WO2024062652A1 - Height difference reducing device, platform, and user guidance assistance system - Google Patents

Height difference reducing device, platform, and user guidance assistance system Download PDF

Info

Publication number
WO2024062652A1
WO2024062652A1 PCT/JP2023/009429 JP2023009429W WO2024062652A1 WO 2024062652 A1 WO2024062652 A1 WO 2024062652A1 JP 2023009429 W JP2023009429 W JP 2023009429W WO 2024062652 A1 WO2024062652 A1 WO 2024062652A1
Authority
WO
WIPO (PCT)
Prior art keywords
level difference
platform
vertical lifting
lifting mechanism
inverted
Prior art date
Application number
PCT/JP2023/009429
Other languages
French (fr)
Japanese (ja)
Inventor
強 加瀬部
浩明 福藤
Original Assignee
株式会社フォーステック
マシン・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022150696A external-priority patent/JP7250295B1/en
Application filed by 株式会社フォーステック, マシン・テクノロジー株式会社 filed Critical 株式会社フォーステック
Priority claimed from JP2023037824A external-priority patent/JP2024044978A/en
Publication of WO2024062652A1 publication Critical patent/WO2024062652A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
    • B61B1/02General arrangement of stations and platforms including protection devices for the passengers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F1/00Construction of station or like platforms or refuge islands or like islands in traffic areas, e.g. intersection or filling-station islands; Kerbs specially adapted for islands in traffic areas

