WO2024060675A1 - 超级电容储能下垂控制方法及系统 - Google Patents

超级电容储能下垂控制方法及系统 Download PDF

Info

Publication number
WO2024060675A1
WO2024060675A1 PCT/CN2023/098110 CN2023098110W WO2024060675A1 WO 2024060675 A1 WO2024060675 A1 WO 2024060675A1 CN 2023098110 W CN2023098110 W CN 2023098110W WO 2024060675 A1 WO2024060675 A1 WO 2024060675A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage converter
output
current
voltage
Prior art date
Application number
PCT/CN2023/098110
Other languages
English (en)
French (fr)
Inventor
王绍民
林松青
薛晓峰
潘喜良
徐挺进
姜滨
梁晓斌
张宗桢
戴海鹏
葛传军
常云潇
刘文武
杨沛豪
兀鹏越
寇水潮
王小辉
燕云飞
郭昊
殷悦
李志鹏
张立松
王劼文
代本谦
李菁华
Original Assignee
华能罗源发电有限责任公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能罗源发电有限责任公司, 西安热工研究院有限公司 filed Critical 华能罗源发电有限责任公司
Publication of WO2024060675A1 publication Critical patent/WO2024060675A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/242Arrangements for preventing or reducing oscillations of power in networks using phasor measuring units [PMU]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present disclosure relates to the field of converter control, and specifically to a supercapacitor energy storage droop control method and system.
  • energy storage technology As one of the key technologies for energy transformation, energy storage technology has received widespread attention in the industry in recent years because it can provide various auxiliary services such as peak shaving, frequency regulation, and emergency response for the power grid.
  • auxiliary services such as peak shaving, frequency regulation, and emergency response for the power grid.
  • it is necessary to conduct research on energy storage converter control strategies.
  • Embodiments of the present disclosure provide a supercapacitor energy storage droop control method and system to at least solve the technical problem of transient fluctuations in the output voltage of the energy storage converter.
  • the first embodiment of the present disclosure provides a supercapacitor energy storage droop control method, the method comprising:
  • the calculation formula of the active component and reactive component of the output current of the energy storage converter is determined according to the vector relationship between the output current vector of the energy storage converter and the output voltage. In response to the impedance of the transmission line being inductive, the The calculation formulas of the active component and the reactive component of the output current of the energy storage converter are simplified to obtain the current droop control equation of the energy storage system, where the active component and reactive component of the output current of the energy storage converter are The calculation formula is as follows:
  • Id is the active component of the energy storage converter output current
  • E is the output voltage of the energy storage converter
  • Us is the bus voltage of the transmission line
  • is the power angle between the output voltage of the energy storage converter and the bus voltage of the transmission circuit
  • is the impedance angle
  • r is the impedance modulus of the transmission line
  • Iq is the reactive component of the energy storage converter output current
  • is the output frequency of the energy storage converter
  • ⁇ 0 is the rated angular frequency corresponding to the energy storage converter
  • I d0 is the rated active current corresponding to the energy storage converter
  • m is the active droop coefficient
  • E 0 is the rated voltage output by the energy storage converter
  • n is the reactive power droop coefficient
  • I q0 is the rated reactive current corresponding to the energy storage converter
  • the voltage and frequency output by the energy storage converter are controlled based on the energy storage system current droop control equation and the adaptive inertial reactive power droop coefficient.
  • Z is the line impedance of the energy storage system
  • R is the equivalent resistance of the transmission line
  • the vector relationship between the output current vector and the output voltage of the energy storage converter is as follows:
  • determining the adaptive inertia reactive power droop coefficient in the energy storage system current droop control equation according to the change rate of the energy storage converter output voltage includes:
  • the adaptive inertia reactive power droop coefficient includes an adaptive reactive power droop coefficient and a fixed reactive power droop coefficient.
  • the second embodiment of the present disclosure proposes a supercapacitor energy storage droop control system.
