静電チャック103によってマスク102を吸着する。図8の状態ST81はその動作を示している。マスク支持ユニット6の支持部材6aを降下することによってマスク102を降下し、マスク102を静電チャック103に移載する。静電チャック103を作動させ、マスク102を吸着面103cに吸着する。マスク102は基板101と反対側(下側)から静電チャック103に吸着される。静電チャック103を利用することでマスク102の平面度を高く維持しつつ、水平姿勢でマスク102を保持することができる。 Next, the mask 102 is transferred to the electrostatic chuck 103, and the mask 102 is attracted by the electrostatic chuck 103. State ST81 in FIG. 8 shows the operation. The mask 102 is lowered by lowering the support member 6a of the mask support unit 6, and the mask 102 is transferred to the electrostatic chuck 103. The electrostatic chuck 103 is operated to attract the mask 102 to the attraction surface 103c. The mask 102 is attracted to the electrostatic chuck 103 from the side opposite to the substrate 101 (lower side). By using the electrostatic chuck 103, the mask 102 can be held in a horizontal position while maintaining a high flatness of the mask 102.
 次に、基板101とマスク102とをZ方向に互いに接近したアライメント位置に位置させる。本実施形態ではマスク102を上昇して基板101に接近させるが、基板101を降下してもよい。図8の状態ST82はその動作を示す。支持部材7aを上昇して静電チャック103と共にマスク102を上昇する。このとき支持部材6aが支持部材7aと干渉しないように同時に支持部材6aも上昇する。マスク102を静電チャック103で保持していることにより、マスク102の平面度が高いので、基板101に対してマスク102を接触することなく極めて近くまで接近することができる。 Next, the substrate 101 and the mask 102 are positioned at alignment positions close to each other in the Z direction. In this embodiment, the mask 102 is raised to approach the substrate 101, but the substrate 101 may be lowered. State ST82 in FIG. 8 shows the operation. The support member 7a is raised to raise the mask 102 together with the electrostatic chuck 103. At this time, the support member 6a also rises at the same time so that the support member 6a does not interfere with the support member 7a. Since the mask 102 is held by the electrostatic chuck 103 and has a high degree of flatness, the mask 102 can be approached very close to the substrate 101 without coming into contact with it.
 次にアライメント動作を行う。図9の状態ST91に示すように計測ユニットSRにより、基板101のアライメントマークとマスク102のアライメントマークの相対位置が計測される。計測結果(基板101とマスク102の位置ずれ量)が許容範囲内であればアライメント動作を終了する。計測結果が許容範囲外であれば、計測結果に基づいて位置ずれ量を許容範囲内に収めるための制御量(基板101の変位量)が設定される。 Next, perform alignment operation. As shown in state ST91 in FIG. 9, the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 are measured by the measurement unit SR. If the measurement result (the amount of positional deviation between the substrate 101 and the mask 102) is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, a control amount (displacement amount of the substrate 101) is set based on the measurement result to keep the positional deviation amount within the allowable range.
 「位置ずれ量」とは、位置ずれの距離と方向(X、Y、θ)で定義される。設定された制御量に基づいて、図9の状態ST92に示すように位置調整ユニット80が作動される。これにより、基板支持プレート3がX-Y平面上で変位され、マスク102に対する基板101の相対位置が調整される。 The "positional deviation amount" is defined by the distance and direction (X, Y, θ) of positional deviation. Based on the set control amount, the position adjustment unit 80 is operated as shown in state ST92 in FIG. As a result, the substrate support plate 3 is displaced on the XY plane, and the relative position of the substrate 101 with respect to the mask 102 is adjusted.
 計測結果が許容範囲内であるか否かの判定は、例えば、アライメントマーク間の距離をそれぞれ算出し、その距離の平均値や二乗和を、予め設定された閾値と比較することで行うことができる。 Whether or not the measurement results are within the allowable range can be determined, for example, by calculating the distances between the alignment marks and comparing the average value or sum of squares of the distances with a preset threshold. can.
