JP2012185145A - Measuring apparatus - Google Patents
Measuring apparatus Download PDFInfo
- Publication number
- JP2012185145A JP2012185145A JP2011146944A JP2011146944A JP2012185145A JP 2012185145 A JP2012185145 A JP 2012185145A JP 2011146944 A JP2011146944 A JP 2011146944A JP 2011146944 A JP2011146944 A JP 2011146944A JP 2012185145 A JP2012185145 A JP 2012185145A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- rod
- valve stem
- eddy current
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Measurement Of Optical Distance (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
本願発明は、棒体の表面に近接して配置された非接触距離センサによって該センサと棒体との間隔の変化を検出しこれに基づいて上記棒体の作動状態を測定する測定装置に関するものである。 The present invention relates to a measuring apparatus for detecting a change in the interval between the sensor and the rod body by a non-contact distance sensor arranged close to the surface of the rod body and measuring the operating state of the rod body based on the change. It is.
電動弁においてその健全性を診断する際における必要情報の一つに、弁棒の移動に関する情報がある。即ち、弁棒は、モータ側の回転力を弁体の開閉駆動力として伝達するものであって、その移動に関する情報は、弁棒の移動速度、移動量、移動時間、移動時期等を利用した電動弁の機能や劣化に関する事項の診断を行う際に重要な要素となる。 One of the necessary information for diagnosing the soundness of an electric valve is information related to the movement of the valve stem. In other words, the valve stem transmits the rotational force on the motor side as the opening / closing driving force of the valve body, and information on its movement uses the moving speed, moving amount, moving time, moving timing, etc. of the valve stem. This is an important factor when diagnosing matters related to the function and deterioration of the motorized valve.
ところで、このような弁棒の変位に関する情報を取得する手法として、例えば、測定棒式取得手法(特許文献1及び特許文献2参照)とか、ワイヤ式取得手法(特許文献3参照)が提案されている。
By the way, as a method for acquiring information related to such displacement of the valve stem, for example, a measuring rod type acquisition method (see
測定棒式取得手法は、弁棒の頭頂部に、該弁棒の軸方向に移動可能に配置された測定棒の一端を接触させ、前記弁棒の変位情報(移動方向、移動速度、移動量等)を、該弁棒の動きに追従する前記測定棒の変位に基づいて取得するように構成されている。 The measuring rod type acquisition method is such that one end of a measuring rod arranged so as to be movable in the axial direction of the valve stem is brought into contact with the top of the valve stem, and displacement information (moving direction, moving speed, moving amount) of the valve rod. Etc.) is obtained based on the displacement of the measuring rod following the movement of the valve stem.
ワイヤ式取得手法は、ワイヤの一端を弁棒の頭頂部に固定するとともに、他端を、弁棒ハウジングに取り付けたエンコーダのプーリに連結し、弁棒の変位に追従する前記ワイヤの変位量を前記プーリの回転量として前記エンコーダで検出し、この検出値を弁棒の変位量に対応する信号として出力するように構成されている。 In the wire acquisition method, one end of the wire is fixed to the top of the valve stem, and the other end is connected to the pulley of the encoder attached to the valve stem housing, and the amount of displacement of the wire that follows the displacement of the valve stem is determined. The rotation amount of the pulley is detected by the encoder, and the detected value is output as a signal corresponding to the displacement amount of the valve stem.
ところが、上記各取得手法においては、弁棒の移動情報を取得するための測定作業に際し、電動弁の一部を開放して、測定棒とかワイヤあるいは距離測定手段を設置する必要があることから、その設置作業には電動弁に関する専門技術をもった作業者を必要とするなど、測定棒等の設置作業そのものに制約がある。 However, in each of the above acquisition methods, it is necessary to open a part of the motor-operated valve and install a measuring rod, a wire, or a distance measuring means in the measurement work for acquiring the movement information of the valve rod. There are restrictions on the installation work of the measuring rods and the like, such as requiring an operator with expertise in the motorized valve for the installation work.
また、このように電動弁の一部を開放するとその開放によって電動弁の機能が停止されるため、該電動弁を備えた配管系の稼動の確保という観点から、測定作業に時期的な制約がある。 In addition, when a part of the motor-operated valve is opened in this manner, the function of the motor-operated valve is stopped by opening the motor-operated valve.Therefore, the measurement work is time-constrained from the viewpoint of ensuring the operation of the piping system equipped with the motor-operated valve. is there.
これら問題点は、この情報取得が弁棒の先端部分の移動情報を取得するために弁棒カバーを開放することに起因するものと考えられる。 It is considered that these problems are caused by opening the valve stem cover in order to acquire movement information of the tip portion of the valve stem.
従って、係る観点からすれば、電動弁の分解、即ち、弁棒カバーを開放することなく電動弁の外部から該弁棒の移動に関する情報を取得するように構成することが想到される。このような測定手法の一例として、特許文献4には、弁棒の外部露出部分の表面にマーキング点を設け、このマーキング点を、電動弁に非接触状態で配置した撮影装置で撮影し、この撮影装置から出力された信号を画像処理することで弁棒の移動に関する情報を取得する技術が提案されている。 Therefore, from this point of view, it is conceivable that the information regarding the movement of the valve stem is acquired from the outside of the motor-operated valve without disassembling the motor-operated valve, that is, without opening the valve stem cover. As an example of such a measurement technique, Patent Document 4 discloses that a marking point is provided on the surface of the externally exposed portion of the valve stem, and this marking point is photographed with a photographing device arranged in a non-contact state on the motorized valve. There has been proposed a technique for acquiring information related to movement of a valve stem by performing image processing on a signal output from a photographing apparatus.
このような「撮像の解析」による弁棒の移動情報の取得手法によれば、電動弁を分解することなく情報を取得できることから、上述のような取得手法における問題が可及的に解消され、この点において極めて有用な技術と考えられる。 According to such a method for acquiring movement information of the valve stem by “imaging analysis”, since the information can be acquired without disassembling the motor-operated valve, the problem in the acquisition method as described above is solved as much as possible. This is considered to be an extremely useful technique.
しかし、その一方で、カメラと被写体である弁棒との距離あるいはこれら両者間の相対位置の設定等のセッティングにおいて、照明、取付スペースの確保、周辺部との干渉回避のために手間を必要とする。また、撮影装置での撮影によって情報を取得するものであることから、レンズ映像に歪が発生する場合とか、弁棒が微振動する場合には測定精度が低下する恐れがある。 However, on the other hand, in setting such as setting the distance between the camera and the valve stem that is the subject or the relative position between them, it takes time and effort to ensure illumination, secure installation space, and avoid interference with the surrounding area. To do. In addition, since information is acquired by photographing with the photographing device, there is a risk that measurement accuracy may be reduced when distortion occurs in the lens image or when the valve stem slightly vibrates.
そこで本願発明は、棒体の変位を、測定時期等の制約を受けることなく、高精度で確実に測定し得るようにした測定装置を提供することを目的としてなされたものである。 SUMMARY OF THE INVENTION The present invention has been made with the object of providing a measuring apparatus capable of reliably measuring the displacement of a rod body with high accuracy without being restricted by the measurement timing or the like.
本願発明では、上記課題を解決するための具体的手段として、以下のような特有の構成を採用している。 In the present invention, the following specific configuration is adopted as specific means for solving the above-described problems.
本願の第1の発明に係る測定装置では、高周波磁界を発生するコイルを備えた渦電流センサを、軸方向へ移動する導電性の棒体の表面に対して非接触状態で対向配置し、上記棒体と上記渦電流センサとの距離の変化や棒体の形状変化に応じて変化する上記コイルのインピーダンス又は該インピーダンスに対応する物理量を測定することを特徴としている。 In the measuring apparatus according to the first invention of the present application, an eddy current sensor including a coil that generates a high-frequency magnetic field is disposed to face the surface of a conductive rod that moves in an axial direction in a non-contact state, and It is characterized in that the impedance of the coil that changes in accordance with a change in the distance between the rod and the eddy current sensor or a change in the shape of the rod or a physical quantity corresponding to the impedance is measured.
ここで、上記棒体と渦電流センサとの距離の変化は、該棒体の表面とこれに対向する渦電流センサとの距離の変化(即ち、棒体の径方向への変化)であって、例えば、棒体がその径方向に振動し渦電流センサとの距離が変化する場合とか、該棒体の表面にネジが刻設されており、棒体の軸方向への移動に伴って、そのネジ山の凹凸に対応して棒体と渦電流センサとの距離が変化する場合である。 Here, the change in the distance between the rod and the eddy current sensor is a change in the distance between the surface of the rod and the eddy current sensor facing the surface (that is, a change in the radial direction of the rod). For example, when the rod body vibrates in the radial direction and the distance to the eddy current sensor changes, or the screw is engraved on the surface of the rod body, and along with the movement of the rod body in the axial direction, This is a case where the distance between the rod and the eddy current sensor changes corresponding to the unevenness of the thread.
なお、このような棒体の本来的な作動状態とか、特定の機能を発揮するための形状に起因するものではないが、距離が変化する原因となるものとして、例えば、棒体が曲がっており、その軸方向への移動に伴って棒体と渦電流センサとの距離が変化する場合とか、棒体がその移動方向に対して傾いた状態で支持され、その軸方向への移動に伴って棒体と渦電流センサとの距離が変化する場合等がある。 In addition, although it does not result from the original operating state of such a rod or the shape for exhibiting a specific function, for example, the rod is bent as a cause of changing the distance. When the distance between the rod body and the eddy current sensor changes with the movement in the axial direction, or the rod body is supported in an inclined state with respect to the movement direction, and with the movement in the axial direction In some cases, the distance between the rod and the eddy current sensor changes.