Definitions

  • the present invention relates to a step remover, a platform, and a user guidance and assistance system.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2022-55909 describes a device in which a step protrudes from the underside of the vehicle to fill the gap between the vehicle and the platform.
  • An ingress/egress assist device is disclosed that improves the case where changing gaps cannot be appropriately filled.
  • the getting on/off assisting device described in Patent Document 1 is a getting on/off assisting device that is placed under the underframe of a vehicle and fills the gap between the vehicle and the platform, and includes a top plate, a bellows type telescopic part fixed to the top plate, and a top plate.
  • the vehicle has an air control section that moves air in and out of the bellows-type extensible section, and a guide section that restricts the movement of the top plate, and the length of the top plate changes depending on the gap between the vehicle and the platform.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2021-41827 describes a method for reducing gaps and steps that reduce gaps and steps even if there are variations in gaps and steps between the edge of a station platform and a vehicle entrance/exit. system is disclosed.
  • the gap/level difference reduction system described in Patent Document 2 is a gap/level difference reduction system for reducing the gap and level difference between the edge of a platform and the vehicle entrance/exit at a station.
  • a detection unit for detecting the amount of gap and level difference between the two
  • a slide elevating unit provided at the edge of the platform corresponding to the door position of the vehicle stopping at the station; and a control unit that controls the movement of the slide elevating unit.
  • the slide elevating part has an extended state in which it projects toward the vehicle side and the tip side is raised, and a stored state in which it does not project out, and the amount of extension in the extended state and the amount of rise of the tip side can be adjusted.
  • the control unit adjusts the amount of overhang and the amount of rise in the overhang state based on the detected gap amount and step amount.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 5-42869 discloses that when a passenger is positioned on a moving step member, or when a passenger is positioned on a step member and the drive unit breaks down, , a platform step device is disclosed to ensure the safety of customers.
  • the platform step device described in Patent Document 3 is a platform step device that closes a gap that occurs between a vehicle and the edge of the platform, and includes an in/out movement section that can move forward and backward in the horizontal direction on the underside of the platform, and an ingress and egress movement section that can move forward and backward in the horizontal direction.
  • a slide table attached to the tip of the platform and an in/out drive part that moves the slide table forward and backward from the bottom of the platform to a position below the gap are provided.
  • a step member is provided through the platform, and the elevating and lowering operation section is provided with an elevating and lowering drive section that moves the step member up and down between a height position corresponding to the upper surface of the platform and a position below the gap.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2002-104175 discloses that the device has a relatively simple configuration, easy installation work, can easily respond to changes in the device specifications, and also has a platform door.
  • a boarding assistance device that can be integrated with a vehicle is disclosed.
  • the boarding/exiting assistance device described in Patent Document 4 is installed at a position corresponding to the boarding/exiting door of a stopped vehicle on a platform, and includes a platform door that opens and closes when the vehicle is stopped, and a door pocket that stores the platform door.
  • a boarding/exiting assistance device applied to a door system which is placed below the platform door on the platform corresponding to the boarding/exit of a stopped vehicle, installed so that the top surface is aligned with the platform surface, and the vehicle side end is placed below the platform door.
  • a home step unit is supported so as to be tiltable so as to rise from the platform surface, and the home step unit is slidably installed within the home step unit, and moves forward toward the entrance when the vehicle is stopped, and when the vehicle is absent, the home step unit is supported so as to be tiltable.
  • the second driving mechanism is provided in the door pocket.
  • Patent Document 5 JP Patent Publication No. 2002-37055 discloses a boarding and alighting assistance device that has a relatively simple device configuration, is easy to install, can easily accommodate changes to the device's specifications, and can be integrated with platform doors.
  • the boarding/exiting assistance device described in Patent Document 5 is installed at a position corresponding to the boarding/exiting door of a stopped vehicle on a platform, and includes a platform door that opens and closes when the vehicle is stopped, and a door pocket that stores the platform door.
  • a boarding/exiting assistance device applied to a door system which is placed below the platform door on the platform corresponding to the boarding/exit of a stopped vehicle, installed so that the top surface is aligned with the platform surface, and the vehicle side end is placed below the platform door.
  • a home step unit is supported so as to be tiltable so as to rise from the platform surface, and the home step unit is slidably installed within the home step unit, and moves forward toward the entrance when the vehicle is stopped, and when the vehicle is absent, the home step unit is supported so as to be tiltable.
  • a second drive mechanism that raises/lowers the side edge, a control section that controls the first drive mechanism and the second drive mechanism, and the control section is provided in the door pocket. be.
  • Patent Document 6 JP Patent Publication No. 2005-225310 discloses a low-cost gap adjustment device between the platform and the vehicle that can close the gap between the platform and the vehicle while smoothly sloping the step between the vehicle's step surface and the platform top surface, and is easy to install, shortening the construction period.
  • the gap adjustment device described in Patent Document 6 is installed on a platform and is for adjusting the gap between a vehicle and the platform, and one end is rotatably supported by a machine frame installed on the platform. , and a step plate whose other end swings vertically in accordance with the floor position of the vehicle to adjust the gap between the vehicle and the platform, and a drive mechanism for swinging this step plate is provided on the machine frame. It is something.
  • Patent Document 7 Japanese Unexamined Patent Publication No. 9-20235 discloses a train boarding and alighting assistance device that allows a wheelchair user to easily and safely board and alight a train while moving in a wheelchair.
  • the train boarding and alighting assistance device described in Patent Document 7 includes a slope plate whose tip edge is located at the track side end of the platform corresponding to the boarding and alighting gate of a stopped vehicle and whose top surface is aligned with the top surface of the platform; A tilting device that tilts the tip edge so that it rises to the floor level of the entrance/exit, an advancement/retraction drive device that moves the slope plate to a position where the tip edge reaches the platform side edge of the floor of the entrance/exit, and this advancement/retraction drive.
  • the device includes a shock absorber that is installed in the device and moves the slope plate forward and backward in accordance with the rocking of the vehicle.
  • Patent Document 8 Japanese Patent No. 7170956 describes an abnormality diagnosis device and an abnormality diagnosis device that can analyze a huge amount of data including redundant data that has little relevance to the abnormality and do not reduce the accuracy of abnormality diagnosis. A method for diagnosing an abnormality is disclosed.
  • the abnormality diagnosis device described in Patent Document 8 includes a command generation unit that generates a command value that defines the operation of a motor or a drive machine driven by the motor, and a command generation unit that generates a command value that defines the operation of a motor or a drive machine driven by the motor, and a control unit that controls the operation of the motor or drive machine so that the operation of the motor or drive machine follows the command value. Select from time-series data indicating the state of the motor or drive machine based on the comparison result between the drive control unit that performs feedback control of the motor based on the gain, the control band determined by the control gain, and the threshold determined by the drive machine. and an abnormality determining section that determines an abnormal state of the motor or drive machine based on the selected time series data.
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2021-0220764 discloses a failure prediction system that can accurately predict failures of robots.
  • the failure prediction system of Patent Document 9 includes a torque value collection unit that collects the torque value of the drive shaft of a robot operating according to a given work program, and a torque value collection unit that collects the latest torque value from among the torque values collected by the torque value collection unit.
  • an evaluation formula derivation unit that derives an evaluation formula that approximates the time change of A threshold setting unit that sets a failure threshold, which is a torque value that is determined by a prediction determination unit that determines whether or not a failure of the drive shaft is predicted.
  • level difference removers that are buried in platforms and eliminate gaps and steps between train entrances and exits, in recent years, in reality, in order to eliminate steps, station staff carry a ramp platform to remove passengers in wheelchairs.
  • various technologies are being released to the public, but there is a major problem in that there is no technology that can withstand the environment in which it is used and can be implemented.
  • Patent Document 1 uses a bellows type, but the bellows type is difficult to return to the origin and is considered to have a high risk of failure.
  • Patent Document 2 or Patent Document 3 employs a pandagraph type lifting system, but the problem remains that the operation is slow relative to the weight and failures increase when the speed is increased.
  • the gap is eliminated by sliding the entire slide elevating section, and as a result, there is also a problem that the load applied to the slide elevating section becomes heavy.
  • Patent Document 4 or Patent Document 5 the second drive mechanism appears on the platform or in the evacuation area under the platform, so it cannot be said to be user-friendly.
  • Patent Document 6 requires a first connecting rod and a second connecting rod, and requires a large power driving device.
  • the step plate is rotatably fixed to the end of the platform, and there is also a problem that the end of the step plate can only be moved to a position a certain distance from the end of the platform. be.
  • the technique of Patent Document 7 requires a large power drive device.
  • the abnormality diagnosis device of Patent Document 8 is characterized in that the measured value used for abnormality detection is switched between the motor current and the control position according to the control band determined from the control gain, but the abnormality detection method itself is, for example, clustering, main It only states that component analysis, etc. are included.
  • the failure prediction system of Patent Document 9 derives an evaluation formula that approximates the temporal change in the most recent torque value, calculates an estimated value of the torque value when a prediction time preset in the evaluation formula has elapsed, It is determined whether a failure of the drive shaft is predicted within the predicted time by comparing the estimated value and the failure threshold.
  • Patent Document 6 describes a mechanism that, when a vehicle enters and comes into contact with a collision member, returns the step plate to the storage portion to prevent contact with the vehicle.
  • the edge of the step plate The problem is that the parts can only move a certain distance from the edge of the platform.
  • a first object of the present invention is to provide a level difference eliminating machine, a platform, and a user guidance and assistance system that can easily eliminate level differences with a small amount of driving force.
  • a second object of the present invention is to provide a step clearing machine with an accurate failure prediction function that can be used for condition-based maintenance.
  • a third object of the present invention is to provide a level difference remover that can instantly return to its original position (stored state) in an emergency, such as when there is a risk of collision with a vehicle.
  • a step remover is a step remover that is embedded in a platform and eliminates gaps and steps between a train boarding and alighting entrance, and has an upper surface fixed to the height of the platform and a train boarding and alighting device on the upper surface.
  • a rotating surface rotatably supported on the mouth side;
  • a telescopic surface that is slidably attached to the rotating surface, a vertical lifting mechanism that raises and lowers the rotating surface using an inverted V-shaped link mechanism, a sliding mechanism that slides the telescopic surface, and a rotating surface or telescopic surface.
  • the inverted V-shaped link mechanism is fixed to the end on the train entrance side.
  • the fixed axis, the movable axis, and the link axis are rotatable, and the control unit starts driving the vertical lifting mechanism according to information from at least one of the plurality of sensors of the detection sensor. , or while driving the slide mechanism.
  • the end portion of the elevating portion is raised and lowered by an inverted V-shaped link mechanism, it can be driven with a small driving force.
  • the number of rotations of the motor of the drive device can be reduced, making it possible to reduce costs.
  • the points of action are connected, which makes adjustment complicated and requires the lift mechanism itself to move a large distance when performing an extension operation. There were many.
  • the parts that serve as the points of action are connected, there is also the problem that the applied load becomes large.
  • the level difference remover according to the present invention can reduce the load at the point of application using the inverted V-shaped link mechanism, and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover itself can be reduced. It can be simplified.
  • the distance between the movable shaft and the link shaft is 1.5 times or more and 2.5 times or less the distance between the fixed shaft and the link shaft. is preferred.
  • the level difference remover according to the present invention can reduce the load at the point of application by the inverted V-shaped link mechanism, and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover itself can be reduced. can be simplified.
  • the level difference remover further include an upper surface fixed at the height of the platform, and that the rotating surface be rotatably pivoted toward the train entrance/exit side of the upper surface.
  • the moving surface may be rotatably supported on the end of the level difference remover on the side facing the train entrance/exit.
  • the inverted V-shaped link mechanism of the level difference remover has a ratio of the distance between the movable axis and the link axis to the distance between the fixed axis and the link axis (hereinafter also referred to as link ratio) by 1.5 times. 2.5 times or less.
  • link ratio a ratio of the distance between the movable axis and the link axis to the distance between the fixed axis and the link axis
  • the link ratio exceeds 2.5 times, problems arise such as the required thrust when the movable shaft is loaded with its own weight in the horizontal direction and the initial length of the entire inverted V-shaped link mechanism becomes long. do.
  • the time required to adjust the height of the inverted V-shaped link (hereinafter also referred to as operating time) is the horizontal stroke of the movable axis and its own weight load. The operating time is shortest when the link ratio is around 1.5 times, as the horizontal stroke becomes smaller and the required thrust becomes larger when the link ratio is increased. For this reason, it is desirable to set the link ratio to 1.5 times or more and 2.5 times or less.
  • a level difference eliminating machine is a level difference eliminating machine according to one aspect, in which the height of the tip of the telescoping surface is lower than the floor level of the train entrance upon arrival of the train, and the height of the tip of the telescopic surface is lowered for a predetermined time after the arrival of the train.
  • the vertical elevating mechanism may be controlled so that it becomes higher than the floor level of the train entrance/exit after the elapse of time.
  • a level difference eliminating machine is a level difference eliminating machine according to one aspect, in which the vertical lifting mechanism further includes a maintenance mechanism, and the maintenance mechanism is capable of rotating a rotating surface by nearly 90 degrees in the case of maintenance. It may also include a rotation mechanism.
  • a trapezoidal screw or a ball screw may be used as the driving section of the vertical lifting mechanism and/or the sliding mechanism.
  • the level difference eliminating machine can be driven without causing abnormal wear.
  • a trapezoidal screw of size TM20 the driving section can be driven reliably.
  • a trapezoidal screw may be used in the vertical lifting mechanism because the load is large, and a ball screw may be used in the slide mechanism because the load is light.
  • a plurality of level difference removers according to one aspect are buried in parallel.
  • the level difference remover according to the second aspect is a level difference remover that is buried in a platform and eliminates gaps and steps between the train entrance and exit, and has a rotating surface that is rotatably supported, and a rotating surface that is rotatably supported.
  • a vertical lifting mechanism that raises and lowers the surface, a detection sensor consisting of multiple sensors provided on the rotating surface, a control unit that controls the vertical lifting mechanism and the detection sensor, and a failure prediction unit that predicts failures of the vertical lifting mechanism.
  • the vertical lifting mechanism is equipped with a drive conversion mechanism that converts the rotation of the motor into linear motion using a screw, and a torque sensor is attached to the rotating shaft of the drive conversion mechanism, and the failure prediction section measures the torque using the torque sensor.
  • the time change in torque is predicted based on torque, and the difference between the measured value and the predicted value or the ratio of the measured value to the predicted value exceeds a predetermined range, or the difference between the measured value and the initial value of torque in the time series Alternatively, if the ratio of the measured value to the initial value exceeds a predetermined range, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction.
  • a torque sensor is provided on the rotating shaft of the drive conversion mechanism of the vertical lifting mechanism in order to predict a failure of the vertical lifting mechanism. Immediately after maintenance of the vertical lifting mechanism, the torque of the torque sensor is small. The torque tends to increase as time passes.
  • the failure prediction unit of the step-eliminating device determines that there is a high possibility of failure of the up-down lifting mechanism when the difference between the actual torque value and the predicted torque value or the ratio of the actual torque value to the predicted torque value exceeds a predetermined range, or when the difference between the actual torque value and the initial torque value in a time series or the ratio of the actual torque value to the initial torque value exceeds a predetermined range.
  • a level difference eliminating machine is a level difference eliminating machine according to the second aspect, in which the failure prediction unit determines that the average value of the ratio of the actual value to the predicted value (actual value/predicted value) over a predetermined number of days in the past is 1. An alarm may be issued when the average value is 0.05 times or more or 0.95 times or less, and an inspection may be instructed when the average value is 1.1 times or more.
  • the actual torque value may fluctuate due to noise rather than failure.
  • the actual measured value will naturally continue to fluctuate the next day, so by making a judgment based on the average ratio of the actual measured value to the predicted value over a predetermined number of days in the past, Misjudgments due to noise contamination can be avoided.
  • the predetermined number of days is preferably 2 to 10 days, and most preferably 5 days.
  • a level difference eliminating machine is a level difference eliminating machine according to the second aspect, in which a time change in torque is predicted using a LSTM (Long Short Term Memory), and a measured time series torque value is input into the LSTM. It may be done by
  • the temporal change in torque value Y is a linear function
  • the change in torque value over time is not necessarily a linear function, and depending on the usage environment, for example, in areas with a lot of rain or snow, or areas with high or low average temperatures, it may be closer to an exponential function, a power function, or a logarithmic function. There may also be cases.
  • LSTM Long Short Term Memory
  • RNN Recurrent Neural Network
  • a step-eliminating device is a step-eliminating device that is embedded in a platform and eliminates gaps and steps between the platform and train entrances and exits, and includes a rotating surface that is rotatably supported on a pivot axis, an expandable surface that is slidably attached to the rotating surface, an up-down lifting mechanism that raises and lowers the rotating surface by an inverted V-shaped link mechanism, a slide mechanism that slides the expandable surface, a detection sensor consisting of a plurality of sensors provided on the rotating surface or the expandable surface, and a control unit that controls the up-down lifting mechanism, the slide mechanism, and the detection sensor, and the up-down lifting mechanism and the slide mechanism each include a drive conversion mechanism that converts the rotation of a motor into linear motion by a screw, and an emergency origin return mechanism that normally transmits linear motion to the inverted V-shaped link mechanism or the expandable surface, and in an emergency releases the transmission of linear motion to the inverted V-shaped link mechanism or the expandable
  • an emergency origin return mechanism is provided between the drive conversion mechanism and the inverted V-shaped link mechanism or the telescopic surface, and in an emergency, the inverted V-shaped link of the linear movement of the drive conversion mechanism is provided.
  • the level difference eliminating machine is the level difference eliminating machine according to the third aspect, in which the emergency origin return mechanism includes a columnar pusher having a semicircular recess that is perpendicular to the longitudinal direction and a columnar pusher that is perpendicular to the longitudinal direction of the pusher.
  • the emergency origin return mechanism includes a columnar pusher having a semicircular recess that is perpendicular to the longitudinal direction and a columnar pusher that is perpendicular to the longitudinal direction of the pusher.
  • a cylindrical pusher drive member the pusher drive member has a semicircular cross section, and the linear movement of the pusher drive member is achieved by engaging the semicircular portion of the pusher drive member with the recess. may be transmitted to the inverted V-shaped link mechanism or the telescopic surface via the pusher, and in an emergency, the engagement of the pusher with the recess may be released by rotating the pusher drive member.
  • the pusher drive member is fixed to the drive conversion mechanism, and usually a semicircular portion of the pusher drive member is engaged with a recessed portion of the pusher, thereby converting the linear movement of the drive conversion mechanism into an inverted V-shaped link mechanism.
  • the pressure can be transmitted to the telescopic surface, and in an emergency, by rotating the pusher drive member approximately 180 degrees, the pusher drive member can be disengaged from the recess and the level difference remover can be returned to the stored state.
  • a level difference eliminating machine is a level difference eliminating machine that is buried in a platform and eliminates a gap and a level difference between the platform and the train entrance.
  • a telescoping surface slidably attached to the movable surface, a vertical lifting mechanism that raises and lowers the rotary surface using an inverted V-shaped link mechanism, a slide mechanism that slides the telescoping surface, and the rotary surface or
  • a detection sensor including a plurality of sensors provided on the extensible surface, and a control unit that controls the vertical lifting mechanism, the slide mechanism, and the detection sensor, and the detection sensor includes an ultrasonic distance sensor.
  • the distance sensor has a temperature correction function.
  • the user guidance and assistance system includes a step remover according to the first aspect or the fourth aspect, a photographing section provided at a station ticket gate, and a user accompanied by a wheelchair or baby stroller based on the image of the photographing section.
  • An identification unit that identifies a user who requires a level difference remover; and a guide unit that guides the identified user to an area where the level difference remover is placed using audio and/or display equipment. It is something that
  • the user guidance and assistance system includes a step eliminating machine that is embedded in a platform and eliminates gaps and steps between the platform and the train entrance; a photographing section provided at a station ticket gate; An identification unit that identifies a user who is accompanied by a wheelchair or baby stroller and requires a step remover from the video, and an identification unit that identifies a user who is in need of a step remover with a wheelchair or a baby stroller;
  • a user guidance/assistance system comprising: a guide section for guiding the user to the user; a telescoping surface, a vertical lifting mechanism for vertically raising and lowering the rotating surface using an inverted V-shaped link mechanism, a slide mechanism for slidingly moving the telescoping surface, and a plurality of structures provided on the rotating surface or the telescoping surface.
  • the device includes a detection sensor consisting of a sensor, and a control section that controls the vertical elevating mechanism, the slide mechanism, and the detection sensor.
  • the level difference eliminating machine according to the Ath invention is the level difference eliminating machine according to the second to ninth inventions, which includes: a telescopic surface slidably attached to the rotating surface; and a slide mechanism for slidingly moving the telescopic surface.
  • the control unit controls a slide mechanism
  • the slide mechanism includes a drive conversion mechanism that converts the rotation of the motor into linear motion using a screw, and a torque sensor is also attached to the rotating shaft of the drive conversion mechanism to prevent failure.
  • the prediction unit predicts the temporal change in the torque value based on the time-series torque values measured by the torque sensor, and when the difference between the actual measurement value and the predicted value or the ratio of the actual measurement value to the predicted value exceeds a predetermined range, Alternatively, it may be determined that there is a high possibility that the slide mechanism will fail if the difference between the time-series measured torque value and the initial value or the ratio of the measured value to the initial value exceeds a predetermined range.
  • the level difference eliminating machine according to the Ath invention further adds a telescopic surface and a slide mechanism to the level difference eliminating machine according to the second aspect, and has a torque sensor attached to the rotating shaft of the sliding mechanism, and is similar to the vertical lifting mechanism.
  • This method predicts the failure of the slide mechanism.
  • LSTM may also be used to predict temporal changes in torque values.
  • the level difference eliminating machine according to invention B is a level difference eliminating machine that is buried in a platform and eliminates gaps and level differences between the platform and the train boarding/exit, and the level difference eliminating machine has a rotating surface that is rotatably supported, A telescopic surface that is slidably attached to the moving surface, a vertical lifting mechanism that raises and lowers the rotating surface using an inverted V-shaped link mechanism, a sliding mechanism that slides the telescopic surface, and a
  • a failure prediction unit includes a detection sensor consisting of a plurality of sensors provided, a control unit that controls the up/down mechanism, the slide mechanism, and the detection sensor, and a failure prediction unit that predicts a failure of the up/down mechanism and the slide mechanism.
  • the vertical lifting mechanism It is determined that there is a high possibility of failure.
  • a sign of failure is observed as an increase in the torque of the rotating shaft of the drive mechanism when the control gain is high, but is observed as a deviation of the measured value from the indicated value when the control gain is relatively low.
  • a failure is predicted by focusing on the amount of deviation from the indicated value of the height and extension distance detected by the detection sensor. Specifically, if the average value or standard deviation value of the detected deviation amount of the height and extension distance over a predetermined number of days in the past exceeds a predetermined value, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction.
  • the predetermined number of days is preferably 2 to 10 days, and most preferably 5 days.
  • the predetermined value of the average value is -5% to 5% of the initial average value
  • the predetermined value of the standard deviation is -10% to 10% of the initial standard deviation 1 ⁇ . is desirable.
  • the reason for focusing on the standard deviation of the amount of deviation is that when the control becomes unstable, the amount of deviation from the instruction value often varies each time the level difference remover is started.
  • control unit of the level difference remover can achieve optimal driving in the shortest time through AI learning. Further, for example, it is possible to realize a setting operation with plenty of time to spare within the time when the train doors are opened, for example, within a maximum of 5 seconds during the stop time.
  • FIG. 1 is a schematic diagram showing an example of a platform equipped with a level difference eliminating machine according to the first embodiment.
  • FIG. 2 is a schematic plan view showing an example of the internal mechanism of the level difference removing machine according to the first embodiment. It is a schematic diagram which shows an example of the state before a step elimination machine is driven. It is a schematic diagram which shows an example of the driving state of the 1st stage of a level
  • FIG. 3 is a schematic diagram showing an example of a mechanism model of a link mechanism.
  • FIG. 13(a) is a schematic diagram showing an example of the driving state of the second stage of the level difference eliminating machine when the link ratio is 1.5
  • FIG. 13(b) is a schematic diagram showing an example of the driving state of the level difference eliminating machine when the link ratio is 1.0.
  • FIG. 3 is a schematic diagram showing an example of a second stage driving state. It is a typical block diagram showing an example of control of the control part of the step elimination machine concerning a 1st embodiment. 3 is a flowchart illustrating an example of control by a control unit.
  • FIG. 2 is a schematic explanatory diagram showing an example of a maintenance rotation mechanism of the step-eliminating machine. It is a typical explanatory view showing the structure of the step elimination machine of a modification.
  • It is a schematic block diagram which shows an example of control of the control part of the step removal machine of 2nd Embodiment. It is a typical top view which shows the structure of the drive part of the up-and-down lifting mechanism of the level
  • FIG. 2 is a schematic explanatory diagram showing an example of a maintenance rotation mechanism of the step-eliminating machine. It is a typical explanatory view showing the structure of the step elimination machine of a modification.
  • It is a schematic
  • FIG. 3 is a schematic diagram illustrating an example of the relationship between an actual measurement value and a predicted value of a temporal change in torque.
  • 13 is a graph showing the relationship between actual measured values and predicted values in the case of a linear function. It is a graph showing the relationship between actually measured values and predicted values in the case of a quadratic function.
  • FIG. 13 is a schematic block diagram showing an example of control by a control unit of the step eliminating device of the third embodiment. It is a typical top view showing the structure of the drive part of the up-and-down raising and lowering mechanism of the step elimination machine of a 3rd embodiment.
  • 25 is a schematic explanatory diagram showing the cross-sectional structure and operation of the emergency origin return mechanism corresponding to the A-A' portion of Figure 24.
  • FIG. 1 is a schematic diagram showing an example of a platform 200 equipped with a step eliminating device 100 according to a first embodiment.
  • Fig. 1(a) is a schematic plan view of the platform 200
  • Fig. 1(b) is a schematic side view of the platform 200.
  • a recess G200 is formed in a part of the platform 200, and three level difference removers 100 are arranged in parallel.
  • the level difference remover 100 is fixed to the recess G200 with an anchor bolt (not shown).
  • a plurality of level difference removers 100 may be lined up in a train arriving at the platform 200, depending on the width of the wheelchair-accessible area.
  • one or more grooves G10 are formed in the lower surface of the recess G200. The groove G10 is formed so that water such as rain can flow toward the track side.
  • a metal plate or mortar with a thickness of several millimeters is placed so that the difference in level between the end surface PH of the platform 200 and the upper surface 130 (see FIG. 3) of the step remover 100 is 5 mm or less.
  • a matching portion 290 such as a slope portion may be provided.
  • FIG. 2 is a schematic plan view showing an example of the internal mechanism of the level difference eliminating machine 100 according to the present embodiment.
  • the level difference remover 100 includes a rotating surface 110, a telescopic surface 120, an upper surface 130 (see FIG. 3), an inverted V-shaped link mechanism 300, a contact sensor 520, a distance sensor 530, and two sensors.
  • the rotating surface 110 is made of a stainless steel member with a thickness of about 6 mm.
  • the telescopic surface 120 is made of a stainless steel member with a thickness of about 6 mm.
  • the upper surface 130 is made of a stainless steel member with a thickness of about 4 mm.
  • the contact sensor 520 is provided on the entire end of the expandable surface 120. Note that the contact sensor 520 only needs to be located on the track side of the platform 200, and does not necessarily have to be provided on the entire surface.
  • the contact sensor 520 is preferably waterproof, and may be of either a differential transformer (LVDT) type or a scale type.
  • a proximity switch for detecting the distance from the train may be built in, either integrally with or separately from the contact sensor 520. By providing a proximity switch, the step overcome 100 can be stopped safely without coming into contact with the train. It is preferable to select a sensor for this proximity switch that operates when the distance is 5 mm ⁇ 10% or more.
  • a tape switch or a contact type sensor which detects when the tip comes into contact with a train, has been mainly used to prevent the level difference remover 100 from coming into contact with the train.
  • it cannot be detected unless it definitely comes into contact with the train, so the body of the train shakes in the direction of the step remover 100 due to the movement of the passenger, etc., and the event that the train body comes into contact with the step remover 100 occurs.
  • problems such as scratches on the train body have occurred, which has led to damage to the level difference remover 100 and the like.
  • the telescopic surface 120 can be stopped with a gap of at least 1 mm to 3 mm relative to the train. That is, it is possible to prevent the telescopic surface 120 from coming into contact with the train, and to prevent damage to the train body and/or the level difference remover 100.
  • two distance sensors 530 in this embodiment are provided at the end of the rotating surface 110 at a predetermined interval.
  • the distance sensor 530 is provided so as to rotate along with the operation of the rotation surface 110, which will be described later. It is desirable that the distance sensor 530 has a waterproof structure, and may be of any one of a lidar type, a millimeter wave type, an ultrasonic type, and a stereo camera type.
  • the two drive units 540 are composed of motors.
  • the slide drive section 550 is composed of a motor.
  • the drive conversion mechanism 547 (see FIG. 19) used in the present invention is formed from a D screw having a trapezoidal screw (TM) size TM18 or more. The reason for this will be described later. However, since the drive conversion mechanism 547 of the slide drive unit 550 has a light load, a ball screw may be used.
  • rollers 600 are provided, and as will be described later, the rollers 600 are provided to support the telescopic surface 120 when it is protruded from the rotating surface 110 or to be retracted, and to allow the telescopic surface 120 to move smoothly. It is being
  • FIG. 3 is a schematic diagram showing an example of a state before the level difference eliminating machine 100 is driven
  • FIG. 4 is a schematic diagram showing an example of a first stage driving state of the level difference eliminating machine 100
  • FIG. FIG. 2 is a schematic diagram showing an example of a second stage driving state of the level difference removing machine 100.
  • the level difference removing machine 100 has a rotating surface 110 and an upper surface 130 arranged horizontally.
  • a frame 190 is formed as a frame body at the lower part of the step eliminating machine 100, and the frame 190 is provided with leg portions 195.
  • the influence of rainwater etc. can be suppressed by the total height of the groove G10 and the leg portion 195 shown in FIG.
  • the frame 190 is shown separated in FIG. 3, the frame 190 is not limited to this, and may be formed as one piece.
  • the drive unit 540 operates, the pusher 565 is pushed out, and the tip of the rotation surface 110 is rotated in the direction of arrow R10 by the inverted V-shaped link mechanism 300. That is, the rotation surface 110 is pivoted on the upper surface 130 side so as to be rotatable in the direction of arrow R10.
  • the rotation angle is preferably from 1 degree to 15 degrees, and the maximum rotation angle in this embodiment is 8 degrees.
  • the distance sensor 530 is provided at the tip of the rotating surface 110, it moves in the same manner as the rotating surface 110.
  • the slide drive unit 550 operates, and the expandable surface 120 extends toward the train entrance, that is, in the direction of arrow S10.
  • the extension distance is preferably 100 mm or more and 500 mm or less, and the maximum extension distance in this embodiment is 300 mm. This extension distance is determined according to the measurement results of a distance sensor 530, which will be described later.
  • the step removal machine 100 performs a storage operation.
  • the level difference eliminating machine 100 has the advantage that it has a simple structure and can easily ensure strength due to the extension operation and rotation operation.
  • FIGS. 4 and 5 are disclosed as separate operations, the present invention is not limited to this, and even if the rotation operation of FIG. 4 is performed and the extension operation of FIG. 5 is performed. good. As a result, the level difference can be eliminated in a short time.
  • FIG. 6 is a schematic diagram showing an example of details of the inverted V-shaped link mechanism 300
  • FIG. 7 is a schematic diagram showing an example of a mechanical model of the inverted V-shaped link mechanism 300.
  • the inverted V-shaped link mechanism 300 includes a first link 310, a second link 320, a fixed shaft 315, a link shaft 325, and a movable shaft 335.
  • the rotation surface 110 is approximately parallel to the frame 190 (recess G200).
  • the pusher 565 advances in the direction of the inverted V-shaped link mechanism 300.
  • the link shaft 325 moves upward.
  • the rotation surface 110 is rotated in the direction of arrow R10 (see FIG. 4) due to the rise of the link shaft 325.
  • FIG. 7 is a schematic diagram showing an example of a mechanical model of the inverted V-shaped link mechanism 300.
  • the distance of the first link 310 is L31
  • the distance of the second link 320 is L32
  • the distance between the fixed shaft 315 and the movable shaft 335 is Ln
  • the link axis is measured from the horizontal plane of the fixed shaft 315 and the movable shaft 335.
  • 325 (hereinafter also referred to as link height h) is assumed to be h.
  • link height h is assumed to be h.
  • the angle from the vertical direction of the straight line connecting the fixed shaft 315 and the link shaft 325 is ⁇ 1
  • the angle from the vertical direction of the straight line connecting the movable shaft 335 and the link shaft 325 is ⁇ 2.
  • the distance Ln when the drive unit 540 does not operate and the rotation surface 110 is horizontal is set as Ln1
  • the link height h is set as h1.
  • the distance Ln'(Ln1>Ln') between the fixed shaft 315 and the movable shaft 335 is h2 (h2>h1).
  • the fixed shaft 315 becomes the fulcrum
  • the link shaft 325 becomes the point of action
  • the movable shaft 335 becomes the point of effort.
  • the ratio L32/L31 (hereinafter also referred to as link ratio b) between the distance L32 of the second link 320 and the distance L31 of the first link 310 is 1.5.
  • FIG. 8 shows a graph of the link height h and the required thrust force F2 under horizontal self-weight loading in the range of link height h from 31 mm to 111.8 mm.
  • the magnitude of dead weight load F0 is 350.4 kg.
  • FIG. 9 is a schematic explanatory diagram showing an example of the relationship between the contact surface pressure P of the screw and the sliding speed V.
  • Figure 9 shows the case of a D screw made of steel and brass using lubricating oil for the drive conversion mechanism 547 (dotted chain line in the figure), and the case of a D screw made of steel and resin without lubrication (dry).
  • a standard safety line related to contact surface pressure P (N/mm2) and sliding speed V (m/min) for preventing abnormal wear of the threaded portion is shown in the case (three-dot chain line in the figure).
  • the area on the lower left side of each line is the safe area.
  • the actual allowable sliding speed V will be considered.
  • the movable shaft 335 of the inverted V-shaped link is driven by sliding transmission such as a trapezoidal screw.
  • FIG. 8 also shows the relationship between the link height h and the allowable sliding speed V.
  • the maximum value is important for the required thrust F2 under self-weight load, and the minimum value is important for the allowable slip velocity V.
  • FIG. 10 shows a graph of the dependence of the required thrust F2 and the vertical load F3 on the link ratio b when the movable shaft 335 is loaded with its own weight when the link height h is the minimum.
  • the vertical lifting time is proportional to the horizontal stroke St (corresponding to Ln1-Ln') of the movable shaft 335, and the maximum length of the inverted V-shaped link corresponds to the initial length Ln1, so the horizontal stroke St and the initial length
  • Ln1 the link height
  • the link height h is the minimum (corresponding to Fig. 7(a))
  • the height is h1
  • the length between the link shaft and the fixed shaft is L31
  • the initial length Ln1 is
  • the horizontal stroke St is calculated by assuming the height when the link height is maximum (corresponding to Fig. 7(b)) as h2. becomes.
  • FIG. 11 A graph of the dependence of the initial length Ln and the horizontal stroke St on the link ratio b is shown in FIG. 11. Further, FIG. 12 shows a graph of the dependence of the operating time Tt (relative value) corresponding to the ratio of the horizontal stroke St to the allowable sliding speed V on the link ratio b.
  • the link ratio b is around 1.5, but by increasing the link ratio b, the vertical load F3 of the movable shaft 335 decreases, and the dead weight load F0 On the other hand, if the link ratio b is too large, the required thrust F2 when loaded with self-weight becomes too large, and it is necessary to increase the axial strength of the inverted V-shaped link. Since the maximum length becomes too long, the link ratio b is set to 1.5 or more and 2.5 or less.
  • the level difference remover 100 can reduce the load at the point of application and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover 100 itself can be simplified. can.
  • FIG. 14 is a schematic block diagram showing an example of control of the control unit 500 of the level difference eliminating machine 100 according to the first embodiment.
  • the control unit 500 of the level difference remover 100 communicates with each of the recording unit 510, contact sensor 520, distance sensor 530, drive unit 540, and slide drive unit 550. conduct. Although communication is preferably wired, it may be wireless. Further, the control unit 500 according to the first embodiment has an AI learning function, determines the optimal operation of the level difference removing machine 100 from the past data of the recording unit 510, and drives the control unit 500. The contents of detailed data in the recording section 510 will be described later.
  • the control unit 500 in the first embodiment does not need to be built inside the level difference removing machine 100.
  • the control unit 500 may be built-in as long as it can communicate with each of the recording unit 510, the contact sensor 520, the distance sensor 530, the drive unit 540, and the slide drive unit 550, or may be provided separately outside. Good too.
  • the level difference eliminating machines 100 may be arranged in parallel, so the control unit 500 of each of the level difference eliminating machines 100 arranged in parallel may be provided as one, and each of the level difference eliminating machines 100 may be arranged in parallel. If provided, it is desirable that the control units 500 be able to communicate with each other. For example, in the event of maintenance or failure in one of the level difference removers 100 arranged in parallel, it is desirable to stop driving the other level difference removers 100.
  • the recording section 510 contains information including the type of train, the train timetable, the height of the train floor, the height of the platform 200, the platform door, month, day, day of the week, time, climate, weather, etc.
  • data from surveillance cameras installed inside the station can be processed using machine learning, deep learning, deep learning, YOLO, R-CNN, HOG, DETR (End-to-End Object Detection with Transformers), and SSD. (Single Shot MultiBox Detector), DCN, etc. may be used to calculate the number of people and may include information on estimating the congestion situation of the train and the congestion situation of each vehicle.
  • the information may include information such as the number of people, congestion status, and current floor height of the train at the station in front of the platform 200 equipped with the step clearing device 100, that is, the station located upstream from the train.
  • the platform height also depends on the type of train, the height of the train floor, the condition of the track, whether the platform is curved or not, whether a large number of people will be getting off from a crowded train, and whether a large number of people will be boarding the train. It also includes information such as whether there is a person getting on the vehicle using the level difference eliminating machine 100 or whether there is a person getting off using the level difference eliminating machine 100.
  • the height be the same as or several millimeters higher than the floor height of the train, and when getting off, it is preferable that the height be the same as or several millimeters lower than the floor height of the train.
  • the floor height is set at the same level as the train floor or a few millimeters lower than that.
  • Subtle control may be performed so that the height is the same as or a few millimeters higher than the floor level.
  • the recording unit 510 also records the type, operation, drive time, opening/closing timing, etc. of the platform door installed to prevent passengers from falling from the platform 200. This is data necessary for the control unit 500 to operate the step remover 100 so as not to interfere with the operation of the platform door. Furthermore, the month, date, day of the week, time, climate, weather, etc. recorded in the recording unit 510 are linked with information such as changes in the number of people, congestion status, etc. Further, although not shown, the degree of crowding in department stores, commercial facilities, event venues, restaurants, etc. near the station building may be linked to the number of fixed cameras or mobile GPS devices. Thereby, congestion information etc. can be estimated according to the movement of people.
  • an alarm device is provided to issue a voice warning, or to ask the driver to get on the vehicle safely or to get off the vehicle safely. etc. may be notified.
  • FIG. 15 is a flowchart showing an example of control by the control unit 500.
  • control unit 500 acquires train information and the like based on information from the recording unit 510 (step S1).
  • the control unit 500 acquires platform door information such as whether the platform door is driven (step S2).
  • the control unit 500 obtains sensor detection from the contact sensor 520 and/or the distance sensor 530 (step S3).
  • the control unit 500 may perform temperature correction depending on the type of sensor. That is, it is desirable that a sensor having outdoor temperature characteristics undergo temperature correction.
  • the control unit 500 checks whether there is any contact history in the contact sensor 520 and determines whether the distance data from the distance sensor 530 matches the train information in the recording unit 510.
  • control unit 500 starts driving the drive unit 540 (step S4).
  • control unit 500 drives the slide drive unit 550 to start sliding (step S5).
  • the slide drive section 550 is driven to start slide storage. Note that sliding storage may be started before the platform doors begin to close or before the train doors begin to close.
  • control unit 500 drives the drive unit 540 to house the level difference eliminating machine 100 (step S7).
  • FIG. 16 is a schematic explanatory diagram showing an example of a maintenance rotation mechanism of the level difference eliminating machine 100.
  • the rotation surface 110 is moved in the direction of the arrow R20, and the rotation axis 115 It can be rotated around a large axis.
  • inspection, maintenance, repair, etc. of the drive unit 540 or the slide drive unit 550, the contact sensor 520, the distance sensor 530, the pusher 565, the rotary housing 546, the telescopic pusher 555, the roller 600, etc. can be carried out.
  • the large rotation of the rotating surface 110 makes it easier to carry out maintenance and the like.
  • FIG. 17 shows the structure of a modified example of a level difference eliminating machine 100a.
  • the level difference remover 100 shown in FIG. 5 includes an upper surface 130 fixed at the height of the platform 200 and a rotating surface 110 on the train entrance/exit side of the upper surface 130, and a boundary between the upper surface 130 and the rotating surface 110.
  • the dead weight load F0 on the link shaft 325 is reduced due to the lever principle, but on the other hand, the length of the rotating surface 110 becomes longer, so it is necessary to increase the strength of the rotating surface 110.
  • the level difference remover 100b of the second embodiment is the same as the level difference remover 100 or 100a of the first embodiment with a failure prediction function added. Therefore, the drawings of FIGS. 1 to 13 and 15 to 17 and the related descriptions also apply to the step clearing machine 100b of the second embodiment.
  • an inverted V-shaped link mechanism 300 is used for the vertical lifting mechanism, but in the step remover 100b of the second embodiment, the rotation of the motor is linear.
  • the inverted V-shaped link mechanism 300 may not be used as long as it is converted into motion and moves up and down on the rotation surface 110.
  • the level difference eliminating machine 100 or the level difference eliminating machine 100a of the first embodiment is provided with a slide mechanism that slides the telescopic surface 120, but in the level difference eliminating machine 100b of the second embodiment, the telescopic surface 120 and the slide mechanism are provided.
  • the rotating surface 110 itself may be moved in the direction of the train entrance without providing a mechanism.
  • Fig. 18 is a schematic block diagram showing an example of control by the control unit 500 of the step-eliminating device 100b of the second embodiment.
  • a failure prediction unit 570 and a torque sensor 575 are added to the block diagram of the step-eliminating device 100 of the first embodiment of Fig. 14.
  • 19 is a schematic top view showing the structure of the drive part of the up-down lifting mechanism of the step-eliminating device 100b of the second embodiment.
  • the drive unit 540 rotates the rotary shaft 545, and the drive conversion mechanism 547 (D screw) converts the rotation into linear motion.
  • the drive conversion mechanism 547, the frame bodies 548a and 548b, the pusher drive member 562, and the pusher 565 are connected to each other, and the linear motion of the drive conversion mechanism 547 is transmitted directly to the pusher 565.
  • the pusher 565 passes through the bearings 564a and 564b, and the bearings 564a and 564b support the linear motion of the pusher 565.
  • a torque sensor 575 is attached to the rotating shaft 545 , and the measured value of the torque applied to the rotating shaft 545 is transmitted to the control unit 500 .
  • TBM Time Based Maintenance
  • CBM Consumer Based Maintenance
  • Feedback control is performed in the vertical lifting mechanism of the level difference remover 100b, in which the driving unit 540 drives the vertical lifting mechanism based on the measured value of the distance sensor 530.
  • the measured value of the distance sensor 530 is often normal even if a sign of failure occurs inside the vertical lifting mechanism. In such a case, a precursor to failure can be detected more reliably by measuring the temporal change in the torque of the rotating shaft 545 of the drive unit 540 that drives the vertical lifting mechanism.
  • FIG. 20 is a schematic diagram showing an example of an actual measured value (row_data) and a predicted value (predict_data) of a temporal change in torque. Note that the numerical values are relative values.
  • the measured value of torque increases with time. In the case of FIG. 20, it increases almost as a linear function of time, and the predicted value represents this tendency. However, when the time exceeds 170, the actual measured value rapidly increases and the deviation from the predicted value becomes large. In such a case, there is a possibility that signs of failure are progressing, such as rapid wear starting in the drive conversion mechanism 547 (D screw).
  • the temporal change in torque is predicted based on the time-series torque measured by the torque sensor 575, and the difference between the actual measured value and the predicted value or the ratio of the actual measured value to the predicted value is If it exceeds a predetermined range, it is determined that there is a high possibility that the vertical elevating mechanism will malfunction, and an alarm is issued or an inspection is ordered.
  • the relationship between the magnitude of the deviation between the actual measured value and the predicted value and the alarm or inspection instruction varies depending on the design of the level difference remover 100b, the strength of feedback control, etc.; If the average value of the ratio is 1.05 times or more or 0.95 times or less, a warning may be issued, and if the average value is 1.1 times or more, an inspection may be instructed.
  • the predetermined number of days is preferably from 2 to 10 days, and most preferably 5 days. Furthermore, even if the deviation between the actual measured value and the predicted value is small, if the difference or ratio between the actual measured torque value and the initial value exceeds a predetermined range, an alarm may be issued or an inspection may be instructed.
  • the predetermined range in this case is, for example, -20% to +100%.
  • the torque increases rapidly from around the time when it exceeds 170, but until then, the torque increases linearly with respect to time.
  • torque does not always increase linearly.
  • the torque may increase quadratically or exponentially.
  • the task of considering what kind of function should be used to approximate the time-series changes in actually measured torque, determining coefficients, and then calculating the time-series changes in the predicted value is complicated, and it is not always possible to obtain accurate results. is not limited.
  • LSTM Long Short Term Memory
  • RNN Recurrent Neural Network
  • Fig. 21 shows a graph of the relationship between the actual measured value (row_data) and the predicted value (predict_data) in the case of a linear function
  • Fig. 22 shows a graph of the relationship between the actual measured value (row_data) and the predicted value (predict_data) in the case of a quadratic function.
  • the LSTM calculates a predicted value for time 25 based on the actual measured values from times 0 to 24, then calculates a predicted value for time 26 based on the actual measured values from times 1 to 25, and so on up to time 200.
  • LSTM can make highly accurate predictions not only of simple quadratic functions, but also of sum functions of quadratic functions and periodic functions such as sine wave functions, and by using LSTM to predict the time change in torque of the step-eliminating device 100b of the second embodiment, efficient and accurate fault prediction can be made.
  • a torque sensor 575 is also added to the rotating shaft 545a of the slide mechanism.
  • the time-series change in torque is predicted based on the time-series torque measured by the torque sensor 575, and the difference between the actual measured value and the predicted value or the ratio of the actual measured value to the predicted value exceeds a predetermined range, or when the time-series If the difference between the measured torque value and the initial value or the ratio of the measured torque value to the initial value exceeds a predetermined range, it may be determined that the slide mechanism is likely to fail.
  • failure prediction is performed based on time-series torque values measured by the torque sensor 575.
  • the control gain of the vertical lifting mechanism or sliding mechanism is relatively low, the temporal change in torque value
  • a sign of failure may appear in the change in the measured value of the distance sensor over time.
  • the amount of deviation from the indicated value of the height and extension distance detected by the detection sensor is recorded, and if the average value or standard deviation value of each deviation amount over a predetermined number of days in the past exceeds a predetermined value, It is desirable to determine that there is a high possibility that the vertical lifting mechanism will malfunction.
  • the average value or standard deviation value of the detected deviation amount of the height and extension distance over a predetermined number of days in the past exceeds a predetermined value, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction.
  • the predetermined number of days is preferably 2 to 10 days, and most preferably 5 days. The reason for focusing on the standard deviation of the amount of deviation is that when the control becomes unstable, the amount of deviation from the instruction value often varies each time the level difference remover 100b is started.
  • the level difference removing machine 100 itself can request inspection via communication before a failure occurs, and can perform preventive maintenance such as supplying lubricating oil, replacing parts, cleaning the detection sensor, and cleaning the lens.
  • preventive maintenance such as supplying lubricating oil, replacing parts, cleaning the detection sensor, and cleaning the lens.
  • the time period in which the level difference remover 100 requests inspection by itself is not during the operating hours of the passenger business, but rather during the night time from the end of the business until the start of the business.
  • the level difference eliminating machine 100c of the third embodiment is the same as the level difference eliminating machine 100 or 100a of the first embodiment with an emergency origin return mechanism 560 added thereto. Therefore, the drawings of FIGS. 1 to 13 and 15 to 17 and the related descriptions also apply to the third embodiment of the step clearing machine 100c.
  • an inverted V-shaped link mechanism 300 is used for the vertical lifting mechanism, but in the step remover 100c of the third embodiment, the motor The inverted V-shaped link mechanism 300 may not be used as long as the rotating surface 110 is moved up and down by converting rotation into linear motion.
  • the level difference removing machine 100 or 100a of the first embodiment is equipped with a slide mechanism that slides the telescopic surface 120
  • the level difference removing machine 100c of the third embodiment is equipped with the telescopic surface 120 and a sliding mechanism.
  • the rotating surface itself may be moved in the direction of the train entrance/exit.
  • Fig. 23 is a schematic block diagram showing an example of control by the control unit 500 of the step-eliminating device 100c of the third embodiment.
  • an emergency origin return mechanism 560 is added to the block diagram of the step-eliminating device 100 of the first embodiment of Fig. 14.
  • Figure 24 is a schematic top view showing the structure of the drive part of the up and down lifting mechanism of the step-eliminating device 100b of the third embodiment
  • Figure 25 is a schematic explanatory diagram showing the cross-sectional structure and operation of the emergency origin return mechanism 560 corresponding to the AA' portion of Figure 24.
  • an emergency return-to-origin mechanism 560 is added to Fig.
  • FIG. 19 which shows the structure of the drive part of the up-down lifting mechanism of the step-eliminating device 100b of the second embodiment.
  • the torque sensor 575 is not provided in Fig. 24, it is possible to provide the step-eliminating device 100c of the third embodiment with the torque sensor 575 and a failure prediction unit 570 to add a failure prediction function.
  • the drive conversion mechanism 547, the frames 548a and 548b, the pusher drive member 562, and the pusher 565 are connected to one another, and the linear motion of the drive conversion mechanism 547 is transmitted directly to the pusher 565.
  • the pusher drive member 562 is cylindrical and passes through the frames 548a and 548b, and is capable of rotation.
  • the pusher 565 is provided with a semicircular recess 563 orthogonal to the longitudinal direction at the portion of the emergency home return mechanism 560 that intersects with the pusher drive member 562 (Fig. 25 reference).
  • the pusher drive member 562 has a semicircular cross section in the vicinity of the emergency origin return mechanism 560 in a plane orthogonal to the longitudinal direction.
  • the linear movement of the pusher drive member 562 is controlled via the pusher 565 to the inverted V-shaped link mechanism 300 or This is transmitted to the telescopic surface 120 of the slide mechanism (see FIG. 25(a)).
  • the control unit 500 drives an actuator (not shown) to rotate the pusher drive member 562 by 180 degrees (see FIG. 25(b)). Then, the engagement between the pusher driving member 562 and the pusher 565 is disengaged, the pusher 565 is moved backward, and the rotating surface 110 is lowered to a horizontal position.
  • the level difference remover 100c returns to the stored state (see FIG. 25(c)).
  • a maximum load of about 1000 kg is applied to the emergency home return mechanism 560. Therefore, it is necessary to use materials with high hardness for the pusher 565 and the pusher drive member 562 of the emergency home return mechanism 560. Specifically, it is desirable to use SUS440C that is hardened and tempered to have a Rockwell C scale hardness (HRC) of 58 or more and 60 or less.
  • HRC Rockwell C scale hardness
  • control unit 500 of the step remover 100, the step remover 100a, the step remover 100b, and the step remover 100c according to the first to third embodiments is capable of identifying and/or facial recognition of the step remover user by AI analysis.
  • An authentication/form authentication system may be adopted. For example, at a station ticket gate, users of wheelchairs, baby strollers, etc. may be identified, and facial recognition may also be performed, especially for people who frequently use the system. In this case, these users can be guided to the elevator, and furthermore, automatically guided to the area where the step eliminating machine 100 is located.
  • Guidance can be provided by audio and display devices (including LED displays, etc.) to guide the vehicle to the vehicle stop position in the area where the bump remover 100 is located, which is a safe boarding position.
  • the work of station staff can be reduced and passengers can be provided with appropriate services.
  • great effects can be obtained at stations with a large number of passengers or at major stations.
  • an authentication algorithm that makes a comprehensive judgment is generated to determine the maintenance time. or provide guidance services.
  • the platform 200 corresponds to a "platform”
  • the level difference removers 100, 100a, 100b, and 100c correspond to a "level difference remover”
  • the rotating surface 110 corresponds to a “rotating surface”
  • the The surface 120 corresponds to an "expandable surface”
  • the inverted V-shaped link mechanism 300 corresponds to an "inverted V-shaped link mechanism” and includes a drive unit 540, a rotating shaft 545, a drive conversion mechanism 547, a frame 548a, 548b, the pusher drive member 562, and the pusher 565 correspond to a "vertical elevating mechanism”
  • the slide drive section 550 corresponds to a “slide mechanism”
  • the contact sensor 520 and/or distance sensor 530 and/or proximity switch correspond to a "detection” mechanism.
  • the control unit 500 corresponds to a “control unit”
  • the fixed axis 315 corresponds to a “fixed axis”
  • the movable axis 335 corresponds to a “movable axis”
  • the link axis 325 corresponds to a “link axis”.
  • the disconnection of the inverted V-shaped link mechanism 300 and the rotating surface 110 corresponds to a "maintenance mechanism”
  • the rotating shaft 115 corresponds to a “maintenance rotating mechanism”
  • the drive conversion mechanism 547 corresponds to a “maintenance rotating mechanism.”
  • the failure prediction unit 570 corresponds to a "failure prediction unit”
  • the rotating shaft 545 corresponds to a “rotating shaft”
  • the torque sensor 575 corresponds to a "torque sensor”
  • the mechanism 560 corresponds to an "emergency home return mechanism”
  • the pusher 565 corresponds to a "pusher”
  • the pusher drive member 562 corresponds to a "pusher drive member.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

[Problem] To provide a height difference reducing device, platform, and user guidance assistance system with an accurate failure prediction function that can be used for condition-based maintenance. [Solution] A height difference reducing device 100 is embedded in a platform 200 to reduce the gap and height difference between a train entrance and the platform 200 is provided, and comprises a pivotally supported pivotable surface 110, a vertical lifting mechanism that raises and lowers the pivotable surface 110 by an inverted V-shaped link mechanism 300, a detection sensor comprising a plurality of sensors provided on the pivotable surface 110 or an extendable surface 120, a control unit 500 that controls the vertical lifting mechanism and the detection sensor, and a failure prediction unit 570 that predicts a failure of the vertical lifting mechanism.