 相対位置の調整後、再度、計測ユニットSRにより、基板101のアライメントマークとマスク102のアライメントマークの相対位置が計測される。計測結果が許容範囲内であればアライメント動作を終了する。計測結果が許容範囲外であれば、マスク102に対する基板101の相対位置が再度調整される。以降、計測結果が許容範囲内となるまで、計測と相対位置調整が繰り返される。 After adjusting the relative positions, the measurement unit SR measures the relative positions of the alignment marks on the substrate 101 and the alignment marks on the mask 102 again. If the measurement result is within the allowable range, the alignment operation is finished. If the measurement result is outside the allowable range, the relative position of the substrate 101 with respect to the mask 102 is adjusted again. Thereafter, measurements and relative position adjustments are repeated until the measurement results fall within the allowable range.
 ここで、アライメントによる位置調整の精度を向上させるためには、計測ユニットSRによる各アライメントマークの検知精度を高めることが求められる。そのため、計測ユニットSRとしては、高い解像度で画像を取得可能なカメラを用いることが好ましい。しかしながら、カメラの解像度を高めると被写界深度が浅くなる。撮影対象となる基板101のアライメントマークとマスク102のアライメントマークを同時に撮影するために両マークを計測ユニットSRの光軸方向(Z方向)においてより一層接近させる必要がある。一方、基板101やマスク102には起伏がある。相対位置の調整の際、両者が接触して基板101に傷が付くことを避ける必要がある。 Here, in order to improve the precision of position adjustment by alignment, it is required to improve the detection precision of each alignment mark by the measurement unit SR. Therefore, it is preferable to use a camera capable of acquiring images with high resolution as the measurement unit SR. However, as the resolution of the camera increases, the depth of field becomes shallower. In order to simultaneously photograph the alignment mark of the substrate 101 and the alignment mark of the mask 102, which are to be photographed, it is necessary to bring the two marks closer together in the optical axis direction (Z direction) of the measurement unit SR. On the other hand, the substrate 101 and the mask 102 have undulations. When adjusting the relative position, it is necessary to avoid damaging the substrate 101 due to contact between the two.
 この点に関し、本実施形態では、静電チャック103を利用することでマスク102の平面度を高く維持しつつ、水平姿勢でマスク102を保持しているため、基板101とマスク102との平行度を高くすることができる。更に、基板101も静電チャック(基板支持プレート3)で平面度を高く維持しつつ、水平姿勢で基板101を保持しているため、基板101とマスク102との平行度を高くすることができる。したがって、アライメントの際に、基板101とマスク102との接触を防止しつつ、これらをより近接することができ、より正確なアライメントを行うことができる。 Regarding this point, in this embodiment, the electrostatic chuck 103 is used to maintain the high flatness of the mask 102 while holding the mask 102 in a horizontal position, so that the parallelism between the substrate 101 and the mask 102 is improved. can be made higher. Furthermore, since the substrate 101 is held in a horizontal position while maintaining its flatness at a high level using an electrostatic chuck (substrate support plate 3), the parallelism between the substrate 101 and the mask 102 can be increased. . Therefore, during alignment, it is possible to prevent the substrate 101 and the mask 102 from coming into contact with each other while bringing them closer together, and more accurate alignment can be performed.
 次に、成膜動作を行う。まず、基板101をマスク102と重ね合わせる。図10の状態ST101はその動作を示している。基板支持プレート3を降下させると、基板101はマスク102上に載置され、基板101は基板101の被処理面の全体がマスク102と接触する。磁石プレート5が冷却プレート4上に当接し、上から順に磁石プレート5、冷却プレート4、基板支持プレート3、基板101及びマスク102が密着した状態になる。磁石プレート5の磁力によりマスク102を引き寄せ、マスク102と基板101とを全体的に密着させることができる。 Next, a film forming operation is performed. First, the substrate 101 and the mask 102 are overlapped. State ST101 in FIG. 10 shows the operation. When the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 . The magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, and the mask 102 are in close contact with each other in order from the top. The mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole.
