WO2024061016A1 - 一种飞行器用单编码器作动器及其上电自检方法 - Google Patents

一种飞行器用单编码器作动器及其上电自检方法 Download PDF

Info

Publication number
WO2024061016A1
WO2024061016A1 PCT/CN2023/117522 CN2023117522W WO2024061016A1 WO 2024061016 A1 WO2024061016 A1 WO 2024061016A1 CN 2023117522 W CN2023117522 W CN 2023117522W WO 2024061016 A1 WO2024061016 A1 WO 2024061016A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
rudder arm
servo motor
mechanical
actuator
Prior art date
Application number
PCT/CN2023/117522
Other languages
English (en)
French (fr)
Inventor
胡华智
卢兴捷
胡海辉
Original Assignee
亿航智能设备(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿航智能设备(广州)有限公司 filed Critical 亿航智能设备(广州)有限公司
Publication of WO2024061016A1 publication Critical patent/WO2024061016A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy

Definitions

  • the present invention relates to the technical field of aircraft actuators, and more specifically, to a single encoder actuator for aircraft and a power-on self-test method thereof.
  • the actuator is a servo drive device used for position or angle control. It is widely used in aircraft and other equipment for operations such as aircraft rudder control.
  • the existing rotary actuators mainly use the following two categories: 1.
  • Low-cost solution the controller controls the rotation of the coreless motor through a 6-step square wave algorithm.
  • the motor drives the rudder arm to rotate after passing through a multi-stage parallel axis gear reducer, and the rudder arm rotates.
  • the output shaft position is fed back to the controller through the potentiometer.
  • This type of actuator has the characteristics of large reducer backlash, poor overload performance, large motor torque pulsation, low repeatability positioning accuracy of the potentiometer, and poor stability. Therefore, it cannot meet the needs of actuators in high-performance aircraft for fast response, high precision, and Performance requirements such as good stability;
  • High-cost method The controller controls the rotation of the servo motor through a vector control algorithm.
  • the motor drives the rudder arm to rotate after passing through the planetary reducer or harmonic reducer.
  • the rudder arm rotates, it outputs an absolute encoder to The output shaft position is fed back to the controller.
  • This type of actuator has fast response, high precision, and good stability.
  • due to the dual encoder solution it also brings disadvantages such as high cost, difficult installation, and large size.
  • the prior art discloses an actuator system for a control surface of an aircraft and an aircraft, which includes: two fixed plates; an actuator, the actuator is arranged between the two fixed plates and includes a connection To a fixed unit of the two fixed plates and a movable unit that transmits power, the movable unit includes an output part for transmitting power to the control surface of the aircraft to drive the control surface; and a protection device, The protection device is arranged between the two fixing plates and is configured to limit the fixing of the actuator when the connection between the fixing unit of the actuator and the fixing plate fails.
  • unit movement wherein the fixed unit of the actuator is connected to the fixed plate through a first connecting piece and a second connecting piece, the first connecting piece and the second connecting piece are provided on the actuator Approximately opposite side of the actuator.
  • the primary purpose of the present invention is to provide a single encoder actuator for aircraft that reduces cost and installation difficulty while meeting high performance requirements.
  • a further object of the present invention is to provide a power-on self-test method for a single encoder actuator for aircraft.
  • a single encoder actuator for aircraft including a controller, a servo motor, a harmonic reducer, a rudder arm and a limit column, wherein:
  • the receiving end of the controller receives control instructions from the flight controller, and the output end of the controller is connected to the servo motor. After the harmonic reducer decelerates the rotation speed of the servo motor, it drives the output shaft.
  • the rudder arm rotates, and the limit column is set on the rotation path of the rudder arm to limit the maximum rotation angle of the rudder arm. The mechanical origin and electrical zero point are found through the limit column to realize the origin return of the rudder arm during power-on self-check. ;
  • the servo motor is provided with a motor-end rotor position encoder.
  • the motor-end rotor position encoder feeds back the rotor position and rotor speed of the servo motor to the controller.
  • the controller also obtains the current of the servo motor.
  • the controller calculates and processes the control instructions sent by the flight controller, the rotor position of the servo motor, the rotor speed of the servo motor and the current of the servo motor, and then outputs three-phase alternating current to the servo motor to drive the servo motor.
  • the controller includes a sampling circuit, and the controller collects the three-phase alternating current of the servo motor through the sampling circuit.
  • the controller outputs three-phase alternating current to the servo motor after calculation and processing based on the control instructions sent by the flight controller, the rotor position of the servo motor, the rotor speed of the servo motor and the current of the servo motor, specifically as follows:
  • the controller After receiving the control command from the flight control, the controller outputs a speed command to the speed loop of the controller by calculating the control command value, the recorded number of rotor revolutions and the rotor position fed back by the motor-end rotor position encoder in the position loop of the controller; in the speed loop of the controller, a current command is output to the current loop of the controller by calculating the speed command and the speed value fed back by the motor-end rotor position encoder; in the current loop of the controller, a set of direct-axis voltage Vd and quadrature-axis voltage Vq is output to the coordinate transformation of the controller by calculating the current command and the current fed back by the sampling circuit; in the coordinate transformation of the controller, a set of pulse width modulation signals PWM is output to the inverter circuit of the controller by calculating the direct-axis voltage Vd and the rotor position fed back by the motor-end rotor position encoder; in the inverter circuit of the controller, the pulse width modulation signal PWM is amplified and
  • the harmonic reducer is a backlash-free harmonic reducer.
  • the relationship between the number of rotations of the motor rotor and the position of the rotor and the angle of the output shaft rudder arm is as follows:
  • limit posts which are respectively arranged at a mechanical lower limit point and a mechanical upper limit point on the rotation path of the rudder arm, wherein, on the rotation path of the rudder arm, the point reached in the clockwise direction
  • the maximum angular position is the mechanical lower limit point
  • the maximum angular position reached in the counterclockwise direction is the mechanical upper limit point
  • a mechanical origin is the The mechanical zero point is used as a reference during rotation.
  • the electrical zero point is a set offset relative to the mechanical origin. It is the minimum stroke amount when the actuator is working normally.
  • the electrical maximum point is a set offset relative to the electrical zero point.
  • a stroke amount is the maximum stroke amount when the actuator is working normally.
  • the rudder arm returns to its origin during the power-on self-test, specifically as follows:
  • the rudder arm moves clockwise from the initial state until it hits the limit post at the mechanical lower limit point, then moves counterclockwise until it hits the limit post at the mechanical upper limit point, and then moves clockwise until the motor
  • the position at this time is the mechanical origin. After moving to the set electrical zero point, the origin return of the rudder arm is completed.
  • ⁇ ArmAbsolute is the absolute angle of the rudder arm, in degrees
  • ⁇ ArmRelative is the relative angle of the rudder arm, in degrees
  • ⁇ ArmZero is the angle corresponding to the electrical zero position of the rudder arm, in degrees.
  • the aircraft of the present invention uses a single encoder actuator.
  • the controller controls the rotation of the servo motor through a vector control algorithm, and the motor drives the rudder arm to rotate through a harmonic reducer.
  • the output shaft rudder arm position can be calculated by recording the number of rotor turns and reading the rotor position, thereby Reduce cost and installation difficulty when meeting high performance requirements.
  • Figure 1 is a schematic structural diagram of a single encoder actuator for aircraft of the present invention.
  • Figure 2 is a schematic diagram of a single encoder actuator control surface for an aircraft provided in the embodiment.
  • Figure 3 is a schematic diagram of a single encoder actuator control diagram for an aircraft provided in the embodiment.
  • FIG. 4 is a schematic diagram of the setting of the limiting column of the single-encoder actuator for aircraft provided by the embodiment.
  • FIG. 5 is a schematic flowchart of the power-on self-test method of the single-encoder actuator for aircraft provided by the embodiment.
  • 1 is the servo motor.
  • 2 is the harmonic reducer
  • 3 is the rudder arm
  • 4 is the controller
  • 5 is the limit column.
  • a single encoder actuator for aircraft includes a controller 4, a servo motor 1, a harmonic reducer 2, a rudder arm 3 and a limit column 5, where:
  • the receiving end of the controller 4 receives control instructions from the flight controller.
  • the output end of the controller 4 is connected to the servo motor 1.
  • the harmonic reducer 2 reduces the rotation speed of the servo motor 1. , driving the rudder arm 3 of the output shaft to rotate, and the limiting post 5 is arranged on the rotation path of the rudder arm 3 to limit the rudder arm 3's maximum rotation angle, find the mechanical origin and electrical zero point through the limit column 5, and realize the origin return of the rudder arm 3 during power-on self-check;
  • the servo motor 1 is provided with a motor-end rotor position encoder.
  • the motor-end rotor position encoder feeds back the rotor position and rotor speed of the servo motor 1 to the controller 4.
  • the controller 4 also obtains The controller 4 calculates and processes the current of the servo motor 1 based on the control instructions sent by the flight controller, the rotor position of the servo motor 1, the rotor speed of the servo motor 1 and the current of the servo motor 1, and then outputs three-phase alternating current to the servo motor 1. , drive servo motor 1.
