WO2024060846A1 - 复合泡棉结构及显示模组 - Google Patents

复合泡棉结构及显示模组 Download PDF

Info

Publication number
WO2024060846A1
WO2024060846A1 PCT/CN2023/110484 CN2023110484W WO2024060846A1 WO 2024060846 A1 WO2024060846 A1 WO 2024060846A1 CN 2023110484 W CN2023110484 W CN 2023110484W WO 2024060846 A1 WO2024060846 A1 WO 2024060846A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite foam
foam structure
foam
composite
Prior art date
Application number
PCT/CN2023/110484
Other languages
English (en)
French (fr)
Inventor
路保福
徐仁哲
龚伟
刘伟
毕丹炀
张寒
朴仁镐
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024060846A1 publication Critical patent/WO2024060846A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer

Definitions

  • the present invention relates to the field of display manufacturing, and specifically, to a composite foam structure and a display module.
  • AMOLED Active-matrix organic light-emitting diode, active matrix organic light-emitting diode
  • AMOLED Active-matrix organic light-emitting diode
  • One way to thin the display module is to thin the composite foam structure (including but not limited to SCF, Super Clean Foam) attached to the back of the display panel for buffering.
  • the thinner the composite foam structure the softer the overall structure and the easier it is to deform.
  • the thin composite foam structure will be temporarily shut down due to the production equipment, which will cause the deformation of the rollers when each stack is pressed together, which is prone to shutdown imprinting, resulting in poor imprinting. Severe poor imprinting will lead to the scrapping of the composite foam structure.
  • the composite foam structure with slight poor imprinting flows into the subsequent display module manufacturing process, bulges will appear at the corresponding positions of the poor imprinting, which will lead to display module failure. Group quality declines.
  • the embodiments of the present invention aim to solve at least one of the technical problems existing in the prior art, and provide a composite foam structure and a display module, which can reduce the thickness while avoiding poor embossing of the composite foam structure.
  • a composite foam structure which includes a foam layer, a metal layer and a first glue layer.
  • the first glue layer is arranged between the foam layer and the metal layer.
  • the foam layer and the metal layer also include a fiber structure, the fiber structure is arranged in the foam layer and/or the first glue layer, and is used to improve the foam layer and/or the first glue layer. The tensile strength of the first adhesive layer.
  • the fiber structure includes at least one layer of carbon fiber network composed of a plurality of carbon fibers staggered in a specified plane.
  • the diameter range of each carbon fiber is greater than or equal to 5 ⁇ m and less than or equal to 7 ⁇ m.
  • the designated plane and the plane where the foam layer and/or the first adhesive layer are located are parallel to each other.
  • the angle between two intersecting carbon fibers is greater than or equal to 30° and less than or equal to 90°.
  • the angle between the two intersecting carbon fibers is 60°.
  • a light-shielding tape layer is also included, and the light-shielding tape layer is disposed on the side of the foam layer facing away from the metal layer.
  • the light-shielding tape layer includes an Embo-type adhesive layer.
  • a second glue layer and a base layer are also included, wherein the second glue layer is provided between the metal layer and the base layer, and the base layer is used to protect the second glue layer.
  • the material of the second glue layer includes ultraviolet curable glue.
  • the material of the first adhesive layer includes pressure-sensitive adhesive.
  • the material of the foam layer includes ultra-clean foam.
  • the present invention also provides a display module, including a display panel, a backplane and the above-mentioned composite foam structure provided by the present invention.
  • the composite foam structure is disposed between the display panel and the backplane. between.
  • the composite foam structure provided by the embodiment of the present invention can improve the tensile strength of the foam layer and/or the first rubber layer by arranging a fiber structure in the foam layer and/or the first rubber layer, so that in the mold cut During the production process, when the composite foam structure is under pressure from the rollers due to the shutdown of the production equipment, the foam layer and/or the first rubber layer will play a role in supporting the metal layer due to their sufficient tensile strength, assisting the metal layer to resist External force can reduce the plastic deformation of the metal layer, thereby improving the overall tensile strength of the composite foam structure, thereby reducing the risk of compression deformation of the composite foam structure, reducing the occurrence of poor imprinting, and thereby improving the quality of the composite foam structure. Rate.
  • the overall thickness of the structure can ensure that the thickness of the display module using the composite foam structure will not be too large, which is conducive to the thinning of the display module.
  • the display module provided by the embodiment of the present invention by adopting the above composite foam structure provided by the embodiment of the present invention, can not only improve the quality of the display module, but also achieve lightness and thinness.
  • Figure 1 is a schematic structural diagram of a composite foam structure in the prior art
  • Figure 2 is a schematic diagram of a composite foam structure in the prior art when imprinting occurs during the manufacturing process
  • Figure 3 is a schematic structural diagram of a composite foam structure provided by an embodiment of the present invention.
  • Figure 4A is a top view of a carbon fiber network provided by an embodiment of the present invention.
  • Figure 4B is a stress analysis diagram of a carbon fiber network provided by an embodiment of the present invention.
  • Figure 5A is a top view of another carbon fiber network provided by an embodiment of the present invention.
  • Figure 5B is a force analysis diagram of another carbon fiber network provided by an embodiment of the present invention.
  • a traditional composite foam structure includes a base layer 01 and a second glue layer 06 , a metal layer 04 , a first glue layer 03 , a foam layer 02 and a light-shielding tape sequentially arranged in a direction away from the base layer 01 Layer 05.
  • the traditional composite foam structure manufacturing process usually involves laminating the above-mentioned multiple laminations of the composite foam structure and then die-cutting them.
  • the rollers of the production equipment rotate around the designated axis to move toward the edge of the composite foam structure during the translation process of the composite foam structure.
  • Pressure F is applied to the upper surface, causing the multiple laminates in the composite foam structure to fit tightly together.
  • the composite foam structure is always in motion, the multiple laminated surfaces of the composite foam structure are temporarily compressed, so there is no risk of imprinting.
  • the foam layer 02 and the first rubber layer 03 in the composite foam structure both have a certain degree of elasticity, the foam layer 02 and the first rubber layer 03 can still return to their original pressure after the pressure is removed. Pre-combination form.
  • the metal in the composite foam structure The elasticity of layer 04 is low and it has certain plasticity. Therefore, when it is deformed under pressure for a long time and the pressure exceeds its yield deformation, a downward depression will usually be formed on the metal layer 04, that is, transverse stretching and longitudinal bending will occur. This causes irrecoverable shear strain to occur at the stress boundary of the metal layer 04 , resulting in permanent plastic deformation, that is, poor imprinting.
  • the degree of dent in the metal layer 04 is related to the pause time of the production equipment.