本願の第2の発明に係る測定装置では、軸方向へ移動する棒体の表面に対して非接触状態で対向配置されて該表面との間の距離の変化を検出する非接触距離センサを備え、該非接触距離センサの検出信号に基づいて上記棒体の作動状態を測定することを特徴としている。 The measuring apparatus according to the second invention of the present application includes a non-contact distance sensor that is disposed so as to face the surface of the rod body that moves in the axial direction in a non-contact state and detects a change in the distance to the surface. The operating state of the rod is measured based on the detection signal of the non-contact distance sensor.
ここで、上記棒体と非接触距離センサとの距離の変化は、該棒体の表面とこれに対向する非接触距離センサとの距離の変化(即ち、棒体の径方向への変化)であって、例えば、棒体がその径方向に振動し非接触距離センサとの距離が変化する場合とか、該棒体の表面にネジが刻設されており、棒体の軸方向への移動に伴って、そのネジ山の凹凸に対応して棒体と非接触距離センサとの距離が変化する場合である。 Here, the change in the distance between the rod and the non-contact distance sensor is the change in the distance between the surface of the rod and the non-contact distance sensor facing the surface (that is, the change in the radial direction of the rod). For example, when the rod body vibrates in the radial direction and the distance from the non-contact distance sensor changes, screws are engraved on the surface of the rod body, and the rod body moves in the axial direction. Along with this, the distance between the rod and the non-contact distance sensor changes corresponding to the unevenness of the thread.
また、この他に、棒体と非接触距離センサとの距離が変化する原因となるものとして、例えば、棒体に曲りがある場合とか、棒体がその移動方向に対して傾いた状態で支持されているような場合がある。 In addition to this, as a cause of the change in the distance between the rod body and the non-contact distance sensor, for example, when the rod body is bent or the rod body is supported in a state of being inclined with respect to the moving direction. It may be like that.
本願の第3の発明に係る測定装置では、上記第2の発明に係る測定装置において、上記非接触距離センサを、高周波磁界を発生するコイルを備えた渦電流センサで構成し、上記棒体との距離の変化や該棒体の形状変化に応じて変化する上記コイルのインピーダンス又は該インピーダンスに対応する物理量に基づいて上記棒体の作動状態を測定することを特徴としている。 In the measuring apparatus according to the third invention of the present application, in the measuring apparatus according to the second invention, the non-contact distance sensor is constituted by an eddy current sensor including a coil that generates a high-frequency magnetic field, and the rod and The operating state of the rod body is measured based on the impedance of the coil that changes in accordance with the change in the distance of the rod or the shape change of the rod body or a physical quantity corresponding to the impedance.
本願の第4の発明に係る測定装置では、上記第2の発明に係る測定装置において、上記非接触距離センサを、電界内の静電容量の変化を検出する静電容量センサで構成し、上記棒体との距離の変化や該棒体の形状変化に応じて変化する静電容量値に基づいて上記棒体の作動状態を測定することを特徴としている。 In the measurement apparatus according to the fourth invention of the present application, in the measurement apparatus according to the second invention, the non-contact distance sensor is constituted by a capacitance sensor that detects a change in capacitance in an electric field, and The operating state of the rod is measured based on a capacitance value that changes in accordance with a change in the distance from the rod and a change in the shape of the rod.
本願の第5の発明に係る測定装置では、上記第2の発明に係る測定装置において、上記非接触距離センサを、超音波の送受信機能を備えた超音波センサで構成し、該超音波センサから送信される超音波の該超音波センサと上記棒体の表面との間の往復伝播時間に基づいて上記棒体の作動状態を測定することを特徴としている。 In the measuring apparatus according to the fifth invention of the present application, in the measuring apparatus according to the second invention, the non-contact distance sensor is constituted by an ultrasonic sensor having an ultrasonic transmission / reception function, and the ultrasonic sensor The operating state of the bar is measured based on a reciprocating propagation time between the ultrasonic sensor of the transmitted ultrasonic wave and the surface of the bar.
本願の第6の発明に係る測定装置では、上記第2の発明に係る測定装置において、上記非接触距離センサを、レーザ光の送受光機能を備えたレーザセンサで構成し、該レーザセンサから発信されるレーザ光の該レーザセンサと上記棒体の表面との間の往復時間に基づいて上記棒体の作動状態を測定することを特徴としている。 In a measurement apparatus according to a sixth invention of the present application, in the measurement apparatus according to the second invention, the non-contact distance sensor is constituted by a laser sensor having a function of transmitting and receiving laser light, and is transmitted from the laser sensor. The operating state of the bar is measured based on the reciprocation time between the laser sensor of the laser beam to be emitted and the surface of the bar.
本願の第7の発明に係る測定装置では、上記第2、第3、第4、第5又は第6の発明に係る測定装置において、上記非接触距離センサを、上記棒体の周方向に複数個配置したことを特徴としている。 In the measuring device according to the seventh invention of the present application, in the measuring device according to the second, third, fourth, fifth or sixth invention, a plurality of the non-contact distance sensors are provided in the circumferential direction of the rod body. It is characterized by the arrangement.
本願の第8の発明に係る測定装置では、上記第2、第3、第4、第5又は第6の発明に係る測定装置において、上記非接触距離センサを、上記棒体の軸方向に複数個配置したことを特徴としている。 In the measuring device according to the eighth invention of the present application, in the measuring device according to the second, third, fourth, fifth or sixth invention, a plurality of the non-contact distance sensors are provided in the axial direction of the rod body. It is characterized by the arrangement.
本願発明に係る測定装置によれば、以下のような効果が得られる。 According to the measuring apparatus according to the present invention, the following effects can be obtained.
(イ) 本願の第1の発明に係る測定装置
上記渦電流センサを上記棒体の表面に対して非接触状態で対向配置し、この状態で上記コイルに高周波電流を流すと、電磁誘導により上記棒体の表面に渦電流が流れる。
(A) Measuring device according to the first invention of the present application When the eddy current sensor is disposed to face the surface of the rod body in a non-contact state and a high-frequency current is passed through the coil in this state, the electromagnetic induction causes the above Eddy current flows on the surface of the rod.
そして、棒体の振動とか形状変化等によって、該棒体の表面とこれに対向する渦電流センサとの距離が変化した場合、この距離の変化に対応して上記コイルのインピーダンスが変化するため、このインピーダンスの変化を、インピーダンス波形として、あるいはインピーダンスに対応する物理量、例えば、電圧に変換した電圧波形(信号波形)として取得することができる。 And, when the distance between the surface of the rod and the eddy current sensor facing the rod changes due to vibration or shape change of the rod, the impedance of the coil changes corresponding to the change in the distance, This change in impedance can be acquired as an impedance waveform or as a physical quantity corresponding to the impedance, for example, a voltage waveform (signal waveform) converted into a voltage.
この取得される信号波形においては、棒体がその軸方向へ移動している場合(棒体が径方向に振動する場合等)における信号波形と、棒体が停止している場合における信号波形とは明確に識別し得るものであることから、これら両者によって、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。 In the acquired signal waveform, the signal waveform when the rod is moving in its axial direction (when the rod vibrates in the radial direction, etc.), and the signal waveform when the rod is stopped are Since these can be clearly identified, it is possible to accurately determine the movement start / stop position of the rod body and the movement time / timing by both of them, and in the axial direction of the rod body. The amount and speed of movement can be obtained by calculation. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
(ロ) 本願の第2の発明に係る測定装置
上記非接触距離センサを上記棒体の表面に対して非接触状態で対向配置し、該非接触距離センサを棒体の表面との間の距離の変化を検出することで、この距離の変化状態から、棒体がその軸方向へ移動している状態と、棒体が停止している場合を明確に識別することができる。この結果、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。
(B) The measuring device according to the second invention of the present application The non-contact distance sensor is arranged to face the surface of the rod body in a non-contact state, and the non-contact distance sensor is arranged to measure the distance between the surface of the rod body and the non-contact distance sensor. By detecting the change, it is possible to clearly distinguish the state in which the rod is moving in the axial direction and the case in which the rod is stopped from the change state of the distance. As a result, it is possible to accurately determine the movement start / stop position of the rod and the movement time / timing, and by extension, the amount of movement and the movement speed of the rod in the axial direction can be obtained by calculation. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
(ハ) 本願の第3の発明に係る測定装置
上記渦電流センサを上記棒体の表面に対して非接触状態で対向配置し、この状態で上記コイルに高周波電流を流すと、電磁誘導により上記棒体の表面に渦電流が流れる。そして、棒体の振動とか形状変化等によって、該棒体の表面とこれに対向する渦電流センサとの距離が変化した場合、この距離の変化に対応して上記コイルのインピーダンスが変化するため、このインピーダンスの変化を、インピーダンス波形として、あるいはインピーダンスに対応する物理量、例えば、電圧に変換した電圧波形(信号波形)として取得することができる。
(C) The measuring device according to the third invention of the present application When the eddy current sensor is disposed so as to face the surface of the rod body in a non-contact state and a high-frequency current is passed through the coil in this state, the electromagnetic induction causes the above-mentioned Eddy current flows on the surface of the rod. And, when the distance between the surface of the rod and the eddy current sensor facing the rod changes due to vibration or shape change of the rod, the impedance of the coil changes corresponding to the change in the distance, This change in impedance can be acquired as an impedance waveform or as a physical quantity corresponding to the impedance, for example, a voltage waveform (signal waveform) converted into a voltage.