  • the rudder arm 3 of the actuator is connected to the rudder surface of the aircraft to drive the rudder surface.
  • This embodiment discloses a single encoder actuator for aircraft, as shown in Figure 1, including a controller 4, a servo motor 1, a harmonic reducer 2, a rudder arm 3 and a limit column 5, wherein:
  • the receiving end of the controller 4 receives the control instructions from the flight controller.
  • the output end of the controller 4 is connected to the servo motor 1.
  • the harmonic reducer 2 reduces the rotation speed of the servo motor 1. , drives the rudder arm 3 of the output shaft to rotate.
  • the limit column 5 is set on the rotation path of the rudder arm 3 to limit the maximum rotation angle of the rudder arm 3. The mechanical origin and electrical zero point are found through the limit column 5 to achieve The origin of rudder arm 3 returns during power-on self-check;
  • the servo motor 1 is provided with a motor-end rotor position encoder.
  • the motor-end rotor position encoder feeds back the rotor position and rotor speed of the servo motor 1 to the controller 4.
  • the controller 4 also obtains The controller 4 calculates and processes the current of the servo motor 1 based on the control instructions sent by the flight controller, the rotor position of the servo motor 1, the rotor speed of the servo motor 1 and the current of the servo motor 1, and then outputs three-phase alternating current to the servo motor 1. , drive servo motor 1.
  • the rudder arm 3 of the actuator is connected to the rudder surface of the aircraft to drive the rudder surface.
  • the controller 4 includes a sampling circuit, and the controller 4 collects the three-phase alternating current of the servo motor 1 through the sampling circuit.
  • the controller 4 calculates and processes the control instructions sent by the flight controller, the rotor position of the servo motor 1, the rotor speed of the servo motor 1 and the current of the servo motor 1 and then outputs three-phase alternating current to the servo motor 1, specifically as follows:
  • a speed command is output to the speed loop of controller 4 by calculating the control command value, the recorded number of rotor turns and the rotor position fed back by the rotor position encoder at the motor end; in the speed loop of controller 4, by calculating the speed After the command is compared with the speed value fed back by the rotor position encoder at the motor end, a current command is output to the current loop of controller 4; in the current loop of controller 4, by calculating the current command and the current fed back by the sampling circuit, it is output to the controller
  • the coordinate transformation of the controller 4 is a set of direct axis voltage Vd and quadrature axis voltage Vq; in the coordinate transformation of the controller 4, by calculating the direct axis voltage Vd and the rotor position fed back by the motor end rotor position encoder, the output is output to the controller 4
  • the inverter circuit has a set of pulse width modulation signals PWM; in the inverter circuit of the controller
  • the harmonic reducer 2 is a harmonic reducer 2 without tooth gap.
  • limit posts 5 are respectively arranged at the mechanical lower limit point and the mechanical upper limit point on the rotation path of the rudder arm 3, wherein, on the rotation path of the rudder arm 3 , the maximum angular position reached in the clockwise direction is the mechanical lower limit point, and the maximum angular position reached in the counterclockwise direction is the mechanical upper limit point.
  • a mechanical origin On the rotation path of the rudder arm 3, from the mechanical lower limit point to the mechanical upper limit point, a mechanical origin, an electrical zero point and an electrical maximum point are set in sequence, where the mechanical origin is the rotation of the rudder arm 3
  • the mechanical zero point is used as a reference during movement.
  • the electrical zero point is a set offset relative to the mechanical origin. It is the minimum stroke amount when the actuator is working normally.
  • the electrical maximum point is a set offset relative to the electrical zero point.
  • a stroke amount is the maximum stroke amount of the actuator when it is working normally.
  • the rudder arm 3 moves clockwise from the initial state until it hits the mechanical lower limit point.
  • the limit column 5 then moves counterclockwise until it hits the limit column 5 at the mechanical upper limit point, and moves clockwise until the Z signal of the motor end rotor position encoder appears.
  • the position at this time is the mechanical origin, and then moves to the set electrical zero point to complete the origin return of the rudder arm 3.
  • ⁇ ArmAbsolute is the absolute angle of the rudder arm 3, in degrees
  • ⁇ ArmRelative is the relative angle of the rudder arm 3, in degrees
  • ⁇ ArmZero is the angle corresponding to the electrical zero position of the rudder arm 3, in degrees.
  • This embodiment provides a power-on self-test method for a single encoder actuator for aircraft as described in Embodiment 1 and Embodiment 2, as shown in Figure 4, including the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开一种飞行器用单编码器作动器及其上电自检方法,控制器通过矢量控制算法控制伺服电机旋转,电机通过谐波减速器带动舵臂旋转。结合谐波减速器无齿隙的特点,与作动器每次上电做行程自检时找原点,就可以通过记录的转子圈数与读取转子位置计算出输出轴舵臂位置。从而在满足高性能要求时,降低成本与安装难度。

