WO2024060971A1 - 一种集成齿轮游标编码器的线性作动器及其控制方法 - Google Patents
一种集成齿轮游标编码器的线性作动器及其控制方法 Download PDFInfo
- Publication number
- WO2024060971A1 WO2024060971A1 PCT/CN2023/116553 CN2023116553W WO2024060971A1 WO 2024060971 A1 WO2024060971 A1 WO 2024060971A1 CN 2023116553 W CN2023116553 W CN 2023116553W WO 2024060971 A1 WO2024060971 A1 WO 2024060971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- vernier
- main gear
- nonius
- linear actuator
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000001360 synchronised effect Effects 0.000 claims abstract description 49
- 238000004364 calculation method Methods 0.000 claims description 5
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 3
- 230000004308 accommodation Effects 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 abstract description 12
- 239000010959 steel Substances 0.000 abstract description 12
- 230000006870 function Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/24—Transmitting means
- B64C13/38—Transmitting means with power amplification
- B64C13/50—Transmitting means with power amplification using electrical energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/06—Means for converting reciprocating motion into rotary motion or vice versa
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/17—Circuit arrangements for detecting position and for generating speed information
Definitions
- the present invention relates to the field of aircraft technology, and more specifically, to a linear actuator with an integrated gear vernier encoder and a control method thereof.
- the actuator is a servo drive device used for position or angle control. It is widely used in aircraft and other equipment for operations such as aircraft rudder control.
- EMA linear electromechanical actuators
- Limit switch scheme using permanent magnet synchronous motor, rotor angle encoder, gearbox, ball screw pair, Cylinder, push rod, built-in limit switch and other components.
- the controller controls the rotation of the motor to drive the ball screw pair to reciprocate, but it needs to find the mechanical zero position through the built-in limit switch after powering on.
- the present invention provides a linear actuator with an integrated gear vernier encoder and a control method thereof.
- the current push rod position can be calculated based on the angle values on the main gear and the vernier gear, without the need to power on the machine to zero or install a linear variable differential transformer (LVDT), etc., thereby greatly improving safety while meeting high safety requirements. Reduce costs and installation area.
- LVDT linear variable differential transformer
- a linear actuator with integrated gear vernier encoder including a permanent magnet synchronous motor, a control circuit module, Gear vernier encoder and ball screw pair that push the push rod to make reciprocating motion;
- the gear vernier encoder includes a synchronous belt, a vernier gear with N+1 teeth, a vernier gear magnet, a vernier gear magnetic encoding chip, a main gear magnetic encoding chip, a main gear magnet, and N toothed main gear;
- the main gear is assembled on the rotor shaft of the permanent magnet synchronous motor; the main gear is rotationally connected to the vernier gear through a synchronous belt;
- the main gear magnet and the vernier gear magnet are respectively installed on the main gear and the vernier gear;
- the main gear magnetic encoding chip and the vernier gear magnetic encoding chip are placed under the main gear magnet and the vernier gear magnet respectively;
- the control circuit module is electrically connected to the main gear magnetic encoding chip and the vernier gear magnetic encoding chip respectively, and the single-turn angle values of the main gear and the vernier gear are respectively read through the main gear magnetic encoding chip and the vernier gear magnetic encoding chip;
- the vernier gear is connected to the ball screw pair.
- the vernier gear (2) rotates, the ball screw pair pushes the push rod to make reciprocating motion;
- the control circuit module is electrically connected to the permanent magnet synchronous motor, and controls the rotation of the motor according to the single-turn angle values of the main gear and the vernier gear and the control signal.
- control circuit module includes a controller and an inverter circuit
- the main gear magnetic encoding chip and the cursor gear magnetic encoding chip are electrically connected to the controller respectively;
- the output end of the controller is electrically connected to the input end of the inverter circuit, and outputs a pulse width modulation signal to the inverter circuit;
- the first output end of the inverter circuit is electrically connected to the motor
- the inverter circuit electrically connects the second output terminal to the controller and feeds the current information back to the controller.
- the linear actuator also includes a mounting plate; one end of the motor connected to the main gear and one end connected to the ball screw pair and the vernier gear are all connected to the mounting plate, and the motor and ball screw pair are parallel to each other. Set on one side of the mounting plate.
- the linear actuator further includes a bottom case provided with a housing cavity; the bottom case is detachably connected to the mounting plate, and the control circuit module and gear vernier encoder are located in the container of the bottom case. Place in the cavity.
- it also includes a PCB board, and the control circuit module, main gear magnetic encoding chip, and vernier gear magnetic encoding chip are all arranged on the PCB board.
- the linear actuator further includes a main gear magnet sheath used to protect the main gear magnet, and a vernier gear magnet sheath used to protect the vernier main gear magnet;
- the main gear magnet is connected to the main gear through the main gear magnet sheath;
- the said vernier main gear magnet is connected to the vernier main gear through the vernier gear magnet sheath.
- the single-turn angle values of the main gear and the vernier gear are read respectively through the main gear magnetic encoding chip and the vernier gear magnetic encoding chip;
- a set of pulse width modulation signals are output to control the rotation of the permanent magnet synchronous motor to control the push rod to make reciprocating motion.
- a set of pulse width modulation signals PWM is output to control the rotation of the permanent magnet synchronous motor, as follows:
- the speed information is calculated through the control information and push rod position information
- the first current information is calculated
- a set of pulse width modulation signals PWM are output to control the rotation of the permanent magnet synchronous motor to control the reciprocating motion of the push rod.
- N master represents the number of teeth of the main gear
- N nonius represents the number of teeth of the vernier gear
- ⁇ master represents the multi-turn angle of the main gear
- ⁇ nonius represents the multi-turn angle of the vernier gear
- MOD represents the remainder function
- ⁇ ReadMaster represents the single turn of the main gear Angle
- ⁇ ReadNonius represents the single-turn angle of the vernier gear
- ⁇ represents the single-turn angle difference between the main gear and the vernier gear
- INT represents the numerical rounding function
- n represents the number of rotations of the main gear, and the value range of n is n ⁇ [0,N nonius )
- ⁇ CalcMaster represents the calculated multi-turn angle value of the main gear
- P B represents the secondary lead of the ball screw
- S real represents the actual position of the push rod
- S calc represents the calculated position of the push rod.