 続いてマスク102に対する静電チャック103の吸着を解除し、静電チャック103を退避位置に搬送する。図10の状態ST102はその動作を示している。まず、マスク支持ユニット6によってマスク102を支持する。具体的には支持部材6aを上昇し、爪部F1によってマスク102を下側から支持する。搬送ロボット131のハンド部を静電チャック103の下方に進入させた後、チャック支持ユニット7の支持部材7aを降下して、静電チャック103を支持部材7aから搬送ロボット131へ移載する。その後、搬送ロボット131は静電チャック103を、成膜中、蒸着物質が付着しない退避位置(本実施形態ではチャック格納室141)へ搬送する。これで成膜の準備が整う。次に、図11の状態ST111に示すように、シャッタ10aを開状態とし、蒸着ユニット10から蒸着物質を放出する。蒸着物質はマスク102を介して基板101に蒸着される。 Then, the electrostatic chuck 103 is released from the adsorption of the mask 102, and the electrostatic chuck 103 is transported to a retreat position. State ST102 in FIG. 10 shows this operation. First, the mask 102 is supported by the mask support unit 6. Specifically, the support member 6a is raised, and the claw portion F1 supports the mask 102 from below. After the hand portion of the transport robot 131 enters below the electrostatic chuck 103, the support member 7a of the chuck support unit 7 is lowered, and the electrostatic chuck 103 is transferred from the support member 7a to the transport robot 131. The transport robot 131 then transports the electrostatic chuck 103 to a retreat position (the chuck storage chamber 141 in this embodiment) where the deposition material does not adhere during film formation. This completes preparations for film formation. Next, as shown in state ST111 in FIG. 11, the shutter 10a is opened, and the deposition material is released from the deposition unit 10. The deposition material is deposited on the substrate 101 through the mask 102.
 こうした成膜が完了すると、マスク102及び基板101をそれぞれ搬出する動作を行う。図11の状態ST112はマスク102を搬出する動作を示している。まず、磁石プレート5を上昇し、基板101とマスク102とが離間される。搬送ロボット131のハンド部をマスク102の下方に進入させた後、マスク支持ユニット6の支持部材6aを降下して、マスク102を支持部材6aから搬送ロボット131へ移載する。搬送ロボット131はマスク102を格納室140へ搬送する。 When such film formation is completed, the mask 102 and the substrate 101 are each carried out. State ST112 in FIG. 11 shows the operation of carrying out the mask 102. First, the magnet plate 5 is lifted, and the substrate 101 and the mask 102 are separated. After the hand portion of the transfer robot 131 enters below the mask 102, the support member 6a of the mask support unit 6 is lowered, and the mask 102 is transferred from the support member 6a to the transfer robot 131. The transport robot 131 transports the mask 102 to the storage chamber 140.
 続いて成膜済みの基板101を搬出する。図12の状態ST121に示すようにマスク支持ユニット6の支持部材6aを上昇して、基板101を爪部F1によって下側から支持する。基板101に対する基板支持ユニット3の吸着を解除して基板101が支持部材6aに移載される。図12の状態ST122に示すように搬送ロボット121のハンド部を基板101の下方に進入させた後、マスク支持ユニット6の支持部材6aを降下して、基板101を支持部材6aから搬送ロボット121へ移載する。搬送ロボット121は基板101を搬送路111へ搬送する。以上により基板101の搬入から、成膜し、搬出するまでの動作が完了する。 Subsequently, the substrate 101 on which the film has been formed is carried out. As shown in state ST121 in FIG. 12, the support member 6a of the mask support unit 6 is raised, and the substrate 101 is supported from below by the claw portion F1. The adsorption of the substrate support unit 3 to the substrate 101 is released, and the substrate 101 is transferred to the support member 6a. As shown in state ST122 in FIG. 12, after the hand portion of the transfer robot 121 enters below the substrate 101, the support member 6a of the mask support unit 6 is lowered, and the substrate 101 is transferred from the support member 6a to the transfer robot 121. Transfer. The transport robot 121 transports the substrate 101 to the transport path 111. As described above, the operations from carrying in the substrate 101 to forming a film and carrying it out are completed.
 <第二実施形態>
 第一実施形態では、成膜の際、静電チャック103を真空チャンバ2から退避位置へ搬送したが、成膜中も静電チャック103を真空チャンバ2内に位置させ、マスク102を吸着してもよい。そのために静電チャック103を、蒸着物質が通過可能な構造とする。図13Aは本実施形態の静電チャック103’の斜視図であり、図13Bは図13AのC-C線断面図である。
Second Embodiment
In the first embodiment, the electrostatic chuck 103 is transported from the vacuum chamber 2 to a retreated position during film formation, but the electrostatic chuck 103 may be positioned in the vacuum chamber 2 and adsorb the mask 102 even during film formation. For this purpose, the electrostatic chuck 103 has a structure that allows the deposition material to pass through. Fig. 13A is a perspective view of the electrostatic chuck 103' of this embodiment, and Fig. 13B is a cross-sectional view taken along line CC of Fig. 13A.