Description

段差解消機、プラットホーム、利用者誘導介助システムStep clearing machine, platform, user guidance and assistance system
 本発明は、段差解消機、プラットホーム、利用者誘導介助システムに関する。 The present invention relates to a step remover, a platform, and a user guidance and assistance system.
 例えば、特許文献1(特開2022-55909号公報)には、車両の下側から車両とプラットホームの隙間を埋めるステップがせり出してくる装置は、ステップの部分の長さが固定で、駅毎に変化する隙間を好適に埋めることができない場合を改善した乗降補助装置が開示されている。 For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2022-55909) describes a device in which a step protrudes from the underside of the vehicle to fill the gap between the vehicle and the platform. An ingress/egress assist device is disclosed that improves the case where changing gaps cannot be appropriately filled.
 特許文献1に記載の乗降補助装置は、車両の台枠下に載置され、車両とプラットホームの隙間を埋める乗降補助装置であって、天板と、天板に固定された蛇腹式伸縮部と、蛇腹式伸縮部に空気を出し入れする空気制御部と、天板の移動を規制するガイド部を有し、天板は車両とプラットホームとの隙間に応じて長さが変化するものである。 The getting on/off assisting device described in Patent Document 1 is a getting on/off assisting device that is placed under the underframe of a vehicle and fills the gap between the vehicle and the platform, and includes a top plate, a bellows type telescopic part fixed to the top plate, and a top plate. The vehicle has an air control section that moves air in and out of the bellows-type extensible section, and a guide section that restricts the movement of the top plate, and the length of the top plate changes depending on the gap between the vehicle and the platform.
 例えば、特許文献2(特開2021-41827号公報)には、駅のホーム縁端と車両乗降口との間の隙間及び段差にばらつきがあっても、その隙間及び段差を低減する隙間段差低減システムが開示されている。 For example, Patent Document 2 (Japanese Unexamined Patent Application Publication No. 2021-41827) describes a method for reducing gaps and steps that reduce gaps and steps even if there are variations in gaps and steps between the edge of a station platform and a vehicle entrance/exit. system is disclosed.
 特許文献2に記載の隙間段差低減システムは、駅のホーム縁端と車両乗降口との間の隙間及び段差を低減するための隙間段差低減システムであって、ホーム縁端と車両乗降口との間の隙間量及び段差量を検知するための検知部と、駅に停車する車両の扉位置に対応してホーム縁端部に設けられるスライド昇降部と、スライド昇降部の動きを制御する制御部とを備え、スライド昇降部は、車両側に張り出すとともに先端側が上昇した張出状態と、張り出していない収納状態とを有し、張出状態における張出量及び先端側の上昇量が調整可能であり、制御部は、検知された隙間量及び段差量に基づいて、張出状態における張出量及び上昇量を調整するものである。 The gap/level difference reduction system described in Patent Document 2 is a gap/level difference reduction system for reducing the gap and level difference between the edge of a platform and the vehicle entrance/exit at a station. a detection unit for detecting the amount of gap and level difference between the two; a slide elevating unit provided at the edge of the platform corresponding to the door position of the vehicle stopping at the station; and a control unit that controls the movement of the slide elevating unit. The slide elevating part has an extended state in which it projects toward the vehicle side and the tip side is raised, and a stored state in which it does not project out, and the amount of extension in the extended state and the amount of rise of the tip side can be adjusted. The control unit adjusts the amount of overhang and the amount of rise in the overhang state based on the detected gap amount and step amount.
 例えば、特許文献3(特開平5-42869号公報)には、移動中のステップ部材上に乗降客が位置したとき、ステップ部材上に乗降客が位置していて駆動部が故障したときなどに、客の安全を確保するプラットホームのステップ装置が開示されている。 For example, Patent Document 3 (Japanese Unexamined Patent Publication No. 5-42869) discloses that when a passenger is positioned on a moving step member, or when a passenger is positioned on a step member and the drive unit breaks down, , a platform step device is disclosed to ensure the safety of customers.
 特許文献3に記載のプラットホームのステップ装置は、車両とプラットホームの縁との間に生じる隙間を塞ぐプラットホーム用ステップ装置において、プラットホームの下側に水平方向に進退自在な出入り動作部と、この出入り動作部の先端に取り付けられるスライド台と、このスライド台をプラットホームの下側から隙間の下方位置に進退させる出入り駆動部とを設け、スライド台に水平方向と直交する上下方向に昇降自在な昇降動作部を介してステップ部材を設け、昇降動作部にこのステップ部材をプラットホームの上面に一致する高さ位置と隙間の下方位置との間を昇降させる昇降駆動部を設けたものである。 The platform step device described in Patent Document 3 is a platform step device that closes a gap that occurs between a vehicle and the edge of the platform, and includes an in/out movement section that can move forward and backward in the horizontal direction on the underside of the platform, and an ingress and egress movement section that can move forward and backward in the horizontal direction. A slide table attached to the tip of the platform and an in/out drive part that moves the slide table forward and backward from the bottom of the platform to a position below the gap are provided. A step member is provided through the platform, and the elevating and lowering operation section is provided with an elevating and lowering drive section that moves the step member up and down between a height position corresponding to the upper surface of the platform and a position below the gap.
 例えば、特許文献4(特開2002-104175号公報)には、装置構成が比較的簡単で、設置工事が容易であり、かつ、装置の仕様変更に容易に対応することができ、さらにホームドアと一体化することができる乗降補助装置が開示されている。 For example, Patent Document 4 (Japanese Unexamined Patent Application Publication No. 2002-104175) discloses that the device has a relatively simple configuration, easy installation work, can easily respond to changes in the device specifications, and also has a platform door. A boarding assistance device that can be integrated with a vehicle is disclosed.
 特許文献4に記載の乗降補助装置は、プラットホーム上の停車車両の乗降口に対応する位置に設置され、車両停車時に開閉動作をするホームドアと、上記ホームドアを収納する戸袋とを備えたホームドア・システムに適用される乗降補助装置であって、停車車両の乗降口に対応するプラットホーム上の上記ホームドアの下方に配置され、上面がプラットホーム面に一致するように設置され、車両側端がホーム面から上昇するように傾動可能に支持されたホームステップ・ユニットと、上記ホームステップ・ユニット内にスライド可能に取付けられ、車両停車時は乗降口に向かって前進し、車両不在時にはホームステップ・ユニット内に後退するステップと、上記ホームステップ・ユニット内に設けられ、上記ステップを前進/後退させる第1の駆動機構と、上記ホームステップ・ユニットの車両側端を上昇/下降させる第2の駆動機構を備え、該第2の駆動機構は戸袋内に設けたものである。 The boarding/exiting assistance device described in Patent Document 4 is installed at a position corresponding to the boarding/exiting door of a stopped vehicle on a platform, and includes a platform door that opens and closes when the vehicle is stopped, and a door pocket that stores the platform door. A boarding/exiting assistance device applied to a door system, which is placed below the platform door on the platform corresponding to the boarding/exit of a stopped vehicle, installed so that the top surface is aligned with the platform surface, and the vehicle side end is placed below the platform door. A home step unit is supported so as to be tiltable so as to rise from the platform surface, and the home step unit is slidably installed within the home step unit, and moves forward toward the entrance when the vehicle is stopped, and when the vehicle is absent, the home step unit is supported so as to be tiltable. a step that retreats into the unit; a first drive mechanism provided in the homestep unit that advances/retracts the step; and a second drive mechanism that raises/lowers the vehicle side end of the homestep unit. The second driving mechanism is provided in the door pocket.
 例えば、特許文献5(特開2002-37055号公報)には、装置構成が比較的簡単で、設置工事が容易であり、かつ、装置の仕様変更に容易に対応することができ、さらにホームドアと一体化することができる乗降補助装置が開示されている。 For example, Patent Document 5 (JP Patent Publication No. 2002-37055) discloses a boarding and alighting assistance device that has a relatively simple device configuration, is easy to install, can easily accommodate changes to the device's specifications, and can be integrated with platform doors.
 特許文献5に記載の乗降補助装置は、プラットホーム上の停車車両の乗降口に対応する位置に設置され、車両停車時に開閉動作をするホームドアと、上記ホームドアを収納する戸袋とを備えたホームドア・システムに適用される乗降補助装置であって、停車車両の乗降口に対応するプラットホーム上の上記ホームドアの下方に配置され、上面がプラットホーム面に一致するように設置され、車両側端がホーム面から上昇するように傾動可能に支持されたホームステップ・ユニットと、上記ホームステップ・ユニット内にスライド可能に取付けられ、車両停車時は乗降口に向かって前進し、車両不在時にはホームステップ・ユニット内に後退するステップと、上記ホームステップ・ユニット内に設けられ、上記ステップを前進/後退させる第1の駆動機構と、上記ホームステップ・ユニットの下方に配置され、上記ホームステップ・ユニットの車両側端を上昇/下降させる第2の駆動機構と、上記第1の駆動機構と、第2の駆動機構を制御する制御部とを備え、該制御部が、戸袋内に設けられているものである。 The boarding/exiting assistance device described in Patent Document 5 is installed at a position corresponding to the boarding/exiting door of a stopped vehicle on a platform, and includes a platform door that opens and closes when the vehicle is stopped, and a door pocket that stores the platform door. A boarding/exiting assistance device applied to a door system, which is placed below the platform door on the platform corresponding to the boarding/exit of a stopped vehicle, installed so that the top surface is aligned with the platform surface, and the vehicle side end is placed below the platform door. A home step unit is supported so as to be tiltable so as to rise from the platform surface, and the home step unit is slidably installed within the home step unit, and moves forward toward the entrance when the vehicle is stopped, and when the vehicle is absent, the home step unit is supported so as to be tiltable. a step retracting into the unit; a first drive mechanism disposed within the homestep unit for advancing/retracting the step; and a first drive mechanism disposed below the homestep unit for driving the vehicle of the homestep unit. A second drive mechanism that raises/lowers the side edge, a control section that controls the first drive mechanism and the second drive mechanism, and the control section is provided in the door pocket. be.
 例えば、特許文献6(特開2005-225310号公報)には、プラットホームと車両の間の隙間を塞ぐと同時に、車両のステップ面とプラットホーム上面の段差を滑らかな傾斜でつなぐことができ、かつ、設置容易にして工事期間を短くし、コストの安価な車両とホームの隙間調整装置が開示されている。 For example, Patent Document 6 (JP Patent Publication No. 2005-225310) discloses a low-cost gap adjustment device between the platform and the vehicle that can close the gap between the platform and the vehicle while smoothly sloping the step between the vehicle's step surface and the platform top surface, and is easy to install, shortening the construction period.
 特許文献6に記載の隙間調整装置は、プラットホーム上に設置され、車両とプラットホーム間の隙間を調整するための隙間調整装置において、上記プラットホーム上に設置された機枠に一端が回転可能に支持され、かつ他端を車両のフロア位置に応じて上下方向に揺動して車両とプラットホーム間の隙間を調整するステップ板を設け、このステップ板を揺動する駆動機構を、上記機枠に設けたものである。 The gap adjustment device described in Patent Document 6 is installed on a platform and is for adjusting the gap between a vehicle and the platform, and one end is rotatably supported by a machine frame installed on the platform. , and a step plate whose other end swings vertically in accordance with the floor position of the vehicle to adjust the gap between the vehicle and the platform, and a drive mechanism for swinging this step plate is provided on the machine frame. It is something.
 例えば、特許文献7(特開平9-20235号公報)には、車椅子使用者が車椅子による移動で列車に容易に安全に乗降できる列車乗降補助装置が開示されている。 For example, Patent Document 7 (Japanese Unexamined Patent Publication No. 9-20235) discloses a train boarding and alighting assistance device that allows a wheelchair user to easily and safely board and alight a train while moving in a wheelchair.
 特許文献7記載の列車乗降補助装置は、先端縁が停車車両の乗降口に対応するプラットホームの線路側端部に位置し上面がプラットホーム上面に一致するように設けたスロープ板と、このスロープ板を先端縁が乗降口の床面高さに上昇するように傾動させる傾動装置と、先端縁が乗降口の床のプラットホーム側端縁に達する位置にスロープ板を移動させる進退駆動装置と、この進退駆動装置に設けられ車両の揺動に追従してスロープ板を進退させる緩衝装置とを有するものである。 The train boarding and alighting assistance device described in Patent Document 7 includes a slope plate whose tip edge is located at the track side end of the platform corresponding to the boarding and alighting gate of a stopped vehicle and whose top surface is aligned with the top surface of the platform; A tilting device that tilts the tip edge so that it rises to the floor level of the entrance/exit, an advancement/retraction drive device that moves the slope plate to a position where the tip edge reaches the platform side edge of the floor of the entrance/exit, and this advancement/retraction drive. The device includes a shock absorber that is installed in the device and moves the slope plate forward and backward in accordance with the rocking of the vehicle.
 また、特許文献8(特許第7170956号公報)には、異常と関連性の低い冗長なデータを含んだ膨大なデータを解析し、異常診断の精度が低下してしまうことの無い異常診断装置および異常診断方法が開示されている。 Furthermore, Patent Document 8 (Japanese Patent No. 7170956) describes an abnormality diagnosis device and an abnormality diagnosis device that can analyze a huge amount of data including redundant data that has little relevance to the abnormality and do not reduce the accuracy of abnormality diagnosis. A method for diagnosing an abnormality is disclosed.
 特許文献8記載の異常診断装置は、モータまたはモータによって駆動される駆動機械の動作を規定する指令値を生成する指令生成部と、指令値にモータまたは駆動機械の動作が追従するように、制御ゲインに基づいてモータをフィードバック制御する駆動制御部と、制御ゲインから決まる制御帯域と、駆動機械から決まる閾値との比較結果に基づいて、モータまたは駆動機械の状態を示す時系列データの中から選択して選択時系列データを切り替えるデータ切替部と、選択時系列データに基づいて、モータまたは駆動機械の異常状態を判定する異常判定部と、を備える。 The abnormality diagnosis device described in Patent Document 8 includes a command generation unit that generates a command value that defines the operation of a motor or a drive machine driven by the motor, and a command generation unit that generates a command value that defines the operation of a motor or a drive machine driven by the motor, and a control unit that controls the operation of the motor or drive machine so that the operation of the motor or drive machine follows the command value. Select from time-series data indicating the state of the motor or drive machine based on the comparison result between the drive control unit that performs feedback control of the motor based on the gain, the control band determined by the control gain, and the threshold determined by the drive machine. and an abnormality determining section that determines an abnormal state of the motor or drive machine based on the selected time series data.
 また、特許文献9(特開2021-022074号公報)には、ロボットの故障を正確に予測することができる故障予測システムが開示されている。 Further, Patent Document 9 (Japanese Unexamined Patent Publication No. 2021-022074) discloses a failure prediction system that can accurately predict failures of robots.
 特許文献9の故障予測システムは、与えられる作業プログラムに従って動作しているロボットの駆動軸のトルク値を収集するトルク値収集部と、トルク値収集部が収集したトルク値の中から直近のトルク値の時間変化を近似する評価式を導出する評価式導出部と、評価式と過去に駆動軸が故障に至ったときのトルク値の時間変化とに基づいて、駆動軸の故障が発生すると判断されるトルク値である故障閾値を設定する閾値設定部と、評価式において予め設定される予測時間が経過したときのトルク値の推測値を算出し、推測値と故障閾値との比較により予測時間内に駆動軸の故障が予測されるか否かを判断する予測判断部と、を備える。 The failure prediction system of Patent Document 9 includes a torque value collection unit that collects the torque value of the drive shaft of a robot operating according to a given work program, and a torque value collection unit that collects the latest torque value from among the torque values collected by the torque value collection unit. an evaluation formula derivation unit that derives an evaluation formula that approximates the time change of A threshold setting unit that sets a failure threshold, which is a torque value that is determined by a prediction determination unit that determines whether or not a failure of the drive shaft is predicted.
特開2022-55909号公報Japanese Patent Application Publication No. 2022-55909 特開2021-41827号公報JP 2021-41827 Publication 特開平5-42869号公報Japanese Patent Application Publication No. 5-42869 特開2002-104175号公報Japanese Patent Application Publication No. 2002-104175 特開2002-37055号公報JP 2002-37055 A 特開2005-225310号公報JP 2005-225310 A 特開平9-20235号公報Japanese Patent Application Publication No. 9-20235 特許第7170956号公報Patent No. 7170956 特開2021-022074号公報JP 2021-022074 Publication
 プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機に関しては、近年においても、現実としては、段差解消を行うために、駅員がスロープ台を運んで、車椅子の乗客対応をしているのが現状であり、種々の技術が公開されているが、使用環境に耐え、実現できる技術が成り立っていないという大きな課題がある。 Regarding level difference removers that are buried in platforms and eliminate gaps and steps between train entrances and exits, in recent years, in reality, in order to eliminate steps, station staff carry a ramp platform to remove passengers in wheelchairs. Currently, various technologies are being released to the public, but there is a major problem in that there is no technology that can withstand the environment in which it is used and can be implemented.
 特許文献1記載の技術では、蛇腹式を採用しているが、蛇腹式では原点復帰が困難で故障時のリスクが高いと考えられる。また、特許文献2または特許文献3記載の技術では、パンダグラフ方式の昇降システムを採用しているが、重量に対する動作が遅く、速度を高めると故障が増加するという課題が残ってしまう。また、特許文献2の場合は、スライド昇降部全体がスライドすることによって隙間を解消しており、その結果、スライド昇降部にかかる負荷が重くなるとの課題もある。
 また、特許文献4または特許文献5の技術では、第2の駆動機構がプラットホーム上またはプラットホーム下の避難場所に現れるため、ユーザフレンドリーとは言えない。
 特許文献6の技術では、第1連結棒および第2連結棒が必要となり、大きな動力の駆動装置が必要となる。また、特許文献6の場合は、ステップ板がプラットホームの端部に回動可能に固定されており、ステップ板の端部はプラットホームの端部から一定の距離の位置にしか移動できないとの課題もある。同様に、特許文献7の技術では、大きな動力の駆動装置が必要となる。
The technique described in Patent Document 1 uses a bellows type, but the bellows type is difficult to return to the origin and is considered to have a high risk of failure. Further, the technique described in Patent Document 2 or Patent Document 3 employs a pandagraph type lifting system, but the problem remains that the operation is slow relative to the weight and failures increase when the speed is increased. Further, in the case of Patent Document 2, the gap is eliminated by sliding the entire slide elevating section, and as a result, there is also a problem that the load applied to the slide elevating section becomes heavy.
Further, in the technology of Patent Document 4 or Patent Document 5, the second drive mechanism appears on the platform or in the evacuation area under the platform, so it cannot be said to be user-friendly.
The technique disclosed in Patent Document 6 requires a first connecting rod and a second connecting rod, and requires a large power driving device. In addition, in the case of Patent Document 6, the step plate is rotatably fixed to the end of the platform, and there is also a problem that the end of the step plate can only be moved to a position a certain distance from the end of the platform. be. Similarly, the technique of Patent Document 7 requires a large power drive device.
 また、段差解消機は多くの乗降客が列車に乗降するプラットホームに設置されるため、故障した場合には混乱が予想される。従来は、このような設備では、一定「期間」ごとに段差解消機の部品交換などのメンテナンスを行い、故障を未然に防ぐTBM(Time Based Maintenance:時間基準保全)が実行されていた。
 しかし、TBMの場合、故障していなくても、営業時間外の夜間作業にて一定期間利用した部品交換等の保全作業を実施する為、見切り交換により無駄な費用が発生していた。
 これに対して、段差解消機の「状態」の計測や監視を行い、故障の前兆を検知してメンテナンスを行い、故障を未然に防ぐCBM(Condition Based Maintenance:状態基準保全)による保全方法があるが、CBMを採用するためには故障の前兆を確実に検知する必要がある。
In addition, since the step clearing machine is installed on the platform where many passengers get on and off the train, confusion is expected if it breaks down. Conventionally, in such equipment, TBM (Time Based Maintenance) was performed to prevent breakdowns by performing maintenance such as replacing parts of the level difference remover at fixed "periods".
However, in the case of TBMs, maintenance work such as replacing parts that have been used for a certain period of time is performed during night work outside business hours, even if there is no failure, resulting in wasted costs due to part-time replacements.
To deal with this, there is a maintenance method using CBM (Condition Based Maintenance), which measures and monitors the "condition" of the step remover, detects signs of failure, and performs maintenance to prevent failures. However, in order to adopt CBM, it is necessary to reliably detect signs of failure.
 特許文献8の異常診断装置では、制御ゲインから決まる制御帯域によって、異常検知に用いる測定値をモータ電流と制御位置とで切り替えることを特徴としているが、異常検知の方法自体は、例えばクラスタリング、主成分分析などが挙げられるとのみ記載されている。
 また、特許文献9の故障予測システムでは、直近のトルク値の時間変化を近似する評価式を導出し、評価式において予め設定される予測時間が経過したときのトルク値の推測値を算出し、推測値と故障閾値との比較により予測時間以内に駆動軸の故障が予測されるか否かを判断する。しかし、評価式に関しては、一次の関数、例えばY(t)=at+b(a,bは定数)を用いることができるとしか記載されていないが、実環境においては、雨や雪が多い場所、平均気温が高いもしくは低い場所など、使用環境によって指数関数、あるいは累乗関数に類似する場合もあることから、一次の関数に限定した場合には予測精度が低くなる。
The abnormality diagnosis device of Patent Document 8 is characterized in that the measured value used for abnormality detection is switched between the motor current and the control position according to the control band determined from the control gain, but the abnormality detection method itself is, for example, clustering, main It only states that component analysis, etc. are included.
In addition, the failure prediction system of Patent Document 9 derives an evaluation formula that approximates the temporal change in the most recent torque value, calculates an estimated value of the torque value when a prediction time preset in the evaluation formula has elapsed, It is determined whether a failure of the drive shaft is predicted within the predicted time by comparing the estimated value and the failure threshold. However, regarding the evaluation formula, it only states that a linear function such as Y(t)=at+b (a, b are constants) can be used, but in a real environment, in places with a lot of rain or snow, Depending on the environment of use, such as places with high or low temperatures, it may resemble an exponential function or a power function, so if it is limited to a linear function, the prediction accuracy will be low.
 また、段差解消機では、車両との接触の恐れがある場合など、緊急時に瞬時に原点(収納状態)に復帰できることが重要である。特許文献6には車両が進入して、衝突部材に接触するとステップ板を収納部内に復帰させて車両との接触を防止する機構が記載されているが、特許文献6の構造ではステップ板の端部がプラットホームの端部から一定の距離の位置にしか移動できないとの課題がある。 In addition, it is important for a level difference remover to be able to instantly return to its home position (stored state) in an emergency, such as when there is a risk of collision with a vehicle. Patent Document 6 describes a mechanism that, when a vehicle enters and comes into contact with a collision member, returns the step plate to the storage portion to prevent contact with the vehicle. However, in the structure of Patent Document 6, the edge of the step plate The problem is that the parts can only move a certain distance from the edge of the platform.
 本発明の第1の目的は、それらの問題に鑑み、容易にわずかな駆動力で段差を解消することができる段差解消機、プラットホーム、利用者誘導介助システムを提供することである。
 本発明の第2の目的は、状態基準保全に用いることができる正確な故障予測機能を備えた段差解消機を提供することである。
 本発明の第3の目的は、車両との接触の恐れがある場合など、緊急時に瞬時に原点(収納状態)に復帰できる段差解消機を提供することである。
In view of these problems, a first object of the present invention is to provide a level difference eliminating machine, a platform, and a user guidance and assistance system that can easily eliminate level differences with a small amount of driving force.
A second object of the present invention is to provide a step clearing machine with an accurate failure prediction function that can be used for condition-based maintenance.
A third object of the present invention is to provide a level difference remover that can instantly return to its original position (stored state) in an emergency, such as when there is a risk of collision with a vehicle.
 (1)
 一局面に従う段差解消機は、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、プラットホームの高さに固定された上部面と、上部面の列車乗降口側に回動可能に軸支された回動面と、
 回動面にスライド可能に取り付けられた伸縮面と、逆V字型のリンク機構により回動面を上下昇降する上下昇降機構と、伸縮面をスライド移動させるスライド機構と、回動面または伸縮面に設けられた複数のセンサーからなる検知センサーと、上下昇降機構、スライド機構および検知センサーを制御する制御部と、を含み、逆V字型のリンク機構は、列車乗降口側の端部に固定された固定軸と、固定軸と同じ高さに位置し、上下昇降機構により固定軸との距離を制御可能な可動軸と、逆V字の頂点に位置し回動面を支えるリンク軸とを備え、固定軸、可動軸、およびリンク軸は回動可能であって、制御部は、検知センサーの複数のセンサーのうち少なくとも1のセンサーからの情報に応じて上下昇降機構を駆動し始めた後、または駆動しつつ、スライド機構を駆動するものである。
(1)
A step remover according to one aspect is a step remover that is embedded in a platform and eliminates gaps and steps between a train boarding and alighting entrance, and has an upper surface fixed to the height of the platform and a train boarding and alighting device on the upper surface. a rotating surface rotatably supported on the mouth side;
A telescopic surface that is slidably attached to the rotating surface, a vertical lifting mechanism that raises and lowers the rotating surface using an inverted V-shaped link mechanism, a sliding mechanism that slides the telescopic surface, and a rotating surface or telescopic surface. The inverted V-shaped link mechanism is fixed to the end on the train entrance side. A fixed shaft, a movable shaft located at the same height as the fixed shaft and whose distance from the fixed shaft can be controlled by a vertical lifting mechanism, and a link shaft located at the apex of the inverted V shape and supporting the rotating surface. The fixed axis, the movable axis, and the link axis are rotatable, and the control unit starts driving the vertical lifting mechanism according to information from at least one of the plurality of sensors of the detection sensor. , or while driving the slide mechanism.
 この場合、昇降部の端部を逆V型のリンク機構により上下昇降させるので、わずかな駆動力で駆動させることができる。その結果、駆動装置のモータ回転数を削減することができ、コストダウンを実現することができる。
 また、従来のパンダグラフ方式では、作用点となる部分が連結されているため、調整が複雑になったり、伸長動作を行う場合に、リフト機構自体を大きく移動させたりする必要があるという課題が多かった。さらに、作用点となる部分が連結されているため、負荷荷重が大きくなってしまうという課題もあった。
 一方、本発明における段差解消機は、逆V型のリンク機構により作用点の負荷荷重を低減することができ、回動動作の後に伸長動作を行うことができるため、段差解消機自体の機構を簡略化することができる。
In this case, since the end portion of the elevating portion is raised and lowered by an inverted V-shaped link mechanism, it can be driven with a small driving force. As a result, the number of rotations of the motor of the drive device can be reduced, making it possible to reduce costs.
In addition, in the conventional Pandagraph method, the points of action are connected, which makes adjustment complicated and requires the lift mechanism itself to move a large distance when performing an extension operation. There were many. Furthermore, since the parts that serve as the points of action are connected, there is also the problem that the applied load becomes large.
On the other hand, the level difference remover according to the present invention can reduce the load at the point of application using the inverted V-shaped link mechanism, and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover itself can be reduced. It can be simplified.
(2)
 第2の発明にかかる段差解消機は、一局面に従う段差解消機において、可動軸とリンク軸との距離が固定軸とリンク軸との距離の1.5倍以上2.5倍以下であることが好ましい。
(2)
In the level difference eliminating machine according to one aspect of the second invention, the distance between the movable shaft and the link shaft is 1.5 times or more and 2.5 times or less the distance between the fixed shaft and the link shaft. is preferred.
 この場合、回動面の端部を逆V字型のリンク機構により上下昇降させるので、わずかな駆動力で駆動させることができる。その結果、駆動装置のモータ回転数を削減することができ、コストダウンを実現することができる。
 また、従来のパンダグラフ方式では、作用点となる部分が連結されているため、調整が複雑になったり、伸長動作を行う場合に、リフト機構自体を大きく移動させたりする必要があるという課題が多かった。さらに、作用点となる部分が連結されているため、負荷荷重が大きくなってしまうという課題もあった。