この取得される信号波形においては、棒体がその軸方向へ移動している場合(棒体が径方向に振動する場合等)における信号波形と、棒体が停止している場合における信号波形とは明確に識別し得るものであることから、これら両者によって、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。 In the acquired signal waveform, the signal waveform when the rod is moving in its axial direction (when the rod vibrates in the radial direction, etc.), and the signal waveform when the rod is stopped are Since these can be clearly identified, it is possible to accurately determine the movement start / stop position of the rod body and the movement time / timing by both of them, and in the axial direction of the rod body. The amount and speed of movement can be obtained by calculation. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
(ニ) 本願の第4の発明に係る測定装置
上記静電容量センサを上記棒体の表面に対して非接触状態で対向配置すると、上記棒体の軸方向への移動とか、形状変化あるいは径方向への振動によって該棒体の表面と上記静電容量センサとの距離が変化すると、この距離の変化に対応して上記静電容量センサで検出される静電容量が変化する。
(D) Measuring apparatus according to the fourth invention of the present application When the capacitance sensor is disposed to face the surface of the rod body in a non-contact state, the rod body moves in the axial direction, changes in shape or diameter. When the distance between the surface of the rod and the capacitance sensor changes due to the vibration in the direction, the capacitance detected by the capacitance sensor changes corresponding to the change in the distance.
そして、棒体がその軸方向へ移動している場合における静電容量の変化状態と、棒体が停止している場合における静電容量の変化状態とは明確に識別し得るものであることから、これら両者によって、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。 And since the change state of the capacitance when the rod is moving in the axial direction and the change state of the capacitance when the rod is stopped can be clearly identified. With both of these, it is possible to accurately determine the movement start / stop position of the rod body and the movement time / timing, and by calculation, the amount of movement and the movement speed of the rod body in the axial direction can be obtained. it can. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
(ホ) 本願の第5の発明に係る測定装置
上記超音波センサを上記棒体の表面に対して非接触状態で対向配置すると、上記棒体の軸方向への移動とか、形状変化あるいは径方向への振動によって該棒体の表面と上記超音波センサとの距離が変化すると、この距離の変化に対応して、該超音波センサと上記棒体の表面との間での超音波の往復伝播時間が変化する。
(E) A measuring device according to the fifth invention of the present application When the ultrasonic sensor is arranged to face the surface of the rod body in a non-contact state, the rod body moves in the axial direction, changes in shape, or in the radial direction. When the distance between the surface of the rod body and the ultrasonic sensor changes due to vibration to the ultrasonic wave, the ultrasonic wave travels back and forth between the ultrasonic sensor and the surface of the rod body in response to the change in the distance. Time changes.
そして、棒体がその軸方向へ移動している場合における往復伝播時間の変化状態と、棒体が停止している場合における往復伝播時間の変化状態とは明確に識別し得るものであることから、これら両者によって、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。 And since the change state of the round-trip propagation time when the rod is moving in the axial direction and the change state of the round-trip propagation time when the rod is stopped can be clearly distinguished. With both of these, it is possible to accurately determine the movement start / stop position of the rod body and the movement time / timing, and by calculation, the amount of movement and the movement speed of the rod body in the axial direction can be obtained. it can. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
なお、超音波センサによって棒体との距離を測定する場合、超音波は空気中を伝播することになるが、この超音波の空気中での伝播速度は、空気温度に応じて変化するものである。従って、超音波センサによる距離測定の測定精度を確保するためには、測定により取得される超音波の伝播時間(即ち、測定距離)を、温度変化に基づいて補正する。 When measuring the distance from the rod with an ultrasonic sensor, the ultrasonic wave propagates in the air, but the propagation speed of this ultrasonic wave in the air changes according to the air temperature. is there. Therefore, in order to ensure the measurement accuracy of the distance measurement by the ultrasonic sensor, the propagation time of ultrasonic waves acquired by the measurement (that is, the measurement distance) is corrected based on the temperature change.
(へ) 本願の第6の発明に係る測定装置
上記レーザセンサを上記棒体の表面に対して非接触状態で対向配置すると、上記棒体の軸方向への移動とか、形状変化あるいは径方向への振動によって該棒体の表面と上記レーザセンサとの距離が変化すると、この距離の変化に対応して、該レーザセンサと上記棒体の表面との間でのレーザ光の往復時間が変化する。
(F) Measuring device according to the sixth invention of the present application When the laser sensor is disposed opposite to the surface of the rod body in a non-contact state, the rod body moves in the axial direction, changes in shape or in the radial direction. When the distance between the surface of the rod and the laser sensor changes due to the vibration of the laser, the reciprocation time of the laser beam between the laser sensor and the surface of the rod changes in response to the change in the distance. .
そして、棒体がその軸方向へ移動している場合におけるレーザ光の往復時間の変化状態と、棒体が停止している場合におけるレーザ光の往復時間の変化状態とは明確に識別し得るものであることから、これら両者によって、上記棒体の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記棒体の軸方向への移動量や移動速度を演算により取得できる。また、棒体の曲がり、傾き等の有無あるいはその程度を知ることができる。 And the change state of the round trip time of the laser beam when the rod is moving in the axial direction and the change state of the round trip time of the laser beam when the rod is stopped can be clearly distinguished Therefore, it is possible to accurately determine the movement start / stop position of the rod body and the movement time / timing by both of them, and further, the amount of movement and the movement speed of the rod body in the axial direction. Can be obtained by calculation. In addition, it is possible to know the presence or absence or degree of bending or inclination of the rod.
(ト) 本願の第7の発明に係る測定装置
上記非接触距離センサを、上記棒体の周方向に複数個配置したことで、例えば、棒体に曲がりがある場合にはその曲り方向を、また棒体の軸線が棒体の移動方向に対して傾斜している場合にはその傾斜方向を、それぞれ知ることができ、この棒体の曲り方向とか傾斜方向に関する情報を上記非接触距離センサによる距離測定に反映させることで、測定装置の測定精度のさらなる向上が期待できる。
(G) The measuring device according to the seventh invention of the present application By arranging a plurality of the non-contact distance sensors in the circumferential direction of the rod body, for example, when the rod body is curved, In addition, when the axis of the rod body is inclined with respect to the moving direction of the rod body, it is possible to know the inclination direction, and information on the bending direction or the inclination direction of the rod body is obtained by the non-contact distance sensor. By reflecting the distance measurement, further improvement in the measurement accuracy of the measuring device can be expected.
また、これら複数の非接触距離センサのそれぞれの測定値を演算処理することで、ノイズ信号を除去して測定信号を明確化することができ、測定値の信頼性が確保される。例えば、複数個の非接触距離センサでそれぞれ距離測定を行い、これら各非接触距離センサの測定信号を差分処理することで、測定信号中の共通ノイズを除去することができ、これによって、より精度の高い測定が可能となる。 Further, by calculating each of the measurement values of the plurality of non-contact distance sensors, the noise signal can be removed and the measurement signal can be clarified, and the reliability of the measurement value is ensured. For example, each non-contact distance sensor performs distance measurement, and differential processing is performed on the measurement signals of each of the non-contact distance sensors, so that common noise in the measurement signal can be removed. High measurement is possible.
(チ) 本願の第8の発明に係る測定装置
上記非接触距離センサを、上記棒体の軸方向に複数個配置したことによって棒体の移動方向を知ることができ、この棒体の移動方向に関する情報を上記非接触距離センサによる距離測定に反映させることで、測定装置の測定精度のさらなる向上が期待できる。
(H) Measuring device according to the eighth invention of the present application By arranging a plurality of the non-contact distance sensors in the axial direction of the rod, the moving direction of the rod can be known, and the moving direction of the rod By reflecting the information on the distance measurement by the non-contact distance sensor, further improvement in the measurement accuracy of the measuring device can be expected.
また、これら複数の非接触距離センサのそれぞれの測定値を演算処理することで、ノイズ信号を除去して測定信号を明確化することができ、測定値の信頼性が確保される。例えば、複数個の非接触距離センサでそれぞれ距離測定を行い、これら各非接触距離センサの測定信号を差分処理することで、測定信号中の共通ノイズを除去することができ、これによって、より精度の高い測定が可能となる。 Further, by calculating each of the measurement values of the plurality of non-contact distance sensors, the noise signal can be removed and the measurement signal can be clarified, and the reliability of the measurement value is ensured. For example, each non-contact distance sensor performs distance measurement, and differential processing is performed on the measurement signals of each of the non-contact distance sensors, so that common noise in the measurement signal can be removed. High measurement is possible.
以上のように、本願各発明の測定装置によれば、上記棒体の作動状態を、非接触状態で測定するものであることから、
(a) 棒体先端の変位を測定する場合に比して、
(a−1)棒体を備えた機器の一部を開放させて測定装置を配置する必要がなく、測定作業の簡易迅速化が図れる、
(a−2)上記棒体の稼動時であってもこれに制約されることなく、該棒体の変位測定ができることから、測定時期の自由度が向上する、
等の効果が得られる。
As described above, according to the measuring device of each invention of the present application, since the operating state of the rod body is measured in a non-contact state,
(A) Compared to measuring the displacement of the rod end,
(A-1) It is not necessary to open a part of the device provided with the rod body and arrange the measuring device, and the measurement work can be simplified and speeded up.