  • Severe dents may cause the composite foam structure to be scrapped, while mild dents are difficult to detect and will flow into the subsequent display module manufacturing process or even the entire machine manufacturing. During the process, the display module will suffer from bulging defects, thus affecting the quality of the display module.
  • the two tension components Fa and Fb in opposite directions play a role in supporting the metal layer 04, assisting the metal layer 04 in resisting external forces, and reducing the plastic deformation of the metal layer 04.
  • the foam layer 02 in the existing composite foam structure is foamed cotton (Foam)
  • the tensile strength of the foam layer 02 and the first adhesive layer 03 are relatively low
  • the auxiliary metal layer 04 The effect of resisting external force is very limited and cannot solve the problem of poor imprinting.
  • this embodiment provides a composite foam structure, as shown in Figure 3, which includes a foam layer 2, a metal layer 4 and a first glue layer 3.
  • the first glue layer 3 is arranged on the foam. Between layer 2 and metal layer 4, it is used to bond foam layer 2 and metal layer 4.
  • the metal layer 4 has the functions of impact resistance, enhancing the overall strength of the composite foam structure, heat dissipation and grounding.
  • the material of the metal layer 4 is not limited, such as copper, aluminum, steel, etc.
  • the thickness of the metal layer 4 is greater than or equal to 10 ⁇ m and less than or equal to 50 ⁇ m.
  • the material of the first adhesive layer 3 includes pressure sensitive adhesive (PSA), which is used to bond the foam layer 2 and the metal layer 4 and has a heat dissipation effect.
  • PSA pressure sensitive adhesive
  • the thickness of the first adhesive layer 3 can be designed according to the specific thickness of the metal layer 4. The thicker the metal layer 4, the The thicker the first glue layer 3 is; conversely, the thinner the metal layer 4 is, the thinner the first glue layer 3 is.
  • the thickness of the metal layer 4 is greater than or equal to 10 ⁇ m and less than or equal to 20 ⁇ m.
  • the material of the foam layer 2 includes super clean foam (SCF), which has stronger impact resistance than foamed cotton and is used when the composite foam structure is subjected to It acts as a buffer against impact forces.
  • SCF super clean foam
  • the composite foam structure in this embodiment also includes a fiber structure 7, which is disposed in the foam layer 2 and the first rubber layer 3 to improve the strength of the foam layer 2 and the first rubber layer 3. tensile strength.
  • the foam layer 2 and the first rubber layer 3 will support the metal layer 4 because they have sufficient tensile strength. Function, assists the metal layer 4 to resist external force, reduces the plastic deformation of the metal layer 4, thereby improving the overall tensile strength of the composite foam structure, thereby reducing the risk of the composite foam structure being compressed and deformed, and reducing the occurrence of poor imprinting.
  • the above-mentioned fiber structure 7 can also be provided only in the foam layer 2, or only in the first glue layer 3, which can also assist the metal layer 4 to resist external forces and reduce the The metal layer 4 undergoes plastic deformation.
  • the fiber structure 7 provided in both the foam layer 2 and the first rubber layer 3 can more effectively assist the metal layer 4 in resisting external forces and reduce the plastic deformation of the metal layer 4 .
  • this embodiment can strengthen the foam by providing a fiber structure 7 in the foam layer 2 and/or the first glue layer 3. While ensuring the tensile strength of layer 2 and/or first glue layer 3, the thickness of foam layer 2 and/or first glue layer 3 will not increase, so as to reduce the overall thickness of the composite foam structure, thereby ensuring The thickness of the display module using the composite foam structure will not be too large, which is conducive to the lightness and thinness of the display module.
  • the foam layer 2 instead of enhancing the role of the supporting metal layer 4 by thickening the foam layer 2, in this embodiment, by arranging the fiber structure 7 in the foam layer 2 and/or the first glue layer 3, the foam layer 2
  • the amount of thinning is 10 ⁇ m-20 ⁇ m
  • the amount of thinning of the first glue layer 3 is 5 ⁇ m-10 ⁇ m.
  • the foam layer (without carbon fiber network) in the traditional composite foam structure with the foam layer 2 in the composite foam structure used in this embodiment, the The overall tensile strength of the foam layer is about 0-0.50MPa, and the foam layer 2 in the composite foam structure used in this embodiment is provided with a carbon fiber network, and its tensile strength can reach 0.60MPa-0.63MPa, thus effectively Improve the overall tensile strength of the composite foam structure.
  • the above-mentioned fiber structure 7 includes at least one layer of carbon fiber network composed of a plurality of carbon fibers staggered in a specified plane.
  • the plurality of carbon fibers there are a plurality of first carbon fibers 71 arranged along a first direction in a specified plane, and a second carbon fiber arranged along a second direction in the specified plane. 72.
  • the first carbon fiber 71 and the second carbon fiber 72 intersect and are connected at the intersection.
  • the above designated plane is parallel to the plane where the foam layer 2 or the first glue layer 3 is located where the carbon fiber network is located.
  • the carbon fiber network when the carbon fiber network is subjected to external pressure (such as a roller), the carbon fiber network can be perpendicular to the external pressure, and uniform stress can be generated at the force-bearing position of the carbon fiber network, thereby offsetting the external pressure to the greatest extent.
  • external pressure such as a roller
  • the angle between two intersecting carbon fibers is greater than or equal to 30° and less than or equal to 90°.
  • the contact between the roller and the composite foam structure is line contact, that is, the contact position is between an axial straight line on the outer circumferential surface of the roller and the surface of the composite foam structure, as shown in Figure 2, during the die-cutting production process.
  • the composite foam structure has a deformation tendency of downward bending and transverse stretching at the contact position.
  • the carbon fiber network is located The parts on both sides of the contact position will generate two tensions fa and fb perpendicular to the straight line where the contact position is located, and the stress generated by each carbon fiber in the carbon fiber network is determined by its own extension direction.
  • the aforementioned two Tensions fa and fb are the resultant forces of stress generated by multiple carbon fibers on both sides of the contact position; further, the angle between the two intersecting carbon fibers in the carbon fiber network can be selected according to the actual stress situation of the carbon fiber network.
  • the angle between the intersecting first carbon fibers 71 and the second carbon fibers 72 is, for example, 90°; when the carbon fiber network is subjected to external pressure (such as a roller), as shown in Figure 4B, the two tensions fa and fb generated by the carbon fiber network will inevitably be parallel to the stress generated by one of the first carbon fiber 71 and the second carbon fiber 72 and perpendicular to the stress generated by the other.
  • the carbon fiber network is subjected to The external pressure is offset by the stress generated inside one of the first carbon fiber 71 and the second carbon fiber 72 perpendicular to the straight line of the contact position, while the other of the first carbon fiber 71 and the second carbon fiber 72 hardly generates stress. , that is to say, only one of the first carbon fiber 71 and the second carbon fiber 72 plays a role in resisting external force, and the tensile strength of such a carbon fiber network is low.
  • the angle between the intersecting first carbon fibers 71 and the second carbon fibers 72 may be less than 90°.