 一方、本発明における段差解消機は、逆V字型のリンク機構により作用点の負荷荷重を低減することができ、回動動作の後に伸長動作を行うことができるため、段差解消機自体の機構を簡略化することができる。
 なお、段差解消機はさらにプラットホームの高さに固定された上部面を備え、回動面を上部面の列車乗降口側に回動可能に軸支することが望ましいが、上部面をなくし、回動面を段差解消機の列車乗降口に対向する側の端部に回動可能に軸支するように構成してもよい。
In this case, since the end of the rotating surface is raised and lowered by an inverted V-shaped link mechanism, it can be driven with a small driving force. As a result, the number of rotations of the motor of the drive device can be reduced, making it possible to reduce costs.
In addition, in the conventional Pandagraph method, the points of action are connected, which makes adjustment complicated and requires the lift mechanism itself to move a large distance when performing an extension operation. There were many. Furthermore, since the parts that serve as the points of action are connected, there is also the problem that the applied load becomes large.
On the other hand, the level difference remover according to the present invention can reduce the load at the point of application by the inverted V-shaped link mechanism, and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover itself can be reduced. can be simplified.
Note that it is desirable that the level difference remover further include an upper surface fixed at the height of the platform, and that the rotating surface be rotatably pivoted toward the train entrance/exit side of the upper surface. The moving surface may be rotatably supported on the end of the level difference remover on the side facing the train entrance/exit.
 また、一局面に従う段差解消機の逆V字型のリンク機構は可動軸とリンク軸との距離と固定軸とリンク軸との距離との比(以降、リンク比ともいう)を1.5倍以上2.5倍以下としている。
 これは、リンク比を1.5以上にすることによって、可動軸の水平ストロークを小さくすることができる、可動軸の垂直方向の負荷荷重を小さくすることができる、および、リンク軸の位置を回動面のより先端側に移動させ、モーメント荷重負荷の作用点を先端に近づけることができるとの効果が得られるためである。
 一方、リンク比が2.5倍を超えると、可動軸の水平方向の自重負荷時必要推力が大きくなる、および、逆V字型リンク機構全体の初期長さが長くなる、との課題が発生する。
 また、可動軸駆動における安全性確保のために可動軸の駆動速度を制限する場合、逆V字型リンクの高さ調整に要する時間(以降作動時間ともいう)は可動軸の水平ストロークと自重負荷時必要推力との積に依存するが、リンク比が大きくなると水平ストロークは小さくなり、自重負荷時必要推力は大きくなることから、作動時間はリンク比1.5倍付近で最も短くなる。
 このため、リンク比を1.5倍以上2.5倍以下とすることが望ましい。
In addition, the inverted V-shaped link mechanism of the level difference remover according to one aspect has a ratio of the distance between the movable axis and the link axis to the distance between the fixed axis and the link axis (hereinafter also referred to as link ratio) by 1.5 times. 2.5 times or less.
By setting the link ratio to 1.5 or more, the horizontal stroke of the movable shaft can be reduced, the vertical load on the movable shaft can be reduced, and the position of the link shaft can be rotated. This is because the effect of moving the moving surface closer to the tip side and bringing the point of application of the moment load closer to the tip can be obtained.
On the other hand, if the link ratio exceeds 2.5 times, problems arise such as the required thrust when the movable shaft is loaded with its own weight in the horizontal direction and the initial length of the entire inverted V-shaped link mechanism becomes long. do.
In addition, when limiting the drive speed of the movable axis to ensure safety in movable axis drive, the time required to adjust the height of the inverted V-shaped link (hereinafter also referred to as operating time) is the horizontal stroke of the movable axis and its own weight load. The operating time is shortest when the link ratio is around 1.5 times, as the horizontal stroke becomes smaller and the required thrust becomes larger when the link ratio is increased.
For this reason, it is desirable to set the link ratio to 1.5 times or more and 2.5 times or less.
(3)
 第3の発明にかかる段差解消機は、一局面に従う段差解消機において、伸縮面の先端の高さを、列車の到着時には列車乗降口の床の高さより低くなり、列車の到着後所定時間が経過すると列車乗降口の床の高さより高くなるよう、上下昇降機構を制御してもよい。
(3)
A level difference eliminating machine according to a third aspect of the present invention is a level difference eliminating machine according to one aspect, in which the height of the tip of the telescoping surface is lower than the floor level of the train entrance upon arrival of the train, and the height of the tip of the telescopic surface is lowered for a predetermined time after the arrival of the train. The vertical elevating mechanism may be controlled so that it becomes higher than the floor level of the train entrance/exit after the elapse of time.
(4)
 第4の発明にかかる段差解消機は、一局面に従う段差解消機において、上下昇降機構は、メンテナンス機構をさらに含み、メンテナンス機構は、メンテナンスの場合に、回動面を90度近くまで回転できるメンテナンス回転機構を含んでもよい。
(4)
A level difference eliminating machine according to a fourth aspect of the present invention is a level difference eliminating machine according to one aspect, in which the vertical lifting mechanism further includes a maintenance mechanism, and the maintenance mechanism is capable of rotating a rotating surface by nearly 90 degrees in the case of maintenance. It may also include a rotation mechanism.
この場合、段差解消機の上下昇降機構、スライド機構および検知センサー等のメンテナンスを容易に実施することができる。 In this case, maintenance of the vertical elevating mechanism, slide mechanism, detection sensor, etc. of the level difference remover can be easily carried out.
(5)
 第5の発明にかかる段差解消機は、一局面に従う段差解消機において、上下昇降機構および/またはスライド機構の駆動部は、台形ねじまたはボールねじを用いてもよい。
(5)
In the level difference eliminating machine according to one aspect of the fifth aspect of the present invention, a trapezoidal screw or a ball screw may be used as the driving section of the vertical lifting mechanism and/or the sliding mechanism.
 この場合、異常摩耗を生じさせることなく、段差解消機を駆動させることができる。特にサイズTM20の台形ねじを用いることで、駆動部の駆動を確実に実施することができる。
 特に、上下昇降機構においては、負荷が大きくかかるため、台形ねじを使用し、スライド機構においては、負荷が軽いので、ボールねじを使用してもよい。
In this case, the level difference eliminating machine can be driven without causing abnormal wear. In particular, by using a trapezoidal screw of size TM20, the driving section can be driven reliably.
In particular, a trapezoidal screw may be used in the vertical lifting mechanism because the load is large, and a ball screw may be used in the slide mechanism because the load is light.
(6)
 他の発明にかかるプラットホームは、一局面に従う段差解消機が、複数並列されて埋設されたものである。
(6)
In a platform according to another aspect of the invention, a plurality of level difference removers according to one aspect are buried in parallel.
 この場合、プラットホームにおいて段差解消機を複数並列配置することで、多様な列車に対応することができる。また、必要な場所に最適な個数の段差解消機を設けることができる。 In this case, by arranging multiple level difference removers in parallel on the platform, it is possible to accommodate a variety of trains. Furthermore, an optimal number of level difference removers can be provided at required locations.
(7)
 第2の局面に従う段差解消機は、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、回動可能に軸支された回動面と、回動面を上下昇降する上下昇降機構と、回動面に設けられた複数のセンサーからなる検知センサーと、上下昇降機構および検知センサーを制御する制御部と、上下昇降機構の故障を予測する故障予測部と、を含み、上下昇降機構はモータの回転をねじにより直線運動に変換する駆動変換機構を備え、駆動変換機構の回転軸にはトルクセンサが貼着され、故障予測部はトルクセンサで測定したトルクに基づいてトルクの時間変化を予測し、実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合、または時系列のトルクの実測値と初期値との差または初期値に対する実測値の比が所定の範囲を超える場合に、上下昇降機構が故障する可能性が高いと判断する。
(7)
The level difference remover according to the second aspect is a level difference remover that is buried in a platform and eliminates gaps and steps between the train entrance and exit, and has a rotating surface that is rotatably supported, and a rotating surface that is rotatably supported. A vertical lifting mechanism that raises and lowers the surface, a detection sensor consisting of multiple sensors provided on the rotating surface, a control unit that controls the vertical lifting mechanism and the detection sensor, and a failure prediction unit that predicts failures of the vertical lifting mechanism. The vertical lifting mechanism is equipped with a drive conversion mechanism that converts the rotation of the motor into linear motion using a screw, and a torque sensor is attached to the rotating shaft of the drive conversion mechanism, and the failure prediction section measures the torque using the torque sensor. If the time change in torque is predicted based on torque, and the difference between the measured value and the predicted value or the ratio of the measured value to the predicted value exceeds a predetermined range, or the difference between the measured value and the initial value of torque in the time series Alternatively, if the ratio of the measured value to the initial value exceeds a predetermined range, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction.
 一定「期間」ごとに段差解消機の部品交換などのメンテナンスを行い、故障を未然に防ぐTBMから、段差解消機の「状態」の計測や監視を行い、故障の前兆を検知してメンテナンスを行い、故障を未然に防ぐCBMに変更するためには、故障する可能性を事前に予測する故障予測が重要である。
 段差解消機の場合、最も故障の可能性が高い箇所は重い負荷のかかる上下昇降機構である。第3の局面に従う段差解消機では、この上下昇降機構の故障予測のために上下昇降機構の駆動変換機構の回転軸にトルクセンサを備えている。
 上下昇降機構のメンテナンスをした直後はトルクセンサのトルクは小さい。そして、時間が経過するにつれてトルクが大きくなっていく傾向がある。そして、上下昇降機構が故障する直前にはトルクの実測値が急に大きくなることが多い。あるいは、トルクの実測値が急に小さくなった場合にも想定外の現象が起きている可能性がある。また、トルクの実測値と予測値の差が小さい場合にも、実測値が時系列のトルクの初期値よりも大幅に大きくなった場合には故障の前兆の可能性がある。
We perform maintenance such as replacing parts of the level difference remover at regular intervals to prevent breakdowns.From the TBM, we measure and monitor the ``status'' of the level difference remover to detect signs of failure and perform maintenance. In order to change to a CBM that prevents failures, failure prediction that predicts the possibility of failure in advance is important.
In the case of a step remover, the part most likely to fail is the vertical lifting mechanism, which is subject to a heavy load. In the level difference eliminating machine according to the third aspect, a torque sensor is provided on the rotating shaft of the drive conversion mechanism of the vertical lifting mechanism in order to predict a failure of the vertical lifting mechanism.
Immediately after maintenance of the vertical lifting mechanism, the torque of the torque sensor is small. The torque tends to increase as time passes. Immediately before the vertical lifting mechanism breaks down, the actual measured value of the torque often increases suddenly. Alternatively, there is a possibility that an unexpected phenomenon has occurred when the actual measured value of torque suddenly decreases. Further, even if the difference between the measured torque value and the predicted value is small, if the measured value is significantly larger than the initial value of the time-series torque, it may be a sign of failure.
 第2の局面に従う段差解消機の故障予測部は、トルクの実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合、または時系列のトルクの実測値と初期値との差または初期値に対する実測値の比が所定の範囲を超える場合に、上下昇降機構が故障する可能性が高いと判断する。 The failure prediction unit of the step-eliminating device according to the second aspect determines that there is a high possibility of failure of the up-down lifting mechanism when the difference between the actual torque value and the predicted torque value or the ratio of the actual torque value to the predicted torque value exceeds a predetermined range, or when the difference between the actual torque value and the initial torque value in a time series or the ratio of the actual torque value to the initial torque value exceeds a predetermined range.
 (8)
 第8の発明に係る段差解消機は第2の局面に従う段差解消機において、故障予測部は、過去所定の日数における予測値に対する実測値の比(実測値/予測値)の平均値が1.05倍以上の場合または0.95倍以下の場合に警報を出し、平均値が1.1倍以上の場合に点検を指示してもよい。
(8)
A level difference eliminating machine according to an eighth aspect of the present invention is a level difference eliminating machine according to the second aspect, in which the failure prediction unit determines that the average value of the ratio of the actual value to the predicted value (actual value/predicted value) over a predetermined number of days in the past is 1. An alarm may be issued when the average value is 0.05 times or more or 0.95 times or less, and an inspection may be instructed when the average value is 1.1 times or more.
 トルクの実測値は、故障ではなくノイズの混入により値が変動している場合もある。一方で、本当に故障の前兆の場合には、当然翌日も実測値が変動したままになっているので、過去所定の日数における予測値に対する実測値の比の平均値に基づいて判断することで、ノイズの混入などによる誤った判断を避けることができる。所定の日数としては2日から10日とすることが望ましく、5日が最も望ましい。 The actual torque value may fluctuate due to noise rather than failure. On the other hand, if it is truly a sign of a failure, the actual measured value will naturally continue to fluctuate the next day, so by making a judgment based on the average ratio of the actual measured value to the predicted value over a predetermined number of days in the past, Misjudgments due to noise contamination can be avoided. The predetermined number of days is preferably 2 to 10 days, and most preferably 5 days.
 (9)
 第9の発明に係る段差解消機は第2の局面に従う段差解消機において、トルクの時間変化の予測は、LSTM(Long Short Term Memory)を用い、測定した時系列のトルク値をLSTMに入力することによって行われてもよい。
(9)
A level difference eliminating machine according to a ninth aspect of the present invention is a level difference eliminating machine according to the second aspect, in which a time change in torque is predicted using a LSTM (Long Short Term Memory), and a measured time series torque value is input into the LSTM. It may be done by
 トルクセンサで測定した時系列のトルク値に基づいてトルク値の時間変化を予測する方法としては、例えばトルク値Yの時間変化を線形関数と仮定し、
Y(t)=a×t+bとして、時系列のトルク値(t1、Y1)・・・(tn、Yn)から最適なaとbを求めてもよい。
 しかし、トルク値の時間変化は必ずしも線形関数であるとは限らず、例えば、雨や雪が多い場所、平均気温が高いもしくは低い場所など、使用環境によっては、指数関数、累乗関数、対数関数に近い場合も考えられる。そして、トルク値の時間変化がどの関数に最も近いかを個別に検討し、最も近い関数を選択してその係数を求める場合、処理時間がかかり、かつ必ずしも最適な関数を選択することができない場合もある。特にトルク値の時間変化が2つ以上の関数の和(例えば線形関数と周期関数との和)の傾向を備えている場合には、最適な関数を選択することは困難である。
As a method of predicting the temporal change in torque value based on the time-series torque value measured by a torque sensor, for example, it is assumed that the temporal change in torque value Y is a linear function,
The optimal a and b may be determined from the time-series torque values (t1, Y1)...(tn, Yn) by setting Y(t)=a×t+b.
However, the change in torque value over time is not necessarily a linear function, and depending on the usage environment, for example, in areas with a lot of rain or snow, or areas with high or low average temperatures, it may be closer to an exponential function, a power function, or a logarithmic function. There may also be cases. If you individually consider which function the temporal change in torque value is closest to, and then select the closest function to find its coefficient, processing time is required, and it is not always possible to select the optimal function. There is also. In particular, when the temporal change in torque value tends to be the sum of two or more functions (for example, the sum of a linear function and a periodic function), it is difficult to select the optimal function.
 近年、時系列のデータに基づき時間変化の予測をする方法として、RNN(リカレントニューラルネットワーク)の時系列を考慮する層を改良したLSTM(Long Short Term Memory)が用いられるようになってきた(LSTMについては、Sepp Hochreiter; Jurgen Schmidhuber 著(1997). “Long short-term memory”. Neural Computation 9 (8): 1735-1780.参照)。
 第9の発明に係る段差解消機では、トルク値の時間変化の予測を、LSTMを用いて行う。
In recent years, LSTM (Long Short Term Memory), an improved layer of RNN (Recurrent Neural Network) that considers time series, has come to be used as a method for predicting time changes based on time series data (for more information on LSTM, see Sepp Hochreiter and Jurgen Schmidhuber (1997). "Long short-term memory". Neural Computation 9 (8): 1735-1780.).
In the step smoother according to the ninth aspect of the present invention, the prediction of the time change in the torque value is performed by using the LSTM.
(10)
 第3の局面に従う段差解消機は、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、回動可能に軸支された回動面と、回動面にスライド可能に取り付けられた伸縮面と、逆V字型のリンク機構により回動面を上下昇降する上下昇降機構と、伸縮面をスライド移動させるスライド機構と、回動面または伸縮面に設けられた複数のセンサーからなる検知センサーと、上下昇降機構、スライド機構および検知センサーを制御する制御部と、を含み、上下昇降機構およびスライド機構はそれぞれ、モータの回転をねじにより直線運動に変換する駆動変換機構と、通常は直線運動を逆V字型のリンク機構または伸縮面に伝達し、緊急時には直線運動の逆V字型のリンク機構または伸縮面への伝達を解除し、段差解消機を収納状態に復帰させる緊急原点復帰機構とを備える。
(10)
A step-eliminating device according to a third aspect is a step-eliminating device that is embedded in a platform and eliminates gaps and steps between the platform and train entrances and exits, and includes a rotating surface that is rotatably supported on a pivot axis, an expandable surface that is slidably attached to the rotating surface, an up-down lifting mechanism that raises and lowers the rotating surface by an inverted V-shaped link mechanism, a slide mechanism that slides the expandable surface, a detection sensor consisting of a plurality of sensors provided on the rotating surface or the expandable surface, and a control unit that controls the up-down lifting mechanism, the slide mechanism, and the detection sensor, and the up-down lifting mechanism and the slide mechanism each include a drive conversion mechanism that converts the rotation of a motor into linear motion by a screw, and an emergency origin return mechanism that normally transmits linear motion to the inverted V-shaped link mechanism or the expandable surface, and in an emergency releases the transmission of linear motion to the inverted V-shaped link mechanism or the expandable surface, returning the step-eliminating device to its stored state.
 段差解消機の設置にあたっては、車両との接触の恐れがある場合など、緊急時に瞬時に原点(収納状態)に復帰できることが重要である。原点に復帰させるには、逆V字型のリンク機構を平坦な状態に復帰させるとともに伸長した伸縮面をもとの状態に戻す必要がある。すなわち、逆V字型のリンク機構を押し出しているプッシャと伸縮面を押し出しているプッシャとを引き戻す必要がある。
 この、プッシャを引き戻す方法として、上下昇降機構およびスライド機構を駆動するモータを取付けているベースごと移動させる方式も考えられるが、この場合には機構的に複雑で固定部品の強度を確保するために大掛かりな機構となる。
 第3の局面に従う段差解消機では、駆動変換機構と逆V字型のリンク機構または伸縮面との間に緊急原点復帰機構を設け、緊急時には駆動変換機構の直線運動の逆V字型のリンク機構または伸縮面への伝達を解除することにより、比較的簡単な構造で逆V字型リンクおよび伸縮面の原点復帰を実現している。
When installing a level difference remover, it is important that it be able to instantly return to its original position (stored state) in an emergency, such as when there is a risk of collision with a vehicle. In order to return to the origin, it is necessary to return the inverted V-shaped link mechanism to a flat state and return the expanded telescopic surface to its original state. That is, it is necessary to pull back the pusher that is pushing out the inverted V-shaped link mechanism and the pusher that is pushing out the telescopic surface.
One possible way to pull back the pusher is to move the entire base on which the motor that drives the vertical lift mechanism and slide mechanism is attached, but in this case, it is mechanically complex and it is necessary to ensure the strength of the fixed parts. It will be a large-scale organization.
In the level difference remover according to the third aspect, an emergency origin return mechanism is provided between the drive conversion mechanism and the inverted V-shaped link mechanism or the telescopic surface, and in an emergency, the inverted V-shaped link of the linear movement of the drive conversion mechanism is provided. By canceling the transmission to the mechanism or the telescopic surface, the inverted V-shaped link and the telescopic surface return to their origin with a relatively simple structure.
 (11)
 第11の発明に係る段差解消機は、第3の局面に従う段差解消機において、緊急原点復帰機構は、長手方向に直交する半円形状の凹部を備えた柱状のプッシャーとプッシャーの長手方向に直交する円柱形のプッシャー駆動部材とを備え、プッシャー駆動部材は一部の断面が半円形状であって、プッシャー駆動部材の半円形状の部分を凹部に係合させることによってプッシャー駆動部材の直線運動をプッシャーを介して逆V字型のリンク機構または伸縮面に伝達し、緊急時にはプッシャー駆動部材を回転することによってプッシャーの凹部への係合を解除してもよい。
(11)
The level difference eliminating machine according to the eleventh invention is the level difference eliminating machine according to the third aspect, in which the emergency origin return mechanism includes a columnar pusher having a semicircular recess that is perpendicular to the longitudinal direction and a columnar pusher that is perpendicular to the longitudinal direction of the pusher. a cylindrical pusher drive member, the pusher drive member has a semicircular cross section, and the linear movement of the pusher drive member is achieved by engaging the semicircular portion of the pusher drive member with the recess. may be transmitted to the inverted V-shaped link mechanism or the telescopic surface via the pusher, and in an emergency, the engagement of the pusher with the recess may be released by rotating the pusher drive member.
 この場合、プッシャー駆動部材を駆動変換機構に固定し、通常はプッシャー駆動部材の半円形状の部分をプッシャーの凹部に係合させることによって、駆動変換機構の直線運動を逆V字型のリンク機構または伸縮面に伝達し、緊急時にはプッシャー駆動部材を約180度回転することによってプッシャー駆動部材の凹部への係合を解除し、段差解消機を収納状態に復帰させることができる。 In this case, the pusher drive member is fixed to the drive conversion mechanism, and usually a semicircular portion of the pusher drive member is engaged with a recessed portion of the pusher, thereby converting the linear movement of the drive conversion mechanism into an inverted V-shaped link mechanism. Alternatively, the pressure can be transmitted to the telescopic surface, and in an emergency, by rotating the pusher drive member approximately 180 degrees, the pusher drive member can be disengaged from the recess and the level difference remover can be returned to the stored state.
 (12)
 第4の局面に従う段差解消機は、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、回動可能に軸支された回動面と、前記回動面にスライド可能に取り付けられた伸縮面と、逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、前記伸縮面をスライド移動させるスライド機構と、前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含み、前記検知センサーは超音波方式の距離センサーを含み、前記距離センサーは温度補正機能を備えるものである。
(12)
A level difference eliminating machine according to a fourth aspect is a level difference eliminating machine that is buried in a platform and eliminates a gap and a level difference between the platform and the train entrance. a telescoping surface slidably attached to the movable surface, a vertical lifting mechanism that raises and lowers the rotary surface using an inverted V-shaped link mechanism, a slide mechanism that slides the telescoping surface, and the rotary surface or A detection sensor including a plurality of sensors provided on the extensible surface, and a control unit that controls the vertical lifting mechanism, the slide mechanism, and the detection sensor, and the detection sensor includes an ultrasonic distance sensor. , the distance sensor has a temperature correction function.
 (13)
 第13の発明に係る利用者誘導介助システムは、一局面または第4の局面に従う段差解消機と、駅改札に設けられた撮影部と、前記撮影部の映像から、車椅子またはベビーカを伴った、段差解消機を必要とする利用者を識別する識別部と、前記識別された利用者に対して、音声および/または表示機器により前記段差解消機の配置エリアへ誘導を行う誘導部と、を含むものである。
(13)
The user guidance and assistance system according to the thirteenth invention includes a step remover according to the first aspect or the fourth aspect, a photographing section provided at a station ticket gate, and a user accompanied by a wheelchair or baby stroller based on the image of the photographing section. An identification unit that identifies a user who requires a level difference remover; and a guide unit that guides the identified user to an area where the level difference remover is placed using audio and/or display equipment. It is something that
 (14)
 第14の発明に係る利用者誘導介助システムは、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機と、駅改札に設けられた撮影部と、前記撮影部の映像から、車椅子またはベビーカを伴った、段差解消機を必要とする利用者を識別する識別部と、前記識別された利用者に対して、音声および/または表示機器により前記段差解消機の配置エリアへ誘導を行う誘導部と、を含む、利用者誘導介助システムであって、前記段差解消機は、回動可能に軸支された回動面と、前記回動面にスライド可能に取り付けられた伸縮面と、逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、前記伸縮面をスライド移動させるスライド機構と、前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含むものである。
(14)
The user guidance and assistance system according to the fourteenth invention includes a step eliminating machine that is embedded in a platform and eliminates gaps and steps between the platform and the train entrance; a photographing section provided at a station ticket gate; An identification unit that identifies a user who is accompanied by a wheelchair or baby stroller and requires a step remover from the video, and an identification unit that identifies a user who is in need of a step remover with a wheelchair or a baby stroller; A user guidance/assistance system comprising: a guide section for guiding the user to the user; a telescoping surface, a vertical lifting mechanism for vertically raising and lowering the rotating surface using an inverted V-shaped link mechanism, a slide mechanism for slidingly moving the telescoping surface, and a plurality of structures provided on the rotating surface or the telescoping surface. The device includes a detection sensor consisting of a sensor, and a control section that controls the vertical elevating mechanism, the slide mechanism, and the detection sensor.
 (A)
 第Aの発明に係る段差解消機は、第2の局面から第9の発明に係る段差解消機において、回動面にスライド可能に取り付けられた伸縮面と、伸縮面をスライド移動させるスライド機構と、をさらに備え、制御部はスライド機構を制御し、スライド機構はモータの回転をねじにより直線運動に変換する駆動変換機構を備え、駆動変換機構の回転軸にもトルクセンサが貼着され、故障予測部は、トルクセンサで測定した時系列のトルク値に基づいてトルク値の時間変化を予測し、実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合、または時系列のトルクの実測値と初期値との差または初期値に対する実測値の比が所定の範囲を超える場合に、スライド機構が故障する可能性が高いと判断してもよい。
(A)
The level difference eliminating machine according to the Ath invention is the level difference eliminating machine according to the second to ninth inventions, which includes: a telescopic surface slidably attached to the rotating surface; and a slide mechanism for slidingly moving the telescopic surface. , the control unit controls a slide mechanism, and the slide mechanism includes a drive conversion mechanism that converts the rotation of the motor into linear motion using a screw, and a torque sensor is also attached to the rotating shaft of the drive conversion mechanism to prevent failure. The prediction unit predicts the temporal change in the torque value based on the time-series torque values measured by the torque sensor, and when the difference between the actual measurement value and the predicted value or the ratio of the actual measurement value to the predicted value exceeds a predetermined range, Alternatively, it may be determined that there is a high possibility that the slide mechanism will fail if the difference between the time-series measured torque value and the initial value or the ratio of the measured value to the initial value exceeds a predetermined range.
 第Aの発明に係る段差解消機は、第2の局面に従う段差解消機に、さらに伸縮面とスライド機構とを追加し、スライド機構の回転軸にトルクセンサを貼着し、上下昇降機構と同様の方法でスライド機構の故障予測を行うものである。
 スライド機構の故障予測においても、トルク値の時間変化の予測を、LSTMを用いて行ってもよい。