(A-2) Since the displacement of the rod can be measured without being restricted by this even when the rod is in operation, the degree of freedom of measurement time is improved.
Etc. are obtained.
(b) カメラを用いる光学式測定装置に比して、
(b−1)棒体側に対する測定装置のセッティングが容易であり、測定作業の簡易迅速化が促進される、
(b−2)レンズ映像の歪とか棒体の微振動によって測定精度が左右されることがなく、より高精度の測定が可能となる、
等の効果が得られる。
(B) Compared to an optical measuring device using a camera,
(B-1) The setting of the measuring device with respect to the rod side is easy, and the simplification and speeding up of the measuring work is promoted.
(B-2) The measurement accuracy is not affected by the distortion of the lens image or the minute vibration of the rod, and a higher accuracy measurement is possible.
Etc. are obtained.
A:第1の実施形態
図1には、本願発明の第1の実施形態に係る測定装置を構成する渦電流センサ10を使用して弁棒6(特許請求の範囲中の「棒体」に該当する)の変位が測定される電動弁1を示している。
A: First Embodiment FIG. 1 shows a valve stem 6 (a “rod body” in the claims) using an
上記渦電流センサ10は、特許請求の範囲中の「非接触距離センサ」の一つであって、高周波電流を受けて高周波磁界を発生するコイルを備えた従来周知の構造をもつものであって、上記高周波磁界内に導電体(この実施形態では上記弁棒6がこれに該当する)が存在すると、該導電体の表面に磁気誘導によって渦電流が発生し、上記コイルのインピーダンスが変化する。そして、このコイルのインピーダンスは、該コイルと上記導電体の距離の変化に応じて変化するものである。
The
従って、上記渦電流センサ10を上記弁棒6に近接対向させて配置し、上記コイルのインピーダンスを測定し且つこれを連続的に監視すれば、渦電流センサ10に対する上記弁棒6の距離の変化に対応したインピーダンス波形(又はインピーダンスに対応する物理量、例えば、電圧の変化に対応する電圧波形)が得られる(図5参照)。
Therefore, if the
以上のような測定機能をもつ上記渦電流センサ10によって上記弁棒6の変位を測定するために、該渦電流センサ10を上記弁棒6の表面に近接状態(即ち、非接触状態)で対向配置するが、ここでは、この渦電流センサ10の配置形態として、図2に示すように上記渦電流センサ10を上記弁棒6の平滑部6bに対向配置する形態(以下、「第1の配置形態」という)と、図3に示すように、上記渦電流センサ10を上記弁棒6の平滑部6bに所定ピッチで凸部71又は凹部72を形成した補助材7を貼設し、この補助材7に対向させた状態で上記渦電流センサ10を配置する形態(以下、「第2の配置形態」という)と、図4に示すように、上記弁棒6のネジ部6aに対向配置する形態(以下、「第3の配置形態」という)を想定している。
In order to measure the displacement of the
ここで、上記渦電流センサ10での測定によって得られるインピーダンス波形について説明する。
Here, the impedance waveform obtained by the measurement by the
上記電動弁1において、上記弁棒6はその移動中、モータ2とか弁駆動部4側の振動を受けて径方向への振動を生じ、これによって上記弁棒6の表面と上記渦電流センサ10の距離が変化することになる。
In the motor-operated
なお、上記弁棒6の停止中は、該弁棒6の作動に起因する振動(即ち、モータ2とか弁駆動部4側の振動)が弁棒6に入力されることはないが、この作動に起因する振動以外の振動、例えば、上記電動弁1が備えられた配管側の振動等は、常時上記弁棒6側に入力される。しかし、この振動のレベルは、弁棒6の作動に起因する振動のレベルに比べて区分でき、上記弁棒6の作動状態の測定、及びその測定結果を電動弁1の作動に関する診断に際して対処し得る。
While the
また、上記弁棒6に曲りが生じている場合とか、弁棒6の支承部分の偏摩耗によって該弁棒6の軸線がその移動方向に対して傾いている場合にも、上記弁棒6の作動に伴って、該弁棒6の表面と上記渦電流センサ10の距離が変化することになる。
Further, when the
このように、上記弁棒6の表面と上記渦電流センサ10の距離が変化すると、この距離の変化に対応して、該渦電流センサ10におけるコイルのインピーダンスが変化するため、このインピーダンスの変化に基づいて上記弁棒6等の移動状態を知ることができる。
As described above, when the distance between the surface of the
なお、例えば、上記弁棒6の表面に傷がある場合とか、ネジ部6aの一部に欠けが生じている場合にも、これら傷とか欠けが上記弁棒6の表面と上記渦電流センサ10の距離の変化として現れるので、上記渦電流センサ10におけるコイルのインピーダンスが変化し、これが検出されることになる。
For example, even when the surface of the
以下、図4〜図14を参照して、上記渦電流センサ10を用いた上記弁棒6の作動状態の測定、及びこの測定により取得されるインピーダンス波形の利用の仕方等について説明する。
Hereinafter, the measurement of the operating state of the
A:図5について
図5は、上記渦電流センサ10を上記弁棒6の平滑部6bに対向させて配置した測定によって取得されたインピーダンス波形の開作動の開始位置近傍における部分を、モータ電流波形と共に示したものである。
A: About FIG. 5 FIG. 5 shows the motor current waveform in the vicinity of the starting position of the opening operation of the impedance waveform obtained by the measurement in which the
上記インピーダンス波形によれば、弁棒6の開作動が開始されると、インピーダンスが急激に増大変化し、所定の大きさで推移することから、このインピーダンスの急変部分を確認することで、弁棒6の開作動の開始点(即ち、弁棒6の移動時期)を正確に認識することができる。
According to the impedance waveform, when the opening operation of the
また、モータ電流波形では、モータ2の起動点を波形の急変点として正確に認識することができる。従って、モータ起動点と弁棒6の開作動開始点を対応づけることで、弁棒6の作動遅れ時間を知ることができる。
In the motor current waveform, the starting point of the
B:図6について
図6は、上記渦電流センサ10を上記弁棒6の平滑部6bに対向させて配置した測定によって取得されたインピーダンス波形の、開作動の停止位置近傍における波形を、モータ電流波形と共に示したものである。
B: FIG. 6 FIG. 6 shows the waveform of the impedance waveform obtained by the measurement in which the
上記インピーダンス波形によれば、弁棒6の開作動が停止されると、インピーダンスが急激に減少変化し且つその減少状態のまま推移することから、このインピーダンスの急変部分を確認することで、弁棒6の開作動停止点(即ち、弁棒6の移動停止時期)を正確に認識することができる。
According to the impedance waveform, when the opening operation of the
また、モータ電流波形では、モータ2の停止点を波形の急変点として正確に認識することができる。従って、モータ停止点と弁棒6の開作動停止点を対応づけることで、弁棒6の惰走時間を知ることができる。
In the motor current waveform, the stop point of the
C:図5及び図6について
上述のように、図5にインピーダンス波形では弁棒6の開作動開始点が取得され、図6のインピーダンス波形では弁棒6の開作動停止点が取得されるため、この開作動開始点と開作動停止点から、弁棒6の移動時間を正確に知ることができる。
C: FIG. 5 and FIG. 6 As described above, the opening operation start point of the
D:図7について
図7は、上記渦電流センサ10を上記弁棒6のネジ部6aに対向させて配置した測定によって取得されたインピーダンス波形の、開作動の停止位置近傍における波形を、モータ電流波形と共に示したものであって、図5に対応するものである。
D: About FIG. 7 FIG. 7 shows the waveform of the impedance waveform obtained by the measurement in which the
この図7のインピーダンス波形では、弁棒開作動開始点でインピーダンスの急変によって弁棒開作動開始点を正確に認識し得ることは、上記図5に示した場合と同様である。さらに、このインピーダンス波形の形状は、図8にも示すように、上記弁棒6のネジ部6aの山部61と谷部62のそれぞれに対応した大きな振幅をもつ規則的な波線として表されることから、例えば、上記弁棒6の平滑部6bに上記渦電流センサ10を配置して測定した場合(図5参照)よりも、上記弁棒6の移動中におけるインピーダンスの変化をより明確に認識することができる。
In the impedance waveform of FIG. 7, the valve rod opening operation start point can be accurately recognized by the sudden change in impedance at the valve rod opening operation starting point, as in the case shown in FIG. Further, the shape of this impedance waveform is represented as a regular wavy line having a large amplitude corresponding to each of the
E:図8について
図8は、図7におけるインピーダンス波形の一部を拡大図示するとともに、リフトセンサ(図示省略)により取得されるバルブリフト波形を同期させて表示したものである。このインピーダンス波形は、上述のように、上記弁棒6のネジ部6aの山部61と谷部62のそれぞれに対応した大きな振幅をもつ規則的な波形として表される。
E: About FIG. 8 FIG. 8 is an enlarged view of a part of the impedance waveform in FIG. 7, and is a synchronized display of the valve lift waveform acquired by a lift sensor (not shown). As described above, this impedance waveform is represented as a regular waveform having a large amplitude corresponding to each of the
そして、インピーダンス波形の1ピッチの時間「ΔT」はインピーダンス波形から求めることができる。また、上記ネジ部6aの1ピッチの幅寸法「ΔL」は既知である。従って、これら時間「ΔT」と幅寸法「ΔL」に基づき、演算にて上記弁棒6の移動速度を取得することができる。
The time “ΔT” of one pitch of the impedance waveform can be obtained from the impedance waveform. Further, the width dimension “ΔL” of one pitch of the