  • the system includes:
  • the first determination module is used to determine the vector relationship between the energy storage converter output current vector and the output voltage according to the energy storage system line impedance expression
  • the second determination module is used to determine the calculation formula of the active component and reactive component of the output current of the energy storage converter according to the vector relationship between the output current vector and the output voltage of the energy storage converter, and in response to the line impedance of the transmission line being inductive, simplify the calculation formula of the active component and reactive component of the output current of the energy storage converter to obtain the current droop control equation of the energy storage system, wherein the calculation formula of the active component and reactive component of the output current of the energy storage converter is as follows:
  • I d is the active component of the energy storage converter output current
  • E is the energy storage converter output voltage
  • U S is the transmission line bus voltage
  • is the difference between the energy storage converter output voltage and the transmission circuit bus voltage.
  • power angle ⁇ is the impedance angle
  • r is the transmission line impedance mode
  • I q is the reactive component of the energy storage converter output current
  • is the frequency output by the energy storage converter
  • ⁇ 0 is the rated angular frequency corresponding to the energy storage converter
  • I d0 is The rated active current corresponding to the energy storage converter
  • m is the active power droop coefficient
  • E 0 is the rated voltage output by the energy storage converter
  • n is the reactive power droop coefficient
  • I q0 is the rated reactive power corresponding to the energy storage converter electric current
  • the third determination module is used to determine the adaptive inertia reactive power droop coefficient in the energy storage system current droop control equation according to the change rate of the energy storage converter output voltage;
  • a control module configured to control the voltage and frequency output by the energy storage converter based on the energy storage system current droop control equation and the adaptive inertia reactive power droop coefficient.
  • Z is the line impedance of the energy storage system
  • R is the equivalent resistance of the transmission line
  • the vector relationship between the output current vector and the output voltage of the energy storage converter is as follows:
  • Embodiments of the present disclosure propose a supercapacitor energy storage droop control method and system.
  • the method includes: constructing an energy storage system line impedance expression; determining the energy storage converter output current vector and The vector relational expression of the output voltage; the calculation formula of the active component and the reactive component of the output current of the energy storage converter is determined according to the vector relational expression of the energy storage converter output current vector and the output voltage, in response to the transmission line
  • the impedance is inductive, and the calculation formulas of the active component and the reactive component of the output current of the energy storage converter are simplified to obtain the current droop control equation of the energy storage system, where the output current of the energy storage converter
  • the calculation formulas of active component and reactive component are as follows:
  • I d is the active component of the energy storage converter output current
  • E is the energy storage converter output voltage
  • U S is the transmission line bus voltage
  • is the difference between the energy storage converter output voltage and the transmission circuit bus voltage.
  • power angle ⁇ is the impedance angle
  • r is the transmission line impedance mode
  • I q is the reactive component of the energy storage converter output current
  • is the output frequency of the energy storage converter
  • ⁇ 0 is the rated angular frequency corresponding to the energy storage converter
  • I d0 is the rated active current corresponding to the energy storage converter
  • m is the active droop coefficient
  • E 0 is the rated voltage output by the energy storage converter
  • n is the reactive power droop coefficient
  • I q0 is the rated reactive current corresponding to the energy storage converter
  • the technical solution proposed by the embodiment of the present disclosure determines the energy storage system current droop control equation based on constructing the energy storage system line impedance expression, and then calculates the energy storage system current droop control equation based on the adaptive inertial reactive power droop coefficient and the energy storage system current droop control equation. Controlling the inverter can effectively suppress the transient fluctuation of the output voltage of the energy storage converter.
  • Figure 1 is a flow chart of a supercapacitor energy storage droop control method according to an embodiment of the present disclosure
  • Figure 2 is an equivalent circuit diagram of the operation of an energy storage system with an energy storage inverter according to an embodiment of the present disclosure
  • Figure 3 is a corresponding relationship diagram between the voltage adjustment coefficient and the adaptive reactive power droop coefficient provided according to an embodiment of the present disclosure
  • Figure 4 is a structural diagram of a supercapacitor energy storage droop control system according to an embodiment of the present disclosure
  • Figure 5 is a structural diagram of a second determination module provided according to an embodiment of the present disclosure.