 静電チャック103’は、静電チャック103と開口部103dを有する点で異なる。静電チャック103’は、開口部103dは吸着部103aと吸着部103bとの間に形成されており、平面視で扇形を有している。開口部103dは、マスク102の各マスク部102b(図3参照)と重なる位置に形成されており、蒸着物質は開口部103dを通過して各マスク部102bに到達可能である。静電チャック103’が蒸着物質に晒されることにより、蒸着物質が静電チャック103’に付着する。付着物の清掃を容易にするために、静電チャック103’には防着板104が分離可能に装着されている。防着板104は静電チャック103’の下面と、開口部103dの内壁面を覆うように設けられている。防着板104を交換することにより静電チャック103b’を繰り返し使うことができ、その寿命を延ばすことができる。 The electrostatic chuck 103' differs from the electrostatic chuck 103 in that it has an opening 103d. In the electrostatic chuck 103', the opening 103d is formed between the suction part 103a and the suction part 103b, and has a fan shape in plan view. The opening 103d is formed at a position overlapping each mask portion 102b (see FIG. 3) of the mask 102, and the vapor deposition material can pass through the opening 103d and reach each mask portion 102b. By exposing the electrostatic chuck 103' to the deposition material, the deposition material adheres to the electrostatic chuck 103'. In order to facilitate cleaning of deposits, an adhesion prevention plate 104 is detachably attached to the electrostatic chuck 103'. The adhesion prevention plate 104 is provided to cover the lower surface of the electrostatic chuck 103' and the inner wall surface of the opening 103d. By replacing the adhesion prevention plate 104, the electrostatic chuck 103b' can be used repeatedly and its lifespan can be extended.
 図14~図15は静電チャック103’を用いた本実施形態における成膜装置1の動作例を示す。第一実施形態の動作と重複する動作については適宜省略する。図14の状態ST141は、第一実施形態の図8の状態ST82の状態と同じであり、アライメント動作の準備が整った状態を示す。図14の状態ST142は図9の状態ST91及び状態ST92に示したアライメント動作と同じである。本実施形態はアライメント動作までは第一実施形態と略同じである。 FIGS. 14 and 15 show an example of the operation of the film forming apparatus 1 in this embodiment using the electrostatic chuck 103'. Operations that overlap with those of the first embodiment will be omitted as appropriate. State ST141 in FIG. 14 is the same as state ST82 in FIG. 8 of the first embodiment, and indicates a state in which preparations for alignment operation are complete. State ST142 in FIG. 14 is the same as the alignment operation shown in state ST91 and state ST92 in FIG. This embodiment is substantially the same as the first embodiment up to the alignment operation.
 次に成膜動作を行う。まず、基板101をマスク102と重ね合わせる。図15の状態ST151はその動作を示している。基板支持プレート3を降下させると、基板101はマスク102上に載置され、基板101は基板101の被処理面の全体がマスク102と接触する。磁石プレート5が冷却プレート4上に当接し、上から順に磁石プレート5、冷却プレート4、基板支持プレート3、基板101、マスク102及び静電チャック103が密着した状態になる。磁石プレート5の磁力によりマスク102を引き寄せ、マスク102と基板101とを全体的に密着させることができる。第一実施形態と異なり、マスク102はマスク支持ユニット6により下方から支持されておらず、静電チャック103と共にチャック支持ユニット7により下方から支持される。 Next, a film forming operation is performed. First, the substrate 101 and the mask 102 are overlapped. State ST151 in FIG. 15 shows the operation. When the substrate support plate 3 is lowered, the substrate 101 is placed on the mask 102 , and the entire surface of the substrate 101 to be processed comes into contact with the mask 102 . The magnet plate 5 comes into contact with the cooling plate 4, and the magnet plate 5, the cooling plate 4, the substrate support plate 3, the substrate 101, the mask 102, and the electrostatic chuck 103 are in close contact with each other in order from the top. The mask 102 is attracted by the magnetic force of the magnet plate 5, and the mask 102 and the substrate 101 can be brought into close contact with each other as a whole. Unlike the first embodiment, the mask 102 is not supported from below by the mask support unit 6, but is supported from below by the chuck support unit 7 together with the electrostatic chuck 103.