  • the intersecting first carbon fibers 71 in the carbon fiber network The included angle with the second carbon fiber 72 is 60°.
  • the first carbon fiber 71 and the first carbon fiber 71 on both sides of the contact position are Stress is generated inside each of the second carbon fibers 72, and the resultant force is equal to the external pressure on the carbon fiber network. That is, the external pressure on the carbon fiber network is offset by the stress generated inside all the carbon fibers on both sides of the contact position.
  • the stress generated by strips of carbon fiber is small and equal, which can increase the tensile strength of the carbon fiber network as much as possible and increase the service life of the carbon fiber network.
  • the tensile strength of the foam layer 2 can reach 0.60MPa; the tensile strength of the second rubber layer 3 can can reach 0.68MPa; when the angle between the intersecting first carbon fiber 71 and the second carbon fiber 72 is 60°, the tensile strength of the foam layer 2 can reach 0.63MPa; the tensile strength of the second rubber layer 3 can Reach 0.70MPa. It can be seen from this that when the angle between the intersecting first carbon fibers 71 and the second carbon fibers 72 is 60°, the tensile strength of the carbon fiber network can be further improved.
  • the diameter of each carbon fiber in the carbon fiber network ranges from greater than or equal to 5 ⁇ m to less than or equal to 7 ⁇ m. Specifically, carbon fibers with diameters within this range occupy less space. In this way, the compression load deformation (CFD) of the foam layer 2 will not be affected, and the ability of the foam layer 2 to buffer external forces will not be affected. It can be seen from the test that the stress of the foam layer in the traditional composite foam structure is about 0.32MPa when a 25% compressive load deformation (CFD) occurs. The foam layer 2 in the composite foam structure used in this embodiment is The stress when 25% compressive load deformation (CFD) occurs is about 0.31MPa, which is almost the same as the traditional composite foam structure. It can be seen that the setting of the carbon fiber structure will not affect the compressive load deformation of the foam layer 2, and thus It will not affect the ability of the foam layer 2 to buffer external forces.
  • CFRD compression load deformation
  • the carbon fiber network with a diameter within the above range will not affect the viscosity of the first adhesive layer 3 and can effectively increase the tensile strength of the first adhesive layer 3 .
  • the transverse tensile stress (Tensile strength) of the first adhesive layer in the traditional composite foam structure is 0.6Mpa when the peeling force (Peeling Force) is 1500gf/inch; the composite foam used in this embodiment
  • the transverse tensile stress (Tensile strength) of the first adhesive layer 3 in the structure is 0.68Mpa-0.70Mpa when the peeling force (Peeling Force) is 1500gf/inch. It can be seen that the setting of the carbon fiber structure can effectively improve the The tensile strength of a glue layer 3.
  • the number of layers of the carbon fiber network can be appropriately increased, thereby further improving the tensile strength of the carbon fiber structure.
  • the tensile strength of the foam layer 2 and the first glue layer 3 will increase as the number of carbon fiber network layers increases.
  • the fiber structure 7 can be made by weaving.
  • the method of arranging the fiber structure 7 in the foam layer 2 and/or the first glue layer 3 is, for example, wrapping include:
  • the pre-made fiber structure 7 is tightened and immersed in the above-mentioned foam sol and/or first glue layer sol;
  • the foam sol and/or the first glue layer sol are solidified to form the foam layer 2 and/or the first glue layer 3 .
  • the composite foam structure further includes a second adhesive layer 5 and a base layer 1, wherein the base layer 1 may be made of PET (Polyethylene terephthalate).
  • the base layer 1 itself has a certain tension, so the base layer 1 can resist deformation when subjected to external pressure, and can further assist the metal layer 4 attached thereto to resist deformation, further reducing the risk of embossing of the metal layer 4.
  • the second adhesive layer 5 is disposed between the metal layer 4 and the base layer 1, and the base layer 1 is used to protect the second adhesive layer 5.
  • the base layer 1 is first peeled off from the second adhesive layer 5, and then the second adhesive layer 5 is adhered to the corresponding product (e.g., the side of the display panel facing away from the light-emitting surface).
  • the second colloid 06 used to bond the base layer 01 and the metal layer 04 usually has a very low peeling force of about 10gf/inch, which results in insufficient bonding between the base layer 01 and the metal layer 04, and further results in the base layer 01 being able to cover the metal layer 04 only in a direction perpendicular to the surface of the metal layer 04, and having difficulty resisting lateral sliding in a direction parallel to the surface of the metal layer 04. Therefore, when the roller applies pressure to the conventional composite foam structure, the base layer 01 will separate from the metal layer 04 due to its own tension. Moreover, in actual applications, the base layer 01 on the conventional composite foam structure is very easy to separate, and it is also difficult to pass the retention test.
  • the material of the second glue layer 5 includes ultraviolet curable glue (ie, UV glue).
  • UV glue ultraviolet curable glue
  • the peeling force of UV glue is greater than or equal to 2000gf/inch.
  • the composite foam structure provided by the embodiment of the present invention also includes a light-shielding tape layer 6.
  • the light-shielding tape layer 6 is provided on the side of the foam layer 2 facing away from the metal layer 4. Used to adhere to the backplane of the display module or any other product.
  • the light-shielding tape layer 6 includes an Embo type adhesive layer.
  • the composite foam structure provided by the embodiments of the present invention can improve the tensile strength of the foam layer and/or the first rubber layer by arranging a fiber structure in the foam layer and/or the first rubber layer. , in this way, during the die-cutting production process, when the composite foam structure is under pressure from the roller due to the shutdown of the production equipment, the foam layer and/or the first glue layer will support the metal layer because they have sufficient tensile strength. It assists the metal layer to resist external force, reduces the plastic deformation of the metal layer, thereby improving the overall tensile strength of the composite foam structure, thereby reducing the risk of the composite foam structure being compressed and deformed, reducing the occurrence of poor imprinting, and thus improving the Yield of composite foam structures.
  • the overall thickness of the structure can ensure that the thickness of the display module using the composite foam structure will not be too large, which is conducive to the thinning of the display module.
  • an embodiment of the present invention further provides a display module, which includes a display panel, a back plate and the composite foam structure provided by the embodiment of the present invention.
  • the composite foam structure is arranged between the display panel and the back plate to fix and protect the display panel.
  • the base material layer 1 needs to be peeled off first, and then the first adhesive layer 3 is attached to the side of the display panel away from the light-emitting surface; the light-shielding tape layer 6 is attached to the back plate.
  • the display module provided by the embodiment of the present invention by adopting the above composite foam structure provided by the embodiment of the present invention, can not only improve the quality of the display module, but also achieve lightness and thinness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明实施例提供一种复合泡棉结构及显示模组。该复合泡棉结构包括泡棉层、金属层和第一胶层,第一胶层设置在泡棉层与金属层之间,用于粘接泡棉层与金属层;还包括纤维结构,纤维结构设置于泡棉层和/或第一胶层中,用于提高泡棉层和/或第一胶层的强度,本发明实施例提供的复合泡棉结构及显示模组,可以提高复合泡棉结构的整体抗拉强度,降低复合泡棉结构被压变形的风险,减少压印不良的发生。