  • the supercapacitor energy storage droop control method and system proposed by the embodiments of the present disclosure include: constructing an energy storage system line impedance expression; determining the energy storage converter output current vector and The vector relational expression of the output voltage; the current droop control equation of the energy storage system is determined according to the vector relational expression between the output current vector and the output voltage of the energy storage converter; the energy storage system is determined according to the change rate of the output voltage of the energy storage converter
  • the adaptive inertia reactive power droop coefficient in the system current droop control equation; the voltage and frequency output by the energy storage converter are controlled based on the energy storage system current droop control equation and the adaptive inertial reactive power droop coefficient.
  • the technical solution proposed by the embodiment of the present disclosure determines the energy storage system current droop control equation based on constructing the energy storage system line impedance expression, and then calculates the energy storage system current droop control equation based on the adaptive inertial reactive power droop coefficient and the energy storage system current droop control equation. Controlling the inverter can effectively suppress the transient fluctuation of the output voltage of the energy storage converter.
  • Figure 1 is a flow chart of a supercapacitor energy storage droop control method according to an embodiment of the present disclosure. As shown in Figure 1, the method includes: Step 1 to Step 5.
  • Step 1 Construct the line impedance expression of the energy storage system
  • Z is the line impedance of the energy storage system
  • R is the equivalent resistance of the transmission line
  • Step 2 Determine the vector relationship between the energy storage converter output current vector and the output voltage according to the energy storage system line impedance expression.
  • Figure 2 shows the equivalent circuit of an energy storage system with an energy storage converter. Based on the above, The effective circuit is used to obtain the vector relationship between the output current vector and the output voltage of the energy storage converter.
  • the vector relationship between the output current vector and the output voltage of the energy storage converter is as follows:
  • Step 3 Determine the energy storage system current droop control equation according to the vector relationship between the energy storage converter output current vector and the output voltage.
  • step 3 specifically includes: step 3-1 to step 3-2.
  • Step 3-1 Determine the calculation formula of the active component and reactive component of the output current of the energy storage converter based on the vector relationship between the output current vector and the output voltage of the energy storage converter;
  • Step 3-2 In response to the fact that the impedance of the transmission line is inductive, simplify the calculation formula of the active component and the calculation formula of the reactive component of the output current of the energy storage converter, and obtain the current droop control equation of the energy storage system.
  • is the output frequency of the energy storage converter
  • ⁇ 0 is the rated angular frequency corresponding to the energy storage converter
  • I d0 is the rated active current corresponding to the energy storage converter
  • m is the active droop coefficient
  • E 0 is the rated voltage output by the energy storage converter
  • n is the reactive power droop coefficient
  • I q0 is the rated reactive current corresponding to the energy storage converter.
  • Step 4 Determine the adaptive inertia reactive power droop coefficient in the energy storage system current droop control equation according to the change rate of the energy storage converter output voltage; wherein, the adaptive inertia reactive power droop coefficient includes adaptive reactive power droop coefficient. Work droop coefficient and fixed reactive power droop coefficient.
  • an adaptive reactive power droop coefficient is selected
  • a fixed reactive power droop coefficient is selected.
  • the selection of the adaptive inertial reactive power droop coefficient can be as follows:
  • n i is the adaptive inertial reactive power droop coefficient
  • n 0 is the fixed reactive power droop coefficient
  • n 1 is the adaptive reactive power droop coefficient
  • C st is the preset voltage change rate threshold.
  • n imin is the minimum adaptive inertial reactive power droop coefficient, which is determined by the limit reactive power of the energy storage converter and can be expressed as:
  • ⁇ i qmax is the maximum adjustment amount of reactive current
  • ⁇ E is the change amount of the output voltage of the energy storage converter corresponding to the maximum adjustment amount of reactive current.
  • the adaptive reactive power droop coefficient can be adaptively changed according to the selected voltage regulation coefficient.
  • Step 5 Control the voltage and frequency output by the energy storage converter based on the energy storage system current droop control equation and the adaptive inertia reactive power droop coefficient.
  • the supercapacitor energy storage droop control method proposed in this embodiment determines the energy storage system current droop control equation based on constructing the energy storage system line impedance expression, and then based on the adaptive inertial reactive power droop coefficient and energy storage
  • the system current droop control equation controls the energy storage converter, which can effectively suppress the transient fluctuation of the output voltage of the energy storage converter and at the same time add inertial support to the energy storage control system.