 これで成膜の準備が整う。静電チャック103を退避させることなく蒸着を開始する。図15の状態ST152に示すように、シャッタ10aを開状態とし、蒸着ユニット10から蒸着物質を放出する。蒸着物質は、静電チャック103及びマスク102を介して基板101に蒸着される。成膜中、マスク102は静電チャック103によって吸着された状態が維持されるが、成膜中は吸着を解除する制御も採用可能である。成膜後の搬出動作は、静電チャック103、マスク102、基板101の順に行われ、その動作は第一実施形態と略同じである。 The preparation for film deposition is now complete. Vapor deposition is started without retracting the electrostatic chuck 103. As shown in state ST152 in FIG. 15, the shutter 10a is opened and the vapor deposition substance is released from the vapor deposition unit 10. A deposition material is deposited on the substrate 101 through the electrostatic chuck 103 and the mask 102 . During film formation, the mask 102 is maintained in an adsorbed state by the electrostatic chuck 103, but control can also be adopted to release the adsorption during film formation. The carrying-out operation after film formation is performed in the order of the electrostatic chuck 103, the mask 102, and the substrate 101, and the operation is substantially the same as in the first embodiment.
 本実施形態では、成膜時に静電チャック103を退避させないことでタクトタイムを向上できる。 In this embodiment, the tact time can be improved by not retracting the electrostatic chuck 103 during film formation.
 <第三実施形態>
 第一実施形態では、シングルアーム式の搬送ロボット131でマスク102と静電チャック103の搬送を行ったが、これに代えてマスク102と静電チャック103の搬送を独立して行えるダブルアーム式の搬送ロボットを用いてもよい。図16は搬送ロボット131に代わる搬送ロボット131’の概略図である。搬送ロボット131’は、マスク102の搬送用の多関節アーム1310と、静電チャック103の搬送用の多関節アーム1311とを備える。多関節アーム1310及び1311は、その根元部分が同軸上に配置されているが、根元部分を水平方向にずれた異軸上に配置した構成であってもよい。本実施形態によれば、マスク102と静電チャック103の真空チャンバ2への搬出入を連続的に行うことができ、タクトタイムを向上できる。
<Third embodiment>
In the first embodiment, the mask 102 and the electrostatic chuck 103 were transferred using the single-arm transfer robot 131, but instead of this, a double-arm transfer robot 131 that can transfer the mask 102 and the electrostatic chuck 103 independently is used. A transfer robot may also be used. FIG. 16 is a schematic diagram of a transfer robot 131' replacing the transfer robot 131. The transport robot 131' includes a multi-joint arm 1310 for transporting the mask 102 and a multi-joint arm 1311 for transporting the electrostatic chuck 103. Although the multi-joint arms 1310 and 1311 have their root portions coaxially arranged, they may also have a configuration in which their root portions are arranged on different axes that are horizontally shifted. According to this embodiment, the mask 102 and the electrostatic chuck 103 can be carried in and out of the vacuum chamber 2 continuously, and the takt time can be improved.
 また、第二実施形態のように、成膜中、静電チャック103を真空チャンバ2内に留まらせる構成においては、チャック支持ユニット7に代えて多関節アーム1311で、静電チャック103及びマスク102を下から支えてもよい。すなわち、成膜中、多関節アーム1311は真空チャンバ2内に進入した状態となる。この構成の場合、チャック支持ユニット7を省略することが可能である。 Further, in a configuration in which the electrostatic chuck 103 is kept in the vacuum chamber 2 during film formation as in the second embodiment, a multi-joint arm 1311 is used instead of the chuck support unit 7 to hold the electrostatic chuck 103 and the mask 102. may be supported from below. That is, during film formation, the multi-joint arm 1311 enters into the vacuum chamber 2. In this configuration, the chuck support unit 7 can be omitted.
 <他の実施形態>
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other embodiments>
The present invention provides a system or device with a program that implements one or more functions of the embodiments described above via a network or a storage medium, and one or more processors in a computer of the system or device reads and executes the program. This can also be achieved by processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are hereby appended to disclose the scope of the invention.