Description

复合泡棉结构及显示模组 技术领域
本发明涉及显示制造领域,具体地,涉及一种复合泡棉结构及一种显示模组。
背景技术
随着采用AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体)显示模组的显示产品越来越普及,用户对AMOLED显示模组的轻薄性要求也越来越高。其中一种减薄显示模组的方式是通过减薄显示面板背面贴附的用于起到缓冲作用的复合泡棉结构(包括但不限于SCF,Super Clean Foam)来实现。
但是,减薄复合泡棉结构可能会导致其强度降低,具体的,复合泡棉结构越薄,整体就越柔软,越容易发生变形。在模切制作过程中,较薄的复合泡棉结构会因生产设备暂时停机而导致各叠层在被压合时产生滚轮仿形的形变,容易产生停机压印,导致压印不良。严重的压印不良会导致复合泡棉结构报废,而具有轻微压印不良的复合泡棉结构在流入后续的显示模组制作工艺中,压印不良的对应位置处会产生鼓包,进而导致显示模组质量下降。
发明内容
本发明实施例旨在至少解决现有技术中存在的技术问题之一,提出了一种复合泡棉结构及显示模组,其能够在减薄厚度的同时,避免复合泡棉结构产生压印不良。
为实现本发明的目的而提供一种复合泡棉结构,包括泡棉层、金属层和第一胶层,所述第一胶层设置在所述泡棉层与所述金属层之间,用于粘接所 述泡棉层与所述金属层;还包括纤维结构,所述纤维结构设置于所述泡棉层和/或所述第一胶层中,用于提高所述泡棉层和/或所述第一胶层的抗拉强度。
可选的,所述纤维结构包括至少一层由在指定平面内交错设置的多条碳纤维构成的碳纤维网络。
可选的,每条所述碳纤维的直径范围均为大于等于5μm,且小于等于7μm。
可选的,所述指定平面与所述泡棉层和/或所述第一胶层所在平面相互平行。
可选的,相交的两条所述碳纤维之间的夹角大于等于30°,且小于等于90°。
可选的,相交的两条所述碳纤维之间的夹角为60°。
可选的,还包括遮光胶带层,所述遮光胶带层设置于所述泡棉层背离所述金属层一侧。
可选的,所述遮光胶带层包括Embo型粘合剂层。
可选的,还包括第二胶层和基体层,其中,所述第二胶层设置在所述金属层与所述基体层之间,所述基体层用于保护所述第二胶层。
可选的,所述第二胶层的材质包括紫外光固化胶。
可选的,所述第一胶层的材质包括压敏胶。
可选的,所述泡棉层的材质包括超净泡沫。
作为另一个技术方案,本发明还提供一种显示模组,包括显示面板、背板和本发明提供的上述复合泡棉结构,所述复合泡棉结构设置在所述显示面板与所述背板之间。
本发明实施例具有以下有益效果:
本发明实施例提供的复合泡棉结构,通过在泡棉层和/或第一胶层中设置有纤维结构,可以提高泡棉层和/或第一胶层的抗拉强度,这样,在模切制 作过程中,复合泡棉结构在因生产设备停机而受到滚轮的压力时,泡棉层和/或第一胶层因具有足够的抗拉强度会起到支撑金属层的作用,辅助金属层抵抗外力,减小金属层发生塑形形变,从而提高复合泡棉结构的整体抗拉强度,以降低复合泡棉结构被压变形的风险,减少压印不良的发生,进而提高复合泡棉结构的良率。在此基础上,通过在泡棉层和/或第一胶层中设置有纤维结构,还可以在提高泡棉层和/或第一胶层的抗拉强度的基础上,减小复合泡棉结构的整体厚度,从而可以保证应用该复合泡棉结构的显示模组的厚度不会过大,进而有利于显示模组的轻薄化。
本发明实施例提供的显示模组,其通过采用本发明实施例提供的上述复合泡棉结构,不仅可以提高显示模组的质量,而且还可以实现轻薄化。
附图说明
图1为现有技术中的一种复合泡棉结构的结构简图;
图2为现有技术中的一种复合泡棉结构在制造过程中发生压印时的示意图;
图3为本发明实施例提供的复合泡棉结构的结构简图;
图4A为本发明实施例提供的一种碳纤维网络的俯视图;
图4B为本发明实施例提供的一种碳纤维网络的受力分析图;
图5A为本发明实施例提供的另一种碳纤维网络的俯视图;
图5B为本发明实施例提供的另一种碳纤维网络的受力分析图。
具体实施方式
下面详细描述本发明,本发明的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本发明的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本发 明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非另外定义,本实施例中使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的复合泡棉结构及显示模组进行详细描述。
如图1所示,传统的复合泡棉结构包括基底层01和沿远离基底层01的方向依次设置的第二胶层06、金属层04、第一胶层03、泡棉层02以及遮光胶带层05。相应的,传统的复合泡棉结构制作流程通常为:先将复合泡棉结构的上述多个叠层压合,再对其进行模切。具体的,如图2所示,在采用生产设备对传统的复合泡棉结构进行压合时,生产设备的滚轮绕指定轴线旋转,以在复合泡棉结构的平移过程中向复合泡棉结构的上表面施加压力F,从而使复合泡棉结构中的多个叠层紧密地贴合在一起。在复合泡棉结构一直处于运动状态时,复合泡棉结构多个叠层表面各处均短暂受压,因此不存在产生压印的风险。
但在实际生产中,由于设备换料、突发故障以及人员交接等情况,生产设备不可避免地会发生暂停,而且暂停时长约为数分钟至数十分钟。而且为了保证后续工艺精度和生产效率,生产设备发生暂停时,滚轮的压力不能释放,以能够利用滚轮固定复合泡棉结构,从而在再次开启生产设备后能够立即继续进行工艺,保证工艺的连续性。但是,在生产设备暂时停机时,滚轮会持续向复合泡棉结构的同一位置施加压力。由于复合泡棉结构中的泡棉层02和第一胶层03都具有一定的弹性,泡棉层02和第一胶层03在被压一定时间后,仍能够在压力卸去后恢复至压合前形态。但复合泡棉结构中的金属 层04的弹性较低且具有一定的可塑性,因此在长时间受压变形,且压力超过其屈服形变时,金属层04上通常会形成向下的凹陷,即产生横向拉伸和纵向弯折,这导致金属层04的受力边界处会发生不可恢复的剪切应变,进而产生永久的塑性形变,即产生压印不良。而且,金属层04的凹陷程度与生产设备暂停时间有关,重度的凹陷可能会导致复合泡棉结构报废,轻度的凹陷则不易检出,进而会流入后续显示模组制造工艺中甚至整机制造工艺中,导致显示模组发生鼓包不良,从而影响显示模组的质量。
发明人经研究发现:以图2所示的传统复合泡棉结构的制作过程为例,在生产设备暂时停机时,滚轮会持续向复合泡棉结构的同一位置施加压力F,该压力F会分为两个倾斜向下的分力Fa、Fb,导致复合泡棉结构的部分叠层发生如图2所示的向受力位置两侧拉伸的形变趋势,从而部分叠层内部产生分别与上述两个分力Fa、Fb方向相反的两个张力fa、fb,以起到支撑金属层04的作用,辅助金属层04抵抗外力,减小金属层04发生塑形形变。但是,由于现有的复合泡棉结构中的泡棉层02为发泡泡棉(Foam),其和第一胶层03(一般为压敏胶)的抗拉强度均比较低,辅助金属层04抵抗外力的作用非常有限,无法解决压印不良的问题。
为了解决上述技术问题,本实施例提供一种复合泡棉结构,如图3所示,其包括泡棉层2、金属层4和第一胶层3,该第一胶层3设置在泡棉层2与金属层4之间,用于粘接泡棉层2与金属层4。其中,金属层4具有抗冲击、增强复合泡棉结构的整体强度、散热和接地等作用。本发明实施例对金属层4的材质选用不限,例如为铜、铝、钢等等。可选的,金属层4的厚度大于等于10μm,且小于等于50μm。
在一些可选的实施例中,第一胶层3的材质包括压敏胶(Pressure sensitive adhesive,PSA),其用于粘接泡棉层2和金属层4,且具有散热作用。第一胶层3的厚度可以根据金属层4的具体厚度进行设计,金属层4越厚, 第一胶层3越厚;反之,金属层4越薄,第一胶层3越薄。可选的,金属层4的厚度大于等于10μm,且小于等于20μm。
在一些可选的实施例中,泡棉层2的材质包括超净泡沫(Super Clean Foam,SCF),其相对于发泡泡棉具有更强的抗冲击作用,用以在复合泡棉结构受到的冲击力时起到缓冲作用。
如图3所示,本实施例中的复合泡棉结构还包括纤维结构7,其设置于泡棉层2和第一胶层3中,用于提高泡棉层2和第一胶层3的抗拉强度。这样,在模切制作过程中,复合泡棉结构在因生产设备停机而受到滚轮的压力时,泡棉层2和第一胶层3因具有足够的抗拉强度会起到支撑金属层4的作用,辅助金属层4抵抗外力,减小金属层4发生塑形形变,从而提高复合泡棉结构的整体抗拉强度,以降低复合泡棉结构被压变形的风险,减少压印不良的发生,进而提高复合泡棉结构的良率。在此基础上,通过在泡棉层2和第一胶层3中设置有纤维结构7,还可以在提高泡泡棉层2和第一胶层3的抗拉强度的基础上,减小复合泡棉结构的整体厚度,从而可以保证应用该复合泡棉结构的显示模组的厚度不会过大,进而有利于显示模组的轻薄化。
在另一些可选的实施例中,上述纤维结构7也可以仅设置于泡棉层2中,或者仅设置于第一胶层3中,这同样可以起到辅助金属层4抵抗外力,减小金属层4发生塑形形变的作用。当然,泡棉层2和第一胶层3中均设置纤维结构7能够更有效地起到辅助金属层4抵抗外力,减小金属层4发生塑形形变的作用。
而且,相较于通过增厚泡棉层2来增强支撑金属层4的作用,本实施例通过在泡棉层2和/或第一胶层3中设置有纤维结构7,能够在增强泡棉层2和/或第一胶层3的抗拉强度的同时,保证泡棉层2和/或第一胶层3的厚度不会增加,以减小复合泡棉结构的整体厚度,从而可以保证应用该复合泡棉结构的显示模组的厚度不会过大,进而有利于显示模组的轻薄化。通过实验 发现:相较于通过增厚泡棉层2来增强支撑金属层4的作用,本实施例通过在泡棉层2和/或第一胶层3中设置有纤维结构7,泡棉层2的减薄量(相对于未设置纤维结构的泡棉层)为10μm-20μm,第一胶层3的减薄量(相对于未设置纤维结构的第一胶层)为5μm-10μm。
发明人通过多次测试发现,碳纤维网络中的每条碳纤维的直径范围大于等于5μm,且小于等于7μm;金属层的厚度为10μm-50μm,第一胶层的厚度为10μm-20μm。在该条件下,将传统的复合泡棉结构中的泡棉层(未设置碳纤维网络)与本实施例采用的复合泡棉结构中的泡棉层2相比,传统的复合泡棉结构中的泡棉层的整体抗拉强度约为0~0.50MPa,而本实施例采用的复合泡棉结构中的泡棉层2通过设置碳纤维网络,其抗拉强度能够达到0.60MPa~0.63MPa,从而有效提高复合泡棉结构的整体抗拉强度。
在一些可选的实施例中,上述纤维结构7包括至少一层由在指定平面内交错设置的多条碳纤维构成的碳纤维网络。可选的,如图4A和图5A所示,多条碳纤维中有多条沿指定平面内的第一方向设置的第一碳纤维71,和沿该指定平面内的第二方向设置的第二碳纤维72,第一碳纤维71与第二碳纤维72相交,且交点处相连接。可选的,上述指定平面与该碳纤维网络所在的泡棉层2或第一胶层3所在平面相互平行。这样,当该碳纤维网络受外部压力(例如滚轮)时,碳纤维网络能够与外部压力相垂直,且碳纤维网络的受力位置处能够产生均匀的应力,从而最大程度地抵消外部压力。
在一些可选的实施例中,相交的两条碳纤维(即,第一碳纤维71与第二碳纤维72)之间的夹角大于等于30°,且小于等于90°。
具体的,滚轮与复合泡棉结构的接触为线接触,即接触位置在滚轮的外周面上的一条轴向直线与复合泡棉结构的表面之间,如图2所示,在模切制作过程中,在因生产设备停机而受到滚轮的压力时,复合泡棉结构在该接触位置处存在向下弯折以及横向拉伸的形变趋势,相应的,碳纤维网络的位于 该接触位置两侧的部分会产生垂直于该接触位置所在直线的两个张力fa、fb,而碳纤维网络中的每条碳纤维产生的应力均由其自身的延伸方向决定,基于此,前述两个张力fa、fb为位于该接触位置处两侧的多条碳纤维各自产生应力的合力;进一步地,碳纤维网络中的相交的两条碳纤维之间的夹角可以根据碳纤维网络的实际受力情况选择。
以图4A示的碳纤维网络为例,相交的第一碳纤维71与第二碳纤维72之间的夹角例如为90°;当该碳纤维网络受外部压力(例如滚轮)时,如图4B所示,碳纤维网络产生的两个张力fa、fb必然会与第一碳纤维71与第二碳纤维72中的一者产生的应力平行,而与另一者产生的应力垂直,在这种情况下,碳纤维网络受到的外部压力由垂直于接触位置所在直线的第一碳纤维71和第二碳纤维72中的一者内部产生的应力抵消,而第一碳纤维71和第二碳纤维72中的另一者几乎不会产生应力,也就是说,只有第一碳纤维71和第二碳纤维72中的一者起到了抵抗外力的作用,这样的碳纤维网络的抗拉强度较低。对此,在一些优选的实施例中,相交的第一碳纤维71与第二碳纤维72之间的夹角可以小于90°,优选的,如图4B所示,碳纤维网络中相交的第一碳纤维71与第二碳纤维72之间的夹角为60°。当该碳纤维网络受外部压力时,由于第一碳纤维71与第二碳纤维72与上述接触位置所在直线之间的夹角均为60°,这样,位于该接触位置处两侧的第一碳纤维71与第二碳纤维72中的每一者内部均产生应力,其合力等于碳纤维网络受到的外部压力,即,碳纤维网络受到的外部压力由位于该接触位置处两侧的所有碳纤维内部产生的应力抵消,每条碳纤维产生的应力较小且相等,从而可以尽可能地提高碳纤维网络的抗拉强度,而且能够提高碳纤维网络的使用寿命。
通过测试发现:当相交的第一碳纤维71与第二碳纤维72之间的夹角为90°时,泡棉层2的抗拉强度能够达到0.60MPa;第二胶层3的抗拉强度能 够达到0.68MPa;当相交的第一碳纤维71与第二碳纤维72之间的夹角为60°时,泡棉层2的抗拉强度能够达到0.63MPa;第二胶层3的抗拉强度能够达到0.70MPa。由此可知,相交的第一碳纤维71与第二碳纤维72之间的夹角为60°时,可以进一步提高碳纤维网络的抗拉强度。
在一些可选的实施例中,碳纤维网络中的每条碳纤维的直径范围大于等于5μm,且小于等于7μm。具体的,直径在该范围内的碳纤维的占用空间较小,这样,不会影响泡棉层2的压缩负荷变形Compression Force Deflection(CFD),进而不会影响泡棉层2的缓冲外力的能力。通过测试可知,传统的复合泡棉结构中的泡棉层在发生25%的压缩负荷变形(CFD)时的应力约为0.32MPa,本实施例采用的复合泡棉结构中的泡棉层2在发生25%的压缩负荷变形(CFD)时的应力约为0.31MPa,与传统的复合泡棉结构几乎一致,由此可知,碳纤维结构的设置,不会影响泡棉层2的压缩负荷变形,进而不会影响泡棉层2的缓冲外力的能力。
另外,直径在上述范围内的碳纤维网络也不会影响第一胶层3的粘性,而且能够有效提升第一胶层3的拉伸强度。通过测试可知,传统的复合泡棉结构中的第一胶层在受到剥离力(Peeling Force)为1500gf/inch时的横向拉伸应力(Tensile strength)为0.6Mpa;本实施例采用的复合泡棉结构中的第一胶层3在受到剥离力(Peeling Force)为1500gf/inch时的横向拉伸应力(Tensile strength)为0.68Mpa-0.70Mpa,由此可知,碳纤维结构的设置,可以有效提升第一胶层3的拉伸强度。
进一步地,由于碳纤维的直径较小,可以适当增加碳纤维网络的层数,从而可以进一步提高碳纤维结构的抗拉强度。具体的,泡棉层2和第一胶层3的抗拉强度会随着碳纤维网络的层数增加而增大。
在一些可选的实施例中,纤维结构7可以采用纺织的方式制作而成。另外,可选的,将纤维结构7设置于泡棉层2和/或第一胶层3中的方法例如包 括:
配置泡棉溶胶体和/或第一胶层溶胶体;
将预先制成的纤维结构7拉紧并浸没于上述泡棉溶胶体和/或第一胶层溶胶体;
对泡棉溶胶体和/或第一胶层溶胶体进行固化,形成泡棉层2和/或第一胶层3。
在一些可选的实施例中,如图3所示,复合泡棉结构还包括第二胶层5和基体层1,其中,基底层1的材质可以采用PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)。该基体层1自身具有一定张力,因此在基体层1能够在受外部压力时抵抗形变,进而能够辅助贴附在其上的金属层4抵抗形变,进一步地降低金属层4发生压印的风险。第二胶层5设置在金属层4与基体层1之间,基体层1用于保护第二胶层5。在实际应用中,在使用复合泡棉结构时,先将基体层1从第二胶层5剥离,然后将该第二胶层5粘附于相应的产品(例如显示面板的背离出光面一侧)上。
请返回参照图1,传统的复合泡棉结构中,用于粘接基底层01与金属层04的第二胶体06,其剥离力通常极低,约为10gf/inch,这会导致基底层01与金属层04之间粘接力不足,进而导致基底层01仅能够在垂直于金属层04表面的方向上对其进行覆盖,而很难抵抗在平行于金属层04表面的方向上横向滑移,因此,在滚轮向传统的复合泡棉结构施加压力时,基底层01会因自身张力而与金属层04脱离。而且,在实际应用中,传统的复合泡棉结构上的基底层01极易脱离,而且也很难通过保持力测试。
为了解决这一技术问题,本发明实施例提供的复合泡棉结构中,第二胶层5的材质包括紫外光固化胶(即,UV胶)。具体的,UV胶的剥离力大于等于2000gf/inch,借助UV胶,可以使金属层4与基体层1之间不容易发生滑移,这样在滚轮向复合泡棉结构施加压力时,基体层1不会与金属层4脱 离。
在一些可选的实施例中,如图3所示,本发明实施例提供的复合泡棉结构还包括遮光胶带层6,该遮光胶带层6设置于泡棉层2背离金属层4一侧,用于粘附于显示模组的背板或者其他任意产品。优选的,遮光胶带层6包括Embo型粘合剂层。
综上所述,本发明实施例提供的复合泡棉结构,通过在泡棉层和/或第一胶层中设置有纤维结构,可以提高泡棉层和/或第一胶层的抗拉强度,这样,在模切制作过程中,复合泡棉结构在因生产设备停机而受到滚轮的压力时,泡棉层和/或第一胶层因具有足够的抗拉强度会起到支撑金属层的作用,辅助金属层抵抗外力,减小金属层发生塑形形变,从而提高复合泡棉结构的整体抗拉强度,以降低复合泡棉结构被压变形的风险,减少压印不良的发生,进而提高复合泡棉结构的良率。在此基础上,通过在泡棉层和/或第一胶层中设置有纤维结构,还可以在提高泡棉层和/或第一胶层的抗拉强度的基础上,减小复合泡棉结构的整体厚度,从而可以保证应用该复合泡棉结构的显示模组的厚度不会过大,进而有利于显示模组的轻薄化。
作为另一种技术方案,本发明实施例还提供一种显示模组,其包括显示面板、背板和本发明实施例提供的上述复合泡棉结构。其中,复合泡棉结构设置与显示面板与背板之间,用以固定并保护显示面板。
具体地,在安装复合泡棉结构时,需要先剥离基材层1,然后将第一胶层3贴附于显示面板背离出光面一侧;将遮光胶带层6粘附于背板上。
本发明实施例提供的显示模组,其通过采用本发明实施例提供的上述复合泡棉结构,不仅可以提高显示模组的质量,而且还可以实现轻薄化。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这 些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种复合泡棉结构,包括泡棉层、金属层和第一胶层,所述第一胶层设置在所述泡棉层与所述金属层之间,用于粘接所述泡棉层与所述金属层;其特征在于,还包括纤维结构,所述纤维结构设置于所述泡棉层和/或所述第一胶层中,用于提高所述泡棉层和/或所述第一胶层的抗拉强度。
  2. 根据权利要求1所述的复合泡棉结构,其特征在于,所述纤维结构包括至少一层由在指定平面内交错设置的多条碳纤维构成的碳纤维网络。
  3. 根据权利要求2所述的复合泡棉结构,其特征在于,每条所述碳纤维的直径范围均为大于等于5μm,且小于等于7μm。
  4. 根据权利要求2所述的复合泡棉结构,其特征在于,所述指定平面与所述泡棉层和/或所述第一胶层所在平面相互平行。
  5. 根据权利要求2所述的复合泡棉结构,其特征在于,相交的两条所述碳纤维之间的夹角大于等于30°,且小于等于90°。
  6. 根据权利要求5所述的复合泡棉结构,其特征在于,相交的两条所述碳纤维之间的夹角为60°。
  7. 根据权利要求1所述的复合泡棉结构,其特征在于,还包括遮光胶带层,所述遮光胶带层设置于所述泡棉层背离所述金属层一侧。
  8. 根据权利要求7所述的复合泡棉结构,其特征在于,所述遮光胶带层包括Embo型粘合剂层。
  9. 根据权利要求1所述的复合泡棉结构,其特征在于,还包括第二胶层和基体层,其中,所述第二胶层设置在所述金属层与所述基体层之间,所述基体层用于保护所述第二胶层。
  10. 根据权利要求9所述的复合泡棉结构,其特征在于,所述第二胶层的材质包括紫外光固化胶。
  11. 根据权利要求1所述的复合泡棉结构,其特征在于,所述第一胶层的材质包括压敏胶。
  12. 根据权利要求1所述的复合泡棉结构,其特征在于,所述泡棉层的材质包括超净泡沫。
  13. 一种显示模组,其特征在于,包括显示面板、背板和如权利要求1-12中所述的复合泡棉结构,所述复合泡棉结构设置在所述显示面板与所述背板之间。
PCT/CN2023/110484 2022-09-19 2023-08-01 复合泡棉结构及显示模组 WO2024060846A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211136628.5A CN115521723A (zh) 2022-09-19 2022-09-19 复合泡棉结构及显示模组
CN202211136628.5 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024060846A1 true WO2024060846A1 (zh) 2024-03-28

Family

ID=84698464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110484 WO2024060846A1 (zh) 2022-09-19 2023-08-01 复合泡棉结构及显示模组

Country Status (2)

Country Link
CN (1) CN115521723A (zh)
WO (1) WO2024060846A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521723A (zh) * 2022-09-19 2022-12-27 京东方科技集团股份有限公司 复合泡棉结构及显示模组
CN116110288A (zh) * 2023-01-31 2023-05-12 上海天马微电子有限公司 一种显示模组和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034383A (zh) * 2017-12-28 2018-05-15 张家港康得新光电材料有限公司 遮光泡棉胶带、其制备方法及电子设备
CN108878682A (zh) * 2018-06-28 2018-11-23 上海天马有机发光显示技术有限公司 一种保护结构及其制作方法、有机发光显示装置
CN109659331A (zh) * 2017-10-11 2019-04-19 上海和辉光电有限公司 一种amoled发光面板及显示装置
CN210134053U (zh) * 2019-05-22 2020-03-10 苏州义铠轩电子科技有限公司 散热缓冲遮光胶带
CN113528043A (zh) * 2020-04-16 2021-10-22 荣耀终端有限公司 一种应用于电子设备的复合胶带、显示模组及电子设备
CN115521723A (zh) * 2022-09-19 2022-12-27 京东方科技集团股份有限公司 复合泡棉结构及显示模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583638B2 (en) * 2015-01-28 2020-03-10 Composite Research S.R.L. Panel made of composite material having a layered structure
CN206385073U (zh) * 2017-01-09 2017-08-08 苏州世沃电子科技有限公司 一种新型玻璃纤维胶带
CN210136381U (zh) * 2019-05-22 2020-03-10 苏州义铠轩电子科技有限公司 屏蔽散热缓冲模块
CN216313768U (zh) * 2021-11-29 2022-04-15 福州尖端电子科技有限公司 一种具电磁屏蔽功能的抗拉伸导电泡棉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659331A (zh) * 2017-10-11 2019-04-19 上海和辉光电有限公司 一种amoled发光面板及显示装置
CN108034383A (zh) * 2017-12-28 2018-05-15 张家港康得新光电材料有限公司 遮光泡棉胶带、其制备方法及电子设备
CN108878682A (zh) * 2018-06-28 2018-11-23 上海天马有机发光显示技术有限公司 一种保护结构及其制作方法、有机发光显示装置
CN210134053U (zh) * 2019-05-22 2020-03-10 苏州义铠轩电子科技有限公司 散热缓冲遮光胶带
CN113528043A (zh) * 2020-04-16 2021-10-22 荣耀终端有限公司 一种应用于电子设备的复合胶带、显示模组及电子设备
CN115521723A (zh) * 2022-09-19 2022-12-27 京东方科技集团股份有限公司 复合泡棉结构及显示模组

Also Published As

Publication number Publication date
CN115521723A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2024060846A1 (zh) 复合泡棉结构及显示模组
US11263929B2 (en) Flexible display apparatus
US10453710B2 (en) Apparatus for manufacturing flexible display device
US11884050B2 (en) Curved-surface laminating device and curved-surface laminating method
EP2351718A1 (en) Glass substrate laminated device and method for producing laminate glass substrate
KR101614211B1 (ko) 편면형 박형 편광판의 제조방법
JP3219402U (ja) 曲面物体を貼合可能な貼合装置
CN211604571U (zh) 柔性显示结构及显示装置
TWI456291B (zh) 液晶面板之製造方法及製造系統
WO2015120700A1 (zh) 剥离装置和方法
WO2018179450A1 (ja) 積層光学シート
KR20230103762A (ko) 신축 균일도가 향상된 신축성 기판 및 그 제조 방법
KR102230701B1 (ko) 제로 탄성계수 구간을 가지는 메타구조체 및 제로 탄성계수 구간을 가지는 메타구조체 설계방법
CN109448552B (zh) 在柔性显示装置上贴合支撑膜的方法
KR20130002105A (ko) 대면적 필름의 무 기포 합지 방법 및 장치
CN102998818A (zh) 显示装置
WO2012098679A1 (ja) ワーク貼り合わせ装置及びプレス硬化装置
JP2020172019A (ja) セパレータ、複合セパレータ、セパレータ付両面粘着テープ、粘着剤付研磨パッド及び粘着剤付バックパッド、並びに、複合セパレータの剥離方法
JP5384930B2 (ja) 液晶パネル積層体の製造方法並びにその装置
JP3152226U (ja) ラミネート装置
US20240021112A1 (en) Display panel and manufacturing method thereof
KR101648221B1 (ko) 요철 추종성 적층부재 및 그것을 이용한 터치 패널 부착 표시장치
WO2022056694A1 (zh) 贴合装置、其贴合方法及柔性显示模组、显示装置
CN216683666U (zh) 一种涂布贴合机构
CN209418052U (zh) 一种车载显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867141

Country of ref document: EP

Kind code of ref document: A1