  • Figure 4 is a structural diagram of a supercapacitor energy storage droop control system according to an embodiment of the present disclosure. As shown in Figure 4, the system includes:
  • Building module 100 used to construct the line impedance expression of the energy storage system
  • the first determination module 200 is used to determine the vector relationship between the energy storage converter output current vector and the output voltage according to the energy storage system line impedance expression
  • the second determination module 300 is used to determine the energy storage system current droop control equation according to the vector relationship between the energy storage converter output current vector and the output voltage;
  • a third determination module 400 is used to determine the adaptive inertia reactive power droop coefficient in the current droop control equation of the energy storage system according to the change rate of the output voltage of the energy storage converter;
  • the control module 500 is used to control the voltage and frequency output by the energy storage converter based on the energy storage system current droop control equation and the adaptive inertial reactive power droop coefficient.
  • Z is the line impedance of the energy storage system
  • R is the equivalent resistance of the transmission line
  • the vector relationship between the output current vector and the output voltage of the energy storage converter is as follows:
  • the second determining module 300 includes:
  • a first determining unit 301 is used to determine a calculation formula for the active component and reactive component of the output current of the energy storage converter according to a vector relationship between the output current vector and the output voltage of the energy storage converter;
  • the simplification unit 302 is configured to respond to the fact that the impedance of the transmission line is inductive, simplify the calculation formula of the active component and the calculation formula of the reactive component of the output current of the energy storage converter, and obtain the current droop control equation of the energy storage system.
  • the calculation formulas of the active component and reactive component of the output current of the energy storage converter are as follows:
  • is the output frequency of the energy storage converter
  • ⁇ 0 is the rated angular frequency corresponding to the energy storage converter
  • I d0 is the rated active current corresponding to the energy storage converter
  • m is the active droop coefficient
  • E 0 is the rated voltage output by the energy storage converter
  • n is the reactive power droop coefficient
  • I q0 is the rated reactive current corresponding to the energy storage converter.
  • the third determination module 400 is specifically used to:
  • the adaptive inertia reactive power droop coefficient includes an adaptive reactive power droop coefficient and a fixed reactive power droop coefficient.