1 成膜装置、8 アライメントユニット、10 蒸着ユニット、101 基板、102 マスク、103 静電チャック 1 Film forming apparatus, 8 Alignment unit, 10 Vapor deposition unit, 101 Substrate, 102 Mask, 103 Electrostatic chuck

Claims (9)

  1.  基板を支持する基板支持手段と、
     前記基板とマスクとのアライメントを行うアライメント手段と、
     前記マスクを介して前記基板に蒸着物質を放出する蒸着手段と、
    を備えた成膜装置であって、
     前記アライメント手段によるアライメント中に、前記基板と反対側から前記マスクを吸着する静電チャックを備える、
    ことを特徴とする成膜装置。
    a substrate support means for supporting the substrate;
    Alignment means for aligning the substrate and the mask;
    Vapor deposition means for releasing a vapor deposition substance onto the substrate through the mask;
    A film forming apparatus comprising:
    an electrostatic chuck that attracts the mask from a side opposite to the substrate during alignment by the alignment means;
    A film forming apparatus characterized by the following.
  2.  請求項1に記載の成膜装置であって、
     前記マスクは、前記蒸着物質が通過する開口部を有し、
     前記静電チャックは、前記マスクの前記開口部以外の部分を部分的に吸着する、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The mask has an opening through which the deposition material passes,
    the electrostatic chuck partially attracts a portion of the mask other than the opening;
    A film forming apparatus characterized by the following.
  3.  請求項1に記載の成膜装置であって、
     前記マスクは、前記蒸着物質が通過する開口部が形成された複数の薄肉部と、前記複数の薄肉部の周囲の厚肉部と、を有し、
     前記静電チャックは、前記厚肉部を吸着する、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The mask has a plurality of thin parts in which openings are formed through which the deposition material passes, and a thick part around the plurality of thin parts,
    The electrostatic chuck attracts the thick portion.
    A film forming apparatus characterized by the following.
  4.  請求項1に記載の成膜装置であって、
     前記蒸着手段による蒸着前に、前記マスクとの吸着が解除された前記静電チャックを、前記蒸着手段から放出される前記蒸着物質が付着しない退避位置に搬送する搬送手段を備える、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    Before the vapor deposition by the vapor deposition means, the electrostatic chuck, which has been released from adsorption with the mask, is provided with a conveying means for conveying the electrostatic chuck to a retreat position where the vapor deposition substance released from the vapor deposition means does not adhere.
    A film forming apparatus characterized by the following.
  5.  請求項1に記載の成膜装置であって、
     前記基板支持手段は、前記基板を吸着する静電チャックを備える、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The substrate supporting means includes an electrostatic chuck that attracts the substrate.
    A film forming apparatus characterized by the following.
  6.  請求項4に記載の成膜装置であって、
     前記静電チャックによる前記マスクの吸着を解除する前に、前記マスクを支持するマスク支持手段を備える、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 4,
    comprising a mask support means for supporting the mask before releasing the adsorption of the mask by the electrostatic chuck;
    A film forming apparatus characterized by the following.
  7.  請求項1に記載の成膜装置であって、
     前記静電チャックは、
     枠状の第一の吸着部と、
     前記第一の吸着部の内側に設けられ、格子状の第二の吸着部と、を含む、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The electrostatic chuck is
    a frame-shaped first suction part;
    a second suction part provided inside the first suction part and having a lattice shape;
    A film forming apparatus characterized by the following.
  8.  請求項1に記載の成膜装置であって、
     前記アライメント手段は、
     前記基板と前記マスクとの位置ずれ量を計測する計測手段と、
     前記計測手段の計測結果に基づいて、前記基板と前記マスクとの相対位置を調整する位置調整手段と、を備える、
    ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The alignment means includes:
    Measuring means for measuring the amount of positional deviation between the substrate and the mask;
    position adjustment means for adjusting the relative position of the substrate and the mask based on the measurement result of the measurement means;
    A film forming apparatus characterized by the following.
  9.  基板とマスクとのアライメントを行うアライメント工程と、
     前記マスクを介して前記基板に蒸着物質を放出する蒸着工程と、
    を備えた成膜方法であって、
     前記アライメント工程中に、前記基板と反対側から静電チャックにより前記マスクを吸着する、
    ことを特徴とする成膜方法。
    an alignment process for aligning the substrate and the mask;
    a vapor deposition step of releasing a vapor deposition substance onto the substrate through the mask;
    A film forming method comprising:
    During the alignment step, the mask is attracted by an electrostatic chuck from the side opposite to the substrate;
    A film forming method characterized by the following.