The level difference eliminating machine according to the Ath invention further adds a telescopic surface and a slide mechanism to the level difference eliminating machine according to the second aspect, and has a torque sensor attached to the rotating shaft of the sliding mechanism, and is similar to the vertical lifting mechanism. This method predicts the failure of the slide mechanism.
In predicting failures of the slide mechanism, LSTM may also be used to predict temporal changes in torque values.
 (B)
 第Bの発明に係る段差解消機は、プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、回動可能に軸支された回動面と、回動面にスライド可能に取り付けられた伸縮面と、逆V字型のリンク機構により回動面を上下昇降する上下昇降機構と、伸縮面をスライド移動させるスライド機構と、回動面または伸縮面に設けられた複数のセンサーからなる検知センサーと、上下昇降機構、スライド機構および検知センサーを制御する制御部と、上下昇降機構およびスライド機構の故障を予測する故障予測部と、を含み、故障予測部は検知センサーで検知した高さおよび伸長距離の指示値からのずれ量を記録し、それぞれのずれ量の過去所定の日数における平均値または標準偏差値が所定の値を超える場合に、上下昇降機構が故障する可能性が高いと判断する。
(B)
The level difference eliminating machine according to invention B is a level difference eliminating machine that is buried in a platform and eliminates gaps and level differences between the platform and the train boarding/exit, and the level difference eliminating machine has a rotating surface that is rotatably supported, A telescopic surface that is slidably attached to the moving surface, a vertical lifting mechanism that raises and lowers the rotating surface using an inverted V-shaped link mechanism, a sliding mechanism that slides the telescopic surface, and a A failure prediction unit includes a detection sensor consisting of a plurality of sensors provided, a control unit that controls the up/down mechanism, the slide mechanism, and the detection sensor, and a failure prediction unit that predicts a failure of the up/down mechanism and the slide mechanism. records the amount of deviation from the indicated value of the height and extension distance detected by the detection sensor, and if the average value or standard deviation value of each deviation amount over a predetermined number of days in the past exceeds a predetermined value, the vertical lifting mechanism It is determined that there is a high possibility of failure.
 故障の前兆は、制御ゲインが高い場合は、駆動機構の回転軸のトルクの上昇として観察されるが、制御ゲインが比較的低い場合は測定値の指示値からのずれとして観察される。第Bの発明に係る段差解消機では、検知センサーで検知した高さおよび伸長距離の指示値からのずれ量に着目して故障を予測する。
 具体的には、検知した高さおよび伸長距離のずれ量の過去所定の日数における平均値または標準偏差値が所定の値を超える場合に、上下昇降機構が故障する可能性が高いと判断する。所定の日数としては2日から10日とすることが望ましく、5日が最も望ましい。
また、平均値の所定の値としては初期の平均値の-5%から5%とすることが望ましく、標準偏差の所定の値としては初期の標準偏差1σの-10%から10%とすることが望ましい。
 ずれ量の標準偏差に着目するのは、制御が不安定になってきた場合、指示値からのずれ量が段差解消機の起動のたびにばらつくことが多いためである。
A sign of failure is observed as an increase in the torque of the rotating shaft of the drive mechanism when the control gain is high, but is observed as a deviation of the measured value from the indicated value when the control gain is relatively low. In the level difference removing machine according to the B aspect of the invention, a failure is predicted by focusing on the amount of deviation from the indicated value of the height and extension distance detected by the detection sensor.
Specifically, if the average value or standard deviation value of the detected deviation amount of the height and extension distance over a predetermined number of days in the past exceeds a predetermined value, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction. The predetermined number of days is preferably 2 to 10 days, and most preferably 5 days.
In addition, it is desirable that the predetermined value of the average value is -5% to 5% of the initial average value, and the predetermined value of the standard deviation is -10% to 10% of the initial standard deviation 1σ. is desirable.
The reason for focusing on the standard deviation of the amount of deviation is that when the control becomes unstable, the amount of deviation from the instruction value often varies each time the level difference remover is started.
 この場合、段差解消機の制御部は、AI学習により、最短時間で最適な駆動を実現することができる。また、例えば、停車時間中の最大5秒の時間内で列車の扉の開く時間内で余裕を持った設定動作を実現することができる。 In this case, the control unit of the level difference remover can achieve optimal driving in the shortest time through AI learning. Further, for example, it is possible to realize a setting operation with plenty of time to spare within the time when the train doors are opened, for example, within a maximum of 5 seconds during the stop time.
第1の実施形態にかかる段差解消機を備えたプラットホームの一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a platform equipped with a level difference eliminating machine according to the first embodiment. 第1の実施形態にかかる段差解消機の内部機構の一例を示す模式的平面図である。FIG. 2 is a schematic plan view showing an example of the internal mechanism of the level difference removing machine according to the first embodiment. 段差解消機の駆動前の状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state before a step elimination machine is driven. 段差解消機の第1段階の駆動状態の一例を示す模式図である。It is a schematic diagram which shows an example of the driving state of the 1st stage of a level|step difference elimination machine. 段差解消機の第2段階の駆動状態の一例を示す模式図である。It is a schematic diagram which shows an example of the driving state of the 2nd stage of a level|step difference elimination machine. リンク機構の詳細の一例を示す模式図である。It is a schematic diagram which shows an example of the detail of a link mechanism. リンク機構の機構モデルの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a mechanism model of a link mechanism. リンク高さと自重負荷時必要推力および許容すべり速度との関係の一例を示すグラフである。It is a graph showing an example of the relationship between the link height, the required thrust under self-weight loading, and the allowable sliding speed. ねじの接触面圧とすべり速度との関係の一例を示す模式的説明図である。FIG. 3 is a schematic explanatory diagram showing an example of the relationship between the contact surface pressure of a screw and the sliding speed. 自重負荷時必要推力および垂直負荷のリンク比依存性を示すグラフである。It is a graph showing the link ratio dependence of the required thrust under self-weight load and the vertical load. 初期長さおよび水平ストロークのリンク比依存性を示すグラフである。It is a graph showing link ratio dependence of initial length and horizontal stroke. 作動時間のリンク比依存性を示すグラフである。It is a graph showing link ratio dependence of operating time. 図13(a)はリンク比1.5の場合の段差解消機の第2段階の駆動状態の一例を示す模式図であり、図13(b)はリンク比1.0の場合の段差解消機の第2段階の駆動状態の一例を示す模式図である。FIG. 13(a) is a schematic diagram showing an example of the driving state of the second stage of the level difference eliminating machine when the link ratio is 1.5, and FIG. 13(b) is a schematic diagram showing an example of the driving state of the level difference eliminating machine when the link ratio is 1.0. FIG. 3 is a schematic diagram showing an example of a second stage driving state. 第1の実施形態にかかる段差解消機の制御部の制御の一例を示す模式的ブロック図である。It is a typical block diagram showing an example of control of the control part of the step elimination machine concerning a 1st embodiment. 制御部の制御の一例を示すフローチャートである。3 is a flowchart illustrating an example of control by a control unit. 段差解消機のメンテナンス回転機構の一例を示す模式的説明図である。FIG. 2 is a schematic explanatory diagram showing an example of a maintenance rotation mechanism of the step-eliminating machine. 変形例の段差解消機の構造を示す模式的説明図である。It is a typical explanatory view showing the structure of the step elimination machine of a modification. 第2の実施形態の段差解消機の制御部の制御の一例を示す模式的ブロック図である。It is a schematic block diagram which shows an example of control of the control part of the step removal machine of 2nd Embodiment. 第2の実施形態の段差解消機の上下昇降機構の駆動部分の構造を示す模式的上面図である。It is a typical top view which shows the structure of the drive part of the up-and-down lifting mechanism of the level|level difference elimination machine of 2nd Embodiment. トルクの時間変化の実測値と予測値との関係の一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of the relationship between an actual measurement value and a predicted value of a temporal change in torque. 線形関数の場合の実測値と予測値との関係を示すグラフである。13 is a graph showing the relationship between actual measured values and predicted values in the case of a linear function. 2次関数の場合の実測値と予測値との関係を示すグラフである。It is a graph showing the relationship between actually measured values and predicted values in the case of a quadratic function. 第3の実施形態の段差解消機の制御部の制御の一例を示す模式的ブロック図である。FIG. 13 is a schematic block diagram showing an example of control by a control unit of the step eliminating device of the third embodiment. 第3の実施形態の段差解消機の上下昇降機構の駆動部分の構造を示す模式的上面図である。It is a typical top view showing the structure of the drive part of the up-and-down raising and lowering mechanism of the step elimination machine of a 3rd embodiment. 図24のA-A’部分に相当する緊急原点復帰機構の断面構造および動作を示す模式的説明図である。25 is a schematic explanatory diagram showing the cross-sectional structure and operation of the emergency origin return mechanism corresponding to the A-A' portion of Figure 24.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明においては、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are given the same reference numerals. Their names and functions are also the same. Therefore, detailed descriptions thereof will not be repeated.
[第1の実施形態]
 図1は、第1の実施形態にかかる段差解消機100を備えたプラットホーム200の一例を示す模式図である。図1(a)は、プラットホーム200の模式的平面図であり、図1(b)は、プラットホーム200の模式的側面図である。
[First embodiment]
Fig. 1 is a schematic diagram showing an example of a platform 200 equipped with a step eliminating device 100 according to a first embodiment. Fig. 1(a) is a schematic plan view of the platform 200, and Fig. 1(b) is a schematic side view of the platform 200.
(プラットホーム200)
 図1に示すように、プラットホーム200の一部に、凹部G200を形成し、段差解消機100を3個並列に配置させた状態である。本実施の形態においては、段差解消機100を凹部G200に対して、アンカーボルト(図示省略)で固定する。
 なお、本発明は、プラットホーム200に到着する列車において、車椅子対応の場所の幅に応じて、段差解消機100を複数並べてもよい。
 また、図1(b)に示すように、凹部G200の下面には、1または複数の溝G10が形成されている。溝G10は、雨等の水を線路側へ流すことができるように形成されている。
(Platform 200)
As shown in FIG. 1, a recess G200 is formed in a part of the platform 200, and three level difference removers 100 are arranged in parallel. In this embodiment, the level difference remover 100 is fixed to the recess G200 with an anchor bolt (not shown).
In addition, in the present invention, a plurality of level difference removers 100 may be lined up in a train arriving at the platform 200, depending on the width of the wheelchair-accessible area.
Further, as shown in FIG. 1(b), one or more grooves G10 are formed in the lower surface of the recess G200. The groove G10 is formed so that water such as rain can flow toward the track side.
 また、段差解消機100の周囲には、プラットホーム200の端面PHと、段差解消機100の上部面130(図3参照)との段差が5mm以下となるように、数ミリ厚みの金属板材またはモルタル等によるスロープ部等の合わせ部290を設けてもよい。 In addition, around the step remover 100, a metal plate or mortar with a thickness of several millimeters is placed so that the difference in level between the end surface PH of the platform 200 and the upper surface 130 (see FIG. 3) of the step remover 100 is 5 mm or less. A matching portion 290 such as a slope portion may be provided.
(段差解消機100)
 図2は、本実施の形態にかかる段差解消機100の内部機構の一例を示す模式的平面図である。
(Step clearing machine 100)
FIG. 2 is a schematic plan view showing an example of the internal mechanism of the level difference eliminating machine 100 according to the present embodiment.
 図2に示すように、段差解消機100は、回動面110、伸縮面120、上部面130(図3参照)、逆V字型のリンク機構300、接触センサー520、距離センサー530、2個の駆動部540、プッシャー565、回動ハウジング546、1個のスライド駆動部550、伸縮プッシャー555、ローラ600を有する。なお、駆動部540、プッシャー565を含む上下昇降機構の詳細については、第2の実施形態において、図19を用いて説明する。 As shown in FIG. 2, the level difference remover 100 includes a rotating surface 110, a telescopic surface 120, an upper surface 130 (see FIG. 3), an inverted V-shaped link mechanism 300, a contact sensor 520, a distance sensor 530, and two sensors. drive unit 540, pusher 565, rotating housing 546, one slide drive unit 550, telescopic pusher 555, and roller 600. Note that details of the vertical lifting mechanism including the drive unit 540 and the pusher 565 will be explained in the second embodiment using FIG. 19.
 本実施の形態においては、回動面110は、厚み6mm程度のステンレス鋼部材からなる。伸縮面120は、厚み6mm程度のステンレス鋼部材からなる。上部面130は、厚み4mm程度のステンレス鋼部材からなる In this embodiment, the rotating surface 110 is made of a stainless steel member with a thickness of about 6 mm. The telescopic surface 120 is made of a stainless steel member with a thickness of about 6 mm. The upper surface 130 is made of a stainless steel member with a thickness of about 4 mm.
 逆V字型のリンク機構300の詳細については、後述する。接触センサー520は、伸縮面120の端部全面に設けられている。なお、接触センサー520は、プラットホーム200の線路側に配置されていればよく、必ず全面に設ける必要はない。
 接触センサー520は、防水構造であることが望ましく、差動トランス(LVDT)方式、スケール方式のいずれであってもよい。
 また、接触センサー520と一体に、または別体で、列車と距離を検出する近接スイッチを内蔵してもよい。近接スイッチを設けることで、段差解消機100が列車に接触すること無しに安全に停止することができる。この近接スイッチは5mm±10%以上離れているとき作動するセンサーを選定することが好ましい。
Details of the inverted V-shaped link mechanism 300 will be described later. The contact sensor 520 is provided on the entire end of the expandable surface 120. Note that the contact sensor 520 only needs to be located on the track side of the platform 200, and does not necessarily have to be provided on the entire surface.
The contact sensor 520 is preferably waterproof, and may be of either a differential transformer (LVDT) type or a scale type.
A proximity switch for detecting the distance from the train may be built in, either integrally with or separately from the contact sensor 520. By providing a proximity switch, the step overcome 100 can be stopped safely without coming into contact with the train. It is preferable to select a sensor for this proximity switch that operates when the distance is 5 mm ±10% or more.
 従来、インターロック機能として、安全のために、段差解消機100が列車と接触しないように、先端部が列車と接触することで検知するテープスイッチまたは接触式のセンサーが主に使われていた。しかしながら、この場合、確実に列車と接触しないと検知できないため、乗員の移動等により段差解消機100の方向に列車のボディが揺れ、段差解消機100と接触する事象等が生じ、段差解消機100または列車のボディに傷が入ったりする問題が生じており、段差解消機100の破損等に繋がっていた。
 一方、近接スイッチを内蔵することで、列車に対して最低1mmから3mm程度の隙間を持たせた状態で伸縮面120を停止させることができる。すなわち、列車に伸縮面120が接触することを防止し、列車のボディ、および/または段差解消機100の破損を防止することができる。
Conventionally, as an interlock function, a tape switch or a contact type sensor, which detects when the tip comes into contact with a train, has been mainly used to prevent the level difference remover 100 from coming into contact with the train. However, in this case, it cannot be detected unless it definitely comes into contact with the train, so the body of the train shakes in the direction of the step remover 100 due to the movement of the passenger, etc., and the event that the train body comes into contact with the step remover 100 occurs. Alternatively, problems such as scratches on the train body have occurred, which has led to damage to the level difference remover 100 and the like.
On the other hand, by incorporating a proximity switch, the telescopic surface 120 can be stopped with a gap of at least 1 mm to 3 mm relative to the train. That is, it is possible to prevent the telescopic surface 120 from coming into contact with the train, and to prevent damage to the train body and/or the level difference remover 100.
 次に、本実施の形態における距離センサー530は、回動面110の端部に2個所定の間隔で設けられている。距離センサー530は、後述する回動面110の動作とともに、回動するように設けられている。
 距離センサー530は、防水構造であることが望ましく、Lidar方式、ミリ波方式、超音波方式、ステレオカメラ方式のいずれであってもよい。
Next, two distance sensors 530 in this embodiment are provided at the end of the rotating surface 110 at a predetermined interval. The distance sensor 530 is provided so as to rotate along with the operation of the rotation surface 110, which will be described later.
It is desirable that the distance sensor 530 has a waterproof structure, and may be of any one of a lidar type, a millimeter wave type, an ultrasonic type, and a stereo camera type.
 次いで、2個の駆動部540は、モータからなる。同じく、スライド駆動部550は、モータからなる。
 また、本発明に用いられている駆動変換機構547(図19参照)は、台形ネジ(TM)のサイズTM18以上のDネジから形成される。この理由については、後述する。ただし、スライド駆動部550の駆動変換機構547の場合は負荷が軽いため、ボールネジを用いてもよい。
Next, the two drive units 540 are composed of motors. Similarly, the slide drive section 550 is composed of a motor.
Further, the drive conversion mechanism 547 (see FIG. 19) used in the present invention is formed from a D screw having a trapezoidal screw (TM) size TM18 or more. The reason for this will be described later. However, since the drive conversion mechanism 547 of the slide drive unit 550 has a light load, a ball screw may be used.
 続いて、ローラ600は、複数設けられており、後述するように、回動面110から伸縮面120が突出される、または収納される場合に支持し、伸縮面120が円滑に移動できるよう設けられている。 Next, a plurality of rollers 600 are provided, and as will be described later, the rollers 600 are provided to support the telescopic surface 120 when it is protruded from the rotating surface 110 or to be retracted, and to allow the telescopic surface 120 to move smoothly. It is being
(段差解消機100の動作概略)
 図3は、段差解消機100の駆動前の状態の一例を示す模式図であり、図4は、段差解消機100の第1段階の駆動状態の一例を示す模式図であり、図5は、段差解消機100の第2段階の駆動状態の一例を示す模式図である。
(Outline of operation of level difference removing machine 100)
FIG. 3 is a schematic diagram showing an example of a state before the level difference eliminating machine 100 is driven, FIG. 4 is a schematic diagram showing an example of a first stage driving state of the level difference eliminating machine 100, and FIG. FIG. 2 is a schematic diagram showing an example of a second stage driving state of the level difference removing machine 100.
 図3に示すように、段差解消機100は、回動面110および上部面130が水平に配置されている。また、段差解消機100の下部には、フレーム190が枠体として形成されており、フレーム190に脚部195が設けられている。その結果、図1の溝G10と脚部195との合計高さにより、雨水等の影響を抑制することができる。また、図3においては、フレーム190を分離して記載しているが、これに限定されず、一体として形成してもよい。 As shown in FIG. 3, the level difference removing machine 100 has a rotating surface 110 and an upper surface 130 arranged horizontally. Further, a frame 190 is formed as a frame body at the lower part of the step eliminating machine 100, and the frame 190 is provided with leg portions 195. As a result, the influence of rainwater etc. can be suppressed by the total height of the groove G10 and the leg portion 195 shown in FIG. Further, although the frame 190 is shown separated in FIG. 3, the frame 190 is not limited to this, and may be formed as one piece.
 次に、図4に示すように、駆動部540が動作し、プッシャー565が押し出され、逆V字型のリンク機構300により回動面110の先端が、矢印R10の方向に回動する。すなわち、回動面110は、上部面130側において矢印R10の方向に回動可能なように軸支されている。本実施の形態において回動角度は、1度から15度までであることが好ましく、本実施の形態における最大回動角度は8度である。この場合、回動面110の先端に距離センサー530が設けられているので、回動面110と同じく移動する。 Next, as shown in FIG. 4, the drive unit 540 operates, the pusher 565 is pushed out, and the tip of the rotation surface 110 is rotated in the direction of arrow R10 by the inverted V-shaped link mechanism 300. That is, the rotation surface 110 is pivoted on the upper surface 130 side so as to be rotatable in the direction of arrow R10. In this embodiment, the rotation angle is preferably from 1 degree to 15 degrees, and the maximum rotation angle in this embodiment is 8 degrees. In this case, since the distance sensor 530 is provided at the tip of the rotating surface 110, it moves in the same manner as the rotating surface 110.
 次いで、図5に示すように、スライド駆動部550が動作し、伸縮面120が、列車乗降口側へ、すなわち矢印S10の方向へ伸長する。本実施の形態において伸長距離は、100mm以上500mm以下であることが好ましく、本実施の形態における伸長距離の最大は300mmである。この伸長距離は、後述する距離センサー530の測定結果に応じて決定される。 Next, as shown in FIG. 5, the slide drive unit 550 operates, and the expandable surface 120 extends toward the train entrance, that is, in the direction of arrow S10. In this embodiment, the extension distance is preferably 100 mm or more and 500 mm or less, and the maximum extension distance in this embodiment is 300 mm. This extension distance is determined according to the measurement results of a distance sensor 530, which will be described later.
 以上の図3から図5までの動作により、段差解消機100により列車の床とプラットホーム200の上面または端面PHとの段差解消が行われ、所定時間の後、図5、図4、図3の順により段差解消機100に収納動作が行われる。
 このように、本実施の形態における段差解消機100は、伸長動作および回動動作によりシンプルな構造で強度を確保しやすいというメリットがある。
 なお、本実施の形態においては、図4および図5を別々の動作として開示しているが、これに限定されず、図4の回動動作を行いつつ、図5の伸長動作を行ってもよい。その結果、短時間で段差解消を実施することができる。
Through the operations shown in FIGS. 3 to 5 above, the difference in level between the floor of the train and the top surface or end surface PH of the platform 200 is removed by the step removal machine 100, and after a predetermined time, Depending on the order, the step removing machine 100 performs a storage operation.
As described above, the level difference eliminating machine 100 according to the present embodiment has the advantage that it has a simple structure and can easily ensure strength due to the extension operation and rotation operation.
In this embodiment, although FIGS. 4 and 5 are disclosed as separate operations, the present invention is not limited to this, and even if the rotation operation of FIG. 4 is performed and the extension operation of FIG. 5 is performed. good. As a result, the level difference can be eliminated in a short time.
(逆V字型のリンク機構300)
 次に、図6は、逆V字型のリンク機構300の詳細の一例を示す模式図であり、図7は、逆V字型のリンク機構300の機構モデルの一例を示す模式図である。
(Inverted V-shaped link mechanism 300)
Next, FIG. 6 is a schematic diagram showing an example of details of the inverted V-shaped link mechanism 300, and FIG. 7 is a schematic diagram showing an example of a mechanical model of the inverted V-shaped link mechanism 300.
 図6に示すように、逆V字型のリンク機構300は、第1リンク310、第2リンク320、固定軸315、リンク軸325、可動軸335を含む。
 図6に示すように、駆動部540が動作していない場合には、回動面110は、フレーム190(凹部G200)とほぼ平行な状態である。
 次いで、駆動部540が動作した場合、プッシャー565が逆V字型のリンク機構300の方向へ進む。その結果、可動軸335が押し出され、かつ固定軸315は固定されているため、リンク軸325が上方向へ移動する。その結果、リンク軸325の上昇により回動面110が矢印R10(図4参照)の方向へ回動される。
As shown in FIG. 6, the inverted V-shaped link mechanism 300 includes a first link 310, a second link 320, a fixed shaft 315, a link shaft 325, and a movable shaft 335.
As shown in FIG. 6, when the drive unit 540 is not operating, the rotation surface 110 is approximately parallel to the frame 190 (recess G200).
Next, when the drive unit 540 operates, the pusher 565 advances in the direction of the inverted V-shaped link mechanism 300. As a result, since the movable shaft 335 is pushed out and the fixed shaft 315 is fixed, the link shaft 325 moves upward. As a result, the rotation surface 110 is rotated in the direction of arrow R10 (see FIG. 4) due to the rise of the link shaft 325.
 図7は、逆V字型のリンク機構300の機構モデルの一例を示す模式図である。図7に示すように、第1リンク310の距離をL31、第2リンク320の距離をL32、固定軸315および可動軸335の距離をLnとし、固定軸315および可動軸335の水平面からリンク軸325までの垂直方向の距離(以降、リンク高さhともいう)をhとする。また、固定軸315とリンク軸325とを結ぶ直線の鉛直方向からの角度をθ1、可動軸335とリンク軸325とを結ぶ直線の鉛直方向からの角度をθ2とする。さらに、駆動部540が動作せず、回動面110が水平の場合の距離LnをLn1とし、リンク高さhをh1とする。
 そして、図7(b)に示すように、駆動部540が動作し、回動面110が移動した場合、固定軸315および可動軸335の距離Ln‘(Ln1>Ln’)、固定軸315および可動軸335の水平面からリンク軸325までの垂直方向の距離h2(h2>h1)となる。
 この場合、固定軸315が支点となり、リンク軸325が作用点となり、可動軸335が力点となるとして考えることができる。
 また、図7では、第2リンク320の距離L32と第1リンク310の距離L31との比L32/L31(以降、リンク比bともいう)は1.5である。
FIG. 7 is a schematic diagram showing an example of a mechanical model of the inverted V-shaped link mechanism 300. As shown in FIG. 7, the distance of the first link 310 is L31, the distance of the second link 320 is L32, the distance between the fixed shaft 315 and the movable shaft 335 is Ln, and the link axis is measured from the horizontal plane of the fixed shaft 315 and the movable shaft 335. 325 (hereinafter also referred to as link height h) is assumed to be h. Further, the angle from the vertical direction of the straight line connecting the fixed shaft 315 and the link shaft 325 is θ1, and the angle from the vertical direction of the straight line connecting the movable shaft 335 and the link shaft 325 is θ2. Furthermore, the distance Ln when the drive unit 540 does not operate and the rotation surface 110 is horizontal is set as Ln1, and the link height h is set as h1.
Then, as shown in FIG. 7B, when the drive unit 540 operates and the rotating surface 110 moves, the distance Ln'(Ln1>Ln') between the fixed shaft 315 and the movable shaft 335, The vertical distance from the horizontal plane of the movable shaft 335 to the link shaft 325 is h2 (h2>h1).
In this case, it can be considered that the fixed shaft 315 becomes the fulcrum, the link shaft 325 becomes the point of action, and the movable shaft 335 becomes the point of effort.
Further, in FIG. 7, the ratio L32/L31 (hereinafter also referred to as link ratio b) between the distance L32 of the second link 320 and the distance L31 of the first link 310 is 1.5.
 (逆V字型リンクのリンク比bの検討)
 逆V字型リンクのリンク比bの検討にあたっては、可動軸335の自重負荷時必要推力F2(図7のF2)と垂直負荷F3(図7のF3)、リンク軸325の上下昇降時間、および逆V字型リンクの最大長さを考慮する必要がある。また、上下昇降時間は可動軸335の水平ストロークSt(図7のLn1-Ln‘に相当)と許容すべり速度Vとの比に相当し、逆V字型リンクの最大長さは、回動面110が水平の場合の距離Ln1 (以降、初期長さともいう)に相当する。
 まず、可動軸335の自重負荷時必要推力F2と垂直負荷F3について検討する。
 今、図7に記載のようにθ1、θ2を定義すると、リンク高さhは、
h=L31×cos(θ1)=L32×cos(θ2)
 また、リンク軸325に鉛直方向に自重負荷F0が印加された場合、可動軸335の自重負荷時必要推力F2と垂直負荷F3は、
F2=F0×(sin(θ1))/sin(θ1+θ2)×cos(90―θ2)
F3=F0×(sin(θ1))/sin(θ1+θ2)×sin(90―θ2)、となる。
 図8には、リンク高さhが31mm~111.8mmの範囲におけるリンク高さhと水平方向の自重負荷時必要推力F2のグラフを示した。なお、図8において、自重負荷F0の大きさは350.4kg重である。
(Study of link ratio b of inverted V-shaped link)
When considering the link ratio b of the inverted V-shaped link, the required thrust F2 (F2 in FIG. 7) of the movable shaft 335 under its own weight (F2 in FIG. 7), the vertical load F3 (F3 in FIG. 7), the up/down time of the link shaft 325, and The maximum length of the inverted V-shaped link must be considered. In addition, the vertical lifting time corresponds to the ratio of the horizontal stroke St of the movable shaft 335 (corresponding to Ln1-Ln' in FIG. 7) and the allowable sliding speed V, and the maximum length of the inverted V-shaped link is This corresponds to distance Ln1 (hereinafter also referred to as initial length) when 110 is horizontal.
First, the required thrust F2 and the vertical load F3 when the movable shaft 335 is loaded with its own weight will be considered.
Now, if θ1 and θ2 are defined as shown in FIG. 7, the link height h is
h=L31×cos(θ1)=L32×cos(θ2)
Furthermore, when the dead weight load F0 is applied to the link shaft 325 in the vertical direction, the required thrust F2 and the vertical load F3 of the movable shaft 335 under the dead weight load are as follows.
F2=F0×(sin(θ1))/sin(θ1+θ2)×cos(90−θ2)
F3=F0×(sin(θ1))/sin(θ1+θ2)×sin(90−θ2).