さらに、上記幅寸法「ΔL」と、弁棒6の開作動開始点から開作動停止点までの間におけるインピーダンス波形の波数とから、演算にて上記弁棒6の移動量を取得することができる。
Further, the amount of movement of the
F:図9について
図9は、上記渦電流センサ10を上記弁棒6の平滑部6bに配置した場合で、且つ上記弁棒6に曲りが発生している場合のインピーダンス波形を示したものである。このインピーダンス波形は、上記弁棒6の曲り形状に対応した湾曲形状として現れるため、その存在を容易に知ることができるとともに、その曲りの大きさ(程度)に基づいて弁棒6の信頼性とか交換の必要性の有無を判断することもできる。
F: About FIG. 9 FIG. 9 shows the impedance waveform when the
G:図10について
図10は、上記渦電流センサ10を上記弁棒6の平滑部6bに配置した場合で、且つ上記弁棒6に傾きが発生している場合のインピーダンス波形を示している。このインピーダンス波形は、上記弁棒6の傾きに対応した傾斜線状に現れるため、その存在を容易に知ることができるとともに、その傾きの大きさ(程度)に基づいて、上記弁棒6の支承部分の偏摩耗の大きさとか、該支承部分の交換の必要性の有無を判断することもできる。
G: About FIG. 10 FIG. 10 shows an impedance waveform when the
I:その他
(I−1) 上記渦電流センサ10の固定
上記渦電流センサ10は、図1に示したように、上記電動弁1のヨーク3に直接取付ける固定方法の他に、例えば、上記電動弁1と非接触で床面側に固定する固定方法が考えられる。
I: Others (I-1) Fixing of the
前者の場合、即ち、電動弁1のヨーク3に上記渦電流センサ10を直接取付けて、該渦電流センサ10によって上記弁棒6の作動状態を測定する場合には、該弁棒6の作動に伴う該弁棒6自身の振動と、上記渦電流センサ10自体の上記ヨーク3による振動とが合成される。従って、上記渦電流センサ10での測定によって取得されるインピーダンス波形は、この合算された振動に対応した振幅をもつことから、例えば、該インピーダンス波形に基づく上記弁棒6の作動開始点とか作動停止点、あるいはハンマブロー動作等の確認が容易となる。
In the former case, that is, when the
また、このように電動弁1のヨーク3に上記渦電流センサ10を直接取付ける構成によれば、該渦電流センサ10を比較的小さい支持具を介してヨーク3側に固定できる等、10の取付構造の簡略化が促進される。
Further, according to the configuration in which the
後者の場合、即ち、上記電動弁1と非接触で床面側に固定した上記渦電流センサ10によって上記弁棒6の作動状態を測定する場合には、例えば、上記渦電流センサ10とこれが取付けられる支持具との間のガタツキ等の影響が該渦電流センサ10の測定に及ぶのが可及的に回避され、高精度の測定が可能となる。
In the latter case, that is, when the operating state of the
また、上記渦電流センサ10は、弁棒6に非接触で測定を行う構成であるので、例えば、弁棒とかヨークが熱い場合でもこれに影響されることなく測定でき、その信頼性が高いものであるが、さらにこの渦電流センサ10を上述のように上記電動弁1と非接触で床面側に固定した場合にはその効果はより顕著なものとなる。
Further, since the
(I−2) 渦電流センサ10の他の配置例
上記実施形態においては、上記弁棒6の近接させた状態で渦電流センサ10を1個配置する構成としていたが、係る構成に限定されるものではなく、上記渦電流センサ10を複数個用意し、これらを上記弁棒6の周方向へ列設する周方向配置構成とか、上記弁棒6の軸方向へ列設する軸方向配置構成を採用することもできる。
(I-2) Other Arrangement Examples of
(I−2―1) 上記渦電流センサ10の周方向配置構成
図11には、複数の渦電流センサ10の周方向配置構成の例として、二個の渦電流センサ10を、該弁棒6の軸方向の同一位置において、該弁棒6の周方向に略90°の交差角をもって、非接触状態で配置した状態を示している。
(I-2-1) Circumferential Arrangement Configuration of
このように、上記渦電流センサ10を上記弁棒6の周方向に複数個(この例では2個)配置し、これら各渦電流センサ10によって上記渦電流センサ10の表面との間隔を測定する構成とした場合には、以下のような特有の効果が得られる。
In this way, a plurality (two in this example) of the
(a) 上記渦電流センサ10を二個(複数個)配置し、これら各渦電流センサ10によって上記弁棒6の作動状態をそれぞれ測定し、その測定データを差分処理することで、例えば、上記二個の渦電流センサ10が接近状態で配置されている場合には、電磁ノイズとかセンサ自体の振れによる共通ノイズを除去して本来の測定信号をより明確化することができ、これによって、より高精度の測定が可能になる。
(A) Two (plural)
(b) 二個の渦電流センサ10を、上記弁棒6の周方向に略90°の交差角をもって配置したことで、例えば、上記弁棒6に曲がりがある場合にはその曲り方向を、また弁棒6の軸線が該弁棒6の移動方向に対して傾斜している場合にはその傾斜方向を、それぞれ知ることができ、この弁棒6の曲り方向とか傾斜方向に関する情報を上記非接触距離センサ10による距離測定に反映させることで、測定装置の測定精度がさらに向上するという付随的な効果が得られる。
(B) By arranging two
この場合、上記二個の渦電流センサ10の交差角は「略90°」に限定されるものではなく、任意の交差角に設定し得るものであるが、上記付随的効果をより的確に得るという観点からは、交差角を「略90°」に設定するのが最適と言える。
In this case, the crossing angle of the two
(I−2―2) 上記渦電流センサ10の軸方向配置構成
図12には、複数の渦電流センサ10の軸方向配置構成の例として、二個の渦電流センサ10を、該弁棒6の周方向の同一位置において、該弁棒6の軸方向に所定間隔をもって非接触状態で配置した状態を示している。
(I-2-2) Axial Arrangement Configuration of
このように、上記渦電流センサ10を上記弁棒6の軸方向に複数個(この例では2個)配置し、これら各渦電流センサ10によって上記渦電流センサ10の表面との間隔を測定する構成とした場合には、以下のような特有の効果が得られる。
In this way, a plurality (two in this example) of the
(a) 上記渦電流センサ10を二個(複数個)配置し、これら各渦電流センサ10によって上記弁棒6の作動状態をそれぞれ測定し、その測定データを差分処理することで、例えば、上記二個の渦電流センサ10が接近状態で配置されている場合には、電磁ノイズとかセンサ自体の振れによる共通ノイズを除去して本来の測定信号をより明確化することができ、これによって、より高精度の測定が可能になる。
(A) Two (plural)
(b) 二個の渦電流センサ10を、上記弁棒6の軸方向に所定間隔をもって配置したことで、上記弁棒6の移動方向を知ることができ、この弁棒6の移動方向に関する情報を上記非接触距離センサ10による距離測定に反映させることで、測定装置の測定精度がさらに向上する。
(B) Since the two
この場合、上記二個の渦電流センサ10の上記弁棒6の軸方向における間隔は、各渦電流センサ10によって測定された測定値を演算処理する場合における分解能を高めて高精度化を図るという観点からは、できるだけ間隔が小さいほど良く、究極的にはほぼ零(即ち、軸方向のほぼ同一位置)が好ましいと言える。
In this case, the distance between the two
(I−2―3) 上記渦電流センサ10の合成配置構成
上記渦電流センサ10の配置構成としては、上記周方向配置構成と軸方向配置構成のほかに、これら二つの配置構成を合成した合成配置構成が考えられる。即ち、二個以上の渦電流センサ10を、上記弁棒6の軸方向の異なる位置において、しかも上記弁棒6の周方向には所定の交差角をもたせてそれぞれ近接配置するものである。係る配置構成によれば、周方向配置構成による特有の効果と、軸方向配置構成による特有の効果を同時に得ることができる。
(I-2-3) Synthetic Arrangement Configuration of
また、例えば電動弁側の構造的な理由等から、複数の渦電流センサ10の周方向配置とか軸方向配置ができないような場合でも、これら各渦電流センサ10を合成配置することで、該各渦電流センサ10の配置位置についての制限を排除することができ、それだけ上記渦電流センサ10のレイアウトの自由度が向上する。
Further, even when the circumferential arrangement or the axial arrangement of the plurality of eddy
さらに、合成配置構成によれば、例えば、上記弁棒6のX軸方向とY軸方向(即ち、上記弁棒6の周方向において直交する二方向)とZ軸方向(即ち、弁棒6の軸方向)の情報に加えて、上記弁棒6の移動時間に関する情報を得ることができ、これら各情報に基づいて上記弁棒6の四次元的管理を行うことが可能となる。
Furthermore, according to the combined arrangement configuration, for example, the X-axis direction and the Y-axis direction (that is, two directions orthogonal to the circumferential direction of the valve rod 6) and the Z-axis direction (that is, the valve rod 6) In addition to the information in the axial direction, information related to the movement time of the
(I−3) 弁棒6のトレンド管理
上記渦電流センサ10での測定によって取得される上記弁棒6の作動状態に関するデータを継続的に監視することで、あるいは、電流センサやヨーク応力センサと対比することで、弁棒6の作動傾向を取得し、必要に応じて所要の措置を講じることが可能となる。例えば、弁棒6の作動遅れ時間(図5参照)の長大傾向は、例えば、ステムナットの摩耗状態の判断及びその交換時期の判断資料となる。
(I-3) Trend management of the
(I−4) 本願発明の空気作動弁への適用
図13は、空気作動弁100の弁棒101の作動状態を、ヨーク102に取付けた渦電流センサ103によって測定する状態を示している。この空気作動弁100の弁棒101は、流量調整弁として使用されることが多く、従って、図14に示すように、開作動と閉作動を繰り返す動作が基本動作となる。この場合、上記渦電流センサ10によれば、弁棒101の開作動における作動開始点と作動停止点、及び閉作動における作動開始点と作動停止点を正確に知ることができ、また、制御状態の振幅や周期、あるいはハンチング動作の振幅や周期を取得することができるなど、空気作動弁100の作動状態の測定手法として好適である。
(I-4) Application of the Invention to an Air Actuated Valve FIG. 13 shows a state in which the actuated state of the
B:第2の実施形態
本願発明の第2の実施形態に係る測定装置は、上記第1の実施形態に係る測定装置が弁棒6の作動状態測定用に渦電流センサ10を備えていたのに対して、図15に示すように、静電容量センサ20を備えたものである。
B: Second Embodiment In the measuring device according to the second embodiment of the present invention, the measuring device according to the first embodiment includes the
上記静電容量センサ20(以下、必要に応じて、符号を20A〜20Fと表記する)は、上記渦電流センサ10と同様に、非接触距離センサとして機能するものであって、図15に示すように、電気品を内蔵した本体部22と、先端部に電極を内蔵したロッド状の電極部21を備えて構成され、上記電極部21の先端面を上記弁棒6の表面に非接触状態で近接対向させて配置される。そして、この静電容量センサ20は、上記電極部21に発生する電界内の静電容量の変化を検出する。即ち、上記弁棒6の軸方向への移動とか、該弁棒6の形状変化あるいは径方向への振動によって、該弁棒6と上記電極部21の相対距離が変化すると、この相対距離の変化に対応して電界内の静電容量が変化する。この静電容量の変化を、例えば電圧変換回路によって相対距離の変化に対応した電圧に変換してこれを検出し、この検出された電圧信号に基づいて上記弁棒6の作動状態を測定するものである。