  • the supercapacitor energy storage droop control system proposed in this embodiment can effectively suppress the transient fluctuation of the output voltage of the energy storage converter, and at the same time add inertial support to the energy storage control system.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

公开了一种超级电容储能下垂控制方法及系统,所述方法包括:构建储能系统线路阻抗表达式;根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定储能系统电流下垂控制方程;根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。

Description

超级电容储能下垂控制方法及系统
相关申请的交叉引用
本申请要求在2022年09月20日在中国提交的中国专利申请号2022111464216的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及换流器控制领域,具体涉及超级电容储能下垂控制方法及系统。
背景技术
作为能源变革关键技术之一的储能技术,因为其可以为电网提供调峰、调频、应急响应等多种辅助服务,近年来受到了业内的广泛关注。为了实现储能系统友好型并网,为电网提供稳定电压、频率支撑,需要开展储能换流器控制策略研究。
目前在储能换流器控制领域,大多采用双闭环控制、无差拍控制来实现电压、频率动态响应。但常规控制策略无法维持分布式电源高渗透率下非同步储能换流器控制系统稳定。当网侧因为大负荷投切出现功率缺口或者负荷波动时,储能换流器没有做出及时响应,会造成储能换流器输出电压暂态波动,一些对电压稳定性敏感的设备会因此停行。
发明内容
本公开实施例提供超级电容储能下垂控制方法及系统,以至少解决储能换流器输出电压暂态波动的技术问题。
本公开第一方面实施例提出一种超级电容储能下垂控制方法,所述方法包括:
构建储能系统线路阻抗表达式;
根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;
根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式,响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,以得到储能系统电流下垂控制方程,其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
其中,Id为储能换流器输出电流有功分量,E为储能换流器输出电压,US为输电线路母线电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,θ为阻抗角,r为输电线路阻抗模,Iq为储能换流器输出电流无功分量,
所述储能系统电流下垂控制方程如下:
式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流;
根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;
基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
在一些实施例中,所述储能系统线路阻抗表达式如下:
Z=R+jX=r∠θ
式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
在一些实施例中,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
在一些实施例中,所述根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数,包括:
响应于所述储能换流器输出电压的变化率大于等于预设的电压变化率阈值,选择自适应无功下垂系数;
响应于所述储能换流器输出电压的变化率小于预设的电压变化率阈值,选择定无功下垂系数;
其中,所述自适应惯性无功下垂系数,包括自适应无功下垂系数和定无功下垂系数。
本公开第二方面实施例提出一种超级电容储能下垂控制系统,所述系统包括:
构建模块,用于构建储能系统线路阻抗表达式;
第一确定模块,用于根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;
第二确定模块,用于根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式,响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,以得到储能系统电流下垂控制方程,其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
其中,Id为储能换流器输出电流有功分量,E为储能换流器输出电压,US为输电线路母线电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,θ为阻抗角,r为输电线路阻抗模,Iq为储能换流器输出电流无功分量,
所述储能系统电流下垂控制方程如下:
式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为 储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流;
第三确定模块,用于根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;
控制模块,用于基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
在一些实施例中,所述储能系统线路阻抗表达式如下:
Z=R+jX=r∠θ
式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
在一些实施例中,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
本公开的实施例提供的技术方案至少带来以下有益效果:
本公开实施例提出了超级电容储能下垂控制方法及系统,所述方法包括:构建储能系统线路阻抗表达式;根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式,响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,以得到储能系统电流下垂控制方程,其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
其中,Id为储能换流器输出电流有功分量,E为储能换流器输出电压,US为输电线路母线电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,θ为阻抗角,r为输电线路阻抗模,Iq为储能换流器输出电流无功分量,
所述储能系统电流下垂控制方程如下:
式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流;根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。本公开实施例提出的技术方案,基于构建储能系统线路阻抗表达式确定储能系统电流下垂控制方程,然后基于所述自适应惯性无功下垂系数及储能系统电流下垂控制方程对储能换流器进行控制,能够有效抑制储能换流器输出电压的暂态波动。
本公开附加的方面以及优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面以及优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开一个实施例提供的一种超级电容储能下垂控制方法的流程图;
图2为根据本公开一个实施例提供的具有储能换流器的储能系统运行等效电路图;
图3为根据本公开一个实施例提供的电压调节系数与自适应无功下垂系数的对应关系图;
图4为根据本公开一个实施例提供的一种超级电容储能下垂控制系统的结构图;
图5为根据本公开一个实施例提供的第二确定模块的结构图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开实施例提出的超级电容储能下垂控制方法及系统,所述方法包括:构建储能系统线路阻抗表达式;根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定储能系统电流下垂控制方程;根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。本公开实施例提出的技术方案,基于构建储能系统线路阻抗表达式确定储能系统电流下垂控制方程,然后基于所述自适应惯性无功下垂系数及储能系统电流下垂控制方程对储能换流器进行控制,能够有效抑制储能换流器输出电压的暂态波动。
下面参考附图描述本公开实施例的超级电容储能下垂控制方法及系统。
实施例一
图1为根据本公开一个实施例提供的一种超级电容储能下垂控制方法的流程图,如图1所示,所述方法包括:步骤1至步骤5。
步骤1:构建储能系统线路阻抗表达式;
在本公开实施例中,构建的所述储能系统线路阻抗表达式如下:
Z=R+jX=r∠θ
式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
步骤2:根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式。
需要说明的是,如图2所示为具有储能换流器的储能系统运行等效电路,基于所述等 效电路得出储能换流器输出电流矢量与输出电压的矢量关系。
在一些实施例中,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
步骤3:根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定储能系统电流下垂控制方程。
在本公开实施例中,所述步骤3具体包括:步骤3-1至步骤3-2。
步骤3-1:根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式;
其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
步骤3-2:响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,得到储能系统电流下垂控制方程。
响应于输电线路线路阻抗为感性,将公式简化为根据简化后的公式可知:储能换流器输出Id可以通过控制功角进行调节,因为功角δ=∫ωdt,所以功角相位控制可以通过调节角频率ω实现。Iq可以通过控制储能换流器输出电压幅值进行调节,由此可以得到储能系统电流下垂控制方程为:
式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流。
步骤4:根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;其中,所述自适应惯性无功下垂系数,包括自适应无功下垂系数和定无功下垂系数。
需要说明的是,响应于所述储能换流器输出电压的变化率大于等于预设的电压变化率阈值,选择自适应无功下垂系数;
响应于所述储能换流器输出电压的变化率小于预设的电压变化率阈值,选择定无功下垂系数。
在一些实施例中,所述自适应惯性无功下垂系数的选择可以如下式所示:
式中,ni为自适应惯性无功下垂系数,n0为定无功下垂系数,n1为自适应无功下垂系数,为储能换流器输出电压的变化率,k1为第一电压调节系数,k2为第二电压调节系数,Cst为预设的电压变化率阈值。
需要说明的是,nimin为最小自适应惯性无功下垂系数,决定于储能换流器极限无功功率,可表示为:式中,Δiqmax为无功电流最大调节量,ΔE为无功电流最大调节量对应的储能换流器输出电压变化量。
其中,如图3所示,可以根据选择的电压调节系数,自适应无功下垂系数进行自适应的变化。
步骤5:基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
综上所述,本实施例提出的超级电容储能下垂控制方法,基于构建储能系统线路阻抗表达式确定储能系统电流下垂控制方程,然后基于所述自适应惯性无功下垂系数及储能系统电流下垂控制方程对储能换流器进行控制,能够有效抑制储能换流器输出电压的暂态波动,同时为储能控制系统增加惯性支撑。
实施例二
图4为根据本公开一个实施例提供的一种超级电容储能下垂控制系统的结构图,如图4所示,所述系统包括:
构建模块100,用于构建储能系统线路阻抗表达式;
第一确定模块200,用于根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;
第二确定模块300,用于根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定储能系统电流下垂控制方程;
第三确定模块400,用于根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;和
控制模块500,用于基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
在本公开实施例中,所述储能系统线路阻抗表达式如下:
Z=R+jX=r∠θ
式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
在一些实施例中,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
在本公开实施例中,如图5所示,所述第二确定模块300,包括:
第一确定单元301,用于根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式;和
简化单元302,用于响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,得到储能系统电流下垂控制方程。
在一些实施例中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
所述储能系统电流下垂控制方程如下:
式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流。
在本公开实施例中,所述第三确定模块400具体用于:
响应于所述储能换流器输出电压的变化率大于等于预设的电压变化率阈值,选择自适应无功下垂系数;
响应于所述储能换流器输出电压的变化率小于预设的电压变化率阈值,选择定无功下垂系数;
其中,所述自适应惯性无功下垂系数,包括自适应无功下垂系数和定无功下垂系数。
综上所述,本实施例提出的超级电容储能下垂控制系统,能够有效抑制储能换流器输出电压的暂态波动,同时为储能控制系统增加惯性支撑。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种超级电容储能下垂控制方法,其特征在于,所述方法包括:
    构建储能系统线路阻抗表达式;
    根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;
    根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式,响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,以得到储能系统电流下垂控制方程,其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
    其中,Id为储能换流器输出电流有功分量,E为储能换流器输出电压,US为输电线路母线电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,θ为阻抗角,r为输电线路阻抗模,Iq为储能换流器输出电流无功分量,
    所述储能系统电流下垂控制方程如下:
    式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流;
    根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;
    基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
  2. 如权利要求1所述的方法,其特征在于,所述储能系统线路阻抗表达式如下:
    Z=R+jX=r∠θ
    式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
  3. 如权利要求2所述的方法,其特征在于,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
    式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
  4. 如权利要求1所述的方法,其特征在于,所述根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数,包括:
    响应于所述储能换流器输出电压的变化率大于等于预设的电压变化率阈值,选择自适应无功下垂系数;
    响应于所述储能换流器输出电压的变化率小于预设的电压变化率阈值,选择定无功下垂系数;
    其中,所述自适应惯性无功下垂系数,包括自适应无功下垂系数和定无功下垂系数。
  5. 一种超级电容储能下垂控制系统,其特征在于,所述系统包括:
    构建模块,用于构建储能系统线路阻抗表达式;
    第一确定模块,用于根据所述储能系统线路阻抗表达式确定储能换流器输出电流矢量与输出电压的矢量关系式;
    第二确定模块,用于根据所述储能换流器输出电流矢量与输出电压的矢量关系式确定所述储能换流器输出电流有功分量、无功分量的计算式,响应于输电线路线路阻抗为感性,对所述储能换流器输出电流有功分量的计算式、无功分量的计算式进行简化,以得到储能系统电流下垂控制方程,其中,所述储能换流器输出电流有功分量、无功分量的计算式如下:
    其中,Id为储能换流器输出电流有功分量,E为储能换流器输出电压,US为输电线路母线电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,θ为阻抗角,r为输电线路阻抗模,Iq为储能换流器输出电流无功分量,
    所述储能系统电流下垂控制方程如下:
    式中,ω为储能换流器输出的频率,ω0为储能换流器对应的额定角频率,Id0为储能换流器对应的额定有功电流,m为有功下垂系数,E0为储能换流器输出的额定电压,n为无功下垂系数,Iq0为储能换流器对应的额定无功电流;
    第三确定模块,用于根据储能换流器输出电压的变化率确定所述储能系统电流下垂控制方程中的自适应惯性无功下垂系数;
    控制模块,用于基于所述储能系统电流下垂控制方程及自适应惯性无功下垂系数对所述储能换流器输出的电压及频率进行控制。
  6. 如权利要求5所述的系统,其特征在于,所述储能系统线路阻抗表达式如下:
    Z=R+jX=r∠θ
    式中,Z为储能系统线路阻抗,R为输电线路等效电阻,X为输电线路等效电抗,j为矢量,r为输电线路阻抗模,θ为阻抗角,其中,R=rcosθ,X=rsinθ。
  7. 如权利要求6所述的系统,其特征在于,所述储能换流器输出电流矢量与输出电压的矢量关系式如下:
    式中,为储能换流器输出电流矢量,E为储能换流器输出电压,δ为储能换流器输出电压与输电电路母线电压之间的功角,Id为储能换流器输出电流有功分量,Iq为储能换流器输出电流无功分量,US为输电线路母线电压。
PCT/CN2023/098110 2022-09-20 2023-06-02 超级电容储能下垂控制方法及系统 WO2024060675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211146421.6A CN115224718B (zh) 2022-09-20 2022-09-20 储能换流器自适应下垂控制方法及系统
CN202211146421.6 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060675A1 true WO2024060675A1 (zh) 2024-03-28

Family

ID=83617700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098110 WO2024060675A1 (zh) 2022-09-20 2023-06-02 超级电容储能下垂控制方法及系统

Country Status (2)

Country Link
CN (1) CN115224718B (zh)
WO (1) WO2024060675A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224718B (zh) * 2022-09-20 2023-02-03 西安热工研究院有限公司 储能换流器自适应下垂控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076630A1 (en) * 2016-09-14 2018-03-15 Texas Tech University System Ude-based robust droop control for parallel inverter operation