FIG. 8 shows a graph of the link height h and the required thrust force F2 under horizontal self-weight loading in the range of link height h from 31 mm to 111.8 mm. In addition, in FIG. 8, the magnitude of dead weight load F0 is 350.4 kg.
(駆動変換機構547に用いるDネジの安全性)
 図9は、ねじの接触面圧Pとすべり速度Vとの関係の一例を示す模式的説明図である。
(Safety of D screw used in drive conversion mechanism 547)
FIG. 9 is a schematic explanatory diagram showing an example of the relationship between the contact surface pressure P of the screw and the sliding speed V.
 以下、駆動変換機構547のねじにおける許容最高PV値を算出した手法について説明を行う。なお、駆動変換機構547の詳細については第2の実施形態において図19を用いて説明する。
 図9に、駆動変換機構547に用いる潤滑油を用いた鋼と黄銅とからなるDネジの場合(図中1点鎖線)、および、無潤滑(ドライ)で鋼と樹脂とからなるDネジの場合(図中3点鎖線)における、ねじ部の異常摩耗を防止するための接触面圧P(N/mm2)とすべり速度V(m/min)と関係の標準的な安全ラインを示した。図9において、それぞれの線の左下側の領域が安全領域である。
 本発明にかかる段差解消機100においては、上記安全ラインよりもさらに左下にくるようにPV=15を許容安全ラインとして設定し、PV積が15を超える場合は意図的にモータ回転数を落として危険領域に入らない制御を加えている。
 なお、台形ネジナット仕様としては、軸径18mのものを使用している。
The method for calculating the maximum allowable PV value for the screw of the drive conversion mechanism 547 will be described below. Note that details of the drive conversion mechanism 547 will be explained in the second embodiment using FIG. 19.
Figure 9 shows the case of a D screw made of steel and brass using lubricating oil for the drive conversion mechanism 547 (dotted chain line in the figure), and the case of a D screw made of steel and resin without lubrication (dry). A standard safety line related to contact surface pressure P (N/mm2) and sliding speed V (m/min) for preventing abnormal wear of the threaded portion is shown in the case (three-dot chain line in the figure). In FIG. 9, the area on the lower left side of each line is the safe area.
In the level difference remover 100 according to the present invention, PV = 15 is set as the allowable safety line so that it is further to the lower left than the above-mentioned safety line, and when the PV product exceeds 15, the motor rotation speed is intentionally reduced. Added controls to prevent entering the danger zone.
Note that the trapezoidal screw nut with a shaft diameter of 18 m is used.
 次に、上記許容最高PV値の考え方に基づき、実際の許容すべり速度Vについて検討する。逆V字型リンクの可動軸335は、台形ネジなどのすべり伝達によって駆動されている。この場合、ねじ部の異常摩耗を防止するために、接触面圧P(N/mm)とすべり速度V(m/min)の積であるPV値を使用できるかどうかの目安としている。
 そして、台形ネジが鋼製、真鍮軸受けの組み合わせの場合一般にはPV=25以下が使用の目安となるが、本実施形態では、安全を見て使用領域のPV値をPV=15以下と規定し、速度的にその範囲を超える場合は意図的にモータ回転数を落として危険領域に入らないよう制御を加えている。
 したがって、許容すべり速度Vは、V=15/Pとなり、Pは自重負荷時必要推力F2に比例することから、許容すべり速度Vは自重負荷時必要推力F2に反比例する。
 図8には、リンク高さhと許容すべり速度Vとの関係も示した。
 図8において、自重負荷時必要推力F2は最大値が重要であり、許容すべり速度Vは最小値が重要であることから、逆V字型リンクのリンク比bの検討にあたっては、リンク高さhが最小の、すなわち、段差解消機100がほぼ平坦な状態での自重負荷時必要推力F2を検討すればよい。
 この、リンク高さhが最小の場合の、可動軸335の自重負荷時必要推力F2、および垂直負荷F3のリンク比b依存性のグラフを図10に示した。
Next, based on the concept of the above-mentioned maximum allowable PV value, the actual allowable sliding speed V will be considered. The movable shaft 335 of the inverted V-shaped link is driven by sliding transmission such as a trapezoidal screw. In this case, in order to prevent abnormal wear of the threaded portion, the PV value, which is the product of contact surface pressure P (N/mm 2 ) and sliding speed V (m/min), is used as a guideline to determine whether or not it is possible to use it.
If the trapezoidal screw is made of steel and a brass bearing is used, generally the standard for use is PV = 25 or less, but in this embodiment, the PV value of the usage area is specified as PV = 15 or less for safety reasons. If the speed exceeds this range, the motor rotation speed is intentionally reduced to prevent it from entering the dangerous range.
Therefore, the allowable sliding speed V is V=15/P, and since P is proportional to the required thrust F2 when loaded with dead weight, the allowable sliding speed V is inversely proportional to the required thrust F2 when loaded with dead weight.
FIG. 8 also shows the relationship between the link height h and the allowable sliding speed V.
In Fig. 8, the maximum value is important for the required thrust F2 under self-weight load, and the minimum value is important for the allowable slip velocity V. Therefore, when considering the link ratio b of the inverted V-shaped link, the link height h What is necessary is to consider the thrust force F2 required under the load of its own weight when the height difference eliminating machine 100 is at a minimum, that is, when the level difference eliminating machine 100 is in a substantially flat state.
FIG. 10 shows a graph of the dependence of the required thrust F2 and the vertical load F3 on the link ratio b when the movable shaft 335 is loaded with its own weight when the link height h is the minimum.
 また、上下昇降時間は可動軸335の水平ストロークSt(Ln1-Ln‘に相当)に比例し、逆V字型リンクの最大長さは初期長さLn1に相当するので、水平ストロークStおよび初期長さLn1のリンク比b依存性について検討した。
 今、リンク高さhが最小の場合(図7(a)に相当)の高さをh1とし、リンク軸と固定軸との間の長さをL31、リンク軸と可動軸との間の長さをL32=b×L31とすると、
初期長さLn1は、
Figure JPOXMLDOC01-appb-M000001
 また、水平ストロークStは、リンク高さが最大の場合(図7(b)に相当)の高さをh2として
Figure JPOXMLDOC01-appb-M000002
 となる。
 この、初期長さLn、および水平ストロークStのリンク比b依存性のグラフを図11に示した。
 また、図12には水平ストロークStと許容すべり速度Vとの比に相当する作動時間Tt(相対値)のリンク比b依存性のグラフを示した。
In addition, the vertical lifting time is proportional to the horizontal stroke St (corresponding to Ln1-Ln') of the movable shaft 335, and the maximum length of the inverted V-shaped link corresponds to the initial length Ln1, so the horizontal stroke St and the initial length The dependence of Ln1 on the link ratio b was investigated.
Now, when the link height h is the minimum (corresponding to Fig. 7(a)), the height is h1, the length between the link shaft and the fixed shaft is L31, and the length between the link shaft and the movable shaft. If the length is L32=b×L31,
The initial length Ln1 is
Figure JPOXMLDOC01-appb-M000001
In addition, the horizontal stroke St is calculated by assuming the height when the link height is maximum (corresponding to Fig. 7(b)) as h2.
Figure JPOXMLDOC01-appb-M000002
becomes.
A graph of the dependence of the initial length Ln and the horizontal stroke St on the link ratio b is shown in FIG. 11.
Further, FIG. 12 shows a graph of the dependence of the operating time Tt (relative value) corresponding to the ratio of the horizontal stroke St to the allowable sliding speed V on the link ratio b.
 図10~図12より、リンク比bを大きくすることによって
(a)可動軸335の垂直負荷F3は減少するが、自重負荷時必要推力F2は増加する。
(b)逆V字型リンク全体の初期長さは増加するが、水平ストロークStは減少する。
(c)自重負荷時必要推力F2と水平ストロークStとの比に相当する作動時間Ttは、リンク比b=1.5付近で最小となり、1.5より小さくなっても大きくなっても増加する。
 との傾向がみられる。
10 to 12, by increasing the link ratio b, (a) the vertical load F3 of the movable shaft 335 decreases, but the thrust force F2 required under the load of its own weight increases.
(b) The initial length of the entire inverted V-shaped link increases, but the horizontal stroke St decreases.
(c) The operating time Tt, which corresponds to the ratio of the thrust force F2 required under self-weight load to the horizontal stroke St, is minimum when the link ratio b is in the vicinity of 1.5 and increases whether the ratio is smaller or larger than 1.5.
There is a tendency for this to happen.
 一方、リンク比bは、リンク軸325にかかる自重負荷F0にも影響を与える。
 図13に、リンク比b=1.5の場合(a)と1.0の場合(b)との、段差解消機100の第2段階の駆動状態の一例を示す模式図である。
 図13(a)と図13(b)とを比較するとわかるように、b=1.5とすることによって、リンク軸325の位置が回動面110のより先端側に移動し、モーメント荷重負荷の作用点が先端に近づいている。そして、モーメント荷重負荷の作用点が先端に近づくことによって、図13(a)のLbが図13(b)のLb‘より長くなり、(a)の自重負荷F0を(b)のF0’より小さくすることができる。
 したがって、リンク比bを大きくすることで、自重負荷時必要推力F2と垂直負荷F3を小さくし、その結果、作動時間Ttを小さくすることができる。
On the other hand, the link ratio b also affects the dead weight load F0 applied to the link shaft 325.
FIG. 13 is a schematic diagram showing an example of the second stage driving state of the level difference eliminating machine 100 in the case (a) when the link ratio b=1.5 and the case (b) when the link ratio b=1.0.
As can be seen by comparing FIG. 13(a) and FIG. 13(b), by setting b=1.5, the position of the link shaft 325 moves to the tip side of the rotation surface 110, and the moment load is applied. The point of action of is close to the tip. As the point of action of the moment load approaches the tip, Lb in Fig. 13(a) becomes longer than Lb' in Fig. 13(b), and the self-weight load F0 in (a) becomes longer than F0' in (b). Can be made smaller.
Therefore, by increasing the link ratio b, the required thrust force F2 under dead weight load and the vertical load F3 can be decreased, and as a result, the operating time Tt can be decreased.
 以上の結果より、作動時間Ttを短くするとの観点ではリンク比bは1.5付近が望ましいが、リンク比bを大きくすることによって可動軸335の垂直負荷F3が減少すること、および自重負荷F0自体が小さくなること、一方で、リンク比bを大きくしすぎると自重負荷時必要推力F2が大きくなりすぎ、逆V字型リンクの軸強度を上げる必要があること、および逆V字型リンクの最大長さが長くなりすぎること、から、リンク比bは、1.5以上、2.5以下とする。 From the above results, from the viewpoint of shortening the operating time Tt, it is desirable that the link ratio b is around 1.5, but by increasing the link ratio b, the vertical load F3 of the movable shaft 335 decreases, and the dead weight load F0 On the other hand, if the link ratio b is too large, the required thrust F2 when loaded with self-weight becomes too large, and it is necessary to increase the axial strength of the inverted V-shaped link. Since the maximum length becomes too long, the link ratio b is set to 1.5 or more and 2.5 or less.
 また、従来のパンダグラフ方式では、作用点となる部分が連結されているため、調整が複雑になったり、伸長動作を行う場合に、リフト機構自体を大きく移動させたりする必要があるという課題が多かった。さらに、作用点となる部分が連結されているため、負荷荷重が大きくなってしまうという課題もあった。
 一方、本発明における段差解消機100は、作用点の負荷荷重を低減することができ、回動動作の後に伸長動作を行うことができるため、段差解消機100自体の機構を簡略化することができる。
In addition, in the conventional Pandagraph method, the points of action are connected, which makes adjustment complicated and requires the lift mechanism itself to move a large distance when performing an extension operation. There were many. Furthermore, since the parts that serve as the points of action are connected, there is also the problem that the applied load becomes large.
On the other hand, the level difference remover 100 according to the present invention can reduce the load at the point of application and can perform an extension operation after the rotation operation, so the mechanism of the level difference remover 100 itself can be simplified. can.
(制御部500)
 次に、図14は、第1の実施形態にかかる段差解消機100の制御部500の制御の一例を示す模式的ブロック図である。
(Control unit 500)
Next, FIG. 14 is a schematic block diagram showing an example of control of the control unit 500 of the level difference eliminating machine 100 according to the first embodiment.
 図14に示すように、第1の実施形態にかかる段差解消機100の制御部500は、記録部510、接触センサー520、距離センサー530、駆動部540、およびスライド駆動部550のそれぞれと通信を行う。通信は有線であることが望ましいが、無線であってもよい。
 また、第1の実施形態にかかる制御部500は、AI学習機能を有しており、過去の記録部510のデータから、最適な段差解消機100の動作を判定し、駆動させる。記録部510の詳細データの内容については、後述する。
As shown in FIG. 14, the control unit 500 of the level difference remover 100 according to the first embodiment communicates with each of the recording unit 510, contact sensor 520, distance sensor 530, drive unit 540, and slide drive unit 550. conduct. Although communication is preferably wired, it may be wireless.
Further, the control unit 500 according to the first embodiment has an AI learning function, determines the optimal operation of the level difference removing machine 100 from the past data of the recording unit 510, and drives the control unit 500. The contents of detailed data in the recording section 510 will be described later.
 第1の実施形態における制御部500は、段差解消機100の内部に内蔵されている必要性は無い。制御部500は、記録部510、接触センサー520、距離センサー530、駆動部540、およびスライド駆動部550のそれぞれと通信を行うことができれば、内蔵されていてもよく、外部に別途設けられていてもよい。
 また、図1に示したように、段差解消機100は、並列して配置される場合もあるため、並列された段差解消機100それぞれの制御部500が一つとして設けられてもよく、それぞれ設ける場合には、互いの制御部500が通信できる状態であることが望ましい。
 例えば、並列配置された段差解消機100のうち1つの段差解消機100においてメンテナンスまたは、故障等の場合に、他の段差解消機100の駆動を停止させることが望ましいからである。
The control unit 500 in the first embodiment does not need to be built inside the level difference removing machine 100. The control unit 500 may be built-in as long as it can communicate with each of the recording unit 510, the contact sensor 520, the distance sensor 530, the drive unit 540, and the slide drive unit 550, or may be provided separately outside. Good too.
Further, as shown in FIG. 1, the level difference eliminating machines 100 may be arranged in parallel, so the control unit 500 of each of the level difference eliminating machines 100 arranged in parallel may be provided as one, and each of the level difference eliminating machines 100 may be arranged in parallel. If provided, it is desirable that the control units 500 be able to communicate with each other.
For example, in the event of maintenance or failure in one of the level difference removers 100 arranged in parallel, it is desirable to stop driving the other level difference removers 100.
 記録部510は、列車の種類、列車の時刻表、列車の床の高さ、プラットホーム200の高さ、ホームドア、月、日、曜日、時間、気候、天気等を含めた情報である。
 また、その他にも、駅構内に設けられた監視カメラからのデータを、機械学習、深層学習、ディープラーニング、YOLO、R-CNN、HOG、DETR(End-to-End Object Detection with Transformers)、SSD(Single Shot MultiBox Detector)、DCN等を用いて、人数を計算し、列車の混雑状況、車両毎の混雑状況を推定した情報を含んでもよい。さらには、段差解消機100を備えたプラットホーム200の前の駅、すなわち列車からすると上流にある駅の上記人数、混雑状況、現在の列車の床の高さ等の情報を含んでもよい。
The recording section 510 contains information including the type of train, the train timetable, the height of the train floor, the height of the platform 200, the platform door, month, day, day of the week, time, climate, weather, etc.
In addition, data from surveillance cameras installed inside the station can be processed using machine learning, deep learning, deep learning, YOLO, R-CNN, HOG, DETR (End-to-End Object Detection with Transformers), and SSD. (Single Shot MultiBox Detector), DCN, etc. may be used to calculate the number of people and may include information on estimating the congestion situation of the train and the congestion situation of each vehicle. Furthermore, the information may include information such as the number of people, congestion status, and current floor height of the train at the station in front of the platform 200 equipped with the step clearing device 100, that is, the station located upstream from the train.
 また、プラットホーム高さは、列車の種類、列車の床の高さ、線路の状況、カーブしたプラットホーム200なのか否か、混雑した列車から多数の人数が降りるのか否か、多数の人数が乗り込むのか、段差解消機100を用いて乗り込む人がいるのか、段差解消機100を用いて降りる人がいるのか、の情報等も含まれる。
 乗り込む場合には、列車の床の高さと同じかそれより数ミリ高い方が好ましく、降りる場合には、列車の床の高さと同じかそれより数ミリ低い方が好ましい。
 そのため、列車が到着した場合には、列車から降りる方が多いため、列車の床の高さと同じかそれより数ミリ低く設定し、列車が到着してから所定時間が経過した場合には、列車の床の高さと同じかそれより数ミリ高くなるよう微妙な制御を行ってもよい。
The platform height also depends on the type of train, the height of the train floor, the condition of the track, whether the platform is curved or not, whether a large number of people will be getting off from a crowded train, and whether a large number of people will be boarding the train. It also includes information such as whether there is a person getting on the vehicle using the level difference eliminating machine 100 or whether there is a person getting off using the level difference eliminating machine 100.
When boarding, it is preferable that the height be the same as or several millimeters higher than the floor height of the train, and when getting off, it is preferable that the height be the same as or several millimeters lower than the floor height of the train.
Therefore, when a train arrives, many people get off the train, so the floor height is set at the same level as the train floor or a few millimeters lower than that. Subtle control may be performed so that the height is the same as or a few millimeters higher than the floor level.
 また、記録部510には、プラットホーム200から乗客が転落しないように設置されているホームドアの型式、動作、駆動時間、開閉タイミング等が記録されている。これは、ホームドアの動作を阻害しないよう、制御部500が段差解消機100を動作させるために必要なデータである。
 さらに、記録部510に記録された、月、日、曜日、時間、気候、天気などは、人数の変動、混雑状態等の情報と紐づけられている。また、図示していないが、駅舎付近のデパート、商業施設、イベント会場、飲食店等の混雑具合を固定カメラ、または携帯のGPSの個数等と紐づけてもよい。それにより、人の動きに応じて混雑情報等を推定することができる。さらには、車椅子のみならず、手動または電動ベビーカを使用する方の履歴を取得し、よく使われる駅から訪問先の駅までの情報等を取得し、上流の段差解消機100から下流の訪問先の段差解消機100へ情報を送信してもよい。
 さらに、第1の実施形態においては、付加していないが、報知装置を設けて音声で注意を促す、または、安全に乗車してください、安全に降車してください。等を知らせるようにしてもよい。
The recording unit 510 also records the type, operation, drive time, opening/closing timing, etc. of the platform door installed to prevent passengers from falling from the platform 200. This is data necessary for the control unit 500 to operate the step remover 100 so as not to interfere with the operation of the platform door.
Furthermore, the month, date, day of the week, time, climate, weather, etc. recorded in the recording unit 510 are linked with information such as changes in the number of people, congestion status, etc. Further, although not shown, the degree of crowding in department stores, commercial facilities, event venues, restaurants, etc. near the station building may be linked to the number of fixed cameras or mobile GPS devices. Thereby, congestion information etc. can be estimated according to the movement of people. Furthermore, it acquires the history of people who use not only wheelchairs but also manual or electric baby strollers, and obtains information from frequently used stations to visited stations, and from upstream step remover 100 to downstream visited destinations. The information may also be transmitted to the level difference removing machine 100.
Furthermore, in the first embodiment, although not added, an alarm device is provided to issue a voice warning, or to ask the driver to get on the vehicle safely or to get off the vehicle safely. etc. may be notified.
(制御部500の動作の一例)
 図15は、制御部500の制御の一例を示すフローチャートである。
(Example of operation of control unit 500)
FIG. 15 is a flowchart showing an example of control by the control unit 500.
 まず、制御部500は、記録部510からの情報に基づいて、列車情報等を取得する(ステップS1)。次に、制御部500は、ホームドアが駆動したか等のホームドア情報を取得する(ステップS2)。
 続いて、制御部500は、接触センサー520および/または距離センサー530からのセンサー検知を取得する(ステップS3)。
 ここで、制御部500は、センサーの種類に応じて温度補正を実施してもよい。すなわち、屋外における温度特性を有するセンサーは、温度補正をすることが望ましい。
 制御部500は、接触センサー520に接触履歴が無いかを確認し、距離センサー530からの距離データが、記録部510の列車情報と一致しているかを判定する。
First, the control unit 500 acquires train information and the like based on information from the recording unit 510 (step S1). Next, the control unit 500 acquires platform door information such as whether the platform door is driven (step S2).
Subsequently, the control unit 500 obtains sensor detection from the contact sensor 520 and/or the distance sensor 530 (step S3).
Here, the control unit 500 may perform temperature correction depending on the type of sensor. That is, it is desirable that a sensor having outdoor temperature characteristics undergo temperature correction.
The control unit 500 checks whether there is any contact history in the contact sensor 520 and determines whether the distance data from the distance sensor 530 matches the train information in the recording unit 510.
 次に、制御部500は、駆動部540の駆動を開始する(ステップS4)。そして、制御部500は、スライド駆動部550を駆動させスライド開始する(ステップS5)。ここで、車椅子の乗客が円滑に乗降する。
 次いで、ホームドアが閉まり始め、列車のドアが閉まり始めた場合に、スライド駆動部550を駆動させ、スライド収納を開始する。なお、ホームドアが閉まり始める前、または列車のドアが閉まり始める前に、スライド収納を開始させてもよい。
 最後に、制御部500は、駆動部540を駆動させ、段差解消機100を収納する(ステップS7)。
Next, the control unit 500 starts driving the drive unit 540 (step S4). Then, the control unit 500 drives the slide drive unit 550 to start sliding (step S5). Here, passengers in wheelchairs can get on and off smoothly.
Next, when the platform door starts to close and the train door starts to close, the slide drive section 550 is driven to start slide storage. Note that sliding storage may be started before the platform doors begin to close or before the train doors begin to close.
Finally, the control unit 500 drives the drive unit 540 to house the level difference eliminating machine 100 (step S7).
(段差解消機100のメンテナンス回転機構の説明)
 図16は、段差解消機100のメンテナンス回転機構の一例を示す模式的説明図である。
(Description of the maintenance rotation mechanism of the level difference remover 100)
FIG. 16 is a schematic explanatory diagram showing an example of a maintenance rotation mechanism of the level difference eliminating machine 100.
 図16に示すように、段差解消機100のメンテナンスの場合には、逆V字型のリンク機構300との接続を解除することにより、回動面110を矢印R20の方向に、回動軸115を中心に大きく軸回転させることができる。
 その結果、駆動部540またはスライド駆動部550、接触センサー520、距離センサー530、プッシャー565、回動ハウジング546、伸縮プッシャー555、ローラ600等の点検またはメンテナンス、修理等を実施することができる。特に、回動面110が大きく回動することによりメンテナンス等を実施しやすいという効果が得られる。
As shown in FIG. 16, in the case of maintenance of the level difference remover 100, by disconnecting the inverted V-shaped link mechanism 300, the rotation surface 110 is moved in the direction of the arrow R20, and the rotation axis 115 It can be rotated around a large axis.
As a result, inspection, maintenance, repair, etc. of the drive unit 540 or the slide drive unit 550, the contact sensor 520, the distance sensor 530, the pusher 565, the rotary housing 546, the telescopic pusher 555, the roller 600, etc. can be carried out. In particular, the large rotation of the rotating surface 110 makes it easier to carry out maintenance and the like.
 (変形例の段差解消機100aの構造)
 図17に、変形例の段差解消機100aの構造を示す。
 図5の段差解消機100では、プラットホーム200の高さに固定された上部面130と上部面130の列車乗降口側に回動面110とを備え、上部面130と回動面110との境界に回動軸115を有するが、図17に記載の変形例の段差解消機100aでは、上部面130がなく回動軸115が段差解消機100aの列車乗降口に対向する側の端部に設けられている。
 この場合、てこの原理によりリンク軸325への自重負荷F0は小さくなるが、一方で、回動面110の長さが長くなるため、回動面110の強度を上げる必要がある。
(Structure of a modified example of level difference eliminating machine 100a)
FIG. 17 shows the structure of a modified example of a level difference eliminating machine 100a.
The level difference remover 100 shown in FIG. 5 includes an upper surface 130 fixed at the height of the platform 200 and a rotating surface 110 on the train entrance/exit side of the upper surface 130, and a boundary between the upper surface 130 and the rotating surface 110. However, in the modified example of the level difference eliminating machine 100a shown in FIG. It is being
In this case, the dead weight load F0 on the link shaft 325 is reduced due to the lever principle, but on the other hand, the length of the rotating surface 110 becomes longer, so it is necessary to increase the strength of the rotating surface 110.
[第2の実施形態]
 第2の実施形態の段差解消機100bは第1の実施形態の段差解消機100または100aに故障予測機能を追加したものである。したがって、図1から図13および図15から図17の図面、および関連の説明は第2の実施形態の段差解消機100bにも当てはまる。
 ただし、第1の実施形態の段差解消機100または100aでは上下昇降機構に逆V字型のリンク機構300を用いているが、第2の実施形態の段差解消機100bでは、モータの回転を直線運動に変換して回動面110を上下昇降するものであれば、逆V字型のリンク機構300を用いなくてもよい。また、第1の実施形態の段差解消機100または段差解消機100aでは伸縮面120をスライド移動させるスライド機構を備えているが、第2の実施形態の段差解消機100bでは、伸縮面120およびスライド機構を備えず、回動面110自体を列車乗降口の方向に移動するようにしてもよい。
[Second embodiment]
The level difference remover 100b of the second embodiment is the same as the level difference remover 100 or 100a of the first embodiment with a failure prediction function added. Therefore, the drawings of FIGS. 1 to 13 and 15 to 17 and the related descriptions also apply to the step clearing machine 100b of the second embodiment.
However, in the step remover 100 or 100a of the first embodiment, an inverted V-shaped link mechanism 300 is used for the vertical lifting mechanism, but in the step remover 100b of the second embodiment, the rotation of the motor is linear. The inverted V-shaped link mechanism 300 may not be used as long as it is converted into motion and moves up and down on the rotation surface 110. Further, the level difference eliminating machine 100 or the level difference eliminating machine 100a of the first embodiment is provided with a slide mechanism that slides the telescopic surface 120, but in the level difference eliminating machine 100b of the second embodiment, the telescopic surface 120 and the slide mechanism are provided. The rotating surface 110 itself may be moved in the direction of the train entrance without providing a mechanism.
 図18は、第2の実施形態の段差解消機100bの制御部500の制御の一例を示す模式的ブロック図である。図18のブロック図では、図14の第1の実施形態の段差解消機100のブロック図に故障予測部570およびトルクセンサ575が追加されている。
 図19は、第2の実施形態の段差解消機100bの上下昇降機構の駆動部分の構造を示す模式的上面図である。駆動部540が回転軸545を回転し、駆動変換機構547(Dネジ)で直線運動に変換する。駆動変換機構547と枠体548a,548b、プッシャー駆動部材562、およびプッシャー565は互いに連結されており、駆動変換機構547の直線運動はそのままプッシャー565に伝達される。プッシャー565は軸受564aおよび564bを貫通しており、軸受564aおよび564bはプッシャー565の直線運動を支える。
 回転軸545にはトルクセンサ575が貼着されており、回転軸545に印加されるトルクの測定値が制御部500に送信される。
Fig. 18 is a schematic block diagram showing an example of control by the control unit 500 of the step-eliminating device 100b of the second embodiment. In the block diagram of Fig. 18, a failure prediction unit 570 and a torque sensor 575 are added to the block diagram of the step-eliminating device 100 of the first embodiment of Fig. 14.
19 is a schematic top view showing the structure of the drive part of the up-down lifting mechanism of the step-eliminating device 100b of the second embodiment. The drive unit 540 rotates the rotary shaft 545, and the drive conversion mechanism 547 (D screw) converts the rotation into linear motion. The drive conversion mechanism 547, the frame bodies 548a and 548b, the pusher drive member 562, and the pusher 565 are connected to each other, and the linear motion of the drive conversion mechanism 547 is transmitted directly to the pusher 565. The pusher 565 passes through the bearings 564a and 564b, and the bearings 564a and 564b support the linear motion of the pusher 565.
A torque sensor 575 is attached to the rotating shaft 545 , and the measured value of the torque applied to the rotating shaft 545 is transmitted to the control unit 500 .
 段差解消機100bは多くの乗降客が列車に乗降するプラットホームに設置されるため、故障した場合には混乱が予想される。従来は、このような設備では、一定「期間」ごとに段差解消機100bの部品交換などのメンテナンスを行い、故障を未然に防ぐTBM(Time Based Maintenance:時間基準保全)が実行されていた。
 しかし、TBMの場合、故障していなくても、営業時間外の夜間作業にて一定期間利用した部品交換等の保全作業を実施する為、見切り交換により無駄な費用が発生していた。
 これに対して、段差解消機100bの「状態」の計測および/または監視を行い、故障の前兆を検知してメンテナンスを行い、故障を未然に防ぐCBM(Condition Based Maintenance:状態基準保全)による保全方法があるが、CBMを採用するためには故障の前兆を確実に検知する必要がある。
Since the level difference remover 100b is installed on a platform where many passengers get on and off the train, confusion is expected if it breaks down. Conventionally, in such equipment, TBM (Time Based Maintenance) has been performed to prevent breakdowns by performing maintenance such as replacing parts of the level difference remover 100b at fixed "periods".
However, in the case of TBMs, maintenance work such as replacing parts that have been used for a certain period of time is performed during night work outside business hours, even if there is no failure, resulting in wasted costs due to part-time replacements.
In contrast, CBM (Condition Based Maintenance) is used to prevent failures by measuring and/or monitoring the "state" of the step clearing machine 100b, detecting signs of failure, and performing maintenance. There are methods, but in order to adopt CBM, it is necessary to reliably detect signs of failure.
 (トルク値に基づく故障予測)
 段差解消機100bの上下昇降機構では、距離センサー530の測定値をもとに駆動部540で上下昇降機構を駆動する、フィードバック制御が行われている。フィードバック制御が正常に行われている場合には、上下昇降機構の内部で故障の前兆が発生していても、距離センサー530の測定値は正常である場合が多い。このような場合には、上下昇降機構を駆動する駆動部540の回転軸545のトルクの時間変化を測定することでより確実に故障の前触れを検知することができる。
(Failure prediction based on torque value)
Feedback control is performed in the vertical lifting mechanism of the level difference remover 100b, in which the driving unit 540 drives the vertical lifting mechanism based on the measured value of the distance sensor 530. When the feedback control is performed normally, the measured value of the distance sensor 530 is often normal even if a sign of failure occurs inside the vertical lifting mechanism. In such a case, a precursor to failure can be detected more reliably by measuring the temporal change in the torque of the rotating shaft 545 of the drive unit 540 that drives the vertical lifting mechanism.
 図20は、トルクの時間変化の実測値(row_data)と予測値(predict_data)の一例を示す模式図である。なお、数値は相対値である。
 図20において、トルクの実測値は時間とともに増加する。図20の場合は、ほぼ時間の線形関数で増加しており、予測値はこの傾向を表したものである。
 ところが、時間が170を超える付近から実測値が急激に増加し、予測値からの乖離も大きくなっている。このような場合には、例えば駆動変換機構547(Dネジ)で急激な摩耗が始まっているなど、故障の予兆が進行している可能性がある。
 第2の実施形態の段差解消機100bでは、トルクセンサ575で測定した時系列のトルクに基づいてトルクの時間変化を予測し、実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合上下昇降機構が故障する可能性が高いと判断して、警報を出し、または点検を指示する。
 実測値と予測値の乖離の大きさと警報または点検指示との関係は、段差解消機100bの設計、あるいはフィードバック制御の強さ等によっても異なるが、例えば、過去所定の日数における予測値に対する実測値の比の平均値が1.05倍以上の場合または0.95倍以下の場合警報を出し、平均値が1.1倍以上の場合点検を指示するようにしてもよい。この場合の所定の日数は、例えば2日から10日とすることが望ましく、5日が最も望ましい。
 また、実測値と予測値との乖離が少ない場合でも、トルクの実測値と初期値との差または比が所定の範囲を超える場合には、警報を出し、または点検を指示してもよい。この場合の所定の範囲とは、例えば―20%から+100%である。
FIG. 20 is a schematic diagram showing an example of an actual measured value (row_data) and a predicted value (predict_data) of a temporal change in torque. Note that the numerical values are relative values.
In FIG. 20, the measured value of torque increases with time. In the case of FIG. 20, it increases almost as a linear function of time, and the predicted value represents this tendency.
However, when the time exceeds 170, the actual measured value rapidly increases and the deviation from the predicted value becomes large. In such a case, there is a possibility that signs of failure are progressing, such as rapid wear starting in the drive conversion mechanism 547 (D screw).
In the level difference remover 100b of the second embodiment, the temporal change in torque is predicted based on the time-series torque measured by the torque sensor 575, and the difference between the actual measured value and the predicted value or the ratio of the actual measured value to the predicted value is If it exceeds a predetermined range, it is determined that there is a high possibility that the vertical elevating mechanism will malfunction, and an alarm is issued or an inspection is ordered.
The relationship between the magnitude of the deviation between the actual measured value and the predicted value and the alarm or inspection instruction varies depending on the design of the level difference remover 100b, the strength of feedback control, etc.; If the average value of the ratio is 1.05 times or more or 0.95 times or less, a warning may be issued, and if the average value is 1.1 times or more, an inspection may be instructed. In this case, the predetermined number of days is preferably from 2 to 10 days, and most preferably 5 days.
Furthermore, even if the deviation between the actual measured value and the predicted value is small, if the difference or ratio between the actual measured torque value and the initial value exceeds a predetermined range, an alarm may be issued or an inspection may be instructed. The predetermined range in this case is, for example, -20% to +100%.
 図20の場合は、時間が170を超える付近からトルクが急激に増加しているが、それまではトルクは時間に対して線形に増加している。しかし、正常な状態において、常にトルクが線形に増加するとは限らない。例えば、使用環境によって、雨および/または雪が多い場所、平均気温が高いもしくは低い場所などでは、トルクが2次の関数で増加する、あるいは指数関数で増加することも考えられる。このような場合には、まず、実測のトルクの時系列変化をどのような関数で近似するかを検討し、そのうえで係数を決定して予測値の時間変化を計算する必要がある。
 しかし、実測のトルクの時系列変化をどのような関数で近似するかを検討し、そのうえで係数を決定して予測値の時間変化を計算するという作業は煩雑でかつ必ずしも正確な結果が得られるとは限らない。
In the case of FIG. 20, the torque increases rapidly from around the time when it exceeds 170, but until then, the torque increases linearly with respect to time. However, under normal conditions, torque does not always increase linearly. For example, depending on the usage environment, in places where there is a lot of rain and/or snow, or where the average temperature is high or low, the torque may increase quadratically or exponentially. In such a case, it is first necessary to consider what kind of function should approximate the time-series changes in the actually measured torque, and then determine the coefficients to calculate the time-series changes in the predicted value.
However, the task of considering what kind of function should be used to approximate the time-series changes in actually measured torque, determining coefficients, and then calculating the time-series changes in the predicted value is complicated, and it is not always possible to obtain accurate results. is not limited.
 このような、実測値の時間変化を予測する方法として、例えば、RNN(リカレントニューラルネットワーク)の時系列を考慮する層を改良したLSTM(Long Short Term Memory)が用いられるようになってきた(LSTMについては、Sepp Hochreiter; Jurgen Schmidhuber 著(1997). “Long short-term memory”. Neural Computation 9 (8): 1735-1780.参照)。
 LSTMでは、時系列のデータを入力し、学習させることにより、線形か、2次関数かどうかなどによらず時間変化の予測値を出力することができる。
As a method for predicting changes in actual measured values over time, for example, LSTM (Long Short Term Memory), which is an improved layer of RNN (Recurrent Neural Network) that considers time series, has come to be used. (See Sepp Hochreiter; Jurgen Schmidhuber (1997). “Long short-term memory”. Neural Computation 9 (8): 1735-1780.).
In LSTM, by inputting time-series data and performing learning, it is possible to output predicted values of changes over time regardless of whether the data is linear or quadratic.
 図21に線形関数の場合の実測値(row_data)と予測値(predict_data)との関係のグラフを示した。また、図22には2次関数の場合の実測値(row_data)と予測値(predict_data)との関係のグラフを示した。
 各図において、LSTMは時間0~24の実測値をもとに時間25の予測値を計算し、次に時間1~25の実測値をもとに時間26の予測値を計算し、同様にして時間200までの予測値を計算している。
 LSTMでは、単なる2次関数ではなく、2次関数と正弦波関数のような周期関数との和関数についても精度の高い予測ができることが分かっており、第2の実施形態の段差解消機100bのトルクの時間変化の予測にLSTMを用いることで効率が良く、かつ正確な故障予測を行うことができる。
Fig. 21 shows a graph of the relationship between the actual measured value (row_data) and the predicted value (predict_data) in the case of a linear function, and Fig. 22 shows a graph of the relationship between the actual measured value (row_data) and the predicted value (predict_data) in the case of a quadratic function.
In each figure, the LSTM calculates a predicted value for time 25 based on the actual measured values from times 0 to 24, then calculates a predicted value for time 26 based on the actual measured values from times 1 to 25, and so on up to time 200.
It has been found that LSTM can make highly accurate predictions not only of simple quadratic functions, but also of sum functions of quadratic functions and periodic functions such as sine wave functions, and by using LSTM to predict the time change in torque of the step-eliminating device 100b of the second embodiment, efficient and accurate fault prediction can be made.
 以上の説明は、上下昇降機構の故障予測の説明であるが、段差解消機100bが伸縮面120とスライド機構とを備えている場合には、スライド機構の回転軸545aにもトルクセンサ575を追加し、トルクセンサ575で測定した時系列のトルクに基づいてトルクの時間変化を予測し、実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合、または時系列のトルクの実測値と初期値との差または初期値に対する実測値の比が所定の範囲を超える場合に、スライド機構が故障する可能性が高いと判断してもよい。 The above explanation is about failure prediction of the vertical lifting mechanism, but if the level difference remover 100b is equipped with the telescopic surface 120 and the slide mechanism, a torque sensor 575 is also added to the rotating shaft 545a of the slide mechanism. However, when the time-series change in torque is predicted based on the time-series torque measured by the torque sensor 575, and the difference between the actual measured value and the predicted value or the ratio of the actual measured value to the predicted value exceeds a predetermined range, or when the time-series If the difference between the measured torque value and the initial value or the ratio of the measured torque value to the initial value exceeds a predetermined range, it may be determined that the slide mechanism is likely to fail.
 (距離センサの測定値に基づく故障予測)
 以上は、トルクセンサ575で測定した時系列のトルク値に基づいて故障予測を行う場合の実施形態であるが、上下昇降機構またはスライド機構の制御ゲインが比較的低い場合は、トルク値の時間変化よりも距離センサの測定値の時間変化の方に故障の前兆が現れる場合がある。
 この場合は、検知センサーで検知した高さおよび伸長距離の指示値からのずれ量を記録し、それぞれのずれ量の過去所定の日数における平均値または標準偏差値が所定の値を超える場合に、上下昇降機構が故障する可能性が高いと判断することが望ましい。
 具体的には、検知した高さおよび伸長距離のずれ量の過去所定の日数における平均値または標準偏差値が所定の値を超える場合に、上下昇降機構が故障する可能性が高いと判断する。所定の日数としては2日から10日とすることが望ましく、5日が最も望ましい。
 ずれ量の標準偏差に着目するのは、制御が不安定になってきた場合、指示値からのずれ量が段差解消機100bの起動のたびにばらつくことが多いためである。
(Failure prediction based on distance sensor measurements)
The above is an embodiment in which failure prediction is performed based on time-series torque values measured by the torque sensor 575. However, if the control gain of the vertical lifting mechanism or sliding mechanism is relatively low, the temporal change in torque value In some cases, a sign of failure may appear in the change in the measured value of the distance sensor over time.
In this case, the amount of deviation from the indicated value of the height and extension distance detected by the detection sensor is recorded, and if the average value or standard deviation value of each deviation amount over a predetermined number of days in the past exceeds a predetermined value, It is desirable to determine that there is a high possibility that the vertical lifting mechanism will malfunction.
Specifically, if the average value or standard deviation value of the detected deviation amount of the height and extension distance over a predetermined number of days in the past exceeds a predetermined value, it is determined that there is a high possibility that the vertical lifting mechanism will malfunction. The predetermined number of days is preferably 2 to 10 days, and most preferably 5 days.
The reason for focusing on the standard deviation of the amount of deviation is that when the control becomes unstable, the amount of deviation from the instruction value often varies each time the level difference remover 100b is started.
 以上のトルクセンサおよび距離センサの時系列の実測値に基づく故障予測を行い、警告あるいは点検指示に合わせて点検することにより、突発的な故障による稼働停止の排除、故障モードに入っていない時期にする定期メンテナンスでメンテナンス人件費と交換部品代のコストを削減することができる。また、段差解消機100自らが、点検を故障前に通信で要求でき、潤滑油供給・部品交換・検知センサーの清掃、レンズ清掃などの予防保全を実施することができる。特に、段差解消機100が自ら点検を要求する時間帯は、旅客事業稼働時間内でなく、営業終了後から営業開始までの夜間時間を指定し、要求することが望ましい。その結果、交換品の手配または交換作業者を予め手配することができ、最適なタイミング、最小の部品交換でメンテナンスでき、安定した段差解消機100の運用を実現しつつ、メンテナンスコストの抑制に貢献することができ、安全性および安定的な稼働を向上することができる。 By predicting failures based on the time-series actual measured values of the torque sensor and distance sensor as described above and performing inspections in accordance with warnings or inspection instructions, it is possible to eliminate operation stoppages due to sudden failures and to detect failures when they are not in failure mode. Regular maintenance can reduce maintenance labor costs and replacement parts costs. Further, the level difference removing machine 100 itself can request inspection via communication before a failure occurs, and can perform preventive maintenance such as supplying lubricating oil, replacing parts, cleaning the detection sensor, and cleaning the lens. In particular, it is preferable that the time period in which the level difference remover 100 requests inspection by itself is not during the operating hours of the passenger business, but rather during the night time from the end of the business until the start of the business. As a result, replacement parts or replacement workers can be arranged in advance, maintenance can be performed at the optimal timing and with the minimum number of parts replaced, and while realizing stable operation of the step clearing machine 100, it contributes to reducing maintenance costs. It is possible to improve safety and stable operation.
[第3の実施形態]
 第3の実施形態の段差解消機100cは第1の実施形態の段差解消機100または100aに緊急原点復帰機構560を追加したものである。したがって、図1から図13および図15から図17の図面、および関連の説明は第3の実施形態の段差解消機100cにも当てはまる。
 ただし、第1の実施形態の段差解消機100または段差解消機100aでは上下昇降機構に逆V字型のリンク機構300を用いているが、第3の実施形態の段差解消機100cでは、モータの回転を直線運動に変換して回動面110を上下昇降するものであれば、逆V字型のリンク機構300を用いなくてもよい。また、第1の実施形態の段差解消機100または100aでは伸縮面120をスライド移動させるスライド機構を備えているが、第3の実施形態の段差解消機100cでは、伸縮面120およびスライド機構を備えず、回動面自体を列車乗降口の方向に移動するようにしてもよい。
[Third embodiment]
The level difference eliminating machine 100c of the third embodiment is the same as the level difference eliminating machine 100 or 100a of the first embodiment with an emergency origin return mechanism 560 added thereto. Therefore, the drawings of FIGS. 1 to 13 and 15 to 17 and the related descriptions also apply to the third embodiment of the step clearing machine 100c.
However, in the step remover 100 or step remover 100a of the first embodiment, an inverted V-shaped link mechanism 300 is used for the vertical lifting mechanism, but in the step remover 100c of the third embodiment, the motor The inverted V-shaped link mechanism 300 may not be used as long as the rotating surface 110 is moved up and down by converting rotation into linear motion. Further, the level difference removing machine 100 or 100a of the first embodiment is equipped with a slide mechanism that slides the telescopic surface 120, but the level difference removing machine 100c of the third embodiment is equipped with the telescopic surface 120 and a sliding mechanism. First, the rotating surface itself may be moved in the direction of the train entrance/exit.
 図23は、第3の実施形態の段差解消機100cの制御部500の制御の一例を示す模式的ブロック図である。図23のブロック図では、図14の第1の実施形態の段差解消機100のブロック図に緊急原点復帰機構560が追加されている。
 図24は、第3の実施形態の段差解消機100bの上下昇降機構の駆動部分の構造を示す模式的上面図であり、図25は図24のA-A’部分に相当する緊急原点復帰機構560の断面構造および動作を示す模式的説明図である。
 図24は、第2の実施形態の段差解消機100bの上下昇降機構の駆動部分の構造を示す図19に対して、緊急原点復帰機構560が追加されている。なお、図24にはトルクセンサ575が備えられていないが、第3の実施形態の段差解消機100cにトルクセンサ575と故障予測部570とを備えて、故障予測機能を追加することも可能である。
 図19では、駆動変換機構547と枠体548a,548b、プッシャー駆動部材562、およびプッシャー565は互いに連結されており、駆動変換機構547の直線運動はそのままプッシャー565に伝達される。しかし、図24の第3の実施形態の段差解消機100bでは、プッシャー駆動部材562は円柱形状であって枠体548a,548bを貫通しており、回転が可能である。
Fig. 23 is a schematic block diagram showing an example of control by the control unit 500 of the step-eliminating device 100c of the third embodiment. In the block diagram of Fig. 23, an emergency origin return mechanism 560 is added to the block diagram of the step-eliminating device 100 of the first embodiment of Fig. 14.
Figure 24 is a schematic top view showing the structure of the drive part of the up and down lifting mechanism of the step-eliminating device 100b of the third embodiment, and Figure 25 is a schematic explanatory diagram showing the cross-sectional structure and operation of the emergency origin return mechanism 560 corresponding to the AA' portion of Figure 24.
In Fig. 24, an emergency return-to-origin mechanism 560 is added to Fig. 19 which shows the structure of the drive part of the up-down lifting mechanism of the step-eliminating device 100b of the second embodiment. Although the torque sensor 575 is not provided in Fig. 24, it is possible to provide the step-eliminating device 100c of the third embodiment with the torque sensor 575 and a failure prediction unit 570 to add a failure prediction function.
In Fig. 19, the drive conversion mechanism 547, the frames 548a and 548b, the pusher drive member 562, and the pusher 565 are connected to one another, and the linear motion of the drive conversion mechanism 547 is transmitted directly to the pusher 565. However, in the step eliminating device 100b of the third embodiment shown in Fig. 24, the pusher drive member 562 is cylindrical and passes through the frames 548a and 548b, and is capable of rotation.
 また、第3の実施形態の段差解消機100cではプッシャー565が、プッシャー駆動部材562と交錯する緊急原点復帰機構560の部分で長手方向に直交する半円形状の凹部563を備えている(図25参照)。
 一方、プッシャー駆動部材562は緊急原点復帰機構560の付近で長手方向に直交する面での断面が半円形状になっている。そして、通常状態ではプッシャー駆動部材562の半円形状の部分をプッシャー565の凹部563に係合させることによってプッシャー駆動部材562の直線運動を、プッシャー565を介して逆V字型のリンク機構300またはスライド機構の伸縮面120へ伝達している(図25(a)参照)。
 緊急時には制御部500が図示しないアクチュエータを駆動してプッシャー駆動部材562を180度回転する(図25(b)参照)。すると、プッシャー駆動部材562とプッシャー565との係合が外れて、プッシャー565が後退し、回動面110が水平な位置まで下がる。これによって、段差解消機100cは収納状態に復帰する(図25(c)参照)。
 なお、緊急原点復帰機構560には最大で1000kg程度の負荷荷重が印加される。このため、緊急原点復帰機構560のプッシャー565およびプッシャー駆動部材562には硬度の高いものを使用する必要がある。具体的には、SUS440Cを焼き入れし焼き戻してロックウェルCスケール硬度(HRC)を58以上60以下としたものを使用することが望ましい。
 SKD(合金工具鋼)またはSUJ(高炭素クロム軸受鋼)等の鋼材で焼き入れし硬度を同等にしたものでも使用できるが、雨水等による錆防止のためSUS材(SUS440C)を使用した方が良い。
Further, in the level difference remover 100c of the third embodiment, the pusher 565 is provided with a semicircular recess 563 orthogonal to the longitudinal direction at the portion of the emergency home return mechanism 560 that intersects with the pusher drive member 562 (Fig. 25 reference).
On the other hand, the pusher drive member 562 has a semicircular cross section in the vicinity of the emergency origin return mechanism 560 in a plane orthogonal to the longitudinal direction. In a normal state, by engaging the semicircular portion of the pusher drive member 562 with the recess 563 of the pusher 565, the linear movement of the pusher drive member 562 is controlled via the pusher 565 to the inverted V-shaped link mechanism 300 or This is transmitted to the telescopic surface 120 of the slide mechanism (see FIG. 25(a)).
In an emergency, the control unit 500 drives an actuator (not shown) to rotate the pusher drive member 562 by 180 degrees (see FIG. 25(b)). Then, the engagement between the pusher driving member 562 and the pusher 565 is disengaged, the pusher 565 is moved backward, and the rotating surface 110 is lowered to a horizontal position. As a result, the level difference remover 100c returns to the stored state (see FIG. 25(c)).
Note that a maximum load of about 1000 kg is applied to the emergency home return mechanism 560. Therefore, it is necessary to use materials with high hardness for the pusher 565 and the pusher drive member 562 of the emergency home return mechanism 560. Specifically, it is desirable to use SUS440C that is hardened and tempered to have a Rockwell C scale hardness (HRC) of 58 or more and 60 or less.
It is also possible to use steel materials such as SKD (alloy tool steel) or SUJ (high carbon chromium bearing steel) that have been hardened to the same hardness, but it is better to use SUS material (SUS440C) to prevent rust from rainwater, etc. good.
 以上は、上下昇降機構の駆動部分に緊急原点復帰機構560を追加した場合の動作の説明であるが、スライド駆動部550に、回転軸545、駆動変換機構547、枠体548a、548b、プッシャー駆動部材562、プッシャー565、および緊急原点復帰機構560を追加した場合にもプッシャー駆動部材562を180度回転することによってプッシャー565が後退し、伸縮面120が回動面110に収納される。
 なお、上下昇降機構の駆動部分に緊急原点復帰機構560を追加した場合、およびスライド駆動部550に緊急原点復帰機構560を追加した場合、緊急原点復帰時の移動速度は、周囲に影響を与えない速度であることが望ましい。
The above is an explanation of the operation when the emergency origin return mechanism 560 is added to the drive part of the vertical lifting mechanism. Even when the member 562, pusher 565, and emergency origin return mechanism 560 are added, the pusher 565 is moved back by rotating the pusher drive member 562 by 180 degrees, and the telescopic surface 120 is housed in the rotation surface 110.
In addition, when the emergency return-to-origin mechanism 560 is added to the drive part of the vertical lifting mechanism, and when the emergency return-to-origin mechanism 560 is added to the slide drive section 550, the moving speed at the time of emergency return to origin does not affect the surroundings. Speed is desirable.
(制御部500および記録部510の他の例)
 第1から第3の実施の形態にかかる段差解消機100、段差解消機100a、段差解消機100b、段差解消機100cの制御部500は、AI分析による段差解消機利用者の判別または/および顔認証・形態認証システムを採用してもよい。
 例えば、駅改札において、車椅子またはベビーカ等の利用者を識別、特に、利用頻度の多い人は顔認証を併せて実施してもよい。この場合、これらの利用者に対して、エレベーターの案内を実施することもでき、さらには、段差解消機100の配置エリアへの自動案内も実施することができる。案内は音声および表示機器(LED表示等を含む)で、安全な乗車位置である段差解消機100の配置エリアの車両停車位置へ誘導することができる。
 その結果、駅務員の業務を削減することができ、乗客にも適切なサービスを実施することができる。特に、乗客数の多い駅または主要駅においては、大きな効果を得ることができる。以上のように、本発明にかかる段差解消機100、段差解消機100a、段差解消機100b、段差解消機100cの制御部500においては、総合的判断をする認証アルゴリズムを生成してメンテナンス時期を判断したり、誘導サービスを実施したりできる。
(Other examples of control unit 500 and recording unit 510)
The control unit 500 of the step remover 100, the step remover 100a, the step remover 100b, and the step remover 100c according to the first to third embodiments is capable of identifying and/or facial recognition of the step remover user by AI analysis. An authentication/form authentication system may be adopted.
For example, at a station ticket gate, users of wheelchairs, baby strollers, etc. may be identified, and facial recognition may also be performed, especially for people who frequently use the system. In this case, these users can be guided to the elevator, and furthermore, automatically guided to the area where the step eliminating machine 100 is located. Guidance can be provided by audio and display devices (including LED displays, etc.) to guide the vehicle to the vehicle stop position in the area where the bump remover 100 is located, which is a safe boarding position.
As a result, the work of station staff can be reduced and passengers can be provided with appropriate services. Particularly, great effects can be obtained at stations with a large number of passengers or at major stations. As described above, in the control unit 500 of the level difference remover 100, level difference remover 100a, level difference remover 100b, and level difference remover 100c according to the present invention, an authentication algorithm that makes a comprehensive judgment is generated to determine the maintenance time. or provide guidance services.
 本発明においては、プラットホーム200が「プラットホーム」に相当し、段差解消機100、100a、100b、100cが「段差解消機」に相当し、回動面110が「回動面」に相当し、伸縮面120が「伸縮面」に相当し、逆V字型のリンク機構300が「逆V字型のリンク機構」に相当し、駆動部540、回転軸545、駆動変換機構547、枠体548a,548b、プッシャー駆動部材562、およびプッシャー565が「上下昇降機構」に相当し、スライド駆動部550が「スライド機構」に相当し、接触センサー520および/または距離センサー530および/または近接スイッチが「検知センサー」に相当し、制御部500が「制御部」に相当し、固定軸315が「固定軸」に相当し、可動軸335が「可動軸」に相当し、リンク軸325が「リンク軸」に相当し、逆V字型のリンク機構300と回動面110との接続の解除が「メンテナンス機構」に相当し、回動軸115が「メンテナンス回転機構」に相当し、駆動変換機構547が「駆動変換機構」に相当し、故障予測部570が「故障予測部」に相当し、回転軸545が「回転軸」に相当し、トルクセンサ575が「トルクセンサ」に相当し、緊急原点復帰機構560が「緊急原点復帰機構」に相当し、プッシャー565が「プッシャー」に相当し、プッシャー駆動部材562が「プッシャー駆動部材」に相当する。 In the present invention, the platform 200 corresponds to a "platform", the level difference removers 100, 100a, 100b, and 100c correspond to a "level difference remover", the rotating surface 110 corresponds to a "rotating surface", and the The surface 120 corresponds to an "expandable surface", the inverted V-shaped link mechanism 300 corresponds to an "inverted V-shaped link mechanism", and includes a drive unit 540, a rotating shaft 545, a drive conversion mechanism 547, a frame 548a, 548b, the pusher drive member 562, and the pusher 565 correspond to a "vertical elevating mechanism," the slide drive section 550 corresponds to a "slide mechanism," and the contact sensor 520 and/or distance sensor 530 and/or proximity switch correspond to a "detection" mechanism. The control unit 500 corresponds to a “control unit”, the fixed axis 315 corresponds to a “fixed axis”, the movable axis 335 corresponds to a “movable axis”, and the link axis 325 corresponds to a “link axis”. , the disconnection of the inverted V-shaped link mechanism 300 and the rotating surface 110 corresponds to a "maintenance mechanism," the rotating shaft 115 corresponds to a "maintenance rotating mechanism," and the drive conversion mechanism 547 corresponds to a "maintenance rotating mechanism." It corresponds to a "drive conversion mechanism", the failure prediction unit 570 corresponds to a "failure prediction unit", the rotating shaft 545 corresponds to a "rotating shaft", the torque sensor 575 corresponds to a "torque sensor", and the emergency home return The mechanism 560 corresponds to an "emergency home return mechanism," the pusher 565 corresponds to a "pusher," and the pusher drive member 562 corresponds to a "pusher drive member."
 本発明の好ましい一実施の形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施の形態が他になされることは理解されよう。さらに、第1から第3の実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。 A preferred embodiment of the present invention is as described above, but the present invention is not limited thereto. It will be appreciated that various other embodiments may be made without departing from the spirit and scope of the invention. Further, in the first to third embodiments, the functions and effects of the configuration of the present invention are described, but these functions and effects are merely examples and do not limit the present invention.
 100、100a、100b、100c    段差解消機
 110    回動面
 120    伸縮面
 200    プラットホーム
 300    逆V字型のリンク機構
 315    固定軸
 325    リンク軸
 335    可動軸
 500    制御部
 510    記録部
 520    接触センサー
 530    距離センサー
 540    駆動部
 545,545a    回転軸
 547    駆動変換機構
 548a、548b    枠体
 550    スライド駆動部
 562    プッシャー駆動部材
 565    プッシャー
 560    緊急原点復帰機構
 570    故障予測部
 575    トルクセンサ
 