PCT/JP2023/029420 2022-09-20 2023-08-14 Film forming apparatus and film forming method WO2024062801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149515A JP2024044142A (en) 2022-09-20 2022-09-20 Film forming equipment and film forming method
JP2022-149515 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062801A1 true WO2024062801A1 (en) 2024-03-28

Family

ID=90454204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029420 WO2024062801A1 (en) 2022-09-20 2023-08-14 Film forming apparatus and film forming method

Country Status (2)

Country Link
JP (1) JP2024044142A (en)
WO (1) WO2024062801A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195907A (en) * 2010-03-19 2011-10-06 Tokyo Electron Ltd Mask holding device and thin film forming device
JP2015028204A (en) * 2013-06-28 2015-02-12 大日本印刷株式会社 Manufacturing method of vapor deposition mask, manufacturing method of vapor deposition mask with metal frame, and manufacturing method of organic semiconductor element
JP2019513289A (en) * 2017-03-17 2019-05-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of handling a mask device in a decompression system, mask handling device and decompression system
JP2020530875A (en) * 2018-07-26 2020-10-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Retention devices for holding carriers or components in a vacuum chamber, utilization of retention devices for holding carriers or components in a vacuum chamber, equipment for manipulating carriers in a vacuum chamber, and vacuum deposition systems.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195907A (en) * 2010-03-19 2011-10-06 Tokyo Electron Ltd Mask holding device and thin film forming device
JP2015028204A (en) * 2013-06-28 2015-02-12 大日本印刷株式会社 Manufacturing method of vapor deposition mask, manufacturing method of vapor deposition mask with metal frame, and manufacturing method of organic semiconductor element
JP2019513289A (en) * 2017-03-17 2019-05-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of handling a mask device in a decompression system, mask handling device and decompression system
JP2020530875A (en) * 2018-07-26 2020-10-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Retention devices for holding carriers or components in a vacuum chamber, utilization of retention devices for holding carriers or components in a vacuum chamber, equipment for manipulating carriers in a vacuum chamber, and vacuum deposition systems.

Also Published As

Publication number Publication date
JP2024044142A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6448067B2 (en) Substrate mounting method, substrate mounting mechanism, film forming method, film forming apparatus, and electronic device manufacturing method
JP6461235B2 (en) Substrate mounting apparatus, film forming apparatus, substrate mounting method, film forming method, and electronic device manufacturing method
JP7244401B2 (en) Alignment apparatus, film formation apparatus, alignment method, film formation method, and electronic device manufacturing method
JP6122299B2 (en) Processing apparatus, processing method, and device manufacturing method
TW200426535A (en) Lithographic projection assembly, load lock and method for transferring objects
JP2018197362A (en) Substrate conveyance mechanism, substrate placement mechanism, film deposition device, and method of these
TWI778436B (en) Substrate transfer apparatus and method of measuring positional deviation of substrate
JP4978471B2 (en) Object loading / unloading method and loading / unloading apparatus, exposure method and exposure apparatus, and device manufacturing method
JP7191229B2 (en) Alignment Mechanism, Alignment Method, Film Forming Apparatus, and Film Forming Method
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
JP7290988B2 (en) Alignment Apparatus, Film Forming Apparatus, Alignment Method, Film Forming Method, and Electronic Device Manufacturing Method
JP7225275B2 (en) Deposition equipment
WO2024062801A1 (en) Film forming apparatus and film forming method
JP6821641B2 (en) Substrate mounting equipment, film forming equipment, substrate mounting method, film forming method, and manufacturing method of electronic devices
JP2010166008A (en) Substrate conveying system, exposure apparatus and device manufacturing method
JP5859263B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP7271389B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
WO2024062802A1 (en) Mask, film forming method, and film forming apparatus
WO2023210464A1 (en) Film deposition device, film deposition method, electronic device manufacturing method, and computer program recording medium
JP7246598B2 (en) Adsorption device, film formation device, adsorption method, film formation method, and electronic device manufacturing method
JP5826087B2 (en) Transfer method and transfer apparatus
WO2024116600A1 (en) Film forming apparatus and film forming method
WO2024116599A1 (en) Film forming device and film forming method
WO2024105993A1 (en) Film forming apparatus and film forming method
JP2024078165A (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867926

Country of ref document: EP

Kind code of ref document: A1