The capacitance sensor 20 (hereinafter referred to as “20A to 20F” as necessary) functions as a non-contact distance sensor like the
ところで、上記弁棒6に対する上記静電容量センサ20の配置数とか配置位置は、必要に応じて任意に設定し得るものであるが、この実施形態では、後述する「弁棒6の傾きの検出」を考慮して、図15及び図16に実線図示するように、二つの静電容量センサ20A、20B(弁棒6の傾きを検出する上において必要最小限の数)を用いるものとし、且つこれら両者の交差角α(たとえば、全閉状態においてグランドパッキン押えの直上位置における弁棒6の軸心に対応する点を基準点Pとし、この基準点Pを通る一方の静電容量センサ20Aの指向線「La」と、該基準点Pを通る他方の静電容量センサ20Bの指向線「Lb」との挟角)を「約90°」に設定している。
By the way, the number of the
なお、二つの静電容量センサ20の交差角αは、弁棒6の移動方向をZ軸とした場合においてX軸方向とY軸方向の二方向の傾斜成分を検出する必要上、「180°」付近の設定は避けるべきであり、「180°」付近以外の角度範囲内であれば任意に設定できる。従って、図16に例示した静電容量センサ20A〜20Fの配置例においては、上記弁棒6の軸心を挟んで一直線上の対向する組み合わせ(例えば、20Aと20Fの組み合わせとか、20Bと20Dの組み合わせ)以外の組み合わせであれば、任意に設定できる。
Note that the crossing angle α of the two
また、静電容量センサ20の配置個数は、「弁棒6の傾き」を考慮しなければ、一個でも可能であるが、「弁棒6の傾き」を考慮すれば、上述のように静電容量センサ20を少なくとも二個以上配置することが必要である。しかし、静電容量センサ20の配置が可能な部位は左右のヨーク3,3の間隔部分に限られるため、このスペース的な制約を勘案すれば、多くても四個程度とするのが好ましい。
Further, the number of the
なお、上記静電容量センサ20は、その電極部21を磁気シールド材によって遮蔽し得るように構成することもできる。従って、このような遮蔽可能に構成された静電容量センサ20を複数個設置し、例えば、静電容量センサ20を用いて行われる測定の目的等に応じて、実際に使用する静電容量センサ20の数とか配置位置を選択することで、
測定目的に対応した静電容量センサの使用態様の選択が容易となる。
The
Selection of the usage mode of the capacitance sensor corresponding to the measurement purpose becomes easy.
次に、上記静電容量センサを用いて上記弁棒6の曲がりや傾きの有無及びその傾き程度を診断する場合の具体的な手法等を説明する。
Next, a specific method and the like for diagnosing the presence or absence and the degree of inclination of the
ここでは、図16に実線図示するように、上記交差角αを「略90°」に設定した二つの静電容量センサ20A,20Bを、図15に示すようにその電極部21、21が略同一高さ位置において上記弁棒6の表面に近接対向するように配置した場合を想定する。
Here, as shown by the solid line in FIG. 16, the two
この状態で、上記弁棒6を、全開位置から全閉位置まで移動させ、さらに全閉位置から全開位置まで移動させる一連の動作を三回繰り返して行い、且つこの場合における上記弁棒6の動きを上記各静電容量センサ20A,20Bによって測定し、その測定結果を、図17及び図18に示す。
In this state, a series of operations of moving the valve stem 6 from the fully open position to the fully closed position and further moving from the fully closed position to the fully open position is repeated three times, and the movement of the
図17は、一方の静電容量センサ20Aでの測定により得られた出力電圧波形であり、この出力電圧波形によれば、「出力電圧」の電圧レベルは、閉作動期間中は全開位置から全閉位置へ移行するにつれて次第に減少変化し、逆に、開作動期間中は全閉位置から全開位置へ移行するにつれて次第に増大変化しており、且つこの電圧レベルの変化傾向は各測定回の何れにおいても同様である。
FIG. 17 shows an output voltage waveform obtained by measurement with one
図18は、他方の静電容量センサ20Bでの測定により得られた出力電圧波形であり、この出力電圧波形によれば、「出力電圧」の電圧レベルは、閉作動期間中は全開位置から全閉位置へ移行するにつれて次第に増大変化し、逆に、開作動期間中は全閉位置から全開位置へ移行するにつれて次第に減少変化しており、且つこの電圧レベルの変化傾向は各測定回の何れにおいても同様である。 FIG. 18 shows an output voltage waveform obtained by measurement with the other capacitance sensor 20B. According to this output voltage waveform, the voltage level of the “output voltage” is changed from the fully opened position to the fully open position during the closed operation period. In the open operation period, on the contrary, the voltage level gradually increases and changes gradually in the open operation period. Is the same.
一方、上記「出力電圧」は、静電容量センサの電極部21とこれに対向する上記弁棒6の表面との距離に反比例し、この距離が大きくなるほど(即ち、電極部21が弁棒6の表面から遠ざかるほど)電圧レベルは小さくなる。
On the other hand, the “output voltage” is inversely proportional to the distance between the
従って、この「距離と電圧レベル」の相関関係を上記各静電容量センサ20A、20Bによる測定に当てはめると、
(イ)一方の静電容量センサ20Aの指向方向から見れば、上記弁棒6が降下移動する閉作動時には該弁棒6との距離「L1」が次第に増大変化し(即ち、弁棒6が一方の静電容量センサ20Aから遠ざかり)、上記弁棒6が上昇移動する開作動時には該弁棒6との距離「L1」が次第に減少変化する(即ち、弁棒6が一方の静電容量センサ20Aに近づく)と判断され、
(ロ)他方の静電容量センサ20Bの指向方向から見れば、上記弁棒6が降下移動する閉作動時には該弁棒6との距離「L2」が次第に減少変化し(即ち、弁棒6が他方の静電容量センサ20Bに近づき)、上記弁棒6が上昇移動する開作動時には該弁棒6との距離「L2」が次第に増大変化する(即ち、弁棒6が他方の静電容量センサ20Bから遠ざかる)、と判断され、
(ハ)一方の静電容量センサ20A側における上記距離「L1」と他方の静電容量センサ20B側における上記距離「L2」は、開作動時と閉作動時の何れにおいても「増大変化」又は「減少変化」するのみで、開作動中において又は閉作動中において「増大変化から減少変化に転じる」とか「減少変化から増大変化に転じる」ということがない。
Therefore, when the correlation between the “distance and voltage level” is applied to the measurement by the
(A) When viewed from the direction in which one
(B) From the direction of the other capacitance sensor 20B, the distance “L2” from the
(C) The distance “L1” on the one
上記(イ)〜(ハ)に記載した事実からは、上記弁棒6には曲がり変形はなく直状形体が維持されていること、しかし、弁棒6はその移動線方向(即ち、電動弁の設計上、弁棒6の移動方向として規定された直線方向)に対して傾斜しており、この傾斜状態で移動していること、を知ることができる。
From the facts described in (a) to (c) above, it is understood that the
一方、静電容量センサ20A、20Bの出力電圧を用いた演算によって、各静電容量センサ20A、20Bの電極部21と上記弁棒6の表面との距離「L1」、「L2」を取得できる。そして、この取得される距離を用いた演算によって、次述のように、上記弁棒6の傾き度合を知ることができる。
On the other hand, distances “L1” and “L2” between the
図19には、上記各静電容量センサ20A、20Bの出力電圧に基づいて(具体的には、三回の測定における測定値の平均値に基づいて)取得された上記距離「L1」、「L2」を、全開位置における距離「L1a」、「L2a」と、全閉位置における距離「L1b」、「L2b」として示している。
In FIG. 19, the distances “L1” and “L1” acquired based on the output voltages of the
また、図20には、図19に示した上記距離「L1a」、「L2a」、「L1b」、「L2b」の関係を、弁棒6と上記各静電容量センサ20A、20Bとの相対関係の下で示している。この図20によれば、上記弁棒6は、全開位置においては、静電容量センサ20Aからは距離「L1a」の位置にあり、また静電容量センサ20Bからは距離「L2a」の位置にあったが、全閉位置においては静電容量センサ20Aからは距離「L1b」の位置に変位し、また静電容量センサ20Bからは距離「L2b」の位置に変位したこと、即ち、全開位置から全閉位置への閉作動時には上記弁棒6はその軸心が上記基準点Pに近づくように変移したことが判る。従って、全開位置における弁棒6の位置(距離「L1a」と「L2a」で規定される位置)と、全閉位置における弁棒6の位置(距離「L1b」と「L2b」で規定される位置)を対比することで、弁棒6がどの方向へどの程度傾いているのかを知ることができる。
20 shows the relationship between the distances “L1a”, “L2a”, “L1b”, and “L2b” shown in FIG. 19, and the relative relationship between the
このように、静電容量センサ20を用いた測定手法によれば、上記弁棒6の曲がりや傾きの有無及びその程度を、静電容量センサ20の測定結果(即ち、出力電圧波形の変化傾向等)から容易に判断できるものであり、係る判断の容易化は電動弁の診断において極めて有用である。
As described above, according to the measurement method using the
なお、この実施形態では、図17、図18に示すように、静電容量センサの出力電圧として生波形を用いているが、この静電容量センサの使用目的によってはこの生波形にフィルタ処理とか微分・積分処理を施した状態で用いることもできる。 In this embodiment, as shown in FIGS. 17 and 18, a raw waveform is used as the output voltage of the capacitance sensor. Depending on the purpose of use of the capacitance sensor, the raw waveform may be filtered. It can also be used in a state where differential / integral processing has been performed.