Description

一种飞行器用单编码器作动器及其上电自检方法 技术领域
本发明涉及飞行器作动器技术领域,更具体地,涉及一种飞行器用单编码器作动器及其上电自检方法。
背景技术
作动器是一种用于位置或角度控制的伺服驱动装置,广泛用于飞行器等设备中,用于飞行器舵面控制等操作。
现有的旋转作动器主要用以下两类:1低成本方案:控制器通过6步方波算法控制空心杯电机旋转,电机经过多级平行轴齿轮减速器后带动舵臂旋转,舵臂旋转时通过电位器将输出轴位置反馈给控制器。此类作动器存在减速器齿隙大、过载性差,电机转矩脉动大,电位器重复定位精度低、稳定性差等特点,从而无法满足高性能飞行器中作动器需要响应快、精度高、稳定性好等性能要求;2高成本方法:控制器通过矢量控制算法控制伺服电机旋转,电机经过行星减速器或谐波减速器后带动舵臂旋转,舵臂旋转时通过输出绝对式编码器将输出轴位置反馈给控制器。此类作动器响应快、精度高、稳定性好,但由于采用双编码器方案,也带来成本高、安装困难、体积大等缺点。
现有技术中公开一种用于飞行器的控制面的作动器系统以及飞行器,包括:两个固定板;作动器,所述作动器设置在两个所述固定板之间并且包括连接至两个所述固定板的固定单元和传递动力的活动单元,所述活动单元包括用于将动力传递至所述飞行器的所述控制面以驱动所述控制面的输出部;以及保护装置,所述保护装置设置在两个所述固定板之间并且构造成在所述作动器的所述固定单元与所述固定板之间的连接失效时能够限制所述作动器的所述固定单元运动,其中,所述作动器的所述固定单元通过第一连接件和第二连接件连接至所述固定板,所述第一连接件和所述第二连接件设置在所述作动器的大致相反侧。该方案并未解决上述提及的问题。
发明内容
本发明的首要目的是提供一种飞行器用单编码器作动器,在满足高性能要求时,降低成本与安装难度。
本发明的进一步目的是提供一种飞行器用单编码器作动器的上电自检方法。
为解决上述技术问题,本发明的技术方案如下:
一种飞行器用单编码器作动器,包括控制器、伺服电机、谐波减速器、舵臂和限位柱,其中:
所述控制器的接收端接收飞控发来的控制指令,所述控制器的输出端与所述伺服电机连接,所述谐波减速器将所述伺服电机的转速减速后,带动输出轴的舵臂旋转,所述限位柱设置于所述舵臂的旋转路径上,限制舵臂的最大旋转角度,通过限位柱找到机械原点与电气零点,实现上电自检时舵臂的原点复归;
所述伺服电机上设置有电机端转子位置编码器,所述电机端转子位置编码器将所述伺服电机的转子位置和转子速度反馈至所述控制器,所述控制器还获取伺服电机的电流,所述控制器根据飞控发来的控制指令、伺服电机的转子位置、伺服电机的转子速度和伺服电机的电流计算处理后输出三相交流电至伺服电机中,驱动伺服电机。
优选地,所述控制器包括采样电路,所述控制器通过所述采样电路采集伺服电机的三相交流电。
优选地,所述控制器根据飞控发来的控制指令、伺服电机的转子位置、伺服电机的转子速度和伺服电机的电流计算处理后输出三相交流电至伺服电机中,具体为:
所述控制器接收飞控发来的控制指令后,在控制器的位置环中,通过计算控制指令值、记录的转子圈数和电机端转子位置编码器反馈的转子位置,输出给控制器的速度环一个速度指令;在控制器的速度环中,通过计算速度指令与电机端转子位置编码器反馈的速度值后,输出给控制器的电流环一个电流指令;在控制器的电流环中,通过计算电流指令与采样电路反馈的电流至,输出给控制器的坐标变换一组直轴电压Vd和交轴电压Vq;在控制器的坐标变换中,通过计算直轴电压Vd与电机端转子位置编码器反馈的转子位置,输出给控制器的逆变电路一组脉宽调制信号PWM;在控制器的逆变电路中,将脉宽调制信号PWM放大后,输出三相交流电至所述伺服电机。
优选地,所述谐波减速器为无齿隙的谐波减速器。
优选地,电机转子旋转圈数和转子位置与输出轴舵臂角度关系如下:


式中,θArmRelative为舵臂相对角度,单位为度;θrotor为转子角度,单位为度;N为谐波减速器减速比;R为转子位置旋转圈数;n为电机端转子位置编码器旋转一圈对应读数值;r为电机端转子位置编码器当前数值。
优选地,所述限位柱有两个,分别设置于所述舵臂的旋转路径上的机械下限限位点和机械上限限位点,其中,舵臂的旋转路径上,顺时针方向到达的最大角度位置为机械下限限位点,逆时针方向到达的最大角度位置为机械上限限位点。
优选地,在所述舵臂的的旋转路径上,从机械下限限位点到机械上限限位点之间,依次设置机械原点、电气零点和电气最大值点,其中,机械原点为舵臂的旋转运动时用于参考的机械零点,电气零点为设定的相对于机械原点的一个偏移量,作为作动器正常工作时的最小行程量,电气最大值点为设定的相对于电气零点的一个行程量,为作动器正常工作时的最大行程量。
优选地,所述上电自检时舵臂的原点复归,具体为:
上电后,舵臂从初始状态进行顺时针运动直到碰到位于机械下限限位点的限位柱,再逆时针运动直到碰到位于机械上限限位点的限位柱,顺时针运动直到电机端转子位置编码器的Z信号出现时,此时所处的位置为机械原点,在运动至设定的电气零点,完成舵臂的原点复归。
优选地,通过限位柱找到机械原点与电气零点后,舵臂绝对角度计算如下:
θArmAbsolute=θArmRelativeArmZero
式中,θArmAbsolute为舵臂的绝对角度,单位为度;θArmRelative为舵臂的相对角度,单位为度;θArmZero为舵臂的电气零位对应角度,单位为度。
一种如上述所述的飞行器用单编码器作动器的上电自检方法,包括以下步骤:
S1:作动器上电;
S2:寻找下机械限位:舵臂从初始状态进行顺时针运动直到碰到位于机械下限限位点的限位柱;
S3:寻找上机械限位:舵臂逆时针运动直到碰到位于机械上限限位点的限位柱;
S4:寻找机械原点:舵臂顺时针运动直到电机端转子位置编码器的Z信号出现时;
S5:舵臂运动至电气零点,完成舵臂的原点复归。
与现有技术相比,本发明技术方案的有益效果是:
本发明的飞行器用单编码器作动器,控制器通过矢量控制算法控制伺服电机旋转,电机通过谐波减速器带动舵臂旋转。结合谐波减速器无齿隙的特点,与作动器每次上电做行程自检时找原点,就可以通过记录的转子圈数与读取转子位置计算出输出轴舵臂位置,从而在满足高性能要求时,降低成本与安装难度。
附图说明
图1为本发明的飞行器用单编码器作动器结构示意图。
图2为实施例提供的飞行器用单编码器作动器控制舵面示意图。
图3为实施例提供的飞行器用单编码器作动器控制示意图。
图4为实施例提供的飞行器用单编码器作动器的限位柱设置示意图。
图5为实施例提供的飞行器用单编码器作动器的上电自检方法流程示意图。
图中,1为伺服电机。2为谐波减速器,3为舵臂,4为控制器,5为限位柱。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
一种飞行器用单编码器作动器,如图1所示,包括控制器4、伺服电机1、谐波减速器2、舵臂3和限位柱5,其中:
所述控制器4的接收端接收飞控发来的控制指令,所述控制器4的输出端与所述伺服电机1连接,所述谐波减速器2将所述伺服电机1的转速减速后,带动输出轴的舵臂3旋转,所述限位柱5设置于所述舵臂3的旋转路径上,限制舵臂 3的最大旋转角度,通过限位柱5找到机械原点与电气零点,实现上电自检时舵臂3的原点复归;
所述伺服电机1上设置有电机端转子位置编码器,所述电机端转子位置编码器将所述伺服电机1的转子位置和转子速度反馈至所述控制器4,所述控制器4还获取伺服电机1的电流,所述控制器4根据飞控发来的控制指令、伺服电机1的转子位置、伺服电机1的转子速度和伺服电机1的电流计算处理后输出三相交流电至伺服电机1中,驱动伺服电机1。
在具体的实施例中,如图2所示,作动器的舵臂3与飞行器的舵面连接,驱动舵面。
实施例2
本实施例公开一种飞行器用单编码器作动器,如图1所示,包括控制器4、伺服电机1、谐波减速器2、舵臂3和限位柱5,其中:
所述控制器4的接收端接收飞控发来的控制指令,所述控制器4的输出端与所述伺服电机1连接,所述谐波减速器2将所述伺服电机1的转速减速后,带动输出轴的舵臂3旋转,所述限位柱5设置于所述舵臂3的旋转路径上,限制舵臂3的最大旋转角度,通过限位柱5找到机械原点与电气零点,实现上电自检时舵臂3的原点复归;
所述伺服电机1上设置有电机端转子位置编码器,所述电机端转子位置编码器将所述伺服电机1的转子位置和转子速度反馈至所述控制器4,所述控制器4还获取伺服电机1的电流,所述控制器4根据飞控发来的控制指令、伺服电机1的转子位置、伺服电机1的转子速度和伺服电机1的电流计算处理后输出三相交流电至伺服电机1中,驱动伺服电机1。
在具体的实施例中,如图2所示,作动器的舵臂3与飞行器的舵面连接,驱动舵面。
所述控制器4包括采样电路,所述控制器4通过所述采样电路采集伺服电机1的三相交流电。
所述控制器4根据飞控发来的控制指令、伺服电机1的转子位置、伺服电机1的转子速度和伺服电机1的电流计算处理后输出三相交流电至伺服电机1中,具体为:
如图3所示,所述控制器4接收飞控发来的控制指令后,在控制器4的位置 环中,通过计算控制指令值、记录的转子圈数和电机端转子位置编码器反馈的转子位置,输出给控制器4的速度环一个速度指令;在控制器4的速度环中,通过计算速度指令与电机端转子位置编码器反馈的速度值后,输出给控制器4的电流环一个电流指令;在控制器4的电流环中,通过计算电流指令与采样电路反馈的电流至,输出给控制器4的坐标变换一组直轴电压Vd和交轴电压Vq;在控制器4的坐标变换中,通过计算直轴电压Vd与电机端转子位置编码器反馈的转子位置,输出给控制器4的逆变电路一组脉宽调制信号PWM;在控制器4的逆变电路中,将脉宽调制信号PWM放大后,输出三相交流电至所述伺服电机1。
所述谐波减速器2为无齿隙的谐波减速器2。
电机转子旋转圈数和转子位置与输出轴舵臂角度关系如下:


式中,θArmRelative为舵臂相对角度,单位为度;θrotor为转子角度,单位为度;N为谐波减速器减速比;R为转子位置旋转圈数;n为电机端转子位置编码器旋转一圈对应读数值;r为电机端转子位置编码器当前数值。
所述限位柱5有两个,如图3所示,分别设置于所述舵臂3的旋转路径上的机械下限限位点和机械上限限位点,其中,舵臂3的旋转路径上,顺时针方向到达的最大角度位置为机械下限限位点,逆时针方向到达的最大角度位置为机械上限限位点。
在所述舵臂3的的旋转路径上,从机械下限限位点到机械上限限位点之间,依次设置机械原点、电气零点和电气最大值点,其中,机械原点为舵臂3的旋转运动时用于参考的机械零点,电气零点为设定的相对于机械原点的一个偏移量,作为作动器正常工作时的最小行程量,电气最大值点为设定的相对于电气零点的一个行程量,为作动器正常工作时的最大行程量。
所述上电自检时舵臂3的原点复归,具体为:
上电后,舵臂3从初始状态进行顺时针运动直到碰到位于机械下限限位点的 限位柱5,再逆时针运动直到碰到位于机械上限限位点的限位柱5,顺时针运动直到电机端转子位置编码器的Z信号出现时,此时所处的位置为机械原点,在运动至设定的电气零点,完成舵臂3的原点复归。
通过限位柱5找到机械原点与电气零点后,舵臂3绝对角度计算如下:
θArmAbsolute=θArmRelativeArmZero
式中,θArmAbsolute为舵臂3的绝对角度,单位为度;θArmRelative为舵臂3的相对角度,单位为度;θArmZero为舵臂3的电气零位对应角度,单位为度。
实施例3
本实施例提供一种如实施例1和实施例2所述的飞行器用单编码器作动器的上电自检方法,如图4所示,包括以下步骤:
S1:作动器上电;
S2:寻找下机械限位:舵臂3从初始状态进行顺时针运动直到碰到位于机械下限限位点的限位柱5;
S3:寻找上机械限位:舵臂3逆时针运动直到碰到位于机械上限限位点的限位柱5;
S4:寻找机械原点:舵臂3顺时针运动直到电机端转子位置编码器的Z信号出现时;
S5:舵臂3运动至电气零点,完成舵臂3的原点复归。
若步骤S2和S3未找到对应的机械限位,则自检失败。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种飞行器用单编码器作动器,其特征在于,包括控制器(4)、伺服电机(1)、谐波减速器(2)、舵臂(3)和限位柱(5),其中:
    所述控制器(4)的接收端接收飞控发来的控制指令,所述控制器(4)的输出端与所述伺服电机(1)连接,所述谐波减速器(2)将所述伺服电机(1)的转速减速后,带动输出轴的舵臂(3)旋转,所述限位柱(5)设置于所述舵臂(3)的旋转路径上,限制舵臂(3)的最大旋转角度,通过限位柱(5)找到机械原点与电气零点,实现上电自检时舵臂(3)的原点复归;
    所述伺服电机(1)上设置有电机端转子位置编码器,所述电机端转子位置编码器将所述伺服电机(1)的转子位置和转子速度反馈至所述控制器(4),所述控制器(4)还获取伺服电机(1)的电流,所述控制器(4)根据飞控发来的控制指令、伺服电机(1)的转子位置、伺服电机(1)的转子速度和伺服电机(1)的电流计算处理后输出三相交流电至伺服电机(1)中,驱动伺服电机(1)。
  2. 根据权利要求1所述的飞行器用单编码器作动器,其特征在于,所述控制器(4)包括采样电路,所述控制器(4)通过所述采样电路采集伺服电机(1)的三相交流电。
  3. 根据权利要求1所述的飞行器用单编码器作动器,其特征在于,所述控制器(4)根据飞控发来的控制指令、伺服电机(1)的转子位置、伺服电机(1)的转子速度和伺服电机(1)的电流计算处理后输出三相交流电至伺服电机(1)中,具体为:
    所述控制器(4)接收飞控发来的控制指令后,在控制器(4)的位置环中,通过计算控制指令值、记录的转子圈数和电机端转子位置编码器反馈的转子位置,输出给控制器(4)的速度环一个速度指令;在控制器(4)的速度环中,通过计算速度指令与电机端转子位置编码器反馈的速度值后,输出给控制器(4)的电流环一个电流指令;在控制器(4)的电流环中,通过计算电流指令与采样电路反馈的电流至,输出给控制器(4)的坐标变换一组直轴电压Vd和交轴电压Vq;在控制器(4)的坐标变换中,通过计算直轴电压Vd与电机端转子位置编码器反馈的转子位置,输出给控制器(4)的逆变电路一组脉宽调制信号PWM;在控制器(4)的逆变电路中,将脉宽调制信号PWM放大后,输出三相交流电至 所述伺服电机(1)。
  4. 根据权利要求1所述的飞行器用单编码器作动器,其特征在于,所述谐波减速器(2)为无齿隙的谐波减速器(2)。
  5. 根据权利要求4所述的飞行器用单编码器作动器,其特征在于,电机转子旋转圈数和转子位置与输出轴舵臂角度关系如下:


    式中,θArmRelative为舵臂相对角度,单位为度;θrotor为转子角度,单位为度;N为谐波减速器减速比;R为转子位置旋转圈数;n为电机端转子位置编码器旋转一圈对应读数值;r为电机端转子位置编码器当前数值。
  6. 根据权利要求1所述的飞行器用单编码器作动器,其特征在于,所述限位柱(5)有两个,分别设置于所述舵臂(3)的旋转路径上的机械下限限位点和机械上限限位点,其中,舵臂(3)的旋转路径上,顺时针方向到达的最大角度位置为机械下限限位点,逆时针方向到达的最大角度位置为机械上限限位点。
  7. 根据权利要求6所述的飞行器用单编码器作动器,其特征在于,在所述舵臂(3)的的旋转路径上,从机械下限限位点到机械上限限位点之间,依次设置机械原点、电气零点和电气最大值点,其中,机械原点为舵臂(3)的旋转运动时用于参考的机械零点,电气零点为设定的相对于机械原点的一个偏移量,作为作动器正常工作时的最小行程量,电气最大值点为设定的相对于电气零点的一个行程量,为作动器正常工作时的最大行程量。
  8. 根据权利要求7所述的飞行器用单编码器作动器,其特征在于,所述上电自检时舵臂(3)的原点复归,具体为:
    上电后,舵臂(3)从初始状态进行顺时针运动直到碰到位于机械下限限位点的限位柱(5),再逆时针运动直到碰到位于机械上限限位点的限位柱(5),顺时针运动直到电机端转子位置编码器的Z信号出现时,此时所处的位置为机械原点,在运动至设定的电气零点,完成舵臂(3)的原点复归。
  9. 根据权利要求8所述的飞行器用单编码器作动器,其特征在于,通过限位柱(5)找到机械原点与电气零点后,舵臂(3)绝对角度计算如下:
    θArmAbsolute=θArmRelativeArmZero
    式中,θArmAbsolute为舵臂(3)的绝对角度,单位为度;θArmRelative为舵臂(3)的相对角度,单位为度;θArmZero为舵臂(3)的电气零位对应角度,单位为度。
  10. 一种如权利要求1至9任一项所述的飞行器用单编码器作动器的上电自检方法,其特征在于,包括以下步骤:
    S1:作动器上电;
    S2:寻找下机械限位:舵臂(3)从初始状态进行顺时针运动直到碰到位于机械下限限位点的限位柱(5);
    S3:寻找上机械限位:舵臂(3)逆时针运动直到碰到位于机械上限限位点的限位柱(5);
    S4:寻找机械原点:舵臂(3)顺时针运动直到电机端转子位置编码器的Z信号出现时;
    S5:舵臂(3)运动至电气零点,完成舵臂(3)的原点复归。
PCT/CN2023/117522 2022-09-19 2023-09-07 一种飞行器用单编码器作动器及其上电自检方法 WO2024061016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211138471.X 2022-09-19
CN202211138471.XA CN115571328A (zh) 2022-09-19 2022-09-19 一种飞行器用单编码器作动器及其上电自检方法

Publications (1)

Publication Number Publication Date
WO2024061016A1 true WO2024061016A1 (zh) 2024-03-28

Family

ID=84581691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117522 WO2024061016A1 (zh) 2022-09-19 2023-09-07 一种飞行器用单编码器作动器及其上电自检方法

Country Status (2)

Country Link
CN (1) CN115571328A (zh)
WO (1) WO2024061016A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571328A (zh) * 2022-09-19 2023-01-06 亿航智能设备(广州)有限公司 一种飞行器用单编码器作动器及其上电自检方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192517A1 (en) * 2005-02-28 2006-08-31 Harmonic Drive Systems Inc. Geared motor
CN101244574A (zh) * 2007-02-13 2008-08-20 上海威士机械有限公司 一种转盘式粘合机旋转定位的方法及其机构
CN102495645A (zh) * 2011-11-28 2012-06-13 西北工业大学 一种用于高速滚转载体的陀螺稳定平台及其控制方法
CN105620708A (zh) * 2014-11-28 2016-06-01 中国科学院沈阳自动化研究所 一种水下电动舵机及舵角检测方法
CN107689754A (zh) * 2017-09-21 2018-02-13 中国科学院长春光学精密机械与物理研究所 一种舵机位置信息处理方法及系统
CN108121201A (zh) * 2017-12-18 2018-06-05 北京和利时电机技术有限公司 一种内部位置伺服控制方法
WO2019196506A1 (zh) * 2018-04-09 2019-10-17 固高科技(深圳)有限公司 伺服驱动器
CN110901895A (zh) * 2019-12-31 2020-03-24 洛阳安怀达智能科技有限公司 一种无人机舵机控制驱动系统
CN211417575U (zh) * 2019-12-31 2020-09-04 洛阳安怀达智能科技有限公司 一种无人机舵机控制驱动系统
CN217424136U (zh) * 2022-06-23 2022-09-13 北京航星传动科技有限公司 一种空气舵伺服机构及控制器舵舱
CN115571328A (zh) * 2022-09-19 2023-01-06 亿航智能设备(广州)有限公司 一种飞行器用单编码器作动器及其上电自检方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192517A1 (en) * 2005-02-28 2006-08-31 Harmonic Drive Systems Inc. Geared motor
CN101244574A (zh) * 2007-02-13 2008-08-20 上海威士机械有限公司 一种转盘式粘合机旋转定位的方法及其机构
CN102495645A (zh) * 2011-11-28 2012-06-13 西北工业大学 一种用于高速滚转载体的陀螺稳定平台及其控制方法
CN105620708A (zh) * 2014-11-28 2016-06-01 中国科学院沈阳自动化研究所 一种水下电动舵机及舵角检测方法
CN107689754A (zh) * 2017-09-21 2018-02-13 中国科学院长春光学精密机械与物理研究所 一种舵机位置信息处理方法及系统
CN108121201A (zh) * 2017-12-18 2018-06-05 北京和利时电机技术有限公司 一种内部位置伺服控制方法
WO2019196506A1 (zh) * 2018-04-09 2019-10-17 固高科技(深圳)有限公司 伺服驱动器
CN110901895A (zh) * 2019-12-31 2020-03-24 洛阳安怀达智能科技有限公司 一种无人机舵机控制驱动系统
CN211417575U (zh) * 2019-12-31 2020-09-04 洛阳安怀达智能科技有限公司 一种无人机舵机控制驱动系统
CN217424136U (zh) * 2022-06-23 2022-09-13 北京航星传动科技有限公司 一种空气舵伺服机构及控制器舵舱
CN115571328A (zh) * 2022-09-19 2023-01-06 亿航智能设备(广州)有限公司 一种飞行器用单编码器作动器及其上电自检方法

Also Published As

Publication number Publication date
CN115571328A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2024061016A1 (zh) 一种飞行器用单编码器作动器及其上电自检方法
EP2361736B1 (en) Rotary drive device
CN104734415A (zh) 一种减速电机
WO2024060987A1 (zh) 一种集成齿轮游标编码器的旋转作动器及控制方法
CN101789734B (zh) 一种大型天文望远镜的弧线驱动控制系统
JP3332226B2 (ja) アクチュエータ装置
WO2019141086A1 (zh) 五相逆变器双三相电机驱动电路及系统矢量控制方法
CN115159217A (zh) 一种基于直流伺服驱动的卷材纠偏系统
JP2007215306A (ja) モータ用制御装置
WO2024060971A1 (zh) 一种集成齿轮游标编码器的线性作动器及其控制方法
CN109605380A (zh) 一种Scara机器人交流伺服电机的驱动方法
CN107992109A (zh) 全闭环定位控制系统及方法
JP3526846B2 (ja) ステッピングモータの駆動装置
WO2019054475A1 (ja) モータ駆動システムおよびモータの制御方法
JP3503894B2 (ja) ステッピングモータの駆動装置
CN111817615A (zh) 高速永磁同步电机转子位置检测装置及方法
JP2002199771A (ja) アクチュエータ装置
CN111193463B (zh) 双转子电机控制方法及控制组件
EP2717464A1 (en) Electric actuator drive device and actuator using same
CN101777868B (zh) 一种机器人用异步电动机伺服驱动方法及系统
CN108199624B (zh) 双电机三桥臂逆变器驱动电路的磁场定向控制方法
CN207732524U (zh) 一种伺服电机叠片定子
CN211456938U (zh) 一种电机编码器校正装置
CN207182111U (zh) 方位角控制装置及系统
JP2764002B2 (ja) 位置制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867307

Country of ref document: EP

Kind code of ref document: A1