- An aircraft comprising a fuselage, a flight control system, the linear actuator, a control surface, and a push rod;
- the flight controller is electrically connected to the control circuit module and sends control information to the control circuit module;
- One end of the rudder surface is rotatably connected to the fuselage, and the ball screw pair is rotatably connected to the middle part of the rudder surface through a push rod;
- the linear actuator implements the control method and achieves controlled rudder surface steering.
- the linear actuator described in this embodiment does not require Using a linear variable differential transformer does not require a gearbox.
- the connection method of the overall structure is relatively simple. It only needs to add a vernier gear and connect it to the gear through a synchronous belt. This method has the advantages of simple manufacturing, small size, and low price.
- LVDT linear variable differential transformers
- the invention can calculate the number of rotations of the permanent magnet synchronous motor and use it for multi-turn counting, and read the angle value of the main wheel magnetic encoding chip for single-turn counting. Turn the absolute angle, thus forming a multi-turn absolute encoder without backup battery. Compared with traditional multi-turn absolute encoders, no backup battery is needed to maintain counting, which improves reliability.
- Figure 1 is an exploded schematic diagram of a linear actuator integrated with a gear vernier encoder in this embodiment.
- Figure 2 is a schematic diagram of the overall appearance of the linear actuator integrated with a gear vernier encoder in this embodiment.
- Figure 3 is a schematic diagram of the connection between the gear and the gear vernier encoder in this embodiment.
- FIG. 4 is a control schematic diagram of the linear actuator described in this embodiment.
- Figure 5 shows the relationship between the number of rotations of permanent magnet synchronization and the angle of the magnetic encoder.
- FIG6 is the relationship between the number of rotations and the number of calculations of the permanent magnet synchronous motor.
- Figure 7 shows the relationship between the number of rotations of permanent magnet synchronization and the position of the push rod.
- Figure 8 is an overall schematic diagram of the aircraft.
- 1-controller 2-vernier gear, 3-main gear, 4-synchronous belt, 5-main gear magnet, 6-vernier gear magnet, 7-main gear magnetic encoding chip, 8-vernier gear magnet Encoding chip, 9-permanent magnet synchronous motor, 10-main gear magnetic steel sheath, 11-curver gear magnetic steel sheath, 12-mounting plate, 13-bottom shell, 14-cylinder, 15-push rod, 16- PCB board, 17-body.
- a linear actuator with an integrated gear vernier encoder includes a permanent magnet synchronous motor 9, a control circuit module, a gear vernier encoder, and a ball screw that pushes the push rod 15 for reciprocating motion. vice;
- the gear vernier encoder includes a synchronous belt 4, a vernier gear 2 with N+1 teeth, a vernier gear magnet 6, a vernier gear magnetic encoding chip 8, a main gear magnetic encoding chip 7, and a main gear magnet. 5.
- the main gear 3 is assembled on the rotor shaft of the permanent magnet synchronous motor 9; the main gear 3 is rotationally connected to the vernier gear 2 through the synchronous belt 4;
- the main gear magnet 5 and the vernier gear magnet 6 are respectively installed on the main gear 3 and the vernier gear 2;
- the main gear magnetic encoding chip 7 and the vernier gear magnetic encoding chip 8 are respectively placed under the main gear magnet 5 and the vernier gear magnet 6;
- the control circuit module is electrically connected to the main gear magnetic encoding chip 7 and the vernier gear magnetic encoding chip 8 respectively, and reads the main gear 3 and the cursor gear 2 through the main gear magnetic encoding chip 7 and the vernier gear magnetic encoding chip 8 respectively.
- the vernier gear 2 is connected to the ball screw pair.
- the auxiliary push rod makes reciprocating motion
- the control circuit module is electrically connected to the permanent magnet synchronous motor 9, and controls the rotation of the motor according to the single-turn angle values of the main gear 3 and the vernier gear 2 and the control signal.
- the linear actuator described in this embodiment does not require Using a linear variable differential transformer does not require a gearbox, and the connection method of the overall structure is relatively simple. It only needs to add a vernier gear 2 and connect it to the gear through a synchronous belt 4. This method has the advantages of simple manufacturing, small size, and low price. Compared with traditional linear actuators, it does not require limit switches or linear variable differential transformers (LVDT) for position detection, which reduces costs and improves reliability. This significantly reduces costs and installation area while meeting high safety requirements.
- LVDT linear variable differential transformer
- control circuit module includes a controller 1 and an inverter circuit
- the main gear magnetic encoding chip 77 and the cursor gear magnetic encoding chip 8 are electrically connected to the controller 1 respectively;
- the output end of the controller 1 is electrically connected to the input end of the inverter circuit, and outputs a pulse width modulation signal to the inverter circuit;
- the first output end of the inverter circuit is electrically connected to the motor
- the inverter circuit electrically connects the second output terminal to the controller 1 and feeds the current information back to the controller 1 .
- the controller 1 adopts a single-chip microcomputer, which is an integrated circuit chip that uses very large-scale integrated circuit technology to combine a central processing unit CPU with data processing capabilities, a random access memory RAM, a read-only memory ROM, and a variety of I
- the /O port, interrupt system, timer/counter and other functions are integrated on a silicon chip to form a small And perfect microcomputer system.
- an STM microcontroller can be used.
- the permanent magnet synchronous motor 9 uses permanent magnets to provide excitation, which makes the motor structure simpler, reduces processing and assembly costs, and eliminates the slip rings and brushes that are prone to problems, improving the efficiency of the motor. Operation reliability; and because no excitation current is required and there is no excitation loss, the efficiency and power density of the motor are improved.
- the linear actuator also includes a mounting plate 12; one end of the motor connected to the main gear 3 and one end of the ball screw pair connected to the cursor gear 2 are both connected to the mounting plate 12.
- the mounting plate 12 is connected, and the motor and the ball screw pair are arranged in parallel on one side of the mounting plate 12.
- the motor and the ball screw pair are stably fixed together through the mounting plate 12, which is equivalent to fixing the distance between the vernier gear 2 and the main gear 3, thereby ensuring that the timing belt 4 will not move from the main gear 3 and the vernier gear 2. falling off.
- the main gear 3 is provided with N teeth
- the vernier gear 2 is provided with N+1 teeth
- the main gear 3 with N teeth is driven by the synchronous belt 4 Vernier gear 2 with N+1 teeth rotates.
- gear teeth for meshing the main gear 3 and the vernier gear 2 are also provided on the inner side of the synchronous belt 4 .
- the linear actuator further includes a bottom shell 13 provided with a receiving cavity; the bottom shell 13 is detachably connected to the mounting plate 12, so The above-mentioned control circuit module and gear vernier encoder are located in the accommodation cavity of the bottom case 13 .
- the bottom shell 13 and the mounting plate 12 can be connected through screw threads. Through the mutual cooperation between the bottom shell 13 and the mounting plate 12, a sealed cavity is formed for protecting the control circuit module and the gear vernier encoder.
- it also includes a PCB board 14, and the control circuit module, the main gear magnetic encoding chip 77, and the vernier gear magnetic encoding chip 8 are all arranged on the PCB board 14.
- the ball screw pair includes a screw and a nut threadedly connected to the screw; this embodiment is also provided with a cylinder body 14 and a push rod; the ball screw pair is arranged inside the cylinder body (14), one end of the screw is connected to the cursor gear, and the nut is connected to the push rod; when the cursor gear (2) rotates, the screw also rotates, driving the nut to move forward or backward, thereby pushing the push rod to perform reciprocating motion.
- the cylinder body 14 has the function of protecting the ball screw pair to prevent dust from entering and affecting the connection between the screw and the nut.
- the linear actuator further comprises a main gear magnet steel sheath 10 for protecting the main gear magnet steel and a cursor gear magnet steel sheath 6 for protecting the cursor main gear magnet steel;
- the main gear magnet is connected to the main gear 3 through the main gear magnet sheath 10;
- the said vernier main gear magnet is connected to the vernier main gear 3 through the sheath of the vernier gear magnet 6 .
- this embodiment further provides a control method for the linear actuator with integrated gear vernier encoder.
- the single-turn angle values of the main gear 3 and the vernier gear 2 are respectively read through the main gear magnetic encoding chip 7 and the vernier gear magnetic encoding chip 8;
- a set of pulse width modulation signals PWM are output to control the rotation of the permanent magnet synchronous motor 9, thereby controlling and pushing the push rod 15 to make reciprocating motion.
- a set of pulse width modulation signals PWM is output to control the rotation of the permanent magnet synchronous motor 9, as follows:
- the speed information is calculated through the control information and the position information of the push rod 15;
- the first current information is calculated
- a set of pulse width modulation signals PWM are output to control the rotation of the permanent magnet synchronous motor 9, thereby controlling the reciprocating motion of the push rod 15.
- the pulse width modulation signal PWM is amplified by the inverter circuit and outputs three-phase alternating current to the permanent magnet synchronous motor 9; the permanent magnet synchronous motor 9 rotates under the excitation of the three-phase alternating current, and the permanent magnet synchronous motor
- the main gear magnet 5 on the rotor shaft 9 rotates at the same time and outputs the rotor shaft position to the controller 1 through the main gear magnetic encoding chip 7; the main gear 3 drives the vernier gear 2 to rotate through the synchronous belt 4, and the vernier gear on the vernier gear 2
- the magnet 6 rotates simultaneously and outputs the position of the cursor gear 2 to the controller 1 through the cursor gear magnetic encoding chip 8; the ball screw pair in the cylinder 14 rotates with the cursor gear 2, thus pushing the push rod 15 to reciprocate.
- the main gear 3 in the linear actuator, is assembled on the rotor shaft of the permanent magnet synchronous motor 9 , and follows the rotation of the permanent magnet synchronous motor 9 .
- the main gear 3 with N teeth is driven by the synchronous belt 4 Vernier gear 2 with N+1 teeth rotates. Because there is a gear difference of 1 tooth between the main gear 3 and the vernier gear 2, within a certain range of rotations of the motor, the single-turn angle difference between the main gear 3 and the vernier gear 2 is linear with the number of rotations of the permanent magnet synchronous motor 9 Relationship (the single-turn angle difference ⁇ between the main gear 3 and the vernier gear 2 ⁇ the number of rotations n of the permanent magnet synchronous motor 9).
- the number of rotations of the permanent magnet synchronous motor 9 can be calculated by reading the single-turn angle value of the main gear 3 and the vernier gear 2, and then the position of the push rod 15 can be calculated through the secondary lead of the ball screw, in which the position information of the push rod 15 is calculated.
- the current push rod 15 position can be calculated through the gear vernier encoder.
- the main gear 3 with 10 teeth and the vernier gear 2 with 11 teeth are used to form a gear vernier encoder, and the calculation is as follows This will give you the putter 15 position:
- the single-turn angle ⁇ ReadMaster read by the magnetic encoding chip of main gear 3 is 36°
- the single-turn angle ⁇ ReadNonius read by the magnetic encoding chip of vernier gear 2 is 65.45°.
- an aircraft includes a fuselage 17, a flight control system, a linear actuator as described in Embodiment 1, a rudder surface, and a push rod;
- the flight controller 1 is electrically connected to the control circuit module and sends control information to the control circuit module;
- One end of the rudder surface is rotatably connected to the fuselage 17, and the ball screw pair is rotatably connected to the middle part of the rudder surface through a push rod 15;
- the linear actuator implements the control method described in Embodiment 2 and realizes controlled steering of the rudder surface.
- the steering surface described in this embodiment may be an elevator, that is, the elevator of the aircraft can be controlled to rise and fall by controlling the linear actuator.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
一种集成齿轮游标编码器的线性作动器及其控制方法,线性作动器包括电机(9)、控制电路模块、齿轮游标编码器、推动推杆(15)做往复运动的滚珠丝杠副;齿轮游标编码器包括同步带(4)、游标齿轮(2)、游标齿轮磁钢(6)、游标齿轮磁编码芯片(8)、主齿轮磁编码芯片(7)、主齿轮磁钢(5)、主齿轮(3);所述的主齿轮(3)装配在电机转子轴上;主齿轮(3)通过同步带(4)与游标齿轮(2)转动连接;主齿轮磁钢(5)、游标齿轮磁钢(6)分别对应安装在主齿轮(3)、游标齿轮(2)上;主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别对应放置在主齿轮磁钢(5)、游标齿轮磁钢(6)的下方;控制电路分别与主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)电性连接,通过主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别读取主齿轮(3)、游标齿轮(2)的单圈角度值;游标齿轮(2)与滚珠丝杠副连接;控制电路模块与电机(9)电性连接。
Description
本发明涉及飞行器技术领域,更具体的,涉及一种集成齿轮游标编码器的线性作动器及其控制方法。
作动器是一种用于位置或角度控制的伺服驱动装置,广泛用于飞行器等设备中,用于飞行器舵面控制等操作。
在中小型飞行器常用的线性电动机械作动器(EMA)中,主要有一下两类:(1)限位开关方案:采用永磁同步电机、转子角度编码器、齿轮箱、滚珠丝杠副、缸筒、推杆、内置限位开关等部件。控制器控制电机转动将带动滚珠丝杠副做往复运动,但需要上电后通过内置限位开关寻找机械零位。此类作动器因为没有绝对位置传感器,假如在飞行中因控制器失效重启,需要较长时间做机械归零,从而可能导致飞行器坠毁,故不适用于高安全性飞行器;(2)线性位置传感器方案:采用永磁同步电机、转子角度编码器、齿轮箱、滚珠丝杆副、缸筒、推杆、线性可变差动变压器(LVDT),由于使用了线性可变差动变压器(LVDT)作为绝对位置传感器,上电后无需机械归零就可正常工作。此类作动器适用于高安全性飞行器,但需要内置或外置线性可变差动变压器(LVDT),导致制造复杂、体积大、价格高等弊端。
发明内容
本发明为了解决以上现有技术的线性作动器存在导致制造复杂、体积大、价格高等弊端的问题,提供了一种集成齿轮游标编码器的线性作动器及其控制方法,其通过读取主齿轮与游标齿轮上的角度值,便可计算出当前推杆位置,而无需上电机械归零或加装线性可变差动变压器(LVDT)等,从而在满足高安全性要求下,大幅降低成本与安装面积。
为实现上述本发明目的,采用的技术方案如下:
一种集成齿轮游标编码器的线性作动器,包括永磁同步电机、控制电路模块、
齿轮游标编码器、推动推杆做往复运动的滚珠丝杠副;
其中,所述的齿轮游标编码器包括同步带、设有N+1个齿的游标齿轮、游标齿轮磁钢、游标齿轮磁编码芯片、主齿轮磁编码芯片、主齿轮磁钢、设有N个齿的主齿轮;
所述的主齿轮装配在永磁同步电机的转子轴上;所述的主齿轮通过同步带与游标齿轮转动连接;
所述的主齿轮磁钢、游标齿轮磁钢分别对应安装在主齿轮、游标齿轮上;
所述的主齿轮磁编码芯片、游标齿轮磁编码芯片分别对应放置在主齿轮磁钢、游标齿轮磁钢的下方;
所述的控制电路模块分别与主齿轮磁编码芯片、游标齿轮磁编码芯片电性连接,通过主齿轮磁编码芯片、游标齿轮磁编码芯片分别读取主齿轮、游标齿轮的单圈角度值;
所述的游标齿轮与滚珠丝杠副连接,在游标齿轮(2)转动下,滚珠丝杠副推动推杆做往复运动;
所述的控制电路模块与永磁同步电机电性连接,根据主齿轮、游标齿轮的单圈角度值及控制信号控制电机转动。
优选地,所述的控制电路模块包括控制器、逆变电路;
所述的主齿轮磁编码芯片、游标齿轮磁编码芯片分别与控制器电性连接;
所述的控制器的输出端与逆变电路的输入端电性连接,输出脉宽调制信号给逆变电路;
所述的逆变电路的第一输出端与电机电性连接;
所述的逆变电路将第二输出端与控制器电性连接,将电流信息反馈回控制器。
进一步地,所述的线性作动器还包括安装板;所述的电机与主齿轮连接的一端、滚珠丝杠副与游标齿轮连接的一端均与安装板连接,且电机、滚珠丝杠副并列设置在安装板的一侧。
优选地,所述的线性作动器还包括设有容置腔的底壳;所述的底壳与安装板可拆卸连接,所述的控制电路模块、齿轮游标编码器均位于底壳的容置腔中。
优选地,还包括PCB板,所述的控制电路模块、主齿轮磁编码芯片、游标齿轮磁编码芯片均设置在PCB板上。
优选地,所述的线性作动器还包括用于保护主齿轮磁钢的主齿轮磁钢护套、用于保护游标主齿轮磁钢的游标齿轮磁钢护套;
所述的主齿轮磁钢通过主齿轮磁钢护套与主齿轮连接;
所述的游标主齿轮磁钢通过游标齿轮磁钢护套与游标主齿轮连接。
一种集成齿轮游标编码器的线性作动器的控制方法,
通过主齿轮磁编码芯片、游标齿轮磁编码芯片分别读取主齿轮和游标齿轮的单圈角度值;
根据主齿轮和游标齿轮的单圈角度差与永磁同步电机的旋转圈数呈线性关系,计算出电机旋转圈数,通过滚珠丝杠副导程计算推杆位置信息;
根据接收的控制信息和推杆位置信息,输出一组脉宽调制信号PWM控制永磁同步电机转动,实现控制推动推杆做往复运动。
优选地,根据接收的控制信息和推杆位置信息,输出一组脉宽调制信号PWM控制永磁同步电机转动,具体如下:
接收到控制信息后,通过控制信息与推杆位置信息,计算得到速度信息;
根据速度信息与游标齿轮的转速信息,计算得到第一电流信息;
根据第一电流信息和接收到反馈的第二电流信息,计算得到一组直轴电压Vd和交轴电压Vq;
根据直轴电压Vd和交轴电压Vq与主齿轮的单圈角度值,输出一组脉宽调制信号PWM控制永磁同步电机转动,实现控制推动推杆做往复运动。
进一步地,其中计算推杆位置信息的计算公式如下:
Nnonius=Nmaster+1 (1)
θCalcMaster=n*360°+θReadMaster (6)
Nnonius=Nmaster+1 (1)
θCalcMaster=n*360°+θReadMaster (6)
其中:Nmaster表示主齿轮的齿数;Nnonius表示游标齿轮的齿数;θmaster表示主齿轮多圈角度;θnonius表示游标齿轮多圈角度;MOD表示求余数函数;θReadMaster表示主齿轮的单圈角度;θReadNonius表示游标齿轮的单圈角度;Δθ表示主齿轮与游标齿轮的单圈角度差;INT表示数值向下取整函数;n表示主齿轮旋转圈数,n的取值范围为n∈[0,Nnonius);θCalcMaster表示计算得到的主齿轮多圈角度值;PB表示滚珠丝杠副导程;Sreal表示推杆实际位置;Scalc表示推杆计算的位置。
一种飞行器,包括机身、飞行控制系统、所述的线性作动器、舵面、推杆;
所述的飞行控制器与控制电路模块电性连接,向控制电路模块发送控制信息;
所述的舵面的一端与机身转动连接,所述的滚珠丝杠副通过推杆与舵面的中部转动连接;
所述的线性作动器实现所述的控制方法,实现控制的舵面转向。
本发明的有益效果如下:
相对于现有技术中线性位置传感器方案由于采用需要内置或外置线性可变差动变压器(LVDT),导致制造复杂、体积大、价格高等弊端,本实施例所述的线性作动器不需要采用线性可变差动变压器,也不需要齿轮箱,整体结构的连接方式相对比较简单,只需要增设一个游标齿轮,通过同步带与齿轮连接。这种方式具有制造简单、体积小、价格地等有点,相对传统线性作动器,无需限位开关或线性可变差动变压器(LVDT)作位置检测,降低成本的同时提高了可靠性。从而在满足高安全性要求下,大幅降低成本与安装面积。
本发明通过读取主轮磁编码芯片与游标轮磁编码芯片的角度差值,便可计算出永磁同步电机旋转圈数并用于多圈计数,读取主轮磁编码芯片角度值用于单圈绝对角度,从而组成为无备用电池的多圈绝对值编码器。相对传统多圈绝对值编码器,无需备用电池维持计数,提高了可靠性。
图1是本实施例集成齿轮游标编码器的线性作动器的爆炸示意图。
图2是本实施例集成齿轮游标编码器的线性作动器的整体外观示意图。
图3是本实施例齿轮与齿轮游标编码器连接的示意图。
图4是本实施例所述的线性作动器的控制示意图。
图5是永磁同步的旋转圈数与磁编码器角度关系。
图6是永磁同步的旋转圈数与计算圈数关系。
图7是永磁同步的旋转圈数与推杆位置关系。
图8是飞行器的整体示意图。
图中,1-控制器、2-游标齿轮、3-主齿轮、4-同步带、5-主齿轮磁钢、6-游标齿轮磁钢、7-主齿轮磁编码芯片、8-游标齿轮磁编码芯片、9-永磁同步电机、10-主齿轮磁钢护套、11-游标齿轮磁钢护套、12-安装板、13-底壳、14-缸体、15-推杆、16-PCB板、17-机身。
下面结合附图和具体实施方式对本发明做详细描述。
实施例1
如图1、2、3所示,一种集成齿轮游标编码器的线性作动器,包括永磁同步电机9、控制电路模块、齿轮游标编码器、推动推杆15做往复运动的滚珠丝杠副;
其中,所述的齿轮游标编码器包括同步带4、设有N+1个齿的游标齿轮2、游标齿轮磁钢6、游标齿轮磁编码芯片8、主齿轮磁编码芯片7、主齿轮磁钢5、设有N个齿的主齿轮3;
所述的主齿轮3装配在永磁同步电机9的转子轴上;所述的主齿轮3通过同步带4与游标齿轮2转动连接;
所述的主齿轮磁钢5、游标齿轮磁钢6分别对应安装在主齿轮3、游标齿轮2上;
所述的主齿轮磁编码芯片7、游标齿轮磁编码芯片8分别对应放置在主齿轮磁钢5、游标齿轮磁钢6的下方;
所述的控制电路模块分别与主齿轮磁编码芯片7、游标齿轮磁编码芯片8电性连接,通过主齿轮磁编码芯片7、游标齿轮磁编码芯片8分别读取主齿轮3、游标齿轮2的单圈角度值;
所述的游标齿轮2与滚珠丝杠副连接,在游标齿轮(2)转动下,滚珠丝杠
副推动推杆做往复运动;
所述的控制电路模块与永磁同步电机9电性连接,根据主齿轮3、游标齿轮2的单圈角度值及控制信号控制电机转动。
相对于现有技术中线性位置传感器方案由于采用需要内置或外置线性可变差动变压器(LVDT),导致制造复杂、体积大、价格高等弊端,本实施例所述的线性作动器不需要采用线性可变差动变压器,也不需要齿轮箱,整体结构的连接方式相对比较简单,只需要增设一个游标齿轮2,通过同步带4与齿轮连接。这种方式具有制造简单、体积小、价格地等有点,相对传统线性作动器,无需限位开关或线性可变差动变压器(LVDT)作位置检测,降低成本的同时提高了可靠性。从而在满足高安全性要求下,大幅降低成本与安装面积。
在一个具体的实施例中,所述的控制电路模块包括控制器1、逆变电路;
所述的主齿轮磁编码芯片77、游标齿轮磁编码芯片8分别与控制器1电性连接;
所述的控制器1的输出端与逆变电路的输入端电性连接,输出脉宽调制信号给逆变电路;
所述的逆变电路的第一输出端与电机电性连接;
所述的逆变电路将第二输出端与控制器1电性连接,将电流信息反馈回控制器1。
所述的控制器1采用单片机,所述的单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。如本实施例可以采用STM单片机。
本实施例中,所述的永磁同步电机9以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,没有励磁损耗,提高了电动机的效率和功率密度。
为了将电机、滚珠丝杠副并列固定,所述的线性作动器还包括安装板12;所述的电机与主齿轮3连接的一端、滚珠丝杠副与游标齿轮2连接的一端均与安
装板12连接,且电机、滚珠丝杠副并列设置在安装板12的一侧。
本实施例通过安装板12将电机、滚珠丝杠副稳定的固定在一起,相当于固定游标齿轮2、主齿轮3之间的距离,从而保证同步带4不会从主齿轮3、游标齿轮2上脱落。
如图3所示,在本实施例中,所述的主齿轮3设有N个齿,所述的游标齿轮2设有N+1个齿;N个齿的主齿轮3通过同步带4带动N+1个齿的游标齿轮2转动。相应的在同步带4的内侧也设有用于啮合主齿轮3、游标齿轮2的轮齿。
在一个具体的实施例中,如图1、2所示,所述的线性作动器还包括设有容置腔的底壳13;所述的底壳13与安装板12可拆卸连接,所述的控制电路模块、齿轮游标编码器均位于底壳13的容置腔中。
所述的底壳13与安装板12可以通过螺杆螺纹连接,通过底壳13与安装板12的相互配合作用,形成一个密封的空腔,用于保护控制电路模块、齿轮游标编码器。
在一个具体的实施例中,还包括PCB板14,所述的控制电路模块、主齿轮磁编码芯片77、游标齿轮磁编码芯片8均设置在PCB板14上。
在一个具体的实施例中,所述的滚珠丝杠副包括丝杠、与丝杠螺纹连接的螺母;本实施例还外设有缸体14、推杆;所述的滚珠丝杠副设置在缸体(14)内部,所述的丝杠的一端与游标齿轮连接,所述的螺母与推杆连接;在游标齿轮(2)转动下,丝杠也跟着转动,带动螺母向前或向后移动,进而实现推动推杆做往复运动。所述的缸体14具有保护滚珠丝杠副的作用,以免进入灰尘,影响丝杠与螺母之间的连接。
在一个具体的实施例中,所述的线性作动器还包括用于保护主齿轮磁钢的主齿轮磁钢护套10、用于保护游标主齿轮磁钢的游标齿轮磁钢6护套;
所述的主齿轮磁钢通过主齿轮磁钢护套10与主齿轮3连接;
所述的游标主齿轮磁钢通过游标齿轮磁钢6护套与游标主齿轮3连接。
实施例2
基于实施例1所述的集成齿轮游标编码器的线性作动器,如图4所示,本实施例还提供了一种集成齿轮游标编码器的线性作动器的控制方法,
通过主齿轮磁编码芯片7、游标齿轮磁编码芯片8分别读取主齿轮3和游标齿轮2的单圈角度值;
根据主齿轮3和游标齿轮2的单圈角度差与永磁同步电机9的旋转圈数呈线性关系,计算出电机旋转圈数,通过滚珠丝杠副导程计算推杆15位置信息;
根据接收的控制信息和推杆15位置信息,输出一组脉宽调制信号PWM控制永磁同步电机9转动,实现控制推动推杆15做往复运动。
优选地,根据接收的控制信息和推杆15位置信息,输出一组脉宽调制信号PWM控制永磁同步电机9转动,具体如下:
接收到控制信息后,通过控制信息与推杆15位置信息,计算得到速度信息;
根据速度信息与游标齿轮2的转速信息,计算得到第一电流信息;
根据第一电流信息和接收到反馈的第二电流信息,计算得到一组直轴电压Vd和交轴电压Vq;
根据直轴电压Vd和交轴电压Vq与主齿轮3的单圈角度值,输出一组脉宽调制信号PWM控制永磁同步电机9转动,实现控制推动推杆15做往复运动。
本实施例中,在逆变电路中,脉宽调制信号PWM经过逆变电路放大,输出三相交流电给永磁同步电机9;永磁同步电机9在三相交流电激励下转动,永磁同步电机9的转子轴上主齿轮磁钢5同时转动并将转子轴位置通过主齿轮磁编码芯片7输出给控制器1;主齿轮3通过同步带4带动游标齿轮2转动,游标齿轮2上的游标齿轮磁钢6同时转动并将游标齿轮2位置通过游标齿轮磁编码芯片8输出给控制器1;缸体14中的滚珠丝杠副随着游标齿轮2转动,从而推动推杆15做往复运动。
在一个具体的实施例中,在线性作动器中,主齿轮3装配在永磁同步电机9的转子轴上,跟随永磁同步电机9旋转,N个齿的主齿轮3通过同步带4带动N+1个齿的游标齿轮2转动。因为主齿轮3与游标齿轮2存在1个齿的齿轮差,在电机旋转一定范围的圈数内,主齿轮3和游标齿轮2的单圈角度差与永磁同步电机9的旋转圈数呈线性关系(主齿轮3与游标齿轮2的单圈角度差Δθ∝永磁同步电机9的旋转圈数n)。从而可通过读取主齿轮3与游标齿轮2的单圈角度值计算出永磁同步电机9旋转圈数,后通过滚珠丝杠副导程计算出推杆15位置,其中计算推杆15位置信息的计算公式如下:
Nnonius=Nmaster+1 (1)
θCalcMaster=n*360°+θReadMaster (6)
Nnonius=Nmaster+1 (1)
θCalcMaster=n*360°+θReadMaster (6)
其中:Nmaster表示主齿轮3的齿数;Nnonius表示游标齿轮2的齿数;θmaster表示主齿轮3多圈角度;θnonius表示游标齿轮2多圈角度;MOD表示求余数函数;θReadMaster表示主齿轮3的单圈角度;θReadNonius表示游标齿轮2的单圈角度;Δθ表示主齿轮3与游标齿轮2的单圈角度差;INT表示数值向下取整函数;n表示主齿轮3旋转圈数,n的取值范围为n∈[0,Nnonius);θCalcMaster表示计算得到的主齿轮3多圈角度值;PB表示滚珠丝杠副导程;Sreal表示推杆15实际位置;Scalc表示推杆15计算的位置。
通过公式(1)~(7)便可通过齿轮游标编码器计算出当前推杆15位置,如使用10个齿的主齿轮3和11个齿的游标齿轮2组成齿轮游标编码器,通过如下计算便可得出推杆15位置:
1.假设主齿轮3齿数Nmaster=10,由公式(1)可得游标齿轮2齿数Nnonius=10+1=11。
2.假设主齿轮3旋转10.1圈,则主齿轮3多圈角度θmaster=3636°,由公式(2)可得游标齿轮2多圈角度
3.由公式(3)可得,主齿轮3的磁编码芯片读到的单圈角度θReadMaster=36°,游标齿轮2的磁编码芯片读到的单圈角度θReadNonius=65.45°。
4.由公式(4)可得,主齿轮磁编码芯片7与游标齿轮磁编码芯片8读到的单圈角度差Δθ=330.54°。
5.由公式(5)可得,主齿轮3旋转圈数n=10。
6.由公式(6)可得,计算的主齿轮3多圈角度θCalcMaster=10*360°+36°=
3636°,即θCalcMaster等于θmaster。
7.假设滚珠丝杠副导程PB=2mm,由公式(7)可得,推杆15实际位置
推杆15计算的位置即Sreal等于Scalc,因此可通过齿轮游标编码器计算出线性作动器中推杆15实际位置。
如图5所示,当电机旋转时,主齿轮3与游标齿轮2间角度关系。
如图6所示,当电机旋转时,通过计算主齿轮3与游标齿轮2的角度差,可得出当前电机旋转圈数。
如图7所示,当电机旋转时,推杆15位置与磁编码器角度差为线性关系,通过齿轮游标编码器可得出推杆15位置。
实施例3
如图8所示,一种飞行器,包括机身17、飞行控制系统、如实施例1所述的线性作动器、舵面、推杆;
所述的飞行控制器1与控制电路模块电性连接,向控制电路模块发送控制信息;
所述的舵面的一端与机身17转动连接,所述的滚珠丝杠副通过推杆15与舵面的中部转动连接;
所述的线性作动器实现如实施例2所述的控制方法,实现控制的舵面转向。
本实施例所述的舵面可以为升降舵,即通过控制线性动作器能控制飞行器的升降舵的升降。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (10)
- 一种集成齿轮游标编码器的线性作动器,其特征在于:包括永磁同步电机(9)、控制电路模块、齿轮游标编码器、推动推杆做往复运动的滚珠丝杠副;其中,所述的齿轮游标编码器包括同步带(4)、设有N+1个齿的游标齿轮(2)、游标齿轮磁钢(6)、游标齿轮磁编码芯片(8)、主齿轮磁编码芯片(7)、主齿轮(3)磁钢、设有N个齿的主齿轮(3);所述的主齿轮(3)装配在永磁同步电机(9)的转子轴上;所述的主齿轮(3)通过同步带(4)与游标齿轮(2)转动连接;所述的主齿轮磁钢、游标齿轮磁钢(6)分别对应安装在主齿轮(3)、游标齿轮(2)上;所述的主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别对应放置在主齿轮磁钢、游标齿轮磁钢(6)的下方;所述的控制电路模块分别与主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)电性连接,通过主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别读取主齿轮(3)、游标齿轮(2)的单圈角度值;所述的游标齿轮(2)与滚珠丝杠副连接,在游标齿轮(2)转动下,滚珠丝杠副推动推杆做往复运动;所述的控制电路模块与永磁同步电机(9)电性连接,根据主齿轮(3)、游标齿轮(2)的单圈角度值及控制信号控制电机转动。
- 根据权利要求1所述的一种集成齿轮游标编码器的线性作动器,其特征在于:所述的控制电路模块包括控制器(1)、逆变电路;所述的主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别与控制器(1)电性连接;所述的控制器(1)的输出端与逆变电路的输入端电性连接,输出脉宽调制信号给逆变电路;所述的逆变电路的第一输出端与电机电性连接;所述的逆变电路将第二输出端与控制器(1)电性连接,将电流信息反馈回控制器(1)。
- 根据权利要求2所述的一种集成齿轮游标编码器的线性作动器,其特征 在于:所述的线性作动器还包括安装板(12);所述的电机与主齿轮(3)连接的一端、滚珠丝杠副与游标齿轮(2)连接的一端均与安装板(12)连接,且电机、滚珠丝杠副并列设置在安装板(12)的一侧。
- 根据权利要求1所述的一种集成齿轮游标编码器的线性作动器,其特征在于:所述的线性作动器还包括设有容置腔的底壳(13);所述的底壳(13)与安装板(12)可拆卸连接,所述的控制电路模块、齿轮游标编码器均位于底壳(13)的容置腔中。
- 根据权利要求4所述的一种集成齿轮游标编码器的线性作动器,其特征在于:还包括PCB板(14),所述的控制电路模块、主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)均设置在PCB板(14)上。
- 根据权利要求1所述的一种集成齿轮游标编码器的线性作动器,其特征在于:所述的线性作动器还包括用于保护主齿轮磁钢的主齿轮磁钢护套(10)、用于保护游标主齿轮磁钢的游标齿轮磁钢(6)护套;所述的主齿轮磁钢通过主齿轮磁钢护套(10)与主齿轮(3)连接;所述的游标主齿轮磁钢通过游标齿轮磁钢(6)护套与游标主齿轮(3)连接。
- 一种基于如权利要求1~6任一项所述的集成齿轮游标编码器的线性作动器的控制方法,其特征在于:通过主齿轮磁编码芯片(7)、游标齿轮磁编码芯片(8)分别读取主齿轮(3)和游标齿轮(2)的单圈角度值;根据主齿轮(3)和游标齿轮(2)的单圈角度差与永磁同步电机(9)的旋转圈数呈线性关系,计算出电机旋转圈数,通过滚珠丝杠副导程计算推杆位置信息;根据接收的控制信息和推杆位置信息,输出一组脉宽调制信号PWM控制永磁同步电机(9)转动,实现控制推动推杆做往复运动。
- 根据权利要求7所述的一种集成齿轮游标编码器的线性作动器,其特征在于:根据接收的控制信息和推杆位置信息,输出一组脉宽调制信号PWM控制永磁同步电机(9)转动,具体如下:接收到控制信息后,通过控制信息与推杆位置信息,计算得到速度信息;根据速度信息与游标齿轮(2)的转速信息,计算得到第一电流信息;根据第一电流信息和接收到反馈的第二电流信息,计算得到一组直轴电压 Vd和交轴电压Vq;根据直轴电压Vd和交轴电压Vq与主齿轮(3)的单圈角度值,输出一组脉宽调制信号PWM控制永磁同步电机(9)转动,实现控制推动推杆做往复运动。
- 根据权利要求7所述的一种集成齿轮游标编码器的线性作动器,其特征在于:其中计算推杆位置信息的计算公式如下:
Nnonius=Nmaster+1 (1)
θCalcMaster=n*360°+θReadMaster (6)
其中:Nmaster表示主齿轮(3)的齿数;Nnonius表示游标齿轮(2)的齿数;θmaster表示主齿轮(3)多圈角度;θnonius表示游标齿轮(2)多圈角度;MOD表示求余数函数;θReadMaster表示主齿轮(3)的单圈角度;θReadNonius表示游标齿轮(2)的单圈角度;Δθ表示主齿轮(3)与游标齿轮(2)的单圈角度差;INT表示数值向下取整函数;n表示主齿轮(3)旋转圈数,n的取值范围为n∈[0,Nnonius);θCalcMaster表示计算得到的主齿轮(3)多圈角度值;PB表示滚珠丝杠副导程;Sreal表示推杆实际位置;Scalc表示推杆计算的位置。 - 一种飞行器,其特征在于:包括机身、飞行控制系统、如权利要求1~9任一项所述的线性作动器、舵面、推杆;所述的飞行控制器(1)与控制电路模块电性连接,向控制电路模块发送控制信息;所述的舵面的一端与机身转动连接,所述的滚珠丝杠副通过推杆与舵面的中 部转动连接;所述的线性作动器实现如权利要求8、9任一项所述的控制方法,实现控制的舵面转向。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211138476.2 | 2022-09-19 | ||
CN202211138476.2A CN115694055A (zh) | 2022-09-19 | 2022-09-19 | 一种集成齿轮游标编码器的线性作动器及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024060971A1 true WO2024060971A1 (zh) | 2024-03-28 |
Family
ID=85063284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/116553 WO2024060971A1 (zh) | 2022-09-19 | 2023-09-01 | 一种集成齿轮游标编码器的线性作动器及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115694055A (zh) |
WO (1) | WO2024060971A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694055A (zh) * | 2022-09-19 | 2023-02-03 | 亿航智能设备(广州)有限公司 | 一种集成齿轮游标编码器的线性作动器及其控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100052663A1 (en) * | 2008-08-30 | 2010-03-04 | Walter Mehnert | Sensor unit for a rotary encoder and a rotary encoder equipped with such a sensor unit |
CN109625249A (zh) * | 2019-01-25 | 2019-04-16 | 北京精密机电控制设备研究所 | 一种外置式机电作动器用锁定装置 |
CN111473075A (zh) * | 2020-04-17 | 2020-07-31 | 贵州新安航空机械有限责任公司 | 适用于电刹车机轮的机电作动器 |
CN112117863A (zh) * | 2020-08-14 | 2020-12-22 | 西安交通大学 | 一种无机械卡阻高推力密度直驱型机电作动器 |
CN113029206A (zh) * | 2021-04-13 | 2021-06-25 | 上海思博机械电气有限公司 | 一种游标齿轮式磁敏多圈编码器 |
CN114425690A (zh) * | 2022-01-10 | 2022-05-03 | 南京蔚蓝智能科技有限公司 | 一种用于足式机器人关节的机械多圈编码器 |
CN115694055A (zh) * | 2022-09-19 | 2023-02-03 | 亿航智能设备(广州)有限公司 | 一种集成齿轮游标编码器的线性作动器及其控制方法 |
-
2022
- 2022-09-19 CN CN202211138476.2A patent/CN115694055A/zh active Pending
-
2023
- 2023-09-01 WO PCT/CN2023/116553 patent/WO2024060971A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100052663A1 (en) * | 2008-08-30 | 2010-03-04 | Walter Mehnert | Sensor unit for a rotary encoder and a rotary encoder equipped with such a sensor unit |
CN109625249A (zh) * | 2019-01-25 | 2019-04-16 | 北京精密机电控制设备研究所 | 一种外置式机电作动器用锁定装置 |
CN111473075A (zh) * | 2020-04-17 | 2020-07-31 | 贵州新安航空机械有限责任公司 | 适用于电刹车机轮的机电作动器 |
CN112117863A (zh) * | 2020-08-14 | 2020-12-22 | 西安交通大学 | 一种无机械卡阻高推力密度直驱型机电作动器 |
CN113029206A (zh) * | 2021-04-13 | 2021-06-25 | 上海思博机械电气有限公司 | 一种游标齿轮式磁敏多圈编码器 |
CN114425690A (zh) * | 2022-01-10 | 2022-05-03 | 南京蔚蓝智能科技有限公司 | 一种用于足式机器人关节的机械多圈编码器 |
CN115694055A (zh) * | 2022-09-19 | 2023-02-03 | 亿航智能设备(广州)有限公司 | 一种集成齿轮游标编码器的线性作动器及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115694055A (zh) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024060971A1 (zh) | 一种集成齿轮游标编码器的线性作动器及其控制方法 | |
WO2024060987A1 (zh) | 一种集成齿轮游标编码器的旋转作动器及控制方法 | |
CN104852637B (zh) | 双芯片无刷直流电机驱动控制系统及控制方法 | |
CN108400732A (zh) | 一种直流无刷电机或交流永磁同步电机转子位置检测装置 | |
CN104734415A (zh) | 一种减速电机 | |
CN102927986A (zh) | 一种双轴旋转机构 | |
CN102829742A (zh) | 一种电机伺服系统中转子绝对位置的测量方法 | |
CN203608018U (zh) | 一种以磁体和霍尔传感器作为检测元件的摆动驱动装置 | |
CN102594231B (zh) | 用于汽车电动助力转向系统的无刷电机转子位置信号解算模块 | |
WO2024061016A1 (zh) | 一种飞行器用单编码器作动器及其上电自检方法 | |
CN204615564U (zh) | 一种减速电机 | |
CN106200498A (zh) | 一种基于单片机的舵机驱动装置 | |
CN103471576A (zh) | 一种框架驱动供电一体化组件 | |
CN115102333A (zh) | 电机及自动导引运输车 | |
CN112072966B (zh) | 一种位置传感器的检测装置及其检测方法 | |
CN111193463B (zh) | 双转子电机控制方法及控制组件 | |
CN104533635B (zh) | 一种大功率柴油机直流无刷电机调速执行器 | |
CN207182111U (zh) | 方位角控制装置及系统 | |
CN209057127U (zh) | 一种便携式车用永磁电机旋变角度调整装置 | |
CN113370196A (zh) | 一种力控关节电机驱动模块 | |
CN109551483B (zh) | 一种具有力矩反馈的机械臂关节及其力矩计算方法 | |
CN211321242U (zh) | 一种四轴脉冲控制主板 | |
CN1247361C (zh) | 机床旋转平台 | |
CN2284474Y (zh) | 全数字式交流永磁伺服电机驱动装置 | |
CN219659605U (zh) | 一种电机控制电路和电机控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867262 Country of ref document: EP Kind code of ref document: A1 |