また、この実施形態においては、図15に示すように、上記静電容量センサ20を電動弁1から離れた床面(電動弁1の振動の影響が及ぶ床面又は影響が及ばない床面の場合がある)に設置しているが、本願発明はこのように静電容量センサ20を床面に設置する構成に限定されるものではなく、例えば、上記静電容量センサ20を電動弁1の上記ヨーク3に直接設置するなど、電動弁1の周辺状況、あるいはセンサ信号の活用目的を考慮して、該静電容量センサ20の設置構成を任意に選択することができるものである。
Further, in this embodiment, as shown in FIG. 15, the
この実施形態における測定装置においても、上記第1の実施形態に係る測定装置におけると同様の作用効果を得ることができる。 Also in the measuring apparatus in this embodiment, the same operational effects as in the measuring apparatus according to the first embodiment can be obtained.
なお、この第2の実施形態においても、上記第1の実施形態と同様に、上記静電容量センサを複数個備え、且つこれらの配置構成として、上記周方向配置構成、軸方向配置構成あるいは合成配置構成を適宜選択し得ることは勿論である。 In the second embodiment as well, as in the first embodiment, a plurality of the capacitance sensors are provided, and as the arrangement configuration thereof, the circumferential arrangement configuration, the axial arrangement configuration, or the synthesis is provided. Of course, the arrangement configuration can be appropriately selected.
また、この実施形態のように、静電容量センサを用いて、上記弁棒6の曲がりや傾きの有無及びその程度を知る手法は、静電容量センサに特有の作用効果ではなく、広く非接触距離センサについて言えるものであり、例えば、上記第1の実施形態のように非接触距離センサとして渦電流センサを用いた場合とか、以下の実施形態において説明するように非接触距離センサとして、超音波センサとかレーザセンサを用いるものにおいても同様である。
In addition, as in this embodiment, a method of knowing the presence or absence and the degree of the bending or tilting of the
C:第3の実施形態
本願発明の第3の実施形態に係る測定装置は、上記弁棒6の作動状態測定用に超音波センサを備えたものである。
C: Third Embodiment A measuring apparatus according to a third embodiment of the present invention includes an ultrasonic sensor for measuring the operating state of the
この超音波センサは、上記渦電流センサ10と同様に、非接触距離センサとして機能するものであって、超音波の送受信機能を備えて構成され、該超音波センサから送信される超音波の該超音波センサと上記棒体の表面との間の往復伝播時間に基づいて上記棒体の作動状態を測定する。
Similar to the
そして、この超音波センサは、上記渦電流センサ10と同様に、上記弁棒6の表面に非接触で対向配置される(図2参照)。このように、上記超音波センサを上記弁棒6の表面に対して非接触状態で対向配置すると、上記弁棒6の軸方向への移動とか、形状変化あるいは径方向への振動によって該弁棒6の表面と上記超音波センサとの距離が変化すると、この距離の変化に対応して、該超音波センサと上記弁棒6の表面との間での超音波の往復伝播時間が変化する。
And this ultrasonic sensor is opposed to the surface of the
そして、弁棒6がその軸方向へ移動している場合における往復伝播時間の変化状態と、弁棒6が停止している場合における往復伝播時間の変化状態とは明確に識別し得るものであることから、これら両者によって、上記弁棒6の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記弁棒6の軸方向への移動量や移動速度を演算により取得できる。また、弁棒6の曲がり、傾き等の有無あるいはその程度を知ることができる。
And the change state of the reciprocating propagation time when the
なお、この第3の実施形態においても、上記第1の実施形態と同様に、上記超音波センサを複数個備え、これを上記周方向配置構成、軸方向配置構成あるいは合成配置構成によって上記弁棒6側に配置し得ることは勿論である。 In the third embodiment, as in the first embodiment, a plurality of the ultrasonic sensors are provided, and the valve rods are arranged by the circumferential arrangement, the axial arrangement, or the combined arrangement. Of course, it can arrange | position to 6 side.
D:第4の実施形態
本願発明の第4の実施形態に係る測定装置は、上記弁棒6の作動状態測定用にレーザセンサを備えたものである。
D: Fourth Embodiment A measuring device according to a fourth embodiment of the present invention is provided with a laser sensor for measuring the operating state of the
このレーザセンサは、上記渦電流センサ10と同様に、非接触距離センサとして機能するものであって、該レーザセンサから発信されるレーザ光の該レーザセンサと上記棒体の表面との間の往復時間に基づいて上記棒体の作動状態を測定する。
Like the
そして、このレーザセンサは、上記渦電流センサ10と同様に、上記弁棒6の表面に非接触で対向配置される(図2参照)。このように、上記レーザセンサを上記弁棒6の表面に対して非接触状態で対向配置すると、上記弁棒6の軸方向への移動とか、形状変化あるいは径方向への振動によって該弁棒6の表面と上記超音波センサとの距離が変化すると、
この距離の変化に対応して、該レーザセンサと上記弁棒6の表面との間でのレーザ光の往復時間が変化する。
And this laser sensor is arranged to face the surface of the
Corresponding to this change in distance, the round trip time of the laser light between the laser sensor and the surface of the valve stem 6 changes.
そして、弁棒6がその軸方向へ移動している場合におけるレーザ光の往復時間の変化状態と、弁棒6が停止している場合におけるレーザ光の往復時間の変化状態とは明確に識別し得るものであることから、これら両者によって、上記弁棒6の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記弁棒6の軸方向への移動量や移動速度を演算により取得できる。また、弁棒6の曲がり、傾き等の有無あるいはその程度を知ることができる。
The change state of the reciprocation time of the laser beam when the
なお、この第4の実施形態においても、上記第1の実施形態と同様に、上記レーザセンサを複数個備え、これを上記周方向配置構成、軸方向配置構成あるいは合成配置構成によって上記弁棒6側に配置し得ることは勿論である。
In the fourth embodiment as well, as in the first embodiment, a plurality of the laser sensors are provided, and the
E:第5の実施形態
本願発明の第5の実施形態に係る測定装置は、弁棒6の作動状態測定用に磁歪センサを備えたものであって、該弁棒6が、歪の大きさに対応して透磁率が変化するという特殊な磁気特性をもつ素材によって構成されている場合に好適な構成である。
E: Fifth Embodiment A measuring device according to a fifth embodiment of the present invention is provided with a magnetostrictive sensor for measuring the operating state of the
即ち、磁歪センサは、上記渦電流センサ10、静電容量センサ、超音波センサ及びレーザセンサと同様に非接触距離センサとして機能するものではあるが、これら各センサとは異なって、弁棒6の歪による透磁率の変化状態を検出し、この透磁率の変化状態に基づいて上記弁棒6の作動状態を測定するものである。そして、この磁歪センサは、上記渦電流センサ10と同様に、上記弁棒6の表面に非接触で配置される(図2参照)が、これに限られるものではなく、上記弁棒6の表面に接触させて配置することもできる。
That is, the magnetostrictive sensor functions as a non-contact distance sensor like the
このように、上記磁歪センサを上記弁棒6の表面に対して非接触状態で対向配置すると、上記弁棒6の軸方向への移動状態時には該弁棒6には軸力が作用し該弁棒6に歪が発生することからその歪方向における透磁率が変化しこれが上記磁歪センサによって検出される一方、上記弁棒6の停止状態では該弁棒6には軸力は作用せず歪も発生しないので透磁率は変化しない。
As described above, when the magnetostrictive sensor is disposed so as to face the surface of the
従って、この透磁率の変化の有無及び変化状態に基づいて、上記弁棒6の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記弁棒6の軸方向への移動量や移動速度を演算により取得できる。また、弁棒6の曲がり、傾き等の有無あるいはその程度を知ることができる。
Therefore, the movement start / stop position of the
また、弁棒6がその軸方向へ移動している場合における透磁率の変化状態と、弁棒6が停止している場合における透磁率の変化状態とは明確に識別し得るものであることから、これら両者によって、上記弁棒6の移動開始・停止位置とか、移動時間・時期を正確に判断することができ、延いては、上記弁棒6の軸方向への移動量や移動速度を演算により取得できる。
Further, since the change state of the magnetic permeability when the
なお、上記磁歪センサは、この実施形態のように上記弁棒6の作動状態を測定する非接触距離センサとして用いる他に、例えば、ヨークの歪による透磁率の変化状態に基づいて該ヨークに作用する応力を測定するヨーク応力センサとして用いることもできる。また、上記第1の実施形態と同様に、上記磁歪センサを複数個備え、これを上記周方向配置構成、軸方向配置構成あるいは合成配置構成によって上記弁棒6側に配置し得ることは勿論である。
In addition to using the magnetostrictive sensor as a non-contact distance sensor for measuring the operating state of the
本願発明は、原子力プラント等に設備された電動弁等の弁装置の診断に利用できるものである。 The present invention can be used for diagnosis of a valve device such as an electric valve installed in a nuclear power plant or the like.