 
100, 100a, 100b, 100c Level remover 110 Rotating surface 120 Telescopic surface 200 Platform 300 Inverted V-shaped link mechanism 315 Fixed shaft 325 Link shaft 335 Movable shaft 500 Control section 510 Recording section 520 Contact sensor 530 Distance sensor 540 Drive Parts 545, 545a Rotating shaft 547 Drive conversion mechanism 548a, 548b Frame body 550 Slide drive unit 562 Pusher drive member 565 Pusher 560 Emergency home return mechanism 570 Failure prediction unit 575 Torque sensor

Claims (14)

  1.  プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、
     前記プラットホームの高さに固定された上部面と、
     前記上部面の前記列車乗降口側に回動可能に軸支された回動面と、
     前記回動面にスライド可能に取り付けられた伸縮面と、
     逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、
     前記伸縮面をスライド移動させるスライド機構と、
     前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、
     前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含み、
     前記逆V字型のリンク機構は、前記列車乗降口側の端部に固定された固定軸と、前記固定軸と同じ高さに位置し、前記上下昇降機構により前記固定軸との距離を制御可能な可動軸と、逆V字の頂点に位置し前記回動面を支えるリンク軸とを備え、前記固定軸、前記可動軸、および前記リンク軸は回動可能であって、
     前記制御部は、
     前記検知センサーの複数のセンサーのうち少なくとも1のセンサーからの情報に応じて前記上下昇降機構を駆動し始めた後、または駆動しつつ、前記スライド機構を駆動する、段差解消機。
    A level difference eliminating machine that is buried in a platform and eliminates the gap and level difference between the platform and the train entrance,
    an upper surface fixed at the height of the platform;
    a rotation surface rotatably supported on the train entrance/exit side of the upper surface;
    a telescoping surface slidably attached to the rotating surface;
    a vertical lifting mechanism that lifts and lowers the rotating surface using an inverted V-shaped link mechanism;
    a slide mechanism that slides the telescopic surface;
    a detection sensor consisting of a plurality of sensors provided on the rotation surface or the expansion and contraction surface;
    A control unit that controls the vertical lifting mechanism, the sliding mechanism, and the detection sensor,
    The inverted V-shaped link mechanism is located at the same height as a fixed shaft fixed to an end on the train entrance/exit side, and the distance from the fixed shaft is controlled by the vertical lifting mechanism. a movable shaft, and a link shaft located at the apex of an inverted V-shape and supporting the rotating surface, the fixed shaft, the movable shaft, and the link shaft being rotatable,
    The control unit includes:
    The level difference removing machine is configured to drive the slide mechanism after or while driving the vertical lifting mechanism according to information from at least one of the plurality of sensors of the detection sensor.
  2.  前記可動軸と前記リンク軸との距離が前記固定軸と前記リンク軸との距離の1.5倍以上2.5倍以下である、請求項1に記載の段差解消機。 The step eliminating machine according to claim 1, wherein the distance between the movable shaft and the link shaft is 1.5 times or more and 2.5 times or less the distance between the fixed shaft and the link shaft.
  3.  前記伸縮面の先端の高さを、列車の到着時には前記列車乗降口の床の高さより低くなり、列車の到着後所定時間が経過すると前記列車乗降口の床の高さより高くなるよう、前記上下昇降機構を制御する、請求項1記載の段差解消機。 The height of the tip of the extensible surface is adjusted so that the height of the tip of the extensible surface is lower than the floor height of the train entrance/exit when the train arrives, and becomes higher than the floor height of the train entrance/exit after a predetermined time has elapsed after the arrival of the train. The level difference removing machine according to claim 1, which controls a lifting mechanism.
  4.  前記上下昇降機構は、
     メンテナンス機構をさらに含み、
     前記メンテナンス機構は、メンテナンスの場合に、前記回動面を90度近くまで回転できるメンテナンス回転機構を含む、請求項1記載の段差解消機。
    The vertical lifting mechanism is
    further includes a maintenance mechanism;
    2. The level difference removing machine according to claim 1, wherein the maintenance mechanism includes a maintenance rotation mechanism that can rotate the rotation surface up to nearly 90 degrees in case of maintenance.
  5.  前記上下昇降機構および/または前記スライド機構の駆動部は、台形ねじまたはボールねじを用いる、請求項1記載の段差解消機。 The level difference removing machine according to claim 1, wherein the driving section of the vertically raising and lowering mechanism and/or the sliding mechanism uses a trapezoidal screw or a ball screw.
  6.  請求項1記載の段差解消機が、複数並列されて埋設された、プラットホーム。 A platform on which multiple step-eliminating devices according to claim 1 are buried in parallel.
  7.  プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、
     回動可能に軸支された回動面と、
     前記回動面を上下昇降する上下昇降機構と、
     前記回動面に設けられた複数のセンサーからなる検知センサーと、
     前記上下昇降機構および前記検知センサーを制御する制御部と、
     前記上下昇降機構の故障を予測する故障予測部と、を含み、
     前記上下昇降機構はモータの回転をねじにより直線運動に変換する駆動変換機構を備え、前記駆動変換機構の回転軸にはトルクセンサが貼着され、
     前記故障予測部は前記トルクセンサで測定した時系列のトルクに基づいてトルクの時間変化を予測し、実測値と予測値との差または予測値に対する実測値の比が所定の範囲を超える場合、または時系列のトルクの実測値と初期値との差または初期値に対する実測値の比が所定の範囲を超える場合に、前記上下昇降機構が故障する可能性が高いと判断する、段差解消機。
    A level difference eliminating machine that is buried in a platform and eliminates the gap and level difference between the platform and the train entrance,
    a rotation surface rotatably supported;
    a vertical lifting mechanism that lifts and lowers the rotating surface;
    a detection sensor consisting of a plurality of sensors provided on the rotating surface;
    a control unit that controls the vertical lifting mechanism and the detection sensor;
    a failure prediction unit that predicts a failure of the vertical lifting mechanism;
    The vertical elevating mechanism includes a drive conversion mechanism that converts rotation of a motor into linear motion using a screw, and a torque sensor is attached to a rotating shaft of the drive conversion mechanism,
    The failure prediction unit predicts the temporal change in torque based on the time-series torque measured by the torque sensor, and when the difference between the actual measurement value and the predicted value or the ratio of the actual measurement value to the predicted value exceeds a predetermined range, Alternatively, the level difference eliminating machine determines that the vertical lifting mechanism is likely to malfunction when the difference between the actual measured torque value and the initial value in the time series or the ratio of the actual measured value to the initial value exceeds a predetermined range.
  8.  前記故障予測部は、過去所定の日数における予測値に対する実測値の比の平均値が1.05倍以上の場合または0.95倍以下の場合に警報を出し、前記平均値が1.1倍以上の場合に点検を指示する、請求項7に記載の段差解消機。 The failure prediction unit issues an alarm when the average value of the ratio of the measured value to the predicted value over a predetermined number of days in the past is 1.05 times or more or 0.95 times or less, and when the average value is 1.1 times. The level difference removing machine according to claim 7, wherein an inspection is instructed in the above cases.
  9.  前記トルクの時間変化の予測は、LSTM(Long Short Term Memory)を用い、測定した時系列のトルク値を前記LSTMに入力することによって行われる、請求項7に記載の段差解消機。 The level difference removing machine according to claim 7, wherein the prediction of the temporal change in the torque is performed by using a LSTM (Long Short Term Memory) and inputting the measured torque value in a time series to the LSTM.
  10.  プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、
     回動可能に軸支された回動面と、
     前記回動面にスライド可能に取り付けられた伸縮面と、
     逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、
     前記伸縮面をスライド移動させるスライド機構と、
     前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、
     前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含み、
     前記上下昇降機構および前記スライド機構はそれぞれ、モータの回転をねじにより直線運動に変換する駆動変換機構と、通常は前記直線運動を前記逆V字型のリンク機構または前記伸縮面に伝達し、緊急時には前記直線運動の前記逆V字型のリンク機構または前記伸縮面への伝達を解除し、段差解消機を収納状態に復帰させる緊急原点復帰機構とを備える、段差解消機。
    A level difference eliminating machine that is buried in a platform and eliminates the gap and level difference between the platform and the train entrance,
    a rotation surface rotatably supported;
    a telescoping surface slidably attached to the rotating surface;
    a vertical lifting mechanism that lifts and lowers the rotating surface using an inverted V-shaped link mechanism;
    a slide mechanism that slides the telescopic surface;
    a detection sensor consisting of a plurality of sensors provided on the rotation surface or the expansion and contraction surface;
    A control unit that controls the vertical lifting mechanism, the sliding mechanism, and the detection sensor,
    The vertical lifting mechanism and the sliding mechanism each include a drive conversion mechanism that converts the rotation of a motor into linear motion using a screw, and a drive conversion mechanism that normally transmits the linear motion to the inverted V-shaped link mechanism or the telescopic surface. A level difference removing machine comprising an emergency origin return mechanism that sometimes releases the transmission of the linear motion to the inverted V-shaped link mechanism or the telescopic surface and returns the level difference removing machine to a stored state.
  11.  前記緊急原点復帰機構は、長手方向に直交する半円形状の凹部を備えた柱状のプッシャーと前記プッシャーの前記長手方向に直交する円柱形のプッシャー駆動部材とを備え、前記プッシャー駆動部材は一部の断面が半円形状であって、
     前記プッシャー駆動部材の半円形状の部分を前記凹部に係合させることによって前記プッシャー駆動部材の直線運動を、前記プッシャーを介して前記逆V字型のリンク機構または前記伸縮面へ伝達し、緊急時には前記プッシャー駆動部材を回転することによって前記プッシャー駆動部材の前記凹部への係合を解除する、請求項10に記載の段差解消機。
    The emergency origin return mechanism includes a columnar pusher having a semicircular recess that is perpendicular to the longitudinal direction, and a columnar pusher drive member that is orthogonal to the longitudinal direction of the pusher, and the pusher drive member partially has a semicircular cross section,
    By engaging the semicircular portion of the pusher drive member with the recess, the linear motion of the pusher drive member is transmitted to the inverted V-shaped link mechanism or the telescopic surface via the pusher, and 11. The level difference removing machine according to claim 10, wherein the pusher drive member is sometimes disengaged from the recess by rotating the pusher drive member.
  12.  プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機であって、
     回動可能に軸支された回動面と、
     前記回動面にスライド可能に取り付けられた伸縮面と、
     逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、
     前記伸縮面をスライド移動させるスライド機構と、
     前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、
     前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含み、
     前記検知センサーは超音波方式の距離センサーを含み、前記距離センサーは温度補正機能を備える、段差解消機。
    A level difference eliminating machine that is buried in a platform and eliminates the gap and level difference between the platform and the train entrance,
    a rotation surface rotatably supported;
    a telescoping surface slidably attached to the rotating surface;
    a vertical lifting mechanism that lifts and lowers the rotating surface using an inverted V-shaped link mechanism;
    a slide mechanism that slides the telescopic surface;
    a detection sensor consisting of a plurality of sensors provided on the rotation surface or the expansion and contraction surface;
    A control unit that controls the vertical lifting mechanism, the sliding mechanism, and the detection sensor,
    The detection sensor includes an ultrasonic distance sensor, and the distance sensor has a temperature correction function.
  13.  請求項1または12記載の段差解消機と、
     駅改札に設けられた撮影部と、
     前記撮影部の映像から、車椅子またはベビーカを伴った、段差解消機を必要とする利用者を識別する識別部と、
     前記識別された利用者に対して、音声および/または表示機器により前記段差解消機の配置エリアへ誘導を行う誘導部と、を含む、利用者誘導介助システム。
    A step eliminating device according to claim 1 or 12,
    There is a photo booth at the station ticket gate,
    an identification unit that identifies a user who is in a wheelchair or a stroller and needs a step-lift from the image captured by the imaging unit;
    a guidance unit that guides the identified user to an area where the step-eliminating device is located by voice and/or a display device.
  14.  プラットホームに埋設され、列車乗降口との間の隙間及び段差を解消する段差解消機と、
     駅改札に設けられた撮影部と、
     前記撮影部の映像から、車椅子またはベビーカを伴った、段差解消機を必要とする利用者を識別する識別部と、
     前記識別された利用者に対して、音声および/または表示機器により前記段差解消機の配置エリアへ誘導を行う誘導部と、を含む、利用者誘導介助システムであって、
     前記段差解消機は、
     回動可能に軸支された回動面と、
     前記回動面にスライド可能に取り付けられた伸縮面と、
     逆V字型のリンク機構により前記回動面を上下昇降する上下昇降機構と、
     前記伸縮面をスライド移動させるスライド機構と、
     前記回動面または前記伸縮面に設けられた複数のセンサーからなる検知センサーと、
     前記上下昇降機構、前記スライド機構および前記検知センサーを制御する制御部と、を含む、利用者誘導介助システム。
     
     
    A level difference eliminating machine that is buried in the platform and eliminates the gap and level difference between the platform and the train entrance;
    A photography department set up at the station ticket gate,
    an identification unit that identifies a user who is accompanied by a wheelchair or baby stroller and who requires a step remover from the image taken by the imaging unit;
    A user guidance assistance system, comprising: a guidance unit that guides the identified user to the placement area of the step remover using audio and/or display equipment,
    The step removing machine is
    a rotation surface rotatably supported;
    a telescopic surface slidably attached to the rotating surface;
    a vertical lifting mechanism that lifts and lowers the rotating surface using an inverted V-shaped link mechanism;
    a slide mechanism that slides the telescopic surface;
    a detection sensor consisting of a plurality of sensors provided on the rotation surface or the expansion and contraction surface;
    A user guidance and assistance system, comprising: a control unit that controls the vertical lifting mechanism, the sliding mechanism, and the detection sensor.

PCT/JP2023/009429 2022-09-21 2023-03-10 Height difference reducing device, platform, and user guidance assistance system WO2024062652A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2022150696A JP7250295B1 (en) 2022-09-21 2022-09-21 Steps and platforms
JP2022-150696 2022-09-21
JP2023-020726 2023-02-14
JP2023-020724 2023-02-14
JP2023-020725 2023-02-14
JP2023020726 2023-02-14
JP2023020724 2023-02-14
JP2023020725 2023-02-14
JP2023037824A JP2024044978A (en) 2022-09-21 2023-03-10 Step-eliminating device and user guidance and assistance system
JP2023-037824 2023-03-10

Publications (1)

Publication Number Publication Date
WO2024062652A1 true WO2024062652A1 (en) 2024-03-28

Family

ID=90454278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009429 WO2024062652A1 (en) 2022-09-21 2023-03-10 Height difference reducing device, platform, and user guidance assistance system

Country Status (1)

Country Link
WO (1) WO2024062652A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920235A (en) * 1995-07-05 1997-01-21 East Japan Railway Co Train getting on and off assisting device
JP2003200823A (en) * 2001-12-28 2003-07-15 Shigekatsu Hanai Auxiliary device for wheel chair to get on and off train or the like
JP2005225310A (en) * 2004-02-12 2005-08-25 Mitsubishi Heavy Ind Ltd Device for adjusting gap between vehicle and platform
JP2008071181A (en) * 2006-09-14 2008-03-27 Toshiba Corp Ticket vending machine, ticket gate machine, and station service system
JP2012185145A (en) * 2011-02-15 2012-09-27 Shikoku Res Inst Inc Measuring apparatus
JP2014045610A (en) * 2012-08-28 2014-03-13 Chugoku Electric Power Co Inc:The Transmission line snow and ice accretion monitoring system and transmission line snow and ice accretion monitoring device
KR101427712B1 (en) * 2013-02-08 2014-08-08 현대엔지니어링 주식회사 Getting on and off facilities of station for public transportation system
KR101937137B1 (en) * 2018-04-26 2019-01-11 (주)에이.티.아이 Safety Foot Board of Subway Platform
KR102000692B1 (en) * 2019-02-25 2019-07-17 주식회사 씨디에이 A safety footrest apparatus for a train that enables forced folding of safety footrests in an emergency
JP2020131688A (en) * 2019-02-26 2020-08-31 株式会社日本製鋼所 Anomaly detection method of molding device and molding device
JP2021022074A (en) * 2019-07-25 2021-02-18 ファナック株式会社 Failure prediction system
JP2021041827A (en) * 2019-09-11 2021-03-18 西日本旅客鉄道株式会社 Gap step reduction system
JP2021179802A (en) * 2020-05-13 2021-11-18 日本信号株式会社 Boarding/alighting support guidance system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920235A (en) * 1995-07-05 1997-01-21 East Japan Railway Co Train getting on and off assisting device
JP2003200823A (en) * 2001-12-28 2003-07-15 Shigekatsu Hanai Auxiliary device for wheel chair to get on and off train or the like
JP2005225310A (en) * 2004-02-12 2005-08-25 Mitsubishi Heavy Ind Ltd Device for adjusting gap between vehicle and platform
JP2008071181A (en) * 2006-09-14 2008-03-27 Toshiba Corp Ticket vending machine, ticket gate machine, and station service system
JP2012185145A (en) * 2011-02-15 2012-09-27 Shikoku Res Inst Inc Measuring apparatus
JP2014045610A (en) * 2012-08-28 2014-03-13 Chugoku Electric Power Co Inc:The Transmission line snow and ice accretion monitoring system and transmission line snow and ice accretion monitoring device
KR101427712B1 (en) * 2013-02-08 2014-08-08 현대엔지니어링 주식회사 Getting on and off facilities of station for public transportation system
KR101937137B1 (en) * 2018-04-26 2019-01-11 (주)에이.티.아이 Safety Foot Board of Subway Platform
KR102000692B1 (en) * 2019-02-25 2019-07-17 주식회사 씨디에이 A safety footrest apparatus for a train that enables forced folding of safety footrests in an emergency
JP2020131688A (en) * 2019-02-26 2020-08-31 株式会社日本製鋼所 Anomaly detection method of molding device and molding device
JP2021022074A (en) * 2019-07-25 2021-02-18 ファナック株式会社 Failure prediction system
JP2021041827A (en) * 2019-09-11 2021-03-18 西日本旅客鉄道株式会社 Gap step reduction system
JP2021179802A (en) * 2020-05-13 2021-11-18 日本信号株式会社 Boarding/alighting support guidance system

Similar Documents

Publication Publication Date Title
US11932514B2 (en) Elevator component inspection systems
US11518655B2 (en) Elevator component inspection systems
SE520075C2 (en) Procedure for clamp protection devices and apparatus for carrying out the method
CN109896392B (en) Continuous monitoring of rail and ride quality of elevator systems
CN110015600B (en) Automatic sequencing elevator inspection using camera presets
US20170015521A1 (en) Method and device for monitoring the movement of at least one door, in particular an elevator door
CN107161822B (en) Detector and measuring method for rapidly measuring distance between lift car and well wall
CN117185080A (en) System and method for enhancing elevator positioning
US11034545B2 (en) Method and system for brake testing an elevator car
WO2024062652A1 (en) Height difference reducing device, platform, and user guidance assistance system
NL2025618B1 (en) Rail transit platform screen door system and use method thereof
CN113401764A (en) Elevator inspection system having a robotic platform configured to inspect components in a hoistway
CN116588774A (en) Freight elevator service life prediction device and method
KR20190043684A (en) System for Managing Tunnel Using Movable CCTV
JP2024044978A (en) Step-eliminating device and user guidance and assistance system
JP2024044888A (en) Step lifts and platforms
JP7297101B2 (en) Elevator and elevator control method
EP3647248A1 (en) Elevator car leveling sensor
CN209850935U (en) Tunnel inspection robot
EP3617113A1 (en) Last-minute hall call request to a departing cab using gesture
JP3996492B2 (en) Remote maintenance system for parking equipment
CN111911211A (en) Visual automatic supporting walking trolley for shield overlapping tunnel construction and construction method
CN219217162U (en) Elevator installation safety detection device
CN111572591B (en) Automatic flaw detection robot system for train wheels and automatic stopping method thereof
Matsika et al. Accessible Rail Station Platform Independent Gap Filler for Persons With Reduced Mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867784

Country of ref document: EP

Kind code of ref document: A1