CN112152241A (zh) * 2019-06-28 2020-12-29 上海申能新动力储能研发有限公司 一种微电网中多储能变流器的协调控制装置及方法
CN113595156A (zh) * 2021-07-30 2021-11-02 西安热工研究院有限公司 一种增加黑启动供电恢复阶段储能系统鲁棒性方法
CN115224718A (zh) * 2022-09-20 2022-10-21 西安热工研究院有限公司 储能换流器自适应下垂控制方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305410B (zh) * 2015-10-16 2017-10-27 国网上海市电力公司 一种直流配电系统储能装置自适应虚拟阻抗下垂控制方法
CN105322532B (zh) * 2015-11-26 2017-08-25 上海电力学院 直流微电网储能优化及协调控制方法
CN109904850B (zh) * 2019-03-04 2021-07-27 国网新疆电力有限公司经济技术研究院 一种分布式储能直流微电网中储能单元的充放电控制方法
CN110071527A (zh) * 2019-04-26 2019-07-30 西安理工大学 按比例分配无功负荷和电压幅频自调整改进下垂控制方法
CN112234646A (zh) * 2020-09-29 2021-01-15 西安热工研究院有限公司 一种采用下垂动态系数的微电网并网逆变器控制方法
CN112491097B (zh) * 2020-11-20 2023-04-07 西安热工研究院有限公司 一种直流储能功率-电压调节方法
CN113472006B (zh) * 2021-06-08 2022-10-28 浙江工业大学 一种复杂负荷下多机并联储能功率变流器的离网控制方法
CN114448284A (zh) * 2021-12-28 2022-05-06 深圳供电局有限公司 基于下垂控制的下垂控制频率自适应调整方法、控制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076630A1 (en) * 2016-09-14 2018-03-15 Texas Tech University System Ude-based robust droop control for parallel inverter operation
CN112152241A (zh) * 2019-06-28 2020-12-29 上海申能新动力储能研发有限公司 一种微电网中多储能变流器的协调控制装置及方法
CN113595156A (zh) * 2021-07-30 2021-11-02 西安热工研究院有限公司 一种增加黑启动供电恢复阶段储能系统鲁棒性方法
CN115224718A (zh) * 2022-09-20 2022-10-21 西安热工研究院有限公司 储能换流器自适应下垂控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master’s Thesis", 1 May 2019, HEFEI UNIVERSITY OF TECHNOLOGY, CN, article WU, DONG: "Multi-Scene Control Research of Microgrid Energy Storage Converter", pages: 1 - 85, XP009554036 *
REN, YAZHAO; YU, MING: "Inertia Control of DC Microgrid Based on Battery Energy Storage", CONTROL AND INSTRUMENTS IN CHEMICAL INDUSTRY, CN, vol. 44, no. 7, 10 July 2017 (2017-07-10), CN, pages 656 - 661, XP009554149, ISSN: 1000-3932 *

Also Published As

Publication number Publication date
CN115224718A (zh) 2022-10-21
CN115224718B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US20080179887A1 (en) Hybrid power generation of wind-power generator and battery energy storage system
CN106849172B (zh) 光储交直流微网中的并离网无缝切换策略
WO2015165191A1 (zh) 一种三相双模式逆变器的稳态控制方法
AU2020455056B2 (en) Low-voltage ride-through control method and system for wind turbine generator
JP5717172B2 (ja) 電力供給システム
WO2024060675A1 (zh) 超级电容储能下垂控制方法及系统
JP4056852B2 (ja) 電力変換装置
JP3598975B2 (ja) 燃料電池自動車の制御装置
CN110289647B (zh) 交直流混合微电网中互联变流器的自适应下垂及滞回控制方法
WO2024066583A1 (zh) 一种储能系统及孤岛检测方法
CN112086985B (zh) 考虑有功传输能力的混合双馈入系统的协调控制策略
CN115940656A (zh) 一种下垂系数自适应的谐振变换器并联的控制方法
JP3407234B2 (ja) 電力系統と連系する分散配置型電源の制御方法
CN115085204A (zh) 一种卸荷电路、低电压穿越控制方法及系统
CN112510696B (zh) 微电网暂态电压稳定性调控系统及调控方法
CN116014820A (zh) 基于超级电容的不对称故障低电压穿越控制方法及系统
CN114665503A (zh) 基于直接频率变化率控制的并网逆变器频率控制方法
CN112583289B (zh) 用于电流源型整流器并联运行上下母线电流协同控制方法
CN113765128A (zh) 一种高压直挂式储能变流器
CN115241898B (zh) 储能电压型换流器的下垂控制方法及系统
JP2004153940A (ja) 交流励磁形発電電動機の制御装置
CN109428341B (zh) 一种直流电压协调控制方法
CN110912147B (zh) 基于静止无功发生器的电网电压调节方法、装置及可读储存介质
JP2020188614A (ja) 無効電力補償装置の制御方法及び制御回路
JP3075578B2 (ja) 無効電力補償装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866972

Country of ref document: EP

Kind code of ref document: A1