1 ・・電動弁
2 ・・モータ
3 ・・ヨーク
4 ・・弁駆動部
6 ・・弁棒
7 ・・補助材
10 ・・渦電流センサ
20 ・・静電容量センサ
21 ・・電極部
22 ・・本体部
100 ・・空気作動弁
101 ・・弁棒
102 ・・ヨーク
103 ・・渦電流センサ
1 ..
Claims (8)
上記非接触距離センサが、高周波磁界を発生するコイルを備えた渦電流センサで構成され、上記棒体との距離の変化や該棒体の形状変化に応じて変化する上記コイルのインピーダンス又は該インピーダンスに対応する物理量に基づいて上記棒体の作動状態を測定することを特徴とする測定装置。 In claim 2,
The non-contact distance sensor is composed of an eddy current sensor having a coil that generates a high-frequency magnetic field, and the impedance of the coil or the impedance that changes in accordance with a change in the distance to the rod or a change in the shape of the rod A measuring apparatus for measuring an operating state of the rod body based on a physical quantity corresponding to.
上記非接触距離センサが、電界内の静電容量の変化を検出する静電容量センサで構成され、上記棒体との距離の変化や該棒体の形状変化に応じて変化する静電容量値に基づいて上記棒体の作動状態を測定することを特徴とする測定装置。 In claim 2,
The non-contact distance sensor is composed of a capacitance sensor that detects a change in capacitance in an electric field, and a capacitance value that changes in accordance with a change in the distance to the rod or a change in shape of the rod A measuring apparatus for measuring the operating state of the rod body based on the above.
上記非接触距離センサが、超音波の送受信機能を備えた超音波センサで構成され、該超音波センサから送信される超音波の該超音波センサと上記棒体の表面との間の往復伝播時間に基づいて上記棒体の作動状態を測定することを特徴とする測定装置。 In claim 2,
The non-contact distance sensor is composed of an ultrasonic sensor having an ultrasonic transmission / reception function, and a round-trip propagation time between the ultrasonic sensor transmitted from the ultrasonic sensor and the surface of the rod body A measuring apparatus for measuring the operating state of the rod body based on the above.
上記非接触距離センサが、レーザ光の送受光機能を備えたレーザセンサで構成され、該レーザセンサから発信されるレーザ光の該レーザセンサと上記棒体の表面との間の往復時間に基づいて上記棒体の作動状態を測定することを特徴とする測定装置。 In claim 2,
The non-contact distance sensor is composed of a laser sensor having a function of transmitting / receiving laser light, and is based on a round trip time between the laser sensor transmitted from the laser sensor and the surface of the rod body. A measuring apparatus for measuring an operating state of the rod.
上記非接触距離センサが、上記棒体の周方向に複数個配置されていることを特徴とする測定装置。 In claim 2, 3, 4, 5 or 6,
A plurality of the non-contact distance sensors are arranged in the circumferential direction of the rod body.
上記非接触距離センサが、上記棒体の軸方向に複数個配置されていることを特徴とする測定装置。 In claim 2, 3, 4, 5 or 6,
A plurality of the non-contact distance sensors are arranged in the axial direction of the rod body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011146944A JP2012185145A (en) | 2011-02-15 | 2011-07-01 | Measuring apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048277 | 2011-02-15 | ||
JP2011048277 | 2011-02-15 | ||
JP2011146944A JP2012185145A (en) | 2011-02-15 | 2011-07-01 | Measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012185145A true JP2012185145A (en) | 2012-09-27 |
Family
ID=47015338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011146944A Withdrawn JP2012185145A (en) | 2011-02-15 | 2011-07-01 | Measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012185145A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016157290A1 (en) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | Detector |
KR20200034019A (en) * | 2018-09-12 | 2020-03-31 | 한국전력공사 | SUBSTATION MONITORING SYSTEM BASED ON BUILDING Environment AND SUBSTATION MONITORING APPARATUS THEREFOR |
CN114508389A (en) * | 2021-12-29 | 2022-05-17 | 东方电气集团东方汽轮机有限公司 | Method for monitoring motion and fault of steam turbine valve |
WO2024062652A1 (en) * | 2022-09-21 | 2024-03-28 | 株式会社フォーステック | Height difference reducing device, platform, and user guidance assistance system |
WO2024068097A1 (en) | 2022-09-28 | 2024-04-04 | Andritz Ag | Device and method for detecting wear in a component |
-
2011
- 2011-07-01 JP JP2011146944A patent/JP2012185145A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016157290A1 (en) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | Detector |
JPWO2016157290A1 (en) * | 2015-03-27 | 2017-07-27 | 三菱電機株式会社 | Detection device |
KR20200034019A (en) * | 2018-09-12 | 2020-03-31 | 한국전력공사 | SUBSTATION MONITORING SYSTEM BASED ON BUILDING Environment AND SUBSTATION MONITORING APPARATUS THEREFOR |
KR102563996B1 (en) * | 2018-09-12 | 2023-08-07 | 한국전력공사 | SUBSTATION MONITORING SYSTEM BASED ON BUILDING Environment AND SUBSTATION MONITORING APPARATUS THEREFOR |
CN114508389A (en) * | 2021-12-29 | 2022-05-17 | 东方电气集团东方汽轮机有限公司 | Method for monitoring motion and fault of steam turbine valve |
CN114508389B (en) * | 2021-12-29 | 2024-02-13 | 东方电气集团东方汽轮机有限公司 | Method for monitoring valve movement and faults of steam turbine |
WO2024062652A1 (en) * | 2022-09-21 | 2024-03-28 | 株式会社フォーステック | Height difference reducing device, platform, and user guidance assistance system |
WO2024068097A1 (en) | 2022-09-28 | 2024-04-04 | Andritz Ag | Device and method for detecting wear in a component |
AT526568A1 (en) * | 2022-09-28 | 2024-04-15 | Andritz Ag Maschf | SENSOR, ITS USE AND METHOD FOR DETECTING WEAR OF A COMPONENT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012185145A (en) | Measuring apparatus | |
CN102175166B (en) | Device for detecting thickness of oil film between cylinder sleeve and piston ring of diesel engine | |
CN1094191C (en) | Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix | |
CN104897064B (en) | A kind of new smooth arm amplifying type high precision length sensor and measuring method | |
CN102706317B (en) | Online monitoring device for thermal expansion amount of pressure-containing member of power station boiler | |
JP6377817B2 (en) | Non-contact magnetic linear position sensor | |
TWM506280U (en) | Rotating optical range finder | |
CN102183292A (en) | Method and detection sensor for detecting optical fiber grating vibration of large-scale mechanized equipment | |
CN103537489A (en) | Reflection-type roll wear degree on-line detection device | |
KR20150131955A (en) | Vibration sensor | |
CN203464909U (en) | Roughness or surface microstructure profile measuring instrument | |
CN109556774A (en) | The non-destructive monitoring system and monitoring method of residual stress in ferromagnetic steel | |
US9400171B2 (en) | Optical wear monitoring | |
CN102483341A (en) | Coriolis mass flow measuring device | |
CN201059954Y (en) | Magnetic telescopic displacement sensor | |
CN113074768B (en) | Dynamic and static continuous calibration method for electric vortex sensor | |
CN105783738A (en) | Incremental type small-measurement-range displacement sensor and measurement method | |
JP6592594B2 (en) | Position detection system and belt type continuously variable transmission | |
CN202734750U (en) | Magnetostrictive displacement sensor | |
CN109099847A (en) | The Two Dimension Optical fibre Displacement Transducer coupled based on macrobending loss effect and power | |
RU2584577C1 (en) | Method of calibrating magnetostrictive converters of linear displacements and device for therefor | |
TWI592680B (en) | Rotating optical range finder | |
JP4154183B2 (en) | piston ring | |
Zhou et al. | Sensors for intelligent machining-a research and application survey | |
CN103335704A (en) | Vibration measurement device for laser interference rotor and measurement method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130501 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |